WO2011000787A1 - Vanne à boisseau, boisseau pour une telle vanne et circuit d'admission de gaz dans un moteur thermique de véhicule automobile avec une telle vanne - Google Patents

Vanne à boisseau, boisseau pour une telle vanne et circuit d'admission de gaz dans un moteur thermique de véhicule automobile avec une telle vanne Download PDF

Info

Publication number
WO2011000787A1
WO2011000787A1 PCT/EP2010/059087 EP2010059087W WO2011000787A1 WO 2011000787 A1 WO2011000787 A1 WO 2011000787A1 EP 2010059087 W EP2010059087 W EP 2010059087W WO 2011000787 A1 WO2011000787 A1 WO 2011000787A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
plug
sealing segment
valve according
wall
Prior art date
Application number
PCT/EP2010/059087
Other languages
English (en)
Inventor
Carlos Martins
Anne-Sylvie Magnier-Cathenod
Carlos Da Silva
Jean-Sylvain Bernard
Original Assignee
Valeo Systemes Thermiques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques filed Critical Valeo Systemes Thermiques
Publication of WO2011000787A1 publication Critical patent/WO2011000787A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0418Layout of the intake air cooling or coolant circuit the intake air cooler having a bypass or multiple flow paths within the heat exchanger to vary the effective heat transfer surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/08Throttle valves specially adapted therefor; Arrangements of such valves in conduits
    • F02D9/12Throttle valves specially adapted therefor; Arrangements of such valves in conduits having slidably-mounted valve members; having valve members movable longitudinally of conduit
    • F02D9/16Throttle valves specially adapted therefor; Arrangements of such valves in conduits having slidably-mounted valve members; having valve members movable longitudinally of conduit the members being rotatable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/06Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/29Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
    • F02M26/32Liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/08Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only taps or cocks
    • F16K11/085Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only taps or cocks with cylindrical plug
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • Ball valve, plug for such a valve and gas intake circuit in a motor vehicle engine with such a valve Ball valve, plug for such a valve and gas intake circuit in a motor vehicle engine with such a valve
  • the invention relates to a ball valve regulating a flow of fluid, a plug for such a valve and a gas intake circuit in a motor vehicle engine with such a valve.
  • a motor vehicle engine has a combustion chamber, generally formed by a plurality of cylinders, in which a mixture of oxidant and fuel is burned to generate the engine work.
  • the oxidant comprises air, which can be compressed or not, depending on whether the engine comprises a turbocharger or not.
  • the air can also be mixed with exhaust gases; we are talking about recirculated exhaust gas.
  • the gases admitted into the combustion chamber are called intake gases.
  • the passage through the RAS is optional, the supercharging air can be circulated in the SAR or bypass through a pipe provided for this purpose; traditionally, we speak of a bypass pipeline of the RAS or bypass pipeline.
  • the regulation of the flow of gas from the outlet pipe of the compressor to the RAS and / or to the bypass pipe is achieved by a so-called three-way valve, comprising an orifice (or way) inlet and two orifices (or channels) Release.
  • a three-way valve may comprise one or more butterflies or flaps, movable between open and closed positions of the pipes.
  • a three-way valve may also be in the form of a so-called "plug" valve, that is to say having a generally cylindrical body forming an inner housing in which is mounted rotatably a control member (called bushel) arranged to link together some of the ports of the valve, the ports interconnected differ depending on the angular position of the plug in the housing of the cylindrical body.
  • the plug is for example in the form of a cylinder having an obstruction wall of the output channels (in its closed position of the considered channels) and a channel for placing the valve inlet in communication with exit (in its open position of the considered channels).
  • a valve for the regulation and the sharing of the flow between a RAS and its bypass channel must make it possible to implement several configurations:
  • This sealing can be provided in different ways.
  • An annular seal may be disposed in the opening of each tubing forming an outlet orifice of the valve, this seal being arranged so that the wall of the plug comes into contact with it in the closed position, this contact ensuring the seal.
  • Such a sealing device nevertheless has the following disadvantage: the contact to ensure proper sealing generates friction of the bushel against the joints during its movements; such friction is energy consuming for the rotary drive means of the plug, requiring the use of drive means (actuator, stepper motor, etc.) of significant power, so expensive and energy consumers.
  • the manufacture of such a valve is not simple because it involves providing housing for the ring seals at the tubing concerned and mount these joints in these housing, which is long and expensive.
  • the risk of fouling is not negligible, particularly in this zone of the engine gas intake circuit, subject to the possible presence of recirculated exhaust gas. or oil vapors that can rise from the engine.
  • Another way of sealing the valve is to mount on the plug a peripheral sealing element commonly referred to as "segment".
  • a sealing segment coated with a suitable material, forms an extra thickness on the wall of the plug which comes into contact against the edges of the openings (ports) outlet of the valve. This amounts to moving the seals directly onto the bushel. But the disadvantages of friction during the movements of the bushel are the same as before.
  • the invention aims to overcome these disadvantages and to provide a device with an effective seal, inexpensive and does not interfere with the movements of the bushel during its movements.
  • the invention relates to a valve for regulating a flow of fluid between at least one inlet orifice in the valve and at least one outlet orifice of the valve, the outlet orifice being closable at all.
  • valve further comprises a sealing segment, said sealing segment being, on the one hand, secured to said shutter plug and, on the other hand, free with respect to said plug so that said sealing segment is arranged to fit wholly or partly an edge of the outlet orifice in the closed position.
  • the sealing segment can fulfill a sealing function in the closed position, this function being exerted when it marries (that is to say is in contact with) the edge of the sealing edge. exit.
  • the diameter of the plug being also smaller than the diameter of the inner wall of the valve, the plug exerts a stress on the inner wall of the valve only in its closed position (total or partial), at the level of its sealing segment; the movement of the bushel is therefore much less impeded by friction than in the prior art and less power is required for its rotational drive.
  • the seal is provided in the closed position but not in the open position; the constraints related to the implementation of the seal are therefore not constant but depend on the position of the bushel, which avoids having constant and high constraints in all positions.
  • the sealing segment has an elasticity and is arranged to be deformed, in the closed position, to fit all or part of the edge of the outlet orifice.
  • the sealing segment in the closed position, the sealing segment is deformed by elasticity so as to be pressed against the edge of the orifice that it closes and, in the open position, because of its elasticity, the sealing segment resumes its original shape without contact with the inner wall of the valve. Finally, the sealing segment operates in the manner of a valve.
  • the sealing segment is deformed, in the closed position, by pressure forces.
  • Such pressure forces may come from a duct connected to the outlet orifice that it obstructs (suction phenomenon), from a duct connected to the inlet orifice (thrust phenomenon) or from a combination both.
  • the pressure forces are generally all the more important that the obstructed portion of the outlet orifice is important, which is particularly advantageous since it is generally sought a seal all the more important than the obstruction is important.
  • the sealing segment is in one piece with the plug. It is thus simple to manufacture.
  • the plug has a side wall and the sealing segment is in the form of a wall arranged to partially envelop said side wall. Preferably in this case, a radial clearance is provided between the sealing segment and the side wall of the plug.
  • the sealing segment is integral with the side wall at a lateral end edge.
  • the valve comprising two output ports
  • the sealing segment has a minimum angular aperture necessary to ensure the simultaneous closure and total of the two output ports.
  • the plug comprises a channel for fluid communication of the inlet port with the outlet orifice in the open position of the outlet orifice.
  • the plug has a side wall and said fluidic communication channel opens on said side wall at a recess.
  • the valve is a valve for regulating an intake gas flow rate in a motor vehicle engine.
  • the valve comprises two output ports, a first output port being arranged to be connected to a charge air cooling of the engine and a second output port being arranged to be connected to a bypass line of said cooler.
  • the pressure forces described above can advantageously result from the action of the engine (for suction) and / or an intake gas compressor (for thrust).
  • the valve comprises means for rotating the bushel.
  • the invention also relates to a plug for the valve defined above, comprising a sealing segment having elasticity.
  • the invention also relates to a gas intake circuit in a motor vehicle engine, the circuit comprising an engine charge air cooler, a bypass line of said cooler and a valve such as the valve presented above. regulating the flow of gas between the cooler and its bypass line.
  • FIG. 1 is a schematic representation of a motor and its intake and exhaust circuits
  • FIG. 2 is a perspective view of the preferred embodiment of the valve of the invention.
  • FIG. 3 is a perspective view from below of the plug of the valve of FIG. 2;
  • FIG. 4 is a perspective view from above of the plug of FIG.
  • FIGS. 5 and 6 are partially wired perspective views of the valve of Figure 2, with the plug in two different positions.
  • an internal combustion engine M of a motor vehicle comprises a combustion chamber 1 comprising a plurality of cylinders, in this case four in number, and intended to receive a mixture of oxidant and fuel of which the combustion in the cylinders generates the work of the engine M.
  • the operation of the engine M is traditional: the gases are admitted into the combustion chamber 1, are compressed, burned and expelled in the form of exhaust gas; these are the four classic times of a heat engine (intake, compression, combustion, exhaust).
  • the gas intake circuit 2a in the engine M comprises a supply air intake duct 3 (the flow of which is represented by the arrow Fl), a compressor 4 of the supply gases, which is a turbocharger, and a heat exchanger 5 for cooling the gases from the compressor 4.
  • This heat exchanger 5 is commonly designated by those skilled in the art by its acronym “RAS”, which means “air cooler overeating "; its function is indeed to cool the intake gas and in particular the air, which is said to be supercharged since it is compressed.
  • RAS heat exchanger 5
  • the gases open into a manifold 6 for the admission of gases into the combustion chamber 1 of the engine M, the manifold 6 forming a gas inlet box in the cylinder head of the engine M.
  • the gas exhaust circuit 2b comprises, at the outlet of the combustion chamber 1 of the engine M, a channel 8 or channel 8 for exhausting the gases and a channel 7 or pipe 7 for recirculating the exhaust gases towards the admission of the motor M, more precisely to its intake manifold 6.
  • Such an exhaust gas recirculation is said to be high pressure, since it is made on exhaust gases at the outlet of the combustion chamber 1, which are at relatively high pressure.
  • the flow of recirculated exhaust gas is controlled by a valve 9 mounted in the recirculation pipe 7, a cooler 10 of the recirculated exhaust gas is also provided in this recirculation channel 7.
  • the exhaust circuit 2b further comprises a turbine 10, integral in rotation with the compressor 4 of the intake gas and forming with it a turbocharger.
  • the turbine 10 is driven by the exhaust gas of the exhaust path 8, whose flow is shown schematically by the arrow F2.
  • the exhaust circuit 2b comprises a second channel 11 or pipe 11 for recirculating the exhaust gas, which draws exhaust gas near the outlet of the exhaust circuit 2b, at a valve 11 ', and reintroduced upstream of the compressor 4.
  • Such exhaust gas recirculation is said to be low pressure, since it is made on exhaust gas leaving the exhaust circuit 2b, which are relatively low pressure .
  • a cooler 12 of these recirculated exhaust gas is also provided.
  • the gases that are not recirculated form the exhaust gas of the vehicle, whose flow is designated by the arrow F3.
  • a valve 13 is mounted upstream of the RAS 5. It regulates the distribution of the flow of intake gas between the RAS 5 and a duct 14 bypass (or bypass) of the RAS 5. Indeed, it may be desired to cool, do not cool or partially cool the gases admitted to the engine M; Furthermore, it may also wish to completely cut off the gas supply of the engine M, to "choke" the engine when it stops.
  • the valve 13 is a so-called double valve (because it allows two paths for gas) or three-way valve (because it can be connected to three pipes). It comprises three ports 13a, 13b, 13c, in this case an inlet 13a, connected to a pipe connected to the compressor 4 of the inlet gases, and two output ports 13b, 13c, a first outlet 13b being connected to the RAS 5 (or a pipe connected to the RAS 5) and a second outlet 13c being connected to the bypass line 14 of the RAS 5.
  • the valve 13 is arranged so that the inlet gases arriving through the inlet orifice 13a:
  • the valve 13 comprises a body 15 of generally cylindrical shape, axis A, providing a substantially cylindrical inner housing defined by an inner wall 16 and in which is rotatably mounted a plug valve 17.
  • the bushel 17 is arranged to connect together some of the ports 13a, 13b, 13c of the valve 13, the ports 13a, 13b, 13c being interconnected according to the angular position of the plug 17 about its axis A in the housing of the body 15 of the valve 13.
  • the body 15 of the valve 13 has a first longitudinal end 15a, a second longitudinal end 15b and a side wall 15c.
  • the first longitudinal end 15a is open, forming the inlet 13a of the valve 13 to be connected to a pipe connected to the compressor 4 of the intake circuit 2a, as explained above.
  • the side wall 15c of the body 15 of the valve 13 is pierced with two orifices forming the output ports 13b, 13c of the valve 13; the orifices forming the output ports 13b, 13c are each defined, on the inner wall 16 of the body 15 of the valve 13, by an edge 13b ', 13c', respectively.
  • each outlet orifice 13b, 13c comprises a portion of cylindrical pipe (or pipe) 13b “, 13c" perpendicular to the body 15 of the valve 13 and integral with it, allowing the connection to the pipe to which the outlet port 13b, 13c is intended to be connected.
  • the edges 13b ', 13c' of the ports 13b, 13c, at the inner wall 16 of the body 15 of the valve 13, are defined by the intersection between the inner wall 16 of the body 15 of the valve 13 and the pipes ( or tubing) of connection 13b ", 13c".
  • bushel is commonly used by those skilled in the art; it designates a tubular piece inserted in another tubular piece, in this case the body 15 of the valve 13, to fulfill a function of adjusting and regulating the flow of fluid in the valve 13, as a function of its angular position in this last.
  • the plug 17 is in the form of a hollow cylinder, axis A, closed at a first longitudinal end 17a and open at a second longitudinal end 17b.
  • the closing wall of the first longitudinal end 17a has been shown in the form of a transverse disc; this wall may have other shapes and, in particular, another form will be described below in relation to Figures 2, 5 and 6.
  • the plug 17 has a side wall 17c pierced with an obviously
  • the bushel 17 is mounted so that its open longitudinal end 17b is disposed on the side of the inlet 13a of the body 15 of the valve 13, the inlet 13a is thus constantly open regardless of the angular position of the plug 17 around its axis A.
  • the plug 17 makes it possible to put in fluidic communication the inlet orifice 13a with one or two orifice (s) in front of which (of which) is disposed the recess 17d of the plug 17, the gases that can circulate in the hollow body of the plug 17, from its open end 17b to its recess 17d.
  • the dimensions of the recess 17d of the plug 17 are such that the recess 17 can be arranged, in a so-called total opening position, in front of the two output ports 13b, 13c simultaneously; in other words, its angular aperture is at least equal to an angular aperture containing the two output ports 13b, 13c; it can therefore take a position of total and simultaneous opening of the two output ports 13b, 13c.
  • the plug 17 may take other angular positions about its axis A, in which all or part of the output ports 13b, 13c or one of the two output ports 13b, 13c is closed.
  • the plug 17 can define a position of total or partial opening of the two output ports 13b, 13c simultaneously, a total closure position of an orifice 13b, 13c and total opening or partial of the other orifice 13c, 13b, and a position of total and simultaneous closure of the two orifices 13b, 13c.
  • the plug 17 comprises a drive shaft 17e, of axis A, integral with its wall closing its first longitudinal end 17a.
  • Drive means such as an actuator or a stepper motor, are connected to the drive shaft 17e to drive the plug 17 rotating about its axis A in the inner housing of the valve body 15 13, to be able to modify the angular position of the plug 17 for the control of the gas regulation in the RAS 5 and its bypass line 14.
  • the plug 17 comprises a sealing segment 18 which is arranged to fill, in the closed position (total or partial) of an outlet orifice 13b, 13c, a fluid sealing function of the valve 13 at the level of the closed orifice 13b, 13c.
  • the sealing segment 18 is arranged to fit wholly or partly the edge 13b ', 13c' of an outlet orifice 13b, 13c when it is in the total or partial closure position, respectively, of the orifice considered 13b, 13c.
  • the sealing segment 18 comprises at least a first and a second end which extend along the longitudinal axis of the plug valve 17.
  • the sealing segment 18 (here, the first end) is, of one hand, subject to the plug valve 17 and, secondly (here the second end) free relative to the plug valve 17 so that the sealing ring 18 is arranged to fit in all or part an edge 13b ', 13c' of the outlet orifice 13b, 13c in the closed position.
  • the first end of the sealing segment 18 is substantially longitudinally fastened to the shut-off cup 17.
  • the connection at the first end of the sealing segment 18 between the latter and the shut-off plug 17 is configured in such a way that to allow radial compression of the segment.
  • the overall diameter of the plug 17, that is to say its diameter taking into account all its constituent elements including the sealing segment 18, is smaller than the diameter of the inner wall 16 of the body 15 of the valve 13.
  • the plug 17 is free to rotate, without friction in the body 15 of the valve 13, only the sealing segment 18 to fit the inner wall 16 of the body 15 of the valve 13, at the edges 13b ', 13c' of the output ports 13b, 13c, but only in the closed position, that is, when such contact is necessary and effective for sealing purposes.
  • the sealing segment 18 has an elasticity giving it a spring effect and is arranged to be pressed against the spring effect against all or part of the edge 13b ', 13c' of the output ports 13b. , 13c.
  • the pressure forces can result from a suction coming from the pipe 5, 14 connected to the orifice 13b, 13c that the sealing ring 18 closes in the closed position, this suction being generated by the suction of the cylinders of the combustion chamber 1 of the engine M, since the cylinders are connected to the RAS 5 and its bypass line 14 and therefore to the output ports 13b, 13c of the valve 13;
  • pressure forces may result from a thrust due to the compressor 4 tending to drive the inlet gases through the inlet orifice 13a towards the RAS 5 and its bypass duct 14.
  • the sealing segment 18 in its rest state that is to say without elastic stress (spring effect at the natural balance), the sealing segment 18 is shaped so that the plug 17 has a smaller overall diameter. to the diameter inside the inner housing of the body 15 of the valve 13; such a state of rest corresponding to the positions of the plug 17 in which no sufficient pressure is exerted on the sealing segment 18, that is to say the positions of total and simultaneous opening of the two output ports 13b, 13c; in these positions, neither the side wall 17c of the plug 17 nor the sealing segment 18 are in contact with the inner wall 16 of the body 15 of the valve 13.
  • the sealing segment 18 is, in the preferred embodiment of the invention, in the form of a wall or lamella or sheet-shaped cylinder portion and enveloping the wall 17c side of the plug 17 on a portion of the latter located outside the recess 17d of the plug 17.
  • the sealing segment 18 is connected to the side wall 17c of the body of the valve 17 near one of its lateral end edges and is free at its other lateral end; it is also free along its longitudinal end edges.
  • the sealing segment 18 has a thickness substantially equal to or slightly less than the thickness of the side wall 17c of the plug 17 (for example substantially equal to half that thickness); the thickness of the sealing segment 18 is therefore small in comparison with the diameter of the plug 17.
  • the sealing segment 18 can extend (in the rest position) in contact with the side wall 17c of the plug 17 or at a slight distance from her. Because of its connection to the side wall 17c of the plug 17 of only one of its sides, the sealing segment 18, which has a certain elasticity or spring effect, can move radially against this spring effect; Thus, by pressure effect, the sealing segment 18 can deviate radially from the side wall 17c of the plug 17 to be pressed against the edge 13b ', 13c' of an orifice 13b, 13c qu it is intended to close (totally or partially).
  • the sealing segment 18 is in this case integrally formed with the side wall 17c of the plug 17; it is thus formed in the same material, this material possibly being coated with a second material having characteristics improving its sealing function (having in particular a suitable coefficient of friction). Since it is monobloc, the plug 17 can be manufactured much more easily, for example by molding a plastic or metal material.
  • the plug 17 may be formed of plastic, its side wall 17c and the sealing segment 18 being formed in the same plastic, while the outer wall of the sealing segment 18, intended to come into contact with the edge 13b ', 13c' of the output ports 13b, 13c is coated with Teflon.
  • the plug 17 may be formed of aluminum, a plastic or ceramic coating being applied to its outer wall.
  • the coating may be applied after the manufacture of the part or introduced directly into its constituent material (thus, it can be introduced directly into the plastic forming the plug 17, at the outer wall of the segment sealing 18, Teflon which is thus mixed with the plastic).
  • the plug 17 may be formed of a single material, without coating (for example all plastic).
  • the sealing segment 18 in particular, its connection with the side wall 17c of the plug 17 may be located at different locations of the sealing segment 18, the latter may optionally also have several connection areas to the wall 17c.
  • the side wall 17c of the plug 17 is narrowed in a zone 19 corresponding to the zone of the plug 17 in which the sealing segment 18 surrounds this wall 17c; the sealing segment 18 thus extends along the recess formed by this narrowed zone 19.
  • the narrowing of this zone 19 is of radial dimensions less than the sum of the radial thickness of the sealing segment 18 and the radial clearance between the sealing segment 18 and the side wall 17c of the plug 17; therefore, the overall radius of the plug 17 along the sealing segment 18 is greater than its overall radius along the rest of the wall 17c of the plug 17.
  • the zone narrowed 19 of the side wall 17c of the plug 17 is arranged so that the overall radius of the plug 17 is the same along the sealing segment 18 and along the rest of the side wall 17c; in other words, the radial thickness of the narrowing is equal to the sum of the radial thickness of the sealing segment 18 and the radial clearance between the sealing segment 18 and the side wall 17c.
  • the side wall 17c of the plug 17 has no narrowed area and is of constant radius, the sealing segment 18 being integrally projecting out of the side wall 17c.
  • the important factor in the dimensioning of the plug 17 is the link between the diameter of the inner wall 16 of the body 15 of the valve 13 and the overall diameter of the plug 17 in the fully open position of the valves.
  • ports 13b, 13c that is to say in the rest position of the sealing segment 18
  • the overall diameter of the plug 17 to be smaller than the diameter of the inner wall 16 of the body 15 of the valve 13.
  • the sealing segment 18 is deformed (and therefore the radius of the plug 17 is increased in the deformed zone) to fit the edge 13b.
  • the side wall 17c of the plug 17 does not touch the inner wall 16 of the body 15 of the valve 13 and does not perform a sealing function, the latter completely filled by the sealing segment 18 , only in the closed position.
  • the sealing segment 18 has a certain flexibility and a certain elasticity allowing it to be deformed so as to be pressed against the edge 13b ', 13c' of the orifice (s) 13b, 13c to be closed totally or partially. It also has a certain rigidity, sufficient to prevent the sealing segment 18 is sucked only in its area to the right of an orifice 13b, 13c and is deformed with a suction effect; in other words, thanks to its rigidity, the sealing segment 18 deforms in a global manner to move away from the side wall 17c, continuously, without local deformations in the areas sucked by the pipes connected to the output ports 13b, 13c.
  • the flexibility of the sealing segment 18 comes from the degree of freedom conferred on it by the provision of a connection zone at one lateral end but not at the other, allowing a effect "lever arm” facilitating the displacement of the sealing segment 18.
  • the sealing segment 18 behaves somewhat like a valve.
  • the angular aperture between the lateral end edges of the sealing segment 18 is dimensioned by those skilled in the art as a function of the closed positions that it wishes the plug 17 to take. In the embodiment shown, the angular aperture of the sealing segment 18 is equal to the minimum opening allowing, in one position, the total and simultaneous closure of the two output ports 13b, 13c.
  • the circumferential dimension of the sealing segment 18 is optimized, which is as small as possible in order to fulfill its function and in particular to allow the motor to be smothered.
  • the plug 17 being in contact with the inner wall 16 of the body 15 of the valve 13 in the positions where such a contact is useful and effective, the friction forces that must fight the means of driving in rotation of the plug 17 to rotate it are dependent on the position of the plug 17 and are more or less important depending on the state of closure ports 13b, 13c.
  • the plug 17 is a priori not subject to frictional forces of the body 15 of the valve 13 on the sealing segment 18 and the power to be provided to move the plug 17 is minimal.
  • the frictional forces on the sealing segment 18 are all the greater as the orifice (s) 13b, 13c are closed off; in fact, the more an orifice 13b, 13c is closed, the greater the contact area between its edge 13b ', 13c' and the sealing segment 18, and the greater the pressure forces are important.
  • closure wall of the first longitudinal end 17a of the plug 17 is not, in the representations of FIGS. 2, 5 and 6, in the form of a transverse disc. On the contrary, it has an inclined and curvilinear shape which follows in particular the opening 17d of the plug 17, the function of such a form being to facilitate the manufacture of the plug 17 to enable it to be manufactured with walls of constant thickness. ; thus, this closure wall of the first longitudinal end 17a is of constant thickness and am continuously the opening 17d of the bushel 17; it thus also provides, on the inside, a continuous flow channel for the flow of gas.
  • the plug 17 may be driven eccentrically with respect to the body 15 of the valve 13, such a plug 17 satisfying conditions, on the one hand, of smaller diameter to the inner diameter of the valve 13 in the open position, on the other hand of ability to marry the edge 13b ', 13c' of one or more openings (s) 13b, 13c in the closed position; the desired advantage of contact only in full or partial closure position is then achieved.
  • FIG. 5 the plug 17 is in the closed position of the two output ports 13b, 13c. It can be seen that, in this position, the sealing segment 18 bears on the edges 13b ', 13c' of the two output ports 13b, 13c.
  • FIG. 6 the plug 17 has been rotated about its axis A with respect to its position in FIG. 5, so that its recess 17d faces the outlet orifice 13b towards the RAS 5, so that open the latter, the outlet 13c to the bypass 14 being closed. It can be seen that, in this position, the sealing segment 18 bears on the edge 13c 'of the outlet orifice 13c towards the bypass 14 only.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Supercharger (AREA)

Abstract

La vanne de l'invention permet la régulation d'un débit de fluide entre au moins un orifice d'entrée (13a) dans la vanne et au moins un orifice de sortie (13b, 13c) de la vanne, le orifice de sortie (13b, 13c) étant obturable en tout ou partie par un boisseau d'obturation (17) monté rotatif, dans un logement défini par une paroi intérieure (16) de la vanne, entre une position d'ouverture et une position d'obturation totale ou partielle du orifice de sortie (13b, 13c). La vanne est remarquable par le fait que la vanne comporte en outre un segment d'étanchéité, ledit segment d'étanchéité (18) étant, d'une part, assujetti audit boisseau d'obturation (17) et, d'autre part, libre par rapport audit boisseau de manière à ce que ledit segment d'étanchéité (18) soit agencé pour épouser en tout ou partie un bord (13b1, 13c') de l'orifice de sortie (13b, 13c) en position d'obturation. Grâce à l'invention, l'étanchéité est assurée en position d'obturation mais pas en position d'ouverture.

Description

Vanne à boisseau, boisseau pour une telle vanne et circuit d'admission de gaz dans un moteur thermique de véhicule automobile avec une telle vanne
L'invention concerne une vanne à boisseau de régulation d'un débit de fluide, un boisseau pour une telle vanne et un circuit d'admission de gaz dans un moteur thermique de véhicule automobile avec une telle vanne.
Un moteur thermique de véhicule automobile comporte une chambre de combustion, généralement formée par une pluralité de cylindres, dans laquelle un mélange de comburant et de carburant est brûlé pour générer le travail du moteur. Le comburant comporte de l'air, qui peut être comprimé ou non, selon que le moteur comporte un turbocompresseur ou non. L'air peut par ailleurs être mélangé à des gaz d'échappement; on parle de gaz d'échappement recirculés. Les gaz admis dans la chambre de combustion sont dénommés gaz d'admission.
Afin d'augmenter la densité de l'air à l'admission d'un moteur compressé ou turbocompressé, il est connu de refroidir l'air dit de suralimentation, c'est-à-dire l'air sortant du compresseur, au moyen d'un dispositif de refroidissement appelé refroidisseur d'air de suralimentation dont l'acronyme est RAS (on utilise aussi CAC pour « Charger Air Cooler » en anglais); on note que cet air de suralimentation peut éventuellement être mélangé à des gaz d'échappement recirculés, comme indiqué ci-dessus.
Le passage par le RAS est facultatif, l'air de suralimentation pouvant soit circuler dans le RAS soit le contourner par une canalisation prévue à cet effet; on parle traditionnellement d'une canalisation de contournement du RAS ou canalisation de bypass. La régulation du flux de gaz depuis la canalisation de sortie du compresseur vers le RAS et/ou vers la canalisation de bypass est réalisée par une vanne dite trois voies, comportant un orifice (ou voie) d'entrée et deux orifices (ou voies) de sortie.
Une vanne trois voies peut comporter un ou plusieurs papillons ou volets, mobiles entre des positions d'ouverture et d'obturation des canalisations. Une vanne trois voies peut également se présenter sous la forme d'une vanne dite "à boisseau", c'est-à-dire comportant un corps de forme globalement cylindrique ménageant un logement intérieur dans lequel est monté rotatif un organe de réglage (dénommé boisseau) agencé pour relier entre eux certains des ports de la vanne, les ports reliés entre eux différant selon la position angulaire du boisseau dans le logement du corps cylindrique. Le boisseau se présente par exemple sous la forme d'un cylindre comportant une paroi d'obstruction des voies de sortie (dans sa position d'obturation des voies considérés) et un canal de mise en communication de l'entrée de la vanne avec des sortie (dans sa position d'ouverture des voies considérés).
Une vanne pour la régulation et le partage du flux entre un RAS et sa canalisation de bypass doit permettre de mettre en œuvre plusieurs configurations:
- une configuration dans laquelle tout le flux de gaz est dirigé depuis l'orifice d'entrée de la vanne vers le RAS,
- une configuration dans laquelle tout le flux de gaz est dirigé depuis l'orifice d'entrée de la vanne vers la canalisation de bypass du RAS,
- une configuration dans laquelle tout le flux de gaz est bloqué par la vanne (il s'agit d'une position permettant d'étouffer le moteur lors de son arrêt, celui-ci n'étant plus alimenté en gaz d'admission) et
- une configuration dans laquelle le flux de gaz est dirigé, depuis l'orifice d'entrée de la vanne, pour partie vers le RAS et pour partie vers sa canalisation de bypass.
L'étanchéité de la vanne lorsque telle ou telle voie (ou orifice) de sortie de la vanne est obturé (totalement ou partiellement) doit être assurée et doit être de bonne qualité, en particulier dans la position où les deux ports sont obturés pour l'arrêt du moteur.
Cette étanchéité peut être assurée de différentes manières. On peut disposer un joint annulaire dans l'ouverture de chaque tubulure formant un orifice de sortie de la vanne, ce joint étant agencé pour que la paroi du boisseau vienne en contact avec lui en position d'obturation, ce contact assurant l'étanchéité. Un tel dispositif d'étanchéité présente néanmoins l'inconvénient suivant: le contact permettant d'assurer correctement l'étanchéité engendre des frottements du boisseau contre les joints lors de ses mouvements; de tels frottements sont consommateurs en énergie pour les moyens d'entraînement en rotation du boisseau, imposant l'utilisation de moyens d'entraînement (actionneur, moteur pas à pas, etc.) de puissance importante, donc onéreux et consommateurs en énergie. Par ailleurs, la fabrication d'une telle vanne n'est pas simple car elle implique de ménager des logements pour les joints annulaires au niveau des tubulures concernées et de monter ces joints dans ces logements, ce qui est long et onéreux. De surcroît, du fait de la présence d'une pluralité de pièces, le risque d'encrassement est non négligeable, en particulier dans cette zone du circuit d'admission en gaz du moteur, soumise à la présence éventuelle de gaz d'échappement recirculés ou de vapeurs d'huile pouvant remonter du moteur.
Un autre moyen d'assurer l'étanchéité de la vanne est de monter sur le boisseau un élément périphérique d'étanchéité communément désigné par l'expression "segment". Un tel segment d'étanchéité, revêtu d'un matériau approprié, forme une surépaisseur sur la paroi du boisseau qui vient en contact contre les bords des ouvertures (ports) de sortie de la vanne. Cela revient à déporter les joints directement sur le boisseau. Mais les inconvénients liés aux frottements lors des mouvements du boisseau sont les mêmes que précédemment.
L'invention vise à pallier ces inconvénients et à proposer un dispositif avec une étanchéité efficace, peu onéreuse et ne gênant pas les mouvements du boisseau lors de ses mouvements. C'est ainsi que l'invention concerne une vanne de régulation d'un débit de fluide entre au moins un orifice d'entrée dans la vanne et au moins un orifice de sortie de la vanne, l'orifice de sortie étant obturable en tout ou partie par un boisseau d'obturation monté rotatif, dans un logement défini par une paroi intérieure de la vanne, entre une position d'ouverture et une position d'obturation totale ou partielle de l'orificede sortie, caractérisé par le fait que la vanne comporte en outre un segment d'étanchéité, ledit segment d'étanchéité étant, d'une part, assujetti audit boisseau d'obturation et, d'autre part, libre par rapport audit boisseau de manière à ce que ledit segment d'étanchéité soit agencé pour épouser en tout ou partie un bord de l'orifice de sortie en position d'obturation.
Grâce à l'invention, le segment d'étanchéité peut remplir une fonction d'étanchéité en position d'obturation, cette fonction étant exercée lorsqu'il épouse (c'est-à-dire est en contact avec) le bord du bord de sortie. Le diamètre du boisseau étant par ailleurs inférieur au diamètre de la paroi intérieure de la vanne, le boisseau n'exerce une contrainte sur la paroi intérieure de la vanne que dans sa position d'obturation (totale ou partielle), au niveau de son segment d'étanchéité; le mouvement du boisseau est donc beaucoup moins entravé par des frottements que dans l'art antérieur et une puissance moins importante est requise pour son entraînement en rotation. Autrement dit, l'étanchéité est assurée en position d'obturation mais pas en position d'ouverture; les contraintes liées à la mise en œuvre de l'étanchéité ne sont donc pas constantes mais dépendent de la position du boisseau, ce qui évite d'avoir des contraintes constantes et élevées dans toutes les positions.
Par diamètre inférieur, on peut entendre un diamètre très légèrement inférieur, à la limite sensiblement égal du fait d'imprécisions dans les tolérances de fabrication.
Selon une forme de réalisation préférée, le segment d'étanchéité présente une élasticité et est agencé pour être déformé, en position d'obturation, pour épouser tout ou partie du bord de l'orifice de sortie.
Ainsi, en position d'obturation, le segment d'étanchéité est déformé par élasticité pour être plaqué contre le bord de l'orifice qu'il obture et, en position d'ouverture, du fait de son élasticité, le segment d'étanchéité reprend sa forme initiale sans contact avec la paroi intérieure de la vanne. Finalement, le segment d'étanchéité fonctionne à la manière d'un clapet.
Selon une forme de réalisation préférée, le segment d'étanchéité est déformé, en position d'obturation, par des efforts de pression.
De tels efforts de pression peuvent provenir d'une canalisation reliée à l'orifice de sortie qu'il obstrue (phénomène d'aspiration), d'une canalisation reliée à l'orificed'entrée (phénomène de poussée) ou d'une combinaison des deux. Dans tous les cas, les efforts de pression sont généralement d'autant plus importants que la proportion obstruée de l'orifice de sortie est importante, ce qui est particulièrement avantageux puisqu'on recherche en général une étanchéité d'autant plus grande que l'obstruction est importante.
Selon une forme de réalisation préférée, le segment d'étanchéité est monobloc avec le boisseau. Il est ainsi simple à fabriquer. Selon une forme de réalisation préférée, le boisseau comporte une paroi latérale et le segment d'étanchéité se présente sous la forme d'une paroi agencée pour envelopper pour partie ladite paroi latérale. De préférence dans ce cas, un jeu radial est prévu entre le segment d'étanchéité et la paroi latérale du boisseau.
Selon une forme de réalisation préférée, le segment d'étanchéité est solidaire de la paroi latérale au niveau d'un bord d'extrémité latérale.
Selon une forme de réalisation préférée, la vanne comportant deux ports de sortie, le segment d'étanchéité présente une ouverture angulaire minimale nécessaire pour pouvoir assurer l'obturation simultanée et totale des deux ports de sortie.
Selon une forme de réalisation préférée, le boisseau comporte un canal de mise en communication fluidique de l'orifice d'entrée avec l'orifice de sortie en position d'ouverture de l'orifice de sortie. Selon une forme de réalisation préférée, le boisseau comporte une paroi latérale et ledit canal de mise en communication fluidique débouche sur ladite paroi latérale au niveau d'un évidement.
Selon une forme de réalisation préférée, la vanne est une vanne de régulation d'un débit de gaz d'admission dans un moteur thermique de véhicule automobile.
Selon une forme de réalisation préférée dans ce cas, la vanne comporte deux ports de sortie, un premier orifice de sortie étant agencé pour être relié à un refroidissement d'air de suralimentation du moteur et un deuxième orifice de sortie étant agencé pour être relié à une canalisation de bypass dudit refroidisseur.
Dans ce cas, les efforts de pression décrits plus haut peuvent avantageusement résulter de l'action du moteur (pour l'aspiration) et/ou d'un compresseur des gaz d'admission (pour la poussée). Selon une forme de réalisation préférée, la vanne comporte des moyens d'entraînement en rotation du boisseau.
L'invention concerne encore un boisseau pour la vanne définie ci-dessus, comportant un segment d'étanchéité présentant une élasticité.
L'invention concerne encore un circuit d'admission de gaz dans un moteur thermique de véhicule automobile, le circuit comportant un refroidisseur d'air de suralimentation du moteur, une canalisation de bypass dudit refroidisseur et une vanne telle que la vanne présentée ci-dessus assurant la régulation du flux de gaz entre le refroidisseur et sa canalisation de bypass.
L'invention sera mieux comprise à l'aide de la description suivante de la forme de réalisation préférée de la vanne, du boisseau et du circuit d'admission de gaz de l'invention, en référence aux planches de dessins annexées, sur lesquelles:
- la figure 1 est une représentation schématique d'un moteur et de ses circuits d'admission et d'échappement;
- la figure 2 est une vue en perspective de la forme de réalisation préférée de la vanne de l'invention;
- la figure 3 est une vue en perspective de dessous du boisseau de la vanne de la figure 2;
- la figure 4 est une vue en perspective de dessus du boisseau de la figure 3 et
- les figures 5 et 6 sont des vues partiellement filaires en perspective de la vanne de la figure 2, avec le boisseau dans deux positions différentes.
En référence à la figure 1 , un moteur thermique M à combustion interne de véhicule automobile comporte une chambre de combustion 1 comportant une pluralité de cylindres, en l'espèce au nombre de quatre, et destinée à recevoir un mélange de comburant et de carburant dont la combustion dans les cylindres génère le travail du moteur M. Le fonctionnement du moteur M est classique: les gaz sont admis dans la chambre de combustion 1, y sont comprimés, brûlés puis expulsés sous forme de gaz d'échappement; il s'agit des quatre temps classiques d'un moteur thermique (admission, compression, combustion, échappement). Le circuit 2a d'admission de gaz dans le moteur M comporte une canalisation 3 d'admission de l'air d'alimentation (dont le flux est représenté par la flèche Fl), un compresseur 4 des gaz d'alimentation, qui est en l'espèce un turbocompresseur, et un échangeur de chaleur 5, de refroidissement des gaz issus du compresseur 4. Cet échangeur de chaleur 5 est communément désigné par l'homme du métier par son acronyme "RAS", qui signifie "refroidisseur d'air de suralimentation"; sa fonction est en effet de refroidir les gaz d'admission et en particulier l'air, dont on dit qu'il est suralimenté puisqu'il est comprimé. En sortie du RAS 5, les gaz débouchent dans un collecteur 6 d'admission des gaz dans la chambre de combustion 1 du moteur M, le collecteur 6 formant une boîte d'entrée des gaz dans la culasse du moteur M.
Le circuit 2b d'échappement de gaz comporte, en sortie de la chambre de combustion 1 du moteur M, une voie 8 ou canalisation 8 d'échappement des gaz et une voie 7 ou canalisation 7 de recirculation des gaz d'échappement vers l'admission du moteur M, plus précisément vers son collecteur d'admission 6. Une telle recirculation des gaz d'échappement est dite haute pression, puisqu'elle est faite sur des gaz d'échappement en sortie de la chambre de combustion 1 , qui sont à relativement haute pression. Le flux de gaz d'échappement recirculés est contrôlé par une vanne 9 montée dans la canalisation de recirculation 7, un refroidisseur 10 des gaz d'échappement recirculés étant également prévu dans cette voie de recirculation 7.
Le circuit d'échappement 2b comporte par ailleurs une turbine 10, solidaire en rotation du compresseur 4 des gaz d'admission et formant avec lui un turbocompresseur. La turbine 10 est entraînée par les gaz d'échappement de la voie d'échappement 8, dont le flux est schématisé par la flèche F2.
Enfin, le circuit d'échappement 2b comporte une seconde voie 11 ou canalisation 11 de recirculation des gaz d'échappement, qui prélève des gaz d'échappement à proximité de la sortie du circuit d'échappement 2b, au niveau d'une vanne 11', et les réintroduit en amont du compresseur 4. Une telle recirculation des gaz d'échappement est dite basse pression, puisqu'elle est faite sur des gaz d'échappement en sortie du circuit d'échappement 2b, qui sont à relativement basse pression. Un refroidisseur 12 de ces gaz d'échappement recirculés est également prévu. Les gaz qui ne sont pas recirculés forment les gaz d'échappement du véhicule, dont le flux est désigné par la flèche F3. Une vanne 13 est montée en amont du RAS 5. Elle permet de réguler la répartition du flux de gaz d'admission entre le RAS 5 et une canalisation 14 de contournement (ou bypass) du RAS 5. En effet, on peut souhaiter refroidir, ne pas refroidir ou refroidir partiellement les gaz admis dans le moteur M; par ailleurs, on peut également souhaiter couper complètement l'alimentation en gaz du moteur M, pour "étouffer" le moteur lors de son arrêt.
La vanne 13 est une vanne dite double (car elle autorise deux chemins pour les gaz) ou vanne trois voies (car elle peut être connectée à trois canalisations). Elle comporte trois ports 13a, 13b, 13c, en l'espèce un orifice d'entrée 13a, connecté à une canalisation reliée au compresseur 4 des gaz d'admission, et deux ports de sorties 13b, 13c, un premier orifice de sortie 13b étant connecté au RAS 5 (ou à une canalisation reliée au RAS 5) et un deuxième orifice de sortie 13c étant connecté à la canalisation 14 de bypass du RAS 5.
La vanne 13 est agencée pour que les gaz d'admission arrivant par l'orifice d'entrée 13a:
- soit ne passent que par le premier orifice de sortie 13b (les gaz d'admission étant alors refroidis dans leur ensemble),
- soit ne passent que par le deuxième orifice de sortie 13c (les gaz d'admission étant alors non refroidis dans leur ensemble),
- soit passent à la fois par le premier orifice de sortie 13b et le deuxième orifice de sortie 13c (les gaz d'admission étant alors refroidis pour partie seulement),
soit ne passent par aucun orifice de sortie 13b, 13c (les gaz d'admission étant alors bloqués, c'est-à-dire que le moteur n'est plus alimenté en gaz d'admission, autrement dit est étouffé). En référence à la figure 2, la vanne 13 comporte un corps 15 de forme globalement cylindrique, d'axe A, ménageant un logement intérieur sensiblement cylindrique défini par une paroi intérieure 16 et dans lequel est monté rotatif un boisseau d'obturation 17. Le boisseau 17 est agencé pour relier entre eux certains des ports 13a, 13b, 13c de la vanne 13, les ports 13a, 13b, 13c étant reliés entre eux selon la position angulaire du boisseau 17 autour de son axe A dans le logement du corps 15 de la vanne 13. Dans la suite de la description, les notions de longitudinal, transversal, radial ou encore latéral sont définies par rapport à l'axe A des cylindres dont le corps 15 et le boisseau 17 ont globalement la forme (les axes de ces cylindres étant en l'espèce confondus).
Le corps 15 de la vanne 13 comporte une première extrémité longitudinale 15a, une deuxième extrémité longitudinale 15b et une paroi latérale 15c. La première extrémité longitudinale 15a est ouverte, formant l'orifice d'entrée 13a de la vanne 13 destiné à être connecté à une canalisation reliée au compresseur 4 du circuit d'admission 2a, comme expliqué plus haut. La paroi latérale 15c du corps 15 de la vanne 13 est percée de deux orifices formant les ports de sortie 13b, 13c de la vanne 13; les orifices formant les ports de sortie 13b, 13c sont chacun définis, sur la paroi intérieure 16 du corps 15 de la vanne 13, par un bord 13b', 13c', respectivement. En l'espèce, chaque orifice de sortie 13b, 13c comporte une portion de canalisation cylindrique (ou tubulure) 13b", 13c" perpendiculaire au corps 15 de la vanne 13 et monobloc avec lui, permettant le raccord à la canalisation à laquelle l'orifice de sortie 13b, 13c est destiné à être raccordé. Les bords 13b', 13c' des ports 13b, 13c, au niveau de la paroi intérieure 16 du corps 15 de la vanne 13, sont définis par l'intersection entre la paroi intérieure 16 du corps 15 de la vanne 13 et les canalisations (ou tubulures) de raccord 13b", 13c".
Le terme de boisseau est couramment utilisé par l'homme du métier; il désigne une pièce tubulaire insérée dans une autre pièce tubulaire, en l'espèce le corps 15 de la vanne 13, pour remplir une fonction de réglage et de régulation du débit de fluide dans la vanne 13, en fonction de sa position angulaire dans cette dernière. En l'espèce, et en référence aux figures 3 et 4, le boisseau 17 se présente sous la forme d'un cylindre creux, d'axe A, fermé à une première extrémité longitudinale 17a et ouvert à une seconde extrémité longitudinale 17b. Sur la figure 4, la paroi de fermeture de la première extrémité longitudinale 17a a été représentée en forme de disque transversal; cette paroi peut présenter d'autres formes et, en particulier, une autre forme sera décrite plus bas en relation avec les figures 2, 5 et 6. Le boisseau 17 comporte une paroi latérale 17c percée d'un évidemment
17d de mise en communication fluidique d'un orifice de sortie 13b, 13c ou des deux ports de sortie 13b, 13c avec l'orifice d'entrée 13a. Le boisseau 17 est monté de telle manière que son extrémité longitudinale ouverte 17b est disposée du côté de l'orifice d'entrée 13a du corps 15 de la vanne 13, l'orifice d'entrée 13a étant donc constamment ouvert quelle que soit la position angulaire du boisseau 17 autour de son axe A. Ainsi, le boisseau 17 permet de mettre en communication fluidique l'orifice d'entrée 13a avec un ou deux orifice(s) de sortie en face duquel (desquels) est disposé l'évidement 17d du boisseau 17, les gaz pouvant circuler, dans le corps creux du boisseau 17, depuis son extrémité ouverte 17b jusqu'à son évidement 17d. Les dimensions de l'évidement 17d du boisseau 17 sont telles que l'évidement 17 peut être disposé, dans une position dite d'ouverture totale, en face des deux ports de sortie 13b, 13c simultanément; autrement dit, son ouverture angulaire est au moins égale à une ouverture angulaire contenant les deux ports de sortie 13b, 13c; il peut donc prendre une position d'ouverture totale et simultanée des deux ports de sortie 13b, 13c. Le boisseau 17 peut prendre d'autres positions angulaires autour de son axe A, dans lesquelles tout ou partie des ports de sortie 13b, 13c ou de l'un des deux ports de sortie 13b, 13c est obturé. Ainsi, en fonction de sa position angulaire, le boisseau 17 peut définir une position d'ouverture totale ou partielle des deux ports de sortie 13b, 13c simultanément, une position d'obturation totale d'un orifice 13b, 13c et d'ouverture totale ou partielle de l'autre orifice 13c, 13b, et une position d'obturation totale et simultanée des deux orifices 13b, 13c.
Le boisseau 17 comporte un arbre d'entraînement 17e, d'axe A, solidaire de sa paroi fermant sa première extrémité longitudinale 17a. Des moyens d'entraînement, tels qu'un actionneur ou un moteur pas à pas, sont reliés à l'arbre d'entraînement 17e pour entraîner le boisseau 17 en rotation autour de son axe A dans le logement intérieur du corps 15 de la vanne 13, pour pouvoir modifier la position angulaire du boisseau 17 pour la commande de la régulation des gaz dans le RAS 5 et sa canalisation de bypass 14.
Le boisseau 17 comporte un segment d'étanchéité 18 qui est agencé pour remplir, en position d'obturation (totale ou partielle) d'un orifice de sortie 13b, 13c, une fonction d'étanchéité au fluide de la vanne 13 au niveau de l'orifice obturé 13b, 13c. A cet effet, le segment d'étanchéité 18 est agencé pour épouser en tout ou partie le bord 13b', 13c' d'un orifice de sortie 13b, 13c lorsqu'il est en position d'obturation totale ou partielle, respectivement, de l'orifice considéré 13b, 13c. Ici, le segment d'étanchéité 18 comporte au moins une première et une deuxième extrémités qui s'étendent selon l'axe longitudinal du boisseau d'obturation 17. Le segment d'étanchéité 18 (ici, la première extrémité) est, d'une part, assujetti au boisseau d'obturation 17 et, d'autre part, (ici la deuxième extrémité) libre par rapport au boisseau d'obturation 17 de manière à ce que le segment d'étanchéité 18 soit agencé pour épouser en tout ou partie un bord 13b', 13c' de l'orifice de sortie 13b, 13c en position d'obturation. La première extrémité du segment d'étanchéité 18 est assujettie de manière sensiblement longitudinale au boisseau d'obturation 17. La liaison au niveau de la première extrémité du segment d'étanchéité 18 entre ce dernier et le boisseau d'obturation 17 est configurée de manière à permettre une compression radiale du segment.
Par ailleurs, le diamètre hors-tout du boisseau 17, c'est-à-dire son diamètre en prenant en compte tous ses éléments constitutifs y compris le segment d'étanchéité 18, est inférieur au diamètre de la paroi intérieure 16 du corps 15 de la vanne 13. Ainsi, le boisseau 17 est libre de tourner, sans frottement dans le corps 15 de la vanne 13, seul le segment d'étanchéité 18 venant épouser la paroi intérieure 16 du corps 15 de la vanne 13, au niveau des bords 13b', 13c' des ports de sortie 13b, 13c, mais uniquement en position d'obturation, c'est- à- dire lorsqu'un tel contact est nécessaire et efficace à des fins d'étanchéité.
Plus précisément, le segment d'étanchéité 18 présente une élasticité lui conférant un effet ressort et est agencé pour être plaqué par effet de pression, contre l'effet ressort, contre tout ou partie du bord 13b', 13c' des ports de sortie 13b, 13c. Les efforts de pression peuvent résulter d'une aspiration en provenance de la canalisation 5, 14 reliée à l'orifice 13b, 13c que le segment d'étanchéité 18 bouche en position d'obturation, cette aspiration étant générée par l'aspiration des cylindres de la chambre de combustion 1 du moteur M, puisque les cylindres sont reliés au RAS 5 et à sa canalisation de bypass 14 et donc aux ports de sortie 13b, 13c de la vanne 13; par ailleurs, simultanément ou alternativement, des efforts de pression peuvent résulter d'une poussée due au compresseur 4 tendant à entraîner les gaz d'admission, par l'orifice d'entrée 13a, vers le RAS 5 et sa canalisation de bypass 14. Ainsi, dans son état de repos c'est-à-dire sans contrainte élastique (effet ressort à l'équilibre naturel), le segment d'étanchéité 18 est conformé de sorte à ce que le boisseau 17 présente un diamètre hors-tout inférieur au diamètre intérieur du logement intérieur du corps 15 de la vanne 13; un tel état de repos correspondant aux positions du boisseau 17 dans lesquelles aucune pression suffisante n'est exercée sur le segment d'étanchéité 18, c'est-à-dire les positions d'ouverture totale et simultanée des deux ports de sortie 13b, 13c; dans ces positions, ni la paroi latérale 17c du boisseau 17 ni le segment d'étanchéité 18 ne sont en contact avec la paroi intérieure 16 du corps 15 de la vanne 13. Par ailleurs, lorsqu'il est contraint par des efforts de pression, ce qui est le cas lorsqu'il est en position d'obturation totale ou partielle d'un ou des deux ports 13b, 13c, le segment d'étanchéité 18 se déforme, par élasticité et contre son effet ressort, pour venir se plaquer contre le bord 13b', 13c' du ou des ports considéré(s) 13b, 13c. On note à cet égard que plus l'obturation est importante, plus les efforts tendant à plaquer le segment d'étanchéité 18 contre le bord du ou des orifice(s) considéré(s) sont importants, ce qui est avantageux. Lorsque les efforts de pression se relâchent, le segment d'étanchéité 18 revient dans sa forme et position initiales.
Plus précisément encore, et de manière structurelle, le segment d'étanchéité 18 se présente, dans la forme de réalisation préférée de l'invention, sous la forme d'une paroi ou lamelle ou feuille en forme de portion de cylindre et enveloppant la paroi latérale 17c du boisseau 17 sur une partie de cette dernière située en-dehors de l'évidement 17d du boisseau 17. Le segment d'étanchéité 18 est relié à la paroi latérale 17c du corps de la vanne 17 à proximité de l'un de ses bords d'extrémités latérales et est libre à son autre extrémité latérale; il est également libre le long de ses bords d'extrémités longitudinales. Le segment d'étanchéité 18 présente une épaisseur sensiblement égale ou légèrement inférieure à l'épaisseur de la paroi latérale 17c du boisseau 17 (par exemple sensiblement égale à la moitié de cette épaisseur); l'épaisseur du segment d'étanchéité 18 est donc en l'espèce faible par comparaison au diamètre du boisseau 17. Le segment d'étanchéité 18 peut s'étendre (en position de repos) en contact avec la paroi latérale 17c du boisseau 17 ou à une légère distance d'elle. Du fait de sa liaison à la paroi latérale 17c du boisseau 17 d'un seul de ses côtés, le segment d'étanchéité 18, qui présente une certaine élasticité ou effet ressort, peut se déplacer radialement, contre cet effet ressort; c'est ainsi que, par effet de pression, le segment d'étanchéité 18 peut s'écarter radialement de la paroi latérale 17c du boisseau 17 pour venir se plaquer contre le bord 13b', 13c' d'un orifice 13b, 13c qu'il est destiné à obturer (totalement ou partiellement). Le segment d'étanchéité 18 est en l'espèce formé de manière monobloc avec la paroi latérale 17c du boisseau 17; il est ainsi formé dans le même matériau, ce matériau pouvant éventuellement être revêtu d'un second matériau présentant des caractéristiques améliorant sa fonction d'étanchéité (présentant en particulier un coefficient de frottement adapté). Puisqu'il est monobloc, le boisseau 17 peut être fabriqué beaucoup plus facilement, par exemple par moulage d'une matière plastique ou métallique.
Par exemple, le boisseau 17 peut être formé en plastique, sa paroi latérale 17c et le segment d'étanchéité 18 étant donc formés dans le même plastique, tandis que la paroi extérieur du segment d'étanchéité 18, destinée à venir en contact avec le bord 13b', 13c' des ports de sortie 13b, 13c, est revêtu de téflon. Selon un autre exemple, le boisseau 17 peut être formé en aluminium, un revêtement de plastique ou de céramique étant appliqué sur sa paroi extérieure. Quelle que soit la forme de réalisation, le revêtement peut être appliqué postérieurement à la fabrication de la pièce ou introduit directement dans son matériau constitutif (ainsi, on peut introduire directement dans le plastique formant le boisseau 17, au niveau de la paroi externe du segment d'étanchéité 18, du téflon qui est ainsi mélangé au plastique). Bien entendu, le boisseau 17 peut être formé d'un unique matériau, sans revêtement (par exemple tout en plastique).
Plusieurs formes sont envisageables pour le segment d'étanchéité 18; en particulier, sa liaison avec la paroi latérale 17c du boisseau 17 peut être située à différents endroits du segment d'étanchéité 18, ce dernier pouvant éventuellement par ailleurs comporter plusieurs zones de liaison à la paroi 17c. Dans la forme de réalisation représentée, la paroi latérale 17c du boisseau 17 est rétrécie dans une zone 19 correspondant à la zone du boisseau 17 dans laquelle le segment d'étanchéité 18 enveloppe cette paroi 17c; le segment d'étanchéité 18 s'étend ainsi le long du renfoncement ménagé par cette zone rétrécie 19. Le rétrécissement de cette zone 19 est de dimensions radiales inférieures à la somme de l'épaisseur radiale du segment d'étanchéité 18 et du jeu radial entre le segment d'étanchéité 18 et la paroi latérale 17c du boisseau 17; par conséquent, le rayon hors-tout du boisseau 17 le long du segment d'étanchéité 18 est supérieur à son rayon hors-tout le long du reste de la paroi 17c du boisseau 17. Selon une autre forme de réalisation non représentée, la zone rétrécie 19 de la paroi latérale 17c du boisseau 17 est agencée pour que le rayon hors-tout du boisseau 17 soit le même le long du segment d'étanchéité 18 et le long du reste de la paroi latérale 17c; autrement dit, l'épaisseur radiale du rétrécissement est égale à la somme de l'épaisseur radiale du segment d'étanchéité 18 et du jeu radial entre le segment d'étanchéité 18 et la paroi latérale 17c. Selon une autre forme de réalisation non représentée, la paroi latérale 17c du boisseau 17 ne comporte pas de zone rétrécie et est de rayon constant, le segment d'étanchéité 18 étant intégralement en saillie hors de la paroi latérale 17c.
Quoi qu'il en soit, l'important dans le dimensionnement du boisseau 17 est le lien entre le diamètre de la paroi intérieure 16 du corps 15 de la vanne 13 et le diamètre hors-tout du boisseau 17 en position d'ouverture totale des ports 13b, 13c (c'est-à-dire en position de repos du segment d'étanchéité 18), le diamètre hors-tout du boisseau 17 devant être inférieur au diamètre de la paroi intérieure 16 du corps 15 de la vanne 13. En position d'obturation partielle ou totale de l'un ou des deux ports de sortie 13b, 13c, le segment d'étanchéité 18 est déformé (et donc le rayon du boisseau 17 augmenté dans la zone déformée) pour venir épouser le bord 13b', 13c' du ou des ports 13b, 13c considéré(s). Quelle que soit la forme de réalisation, la paroi latérale 17c du boisseau 17 ne touche pas la paroi intérieure 16 du corps 15 de la vanne 13 et ne remplit pas de fonction d'étanchéité, cette dernière intégralement remplie par le segment d'étanchéité 18, uniquement en position d'obturation.
Le segment d'étanchéité 18 présente une certaine souplesse et une certaine élasticité lui permettant d'être déformé pour venir se plaquer contre le bord 13b', 13c' du ou des orifice(s) 13b, 13c à obturer totalement ou partiellement. Il présente par ailleurs une certaine rigidité, suffisante pour éviter que le segment d'étanchéité 18 ne soit aspiré uniquement dans sa zone au droit d'un orifice 13b, 13c et ne se déforme avec un effet de succion; autrement dit, grâce à sa rigidité, le segment d'étanchéité 18 se déforme de manière globale pour s'écarter de la paroi latérale 17c, de manière continue, sans déformations locales dans les zones aspirées par les canalisations reliées aux ports de sortie 13b, 13c. Outre une certaine élasticité du matériau nécessaire à sa déformation, la souplesse du segment d'étanchéité 18 provient du degré de liberté qui lui est conféré par la disposition d'une zone de liaison à une extrémité latérale mais pas à l'autre, permettant un effet "bras de levier" facilitant le déplacement du segment d'étanchéité 18. Finalement, le segment d'étanchéité 18 se comporte en quelque sorte comme un clapet. L'ouverture angulaire entre les bords d'extrémités latérales du segment d'étanchéité 18 est dimensionnée par l'homme du métier en fonction des positions d'obturation qu'il souhaite que le boisseau 17 puisse prendre. Dans la forme de réalisation représentée, l'ouverture angulaire du segment d'étanchéité 18 est égale à l'ouverture minimale permettant, dans une position, l'obturation totale et simultanée des deux ports de sorties 13b, 13c. Ainsi, on optimise la dimension circonférentielle du segment d'étanchéité 18, qui est la plus faible possible pour pouvoir remplir sa fonction et notamment permettre l'étouffement du moteur.
Grâce à l'invention, le boisseau 17 n'étant en contact avec la paroi intérieure 16 du corps 15 de la vanne 13 que dans les positions où un tel contact est utile et efficace, les efforts de frottement que doivent combattre les moyens d'entraînement en rotation du boisseau 17 pour l'entraîner en rotation sont dépendants de la position du boisseau 17 et sont plus ou moins importants selon l'état d'obturation des ports 13b, 13c.
Lorsque les deux ports 13b, 13c sont obturés totalement et simultanément, les efforts sur le boisseau 17 sont maximaux et les moyens d'entraînement doivent délivrer la puissance la plus importante d'entraînement en rotation du boisseau 17. En position d'ouverture totale et simultanée des deux ports 13b, 13c, le boisseau 17 n'est a priori pas sujet à des efforts de frottement du corps 15 de la vanne 13 sur le segment d'étanchéité 18 et la puissance à fournir pour déplacer le boisseau 17 est minimale. Dans les positions d'obturation partielle d'un ou des deux ports 13b, 13c, les efforts de frottement sur le segment d'étanchéité 18 sont d'autant plus importants que le ou les orifice(s) 13b, 13c sont obturés; en effet, plus un orifice 13b, 13c est obturé, plus la surface de contact entre son bord 13b', 13c' et le segment d'étanchéité 18 est importante, et plus les efforts de pression sont importants.
On note ici que la paroi d'obturation de la première extrémité longitudinale 17a du boisseau 17 n'est pas, dans les représentations des figures 2, 5 et 6, en forme de disque transversal. Au contraire, elle présente une forme inclinée et curviligne qui suit notamment l'ouverture 17d du boisseau 17, la fonction d'une telle forme étant de faciliter la fabrication du boisseau 17 pour lui permettre d'être fabriqué avec des parois d'épaisseur constante; ainsi, cette paroi de fermeture de la première extrémité longitudinale 17a est d'épaisseur constante et suis continûment l'ouverture 17d du boisseau 17; elle ménage ainsi par ailleurs, du côté intérieur, un canal continu d'écoulement pour le flux de gaz.
On peut noter ici que, selon une autre forme de réalisation non représentée, le boisseau 17 peut être entraîné de manière excentrique par rapport au corps 15 de la vanne 13, un tel boisseau 17 satisfaisant bien aux conditions, d'une part de diamètre inférieur au diamètre intérieur de la vanne 13 en position d'ouverture, d'autre part de faculté à épouser le bord 13b', 13c' d'un ou des orifice(s) 13b, 13c en position d'obturation; l'avantage recherché, de contact uniquement en position d'obturation totale ou partielle, est alors bien atteint.
Le fonctionnement de la vanne 13 de l'invention va maintenant succinctement être décrit, en référence aux figures 5 et 6. Sur la figure 5, le boisseau 17 est en position d'obturation totale des deux ports de sortie 13b, 13c. On voit que, dans cette position, le segment d'étanchéité 18 est en appui sur les bords 13b', 13c' des deux ports de sortie 13b, 13c. Sur la figure 6, le boisseau 17 a été entraîné en rotation autour de son axe A par rapport à sa position de la figure 5, pour que son évidement 17d se situe en face de l'orifice de sortie 13b vers le RAS 5, pour ouvrir ce dernier, l'orifice de sortie 13c vers le bypass 14 étant obturé. On voit que, dans cette position, le segment d'étanchéité 18 est en appui sur le bord 13c' de l'orifice de sortie 13c vers le bypass 14 seulement. On imagine aisément l'ensemble des positions que peut prendre le boisseau 17.

Claims

Revendications
1- Vanne de régulation d'un débit de fluide entre au moins un orifice d'entrée (13a) dans la vanne et au moins un orifice de sortie (13b, 13c) de la vanne, l'orifice de sortie (13b, 13c) étant obturable en tout ou partie par un boisseau d'obturation (17) monté rotatif, dans un logement défini par une paroi intérieure (16) de la vanne, entre une position d'ouverture et une position d'obturation totale ou partielle de l'orifice de sortie (13b, 13c), caractérisé par le fait que ladite vanne comporte en outre un segment d'étanchéité, ledit segment d'étanchéité (18) étant, d'une part, assujetti audit boisseau d'obturation (17) et, d'autre part, libre par rapport audit boisseau de manière à ce que ledit segment d'étanchéité (18) soit agencé pour épouser en tout ou partie un bord (13b1, 13c') de l'orifice de sortie (13b, 13c) en position d'obturation. 2- Vanne selon la revendication 1, dans laquelle le boisseau (17) est de diamètre hors-tout inférieur à celui de la paroi intérieure (16) de la vanne.
3- Vanne selon la revendication 1 ou 2, dans laquelle le segment d'étanchéité (18) présente une élasticité et est agencé pour être déformé, en position d'obturation, pour épouser tout ou partie du bord (13b1, 13c') de l'orifice de sortie (13b, 13c).
4- Vanne selon la revendication précédente, dans laquelle le segment d'étanchéité (18) est déformé, en position d'obturation, par des efforts de pression.
5- Vanne selon l'une des revendications précédentes, dans laquelle le segment d'étanchéité (18) est monobloc avec le boisseau (17). 6- Vanne selon l'une des revendications précédentes, dans laquelle le boisseau (17) comporte une paroi latérale (17c) et le segment d'étanchéité (18) se présente sous la forme d'une paroi agencée pour envelopper pour partie ladite paroi latérale (17c). 7- Vanne selon la revendication précédente, dans laquelle un jeu radial est prévu entre le segment d'étanchéité (18) et la paroi latérale (17c) du boisseau (17). 8- Vanne selon l'une des revendications 6 et 7, dans laquelle le segment d'étanchéité (18) est solidaire de la paroi latérale (17c) au niveau d'un bord d'extrémité latérale.
9- Vanne selon l'une des revendications précédentesdans laquelle, la vanne comporte deux ports de sortie (13b, 13c), le segment d'étanchéité (18) présente une ouverture angulaire minimale nécessaire pour pouvoir assurer l'obturation simultanée et totale des deux ports de sortie (13b, 13c).
10- Vanne selon l'une des revendications précédentes, dans laquelle le boisseau (17) comporte un canal de mise en communication fluidique de l'orifice d'entrée (13a) avec l'orifice de sortie (13b, 13c) en position d'ouverture de l'orifice de sortie (13b, 13c).
11- Vanne selon la revendication précédente, dans laquelle le boisseau (17) comporte une paroi latérale (17c) et ledit canal de mise en communication fluidique débouche sur ladite paroi latérale (17c) au niveau d'un évidement (17d). 12- Vanne selon l'une des revendications précédentes, dans laquelle la vanne est une vanne de régulation d'un débit de gaz d'admission dans un moteur thermique (M) de véhicule automobile.
13- Vanne selon la revendication précédente, dans laquelle la vanne comporte deux orifices de sortie (13b, 13c), un premier orifice de sortie (13b) étant agencé pour être relié à un refroidissement (5) d'air de suralimentation du moteur (M) et un deuxième orifice de sortie (13c) étant agencé pour être relié à une canalisation (14) de bypass dudit refroidisseur (5). 14- Boisseau pour la vanne de l'une des revendications précédentes, comportant un segment d'étanchéité (18) présentant une élasticité.
15- Circuit d'admission de gaz dans un moteur thermique (M) de véhicule automobile, le circuit comportant un refroidisseur (5) d'air de suralimentation du moteur (M), une canalisation (14) de bypass dudit refroidisseur (5) et la vanne de l'une des revendications 1 à 13 assurant la régulation des gaz entre le refroidisseur (5) et sa canalisation de bypass (14).
PCT/EP2010/059087 2009-06-30 2010-06-25 Vanne à boisseau, boisseau pour une telle vanne et circuit d'admission de gaz dans un moteur thermique de véhicule automobile avec une telle vanne WO2011000787A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0903172A FR2947319B1 (fr) 2009-06-30 2009-06-30 Vanne a boisseau, boisseau pour une telle vanne et circuit d'admission de gaz dans un moteur thermique de vehicule avec une telle vanne
FR09/03172 2009-06-30

Publications (1)

Publication Number Publication Date
WO2011000787A1 true WO2011000787A1 (fr) 2011-01-06

Family

ID=41666777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/059087 WO2011000787A1 (fr) 2009-06-30 2010-06-25 Vanne à boisseau, boisseau pour une telle vanne et circuit d'admission de gaz dans un moteur thermique de véhicule automobile avec une telle vanne

Country Status (2)

Country Link
FR (1) FR2947319B1 (fr)
WO (1) WO2011000787A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015506432A (ja) * 2011-12-21 2015-03-02 ヴァレオ システム ドゥ コントロール モトゥール 各チャネルを介した制御を伴う2つのチャネルを有するスロットル
US9295742B2 (en) 2012-04-16 2016-03-29 Puracath Medical, Inc. System and method for disinfecting a catheter system
US9492574B2 (en) 2013-01-29 2016-11-15 Puracath Medical, Inc. Apparatus for disinfecting or sterilizing a catheter and method of use
US10953217B2 (en) 2015-03-18 2021-03-23 Puracath Medical, Inc. Catheter connection system for ultraviolet light disinfection
US11007361B2 (en) 2014-06-05 2021-05-18 Puracath Medical, Inc. Transfer catheter for ultraviolet disinfection

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102242820B (zh) * 2011-03-29 2013-02-13 湖南天雁机械有限责任公司 高温燃气转换阀

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2852226A (en) * 1955-02-16 1958-09-16 Charles W Wheatley Valve sealing means
US3218026A (en) * 1963-03-28 1965-11-16 Quality Controls Company Inc Plug valve having renewable sealing inserts
WO2003006858A1 (fr) * 2001-07-11 2003-01-23 Valeo Thermique Moteur Vanne de commande pour un circuit de refroidissement d'un moteur
FR2920853A1 (fr) * 2007-09-07 2009-03-13 Valeo Systemes Thermiques Vanne pour circuit d'alimentation en air d'un moteur de vehicule automobile, circuit comportant une telle vanne et procede de commande d'un moteur utilisant un tel circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2852226A (en) * 1955-02-16 1958-09-16 Charles W Wheatley Valve sealing means
US3218026A (en) * 1963-03-28 1965-11-16 Quality Controls Company Inc Plug valve having renewable sealing inserts
WO2003006858A1 (fr) * 2001-07-11 2003-01-23 Valeo Thermique Moteur Vanne de commande pour un circuit de refroidissement d'un moteur
FR2920853A1 (fr) * 2007-09-07 2009-03-13 Valeo Systemes Thermiques Vanne pour circuit d'alimentation en air d'un moteur de vehicule automobile, circuit comportant une telle vanne et procede de commande d'un moteur utilisant un tel circuit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015506432A (ja) * 2011-12-21 2015-03-02 ヴァレオ システム ドゥ コントロール モトゥール 各チャネルを介した制御を伴う2つのチャネルを有するスロットル
US9295742B2 (en) 2012-04-16 2016-03-29 Puracath Medical, Inc. System and method for disinfecting a catheter system
US9492574B2 (en) 2013-01-29 2016-11-15 Puracath Medical, Inc. Apparatus for disinfecting or sterilizing a catheter and method of use
US11007361B2 (en) 2014-06-05 2021-05-18 Puracath Medical, Inc. Transfer catheter for ultraviolet disinfection
US10953217B2 (en) 2015-03-18 2021-03-23 Puracath Medical, Inc. Catheter connection system for ultraviolet light disinfection

Also Published As

Publication number Publication date
FR2947319B1 (fr) 2015-04-10
FR2947319A1 (fr) 2010-12-31

Similar Documents

Publication Publication Date Title
WO2011000787A1 (fr) Vanne à boisseau, boisseau pour une telle vanne et circuit d'admission de gaz dans un moteur thermique de véhicule automobile avec une telle vanne
FR2786223A1 (fr) Moteur a combustion, en particulier moteur a combustion pour vehicules automobiles, equipe d'un recyclage des gaz d'echappement
EP2881576B1 (fr) Module d'admission d'air
FR2930281A1 (fr) Ligne d'echappement de vehicule automobile avec conduit de recyclage.
FR2923886A1 (fr) Vanne pour circuit d'alimentation en air d'un moteur de vehicule automobile, circuit comportant une telle vanne et procede de commande d'un moteur utilisant un tel circuit
EP2881571B1 (fr) Dispositif de contrôle d'un flux de gaz d'admission et/ou de gaz d'échappement recirculés dans un cylindre de moteur à combustion interne et module d'admission correspondant.
FR2920853A1 (fr) Vanne pour circuit d'alimentation en air d'un moteur de vehicule automobile, circuit comportant une telle vanne et procede de commande d'un moteur utilisant un tel circuit
EP1387774B2 (fr) Bo tier de guidage d'air
WO2013171404A1 (fr) Vanne de circulation de fluide, notamment pour véhicule automobile, et dispositif de conditionnement thermique comprenant une telle vanne
EP2850349B1 (fr) Vanne de circulation de fluide
FR3069609A1 (fr) Vanne de dosage de fluide
WO2013171410A1 (fr) Vanne de circulation de fluide, notamment pour vehicule automobile, et dispositif de conditionnement thermique comprenant une telle vanne
EP3601855B1 (fr) Vanne de régulation d'un débit de fluide
FR2950947A1 (fr) Vanne destinee, notamment, a etre implantee dans un circuit d'admission d'air d'un moteur thermique
EP1556659A1 (fr) Echangeur de chaleur a regulation de flux, en particulier pour vehicules automobiles
FR2914978A1 (fr) Vanne quatre voies a obturation simultanee de deux voies
FR3072753B1 (fr) Vanne pour un circuit de fluide, notamment un circuit de recirculation des gaz d'echappement d'un moteur
EP3090168B1 (fr) Élément de vanne, notamment pour moteur thermique
EP2855911A1 (fr) Doseur deux voies et applications dudit doseur
FR2924780A1 (fr) Conduit d'ecoulement de gaz avec obturateur pour vehicule automobile
FR3058465A1 (fr) Amenagement de volet a contre flux
FR3052526A1 (fr) Vanne de controle d'un debit de fluide
WO2014202882A1 (fr) Vanne, notamment pour moteur thermique
WO2011121248A1 (fr) Volet d'obturation d'un conduit d'ecoulement de gaz et conduit avec un tel volet
WO2014072654A1 (fr) Vanne, notamment pour circuit d'air de moteur thermique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10726116

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10726116

Country of ref document: EP

Kind code of ref document: A1