WO2010150399A1 - 風力発電装置及びその制御方法 - Google Patents

風力発電装置及びその制御方法 Download PDF

Info

Publication number
WO2010150399A1
WO2010150399A1 PCT/JP2009/061727 JP2009061727W WO2010150399A1 WO 2010150399 A1 WO2010150399 A1 WO 2010150399A1 JP 2009061727 W JP2009061727 W JP 2009061727W WO 2010150399 A1 WO2010150399 A1 WO 2010150399A1
Authority
WO
WIPO (PCT)
Prior art keywords
icing
operation mode
amount
predetermined value
wind turbine
Prior art date
Application number
PCT/JP2009/061727
Other languages
English (en)
French (fr)
Inventor
岳人 溝上
満也 馬場
林 義之
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP09749314.2A priority Critical patent/EP2447529B1/en
Priority to JP2009550122A priority patent/JP4898925B2/ja
Priority to CN200980111421.9A priority patent/CN102439296B/zh
Priority to PCT/JP2009/061727 priority patent/WO2010150399A1/ja
Priority to BRPI0910385A priority patent/BRPI0910385A2/pt
Priority to US12/600,817 priority patent/US8039980B2/en
Priority to CA2716497A priority patent/CA2716497C/en
Priority to KR1020107020100A priority patent/KR101200122B1/ko
Publication of WO2010150399A1 publication Critical patent/WO2010150399A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0264Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for stopping; controlling in emergency situations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0276Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling rotor speed, e.g. variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/40Ice detection; De-icing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/80Diagnostics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to a wind turbine generator and a control method thereof.
  • Patent Document 1 discloses a method for detecting icing of a wind power generator.
  • the present invention has been made to solve the above problem, and an object of the present invention is to provide a wind turbine generator capable of reducing the stop time of the wind turbine generator due to the icing of the windmill blade and a control method thereof. To do.
  • an icing detection means for detecting an icing amount of a windmill blade, and when the icing amount detected by the icing detection means exceeds a first predetermined value, an operation mode is provided. Is switched to a no-load operation mode in which power generation is not performed, and the icing detection means detects the amount of icing in a state of operation in the no-load operation mode.
  • the mode is switched to the no-load operation mode and the operation is performed in the no-load operation mode.
  • the amount of icing is detected in the state.
  • the operation was stopped immediately when the icing occurred, for example, when the stop period was long, the equipment included in the windmill would be cooled, and it took a considerable time to restart. there were.
  • the present invention as described above, even if icing is detected, the operation is continuously performed in the no-load operation mode, so that the warm-up can be continuously performed.
  • the operation can be resumed from the state in which the device is warmed, and the operation is resumed. It is possible to reduce the time required for the process.
  • the operation is performed when the icing detection means detects an icing amount exceeding a second predetermined value that is larger than the first predetermined value. It is desirable to stop.
  • the operation in the no-load operation mode is performed, and the icing amount exceeds the second predetermined value. In some cases, the operation is stopped.
  • the no-load operation is performed as much as possible within a range that does not hinder the operation of the wind power generator. The operation in the mode can be continued, and the opportunity to resume the operation from the warmed-up state can be increased.
  • the mode is switched from the no-load operation mode to the normal operation mode. I am going to do that.
  • the normal operation is resumed when the icing amount is reduced, thereby preventing a decrease in operating efficiency of the wind turbine generator.
  • the operation control can be stabilized.
  • the rotation speed of the wind turbine rotor may be set so that ice attached to the wind turbine blade does not reach the surrounding wind turbine generator when the wind turbine rotor rotates.
  • the rotation speed of the wind turbine rotor is set so that ice attached to the wind turbine blade does not reach the surrounding wind turbine generator. Thereby, the influence on the circumference by the ice adhering to a windmill blade splashing can be prevented.
  • the icing detection means of the wind power generator may detect an icing amount based on physical characteristics of the windmill blade. Thereby, the amount of icing can be calculated using an existing apparatus.
  • the physical characteristic is, for example, distortion.
  • the wind turbine When the icing detection means of the wind turbine generator is unable to detect the amount of icing in the operation stop state, the wind turbine is switched to the no-load operation mode after a predetermined period from the stop of the operation, and the operation is performed in the no-load operation mode. In this state, it is desirable that the icing amount is detected by the icing detection means. In this way, the operation is started in the no-load operation mode after a predetermined time from the operation stop state, and the icing state is detected while operating in the no-load operation mode. It is possible to reduce the operation stop time as compared with the case of restarting afterwards.
  • the second aspect of the present invention detects the icing amount of the windmill blade, and when the icing amount exceeds the first predetermined value, the operation mode is switched to the no-load operation mode in which the power generation is not performed. It is a control method of a wind power generator which detects the amount of icing while operating in the no-load operation mode.
  • FIG. 1 is a schematic diagram illustrating a schematic configuration of a wind turbine generator 1 according to the present embodiment.
  • the wind turbine generator 1 includes a support column 2, a nacelle 3 installed at the upper end of the support column 2, and a rotor head 4 provided in the nacelle 3 so as to be rotatable around a substantially horizontal axis.
  • Three windmill blades 10 are attached to the rotor head 4 radially around the rotational axis thereof.
  • the force of the wind striking the wind turbine blade 10 from the direction of the rotation axis of the rotor head 4 is converted into power for rotating the rotor head 4 around the rotation axis, and this power is provided to the generator provided in the wind power generator 1. Is converted into electrical energy.
  • the wind turbine generator 1 is provided with an icing detection unit (icing detection means) 7 for detecting the icing amount of the windmill blade 10 and detects the icing amount of each windmill blade 10.
  • the icing detection unit 7 detects the icing amount of each windmill blade 10 in a state where the rotor head 4 is rotating, and includes a sensing unit 71 and a signal processing unit 72. Yes.
  • the sensing unit 71 is provided in each windmill blade 10, detects distortion of the windmill blade 10, and outputs the detected distortion to the signal processing unit 72.
  • the signal processing unit 72 is provided in the rotor head 4 or the like, receives the detection result in the sensing unit 71, and calculates the icing amount of each windmill blade 10 from the detection result.
  • the sensing unit 71 and the signal processing unit 72 are devices for measuring a load related to the windmill blade 10, and are known devices.
  • an FBG (FiberratingBragg Grating) sensor can be employed as the sensing unit 71.
  • This FBG sensor is a sensor that reads a change in the lattice spacing of a Bragg grating due to strain or heat based on a change in the wavelength of reflected light.
  • the technology for calculating the distortion by the sensing unit 71 (FBG) and the signal processing unit 72 is a known technology (for example, product number WIND-SPEC-006-5 manufactured by insensys). Detailed description of the detection method will be omitted.
  • the signal processing unit 72 includes a signal receiving unit 73, an icing amount calculation unit 74, and an operation mode switching unit 75.
  • the signal receiving unit 73 periodically sends light to the sensing unit 71 and detects a wavelength change from the reflected light.
  • the signal receiver 73 outputs the detected wavelength information to the icing amount calculator 74.
  • the icing amount calculation unit 74 calculates the icing amount of the windmill blade 10 based on the wavelength information acquired from the signal receiving unit 73. For example, the icing amount calculation unit 74 calculates a strain based on the acquired wavelength, calculates a bending moment of the windmill blade 10 based on the strain value, and calculates an icing amount based on the calculated bending moment. To do.
  • the icing amount calculation unit 74 is provided with a plurality of threshold values for the icing amount, determines whether or not the icing amount exceeds the threshold value, and outputs the determination result to the operation mode switching unit 75. The determination by the icing amount calculation unit 74 is performed for each of the three wind turbine blades 10.
  • the operation mode switching unit 75 switches the operation mode based on the determination result of the icing amount calculation unit 74. Further, it is desirable to switch the operation mode when the icing amount of at least one windmill blade 10 exceeds a threshold value.
  • the threshold value is a first predetermined value set for the amount of icing of at least one windmill blade 10, a second predetermined value larger than the first predetermined value, and the like.
  • the third predetermined value is a value equal to the first predetermined value.
  • the operation mode switching unit 75 sets the operation mode of the wind turbine generator 1 to the no-load operation mode.
  • the no-load operation mode is, for example, an operation that does not generate power (no load).
  • the first predetermined value is preferably set to an icing amount so that icing is detected but it is not necessary to stop the operation.
  • the operation mode switching unit 75 determines that the icing amount of at least one windmill blade 10 is equal to or less than the first predetermined value by the icing amount calculation unit 74 in a state of operating in the no-load operation mode. In the case of failure, the operation mode of the wind turbine generator 1 is switched to the normal operation mode.
  • the operation mode switching unit 75 determines that the icing amount of at least one windmill blade 10 has exceeded the second predetermined value by the icing calculation unit 74 in the state of operating in the no-load operation mode. In that case, the operation of the wind turbine generator 1 is stopped.
  • the second predetermined value is set to a value larger than the first predetermined value.
  • operation of the wind power generator 1 shall be 2nd predetermined value.
  • the amount of ice that hinders the operation is a value of the amount of ice that causes a problem in the operation of the wind turbine generator 1. For example, when the stress of the lower part of the support column 2 becomes larger than a predetermined value, or when the allowable load of a bearing, a gearbox, etc. is exceeded.
  • the icing amount is in the no-load operation mode in a range larger than the first predetermined value and not more than the second predetermined value.
  • the wind turbine generator 1 is switched to the no-load operation mode, and the threshold value determination similar to the above is performed.
  • the icing amount is larger than the second predetermined value
  • the icing amount is detected at predetermined time intervals, and the icing amount is detected. Is confirmed to be less than or equal to the second predetermined value, the no-load operation mode is resumed.
  • adopted by this embodiment cannot detect the amount of icing in the state which the rotation of the rotor has stopped, when the driving
  • the rotation speed of the wind turbine rotor is smaller than the distance that the ice adhering to the wind turbine blade 10 scatters when the wind turbine rotor rotates.
  • the number of revolutions is set such that the distance to be scattered is equal to or less than the distance from the wind turbine generator 1 installed in the vicinity. For example, when the interval between wind turbines is 190 meters, the rotation speed of the rotor 4 is controlled to be 1 rpm to 6 rpm.
  • step SA1 distortion is measured by the sensing unit 71 and the signal receiving unit 73 of the icing detection unit 7 (step SA1), and the measurement result is output to the icing amount calculation unit 74.
  • the icing amount calculation unit 74 calculates the icing amount Wi attached to the windmill blade 10 based on the measured strain, and periodically determines whether or not it exceeds the first predetermined value.
  • the switching unit 75 the operation mode is switched (step SA2).
  • the operation mode of the wind turbine generator 1 is set to the “normal operation” mode.
  • the operation mode switching unit 75 switches the operation mode of the wind turbine generator 1 to the “no load operation” mode (step SA4).
  • step SA5 When operating in the no-load operation mode, it is periodically determined whether or not the icing amount Wi exceeds the second predetermined value (step SA5). As a result, the operation of the wind turbine generator 1 is stopped (step SA6). If the icing amount Wi does not exceed the second predetermined value, the process returns to step SA1 and the measurement of the icing amount Wi is continued.
  • step SA7 it is determined whether or not a predetermined time (for example, 1 hour) has elapsed since the wind power generator 1 was stopped because the icing amount Wi exceeded the second predetermined value. If it is determined that the predetermined time has elapsed, the operation is started in the “no load operation” mode (step SA8), the process returns to step SA1, and the measurement of the icing amount Wi is continued. If the predetermined time has not elapsed, the determination as to whether the predetermined time has elapsed is repeated (step SA7).
  • a predetermined time for example, 1 hour
  • the amount of icing adhered to the windmill blade 10 is calculated from the strain measured from the windmill blade 10, and this icing is performed. It is determined whether or not the amount exceeds the first predetermined value, and if it exceeds, the mode is switched to the no-load operation mode. Further, in the no-load operation mode, the operation mode is switched depending on whether the second predetermined value is exceeded or the first predetermined value is exceeded.
  • the operation when icing is detected, the operation is not stopped immediately, but a period for operating in the no-load operation mode is provided, and the icing during the no-load operation mode operation is provided. Whether to stop the operation or to switch to the normal operation mode is determined in accordance with the state. Thereby, for example, when the amount of icing is reduced to be equal to or less than the first predetermined value, it is possible to quickly switch from the no-load operation mode to the normal operation mode. Thereby, the operation rate of the wind power generator 1 can be improved.
  • the icing amount is detected while the rotor head 4 is rotating.
  • the present invention is not limited to this. For example, it is good also as what detects the amount of icing even if the rotor head 4 is not rotating. In this case, it is possible to eliminate the process of switching to the no-load operation mode in order to detect the amount of icing when the operation is stopped.
  • the third predetermined value is equal to the first predetermined value, but the present invention is not limited to this.
  • the third predetermined value may be a value smaller than the first predetermined value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

 風力発電装置1において、風車ブレード10の着氷に起因する風力発電装置1の停止時間を低減することを目的とする。風車ブレード10の着氷量を検出する着氷検出部7を備え、着氷検出部7により検出された着氷量が第1所定値を上回った場合に、運転モードを、発電を行わない無負荷運転モードに切り替え、無負荷運転モードで運転している状態で、着氷検出部7により着氷量を検出する風力発電装置1を提供する。

Description

風力発電装置及びその制御方法
 本発明は、風力発電装置及びその制御方法に関するものである。
 従来、自然エネルギーである風力を利用して発電を行う風力発電装置が知られている。風力発電装置は、外気温度の低下に伴い、空気中の過冷却水滴、または水蒸気等が、風車ブレード等に衝突して凍結が生じることによって、風車ブレード等に着氷が生じる。例えば、特許文献1には、風力発電装置の着氷を検出する方法が開示されている。
米国特許第7,086,834号公報明細書
 ところで、着氷は、運転中に風車ブレードの前縁部に多く生じる傾向があり、そのような場合には、風車ブレードに風力が与えられても、所望の揚力が発生しないため、風車ブレードが回転せず、所望の運転を行うことができない。
 しかしながら、従来は、風力発電装置の起動前に着氷していた場合、着氷の程度に関わらず運転は見合わされていたため、風力発電装置の起動に時間がかかり、風力発電装置の稼働率が低下するという問題があった。
 本発明は、上記問題を解決するためになされたもので、風車ブレードの着氷に起因する風力発電装置の停止時間を低減することのできる風力発電装置及びその制御方法を提供することを目的とする。
 本発明の第1の態様は、風車ブレードの着氷量を検出する着氷検出手段を備え、前記着氷検出手段により検出された着氷量が第1所定値を上回った場合に、運転モードを、発電を行わない無負荷運転モードに切り替え、前記無負荷運転モードで運転している状態で、前記着氷検出手段により着氷量を検出する風力発電装置である。
 このような構成によれば、着氷検出手段によって検出された風車ブレードの着氷量が第1所定値を上回った場合に、無負荷運転モードに切り替えられ、無負荷運転モードで運転している状態において着氷量が検出される。
 従来は、着氷があった場合に直ぐに運転を停止していたため、例えば、停止期間が長期間にわたる場合には、風車が備える機器が冷えてしまい、再起動に相当な時間を要するという問題があった。これに対し、本発明では、上述のように、着氷が検出されても、無負荷運転モードにより運転を継続して行うので、暖機を継続して行うことが可能となる。これにより、例えば、無負荷運転モードが実施されているときに着氷量が減少し、運転が再開される場合には、機器が暖められている状態から運転を再開することができ、運転再開に要する時間を短縮することが可能となる。
 上記風力発電装置が前記無負荷運転モードで運転している状態において、前記第1所定値よりも大きい第2所定値を上回る着氷量が前記着氷検出手段により検出された場合に、運転を停止することが望ましい。
 このような構成によれば、着氷量が第1所定値よりも大きく第2所定値以下の場合には、無負荷運転モードによる運転が行われ、着氷量が第2所定値を超えた場合に、運転が停止される。これにより、例えば、第2所定値として風力発電装置の運転に支障をきたす着氷量となる閾値を設定した場合には、風力発電装置の運転に支障をきたさない範囲において可能な限り無負荷運転モードによる運転を継続して行うことができ、暖機されている状態から運転再開を行う機会を増加させることができる。
 上記風力発電装置が前記無負荷運転モードで運転している状態において、前記第1所定値以下に設定された第3所定値を下回る着氷量が前記着氷検出手段により検出された場合に、通常運転モードに切り替えることとしてもよい。
 このように、無負荷運転モードで運転している状態において、着氷量が第1所定値以下に設定された第3所定値を下回った場合には、無負荷運転モードから通常運転モードに切り替えることとしている。これにより、一度、着氷量が第1所定値よりも大きくなった場合であっても、着氷量が減少した場合には通常運転に戻すので、風力発電装置の稼働効率低下を防止することができる。また、通常運転から無負荷運転の切替条件と、無負荷運転から通常運転の切替条件とにヒステリシスを設けることにより、運転制御の安定化を図ることができる。
 上記風力発電装置の前記無負荷運転モードにおいて、風車ロータ回転時、風車ブレードに付着した氷が、周囲の風力発電装置に到達しないように風車ロータの回転数が設定されることとしてもよい。
 このように、無負荷運転モードでは、風車ブレードに付着した氷が周囲の風力発電装置に到達しないように、風車ロータの回転数が設定される。これにより、風車ブレードに付着した氷が飛散することによる周囲への影響を防止することができる。
 上記風力発電装置の前記着氷検出手段は、前記風車ブレードの物理特性に基づいて着氷量を検出することとしてもよい。
 これにより、既存の装置を流用して着氷量を算出することができる。また、物理特性とは、例えば歪等である。
 上記風力発電装置の前記着氷検出手段が運転停止状態において着氷量を検出できない場合、風車の運転停止時から、所定期間経過後に前記無負荷運転モードに切り替え、前記無負荷運転モードで運転している状態で、前記着氷検出手段により前記着氷量を検出することが望ましい。
 このように、運転停止状態から所定時間経過後に無負荷運転モードで運転を開始し、無負荷運転モードで運転しつつ着氷の状態を検出するので、従来のように目視で着氷を確認してから再起動する場合よりも、運転停止時間を低減させることが可能となる。
 本発明の第2の態様は、風車ブレードの着氷量を検出し、着氷量が第1所定値を上回った場合に、運転モードを、発電しない運転状態である無負荷運転モードに切り替え、前記無負荷運転モードで運転している状態で、着氷量を検出する風力発電装置の制御方法である。
 本発明によれば、風車ブレードの着氷に起因する風力発電装置の停止時間を低減することのできるという効果を奏する。
本発明の実施形態に係る風力発電装置の概略構成を示した図である。 着氷検出部の一例を示した機能ブロック図である。 本発明の実施形態に係る風力発電装置の運転状態の変化を示す動作フローである。
1 風力発電装置
4 ロータヘッド
7 着氷検出部(着氷検出手段)
10 風車ブレード
71 センシング部
72 信号処理部
73 信号受信部
74 着氷量算出部
75 運転モード切替部
 以下に、本発明に係る風力発電装置の一実施形態について、図面を参照して説明する。
 図1は、本実施形態に係る風力発電装置1の概略構成を示した概略図である。
 風力発電装置1は、図1に示されるように、支柱2と、支柱2の上端に設置されるナセル3と、略水平な軸線周りに回転可能にしてナセル3に設けられるロータヘッド4とを有している。ロータヘッド4には、その回転軸線周りに放射状に3枚の風車ブレード10が取り付けられている。これにより、ロータヘッド4の回転軸線方向から風車ブレード10に当たった風の力が、ロータヘッド4を回転軸線周りに回転させる動力に変換され、この動力が風力発電装置1に設けられた発電機によって電気エネルギーに変換されるようになっている。
 また、風力発電装置1は、風車ブレード10の着氷量を検出する着氷検出部(着氷検出手段)7を備えており、各風車ブレード10の着氷量を検出する。本実施形態において、着氷検出部7は、ロータヘッド4が回転している状態において、各風車ブレード10の着氷量を検出するものであり、センシング部71と信号処理部72とを備えている。
 センシング部71は、各風車ブレード10に設けられ、風車ブレード10の歪を検出し、信号処理部72に出力する。信号処理部72は、ロータヘッド4の内部等に設けられ、上記センシング部71における検出結果を受信し、検出結果から各風車ブレード10の着氷量を算出する。
 上記センシング部71及び信号処理部72は、風車ブレード10に係る荷重を計測するための装置であり、公知の装置である。例えば、センシング部71としては、FBG(Fiber Bragg Grating)センサを採用することができる。このFBGセンサは、歪や熱によるブラッグ格子の格子間隔の変化を反射光の波長変化に基づいて読み取るセンサである。センシング部71(FBG)、および信号処理部72によって歪みを算出する技術については、公知の技術(例えば、insensys社製 製品番号WIND-SPEC-006-5)であるから、これらを使用した歪等の検出方法についての詳細な説明は省略する。
 より具体的には、図2に示されるように、信号処理部72は、信号受信部73、着氷量算出部74、及び運転モード切替部75を備えている。
 信号受信部73は、周期的にセンシング部71に光を送出し、その反射光から波長変化を検出する。信号受信部73は、検出した波長の情報を着氷量算出部74に出力する。
 着氷量算出部74は、信号受信部73から取得した波長の情報に基づいて風車ブレード10の着氷量を算出する。例えば、着氷量算出部74は、取得した波長に基づいて歪を算出し、この歪値に基づいて風車ブレード10の曲げモーメントを算出し、算出された曲げモーメントに基づいて着氷量を算出する。
 着氷量算出部74には、着氷量に対して複数の閾値が設けられ、着氷量が閾値を超過したか否かの判定を行い、判定結果を運転モード切替部75に出力する。
 また、着氷量算出部74による判定は、3つの風車ブレード10に対してそれぞれ行われる。
 運転モード切替部75は、着氷量算出部74の判定結果に基づいて運転モードを切り替える。また、少なくとも1つの風車ブレード10の着氷量が閾値を超過した場合に、運転モードを切り替えることが望ましい。
 なお、閾値とは、少なくとも1つの風車ブレード10の着氷量に対して設定される第1所定値、及び第1所定値よりも大きい第2所定値等である。また、本実施形態において、第3所定値は、第1所定値と等しい値を用いることとする。
 より具体的には、少なくとも1つの風車ブレード10の着氷量が第1所定値を超過したと判定された場合に、運転モード切替部75は風力発電装置1の運転モードを無負荷運転モードに切り替える。無負荷運転モードとは、例えば、発電しない運転(無負荷)状態である。また、例えば、第1所定値は、着氷は検出されているが、運転を停止させる必要がないような着氷量に設定されることが好ましい。
 また、運転モード切替部75は、無負荷運転モードで運転している状態で、少なくとも1つの風車ブレード10の着氷量が、着氷量算出部74により第1所定値以下であると判定された場合には、風力発電装置1の運転モードを通常運転モードに切り替える。
 また、運転モード切替部75は、無負荷運転モードで運転している状態で、少なくとも1つの風車ブレード10の着氷量が、着氷算出部74により第2所定値を超過したと判定された場合には、風力発電装置1の運転を停止させる。具体的には、第2所定値は、第1所定値より大きな値に設定される。また、風力発電装置1の運転に支障をきたす氷量を第2所定値とすることが好ましい。運転に支障をきたす氷量とは、風力発電装置1の運転に不具合が生じるような着氷量の値である。例えば、支柱2下部の応力が所定値よりも大きくなる場合、または軸受、増速機等の許容荷重を超過した場合等である。
 このように、風力発電装置1の運転を停止させる着氷量の閾値を別途設けることにより、着氷量が第1所定値よりも大きく第2所定値以下の範囲においては、無負荷運転モードで運転することで、着氷の状態を監視することができ、着氷の状態が減少した場合には、速やかに通常運転モードに切り替えることが可能となる。
 また、風車ブレード10が停止されている状態から運転を開始する場合に、風力発電装置1は無負荷運転モードに切り替え、上記と同様の閾値の判定を行う。なお、着氷量が第2所定値よりも大きいことが確認されることにより、風力発電装置1の運転が停止された場合には、所定の時間間隔で着氷量が検出され、着氷量が第2所定値以下となっていたことが確認された場合には、無負荷運転モードが再開される。なお、本実施形態で採用しているセンシング部71は、ロータの回転が停止している状態において着氷量を検出することができないため、風力発電装置1の運転が停止されている場合には、所定の時間間隔でロータを回転させ、この状態で着氷量を検出するものとする。
 上記無負荷運転モードにおいて、風車ロータの回転数は、風車ロータが回転したときに、風車ブレード10に付着した氷の飛散する距離が周囲の風力発電装置1に到達する距離より小さい飛距離となる回転数に設定される。より具体的には、ある回転数(例えば、発電しない運転状態とすることから、低い回転数)のときの風車ブレード10の速度を算出し、算出された速度で前縁部分に付着した氷が飛散する距離が、近隣に設置されている風力発電装置1との距離以下となるような回転数に設定されている。例えば、風車間の間隔が190メートルである場合には、ロータ4の回転数は1rpmから6rpmとなるように制御する。
 次に、本実施形態に係る風力発電装置1の作用について、運転中に着氷を検出した場合と運転停止状態から起動する場合として、順を追って説明する。
 まず、風力発電装置1の運転中に着氷を検知した場合について、図3を用いて説明する。
 風力発電装置1が運転中である場合に、着氷検出部7のセンシング部71と信号受信部73とによって歪が計測され(ステップSA1)、この計測結果が着氷量算出部74に出力される。また、着氷量算出部74において、計測された歪に基づいて風車ブレード10に付着した着氷量Wiが算出され、定期的に第1所定値を上回っているか否かを判定し、運転モード切替部75において運転モードを切り替える(ステップSA2)。
 着氷量Wiが第1所定値を上回っていない場合には、風力発電装置1の運転モードを「通常運転」モードにする。着氷量Wiが第1所定値を上回っていると判定された場合には、運転モード切替部75は、風力発電装置1の運転モードを「無負荷運転」モードに切り替える(ステップSA4)。
 無負荷運転モードで運転している場合において、着氷量Wiが第2所定値を上回っているか否かが定期的に判定され(ステップSA5)、上回っている場合には、着氷量Wiが増加したこととなり、風力発電装置1の運転を停止する(ステップSA6)。また、着氷量Wiが第2所定値を上回っていない場合には、ステップSA1に戻り、着氷量Wiの計測を継続する。
 続いて、風力発電装置1が停止状態から起動する場合について、図3を用いて説明する。
 着氷量Wiが第2所定値を上回ったことにより風力発電装置1が停止された状態から、所定時間(例えば、1時間)経過したか否かが判定される(ステップSA7)。所定時間経過したと判定された場合には、「無負荷運転」モードで運転を開始し(ステップSA8)、ステップSA1に戻り、着氷量Wiの計測を継続する。また、所定時間経過していない場合には、所定時間経過したか否かの判定を繰り返す(ステップSA7)。
 以上説明してきたように、本実施形態に係る風力発電装置1及びその制御方法によれば、風車ブレード10から計測された歪から、風車ブレード10に付着した着氷量を算出し、この着氷量が第1所定値を超過しているか否かを判定し、超過していれば無負荷運転モードに切り替える。さらに、無負荷運転モードによって、第2所定値を超過したか、または第1所定値を下回るかによって運転モードに切り替える。
 このように、本実施形態によれば、着氷が検出された場合に、ただちに運転を停止するのではなく、無負荷運転モードで運転する期間を設け、この無負荷運転モード運転中における着氷の状態に応じて運転を停止するか、または、通常運転モードに切り替えるかを判断することとしている。これにより、例えば、着氷量が減少して第1所定値以下となった場合には、無負荷運転モードの状態から速やかに通常運転モードに切り替えることが可能となる。これにより、風力発電装置1の稼働率を向上させることができる。
 なお、本実施形態においては、ロータヘッド4が回転している状態において着氷量を検出することとしていたが、これに限定されない。例えば、ロータヘッド4が回転していない状態であっても着氷量を検出するものを使用することとしてもよい。この場合には、運転が停止された状態から着氷量を検出するために無負荷運転モードに切り替えて運転する過程を不要とすることができる。
 また、本実施形態においては、第3所定値は第1所定値と等しいものとしていたが、これに限定されない。例えば、第3所定値は、第1所定値よりも小さい値としてもよいこととする。
 

Claims (7)

  1.  風車ブレードの着氷量を検出する着氷検出手段を備え、
     前記着氷検出手段により検出された着氷量が第1所定値を上回った場合に、運転モードを、発電を行わない無負荷運転モードに切り替え、前記無負荷運転モードで運転している状態で、前記着氷検出手段により着氷量を検出する風力発電装置。
  2.  前記無負荷運転モードで運転している状態において、前記第1所定値よりも大きい第2所定値を上回る着氷量が前記着氷検出手段により検出された場合に、運転を停止する請求項1に記載の風力発電装置。
  3.  前記無負荷運転モードで運転している状態において、前記第1所定値以下に設定された第3所定値を下回る着氷量が前記着氷検出手段により検出された場合に、通常運転モードに切り替える請求項1または請求項2に記載の風力発電装置。
  4.  前記無負荷運転モードにおいて、風車ロータ回転時、風車ブレードに付着した氷が、周囲の風力発電装置に到達しないように風車ロータの回転数が設定される請求項1から請求項3のいずれかに記載の風力発電装置。
  5.  前記着氷検出手段は、前記風車ブレードの物理特性に基づいて着氷量を検出する請求項1から請求項4のいずれかに記載の風力発電装置。
  6.  前記着氷検出手段が運転停止状態において着氷量を検出できない場合、
     風車の運転停止時から、所定期間経過後に前記無負荷運転モードに切り替え、前記無負荷運転モードで運転している状態で、前記着氷検出手段により前記着氷量を検出する請求項1から請求項5のいずれかに記載の風力発電装置。
  7.  風車ブレードの着氷量を検出し、着氷量が第1所定値を上回った場合に、運転モードを、発電しない運転状態である無負荷運転モードに切り替え、前記無負荷運転モードで運転している状態で、着氷量を検出する風力発電装置の制御方法。
     
     
PCT/JP2009/061727 2009-06-26 2009-06-26 風力発電装置及びその制御方法 WO2010150399A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP09749314.2A EP2447529B1 (en) 2009-06-26 2009-06-26 Wind driven generator and method of controlling same
JP2009550122A JP4898925B2 (ja) 2009-06-26 2009-06-26 風力発電装置及びその制御方法
CN200980111421.9A CN102439296B (zh) 2009-06-26 2009-06-26 风力发电装置及其控制方法
PCT/JP2009/061727 WO2010150399A1 (ja) 2009-06-26 2009-06-26 風力発電装置及びその制御方法
BRPI0910385A BRPI0910385A2 (pt) 2009-06-26 2009-06-26 gerador de turbina eólica e método de controle deste
US12/600,817 US8039980B2 (en) 2009-06-26 2009-06-26 Wind turbine generator and method of controlling the same
CA2716497A CA2716497C (en) 2009-06-26 2009-06-26 Wind turbine generator and method of controlling the same
KR1020107020100A KR101200122B1 (ko) 2009-06-26 2009-06-26 풍력 발전 장치 및 그 제어 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/061727 WO2010150399A1 (ja) 2009-06-26 2009-06-26 風力発電装置及びその制御方法

Publications (1)

Publication Number Publication Date
WO2010150399A1 true WO2010150399A1 (ja) 2010-12-29

Family

ID=43386192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061727 WO2010150399A1 (ja) 2009-06-26 2009-06-26 風力発電装置及びその制御方法

Country Status (8)

Country Link
US (1) US8039980B2 (ja)
EP (1) EP2447529B1 (ja)
JP (1) JP4898925B2 (ja)
KR (1) KR101200122B1 (ja)
CN (1) CN102439296B (ja)
BR (1) BRPI0910385A2 (ja)
CA (1) CA2716497C (ja)
WO (1) WO2010150399A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017053293A (ja) * 2015-09-11 2017-03-16 三菱重工業株式会社 風力発電装置および風力発電装置の起動方法
US10054510B2 (en) 2015-09-11 2018-08-21 Mitsubishi Heavy Industries, Ltd. Method of calibrating load measurement apparatus, load measurement system of wind turbine blade, and wind turbine
US10400750B2 (en) 2015-09-11 2019-09-03 Mitsubishi Heavy Industries, Ltd. Wind turbine power generating apparatus and method of connecting the same

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1719910B1 (en) * 2004-02-27 2019-06-26 Mitsubishi Heavy Industries, Ltd. Wind turbine generator, active vibration damping method for the same, and wind turbine tower
AU2010201706A1 (en) * 2010-02-08 2011-08-25 Mitsubishi Heavy Industries, Ltd. Wind turbine generator and blade pitch angle control method thereof
SE1150921A1 (sv) * 2011-10-05 2013-04-06 Windvector Ab Förfarande och anordning för detektering av ansamling av material på en vindturbins blad och för bestämning av ankommande vindförhållanden
US9447778B2 (en) * 2011-11-02 2016-09-20 Vestas Wind Systems A/S Methods and systems for detecting sensor fault modes
WO2013149811A1 (en) * 2012-04-03 2013-10-10 Windvector Ab Method and device for detecting accumulation of ice and/or snow on a blade of a wind turbine
EP2856126A4 (en) 2012-05-31 2016-02-17 UNIVERSITé LAVAL METHOD AND DEVICE FOR DETERMINING A FORGING CONDITION OF AN ENVIRONMENT
ES2442452B1 (es) * 2012-07-11 2014-12-22 Acciona Windpower, S.A. Método de control de aerogenerador
KR20140014898A (ko) * 2012-07-27 2014-02-06 현대중공업 주식회사 풍력발전기 블레이드의 결빙 감지 시스템
CN103498759B (zh) * 2013-09-29 2015-12-02 国电南瑞科技股份有限公司 一种发电机接力器行程的容错控制方法
CN104314756B (zh) * 2014-10-15 2016-09-21 四川东方电气自动控制工程有限公司 一种风电机组叶片载冰运行时的安全停机方法
KR102140782B1 (ko) * 2014-11-05 2020-08-04 두산중공업 주식회사 풍력발전기 및 풍력발전기의 제상방법
DE102015203629A1 (de) * 2015-03-02 2016-09-08 Wobben Properties Gmbh Verfahren zum Betreiben einer Windenergieanlage
CN105298761B (zh) * 2015-11-06 2017-12-15 周志宏 一种风力发电机组结冰预警和控制方法及其装置
EP3165766B1 (en) * 2015-11-06 2021-06-30 Nordex Energy Spain, S.A. Wind turbine and method for ice removal in wind turbines
JP6573923B2 (ja) * 2017-02-10 2019-09-11 エムエイチアイ ヴェスタス オフショア ウィンド エー/エス 風力発電施設および風力発電施設の運転方法
CN107905961B (zh) * 2017-11-09 2019-12-20 新疆金风科技股份有限公司 叶片的加热除冰系统及其方法、叶片和风力发电机组
DE102017129112A1 (de) * 2017-12-07 2019-06-13 Wobben Properties Gmbh Verfahren zum Betreiben einer Windenergieanlage
EP4299901A1 (de) * 2022-06-30 2024-01-03 Wobben Properties GmbH Verfahren zum enteisen wenigstens eines rotorblattes einer windenergieanlage
CN117605633B (zh) * 2024-01-24 2024-03-22 湖南江河能源科技股份有限公司 一种风机叶片除冰方法、系统、终端及存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050276696A1 (en) * 2004-06-10 2005-12-15 Lemieux David L Methods and apparatus for rotor blade ice detection
JP2006528307A (ja) * 2003-05-23 2006-12-14 アロイス・ヴォベン 風力発電設備の運転方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITTO20020908A1 (it) * 2002-10-17 2004-04-18 Lorenzo Battisti Sistema antighiaccio per impianti eolici.
DK175912B1 (da) 2002-12-20 2005-06-20 Lm Glasfiber As Fremgangsmåde til drift af en vindmölle
DE10315676B4 (de) * 2003-04-07 2016-10-13 Thomas Huth-Fehre Sensor für Oberflächen
US7175136B2 (en) * 2003-04-16 2007-02-13 The Boeing Company Method and apparatus for detecting conditions conducive to ice formation
US7217091B2 (en) * 2004-07-20 2007-05-15 General Electric Company Methods and apparatus for deicing airfoils or rotor blades
DE102004060449A1 (de) * 2004-12-14 2006-06-29 Aloys Wobben Rotorblatt für eine Windenergieanlage
JP4648403B2 (ja) 2004-12-14 2011-03-09 アロイス・ヴォベン 風力発電設備用のローターブレード
ES2265771B1 (es) * 2005-07-22 2008-01-16 GAMESA INNOVATION & TECHNOLOGY, S.L. Metodo para mantener operativos los componentes de una turbina eolica y una turbina eolica con componentes que permitan el mantenimiento operativo.
EP1748185B1 (en) * 2005-07-28 2012-05-02 General Electric Company Icing detection system for a wind turbine
DE102006009480B4 (de) * 2006-02-27 2008-05-29 Eads Deutschland Gmbh Aerodynamisches Profil für Luftfahrzeuge und Windkraftanlagen sowie Verfahren zur Messung der Eisdicke auf einem aerodynamischen Profil
US7487673B2 (en) * 2006-12-13 2009-02-10 General Electric Company Ice detection based on anemometry
US7708524B2 (en) * 2006-12-21 2010-05-04 General Electric Company Method and system for utilizing lateral tower acceleration to detect asymmetric icing
JP4994944B2 (ja) 2007-05-18 2012-08-08 三菱重工業株式会社 風力発電装置
US20090110539A1 (en) * 2007-10-30 2009-04-30 Ulrich Uphues Wind farm and method for controlling same
US8183707B2 (en) * 2007-10-30 2012-05-22 General Electric Company Method of controlling a wind energy system and wind speed sensor free wind energy system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006528307A (ja) * 2003-05-23 2006-12-14 アロイス・ヴォベン 風力発電設備の運転方法
US20050276696A1 (en) * 2004-06-10 2005-12-15 Lemieux David L Methods and apparatus for rotor blade ice detection

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017053293A (ja) * 2015-09-11 2017-03-16 三菱重工業株式会社 風力発電装置および風力発電装置の起動方法
US10054510B2 (en) 2015-09-11 2018-08-21 Mitsubishi Heavy Industries, Ltd. Method of calibrating load measurement apparatus, load measurement system of wind turbine blade, and wind turbine
US10400750B2 (en) 2015-09-11 2019-09-03 Mitsubishi Heavy Industries, Ltd. Wind turbine power generating apparatus and method of connecting the same

Also Published As

Publication number Publication date
JPWO2010150399A1 (ja) 2012-12-06
CA2716497A1 (en) 2010-12-26
KR20110014972A (ko) 2011-02-14
CN102439296A (zh) 2012-05-02
JP4898925B2 (ja) 2012-03-21
CN102439296B (zh) 2014-05-28
BRPI0910385A2 (pt) 2015-10-06
KR101200122B1 (ko) 2012-11-12
US20110042950A1 (en) 2011-02-24
EP2447529A4 (en) 2017-06-21
EP2447529A1 (en) 2012-05-02
US8039980B2 (en) 2011-10-18
EP2447529B1 (en) 2019-09-25
CA2716497C (en) 2013-11-12

Similar Documents

Publication Publication Date Title
JP4898925B2 (ja) 風力発電装置及びその制御方法
CN101542116B (zh) 风力发电装置
US8096761B2 (en) Blade pitch management method and system
US7857586B2 (en) Method for operating a wind turbine
EP2644887B1 (en) A wind turbine with rotor-stall prevention
DK2915999T3 (en) ENGINE LOAD REDUCTION AT A WINDOW ENERGY INSTALLATION
US10935001B2 (en) System and method for monitoring wear on a gearbox of a wind turbine
DK201070286A (en) Method and apparatus for controlling the tip speed of a blade of a wind turbine
EP2795110B1 (en) A method of controlling a wind turbine, and a wind turbine
EP2607694B1 (en) Method for operating a wind turbine
KR20190085081A (ko) 낮은 침식 조건 중에 정격 위에서의 풍력 터빈의 작동
EP2754888A2 (en) Method and apparatus for operating a wind turbine
EP3722596B1 (en) System and method for mitigating damage in a rotor blade of a wind turbine
AU2009339713A1 (en) Wind turbine generator and method of controlling the same
TWI386552B (zh) Wind power plant and its control method
EP3643916B1 (en) System and method for monitoring rotor blade condition of wind turbines
KR20240020185A (ko) 풍력 터빈 블레이드의 상태 결정

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980111421.9

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2009550122

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009749314

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009339713

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 6107/DELNP/2010

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20107020100

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2716497

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12600817

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09749314

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: PI0910385

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100909