WO2010147061A1 - Rgb light source module - Google Patents

Rgb light source module Download PDF

Info

Publication number
WO2010147061A1
WO2010147061A1 PCT/JP2010/059956 JP2010059956W WO2010147061A1 WO 2010147061 A1 WO2010147061 A1 WO 2010147061A1 JP 2010059956 W JP2010059956 W JP 2010059956W WO 2010147061 A1 WO2010147061 A1 WO 2010147061A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
filter
emitting element
green
source module
Prior art date
Application number
PCT/JP2010/059956
Other languages
French (fr)
Japanese (ja)
Inventor
永井 拓也
武晃 前畑
酒井 重史
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Publication of WO2010147061A1 publication Critical patent/WO2010147061A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B33/00Colour photography, other than mere exposure or projection of a colour film
    • G03B33/10Simultaneous recording or projection
    • G03B33/12Simultaneous recording or projection using beam-splitting or beam-combining systems, e.g. dichroic mirrors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • G09G3/3413Details of control of colour illumination sources
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0666Adjustment of display parameters for control of colour parameters, e.g. colour temperature
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/001Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background

Definitions

  • the present invention relates to an RGB light source module that integrally includes a light source that emits red light, a light source that emits green light, and a light source that emits blue light, and is obtained by combining light emitted from each light source.
  • the present invention relates to a configuration of a monitor unit that monitors white light.
  • FIG. 6 shows an example of an image display device using an RGB light source module as a light source (see, for example, FIG. 1 of Patent Document 1).
  • the image display apparatus of this example includes a red light emitting element 101 that emits red light, a green light emitting element 102 that emits green light, a blue light emitting element 103 that emits blue light, and a green light.
  • the first dichroic mirror 104 that combines blue light with the second light, the second dichroic mirror 105 that combines red light with the combined green light and blue light, and the light emitted from each light source are combined.
  • the white light to be incident on the light modulator 106, the projection lens 108 for enlarging and displaying the display image light L1 light-modulated by the light modulator 106 on a screen (not shown), and the light modulator 106 are demultiplexed.
  • the optical sensor 109 that detects unnecessary light L2 that is not used as a display image and the drive of the optical modulator 106 are controlled to generate a required display image and the optical sensor 109.
  • a control unit 110 which controls the drive of each light-emitting element 101, 102, 103 in accordance with the output.
  • the image display apparatus of this example monitors the light emission intensity of the light emitting elements 101, 102, 103 by the optical sensor 109, and drives the light emitting elements 101, 102, 103 so that the white point and the brightness are constant. Therefore, even when the light emission intensity of the light emitting elements 101, 102, 103 changes with time or temperature change, the wavelength of the display image light L1 does not shift, and a high quality image is displayed over a long period of time. be able to.
  • Patent Document 1 provides a period during which the light modulator 106 performs black display in one cycle of image display including a red image display period, a green image display period, and a blue image display period. Since the light intensity of each of the light emitting elements 101, 102, 103 is monitored by the optical sensor 109 during this period, the optical modulator 106 displays an enlarged display on the screen according to the length of the period during which black display is performed. There is a problem that the display quality of the image to be deteriorated.
  • a demultiplexing filter separate from the optical modulator 106 is arranged on the optical path of white light, and this demultiplexing is performed. It is conceivable that the light emission intensity of each light emitting element 101, 102, 103 is monitored based on the white light demultiplexed by the filter.
  • a demultiplexing filter separate from the optical modulator 106 is required, so that the cost of the image display device is increased and the intensity of the display image light L1 is reduced by transmitting the demultiplexing filter. As a result, the brightness of the display image decreases.
  • Such a problem is a fatal inconvenience in an RGB light source module applied to a low-cost and low-output image display device or the like.
  • the present invention has been made to solve the problems of the prior art, and an object of the present invention is to provide an RGB light source module that enables high-quality image display when applied to an image display device at a low cost. There is to do.
  • the present invention provides an RGB light source module having a plurality of light sources having different emission colors, a light reflection surface and a transmission surface, and combining the light emission of the plurality of light sources.
  • a filter that demultiplexes the waved light to the output side and the monitor side is provided.
  • the light incident on the monitor is demultiplexed using the filter that multiplexes the light emission of the plurality of light sources, it is not necessary to provide a special demultiplexing filter, and the RGB light source module can be reduced in cost. Can do. Further, since light incident on the monitor can be obtained without passing through a special demultiplexing filter, it is possible to suppress a decrease in output of main light used as display image light or the like.
  • the plurality of light sources include a red light emitting element that emits red light, a green light emitting element that emits green light, and a blue light emitting element that emits blue light.
  • the filter includes a first filter for combining the green light and the blue light, and a second filter for combining the red light with the combination of the green light and the blue light. The light incident on the monitor is extracted from the reflection surface of the filter.
  • the red light emitted from the red light emitting element, the green light emitted from the green light emitting element, and the blue light emitted from the blue light emitting element are combined using the first and second filters. Since the light waves, white light can be obtained, and the RGB light source module of this configuration can be used as a light source device for an image display device such as a projector.
  • a light emitting element including a photodetector is used as the red light emitting element and the blue light emitting element, and a light emitting element including a green SHG element is used as the green light emitting element.
  • the green light detection sensor is provided on the optical path of the light extracted from the reflection surface of the first filter.
  • the red light emitting element and the blue light emitting element semiconductor lasers that emit red light and blue light have been developed, respectively, so that the intensity can be detected using a normal photodetector.
  • a semiconductor laser emitting green light has not been developed yet, and wavelength conversion to green light is performed using a SHG (Second-Harmonic-Generation) element.
  • SHG Silicon-Harmonic-Generation
  • the present invention includes a filter block in which the first filter and the second filter are integrally attached to the filter block body in a predetermined arrangement, and the filter block is fixed to the housing. It was configured as follows.
  • the RGB light source module has a plurality of light sources having different emission colors, a light reflection surface and a light transmission surface, and combines the light emission of the plurality of light sources and outputs the combined light. Since the filter for demultiplexing is provided on the monitor side and the monitor side, it is not necessary to provide a special demultiplexing filter for demultiplexing light incident on the monitor, and the cost of the RGB light source module can be reduced. In addition, since light incident on the monitor can be obtained without passing through a special demultiplexing filter, it is possible to suppress a decrease in the output of main light, and display image light with high brightness when applied to an image display device. Can be obtained.
  • the RGB light source module 1A according to the first embodiment includes a green light emitting element 2, a blue light emitting element 3, a red light emitting element 4, and green light and blue light emitted from the green light emitting element 2.
  • the green light emitting element 2 a semiconductor laser that emits light that has been wavelength-converted into green light LG by a green SHG element is used.
  • the blue light emitting element 3 and the red light emitting element 4 a blue semiconductor that emits blue light LB, respectively.
  • a red semiconductor laser that emits a laser and red light LR is used.
  • the light emitted from each of the light emitting elements 2, 3, 4 is combined by matching the optical axes, and is emitted as a white light LW from an exit (not shown) provided in the housing 9. Means for matching the optical axes of the green light LG, the blue light LB, and the red light LR will be described later.
  • the first filter 5 and the second filter 6 a dichroic mirror formed by forming a dielectric multilayer film on one side of a transparent substrate is used.
  • the transmittance of the green light LG and the transmittance of the blue light LB on the A surface exceeds 98%, and the green light LG on this surface is In which the reflectance of blue light LB is less than 2%.
  • the transmittance of the green light LG on the B surface blue light LB incident surface 5b which is the opposite surface of the A surface is more than 98%, and the transmittance of the blue light LB is less than 2%.
  • the light LG having a reflectance of less than 2% and the blue light LB having a reflectance of more than 98% is used.
  • the second filter 6 has a red light LR transmittance, a green light LG transmittance, and a blue light LB transmittance exceeding 98% on the A surface (incident surface 6a of the red light LR).
  • the red light LR reflectance, the green light LG reflectance, and the blue light LB reflectance are each less than 2%.
  • the transmittance of the blue light LB and the transmittance of the green light LG on the B surface (the exit surface 6b of the monitor light LM) that is the opposite surface of the A surface exceeds 98%, and the transmittance of the red light LR is less than 2%.
  • a blue light LB reflectance and a green light LG reflectance of less than 2% and a red light LR reflectance of more than 98% are used on this surface.
  • the filters 5 and 6 are attached to the filter block main body 7 by adhesion.
  • an adhesive used at that time an adhesive having a small curing shrinkage, for example, a UV adhesive is used.
  • the filter block main body 7 a is formed of a resin material in a substantially triangular prism shape, and two surfaces intersecting at right angles are attachment surfaces of the filters 5 and 6.
  • a green light LG transmission hole, a blue light LB transmission hole, a red light LR transmission hole, and a white light LW transmission hole (each of these transmission holes is denoted by reference numeral 10). ) Is opened.
  • the filter block unit 7 is attached to a predetermined position in the housing 9 and then integrated with the housing 9 by means such as adhesion or fastening.
  • the monitor 8 is disposed on the optical path of the monitor light LM, and detects the intensity change of the white light LW combined from the green light LG, the blue light LB, and the red light LR.
  • the control unit provided in the image display device or the like generates drive signals for the light emitting elements 2, 3, and 4 according to the intensity change of the white light LW detected by the monitor 8, and the white point and the brightness are constant. Thus, the drive of each light emitting element 2, 3, 4 is controlled.
  • the RGB light source module of this example is applied to an image display device such as a projector, the wavelength of the display image light is not shifted, and a high-quality image can be displayed over a long period of time.
  • the manufacture of the RGB light source module 1A of this example can be performed by the following procedure. First, the first filter 5 and the second filter 6 are mounted in a predetermined direction on the filter mounting surface of the filter block body 7a, and the required filter block unit 7 is manufactured. At the same time, the green light emitting element 2, the blue light emitting element 3, the red light emitting element 4 and the sensor 8 are temporarily fixed to the housing 9 in the arrangement shown in FIG. Next, the filter block unit 7 is fixed to a required position of the housing 9 in a required direction. Next, the mounting posture of the green light emitting element 2 with respect to the housing 9 is adjusted so that the optical axis is within the reference position.
  • an optical axis of the blue light LB emitted from the blue light emitting element 3 and an optical axis of the red light LR emitted from the red light emitting element 4 are arranged on the optical axis of the green light LG emitted from the green light emitting element 2.
  • the mounting postures of the blue light emitting element 3 and the red light emitting element 4 with respect to the housing 9 are adjusted so as to match.
  • the mounting position of the sensor 8 with respect to the housing 9 is adjusted so that the optical axis of the monitor light LM is at the center of the light receiving surface in a state where all of the green light emitting element 2, the blue light emitting element 3 and the red light emitting element 4 emit light.
  • the sensor 8 is fixed to the housing 9.
  • the optical circuit shown in FIG. 2 is configured.
  • the RGB light source module 1 ⁇ / b> A of this example combines the green light LG emitted from the green light emitting element 2 and the blue light LB emitted from the blue light emitting element 3 using the first filter 5, and the first filter 5.
  • the green light LG and the blue light LB combined with each other and the red light LR emitted from the red light emitting element 4 are combined using the second filter 6, and the monitor light LM is demultiplexed from the second filter 6. Therefore, it is not necessary to provide a special demultiplexing filter used only for obtaining the monitor light LM, and the cost of the RGB light source module can be reduced.
  • the monitor light LM can be obtained without passing through a special demultiplexing filter, it is possible to suppress a decrease in the output of main light used as display image light or the like. Furthermore, since the first and second filters 5 and 6 are not directly fixed to the housing 9, but are attached to the housing 9 via the filter block main body 7a, the first and second filters that are excessively deformed due to the fixing are attached. The attachment of the second filters 5 and 6 can be prevented in advance, and an RGB light source module having excellent optical characteristics can be manufactured. In addition, since the blue light emitting element 3 and the red light emitting element 4 are arranged on both sides of the green light LG through the optical axis, the light refraction by the first and second filters 5 and 6 is not considered.
  • the blue light LB and the red light LR can be combined, and the degree of coincidence of the optical axes of the respective color lights can be increased. Further, the set interval between the blue light emitting element 3 and the red light emitting element 4 can be reduced, and the overall length of the RGB light source module can be shortened.
  • FIG. 5 shows an RGB light source module 1B according to the second embodiment.
  • the RGB light source module 1B according to the second embodiment is characterized in that the green light LG reflected by the first filter 5 is detected by a sensor 20 for detecting green light.
  • symbol is attached
  • the RGB light source module 1B of this example senses the green light LG extracted from the reflection surface of the first filter 5 by the green light detection sensor 20, the red light LR and the blue light LB using the green light LG as reference light. As a result, the assembly of the RGB light source module can be facilitated, and the optical axes of the respective color lights can be precisely matched.
  • both the white light detection monitor 8 and the green light detection sensor 20 are provided, but the blue light emitting element 3 and the red light emitting element 4 are provided inside.
  • the white light detection monitor 8 can be omitted. As a result, the RGB light source module can be further reduced in size and cost.
  • the present invention can be used for a light source device of an image display device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Projection Apparatus (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

Disclosed is a low-cost RGB light source module which enables high-quality image display when used in an image display device. Specifically disclosed is an RGB light source module (1A) which is configured of a green light-emitting element (2), a blue light-emitting element (3), a red light-emitting element (4), a first filter (5) for multiplexing green light emitted from the green light-emitting element (2) and blue light emitted from the blue light-emitting element (3), a second filter (6) for further multiplexing the multiplexed light and red light emitted from the red light-emitting element (4), a filter block unit that is obtained by firmly bonding the first and second filters (5, 6) to a filter block main body, a monitor (8) for detecting the light intensity of white light demultiplexed by the second filter (6), and a case (9) for integrally holding the light-emitting elements (2, 3, 4), the filter block main body, and the monitor (8).

Description

RGB光源モジュールRGB light source module
 本発明は、赤色光を発光する光源、緑色光を発光する光源及び青色光を発光する光源を一体に備えたRGB光源モジュールに係り、特に、各光源からの発光を合波することにより得られる白色光をモニタするモニタ部の構成に関する。 The present invention relates to an RGB light source module that integrally includes a light source that emits red light, a light source that emits green light, and a light source that emits blue light, and is obtained by combining light emitted from each light source. The present invention relates to a configuration of a monitor unit that monitors white light.
 図6に、光源としてRGB光源モジュールを用いた画像表示装置の一例を示す(例えば、特許文献1の図1参照。)。 FIG. 6 shows an example of an image display device using an RGB light source module as a light source (see, for example, FIG. 1 of Patent Document 1).
 図6に示すように、本例の画像表示装置は、赤色光を発光する赤色発光素子101と、緑色光を発光する緑色発光素子102と、青色光を発光する青色発光素子103と、緑色光に青色光を合波させる第1のダイクロイックミラー104と、緑色光と青色光の合波に赤色光を合波させる第2のダイクロイックミラー105と、各光源からの発光を合波することにより得られる白色光を光変調器106に入射する反射ミラー107と、光変調器106によって光変調された表示画像光L1を図示しないスクリーンに拡大表示する投射レンズ108と、光変調器106によって分波された、表示画像として使用しない不要光L2を検出する光センサ109と、光変調器106の駆動を制御し、所要の表示画像を生成すると共に、光センサ109の出力に応じて各発光素子101,102,103の駆動を制御する制御部110とから構成されている。 As shown in FIG. 6, the image display apparatus of this example includes a red light emitting element 101 that emits red light, a green light emitting element 102 that emits green light, a blue light emitting element 103 that emits blue light, and a green light. The first dichroic mirror 104 that combines blue light with the second light, the second dichroic mirror 105 that combines red light with the combined green light and blue light, and the light emitted from each light source are combined. The white light to be incident on the light modulator 106, the projection lens 108 for enlarging and displaying the display image light L1 light-modulated by the light modulator 106 on a screen (not shown), and the light modulator 106 are demultiplexed. In addition, the optical sensor 109 that detects unnecessary light L2 that is not used as a display image and the drive of the optical modulator 106 are controlled to generate a required display image and the optical sensor 109. And a control unit 110 which controls the drive of each light-emitting element 101, 102, 103 in accordance with the output.
 このように、本例の画像表示装置は、発光素子101,102,103の発光強度を光センサ109によってモニタし、白色点及び明るさが一定となるように発光素子101,102,103の駆動を制御するので、発光素子101,102,103の発光強度が経時変化や温度変化によって変化した場合にも、表示画像光L1の波長がシフトせず、高品質の画像を長期に亘って表示することができる。 Thus, the image display apparatus of this example monitors the light emission intensity of the light emitting elements 101, 102, 103 by the optical sensor 109, and drives the light emitting elements 101, 102, 103 so that the white point and the brightness are constant. Therefore, even when the light emission intensity of the light emitting elements 101, 102, 103 changes with time or temperature change, the wavelength of the display image light L1 does not shift, and a high quality image is displayed over a long period of time. be able to.
WO2007/023681WO2007 / 023681
 しかしながら、特許文献1に記載の技術は、赤色画像の表示期間、緑色画像の表示期間及び青色画像の表示期間からなる画像表示の1サイクル中に、光変調器106が黒表示を行う期間を設け、この期間内における各発光素子101,102,103の発光強度を、光センサ109によってモニタする構成であるので、光変調器106が黒表示を行う期間の長さに応じて、スクリーンに拡大表示される画像の表示品質が劣化するという問題がある。 However, the technique described in Patent Document 1 provides a period during which the light modulator 106 performs black display in one cycle of image display including a red image display period, a green image display period, and a blue image display period. Since the light intensity of each of the light emitting elements 101, 102, 103 is monitored by the optical sensor 109 during this period, the optical modulator 106 displays an enlarged display on the screen according to the length of the period during which black display is performed. There is a problem that the display quality of the image to be deteriorated.
 かかる不都合を解決する手段としては、光変調器106によって不要光L2を分波する構成に代えて、光変調器106とは別個の分波フィルタを白色光の光路上に配置し、この分波フィルタによって分波された白色光に基づいて、各発光素子101,102,103の発光強度をモニタする構成とすることが考えられる。 As means for solving such inconvenience, instead of the configuration in which the unnecessary light L2 is demultiplexed by the optical modulator 106, a demultiplexing filter separate from the optical modulator 106 is arranged on the optical path of white light, and this demultiplexing is performed. It is conceivable that the light emission intensity of each light emitting element 101, 102, 103 is monitored based on the white light demultiplexed by the filter.
 しかしながら、かかる構成によると、光変調器106とは別個の分波フィルタが必要になるので、画像表示装置が高コスト化すると共に、分波フィルタを透過させることで表示画像光L1の強度が低下するので、表示画像の明るさが低下する。このような問題は、低コストかつ低出力の画像表示装置等に適用されるRGB光源モジュールにおいては、致命的な不都合となる。 However, according to such a configuration, a demultiplexing filter separate from the optical modulator 106 is required, so that the cost of the image display device is increased and the intensity of the display image light L1 is reduced by transmitting the demultiplexing filter. As a result, the brightness of the display image decreases. Such a problem is a fatal inconvenience in an RGB light source module applied to a low-cost and low-output image display device or the like.
 本発明は、かかる従来技術の問題を解決するためになされたものであり、その目的は、安価にして、画像表示装置に適用した場合に高品質の画像表示を可能にするRGB光源モジュールを提供することにある。 The present invention has been made to solve the problems of the prior art, and an object of the present invention is to provide an RGB light source module that enables high-quality image display when applied to an image display device at a low cost. There is to do.
 本発明は、前記課題を解決するため、RGB光源モジュールを、発光色が異なる複数の光源と、光の反射面及び透過面を有し、前記複数の光源の発光を合波すると共に、当該合波された光を出力側及びモニタ側に分波するフィルタとを備えるという構成にした。 In order to solve the above problems, the present invention provides an RGB light source module having a plurality of light sources having different emission colors, a light reflection surface and a transmission surface, and combining the light emission of the plurality of light sources. A filter that demultiplexes the waved light to the output side and the monitor side is provided.
 かかる構成によると、複数の光源の発光を合波するフィルタを用いて、モニタに入射する光を分波するので、特別な分波フィルタを備える必要がなく、RGB光源モジュールを低コスト化することができる。また、特別な分波フィルタを通すことなく、モニタに入射する光を得ることができるので、表示画像光などとして利用される主光の出力低下を抑制することができる。 According to such a configuration, since the light incident on the monitor is demultiplexed using the filter that multiplexes the light emission of the plurality of light sources, it is not necessary to provide a special demultiplexing filter, and the RGB light source module can be reduced in cost. Can do. Further, since light incident on the monitor can be obtained without passing through a special demultiplexing filter, it is possible to suppress a decrease in output of main light used as display image light or the like.
 本発明は、前記構成のRGB光源モジュールにおいて、前記複数の光源として、赤色光を発光する赤色発光素子と、緑色光を発光する緑色発光素子と、青色光を発光する青色発光素子とを備えると共に、前記フィルタとして、前記緑色光と前記青色光とを合波する第1フィルタと、前記緑色光と前記青色光の合波に前記赤色光を合波する第2フィルタとを備え、前記第2フィルタの反射面から前記モニタに入射する光を取り出すという構成にした。 In the RGB light source module having the above-described configuration, the plurality of light sources include a red light emitting element that emits red light, a green light emitting element that emits green light, and a blue light emitting element that emits blue light. The filter includes a first filter for combining the green light and the blue light, and a second filter for combining the red light with the combination of the green light and the blue light. The light incident on the monitor is extracted from the reflection surface of the filter.
 かかる構成によると、赤色発光素子から発光される赤色光と、緑色発光素子から発光される緑色光と、青色発光素子から発光される青色光とを、第1及び第2のフィルタを用いて合波するので、白色光を得ることができ、本構成のRGB光源モジュールをプロジェクタ等の画像表示装置用の光源装置として用いることができる。 According to this configuration, the red light emitted from the red light emitting element, the green light emitted from the green light emitting element, and the blue light emitted from the blue light emitting element are combined using the first and second filters. Since the light waves, white light can be obtained, and the RGB light source module of this configuration can be used as a light source device for an image display device such as a projector.
 本発明は、前記構成のRGB光源モジュールにおいて、前記赤色発光素子及び前記青色発光素子として光検出器を備えた発光素子を用い、かつ前記緑色発光素子として緑色SHG素子を備えた発光素子を用いると共に、前記第1フィルタの反射面から取り出された光の光路上に緑色光の検出センサを備えるという構成にした。 According to the present invention, in the RGB light source module having the above-described configuration, a light emitting element including a photodetector is used as the red light emitting element and the blue light emitting element, and a light emitting element including a green SHG element is used as the green light emitting element. The green light detection sensor is provided on the optical path of the light extracted from the reflection surface of the first filter.
 赤色発光素子及び青色発光素子としては、それぞれ赤色光及び青色光を発光する半導体レーザが開発されているので、通常の光検出器を用いて強度を検出することができる。これに対して、緑色光を発光する半導体レーザは未だ開発されておらず、SHG(Second-Harmonic Generation)素子を用いて緑色光に波長変換しているので、光強度の検出は緑色光にて行わなくてはならない。上記構成によると、第1フィルタの反射面から取り出された光の光路上に緑色光の検出センサを備えるので、緑色光を参照光として赤色光及び青色光の合波を行うことができるので、RGB光源モジュールの組立を容易化できると共に、各色光の光軸を厳密に合致させることができる。 As the red light emitting element and the blue light emitting element, semiconductor lasers that emit red light and blue light have been developed, respectively, so that the intensity can be detected using a normal photodetector. On the other hand, a semiconductor laser emitting green light has not been developed yet, and wavelength conversion to green light is performed using a SHG (Second-Harmonic-Generation) element. Must be done. According to the above configuration, since the green light detection sensor is provided on the optical path of the light extracted from the reflecting surface of the first filter, the red light and the blue light can be combined with the green light as the reference light. The assembly of the RGB light source module can be facilitated, and the optical axes of the respective color lights can be strictly matched.
 本発明は、前記構成のRGB光源モジュールにおいて、前記第1フィルタ及び前記第2フィルタを、フィルタブロック本体に所定の配列で一体に取り付けてなるフィルタブロックを備え、このフィルタブロックを筐体に固定するという構成にした。 In the RGB light source module having the above-described configuration, the present invention includes a filter block in which the first filter and the second filter are integrally attached to the filter block body in a predetermined arrangement, and the filter block is fixed to the housing. It was configured as follows.
 かかる構成によると、筐体に対して直接第1フィルタ及び第2フィルタを取り付ける場合とは異なり、光軸に対するこれら各フィルタの取り付け姿勢の修正を容易に行うことができるので、RGB光源モジュールの組立を容易化できる。 According to such a configuration, unlike the case where the first filter and the second filter are directly attached to the housing, it is possible to easily correct the mounting posture of each filter with respect to the optical axis. Can be made easier.
 本発明によると、RGB光源モジュールを、発光色が異なる複数の光源と、光の反射面及び透過面を有し、前記複数の光源の発光を合波すると共に、当該合波された光を出力側及びモニタ側に分波するフィルタとを備えるという構成にしたので、モニタに入射する光の分波に特別な分波フィルタを備える必要がなく、RGB光源モジュールを低コスト化することができる。また、特別な分波フィルタを通すことなく、モニタに入射する光を得ることができるので、主光の出力低下を抑制することができ、画像表示装置に適用した場合に高輝度の表示画像光を得ることができる。 According to the present invention, the RGB light source module has a plurality of light sources having different emission colors, a light reflection surface and a light transmission surface, and combines the light emission of the plurality of light sources and outputs the combined light. Since the filter for demultiplexing is provided on the monitor side and the monitor side, it is not necessary to provide a special demultiplexing filter for demultiplexing light incident on the monitor, and the cost of the RGB light source module can be reduced. In addition, since light incident on the monitor can be obtained without passing through a special demultiplexing filter, it is possible to suppress a decrease in the output of main light, and display image light with high brightness when applied to an image display device. Can be obtained.
第1実施形態に係るRGB光源モジュールの構成図である。It is a block diagram of the RGB light source module which concerns on 1st Embodiment. 第1実施形態に係るRGB光源モジュールの光学回路図である。It is an optical circuit diagram of the RGB light source module according to the first embodiment. 第1実施形態に係るRGB光源モジュールに用いられるフィルタブロックの斜視図である。It is a perspective view of the filter block used for the RGB light source module concerning a 1st embodiment. 第1実施形態に係るRGB光源モジュールに用いられる各フィルタの光学特性を示す表図である。It is a table | surface figure which shows the optical characteristic of each filter used for the RGB light source module which concerns on 1st Embodiment. 第2実施形態に係るRGB光源モジュールの構成図である。It is a block diagram of the RGB light source module which concerns on 2nd Embodiment. 従来例に係る画像表示装置の光学回路図である。It is an optical circuit diagram of the image display apparatus which concerns on a prior art example.
 以下、本発明に係るRGB光源モジュールの実施形態について説明する。 Hereinafter, embodiments of the RGB light source module according to the present invention will be described.
〈第1実施形態〉
 図1乃至図4に、第1実施形態に係るRGB光源モジュール1Aを示す。これらの図に示すように、第1実施形態に係るRGB光源モジュール1Aは、緑色発光素子2と、青色発光素子3と、赤色発光素子4と、緑色発光素子2から発光される緑色光と青色発光素子3から発光される青色光とを合波する第1フィルタ5と、これらの合波された光に赤色発光素子4から発光される赤色光を更に合波する第2フィルタ6と、これら第1及び第2のフィルタ5,6をフィルタブロック本体7aに固着してなるフィルタブロックユニット7と、第2フィルタ6によって分波された白色光の光強度を検出するモニタ8と、前記各発光素子2,3,4、フィルタブロック本体7及びモニタ8を一体に保持する筐体9とから主に構成されている。
<First Embodiment>
1 to 4 show an RGB light source module 1A according to the first embodiment. As shown in these drawings, the RGB light source module 1A according to the first embodiment includes a green light emitting element 2, a blue light emitting element 3, a red light emitting element 4, and green light and blue light emitted from the green light emitting element 2. A first filter 5 for combining the blue light emitted from the light emitting element 3, a second filter 6 for further combining the combined light with the red light emitted from the red light emitting element 4, and these The filter block unit 7 formed by fixing the first and second filters 5 and 6 to the filter block main body 7a, the monitor 8 for detecting the light intensity of the white light demultiplexed by the second filter 6, and the light emission It is mainly composed of elements 2, 3, and 4, a filter block body 7 and a housing 9 that holds the monitor 8 together.
 緑色発光素子2としては、緑色SHG素子によって緑色光LGに波長変換された光を発光する半導体レーザが用いられ、青色発光素子3及び赤色発光素子4としては、それぞれ青色光LBを発光する青色半導体レーザ及び赤色光LRを発光する赤色半導体レーザが用いられる。これらの各発光素子2,3,4から発光された光は、光軸を合致させることによって合波され、白色光LWとなって筐体9に設けられた図示しない出射口から出射される。緑色光LG、青色光LB及び赤色光LRの光軸を合致させる手段については、後に説明する。 As the green light emitting element 2, a semiconductor laser that emits light that has been wavelength-converted into green light LG by a green SHG element is used. As the blue light emitting element 3 and the red light emitting element 4, a blue semiconductor that emits blue light LB, respectively. A red semiconductor laser that emits a laser and red light LR is used. The light emitted from each of the light emitting elements 2, 3, 4 is combined by matching the optical axes, and is emitted as a white light LW from an exit (not shown) provided in the housing 9. Means for matching the optical axes of the green light LG, the blue light LB, and the red light LR will be described later.
 第1フィルタ5及び第2フィルタ6としては、透明基板の片面に誘電体多層膜を形成してなるダイクロイックミラーが用いられる。図4に示すように、第1フィルタ5は、A面(緑色光LGの入射面5a)における緑色光LGの透過率及び青色光LBの透過率が98%を超え、この面における緑色光LGの反射率及び青色光LBの反射率が2%未満であるものが用いられる。また、A面の反対面であるB面(青色光LBの入射面5b)における緑色光LGの透過率が98%を超え、青色光LBの透過率が2%未満であり、この面における緑色光LGの反射率が2%未満で、青色光LBの反射率が98%を超えるものが用いられる。一方、第2フィルタ6は、A面(赤色光LRの入射面6a)における赤色光LRの透過率、緑色光LGの透過率及び青色光LBの透過率がそれぞれ98%を超え、この面における赤色光LRの反射率、緑色光LGの反射率及び青色光LBの反射率がそれぞれ2%未満であるものが用いられる。また、A面の反対面であるB面(モニタ光LMの出射面6b)における青色光LBの透過率及び緑色光LGの透過率が98%を超え、赤色光LRの透過率が2%未満で、この面における青色光LBの反射率及び緑色光LGの反射率が2%未満で、赤色光LRの反射率が98%を超えるものが用いられる。フィルタブロック本体7に対する各フィルタ5,6の取り付けは、接着により行われ、その際に用いる接着剤としては、硬化収縮が小さな接着剤、例えばUV接着剤が用いられる。 As the first filter 5 and the second filter 6, a dichroic mirror formed by forming a dielectric multilayer film on one side of a transparent substrate is used. As shown in FIG. 4, in the first filter 5, the transmittance of the green light LG and the transmittance of the blue light LB on the A surface (incident surface 5a of the green light LG) exceeds 98%, and the green light LG on this surface is In which the reflectance of blue light LB is less than 2%. Further, the transmittance of the green light LG on the B surface (blue light LB incident surface 5b) which is the opposite surface of the A surface is more than 98%, and the transmittance of the blue light LB is less than 2%. The light LG having a reflectance of less than 2% and the blue light LB having a reflectance of more than 98% is used. On the other hand, the second filter 6 has a red light LR transmittance, a green light LG transmittance, and a blue light LB transmittance exceeding 98% on the A surface (incident surface 6a of the red light LR). The red light LR reflectance, the green light LG reflectance, and the blue light LB reflectance are each less than 2%. Further, the transmittance of the blue light LB and the transmittance of the green light LG on the B surface (the exit surface 6b of the monitor light LM) that is the opposite surface of the A surface exceeds 98%, and the transmittance of the red light LR is less than 2%. Thus, a blue light LB reflectance and a green light LG reflectance of less than 2% and a red light LR reflectance of more than 98% are used on this surface. The filters 5 and 6 are attached to the filter block main body 7 by adhesion. As an adhesive used at that time, an adhesive having a small curing shrinkage, for example, a UV adhesive is used.
 フィルタブロック本体7aは、図3に示すように、樹脂材料をもって略三角柱形状に形成されており、直角に交差する2つの面がフィルタ5,6の取付面になっている。このフィルタブロック本体7aの側面には、緑色光LGの透過孔、青色光LBの透過孔、赤色光LRの透過孔及び白色光LWの透過孔(これらの各透過孔を符号10で表示する。)が開口されている。フィルタブロックユニット7は、筐体9内の所定の位置に取り付けられた後、接着又は締結等の手段によって筐体9と一体化される。 As shown in FIG. 3, the filter block main body 7 a is formed of a resin material in a substantially triangular prism shape, and two surfaces intersecting at right angles are attachment surfaces of the filters 5 and 6. On the side surface of the filter block body 7a, a green light LG transmission hole, a blue light LB transmission hole, a red light LR transmission hole, and a white light LW transmission hole (each of these transmission holes is denoted by reference numeral 10). ) Is opened. The filter block unit 7 is attached to a predetermined position in the housing 9 and then integrated with the housing 9 by means such as adhesion or fastening.
 モニタ8は、モニタ光LMの光路上に配置され、緑色光LG、青色光LB及び赤色光LRから合波された白色光LWの強度変化を検出する。画像表示装置等に備えられた制御部は、モニタ8によって検出された白色光LWの強度変化に応じた発光素子2,3,4の駆動信号を生成し、白色点及び明るさが一定となるように各発光素子2,3,4の駆動を制御する。これにより、本例のRGB光源モジュールをプロジェクタ等の画像表示装置に適用した場合に、表示画像光の波長がシフトせず、高品質の画像を長期に亘って表示することができる。 The monitor 8 is disposed on the optical path of the monitor light LM, and detects the intensity change of the white light LW combined from the green light LG, the blue light LB, and the red light LR. The control unit provided in the image display device or the like generates drive signals for the light emitting elements 2, 3, and 4 according to the intensity change of the white light LW detected by the monitor 8, and the white point and the brightness are constant. Thus, the drive of each light emitting element 2, 3, 4 is controlled. Thereby, when the RGB light source module of this example is applied to an image display device such as a projector, the wavelength of the display image light is not shifted, and a high-quality image can be displayed over a long period of time.
 本例のRGB光源モジュール1Aの製造は、以下の手順によって行うことができる。まず、フィルタブロック本体7aのフィルタ取付面に、第1フィルタ5及び第2フィルタ6を所定の向きで取り付け、所要のフィルタブロックユニット7を作製する。また、これと共に、筐体9に緑色発光素子2、青色発光素子3、赤色発光素子4及びセンサ8を図1に示す配列で仮固定する。次いで、フィルタブロックユニット7を筐体9の所要の位置に、所要の向きで固着する。次いで、基準位置に光軸が収まるように、筐体9に対する緑色発光素子2の取付姿勢を調整する。次いで、緑色発光素子2から発光される緑色光LGの光軸に、青色発光素子3から発光される青色光LBの光軸と、赤色発光素子4から発光される赤色光LRの光軸とが一致するように、筐体9に対する青色発光素子3及び赤色発光素子4の取付姿勢を調整する。最後に、緑色発光素子2、青色発光素子3及び赤色発光素子4を全て発光した状態で、受光面の中央にモニタ光LMの光軸がくるように筐体9に対するセンサ8の取付位置を調整した後、筐体9にセンサ8を固着する。これによって、図2に示す光学回路が構成される。 The manufacture of the RGB light source module 1A of this example can be performed by the following procedure. First, the first filter 5 and the second filter 6 are mounted in a predetermined direction on the filter mounting surface of the filter block body 7a, and the required filter block unit 7 is manufactured. At the same time, the green light emitting element 2, the blue light emitting element 3, the red light emitting element 4 and the sensor 8 are temporarily fixed to the housing 9 in the arrangement shown in FIG. Next, the filter block unit 7 is fixed to a required position of the housing 9 in a required direction. Next, the mounting posture of the green light emitting element 2 with respect to the housing 9 is adjusted so that the optical axis is within the reference position. Next, an optical axis of the blue light LB emitted from the blue light emitting element 3 and an optical axis of the red light LR emitted from the red light emitting element 4 are arranged on the optical axis of the green light LG emitted from the green light emitting element 2. The mounting postures of the blue light emitting element 3 and the red light emitting element 4 with respect to the housing 9 are adjusted so as to match. Finally, the mounting position of the sensor 8 with respect to the housing 9 is adjusted so that the optical axis of the monitor light LM is at the center of the light receiving surface in a state where all of the green light emitting element 2, the blue light emitting element 3 and the red light emitting element 4 emit light. After that, the sensor 8 is fixed to the housing 9. Thus, the optical circuit shown in FIG. 2 is configured.
 本例のRGB光源モジュール1Aは、緑色発光素子2から発光される緑色光LGと青色発光素子3から発光される青色光LBとを第1フィルタ5を用いて合波すると共に、第1フィルタ5にて合波された緑色光LG及び青色光LBと赤色発光素子4から発光される赤色光LRとを第2フィルタ6を用いて合波し、この第2フィルタ6からモニタ光LMを分波するので、モニタ光LMを得るためだけに用いる特別な分波フィルタを備える必要がなく、RGB光源モジュールを低コスト化することができる。また、特別な分波フィルタを通すことなく、モニタ光LMを得ることができるので、表示画像光などとして利用される主光の出力低下を抑制することができる。さらに、第1及び第2のフィルタ5,6を直接筐体9に固定するのではなく、フィルタブロック本体7aを介して筐体9に取り付けるので、固着によって過大な変形が生じた第1及び第2のフィルタ5,6の取り付けを未然に防止することができて、光学特性に優れたRGB光源モジュールを製造することができる。加えて、緑色光LGの光軸を介して、その両側に青色発光素子3と赤色発光素子4とを配置するので、第1及び第2のフィルタ5,6による光の屈折を考慮することなく青色光LB及び赤色光LRの合波を行うことができ、各色光の光軸の合致度を高めることができる。また、青色発光素子3及び赤色発光素子4の設定間隔を小さくすることができ、RGB光源モジュールの全長を短くすることができる。 The RGB light source module 1 </ b> A of this example combines the green light LG emitted from the green light emitting element 2 and the blue light LB emitted from the blue light emitting element 3 using the first filter 5, and the first filter 5. The green light LG and the blue light LB combined with each other and the red light LR emitted from the red light emitting element 4 are combined using the second filter 6, and the monitor light LM is demultiplexed from the second filter 6. Therefore, it is not necessary to provide a special demultiplexing filter used only for obtaining the monitor light LM, and the cost of the RGB light source module can be reduced. Moreover, since the monitor light LM can be obtained without passing through a special demultiplexing filter, it is possible to suppress a decrease in the output of main light used as display image light or the like. Furthermore, since the first and second filters 5 and 6 are not directly fixed to the housing 9, but are attached to the housing 9 via the filter block main body 7a, the first and second filters that are excessively deformed due to the fixing are attached. The attachment of the second filters 5 and 6 can be prevented in advance, and an RGB light source module having excellent optical characteristics can be manufactured. In addition, since the blue light emitting element 3 and the red light emitting element 4 are arranged on both sides of the green light LG through the optical axis, the light refraction by the first and second filters 5 and 6 is not considered. The blue light LB and the red light LR can be combined, and the degree of coincidence of the optical axes of the respective color lights can be increased. Further, the set interval between the blue light emitting element 3 and the red light emitting element 4 can be reduced, and the overall length of the RGB light source module can be shortened.
〈第2実施形態〉
 図5に、第2実施形態に係るRGB光源モジュール1Bを示す。この図に示すように、第2実施形態に係るRGB光源モジュール1Bは、第1フィルタ5によって反射された緑色光LGを緑色光検出用のセンサ20にて検出したことを特徴とする。その他については、第1実施形態に係る照明装置1Aと同じであるので、対応する部分に同一の符号を付して説明を省略する。
Second Embodiment
FIG. 5 shows an RGB light source module 1B according to the second embodiment. As shown in this figure, the RGB light source module 1B according to the second embodiment is characterized in that the green light LG reflected by the first filter 5 is detected by a sensor 20 for detecting green light. About others, since it is the same as 1 A of illuminating devices which concern on 1st Embodiment, the same code | symbol is attached | subjected to a corresponding part and description is abbreviate | omitted.
 本例のRGB光源モジュール1Bは、第1フィルタ5の反射面から取り出された緑色光LGを緑色光検出用のセンサ20によってセンシングするので、緑色光LGを参照光として赤色光LR及び青色光LBの合波を行うことができ、RGB光源モジュールの組立を容易化できると共に、各色光の光軸を厳密に合致させることができる。 Since the RGB light source module 1B of this example senses the green light LG extracted from the reflection surface of the first filter 5 by the green light detection sensor 20, the red light LR and the blue light LB using the green light LG as reference light. As a result, the assembly of the RGB light source module can be facilitated, and the optical axes of the respective color lights can be precisely matched.
 なお、前記第2実施形態に係るRGB光源モジュール1Bにおいては、白色光検出用のモニタ8と緑色光検出用のセンサ20の双方を備えたが、青色発光素子3及び赤色発光素子4として内部に光検出器を備えた発光素子を用いた場合には、白色光検出用のモニタ8を省略することもできる。これにより、RGB光源モジュールのより一層の小型化と低コスト化とを図ることができる。 In the RGB light source module 1B according to the second embodiment, both the white light detection monitor 8 and the green light detection sensor 20 are provided, but the blue light emitting element 3 and the red light emitting element 4 are provided inside. In the case of using a light emitting element equipped with a photodetector, the white light detection monitor 8 can be omitted. As a result, the RGB light source module can be further reduced in size and cost.
 本発明は、画像表示装置の光源装置などに利用することができる。 The present invention can be used for a light source device of an image display device.
 1A,1B  RGB光源モジュール
 2  緑色発光素子
 3  青色発光素子
 4  赤色発光素子
 5  第1フィルタ
 6  第2フィルタ
 7  フィルタブロックユニット
 7a  フィルタブロック本体
 8  モニタ
 9  筐体
 10  光の透過孔
 20  緑色光検出用のセンサ
1A, 1B RGB light source module 2 green light emitting element 3 blue light emitting element 4 red light emitting element 5 first filter 6 second filter 7 filter block unit 7a filter block body 8 monitor 9 housing 10 light transmission hole 20 for detecting green light Sensor

Claims (4)

  1.  発光色が異なる複数の光源と、光の反射面及び透過面を有し、前記複数の光源の発光を合波すると共に、当該合波された光を出力側及びモニタ側に分波するフィルタとを備えたことを特徴とするRGB光源モジュール。 A plurality of light sources having different emission colors; a light reflection surface and a transmission surface; a filter that multiplexes the light emission of the plurality of light sources and demultiplexes the combined light to the output side and the monitor side; An RGB light source module comprising:
  2.  前記複数の光源として、赤色光を発光する赤色発光素子と、緑色光を発光する緑色発光素子と、青色光を発光する青色発光素子とを備えると共に、前記フィルタとして、前記緑色光と前記青色光とを合波する第1フィルタと、前記緑色光と前記青色光の合波に前記赤色光を合波する第2フィルタとを備え、前記第2フィルタの反射面から前記モニタに入射する光を取り出すことを特徴とする請求項1に記載のRGB光源モジュール。 The plurality of light sources includes a red light emitting element that emits red light, a green light emitting element that emits green light, and a blue light emitting element that emits blue light, and the green light and the blue light are used as the filters. A first filter for combining the green light and the blue light, and a second filter for combining the red light with the combined light of the green light and the blue light, and the light incident on the monitor from the reflection surface of the second filter. The RGB light source module according to claim 1, wherein the RGB light source module is extracted.
  3.  前記赤色発光素子及び前記青色発光素子として光検出器を備えた発光素子を用い、かつ前記緑色発光素子として緑色SHG素子を備えた発光素子を用いると共に、前記第1フィルタの反射面から取り出された光の光路上に緑色光の検出センサを備えたことを特徴とする請求項2に記載のRGB光源モジュール。 The red light emitting element and the blue light emitting element are light emitting elements having a light detector, and the green light emitting element is a light emitting element having a green SHG element, and is taken out from the reflecting surface of the first filter. The RGB light source module according to claim 2, further comprising a green light detection sensor on an optical path of the light.
  4.  前記第1フィルタ及び前記第2フィルタを、フィルタブロック本体に所定の配列で一体に取り付けてなるフィルタブロックを備え、このフィルタブロックを筐体に固定したことを特徴とする請求項2に記載のRGB光源モジュール。 3. The RGB according to claim 2, comprising a filter block in which the first filter and the second filter are integrally attached to a filter block main body in a predetermined arrangement, and the filter block is fixed to a housing. Light source module.
PCT/JP2010/059956 2009-06-17 2010-06-11 Rgb light source module WO2010147061A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-144338 2009-06-17
JP2009144338 2009-06-17

Publications (1)

Publication Number Publication Date
WO2010147061A1 true WO2010147061A1 (en) 2010-12-23

Family

ID=43356379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/059956 WO2010147061A1 (en) 2009-06-17 2010-06-11 Rgb light source module

Country Status (2)

Country Link
TW (1) TW201106014A (en)
WO (1) WO2010147061A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105339831A (en) * 2013-06-28 2016-02-17 日本精机株式会社 Color mixing device and display device
CN105824126A (en) * 2015-01-06 2016-08-03 台达电子工业股份有限公司 Light source module and display device
CN110191327A (en) * 2019-06-05 2019-08-30 郭瀚文 A kind of two-piece type LCD projector

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006317681A (en) * 2005-05-12 2006-11-24 Canon Inc Image display device
JP2009520217A (en) * 2005-12-14 2009-05-21 イーストマン コダック カンパニー Stereoscopic display device using LCD panel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006317681A (en) * 2005-05-12 2006-11-24 Canon Inc Image display device
JP2009520217A (en) * 2005-12-14 2009-05-21 イーストマン コダック カンパニー Stereoscopic display device using LCD panel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105339831A (en) * 2013-06-28 2016-02-17 日本精机株式会社 Color mixing device and display device
CN105339831B (en) * 2013-06-28 2018-05-18 日本精机株式会社 Display device
CN105824126A (en) * 2015-01-06 2016-08-03 台达电子工业股份有限公司 Light source module and display device
CN110191327A (en) * 2019-06-05 2019-08-30 郭瀚文 A kind of two-piece type LCD projector
CN110191327B (en) * 2019-06-05 2022-02-15 南华智能精密机器(深圳)有限公司 Two-piece type LCD projector

Also Published As

Publication number Publication date
TW201106014A (en) 2011-02-16

Similar Documents

Publication Publication Date Title
JP6314518B2 (en) Image display device and display device
JP5473021B2 (en) Illumination optical system and projector using the same
US9874753B2 (en) Display apparatus
EP2530520B1 (en) Illumination optical system and projector using same
JP5408756B2 (en) Illumination optical system and projector using the same
US8833946B2 (en) Light source module and projection apparatus
JP5982915B2 (en) Light source device and projector
JP5783405B2 (en) Light source device, projector, and method for incorporating light source device
JP5483505B2 (en) Illumination optical system and projector using the same
JP4582213B2 (en) Optical apparatus and projector
JP2011118415A (en) Device for imaging color image
JP2007133161A (en) Illumination optical system and projector utilizing the same
WO2010147061A1 (en) Rgb light source module
JP5353749B2 (en) Display device
JP5019747B2 (en) projector
CN110832396B (en) Image display apparatus
JP6952795B2 (en) Head-up display
JP5709225B2 (en) Illumination optical system and projector using the same
KR20170133936A (en) Light source device and projector comprising the same
JP5359483B2 (en) Optical multiplexer and image projection apparatus using the same
JP5515941B2 (en) projector
JP2010231239A (en) Optical device and projector
JP2007178766A (en) Projector
JP2015108707A (en) Display device
JP2011145347A (en) Projector device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10789436

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10789436

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP