201106014 六、發明說明: 【發明所屬之技術領域】 本發明是關於一種一體地具備發光紅色光的光源,發 光綠色光的光源及發光藍色光的光源的RGB光源模組, 尤其是,關於一種監測合波來自各光源的發光所得到的白 色光的監測器部之構成。 【先前技術】 在第6圖,表示作爲光源使用RGB光源模組的畫像 顯示裝置的一例子(例如,參照專利文獻1的第1圖)》 如第6圖所示地,本例子的畫像顯示裝置是由:發光 紅色光的紅色發光元件1 〇 1,及發光綠色光的綠色發光元 件102,及發光藍色光的藍色發光元件103,及在綠色光 合波藍色光的第1分光鏡1 04,及將紅色光予以合波綠色 光與藍色光的合波的第2分光鏡105,及將來自各光源的 發光予以合波所得到的白色光入射於光調變器1 06的反射 鏡1 07,及藉由光調變器1 0 6將被光調變的顯示畫像光L 1 擴大顯示於未圖示的螢幕的投射透鏡1 0 8,及檢測出未使 用作爲藉由光調變器1 06所分波的顯示畫像的不需要光 L2的光感測器1 09,及控制光調變器1 06的驅動,生成所 需要的顯示畫像,而且因應於光感測器109的輸出進行控 制各發光元件1 01,1 02,1 03的驅動的控制部1 1 〇所構 成。 如此地’本例子的畫像顯示裝置,是藉由光感測器 -5- 201106014 109來監測發光元件ιοί,102,103的發光強度,而使 白色點及亮度成爲一定的方式來控制發光元件101,102 103的驅動之故,因而即使發光元件101,102,103的 光強度藉由經時變化成溫度變化進行變化時,也不會使 示畫像光L1的波長移可長期間全面地顯示高品質的 像。 專利文獻 1 ·· W02007/023681 【發明內容】 然而,在專利文獻1所述的技術,是在紅色畫像的 示期間,綠色畫像的顯示期間及藍色畫像的顯示期間所 的畫像顯示的1循環中,光調變器106設置進行黑顯示 期間,藉由光感測器1 09進行監測此期間內的各發光元 101,102,103的發光強度的構成之故,因而因應於光 變器1 06進行黑顯示的期間的長度,有擴大顯示於螢幕 畫像的顯示品質劣化的問題。 作爲解決該不方便的手段,代替藉由光調變器106 分波不需要光L2的構成,而將與光調變器106不相同 分波濾波器配置於白色光的光路上,依據藉由此分波濾 器被分波的白色光,作成監測各發光元件1 〇 1,1 02,1 的發光強度的構成。 然而,依據該構成,則成爲需要與光調變器106不 同的分波濾波器之故,因而使得畫像顯示裝置成爲高成 化,而且穿透分波濾波器,會降低顯示畫像光L1的強 得 發 顯 畫 顯 成 的 件 =田 pm 的 來 的 波 03 相 本 度 -6- 201106014 之故,因而會降低顯示畫像的亮度的缺點問題。此種問題 是在適用於低成本且低輸出的畫像顯示裝置等的RGB光 源模組中,成爲致命性的不方便。 本發明是爲了解決此種習知技術的問題而創作者,其 目的是在提供一種作成低成本,在適用於畫像顯示裝置時 可作成高品質的畫像顯示的RGB光源模組。 本發明是爲了解決上述課題,一種RGB光源模組, 其特徵爲具備:發光色不相同的複數光源,及具有光的反 射面及穿透面,且合波上述複數光源的發光,而且將該經 合波的光於輸出側及監測器側予以分波的濾波器所構成。 依照該構成,使用合波複數光源的發光的濾波器,分 波入射於監測器的光之故,因而不必具備特別的分波濾波 器,可將RGB光源模組作成低成本化。又,不必經特別 的分波濾波器,可得到入射於監測器的光之故,因而可抑 制被利用作爲顯示畫像光等的光的輸出降低。 本發明是在上述構成的RGB光源模組中,作爲上述 複數的光源係具備:發光紅色光的紅色發光元件,及發光 綠色光的綠色發光元件,及發光藍色光的藍色發光元件, 而且作爲上述濾波器係具備:合波上述綠色光與上述藍色 光的第1濾波器,及將上述紅色光予以合波於上述綠色光 與上述藍色光之合波的第2濾波器,且自上述第2濾波器 的反射面取出入射於上述監測器的光所構成。 依照該構成,使用第1及第2濾波器進行合波從紅色 發光元件所發光的紅色光,及從綠色發光元件所發光的綠 201106014 色光,及從藍色發光元件所發光的藍色光之故,因而可得 到白色光,可將本構成的RGB光源模組使用作爲投影機 等的畫像顯示裝置用的光源裝置。 本發明是在上述構成的RGB光源模組中,作爲上述 紅色發光元件及上述藍色發光元件係使用具備光檢測器的 發光元件,且作爲上述綠色發光元件係使用具備綠色SHG 元件的發光元件,而且在自上述第1濾波器的反射面所取 出的光的光路上具備綠色光的檢測感測器所構成。 作爲紅色發光元件及藍色發光元件,分別發光紅色光 及藍色光的半導體雷射所開發之故,因而使用通常的光檢 測器可檢測強度。對此,發光綠色光的半導體雷射是未被 開發,使用 SHG(Second-Harmonic Generation)元件波長轉 換綠色光之故,因而光強度的檢測是在綠色光必須進行。 依照上述構成,在從第1濾波器的反射面所取出的光的光 路上具備綠色光的檢測感測器之故,因而將綠色光作爲參 照光就可進行紅色光及藍色光的合波,可容易化RGB光 源模組的裝配,而且可嚴密地吻合各色光的光軸。 本發明是在上述構成的RGB光源模組,具備將上述 第1濾波器及上述第2濾波器具備以所定排列一體地安裝 於濾波器部分本體所成的一濾波器區塊,並將此濾波器區 塊固定於筐體所構成。 依照此構成,與對於筐體直接安裝第1濾波器及第2 濾波器的情形不相同,可容易地進行對於光軸的此些各濾 波器的安裝姿勢的修正之故,因而可容易化RGB光源模 201106014 組的裝配。 依照本發明,將RGB光源模組具備:發光色不相同 的複數光源,及具有光的反射面及穿透面,合波上述複數 光源的發光,而具將該被合波的輸出側及監測器側的濾波 器的構成之故,因而在分波入射於監測器的光的分波不必 具備特別的分波濾波器,可將RGB光源模組作成低成本 化。又,不必經特別的分波濾波器,可得到入射於監測器 的光之故,因而可抑制降低主光的輸出,而在適用於畫像 顯示裝置時可得到高亮度的顯示畫像光。 【實施方式】 以下,針對於本發明的RGB光源模組的實施形態加 以說明。 (第1實施形態) 在第1圖至第4圖,表示第1實施形態的RGB光源 模組1 A。如此些圖式所示地,第1實施形態的RGB光源 模組1A是主要由:綠色發光元件2,及藍色發光元件3, 及紅色發光元件4,及合波從綠色發光元件2所發光的綠 色光與從藍色發光元件3所發光的藍色光的第1濾波器 5,及在此些被合波的光再合波從紅色發光元件4所發光 的紅色光的第2濾波器6,及將此些第1及第2濾波器 5,6固裝於濾波器部分本體7 a所成的濾波器部分單元 7,及檢測出藉由第2濾波器6所分波的白色光的光強度 -9- 201106014 的監測器8,及一體地保持各發光元件2,3,4,濾波器 部分本體7及監測器8的筐體9所構成。 作爲綠色發光元件2,使用著藉由綠色SHG元件將波 長轉換成綠色光LG的光予以發光的半導體雷射,而作爲 藍色發光元件3及紅色發光元件4,使用著發光藍色光LB 的藍光半導體雷射及發光紅色光LR的紅色半導體雷射。 由此些各發光元件2,3,4所發光的光,是藉由吻合光軸 被合波,成爲白色光LW而由設於筐體9的未圖示的出射 口被出射。針對於吻合綠色光LG,藍色光LB及紅色光 LR的光軸的手段,說明如下。 作爲第1濾波器5及第2濾波器6,使用著在透明基 板的單面形成介質多層膜所成的分光鏡。如第4圖所示 地,第1濾波器5是使闬者A面(綠色光LG的入射面5a) 的綠色光LG的穿透率及藍色光LB的穿透率超過98%, 而此面的綠色光LG的反射率及藍色光LB的反射率爲不 足2%者。又,使用者A面的相反面的B面(藍色光LB的 入射面5b)的綠色光LG的穿透率超過98%,而藍色光LB 的穿透率不足2%,在此面的綠色光LG的反射率不足 2%,藍色光LB的反射超過98 %者。一方面,使用者第2 濾波器6是A面(紅色光LR的入射面6a)的紅色光LR的 穿透率,綠色光LG的穿透率及藍色光LB的穿透率分別 超過98%,而此面的紅色光LR的反射率,綠色光LG的 反射率及藍色光LB的反射率分別不足2%。又,使用著A 面的相反面的B面(監測器光LM的出射面6b)的藍色光 -10- 201106014 LB的穿透率及綠色光LG的穿透率超過98%,紅色光LR 的穿透率不足2%,此面的藍色光LB的反射率及綠色光 LG的反射率不足2%,而紅色光LR的反射率超過98% 者。各瀘波器5’ 6對於濾波器部分本體7的安裝,是利 用接著所進行,作爲使用於此時的接著劑,是使用硬化收 縮小的接著劑,例如使用者UV接著劑。 如第3圖所示地,濾波器部分本體7a是以樹脂材料 形成大約三角柱形狀,而交叉成直角的兩個面成爲濾波器 5,6的安裝面。在此濾波器部分本體7a的側面,開口有 綠色光LG的穿透孔,藍色光LB的穿透孔,紅色光LR的 穿透孔及白色光LW的穿透孔(以符號1 〇表示此些的各穿 透孔)。濾波器部分單元7,是被安裝於筐體9內的所定位 置之後,藉由接著或鎖緊等的手段,與筐體9被一體化。 監測器8是被配置於監測器光LM的光路上,進行檢 測從綠色光LG,藍色光LB及紅色光LR所合波的白色光 LW的強度變化。具備於畫像顯示裝置等的控制部,是生 成因應於藉由監測器8所檢測的白色光LW的強度變化的 發光元件2,3, 4的驅動訊號,而使得白色點及亮度成爲 一定的方式進行控制各發光元件2,3,4的驅動。藉此, 將本例的RGB光源模組適用於投影機等的畫像顯示裝置 時,顯示畫像光的波長不會移位,而長期地全面地可顯示 高品質的畫像。 本例的RGB光源模組1 A的製造,是藉由以下的順序 可加以進行。首先,將第1濾波器5及第2濾波器6以所 -11 - 201106014 定方向安裝於濾波器部分本體7a,來製作所需要的濾 部分單元7。又,與此同時地,將綠色發光元件2, 發光元件3,紅色發光元件4及監測器8以表示於第 的排列暫時固定於筐體9。之後,將濾波器部分單元 所需要的方向固裝於筐體9的所需要的位置。然後, 光軸在基準位置的方式進行調整綠色發光元件2對於 9的安裝姿勢。之後,從藍色發光元件3所發光的藍 LB的光軸,及從紅色發光元件4所發光的紅色光LR 軸一致於從綠色發光元件2所發光的綠色光LG的光 方式,進行調整對於筐體9的藍色發光元件3及紅色 元件4的安裝姿勢。最後,在全部發光綠色發光元件 藍色發光元件3及紅色發光元件4的狀態下,使得監 光LM的光軸來到受光面的中央的方式來調整對於筐 的感測器8的安裝位置之後,將感測器8固定於筐體 藉此,構成著表示於第2圖的光學回路。 本例的RGB光源模組1A是使用第1濾波器5進 波從綠色發光元件2所發光的綠色光LG與從藍色發 件3所發光的藍色光LB,而且使用第2濾波器6進 波在第1濾波器5所合波的綠色光LG及藍色光LB 紅色發光元件4所發光的紅色光LR,而從此第2濾波 進行分波監測器光LM之故,因而不必具備僅被使用 到監測器光LM的特別的分波濾波器,而可低成本化 光源模組。又,不必經特別的分波濾波器,就可得到 器光LM之故,因而可抑制作爲顯示畫像光等所利用 波器 藍色 1圖 7以 控制 筐體 色光 的光 軸的 發光 2, 測器 體9 9 〇 行合 光元 行合 及從 器6 於得 RGB 監測 的主 -12- 201106014 光的輸出降低。又,並不是將第1及第2濾波器5, 接固定於筐體9,而是經由濾波器部分本體7a安裝於 9之故,因而可將藉由固定而產生過大變形的第1及 濾波器5,6的安裝防範於未然,而可製造光學特性 異的RGB光源模組。還有,經由綠色光LG的光軸, 兩側配置藍色發光元件3與紅色發光元件4之故,因 必考慮依第1及第2濾波器5,6所致的光的折射而 行藍色光LB及紅色光LR的合波,並可提高各色光 軸的吻合度。又,可減小藍色發光元件3及紅色發光 4的設定間隔,並可縮短RGB光源模組的全長。 (第2實施形態) 在第5圖表示第2實施形態的RGB光源模組1 E 此圖所示地,第2實施形態的RGB光源模組1 B是使 色光檢測用的感測器20進行檢測藉由第1濾波器5 射的綠色光LG爲其特徵者。針對於其他,與第1實 態的RGB光源模組1A相同之故,因而在對應的部分 同一符號而省略說明。 本例的RGB光源模組1 B是從第1濾波器5的反 所取出的綠色光LG藉由綠色光檢測用的感測器2 0進 出之故,因而可將綠色光LG作爲參照光來進行紅色^ 及藍色光LB的合波,可容易化RGB光源模組的裝配 且可嚴密地吻合各色光的光軸。 又,在上述第2實施形態的RGB光源模組1B中 6直 筐體 第2 上優 在其 而不 可進 的光 元件 。如 用綠 所反 施形 給予 射面 行讀 ^ LR ,而 ,具 -13- 201106014 備白色光檢測用的監測器8與綠色光檢測用的感測器20 的雙方,惟作爲藍色發光元件3及紅色發光元件4,使用 在內部具備光檢測器的發光元件的情形,也可省略白色光 檢測用的監測器8。藉由此,可得到RGB光源模組的更小 型化及低成本化。 本發明是可利用於畫像顯示裝置的光源裝置等。 【圖式簡單說明】 第1圖是表示第1實施形態的RGB光源模組的構成 圖。 第2圖是表示第1實施形態的RGB光源模組的光學 回路圖。 第3圖是表示使用於第1實施形態的RGB光源模組 的濾波器部分的立體圖。 第4圖是表示使用於第1實施形態的RGB光源模組 的各濾波器的光學特性的表圖。 第5圖是表示第2實施形態的RGB光源模組的構成 圖。 第6圖是表示習知例的畫像顯示裝置的光學回路圖。 【主要元件符號說明】 1 A ’ IB : RGB光源模組 2 :綠色發光元件 3 :藍色發光元件 -14· 201106014 4 :紅色發光元件 5 :第1濾波器 6 :第2濾波器 7 :濾波器部分單元 7a :濾波器部分本體 8 :監測器 9 :筐體 1 〇 :光的穿透孔 20 :綠色光檢測用的感測器 -15201106014 VI. Description of the Invention: [Technical Field] The present invention relates to an RGB light source module integrally provided with a light source that emits red light, a light source that emits green light, and a light source that emits blue light, and more particularly, A configuration of a monitor unit that combines white light obtained by light emission from each light source. [Prior Art] An example of an image display device using an RGB light source module as a light source is shown in FIG. 6 (for example, refer to FIG. 1 of the patent document 1). As shown in FIG. 6, the image display of the present example is shown. The device is composed of a red light-emitting element 1 〇1 that emits red light, a green light-emitting element 102 that emits green light, and a blue light-emitting element 103 that emits blue light, and a first beam splitter 104 that emits blue light in green light. And the second beam splitter 105 that combines the red light and the blue light, and the white light obtained by combining the light beams from the respective light sources into the mirror 1 of the light modulator 106 07, and the display image light L 1 modulated by the light by the optical modulator 1 0 6 is enlarged and displayed on the projection lens 1 0 8 of the screen (not shown), and is detected as unused by the optical modulator The display image of the 1 06 split image does not require the light sensor 1 09 of the light L2, and controls the driving of the optical modulator 106 to generate a desired display image, and is performed in response to the output of the photo sensor 109. Controlling the driving of each of the light-emitting elements 1 01, 1 02, 103 The square portion 11 constituted. Thus, the image display device of the present example controls the light-emitting element 101 by monitoring the light-emitting intensity of the light-emitting elements ιοί, 102, 103 by the light sensor-5-201106014 109, and making the white point and the brightness constant. In the case of the driving of 102 103, even if the light intensity of the light-emitting elements 101, 102, and 103 is changed by the change of temperature with time, the wavelength of the image light L1 is not shifted to be high. The image of quality. [Patent Document 1] W02007/023681 [Patent Document] However, the technique described in Patent Document 1 is a one cycle of image display during the display period of the green image and the display period of the blue image during the display of the red image. In the black display period, the optical modulator 106 is configured to monitor the luminous intensity of each of the light-emitting elements 101, 102, and 103 in the period during the period, thereby responding to the optical transformer 1 06 The length of the period in which the black display is performed has a problem that the display quality of the screen image is deteriorated. As a means for solving this inconvenience, instead of arranging the light L2 by the optical modulator 106, the demultiplexing filter different from the optical modulator 106 is disposed on the optical path of the white light, depending on This demultiplexing filter is divided into white light, and is configured to monitor the luminous intensity of each of the light-emitting elements 1 〇 1, 102, 1. However, according to this configuration, the demultiplexing filter which is different from the optical modulator 106 is required, so that the image display device is made highly high, and the polarization filter is penetrated, which lowers the intensity of the display image light L1. It is a problem that the brightness of the displayed image is reduced by the fact that the wave of the pm pm is -6-201106014. Such a problem is fatal inconvenience in an RGB light source module which is applied to a low-cost and low-output image display device. The present invention has been made in an effort to solve the problems of the prior art, and an object of the invention is to provide an RGB light source module which can be made into a high-quality image display when applied to an image display device at a low cost. The present invention has been made to solve the above problems, and an RGB light source module characterized by comprising: a plurality of light sources having different illuminating colors; and a reflecting surface and a transmitting surface having light, and multiplexing the light of the plurality of light sources; The multiplexed light is formed by a filter that splits the wave on the output side and the monitor side. According to this configuration, since the light of the multiplexed light source is used to split the light incident on the monitor, it is not necessary to provide a special demultiplexing filter, and the RGB light source module can be reduced in cost. Further, since it is possible to obtain light incident on the monitor without passing through a special demultiplexing filter, it is possible to suppress a decrease in output of light used as display image light or the like. According to the RGB light source module of the above configuration, the plurality of light sources include a red light-emitting element that emits red light, a green light-emitting element that emits green light, and a blue light-emitting element that emits blue light, and The filter includes: a first filter that combines the green light and the blue light; and a second filter that combines the red light into a combination of the green light and the blue light, and the second filter The reflecting surface of the filter 2 is formed by taking out the light incident on the monitor. According to this configuration, the first and second filters are used to combine the red light emitted from the red light-emitting element, the green 201106014 color light emitted from the green light-emitting element, and the blue light emitted from the blue light-emitting element. Therefore, white light can be obtained, and the RGB light source module of the present configuration can be used as a light source device for an image display device such as a projector. In the RGB light source module of the above-described configuration, a light-emitting element including a photodetector is used as the red light-emitting element and the blue light-emitting element, and a light-emitting element including a green SHG element is used as the green light-emitting element. Further, the detection sensor is provided with a green light on the optical path of the light taken out from the reflection surface of the first filter. Since the red light-emitting element and the blue light-emitting element are developed by semiconductor lasers that emit red light and blue light, respectively, the intensity can be detected using a normal photodetector. For this reason, a semiconductor laser that emits green light has not been developed, and the wavelength of green light is converted by the SHG (Second-Harmonic Generation) element. Therefore, the detection of the light intensity must be performed in green light. According to the above configuration, since the detection sensor of the green light is provided on the optical path of the light extracted from the reflection surface of the first filter, the combination of the red light and the blue light can be performed by using the green light as the reference light. The assembly of the RGB light source module can be easily performed, and the optical axes of the respective colors of light can be closely matched. According to the present invention, in the RGB light source module of the above aspect, the first filter and the second filter are provided with a filter block integrally formed in the filter portion body in a predetermined arrangement, and the filter is filtered. The block is fixed to the casing. According to this configuration, unlike the case where the first filter and the second filter are directly attached to the casing, the attachment posture of the filters for the optical axes can be easily corrected, so that RGB can be easily realized. Assembly of the light source module 201106014 group. According to the present invention, the RGB light source module includes: a plurality of light sources having different illuminating colors, and a reflecting surface and a transmitting surface having light, multiplexing the illuminating light of the plurality of light sources, and having an output side and monitoring of the multiplexed waves Since the filter on the side of the device is configured, it is not necessary to have a special demultiplexing filter for splitting the light incident on the monitor, and the RGB light source module can be reduced in cost. Further, since the light incident on the monitor can be obtained without a special demultiplexing filter, the output of the main light can be suppressed from being lowered, and the high-intensity display image light can be obtained when applied to the image display device. [Embodiment] Hereinafter, an embodiment of an RGB light source module of the present invention will be described. (First Embodiment) The RGB light source module 1 A of the first embodiment is shown in Figs. 1 to 4 . As shown in the drawings, the RGB light source module 1A of the first embodiment mainly includes: a green light-emitting element 2, a blue light-emitting element 3, and a red light-emitting element 4, and a multiplexed light emitted from the green light-emitting element 2. The first filter 5 that emits green light from the blue light emitted from the blue light-emitting element 3, and the second filter 6 that recombines the red light that is emitted from the red light-emitting element 4 by the combined light. And fixing the first and second filters 5, 6 to the filter portion unit 7 formed by the filter portion main body 7a, and detecting the white light split by the second filter 6. The monitor 8 of the light intensity -9-201106014 and the casing 9 integrally holding the respective light-emitting elements 2, 3, 4, the filter portion body 7, and the monitor 8. As the green light-emitting element 2, a semiconductor laser that emits light by converting a wavelength into green light LG by a green SHG element is used, and as the blue light-emitting element 3 and the red light-emitting element 4, blue light that emits blue light LB is used. Semiconductor laser and red semiconductor laser emitting red light LR. The light emitted from each of the light-emitting elements 2, 3, and 4 is multiplexed by the matching optical axis, and becomes white light LW, and is emitted from an exit port (not shown) provided in the casing 9. The means for matching the optical axes of the green light LG, the blue light LB, and the red light LR will be described below. As the first filter 5 and the second filter 6, a beam splitter formed by forming a dielectric multilayer film on one surface of a transparent substrate is used. As shown in FIG. 4, the first filter 5 is such that the transmittance of the green light LG of the A surface (the incident surface 5a of the green light LG) and the transmittance of the blue light LB exceed 98%. The reflectance of the green light LG of the surface and the reflectance of the blue light LB are less than 2%. Further, the transmittance of the green light LG of the B surface (the incident surface 5b of the blue light LB) on the opposite side of the user A surface is more than 98%, and the transmittance of the blue light LB is less than 2%. The reflectance of the light LG is less than 2%, and the reflection of the blue light LB exceeds 98%. On the one hand, the user's second filter 6 is the transmittance of the red light LR of the A surface (the incident surface 6a of the red light LR), and the transmittance of the green light LG and the transmittance of the blue light LB exceed 98%, respectively. The reflectance of the red light LR on this surface, the reflectance of the green light LG, and the reflectance of the blue light LB are each less than 2%. Further, the transmittance of the blue light -10- 201106014 LB using the B surface opposite to the opposite side of the A surface (the exit surface 6b of the monitor light LM) and the transmittance of the green light LG exceeding 98%, the red light LR The transmittance is less than 2%, and the reflectance of the blue light LB and the reflectance of the green light LG on this surface are less than 2%, and the reflectance of the red light LR is more than 98%. The chopper 5'6 is attached to the filter portion body 7 in order to be used as an adhesive for use at this time, and is an adhesive which is used for hardening and shrinking, for example, a user UV adhesive. As shown in Fig. 3, the filter portion main body 7a is formed in a triangular prism shape by a resin material, and the two faces which are crossed at right angles serve as mounting faces of the filters 5, 6. On the side of the filter portion body 7a, there are openings for the green light LG, the penetration holes for the blue light LB, the penetration holes for the red light LR, and the penetration holes for the white light LW (represented by the symbol 1 〇) Each of the penetration holes). The filter partial unit 7 is integrated with the casing 9 by means of attachment or locking, after being placed in the casing 9. The monitor 8 is disposed on the optical path of the monitor light LM, and detects the intensity change of the white light LW multiplexed by the green light LG, the blue light LB, and the red light LR. The control unit provided in the image display device or the like generates a driving signal for the light-emitting elements 2, 3, and 4 of the intensity change of the white light LW detected by the monitor 8, so that the white point and the brightness are constant. The driving of each of the light-emitting elements 2, 3, 4 is controlled. As a result, when the RGB light source module of the present embodiment is applied to an image display device such as a projector, the wavelength of the image light is not shifted, and a high-quality image can be displayed comprehensively over a long period of time. The manufacture of the RGB light source module 1 A of this example can be carried out in the following order. First, the first filter 5 and the second filter 6 are attached to the filter portion main body 7a in the direction of -11 - 201106014 to fabricate the required filter portion unit 7. At the same time, the green light-emitting element 2, the light-emitting element 3, the red light-emitting element 4, and the monitor 8 are temporarily fixed to the casing 9 in the first arrangement. Thereafter, the direction required for the filter portion unit is fixed to a desired position of the casing 9. Then, the mounting position of the green light-emitting element 2 with respect to 9 is adjusted in such a manner that the optical axis is at the reference position. Thereafter, the optical axis of the blue LB emitted from the blue light-emitting element 3 and the red light LR axis emitted from the red light-emitting element 4 coincide with the light pattern of the green light LG emitted from the green light-emitting element 2, and are adjusted. The mounting posture of the blue light-emitting element 3 and the red element 4 of the casing 9. Finally, in a state where all of the green light-emitting elements blue light-emitting element 3 and red light-emitting element 4 are lighted, the optical axis of the light-guiding LM is brought to the center of the light-receiving surface to adjust the mounting position of the sensor 8 for the basket. The sensor 8 is fixed to the casing, thereby constituting the optical circuit shown in FIG. The RGB light source module 1A of the present example is a green light LG that is emitted from the green light-emitting element 2 and a blue light LB that is emitted from the blue hair-emitting element 3 by using the first filter 5, and the second filter 6 is used. The green light LG multiplexed by the first filter 5 and the red light LR emitted by the blue light LB red light-emitting element 4, and the second filter performs the split monitor light LM, so that it is not necessary to be used only. A special demultiplexing filter to the monitor light LM can reduce the cost of the light source module. Further, since the device light LM can be obtained without a special demultiplexing filter, it is possible to suppress the light emission 2 of the optical axis of the casing color light as shown in FIG. The body 9 9 合 光 行 及 及 及 及 从 从 于 RGB RGB RGB RGB RGB RGB RGB RGB RGB RGB RGB RGB RGB RGB RGB RGB RGB RGB RGB RGB RGB RGB Further, the first and second filters 5 are not fixed to the casing 9, but are attached to the filter body 7a via the filter portion main body 7a. Therefore, the first and the filter which are excessively deformed by the fixing can be removed. The installation of the devices 5, 6 is prevented, and an RGB light source module having different optical characteristics can be manufactured. Further, since the blue light-emitting element 3 and the red light-emitting element 4 are disposed on both sides via the optical axis of the green light LG, it is necessary to consider the light refraction due to the first and second filters 5 and 6 to perform blue. The combination of the color light LB and the red light LR can improve the matching degree of the optical axes of the respective colors. Further, the setting interval of the blue light-emitting element 3 and the red light-emitting element 4 can be reduced, and the total length of the RGB light source module can be shortened. (Second Embodiment) The RGB light source module 1 E of the second embodiment is shown in Fig. 5. The RGB light source module 1 B of the second embodiment is used to detect the color light detecting sensor 20 The green light LG emitted by the first filter 5 is detected as a feature. The other points are the same as those of the RGB light source module 1A of the first embodiment, and therefore the same reference numerals will be given to the corresponding parts, and the description will be omitted. In the RGB light source module 1 B of the present example, the green light LG taken out from the opposite side of the first filter 5 is moved in and out by the sensor 20 for green light detection, so that the green light LG can be used as the reference light. By combining the red and blue light LB, the assembly of the RGB light source module can be easily performed and the optical axes of the respective colors can be closely matched. Further, in the RGB light source module 1B of the second embodiment, the optical unit of the 6th straight case is superior to the optical element which is not accessible. If the green surface is reversed, the surface of the sensor is read LR, and the monitor 8 for white light detection and the sensor 20 for green light detection are used as the blue light-emitting element. 3 and the red light-emitting element 4 may be a light-emitting element having a photodetector therein, and the monitor 8 for white light detection may be omitted. As a result, the RGB light source module can be made smaller and lower in cost. The present invention is a light source device or the like that can be used in an image display device. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view showing the configuration of an RGB light source module according to a first embodiment. Fig. 2 is an optical circuit diagram showing the RGB light source module of the first embodiment. Fig. 3 is a perspective view showing a filter portion used in the RGB light source module of the first embodiment. Fig. 4 is a table showing the optical characteristics of each filter used in the RGB light source module of the first embodiment. Fig. 5 is a view showing the configuration of an RGB light source module according to a second embodiment. Fig. 6 is an optical circuit diagram showing an image display device of a conventional example. [Description of main component symbols] 1 A ' IB : RGB light source module 2 : Green light-emitting element 3 : Blue light-emitting element - 14 · 201106014 4 : Red light-emitting element 5 : 1st filter 6 : 2nd filter 7 : Filter Unit part unit 7a: filter part body 8: monitor 9: housing 1 〇: light penetration hole 20: sensor for green light detection -15