WO2010147049A1 - Data signal-line driving circuit, liquid-crystal display device, and driving method of liquid-crystal display device - Google Patents

Data signal-line driving circuit, liquid-crystal display device, and driving method of liquid-crystal display device Download PDF

Info

Publication number
WO2010147049A1
WO2010147049A1 PCT/JP2010/059870 JP2010059870W WO2010147049A1 WO 2010147049 A1 WO2010147049 A1 WO 2010147049A1 JP 2010059870 W JP2010059870 W JP 2010059870W WO 2010147049 A1 WO2010147049 A1 WO 2010147049A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
circuit
majority
display
display pattern
Prior art date
Application number
PCT/JP2010/059870
Other languages
French (fr)
Japanese (ja)
Inventor
淳 森脇
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2010147049A1 publication Critical patent/WO2010147049A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3685Details of drivers for data electrodes
    • G09G3/3688Details of drivers for data electrodes suitable for active matrices only
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3614Control of polarity reversal in general
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0291Details of output amplifiers or buffers arranged for use in a driving circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving
    • G09G2330/023Power management, e.g. power saving using energy recovery or conservation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/04Display protection
    • G09G2330/045Protection against panel overheating

Definitions

  • the present invention relates to a data signal line driving circuit, a liquid crystal display device, and a driving method of the liquid crystal display device, and in particular, dot inversion driving for changing the polarity for each data signal line and scanning signal line,
  • the data signal line driving circuit recognizes the image pattern separately from the control of the liquid crystal display device, and independently performs the polarity inversion.
  • the present invention relates to a technique for performing control and charge share control.
  • An active matrix type liquid crystal panel crosses a plurality of data signal lines (hereinafter referred to as “data lines”) and the plurality of data lines on one of the two transparent substrates sandwiching the liquid crystal layer.
  • data lines data signal lines
  • a plurality of scanning signal lines are formed, and pixel electrodes formed corresponding to each intersection are arranged in a matrix (matrix).
  • Each pixel electrode is connected to a data line passing through a corresponding intersection through a TFT (Thin Film Transistor) as a switching element, and a gate terminal of the TFT is connected to a scanning signal line passing through the intersection.
  • TFT Thin Film Transistor
  • a gate terminal of the TFT is connected to a scanning signal line passing through the intersection.
  • a common electrode common to a plurality of pixel electrodes is formed as a common electrode.
  • the liquid crystal display device including the liquid crystal panel having such a configuration includes a gate driver and a source driver as a drive circuit for displaying an image on the liquid crystal panel.
  • the gate driver is also called a scanning signal line driving circuit, and is a driving circuit that applies a scanning signal for sequentially selecting a plurality of scanning signal lines to the plurality of scanning signal lines.
  • the source driver is also called a data signal line drive circuit or a video signal line drive circuit, and is a drive circuit that applies a data signal for writing data to each pixel formation portion in the liquid crystal panel to a plurality of data lines.
  • the common voltage Vcom is applied to the common electrode facing the pixel electrode.
  • a data signal is applied from the source driver to the pixel electrode selected by the gate driver.
  • An image is displayed on the liquid crystal panel by changing the transmittance of the liquid crystal layer according to the voltage applied between each pixel electrode and the common electrode.
  • the liquid crystal panel is AC driven in order to prevent deterioration of the liquid crystal material constituting the liquid crystal layer. That is, the source driver outputs a data signal so that the positive and negative polarities of the voltage applied between each pixel electrode and the common electrode are inverted, for example, every frame.
  • a driving method in which the positive / negative polarity of the applied voltage is inverted for each horizontal scanning signal line and the positive / negative polarity is inverted for each frame. Also known is a driving method (dot inversion driving method) that inverts the positive / negative polarity of the voltage applied to the liquid crystal layer forming the pixel for each scanning signal line and for each data line, and for each frame. ing.
  • FIG. 20 shows the output waveform of the source driver when the liquid crystal panel is driven by the dot inversion driving method.
  • the source driver has a positive data signal Vpdata having a voltage higher than the common voltage Vcom applied to the common electrode and a negative data having a voltage lower than the common voltage Vcom for each scanning signal line. The output with the signal Vndata is repeated.
  • the source driver is provided with a number of output buffers, and each of the output buffers is connected to each data line and drives the load of each data line and each liquid crystal cell. For this reason, when the source driver outputs the positive data signal Vpdata, a charging current from the high potential voltage VDD flows to the load. On the other hand, when the source driver outputs the negative data signal Vndata, a discharge current to the low potential voltage VSS flows. Since the charging current and the discharging current pass through the internal resistance in the output buffer provided in the source driver, the amount of heat generation increases.
  • ⁇ Heat generation from inside the source driver mainly occurs from the output buffer. Therefore, in order to reduce the heat generation amount of the source driver, the heat generation from the output buffer section, particularly the heat generation from the output section of the output buffer must be minimized.
  • the heat generated by the internal resistance in the output buffer increases according to the width of the swing. Moreover, since the number of times of charging / discharging increases, power consumption also increases.
  • FIG. 21 shows the output waveform of the source driver when interlaced scanning is performed.
  • interlaced scanning rows of pixels with the same polarity are sequentially scanned, so that polarity inversion is performed at the timing when switching from odd-numbered line scanning to even-numbered line scanning is performed.
  • FIG. 22 shows the output waveform of the source driver when the output state shown in FIG. 21 is rearranged in order of 1, 2, 3,... According to FIG.
  • FIG. 22 shows the output waveform of the source driver at the time when one frame of scanning, that is, scanning of both odd and even lines, is completed when interlaced scanning is performed.
  • the output waveform of the source driver is the same as the output waveform of the source driver in the dot inversion driving method shown in FIG.
  • Patent Document 1 when interlaced scanning is performed over the entire screen of the liquid crystal panel, flickering is caused. Therefore, the display unit is divided into a plurality of areas in the column direction, and driving for performing interlaced scanning scanning for each area is performed. A method has been proposed (see, for example, Patent Document 2).
  • FIG. 23 shows a scanning order when the driving described in Patent Document 2 is performed.
  • a display portion having 8 lines of pixel electrodes is divided into a section 1 and a section 2. Then, interlaced scanning is performed in order from odd two lines to even two lines for each section. In this scanning, data signals having different polarities are given during each selection period of the area 1 and the area 2, and flickering can be suppressed.
  • This driving method is called a source block inversion driving method.
  • the above power consumption occurs in the period from when the output terminals are short-circuited to the same potential until the inversion, but the potential of the output terminals that have become the same potential due to the short-circuit between the output terminals is the driving during inversion. Since it is close to the potential of the signal, power consumption when the drive signal is inverted can be reduced.
  • FIG. 24 shows a pattern called a killer pattern of the source block inversion driving method, where (a) shows the pattern, (b) shows an odd line pattern, and (c) shows an even line pattern. Show.
  • the killer pattern is a pattern in which black and white are alternately displayed for every two pixels in the scanning signal line direction, and black and white are alternately displayed for each data line. is there.
  • the odd lines are displayed as shown in FIG. 24B, and the even lines are displayed as shown in FIG.
  • the source driver outputs a black driving voltage and a white driving voltage each time the driving voltage of one scanning signal line is output.
  • the white driving voltage is equal to the voltage of the common electrode of the liquid crystal panel so that no voltage is applied to the liquid crystal pixels.
  • the black driving voltage is a voltage for applying a voltage to the liquid crystal pixels, and a positive voltage (positive polarity) and a negative voltage (negative polarity) may be applied to the common electrode.
  • the white driving voltage is 6V, while the black driving voltage is 0V and + 12V. Therefore, when the output of the source driver alternately outputs black and white, the output voltage changes for each scanning signal line, so that current consumption increases and heat generation becomes a problem.
  • source block inversion driving since the interlace scanning is performed in the block, the polarity does not change every scanning, so it is common not to perform charge sharing.
  • source block inversion driving Let us consider a case where charge sharing between outputs is performed as shown in Patent Document 3 when a killer pattern is displayed. For example, as shown in FIG. 24B, line 1 of output 1 is black with positive polarity, and line 1 of output 2 is white with negative polarity. This potential state is shown in FIGS.
  • FIG. 25A shows a change in the potential of output 1
  • FIG. 25B shows a change in the potential of output 2 when charge sharing is performed between output 1 and output 2.
  • FIG. In source block inversion drive charge sharing is performed between line 1 and line 3, so when output 1 and output 2 are short-circuited, the voltage of output 1 and the voltage of output 2 are intermediate between + black and -white. The voltage is “a”. Then, after opening the short circuit, output 1 outputs a + white voltage and output 2 outputs a -black voltage in order to display on line 3.
  • the output 2 becomes a black voltage to be output on the line 3 after the potential changes in the opposite direction, the output 2 is compared with the case where the charge sharing is not performed when the black voltage is output. It is necessary to pass a large amount of current. The same is true when scanning from line 3 to line 5; output 1 outputs + black because the output 1 and output 2 are short-circuited, resulting in a voltage of “b” that is an intermediate voltage between + white and ⁇ black. When doing so, more current is required. Therefore, when a killer pattern is displayed by performing source block inversion driving, charge sharing between outputs is not effective in reducing power consumption.
  • Patent Document 4 describes a technique for performing charge sharing by determining a representative gradation of an image.
  • charge sharing is not performed for each data in the dot inversion driving every two lines in the vertical direction, but (1) charge sharing is performed every time the polarity of the data voltage is changed.
  • Charge sharing is performed when there is no change and when the displayed gradation and the gradation to be displayed change from white to black (when the representative gradation changes from the white gradation to the black gradation).
  • Patent Document 4 has a problem that current consumption increases when charge sharing is applied in displaying a specific pattern as shown in FIG. A valid charge share cannot be applied to the pattern.
  • FIG. 27A shows the potential change of output 1
  • FIG. 27B shows the potential change of output 2 when charge sharing is performed between output 1 and output 2 in the pattern shown in FIG. .
  • the points a and b become the charge sharing voltage. Therefore, in particular, in the output 2 shown in FIG. 27 (b), a phenomenon occurs in which the current consumption increases.
  • Patent Document 4 charge sharing is performed only when the color changes from white to black, and it corresponds to the case where the color changes from black to white, or from black and white to black and white, and from black and white to black and white. I can't. Further, in Patent Document 4, although a weak pattern is detected, as described above, the countermeasure is not to perform charge sharing, and thus the current consumption is not sufficiently reduced.
  • the present invention has been made in view of the above-described conventional problems, and its purpose is to reduce current consumption even when displaying a special image called a killer pattern in source block inversion driving.
  • Another object of the present invention is to provide a data signal line driving circuit, a liquid crystal display device, and a driving method for the liquid crystal display device, which can reduce heat generation due to this.
  • a data signal line driving circuit of the present invention includes a plurality of pixel electrodes arranged in a matrix, a plurality of scanning signal lines for supplying scanning signals to the pixel electrodes in the same row, and For the liquid crystal display unit having a plurality of data signal lines for supplying data signals to the pixel electrodes in the same column, each data signal line of the liquid crystal display unit is created according to the gradation data.
  • a data signal line drive circuit for outputting data signals with opposite polarities at adjacent outputs, polarity inversion means for inverting the polarity of the adjacent outputs, and short-circuit means for short-circuiting between the adjacent outputs,
  • the first control means for inverting the polarity of the adjacent output to the polarity inverting means based on the first control signal, and the adjacent output to the short-circuit means based on the second control signal.
  • a second control means for outputting the first control signal to the first control means and a determination means for outputting the second control signal to the second control means.
  • the odd-numbered or even-numbered scanning signal lines are scanned in order after the liquid crystal display section is divided into a plurality of sections in the column direction, and then the even-numbered or odd-numbered scanning signal lines are scanned in order.
  • the determination means sequentially acquires the gradation data, and the display at the adjacent output in the previously acquired gradation data for one row is transmitted.
  • the display pattern of the majority of the display pattern consisting of the transparent state that becomes non-transparent and the non-transparent state that becomes non-transparent, and the transmissive state and non-transparent state of the adjacent output in the gradation data for one row acquired this time From Based on the majority of the display pattern of the display pattern that is characterized by selectively outputting the first control signal and the second control signal.
  • the determination means includes the majority display pattern in one line corresponding to the scanning signal line previously scanned by the interlaced scanning and the majority in one line corresponding to the scanning signal line currently scanned. Based on the display pattern, whether or not it is effective to invert polarity between adjacent outputs and perform charge sharing between adjacent outputs, and charge sharing between adjacent outputs without performing the above polarity inversion It is possible to determine whether or not it is effective. That is, the determination means can recognize the pattern of the image to be displayed and make the above determination.
  • the first control means When it is determined that it is effective to invert the polarity with adjacent outputs and perform charge sharing between adjacent outputs, the first control means outputs both the first control signal and the second control signal.
  • the polarity inversion means inverts the polarity of adjacent outputs, and the second control means causes the short-circuit means to short-circuit between adjacent outputs.
  • the second control means when it is judged that it is effective to perform charge sharing between adjacent outputs without performing polarity reversal, the second control means outputs a short circuit between adjacent outputs by outputting the second control signal. To do.
  • the liquid crystal display device of the present invention includes a plurality of pixel electrodes arranged in a matrix, a plurality of scanning signal lines for supplying scanning signals to the pixel electrodes in the same row, and a data signal to the pixel electrodes in the same column.
  • a liquid crystal display unit having a plurality of data signal lines for supplying each of the data signals, and the data signal created according to the gradation data to each of the data signal lines of the liquid crystal display unit with opposite outputs at adjacent outputs.
  • a data signal line driving circuit that outputs the data.
  • the charge sharing is effectively performed in the data signal line driving circuit, in the driving in which the liquid crystal display unit performs interlaced scanning for each of the divided areas in the column direction, a killer pattern and Even when displaying a special image called, it is possible to realize a liquid crystal display device that reduces current consumption and reduces heat generation.
  • the liquid crystal display device driving method of the present invention includes a plurality of pixel electrodes arranged in a matrix, a plurality of scanning signal lines for supplying scanning signals to the pixel electrodes in the same row, and the pixel electrodes in the same column.
  • a liquid crystal display unit having a plurality of data signal lines for supplying data signals to the liquid crystal display unit, and each data signal line of the liquid crystal display unit has the polarity of the data signal created according to the gradation data with an adjacent output.
  • a method of driving a liquid crystal display device comprising a data signal line drive circuit that outputs each of them in reverse, wherein the gradation data is divided into an odd row or a row for each area in which the liquid crystal display section is divided into a plurality of columns.
  • the gradation data is Next, the majority display pattern of the display pattern consisting of a transmission state in which the display at the adjacent output is transparent and a non-transmission state in which it is non-transparent in the gradation data for one line acquired last time, and this time
  • the adjacent output of the data signal line driving circuit based on the display pattern of the majority of the display patterns composed of the transmission state and the non-transmission state in the adjacent output in the acquired gradation data for one row.
  • the majority display pattern in one line corresponding to the scanning signal line previously scanned by interlaced scanning, and the majority display pattern in one line corresponding to the scanning signal line currently scanned are Based on the above, whether or not it is effective to perform polarity inversion at adjacent outputs of the data signal line drive circuit and charge sharing between adjacent outputs, and between adjacent outputs without performing the above polarity inversion It is possible to determine whether or not charge sharing is effective. That is, the above determination can be made by recognizing the pattern of the image to be displayed.
  • the polarity of the adjacent outputs of the data signal line drive circuit is reversed and the data signal line drive circuit Short circuit between adjacent outputs. If it is determined that it is effective to perform charge sharing between adjacent outputs without performing polarity inversion, a short circuit between adjacent outputs of the data signal line driving circuit is performed.
  • the data signal line driving circuit of the present invention includes a plurality of pixel electrodes arranged in a matrix, a plurality of scanning signal lines for supplying scanning signals to the pixel electrodes in the same row, and the same column.
  • the data signal created according to the gradation data is applied to each data signal line of the liquid crystal display unit.
  • a data signal line drive circuit for outputting the opposite outputs of the adjacent outputs, the polarity inversion means for inverting the polarity of the adjacent outputs, the short-circuit means for short-circuiting the adjacent outputs, and a first control Based on the signal, the first control means for inverting the polarity of the adjacent output with respect to the polarity inverting means, and the short-circuit means with respect to the adjacent output based on the second control signal.
  • a second control unit and a determination unit that outputs the first control signal to the first control unit and outputs the second control signal to the second control unit.
  • the odd-numbered or even-numbered scanning signal lines are sequentially scanned, and then the even-numbered or odd-numbered scanning signal lines are scanned sequentially.
  • the determination means sequentially obtains the gradation data corresponding to the scanning, and the transmission at the adjacent output in the gradation data for one line obtained last time becomes transparent. Display of the transmission state and the non-transmission state at the adjacent output in the display pattern of the majority of the display patterns consisting of the non-transmission state and the non-transmission state and the gradation data for one row acquired this time Patter Based on the majority of the display pattern of emission is selectively output to constitute the first control signal and the second control signal.
  • the driving method of the liquid crystal display device of the present invention includes a plurality of pixel electrodes arranged in a matrix, a plurality of scanning signal lines for supplying scanning signals to the pixel electrodes in the same row, and the above in the same column.
  • a liquid crystal display unit having a plurality of data signal lines for supplying data signals to the pixel electrodes respectively, and the data signal created according to the gradation data to each data signal line of the liquid crystal display unit with adjacent outputs
  • a driving method of a liquid crystal display device comprising a data signal line driving circuit that outputs the signals with opposite polarities, wherein the gradation data is an odd number for each area in which the liquid crystal display section is divided into a plurality of columns.
  • the gradation data is supplied.
  • the display pattern of the majority of the display pattern consisting of a transmission state in which the display at the adjacent output is transparent and a non-transmission state in which the transmission is non-transparent in the gradation data for one row acquired previously.
  • the adjacent data signal line driving circuit A first step of determining whether polarity inversion of matching outputs and a short circuit between adjacent outputs of the data signal line driving circuit are necessary, and when determining that polarity inversion is necessary, adjacent to the data signal line driving circuit A second step of performing polarity reversal of matching outputs and a third step of performing a short circuit between adjacent outputs of the data signal line drive circuit when it is determined that the short circuit is necessary. It is the law.
  • the liquid crystal display unit displays a special image called a killer pattern in a drive in which interlaced scanning is performed for each of the divided areas in the column direction.
  • a killer pattern in a drive in which interlaced scanning is performed for each of the divided areas in the column direction.
  • FIG. 1 illustrates an embodiment of a liquid crystal display device according to the present invention, and is a block diagram illustrating a case where a polarity inversion switch circuit is switched to an a side.
  • the said liquid crystal display device it is a block diagram which shows when the polarity inversion switch circuit is switched to the b side.
  • It is a block diagram which shows the example of 1 structure of the black collation circuit in the said pattern detection circuit. It is a truth table of the logic circuit in the said black collation circuit.
  • FIG. 17 is a diagram showing a potential change when charge sharing is performed between output 1 and output 2 of the pattern of FIG. 16, (a) shows a potential change of output 1, and (b) shows a potential change of output 2. Indicates.
  • FIG. 19 is a diagram showing a potential change when charge sharing is performed between the output 1 and the output 2 of the pattern of FIG. 18, (a) shows the potential change of the output 1, and (b) shows the potential change of the output 2.
  • Indicates It is a figure which shows the output waveform of a source driver at the time of driving a liquid crystal panel by a dot inversion drive system. It is a figure which shows the output waveform of the source driver at the time of performing interlaced scanning.
  • FIG. 25 is a diagram illustrating a potential change when charge sharing is performed between the output 1 and the output 2 of the pattern of FIG. 24, where (a) illustrates a potential change of the output 1 and (b) illustrates a potential change of the output 2.
  • Indicates It is a figure which shows a specific pattern.
  • 27 is a diagram showing a potential change when charge sharing is performed between the output 1 and the output 2 of the pattern of FIG. 26, (a) shows the potential change of the output 1, and (b) shows the potential change of the output 2.
  • FIG. 1 shows an example of the configuration of the liquid crystal display device 10, and is a block diagram showing when the polarity reversal switch circuits 33 and 41 are switched to the a side.
  • FIG. 2 is a block diagram showing a case where the polarity reversal switch circuits 33 and 41 are switched to the b side in the liquid crystal display device 10 of FIG.
  • the liquid crystal display device 10 is a display device mounted on, for example, an installation device such as a TV or a portable terminal such as a mobile phone. As shown in FIGS. Display section) and a data signal line driver 30 (data signal line driver circuit). The remaining part (not shown) of the liquid crystal display device 10 can be realized by a conventional general configuration (such as a scanning line driver or a timing generator).
  • the liquid crystal panel 20 includes two transparent substrates (not shown) facing each other. On one transparent substrate, a common electrode 26 to which a common voltage is applied is formed. On the other transparent substrate, gate lines 21 (scanning signal lines), source lines 22 (data signal lines), TFTs 23, and pixel electrodes 24 are formed.
  • a plurality of gate lines 21 and source lines 22 are arranged so as to be orthogonal to each other, and a TFT 23 and a pixel electrode 24 are arranged corresponding to a portion where each intersects. That is, a plurality of TFTs 23 and pixel electrodes 24 are arranged in a matrix.
  • the gate lines 21 are for supplying selection signals (scanning signals) to the pixel electrodes 24 in the same row, and the source lines 22 are for supplying data signals to the pixel electrodes 24 in the same column. is there.
  • the pixel electrode 24 is connected to the source line 22 via the TFT 23, and the gate of the TFT 23 is connected to the gate line 21.
  • a selection signal is sequentially output to the gate line 21 from a scanning line driver (not shown), and the TFT 23 is turned on / off accordingly.
  • the TFT 23 is on, the pixel electrode 24 is electrically connected to the source line 22, and when the TFT 23 is off, the pixel electrode 24 is electrically disconnected from the source line 22.
  • a liquid crystal layer is formed between the two transparent substrates, and the liquid crystal (liquid crystal cell 25) sandwiched between the common electrode 26 and the pixel electrode 24 positioned opposite to the common electrode 26 is 1 Constitutes a pixel.
  • a difference between a voltage applied to the pixel electrode 24 and a voltage applied to the common electrode 26 is applied to the liquid crystal cell 25.
  • the display is changed by changing the alignment of the liquid crystal depending on the magnitude of the applied voltage.
  • the data signal line driver 30 is a drive circuit that sequentially outputs data signals (grayscale voltage, drive voltage) corresponding to an image to be displayed to each pixel electrode 24, and is connected to the source line 22.
  • the data signal line driver 30 includes a shift register 31, a data latch 32, a polarity inversion switch circuit 33 (polarity inversion means), a hold latch 34, a level shifter 35, a positive polarity side DAC 36, a negative polarity side DAC 37, a positive polarity operational amplifier 38, Op-amp 39 for negative polarity, short circuit switch circuit 40 (short circuit means), polarity reversal switch circuit 41 (polarity reversal means), output pad 42, determination circuit 43 (determination means), polarity switching control circuit 44 (first control means), An output short-circuit control circuit 45 (second control means) and a setting register 46 are provided.
  • the data signal line driver 30 is designed as a 414-output data line driver circuit, and the liquid crystal panel 20 is provided with 414 pixels in the horizontal direction. However, unless otherwise specified, a case where six outputs (OUT1 to OUT6) of the data signal line driver 30 are provided will be described below for convenience of explanation.
  • the data signal line driver 30 performs output polarity reversal and charge sharing between adjacent outputs. Therefore, in the following, for convenience of explanation, components having equivalent functions will be referred to as numbered 1 in order from the left data output line in FIGS.
  • the data signal line driving driver 30 is an 8-bit (256 gradation) level that is image data (display data) supplied from the outside (for example, a controller provided in the liquid crystal display device 10) via a data bus.
  • Gradation data Data [7: 0] is sequentially acquired, gradation data Data [7: 0] is converted into a data signal, and the data signal is output to the source line 22.
  • the shift register 31 sequentially creates pulse signals ENB1 to ENB6 according to control from the outside, and outputs each pulse signal to the corresponding data latch 32.
  • the data latch 32 latches the gradation data Data [7: 0] supplied via the data bus in synchronization with the pulse signals ENB1 to ENB6.
  • the polarity reversing switch circuit 33 is inserted between the data latch 32 and the hold latch 34.
  • the polarity inversion switch circuit 33 switches the connection destination of the corresponding data latch 32 between the a terminal (a side) and the b terminal (b side) based on the polarity inversion signal Opt_REV output from the polarity switching control circuit 44.
  • the terminal a is connected to the first, third, and fifth hold latches 34
  • the terminal b is connected to the second, fourth, and sixth hold latches 34.
  • the a terminal is connected to the second, fourth and sixth hold latches 34
  • the b terminal is connected to the first, third and fifth hold latches 34.
  • the odd-numbered polarity reversing switch circuit 33 connects the corresponding odd-numbered data latch 32 to the even-numbered number obtained by adding one to the corresponding odd-numbered hold latch 34 (a side). And the hold latch 34 (b side).
  • the even-numbered polarity reversing switch circuit 33 has a corresponding even-numbered data latch 32 connected to the corresponding even-numbered hold latch 34 (a side) and an odd-numbered hold latch obtained by subtracting 1 from the corresponding even-numbered latch. 34 (b side).
  • the hold latch 34 latches data held by the data latch 32 connected in accordance with the output of the data latch 32, that is, according to switching of the polarity inversion switch circuit 33, in accordance with control from the outside. As a result, the image data corresponding to the pixels of one horizontal line on the screen is held in each hold latch 34.
  • the level shifter 35 converts the signal level of the input gradation data.
  • the odd level shifter 35 outputs the level-converted gradation data to the positive polarity DAC 36.
  • the even level shifter 35 outputs the level-converted gradation data to the negative polarity side DAC 37.
  • the positive polarity side DAC 36 selects one voltage from the positive polarity side gradation voltage supplied from the outside according to the gradation data level-converted by the level shifter 35, and outputs it to the positive polarity operational amplifier 38.
  • the negative polarity side DAC 37 selects one voltage from the negative polarity side gradation voltage supplied from the outside according to the gradation data level-converted by the level shifter 35, and outputs it to the negative polarity operational amplifier 39.
  • the positive polarity operational amplifier 38 and the negative polarity operational amplifier 39 output a positive or negative polarity data signal (gradation voltage) selected (converted) according to the gradation data.
  • the positive-polarity operational amplifier 38 and the negative-polarity operational amplifier 39 function as output buffers, and their outputs are connected to the output pad 42 via the polarity inversion switch circuit 41.
  • the output pad 42 is connected to the corresponding source line 22 of the liquid crystal panel 20. As a result, a data signal corresponding to the gradation data is output to the source line 22.
  • the short-circuit switch circuit 40 is provided between the outputs of the adjacent positive polarity operational amplifier 38 and negative polarity operational amplifier 39.
  • the short-circuit switch circuit 40 short-circuits the outputs of the adjacent positive-polarity operational amplifier 38 and negative-polarity operational amplifier 39 based on the short-circuit signal Opt_CS output from the output short-circuit control circuit 45 (short-circuit switch circuit 40: ON).
  • the polarity reversing switch circuit 41 is inserted between the positive polarity operational amplifier 38 and the negative polarity operational amplifier 39 and the output pad 42. Based on the polarity reversal signal Opt_REV output from the polarity switching control circuit 44, the polarity reversing switch circuit 41 determines the connection destination of the corresponding positive polarity operational amplifier 38 and negative polarity operational amplifier 39 as a terminal (a side) and b terminal. Switch to (b side). In the first, third and fifth polarity reversing switch circuits 41, the terminal a is connected to the first, third and fifth output pads 42, and the terminal b is connected to the second, fourth and sixth output pads 42. In the second, fourth and sixth polarity reversing switch circuits 41, the a terminal is connected to the second, fourth and sixth output pads 42, and the b terminal is connected to the first, third and fifth output pads 42.
  • the odd polarity inversion switch circuit 41 connects the corresponding positive polarity operational amplifier 38 to the corresponding odd number output pad 42 (a side) and the even number obtained by adding one to the corresponding odd number. Switch between output pad 42 (b side).
  • the even-numbered polarity reversing switch circuit 41 has a connection destination of the corresponding negative-polarity operational amplifier 39 connected to the corresponding even-numbered output pad 42 (a side) and the odd-numbered output pad 42 obtained by subtracting 1 from the corresponding even-numbered output pad 42. Switch between (b side).
  • the determination circuit 43 determines the necessity of polarity inversion and charge sharing from the gradation data Data [7: 0] supplied to the data signal line driver 30. The determination circuit 43 performs the above determination at a timing before scanning of the scanning line. If the result of determination is that polarity inversion is necessary, the control circuit Ctrl_REV (first control signal) is output to the polarity switching control circuit 44. If charge sharing is necessary, a control signal Ctrl_CS (second control signal) is output to the output short-circuit control circuit 45. That is, the determination circuit 43 selectively outputs the control signal Ctrl_REV and the control signal Ctrl_CS according to the determination result.
  • the determination circuit 43 stores the reference (data Crit_Black [2: 0]) for determining the black display and the reference (data Crit_White [data] stored in the setting register 46 for determining the white display). 2: 0]) and criteria for determining the majority (data Crit_Majority [2: 0]).
  • the setting register 46 can be arbitrarily rewritten by giving a signal from the outside.
  • the polarity switching control circuit 44 inverts the polarity of the outputs OUT1 to OUT6 from the data signal line driver 30 or the output pad 42 based on the polarity switching command REV from the outside and the control signal Ctrl_REV output from the determination circuit 43. To do. An external polarity switching command REV is input when shifting from odd-numbered line scanning to even-numbered line scanning (or vice versa) within the block, and thus polarity inversion is performed. When Ctrl_REV is output, polarity inversion is performed regardless of the polarity switching command REV.
  • the polarity switching control circuit 44 outputs a polarity reversal signal Opt_REV, which is a control signal for performing polarity reversal, to the polarity reversing switch circuits 33 and 41, thereby causing the polarity reversing switch circuits 33 and 41 to a. Switch between side and b side.
  • the polarity switching control circuit 44 performs the polarity inversion operation when the polarity switching command REV from the outside becomes “1” or the control signal Ctrl_REV becomes “1”.
  • the output short-circuit control circuit 45 short-circuits the outputs OUT1 to OUT6 from the data signal line drive driver 30, that is, the output pad 42, based on the external short-circuit command CS and the control signal Ctrl_CS supplied from the determination circuit 43.
  • the short-circuit command CS from the outside is input when scanning is shifted between blocks, and this causes a short-circuit.
  • Ctrl_CS is output from the determination circuit 43, a short-circuit is generated regardless of the short-circuit command CS. Done.
  • the output short circuit control circuit 45 outputs a short circuit signal Opt_CS, which is a control signal for performing a short circuit, that is, charge sharing, to the short circuit switch circuit 40, thereby turning on the short circuit switch circuit 40.
  • the output short-circuit control circuit 45 performs the charge sharing operation when the external short-circuit command CS is “1” or the control signal Ctrl_CS is “1”.
  • the gradation data of the odd-numbered data latch 32 corresponds. It is transferred to the odd-numbered hold latch 34.
  • the grayscale data output from the odd-numbered hold latch 34 is level-shifted by the corresponding odd-numbered level shifter 35, converted to a data signal by the positive polarity side DAC 36, and odd-numbered by the positive polarity operational amplifier 38. Are output to the output pad 42.
  • the gradation data of the even-numbered data latch 32 is transferred to the corresponding even-numbered hold latch 34.
  • the gradation data output from the even-numbered hold latch 34 is level-shifted by the corresponding even-numbered level shifter 35, converted into a data signal by the negative polarity side DAC 37, and even-numbered by the negative polarity operational amplifier 39. Are output to the output pad 42.
  • the gradation data of the odd-numbered data latch 32 is supplied to the even-numbered hold latch 34, which is one added from the odd-numbered data latch 32. Transferred.
  • the gradation data output from the even-numbered hold latch 34 is level-shifted by the corresponding even-numbered level shifter 35, converted to a data signal by the negative polarity side DAC 37, and odd-numbered by the negative polarity operational amplifier 39. Are output to the output pad 42.
  • the gradation data of the even-numbered data latch 32 is transferred to the odd-numbered hold latch 34 obtained by subtracting 1 from the even-numbered data latch 32.
  • the gradation data output from the odd-numbered hold latch 34 is level-shifted by the corresponding odd-numbered level shifter 35, converted into a data signal by the positive polarity side DAC 36, and even-numbered by the positive polarity operational amplifier 38. Are output to the output pad 42.
  • the output pad 42 that is, the outputs OUT1 to OUT6 from the data signal line driver 30 are short-circuited by turning on the short-circuit switch circuit 40 by the short-circuit signal Opt_CS from the output short-circuit control circuit 45.
  • the short circuit switch circuit 40 is switched off, the outputs OUT1 to OUT6 from the output pad 42 are output to the corresponding source line 22.
  • the determination circuit 43 performs polarity inversion and charge sharing only by outputting the control signal Ctrl_REV and the control signal Ctrl_CS to the polarity switching control circuit 44 and the output short-circuit control circuit 45. It becomes possible.
  • the data signal line driver 30 determines whether or not polarity inversion and charge sharing are necessary, that is, whether the output of the control signal Ctrl_REV and the control signal Ctrl_CS is valid or invalid, as input image data (gradation data Data [7: 0]) is determined by the determination circuit 43. Next, the detailed configuration and operation of the determination circuit 43 will be described in order.
  • FIG. 3 shows a configuration example of the determination circuit 43.
  • the determination circuit 43 includes a pattern detection circuit 101 and a polarity inversion and charge share determination circuit 102.
  • the pattern detection circuit 101 compares the reference value set in the setting register 46 with the black / white combination pattern of the adjacent output pairs in the input gradation data Data [7: 0]. This circuit detects the majority (majority).
  • the above criteria include data Crit_Black [2: 0] indicating the number of gradations determined to be black display, data Crit_White [2: 0] indicating the number of gradations determined to be white display, and a set number for determining the majority.
  • the indicated data Crit_Majority [2: 0] is used.
  • control signals SRA, SRB, and LS are also individually input to the pattern detection circuit 101.
  • the adjacent output pairs correspond to the outputs OUT1 and OUT2, the outputs OUT3 and OUT4, and the outputs OUT5 and OUT6 in the data signal line driver 30.
  • the pattern detection circuit 101 detects a majority combination pattern from the black / white combination patterns of each output pair in one horizontal line.
  • the pattern detection circuit 101 has a flag flgMBB indicating that “black and black” is the majority, a flag flgMWW indicating that “white and white” is the majority, and “black and white” are the majority according to the detection result.
  • the flag flgMBW indicating that this is the case and the flag flgMWB indicating that “monochrome” is the majority are output to the polarity inversion and charge share determination circuit 102.
  • the flag flgMBB is set to “1” when black and black are majority
  • the flag flgMWW is set to “1” when white and white are majority
  • the flag flgMBW is set to “1” when black and white is majority. In this case, the flag flgMWB becomes “1”. If there is no majority, all flags are “0”.
  • the polarity inversion and charge share determination circuit 102 is a circuit that determines the necessity of polarity inversion and charge share based on the majority detection result of the pattern detection circuit 101.
  • the polarity inversion and charge share determination circuit 102 uses the flags flgMBB, flgMWW, flgMBW, and flgMWB output from the pattern detection circuit 101 to compare the majority combination pattern of the previous line with the majority combination pattern of the current line. Thus, the pattern of the image on one screen is identified, and the necessity of polarity inversion and charge sharing is determined. Further, the control signal PS is also input to the polarity inversion and charge share determination circuit 102.
  • the polarity inversion and charge share determination circuit 102 outputs a control signal Ctrl_REV and a control signal Ctrl_CS to the polarity switching control circuit 44 and the output short-circuit control circuit 45, respectively, according to the determined result.
  • the control signal Ctrl_REV is “1”
  • charge sharing is performed
  • the control signal Ctrl_CS is “1”. If neither is performed, all control signals are “0”.
  • FIG. 4 shows a configuration example of the pattern detection circuit 101.
  • the pattern detection circuit 101 includes a black matching circuit 111 (display state determining means), a white matching circuit 112 (display state determining means), a D-FF 113, a D-FF 114, and a pattern matching circuit 115 (display pattern). Creating means), counters 116 to 119, and majority collating circuits 120 to 123 (majority judging means).
  • the black collation circuit 111 is a circuit that checks whether or not the gradation data Data [7: 0] is black display compared to the data Crit_Black [2: 0].
  • the black matching circuit 111 outputs a flag flgB indicating black display to the D-FF 113 and the pattern matching circuit 115 according to the result of the examination. In the case of black display, the flag flgB is “1”, otherwise the flag flgB is “0”.
  • the white collation circuit 112 is a circuit that checks whether or not the gradation data Data [7: 0] is white display compared to the data Crit_ White [2: 0].
  • the white matching circuit 112 outputs a flag flgW indicating white display to the D-FF 114 and the pattern matching circuit 115 according to the result of the examination. In the case of white display, the flag flgW is “1”. In other cases, the flag flgB is “0”.
  • the D-FF 113 and the D-FF 114 latch the outputs of the black matching circuit 111 and the white matching circuit 112 based on the input timing of the control signal SRA. That is, the D-FF 113 latches the value of the flag flgB and holds it as data regB. The D-FF 114 latches the value of the flag flgW and holds it as data regW. The D-FF 113 and the D-FF 114 output the retained data regB and data regW to the pattern matching circuit 115.
  • the pattern matching circuit 115 compares the flag flgB / flgW indicating black display / white display determined from the current gradation data and the data regB / regW indicating black display / white display determined from the previous gradation data. . In accordance with the result, the pattern matching circuit 115 counts the flags flgBB, flgWW, flgBW, flgWB indicating that the pattern of gradation data corresponding to the output pair is a black-black-white-white-black-white-monochrome pattern. 116 to 119, respectively.
  • the flag flgBB is set to “1” for the black / black pattern
  • the flag flgWW is set to “1” for the white / white pattern
  • the flag flgBW is set to “1” for the black / white pattern
  • the flag flgWB is set to “1” for the black / white pattern.
  • Gradation data Data [7: 0] is data obtained by time-sharing gradation data input serially from the outside, and gradation data corresponding to all output terminals is supplied. After the D-FF 113 and D-FF 114 latch the values of the flags flgB and flgW, respectively, according to the control signal SRA, the next gradation data Data [7: 0] is supplied to the data bus.
  • the data regB and data regW latched by the D-FF 113 and D-FF 114 can be data indicating black display / white display checked from the previous gradation data, and the D-FF 113 and D-FF 114
  • the flag flgB and the flag flgW, which are inputs of, can be used as flags indicating black display / white display examined from the current gradation data.
  • Counters 116 to 119 count up according to the input timing of control signal SRB if flags flgBB, flgWW, flgBW, flgWB indicating the display state of the output pair are “1”. As the counters 116 to 119, CNTs 207 are used. The control signal SRB is output after the values of the flags flgBB, flgWW, flgBW, flgWB are determined.
  • the counters 116 to 119 use 8-bit data cntBB [7: 0], cntWW [7: 0], cntBW [7: 0], and cntWB [7: 0] indicating the count values to the majority collating circuits 120 to 123, respectively. Respectively.
  • the majority collation circuits 120 to 123 compare with the data Crit_Majority [2: 0] whether the count value output from the counters 116 to 119 is greater than or equal to the number set by the data Crit_Majority [2: 0]. It is a circuit to check.
  • the majority collation circuits 120 to 123 output flags flgMBB, flgMWW, flgMBW, flgMWB indicating the majority to the polarity inversion and charge share determination circuit 102 when the count value exceeds the set number.
  • the operations of the counters 116 to 119 are performed for the number of output pairs of one horizontal line.
  • the control signal LS input to the RST terminals of the counters 116 to 119 is output when the data signal line driver 30 starts outputting for one line display.
  • the control signal LS is input, the counters 116 to 119 are reset and the counter value is cleared.
  • FIG. 5 shows an example of the configuration of the black matching circuit 111.
  • the black matching circuit 111 includes a logic circuit 131, OR circuits 132 to 136, an AND circuit 137, and an AND circuit 138.
  • the logic circuit 131 calculates the number of gradations for determining that the display is black based on the value of the data Crit_Black [2: 0].
  • the logic circuit 131 outputs the data OPE to the AND circuit 138 according to the result of calculating the data Crit_Black [2: 0] along a predetermined truth value, and outputs the data N_Enable [4: 0] to the OR circuit. Output to 132 to 136, respectively.
  • OR circuits 132 to 136 output, to AND circuit 137, result data obtained by performing OR operation on gradation data Data [4: 0] and data N_Enable [4: 0].
  • the AND circuit 137 outputs the result data obtained by performing an AND operation on the data Data [7: 5] and the outputs of the OR circuits 132 to 136 to the AND circuit 138.
  • the AND circuit 138 outputs the result data obtained by ANDing the data OPE from the logic circuit 131 and the output of the AND circuit 137 as a flag flgB.
  • FIG. 6 shows a truth table of the logic circuit 131.
  • Data Crit_Black [2: 0] is 3-bit data.
  • the output data OPE is “0” when 0 (000H) and 7 (111H), and the output data OPE is “1” when the other 1-6. "
  • the value of the data Crit_Black [2: 0] can be set / changed by inputting data 1 to 6 to the setting register 46.
  • the logic circuit 131 returns 1 when the gradation data Data [7: 0] is black or a value close thereto, and returns 0 otherwise.
  • the number of gradations 1 to 32 determined to be black by the setting of the data Crit_Black [2: 0] corresponds to the number of gradations X regarded as black, which is the setting of the flowchart 1 in FIG.
  • the set number X can be set to 1, 2, 4, 8, 16, 32.
  • FIG. 7 shows a configuration example of the white matching circuit 112.
  • the white matching circuit 112 includes a logic circuit 141, AND circuits 142 to 146, a NOR circuit 147, and an AND circuit 148.
  • the logic circuit 141 calculates the number of gradations for determining that the display is white based on the value of the data Crit_White [2: 0].
  • the logic circuit 141 outputs the data OPE to the AND circuit 148 according to the result of calculating the data Crit_White [2: 0] according to a predetermined truth value, and outputs the data N_Enable [4: 0] to the AND circuit. Output to 142 to 146, respectively.
  • AND circuits 142 to 146 output the result of AND operation of the gradation data Data [4: 0] and the data N_Enable [4: 0] to the NOR circuit 147.
  • the NOR circuit 147 outputs a result obtained by performing a NOR operation on the gradation data Data [7: 5] and the outputs of the AND circuits 142 to 146 to the AND circuit 148.
  • the AND circuit 148 outputs a result obtained by performing an AND operation on the data OPE from the logic circuit 141 and the output of the NOR circuit 147 as a flag flgW.
  • FIG. 8 shows a truth table of the logic circuit 141.
  • the data Crit_White [2: 0] is 3-bit data.
  • the output data OPE is “0” when 0 (000H) and 7 (111H), and the output data OPE is “1” when the other 1-6. "
  • the value of the data Crit_White [2: 0] can be set / changed by inputting data 1 to 6 to the setting register 46.
  • the data N_Enable [4: 0] is (11111H). Therefore, the AND circuits 142 to 146 to which the data N_Enable [4: 0] is input have an output of “0” when the data [0] is “0” from the gradation data Data [4]. Therefore, the NOR circuit 147 outputs “1” only when the gradation data Data [7: 0] is 0 (00000000H). Therefore, since the data OPE is “1”, the output of the AND circuit 148, that is, the flag flgW becomes “1”.
  • the logic circuit 141 returns 1 when the gradation data Data [7: 0] is white or a value close thereto, and returns 0 otherwise.
  • the gradation numbers 1 to 32 determined to be white by the setting of the data Crit_White [2: 0] correspond to the gradation number Y regarded as white, which is the setting of the flowchart 1 of FIG.
  • the data signal line driver 30 can set the set number Y to 1, 2, 4, 8, 16, 32.
  • FIG. 9 shows a configuration example of the pattern matching circuit 115.
  • the pattern matching circuit 115 includes AND circuits 151 to 154.
  • the AND circuit 151 outputs the flag flgBB in accordance with the result of ANDing the flag flgB indicating black display determined from the current gradation data and the data regB indicating black display determined from the previous gradation data.
  • the AND circuit 152 outputs the flag flgWW according to the result of ANDing the flag flgW indicating white display determined from the current gradation data and the data regW indicating white display determined from the previous gradation data.
  • the AND circuit 153 outputs the flag flgBW according to the result of ANDing the flag flgB indicating black display determined from the current gradation data and the data regW indicating white display determined from the previous gradation data.
  • the AND circuit 154 outputs the flag flgWB in accordance with the result of ANDing the flag flgW indicating white display determined from the current gradation data and the data regB indicating black display determined from the previous gradation data.
  • FIG. 10 shows the input and output states of the pattern matching circuit 115 in the display state of adjacent output pairs. For example, when the display state of the adjacent output pair is “black and black”, the input flag flgB and data regB are “1”, and the output flag flag flgBB is “1”. If the display state is determined to be neither black nor white (others), the output is “0” for both flags. There is no state other than that shown in FIG.
  • the data signal line drive driver 30 is designed as a data line drive circuit with 414 outputs, there are 207 output pairs. Therefore, since the maximum count value of the counters 116 to 119 is 207, the flag flg output from the majority collation circuits 120 to 123 is always “0”. Therefore, the counters 116 to 119 are set to 152 after the count number 103, and the output state is set to (11111111H) by the count of 207.
  • FIG. 11 shows a truth table of the counters 116 to 119.
  • a normal 8-bit counter is used, but bit inversion is performed at a count of 105, and the output 8-bit state at the count number 104 is set to 152 (10011000H).
  • the output 8-bit state becomes 255 (11111111H).
  • the majority collation circuits 120 to 123 set the flag flg to “1” as the majority when the count number is 200 or more.
  • the majority collation circuits 120 to 123 set the flag flg to “1” as the majority when the count number is 192 or more.
  • the majority collation circuits 120 to 123 set the flag flg to “1” as the majority when the count number is 176 or more.
  • the majority collation circuits 120 to 123 can be realized with the same configuration as the black collation circuit 111. That is, in the configuration shown in FIG. 5, instead of the gradation data Data [7: 0], data indicating the count value cntBB [7: 0] ⁇ cntWW [7: 0] ⁇ cntBW [7: 0] ⁇ cntWB [7: 0] is input, and data Crit_Majority [2: 0] may be input instead of the data Crit_Black [2: 0]. As a result, the flag flgMBB / flgMWW / flgMBW / flgMWB indicating the majority is output from the AND circuit 138.
  • the setting value determined as the majority by setting the data Crit_Majority [2: 0] corresponds to the setting value Z that determines the majority, which is the setting of the flowchart 2 of FIG.
  • the set number Z can be set to 1, 2, 4, 8, 16, 32.
  • the value of the data Crit_Majority [2: 0] can be set / changed by inputting data 1 to 6 to the setting register 46.
  • FIG. 12 shows a configuration example of the polarity inversion and charge share determination circuit 102.
  • the polarity inversion and charge share determination circuit 102 includes D-FFs 161 to 163 (holding means), AND circuits 164 to 166 (control signal output means), and OR circuits 167 and 168 (control signal output means). And D-FF 169 and 170 (control signal output means).
  • the D-FFs 161 to 163 latch the values of the flags flgMBB, flgMBW, and flgMWB, which are the outputs of the pattern detection circuit 101, based on the input timing of the control signal PS. That is, the D-FF 161 latches the value of the flag flgMBB and holds it as data regMBB. The D-FF 162 latches the value of the flag flgMBW and holds it as data regMBW. The D-FF 163 latches the value of the flag flgMWB and holds it as data regMWB. The D-FFs 161 to 163 output the held data regMBB, regMBW, regMWB to the AND circuits 164 to 166, respectively.
  • the AND circuit 164 ORs the result data obtained by ANDing the flag flgMWB determined from the gradation data for one line acquired this time and the data regMBW determined from the gradation data for one line acquired last time.
  • the AND circuit 165 ORs the result data obtained by ANDing the flag flgMBW determined from the gradation data for one line acquired this time and the data regMWB determined from the gradation data for one line acquired last time.
  • the AND circuit 166 ORs the result data obtained by ANDing the flag flgMWW determined from the gradation data for one line acquired this time and the data regMBB determined from the gradation data for one line acquired last time.
  • the OR circuit 167 outputs the result data obtained by ORing the output of the AND circuit 164 and the output of the AND circuit 165 to the D-FF 169 and also to the OR circuit 168.
  • the OR circuit 168 outputs the result data obtained by ORing the output of the OR circuit 167 and the output of the AND circuit 166 to the D-FF 170.
  • the D-FF 169 latches the output of the OR circuit 167 based on the input timing of the control signal PS. Then, the D-FF 169 outputs the held data to the polarity switching control circuit 44 as the control signal Ctrl_REV.
  • the D-FF 170 latches the output of the OR circuit 168 based on the input timing of the control signal PS. Then, the D-FF 170 outputs the held data to the output short-circuit control circuit 45 as the control signal Ctrl_CS.
  • the above data regMBB, regMBW, regMWB indicate what the majority combination pattern was in the gradation data in the previous scanning line. If the data regMBB is “1”, the display of the previous line is majority in black and black, if the data regMBW is “1”, the majority is black and white, and if the data regMBB is “1”, black and white is displayed. It shows that it was a majority.
  • flags flgMBB, flgMWW, flgMBW, and flgMWB indicate a majority combination pattern of gradation data in the current scan line. If the flag flgMBB is “1”, black and black is the majority, if the flag flgMWW is “1”, the white is the majority, and if the flag flgMBW is “1”, the black and white is the majority. If flgMWB is “1”, it indicates that black and white is majority.
  • the output is “1” when the previous line is black and white and the current line is majority. Since the AND circuit 165 receives the data regMWB and the flag flgMBW, the output is “1” when the previous line is black and white and the current line is black and white. Since the data regMBB and the flag flgWW are input to the AND circuit 166, the output is “1” when the front line is black-black and the current line is white-white.
  • the output of the AND circuit 164 and the output of the AND circuit 165 are input to the OR circuit 167, the output is output when either the output of the AND circuit 164 or the output of the AND circuit 165 is “1”. Becomes “1”. That is, the output is “1” when the front line is black and white and the current line is black and white, or the front line is black and white and the current line is black and white.
  • the output state of the OR circuit 167 is latched by the D-FF 169 according to the input timing of the control signal PS and becomes the control signal Ctrl_REV.
  • the output of the OR circuit 167 and the output of the AND circuit 166 are input to the OR circuit 168, the output is output when either the output of the OR circuit 167 or the output of the AND circuit 166 is “1”. Becomes “1”. In other words, when the previous line is black and white, the current line is black and white, the previous line is black and white, the current line is black and white, or the previous line is black and white, and the current line is white and white, the output is “ 1 ”.
  • the output state of the OR circuit 168 is latched by the D-FF 170 according to the input timing of the control signal PS and becomes the control signal Ctrl_CS.
  • the control signal Ctrl_REV is a signal for operating the polarity switching control circuit 44 so as to invert the polarity. Therefore, when the output of the OR circuit 167 is “1”, that is, when the previous line is black and white and the current line is majority black and white, or the previous line is black and white and the current line is black and white majority, the polarity is inverted. Will do.
  • the control signal Ctrl_CS is a signal for operating the output short-circuit control circuit 45 so as to perform charge sharing. Therefore, when the OR circuit 168 is “1”, that is, the previous line is black and white, the current line is black and white, the previous line is black and white, the current line is black and white, or the previous line is black and white, When the line is majority white and white, charge sharing is performed.
  • control signal PS when the control signal PS is input, the control signal Ctrl_REV and the control signal Ctrl_CS are latched, and the data regMBB / regMBW / regMWB are latched.
  • this operation changes the data regMBB, regMBW, regMWB to the majority state of the current line, and the preparation for comparison with the majority information of the next line is completed.
  • FIG. 13 is a flowchart showing a processing flow of the data signal line driver 30 when one screen is displayed.
  • FIG. 14 shows a flowchart 1 executed in the processing flow shown in FIG.
  • FIG. 15 shows a flowchart 2 executed in the processing flow shown in FIG.
  • the data signal line driver 30 uses the shift register 31 and the data latch 32 to display grayscale data Data of the first line for starting display in one screen image data. [7: 0] are sequentially fetched (step S201). As a result, a data signal is sent to the source line 22 via the output pad 42 by the processing of the hold latch 34, the level shifter 35, the positive polarity side DAC 36, the negative polarity side DAC 37, the positive polarity operational amplifier 38, and the negative polarity operational amplifier 39. Is output. Then, the data signal is applied to the pixel electrode 24 of the first line, and the liquid crystal panel 20 performs display (step S203).
  • the gradation data Data [7: 0] is sequentially output to the data bus corresponding to the driving method of the liquid crystal panel 20.
  • the liquid crystal panel 20 is driven by source block inversion.
  • the determination circuit 43 performs the processing shown in the flowchart 1 of FIG. 14 and the flowchart 2 of FIG. 15 from the gradation data Data [7: 0] for the first line, and the gradation data Data [7 of the first line. : 0], the combination pattern of black and white of adjacent output pairs is examined. As a result, data regMBB, regMBW, regMWB indicating the majority of the combination of the first line is obtained (step S202).
  • step S202 The processing in step S202 will be specifically described.
  • n number of gradations regarded as black
  • X number of gradations regarded as black
  • the number of appearances of the flags flgBB, flgWW, flgBW, flgWB when processing is performed on the previous line is held in the counters 116 to 119 of the pattern detection circuit 101. Therefore, the number of appearances of the flags flgBB, flgWW, flgBW, flgWB is reset by giving a control signal LS to the counters 116 to 119 (step S232).
  • the determination circuit 43 that is, the black collation circuit 111 and the white collation circuit 112 of the pattern detection circuit 101, examines whether the K and L data display black or white.
  • the determination circuit 43 After examining the data of K and L, the determination circuit 43, that is, the pattern matching circuit 115 determines whether or not “K> n ⁇ X” and “L> n ⁇ X” (K and L are black) are satisfied (step S1). S234).
  • step S234 determines that the combination pattern is “black and black” and sets flag flgBB to “1”. In step S235, the count value of the counter 116 is counted up.
  • step S242 the determination circuit 43 checks whether the output pair is the last (step S242). If it is the last (YES in step S242), the process proceeds to the process of the flowchart 2 in FIG. 15, and if not the last (step S242). NO) is moved to the next output pair data (step S243), and the process returns to step S233 to determine the combination pattern of the next output pair.
  • pattern matching circuit 115 selects “K ⁇ Y” and “L ⁇ Y” (K And L satisfies white) (step S236).
  • step S236 If “K ⁇ Y” and “L ⁇ Y” are satisfied (YES in step S236), pattern matching circuit 115 determines that the combination pattern is “white and white”, sets flag flgWW to “1”, and sets the counter The count value 117 is counted up (step S237). Similarly, the determination circuit 43 checks whether the output pair is the last (step S242), and proceeds to the next process.
  • pattern matching circuit 115 selects “K> n ⁇ X” and “L ⁇ Y” (K is black). , L is white (step S238).
  • step S2308 If “K> n ⁇ X” and “L ⁇ Y” are satisfied (YES in step S238), pattern matching circuit 115 determines that the combination pattern is “black and white” and sets flag flgBW to “1”. Then, the count value of the counter 118 is counted up (step S239). Similarly, the determination circuit 43 checks whether the output pair is the last (step S242), and proceeds to the next process.
  • pattern matching circuit 115 selects “K ⁇ Y” and “L> n ⁇ X” (K Is white and L is black) (step S240).
  • step S240 pattern matching circuit 115 determines that the combination pattern is “monochrome” and sets flag flgWB to “1”. Then, the count value of the counter 119 is counted up (step S241). Similarly, the determination circuit 43 checks whether the output pair is the last (step S242), and proceeds to the next process.
  • determination circuit 43 determines whether the output pair combination pattern is black / black / white / white / black / white / monochrome. Similarly, it is determined whether the output pair is the last (step S242), and the process proceeds to the next process.
  • the determination circuit 43 executes the flowchart 1 of FIG. 14 to determine the combination pattern for all output pairs of one line, and when displaying black and black in one line, display white and white.
  • the number of appearances when displaying black and white is counted.
  • the determination circuit 43 executes the flowchart 2 in FIG. 15 to check which combination pattern appears in large numbers.
  • the determination circuit 43 that is, the majority collation circuit 120 of the pattern detection circuit 101 determines whether or not “flgBB (number of occurrences of black and black pattern)> m ⁇ Z” is satisfied (step S262).
  • the majority collation circuit 120 determines that the black and black pattern is the majority, and sets the flag flgMBB to “1”. Then, this is latched by the D-FF 131 of the polarity inversion and charge share determination circuit 102, so that the data regMBB becomes “1”. The data regMWW / regMBW / regMWB is “0” (step S263). Obtaining this result, the determination circuit 43 returns to the processing of the flowchart of FIG.
  • step S264 majority check circuit 120 determines whether “flgWW (number of appearances of white and white pattern)> m ⁇ Z” is satisfied.
  • the majority collation circuit 120 determines that the white / white pattern is the majority, and sets the flag flgMWW to “1”. As a result, the data regMWW becomes “1”. Further, the data regMBB, regMBW, regMWB becomes “0” (step S265). Obtaining this result, the determination circuit 43 returns to the processing of the flowchart of FIG.
  • majority check circuit 120 determines whether “flgBW (number of appearances of black and white pattern)> m ⁇ Z” is satisfied. (Step S266).
  • step S266 the majority collation circuit 120 determines that the black and white pattern is the majority, and sets the flag flgMBW to “1”. Then, the data regMBW becomes “1” when the D-FF 132 latches this. Further, the data regMBB / regMWW / regMWB becomes “0” (step S267). Obtaining this result, the determination circuit 43 returns to the processing of the flowchart of FIG.
  • step S266 majority check circuit 120 determines whether “flgWB (number of appearances of black and white pattern)> m ⁇ Z” is satisfied. (Step S268).
  • step S268 the majority collation circuit 120 determines that the black and white pattern is the majority, and sets the flag flgMWB to “1”. Then, this is latched by the D-FF 133, so that the data regMWB becomes “1”. Further, the data regMBB / regMWW / regMBW becomes “0” (step S269). Obtaining this result, the determination circuit 43 returns to the processing of the flowchart of FIG.
  • step S268 when “flgWB> m ⁇ Z” is not satisfied (NO in step S268), the determination circuit 43 determines that there is no combination pattern occupying a large number. As a result, all the data regMBB, regMWW, regMBW, regMWB become “0” (step S270). Then, after obtaining this result, the determination circuit 43 returns to the processing of the flowchart of FIG.
  • the determination circuit 43 obtains the values of the data regMBB, regMBW, and regMWB (step S202 in FIG. 13). Note that the processing in step S202 may be performed every time the gradation data is captured, or may be performed after all the gradation data for one line is captured.
  • the determination circuit 43 takes in the gradation data Data [7: 0] for displaying the next line (step S204). Then, the determination circuit 43 determines the combination pattern for all output pairs of one line using the fetched gradation data Data [7: 0], and displays black and black in one line. When white and white are displayed, black and white are displayed, and the number of appearances when black and white is displayed is counted. Thereby, the value of the number of appearances of the flags flgBB, flgWW, flgBW, flgWB is obtained (step S205).
  • the appearance count acquisition operation is the same as the operation in the flowchart 1 of FIG.
  • the determination circuit 43 that is, the majority collation circuit 120 of the pattern detection circuit 101 determines whether “flgBB (number of appearances of black and black pattern)> m ⁇ Z” is satisfied (step S207).
  • the majority collation circuit 120 determines that the black and black pattern is the majority, and sets the flag flgMBB to “1”. In this case, that is, when the display of one line to be output is majority black and black, the determination circuit 43 determines that output polarity inversion and charge sharing are not necessary. Accordingly, the liquid crystal panel performs display without changing the display method (step S216).
  • the flag flgMBB is latched by the D-FF 131 of the polarity inversion and charge share determination circuit 102, so that the data regMBB becomes “1”. Further, the data regMWW / regMBW / regMWB becomes “0” (step S217). That is, the values of the data regMBB, regMWW, regMBW, regMWB are changed with the values of the flags flgMBB, flgMWW, flgMBW, flgMWB obtained from the next line.
  • the determination circuit 43 determines whether the acquired data is for the last line (step S218). In the case of the last line (YES in step S218), determination circuit 43 ends the process. If it is not the last line (NO in step S218), the process returns to step S204, and the determination circuit 43 sequentially obtains the gradation data of the next line and performs the same processing.
  • majority check circuit 120 determines whether “flgWW (number of appearances of white and white pattern)> m ⁇ Z” is satisfied. (Step S208).
  • the majority collation circuit 120 determines that the white / white pattern is the majority, and sets the flag flgMWW to “1”. Then, the determination circuit 43, that is, the AND circuit 136 determines whether or not the data regMBB acquired from the previous line is “1” (step S209).
  • step S209 When the data regMBB is “1” (YES in step S209), that is, when the display of one line to be output is white / white majority and the previous line display is black / black majority, the determination circuit 43 Judge that charge sharing is necessary. Therefore, the control signal Ctrl_CS from the D-FF 140 becomes “1”, and charge sharing is performed (step S210). Thus, the display method is changed so as to perform charge sharing, and the liquid crystal panel performs display (step S216).
  • the data regMWW becomes “1”. Further, the data regMBB / regMBW / regMWB becomes “0” (step S217). If data regMBB is “0” (NO in step S209), the liquid crystal panel performs display without changing the display method (step S216), and determination circuit 43 acquires the data (step S217). After obtaining this result, the determination circuit 43 similarly determines whether the acquired data is for the last line (step S218), and proceeds to the next process or ends the process.
  • majority collation circuit 120 determines whether “flgBW (number of occurrences of black and white pattern)> m ⁇ Z” is satisfied. (Step S211).
  • the majority collation circuit 120 determines that the black and white pattern is the majority, and sets the flag flgMBW to “1”. Then, the determination circuit 43, that is, the AND circuit 135 determines whether or not the data regMWB acquired from the previous line is “1” (step S212).
  • step S212 determines the polarity. Judge that reversal and charge sharing are necessary. Therefore, the control signal Ctrl_REV from the D-FF 139 becomes “1” and the control signal Ctrl_CS from the D-FF 140 becomes “1”, and polarity inversion and charge sharing are performed (step S213). Thereby, the display method is changed so as to perform polarity inversion and charge sharing, and the liquid crystal panel performs display (step S216).
  • step S217 If data regMWB is “0” (NO in step S212), the liquid crystal panel performs display without changing the display method (step S216), and determination circuit 43 acquires the data (step S217). After obtaining this result, the determination circuit 43 similarly determines whether the acquired data is for the last line (step S218), and proceeds to the next process or ends the process.
  • majority check circuit 120 determines whether “flgBW> m ⁇ Z” is satisfied. (Step S214).
  • the majority collation circuit 120 determines that the monochrome pattern is the majority, and sets the flag flgMWB to “1”. Then, the determination circuit 43, that is, the AND circuit 134 determines whether or not the data regMBW acquired from the previous line is “1” (step S215).
  • step S215 determines whether the data regMBW is “1” (YES in step S215). If the data regMBW is “1” (YES in step S215), that is, if the output of one line to be displayed is majority in black and white and the display in the previous line is majority in black and white, the determination circuit 43 determines the polarity. Judge that reversal and charge sharing are necessary. Therefore, the control signal Ctrl_REV from the D-FF 139 becomes “1” and the control signal Ctrl_CS from the D-FF 140 becomes “1”, and polarity inversion and charge sharing are performed (step S213). Thereby, the display method is changed so as to perform polarity inversion and charge sharing, and the liquid crystal panel performs display (step S216).
  • step S217 If data regMBW is “0” (NO in step S215), the liquid crystal panel performs display without changing the display method (step S216), and determination circuit 43 acquires the data (step S217). After obtaining this result, the determination circuit 43 similarly determines whether the acquired data is for the last line (step S218), and proceeds to the next process or ends the process.
  • the data signal line driver 30 outputs a data signal so as to perform display when displaying one screen, and repeatedly determines whether polarity inversion and charge sharing are necessary up to the final line.
  • the determination circuit 43 determines that the output of one line to be output is majority in black and white, the display of the previous line is majority in black and white, and the output of one line to be output is numerous in black and white. If the display of the previous line is black and white majority, it is judged that polarity reversal and charge sharing are necessary. These two cases may occur in the case of the killer pattern in the source block inversion driving shown in FIG. That is, it is determined that polarity inversion and charge sharing are necessary by extracting a pattern in which the display adjacent in the horizontal direction has many black and white and black and white as a killer pattern.
  • FIG. 16 shows a pattern obtained by reversing the polarity of the killer pattern shown in FIG. 24A
  • FIG. 16A shows the pattern
  • FIG. 16B shows an odd line pattern
  • FIG. An even line pattern is shown.
  • the polarity is reversed, but the black and white pattern does not change.
  • FIG. 17A shows the potential change of output 1 and FIG. 17B shows the potential change of output 2 when charge sharing is performed between output 1 and output 2 of the pattern shown in FIG. .
  • output 1 and output 2 are short-circuited due to charge sharing between line 1 and line 3
  • output 1 and output 2 are set to a voltage of “a ′” which is an intermediate voltage between + black and ⁇ white. Become. In this change in voltage, since the charge held by the output 1 and the charge held by the output 2 cancel each other, no current flows.
  • the data signal line driver 30 drives the data lines.
  • the driving voltage is half that of the case where charge sharing is not performed, and the current for driving the data line can be reduced. As a result, the heat generation of the data signal line driver 30 is also reduced.
  • the output 1 and the output 2 are “b ′” which is an intermediate voltage between ⁇ white and + black. Become a voltage. Accordingly, no current flows in the same manner, and a small amount of current is sufficient when shifting to the next potential, so that the data signal line driver 30 generates less heat. Therefore, as a whole, the heat generation of the data signal line driver 30 can be greatly reduced.
  • the determination circuit 43 recognizes the pattern of the image with the majority combination pattern as described above. Therefore, the determination circuit 43 is not limited to a completely killer pattern display, and is a pattern similar to the killer pattern. Can be recognized. Thereby, substantially the same effect can be produced by performing polarity inversion and charge sharing.
  • the determination circuit 43 determines that charge sharing is necessary when the output of one line is majority white and white and the previous line is black and black. In this case, it can be considered as a two-row horizontal stripe pattern in which two rows are white or black and the next two rows are black or white.
  • FIG. 18 shows a two-row horizontal stripe pattern, (a) showing the pattern, (b) showing an odd line pattern, and (c) showing an even line pattern.
  • the white driving voltage is a common potential
  • the voltage displaying black due to charge sharing can be made close to the common voltage.
  • the adjacent output 1 and output 2 display + black and ⁇ black on the line 1. Therefore, when charge sharing is performed, the voltage is “c”, which is a white driving voltage. Therefore, almost no driving power is required for the white display of the next line 3 output.
  • the determination circuit 43 determines that charge sharing is necessary in the case of a two-row horizontal stripe pattern. Further, the determination circuit 43 is not limited to completely displaying a two-row horizontal stripe pattern, and can recognize a pattern similar to the two-row horizontal stripe pattern.
  • the determination circuit 43 determines that the charge share is not valid when the output of one line to be output is majority black and black, and in cases other than the above three cases. For this reason, the display is performed as it is.
  • the determination circuit 43 applies the majority combination pattern in one line corresponding to the gate line 21 previously scanned by the interlace scanning and the gate line 21 scanned this time. Based on the corresponding majority combination pattern in one line, whether or not it is effective to perform polarity inversion on adjacent outputs and charge sharing between adjacent outputs, and without performing the above polarity inversion It is determined whether it is effective to perform charge sharing between adjacent outputs. That is, the determination circuit 43 can recognize the pattern of the image to be displayed and make the above determination.
  • the polarity switching control circuit 44 outputs the polarity by outputting both the control signal Ctrl_REV and the control signal Ctrl_CS.
  • the inversion switch circuits 33 and 41 forcibly invert the polarity of adjacent outputs, and the output short circuit control circuit 45 causes the short circuit switch circuit 40 to short-circuit between adjacent outputs.
  • the output short circuit control circuit 45 causes the short circuit switch circuit 40 to switch between adjacent outputs by outputting the control signal Ctrl_CS. Short circuit.
  • the liquid crystal display device 10 described above shows a case where one pixel is driven by one output, but when one pixel is composed of three pixels of R, G and B, the data signal line driver 30 Three outputs corresponding to R, G, and B are one output unit. For this reason, the polarity of display is changed for each output unit, and it is necessary to configure the output pair to form a pair in the output unit. Specifically, if the three outputs corresponding to R, G, and B are in units of one output, the polarity is changed every three outputs, and it is necessary to judge the display of output pairs between R, G, and B. is there.
  • the number of outputs of the data signal line driver 30 is not limited to 414 outputs.
  • the output of the data signal line driver 30 is required according to the number of pixels in the horizontal direction in FIGS. 1 and 2, and can be set to 2 to 2n (n: positive integer).
  • the above-described liquid crystal display device 10 is a display device including the liquid crystal panel 20 using a liquid crystal element.
  • the liquid crystal display device 10 When the voltage is not applied to the liquid crystal cell 25, the liquid crystal display device 10 is in a transmissive state (white by transmitting backlight light).
  • the liquid crystal cell 25 When the voltage is applied to the liquid crystal cell 25, the liquid crystal cell 25 is in a non-transmissive state (black because it does not transmit light from the backlight) (normally white method).
  • the state where light is most transmitted is one gradation, the gradation is expressed by changing the transmittance by changing the voltage, and the state where the light is least transmitted is 256 gradations.
  • the data signal line driver 30 is compatible with both normally white and normally black display type liquid crystal panels, and each condition can be changed as appropriate, so it can be widely used. is there.
  • the determination circuit 43 of the data signal line driver 30 determines whether polarity inversion and charge sharing are necessary. This determination process is performed by an external controller or the like. It is also possible to do this.
  • the data signal line driving circuit of the present invention includes a plurality of pixel electrodes arranged in a matrix, a plurality of scanning signal lines for supplying scanning signals to the pixel electrodes in the same row, and the pixel electrodes in the same column.
  • the polarity of the data signal created in accordance with the gradation data is applied to each data signal line of the liquid crystal display unit with an adjacent output.
  • a signal signal line drive circuit that outputs the signals opposite to each other, the polarity inversion means for inverting the polarity of the adjacent outputs, the short-circuit means for short-circuiting the adjacent outputs, and the first control signal, First control means for inverting the polarity of the adjacent output with respect to the polarity inverting means, and second control means for shorting the adjacent outputs with respect to the short-circuit means based on a second control signal.
  • Determining means for outputting the first control signal to the first control means and outputting the second control signal to the second control means, wherein the liquid crystal display section is arranged in a column direction.
  • the display at the adjacent output is transparent and non-transparent.
  • the determination means sequentially acquires the gradation data and determines whether the gradation data is in the transmissive state and the non-transmissive state. And using the determination result, display pattern creation means for creating a display pattern composed of the transmission state and the non-transmission state in the adjacent outputs, and count each of the created display patterns for one line.
  • a majority determination means for determining a majority display pattern in the gradation data, and a holding means for holding the majority display pattern in the gradation data for one line previously determined by the majority determination means.
  • the display state determination unit of the determination unit is configured so that the acquired gradation data is in the transmission state and the non-transmission state based on a predetermined gradation range. It is preferable to determine whether it exists. Thus, it is possible to determine the transmission state and the non-transmission state within the gradation range indicated by the gradation data.
  • the predetermined gradation range can be changed by a signal supplied from the outside. This makes it possible to adjust the transmissive state and the non-transmissive state to be recognized.
  • the majority determination means of the determination means is configured to display a display pattern composed of the transmission state and the non-transmission state in the adjacent outputs generated by the display pattern generation means. Among them, it is preferable to determine a display pattern having a predetermined number or more as the display pattern of the majority. This makes it possible to determine the killer pattern by appropriately determining the number.
  • the predetermined number can be changed by a signal given from the outside. Thereby, the recognition pattern can be adjusted.
  • the liquid crystal display device driving method of the present invention includes a plurality of pixel electrodes arranged in a matrix, a plurality of scanning signal lines for supplying scanning signals to the pixel electrodes in the same row, and the pixel electrodes in the same column.
  • a liquid crystal display unit having a plurality of data signal lines for supplying data signals to the liquid crystal display unit, and each data signal line of the liquid crystal display unit has the polarity of the data signal created according to the gradation data with an adjacent output.
  • a method of driving a liquid crystal display device comprising a data signal line drive circuit that outputs each of them in reverse, wherein the gradation data is divided into an odd row or a row for each area in which the liquid crystal display section is divided into a plurality of columns.
  • the gradation data is Next, the majority display pattern of the display pattern consisting of a transmission state in which the display at the adjacent output is transparent and a non-transmission state in which it is non-transparent in the gradation data for one line acquired last time, and this time
  • the adjacent output of the data signal line driving circuit based on the display pattern of the majority of the display patterns composed of the transmission state and the non-transmission state in the adjacent output in the acquired gradation data for one row.
  • the first step is a display state in which the gradation data is sequentially acquired to determine whether the gradation data is in the transmissive state or the non-transmissive state.
  • a display pattern generation step for generating a display pattern composed of the transmission state and the non-transmission state at the adjacent outputs, and each of the generated display patterns is counted.
  • a majority determination step for determining a majority display pattern in the gradation data for a row, and a holding for holding the majority display pattern in the gradation data for one row previously determined in the majority determination step A step, a display pattern of the majority in the gradation data for the previously determined one row, and the upper portion of the currently determined one row Based on the majority of the display pattern in the gradation data, it is desirable to include a control signal output step for selectively outputting the first control signal and the second control signal.
  • the display state determination step based on a predetermined gradation range, whether the acquired gradation data is in the non-transmissive state or the transmissive state. Is preferably determined. Thus, it is possible to determine the transmission state and the non-transmission state within the gradation range indicated by the gradation data.
  • the display pattern composed of the transmission state and the non-transmission state in the adjacent outputs created in the display pattern creation step is selected in advance. It is preferable that a display pattern having a predetermined number or more is determined as the majority display pattern. This makes it possible to determine the killer pattern by appropriately determining the number.
  • the liquid crystal display unit is a normally white display type, and in the first step, the majority of the gradation data for one row acquired previously is used.
  • the display pattern is a “non-transparent state / non-transparent state” display pattern, and the majority display pattern in the gradation data for one row acquired this time is the “transparent state / transparent state” display pattern.
  • the polarity reversal is unnecessary and the short circuit is necessary. Thereby, current consumption can be reduced.
  • the liquid crystal display unit is a normally white display type, and in the first step, the majority of the gradation data for one row acquired previously is used.
  • the display pattern is a “transparent state / non-transparent state” display pattern, and the majority display pattern in the gradation data for one line acquired this time is the “non-transparent state / transparent state” display pattern.
  • the liquid crystal display unit is a normally white display type, and in the first step, the majority of the gradation data for one row acquired previously is used.
  • the display pattern is a “non-transparent state / transparent state” display pattern, and the majority display pattern in the gradation data for one line acquired this time is the “transparent state / non-transparent state” display pattern.
  • the liquid crystal display unit is a normally black display type.
  • the majority of the gradation data for one row acquired last time is used.
  • the display pattern is a “transparent state / transparent state” display pattern, and the majority display pattern in the gradation data for one line acquired this time is the “non-transparent state / non-transparent state” display pattern.
  • the polarity reversal is unnecessary and the short circuit is necessary. Thereby, current consumption can be reduced.
  • the liquid crystal display unit is a normally black display type.
  • the majority of the gradation data for one row acquired last time is used.
  • the display pattern is a “non-transparent state / transparent state” display pattern, and the majority display pattern in the gradation data for one line acquired this time is the “transparent state / non-transparent state” display pattern.
  • the liquid crystal display unit is a normally black display type.
  • the majority of the gradation data for one row acquired last time is used.
  • the display pattern is a “transparent state / non-transparent state” display pattern, and the majority display pattern in the gradation data for one line acquired this time is the “non-transparent state / transparent state” display pattern.
  • the polarity inversion of the adjacent outputs of the data signal line driving circuit and the necessity of short circuit between the adjacent outputs of the data signal line driving circuit are determined as described above. It is desirable to carry out in the data signal line driving circuit.
  • the present invention can be suitably used in the field related to a data signal line driving circuit that outputs a data signal to a liquid crystal panel, and is also suitable in the field related to a method for manufacturing a data signal line driving circuit and a method for controlling a data signal line driving circuit. Further, it can be widely used in the field of liquid crystal display devices such as TVs and mobile phones provided with a data signal line driver circuit, and manufacturing methods thereof.
  • Liquid crystal display device 20 Liquid crystal panel (liquid crystal display part) 21 Gate line (scanning signal line) 22 Source line (data signal line) 24 pixel electrode 30 data signal line driver (data signal line driver circuit) 31 Shift register 32 Data latch 33, 41 Polarity inversion switch circuit (polarity inversion means) 34 Hold latch 35 Level shifter 36 Positive side DAC 37 Negative polarity DAC 38 Operational amplifier for positive polarity 39 Operational amplifier for negative polarity 40 Short-circuit switch circuit (short-circuit means) 41 polarity reversing switch circuit 43 determination circuit (determination means) 44 Polarity switching control circuit (first control means) 45 Output short-circuit control circuit (second control means) 46 setting register 101 pattern detection circuit 102 charge share determination circuit 111 black verification circuit (display state determination means) 112 White verification circuit (display state determination means) 113,114 D-FF 115 Pattern matching circuit (display pattern creation means) 116 to 119 Counter 120 to 123 Majority verification circuit (majority determination means) 161-16

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Liquid Crystal (AREA)

Abstract

A data signal-line driver (30) that outputs, to source lines (22) of a liquid-crystal panel (20), data signals that are in accordance with gradation data, as adjacent outputs with opposite polarities; wherein the data signal-line driver (30) is provided with a polarity-switching control circuit (44) that reverses the polarities of adjacent outputs of polarity-reversal switching circuits (33, 41), based on a control signal (Ctrl_REV); an output short-circuiting control circuit (45) that short-circuits adjacent outputs of short-circuit switching circuits (40), based on a control signal (Ctrl_CS); and an assessing circuit (43) that successively obtains gradation data, and selectively outputs the control signal (Ctrl_REV) and the control signal (Ctrl_CS), based on a display pattern, consisting of penetrating-states and non-penetrating-states at adjacent outputs, of the majority of the one-line's worth of gradation data that was obtained the last time, and a display pattern of the majority of the one-line's worth of gradation data that was obtained currently. In such a way, current consumption is reduced, and heating due to this current consumption is reduced, when displaying a peculiar image upon source-block reversal driving.

Description

データ信号線駆動回路、液晶表示装置、および液晶表示装置の駆動方法Data signal line driving circuit, liquid crystal display device, and liquid crystal display device driving method
 本発明は、データ信号線駆動回路、液晶表示装置、および液晶表示装置の駆動方法に関するものであり、特に、データ信号線および走査信号線毎に極性を変更して表示を行うドット反転駆動、さらには、走査する区間を分けて、区間内では飛び越し走査を行うソースブロック反転駆動において、液晶表示装置の制御とは別に、データ信号線駆動回路が画像のパターンを認識して、独自に極性反転の制御およびチャージシェアの制御を行う技術に関するものである。 The present invention relates to a data signal line driving circuit, a liquid crystal display device, and a driving method of the liquid crystal display device, and in particular, dot inversion driving for changing the polarity for each data signal line and scanning signal line, In the source block inversion driving, in which the scanning interval is divided and the interlaced scanning is performed in the interval, the data signal line driving circuit recognizes the image pattern separately from the control of the liquid crystal display device, and independently performs the polarity inversion. The present invention relates to a technique for performing control and charge share control.
 従来、アクティブマトリクス型の液晶パネルが広く使われている。アクティブマトリクス型の液晶パネルは、液晶層を挟む2枚の透明基板のうちの一方の透明基板上に、複数のデータ信号線(以下「データ線」と称する)と、その複数のデータ線に交差する複数の走査信号線とを形成し、各交差点に対応して形成される画素電極をマトリクス状(行列状)に配置した構成となっている。各画素電極は、それに対応する交差点を通過するデータ線に、スイッチング素子としてのTFT(Thin Film Transistor:薄膜トランジスタ)を介して接続され、TFTのゲート端子は、その交差点を通過する走査信号線に接続されている。そして、他方の透明基板には、複数の画素電極に共通の対向電極が共通電極として形成されている。 Conventionally, active matrix liquid crystal panels have been widely used. An active matrix type liquid crystal panel crosses a plurality of data signal lines (hereinafter referred to as “data lines”) and the plurality of data lines on one of the two transparent substrates sandwiching the liquid crystal layer. A plurality of scanning signal lines are formed, and pixel electrodes formed corresponding to each intersection are arranged in a matrix (matrix). Each pixel electrode is connected to a data line passing through a corresponding intersection through a TFT (Thin Film Transistor) as a switching element, and a gate terminal of the TFT is connected to a scanning signal line passing through the intersection. Has been. On the other transparent substrate, a common electrode common to a plurality of pixel electrodes is formed as a common electrode.
 このような構成の液晶パネルを備える液晶表示装置は、その液晶パネルに画像を表示させるための駆動回路として、ゲートドライバおよびソースドライバを備えている。ゲートドライバは、走査信号線駆動回路とも呼ばれ、複数の走査信号線を順次に選択するための走査信号を、複数の走査信号線に印加する駆動回路である。ソースドライバは、データ信号線駆動回路または映像信号線駆動回路とも呼ばれ、液晶パネルにおける各画素形成部にデータを書き込むためのデータ信号を、複数のデータ線に印加する駆動回路である。 The liquid crystal display device including the liquid crystal panel having such a configuration includes a gate driver and a source driver as a drive circuit for displaying an image on the liquid crystal panel. The gate driver is also called a scanning signal line driving circuit, and is a driving circuit that applies a scanning signal for sequentially selecting a plurality of scanning signal lines to the plurality of scanning signal lines. The source driver is also called a data signal line drive circuit or a video signal line drive circuit, and is a drive circuit that applies a data signal for writing data to each pixel formation portion in the liquid crystal panel to a plurality of data lines.
 画素電極に対向する共通電極には、共通電圧Vcomが印加される。ゲートドライバによって選択された画素電極には、ソースドライバからデータ信号が印加される。各画素電極と共通電極との間に印加する電圧に応じて液晶層の透過率を変化させることによって、液晶パネルに画像が表示される。このとき、液晶層を構成する液晶材料の劣化を防止するために、液晶パネルは交流駆動される。すなわち、各画素電極と共通電極との間に印加される電圧の正負の極性が、例えば1フレーム毎に反転するように、ソースドライバはデータ信号を出力する。 The common voltage Vcom is applied to the common electrode facing the pixel electrode. A data signal is applied from the source driver to the pixel electrode selected by the gate driver. An image is displayed on the liquid crystal panel by changing the transmittance of the liquid crystal layer according to the voltage applied between each pixel electrode and the common electrode. At this time, the liquid crystal panel is AC driven in order to prevent deterioration of the liquid crystal material constituting the liquid crystal layer. That is, the source driver outputs a data signal so that the positive and negative polarities of the voltage applied between each pixel electrode and the common electrode are inverted, for example, every frame.
 ところが、一般に、アクティブマトリクス型の液晶パネルでは、画素毎に設けられたTFT等のスイッチング素子の特性にばらつきがあるため、ソースドライバから出力されるデータ信号(共通電極の電位を基準とする印加電圧)の正負が対称であっても、液晶層の透過率は正負のデータ信号に対して完全に対称とはならない。このため、1フレーム毎に液晶層への印加電圧の正負極性を反転させる駆動方式(フレーム反転駆動方式)では、液晶パネルにおける表示においてチラツキが発生する。 However, in general, in an active matrix liquid crystal panel, characteristics of switching elements such as TFTs provided for each pixel vary, and therefore, a data signal output from a source driver (applied voltage based on the potential of the common electrode). The transmittance of the liquid crystal layer is not completely symmetric with respect to the positive and negative data signals even if the positive and negative signs of) are symmetric. For this reason, in the driving method (frame inversion driving method) in which the positive / negative polarity of the voltage applied to the liquid crystal layer is inverted every frame, flickering occurs in the display on the liquid crystal panel.
 このようなチラツキの対策としては、1水平走査信号線毎に印加電圧の正負極性を反転させつつ、1フレーム毎にも正負極性を反転させる駆動方式が知られている。また、画素を形成する液晶層への印加電圧の正負極性を、1走査信号線毎かつ1データ線毎に反転させつつ、1フレーム毎にも反転させる駆動方式(ドット反転駆動方式)も知られている。 As a countermeasure against such flickering, there is known a driving method in which the positive / negative polarity of the applied voltage is inverted for each horizontal scanning signal line and the positive / negative polarity is inverted for each frame. Also known is a driving method (dot inversion driving method) that inverts the positive / negative polarity of the voltage applied to the liquid crystal layer forming the pixel for each scanning signal line and for each data line, and for each frame. ing.
 図20に、ドット反転駆動方式で液晶パネルを駆動した場合のソースドライバの出力波形を示す。図20に示すように、ソースドライバは、1走査信号線毎に、共通電極に印加される共通電圧Vcomよりも高い電圧の正極性データ信号Vpdataと、共通電圧Vcomよりも低い電圧の負極性データ信号Vndataとの出力を繰り返している。 FIG. 20 shows the output waveform of the source driver when the liquid crystal panel is driven by the dot inversion driving method. As shown in FIG. 20, the source driver has a positive data signal Vpdata having a voltage higher than the common voltage Vcom applied to the common electrode and a negative data having a voltage lower than the common voltage Vcom for each scanning signal line. The output with the signal Vndata is repeated.
 ところが、ソースドライバには、多数の出力バッファが設けられており、出力バッファの各々が各データ線に接続され、各データ線および各液晶セルの負荷を駆動する。このため、ソースドライバが正極性データ信号Vpdataを出力する場合、上記負荷へ高電位電圧VDDからの充電電流が流れる。一方、ソースドライバが負極性データ信号Vndataを出力する場合、低電位電圧VSSへの放電電流が流れる。充電電流および放電電流は、ソースドライバに設けられる出力バッファ内の内部抵抗を通過するため、発熱量が増加する。 However, the source driver is provided with a number of output buffers, and each of the output buffers is connected to each data line and drives the load of each data line and each liquid crystal cell. For this reason, when the source driver outputs the positive data signal Vpdata, a charging current from the high potential voltage VDD flows to the load. On the other hand, when the source driver outputs the negative data signal Vndata, a discharge current to the low potential voltage VSS flows. Since the charging current and the discharging current pass through the internal resistance in the output buffer provided in the source driver, the amount of heat generation increases.
 ソースドライバの内部からの発熱は、主に出力バッファ部から発生する。それゆえ、ソースドライバの発熱量を低減するためには、出力バッファ部からの発熱、特に出力バッファの出力部からの発熱を最小化しなくてはならない。しかし、図20に示すように、データ信号の電位が正極性データ信号Vpdataと負極性データ信号Vndataとの間でスイングすると、そのスイングの幅に従って、出力バッファ内の内部抵抗による発熱が大きくなる。また、充放電回数が多くなるため、消費電力も増加してしまう。 ¡Heat generation from inside the source driver mainly occurs from the output buffer. Therefore, in order to reduce the heat generation amount of the source driver, the heat generation from the output buffer section, particularly the heat generation from the output section of the output buffer must be minimized. However, as shown in FIG. 20, when the potential of the data signal swings between the positive data signal Vpdata and the negative data signal Vndata, the heat generated by the internal resistance in the output buffer increases according to the width of the swing. Moreover, since the number of times of charging / discharging increases, power consumption also increases.
 そこで、上記消費電力の増加を防ぐ1つの方法として、飛び越し走査による駆動方式(インターレース駆動方式)が提案されている(例えば、特許文献1参照)。特許文献1に記載の飛び越し走査では、すべての奇数行(または偶数行)の走査信号線をまず走査し、次に残りの偶数行(または奇数行)の走査信号線を走査する。 Therefore, as one method for preventing the increase in power consumption, a driving method using interlaced scanning (interlace driving method) has been proposed (for example, see Patent Document 1). In the interlace scanning described in Patent Document 1, all odd-numbered (or even-numbered) scanning signal lines are scanned first, and then the remaining even-numbered (or odd-numbered) scanning signal lines are scanned.
 図21に、飛び越し走査を行った場合のソースドライバの出力波形を示す。飛び越し走査では、極性が同一となる画素の行を順次走査することになるので、極性の反転は、奇数ラインの走査から偶数ラインの走査に切り替わるタイミングで行われる。この図21に示す出力状態を、図20に合わせて、走査信号線を1,2,3…と順に並び替えたときの、ソースドライバの出力波形を図22に示す。 Fig. 21 shows the output waveform of the source driver when interlaced scanning is performed. In interlaced scanning, rows of pixels with the same polarity are sequentially scanned, so that polarity inversion is performed at the timing when switching from odd-numbered line scanning to even-numbered line scanning is performed. FIG. 22 shows the output waveform of the source driver when the output state shown in FIG. 21 is rearranged in order of 1, 2, 3,... According to FIG.
 図22は、飛び越し走査を行った場合の、1フレームの走査、すなわち、奇数ラインと偶数ラインとの両方の走査が完了した時点でのソースドライバの出力波形を示している。ソースドライバの出力波形は、図20に示したドット反転駆動方式でのソースドライバの出力波形と同様の状態が得られる。 FIG. 22 shows the output waveform of the source driver at the time when one frame of scanning, that is, scanning of both odd and even lines, is completed when interlaced scanning is performed. The output waveform of the source driver is the same as the output waveform of the source driver in the dot inversion driving method shown in FIG.
 このように、飛び越し走査では、走査信号線毎の極性反転駆動が可能であるとともに、極性反転回数を抑えることが可能である。よって、充放電回数が減り、消費電力の増加を抑えることが可能となる。 Thus, in interlaced scanning, polarity inversion driving for each scanning signal line is possible and the number of polarity inversions can be suppressed. Therefore, the number of times of charging / discharging is reduced, and an increase in power consumption can be suppressed.
 しかし、特許文献1のように、液晶パネルの全画面にわたって飛び越し走査を行うと、チラツキを招くことから、表示部を列方向に複数の区域に分割し、各区域毎に飛び越し走査走査を行う駆動方法が提案されている(例えば、特許文献2参照)。 However, as in Patent Document 1, when interlaced scanning is performed over the entire screen of the liquid crystal panel, flickering is caused. Therefore, the display unit is divided into a plurality of areas in the column direction, and driving for performing interlaced scanning scanning for each area is performed. A method has been proposed (see, for example, Patent Document 2).
 図23に、特許文献2に記載の駆動を行った場合の走査順序を示す。8ラインの画素電極を持つ表示部が、区域1および区域2に分割されている。そして、各区域毎に、飛び越し走査を奇数2ラインから偶数2ラインの順番で行う。この走査では、区域1および区域2の各選択期間中に、異なる極性のデータ信号が与えられるので、チラツキを抑えることが可能となる。なお、この駆動方式を、ソースブロック反転駆動方式と呼ぶこととする。 FIG. 23 shows a scanning order when the driving described in Patent Document 2 is performed. A display portion having 8 lines of pixel electrodes is divided into a section 1 and a section 2. Then, interlaced scanning is performed in order from odd two lines to even two lines for each section. In this scanning, data signals having different polarities are given during each selection period of the area 1 and the area 2, and flickering can be suppressed. This driving method is called a source block inversion driving method.
 また、上記ドット反転駆動における、液晶の充放電に伴う消費電力を削減する方法として、チャージシェアと呼ばれる特許文献3に記載の方法がある。この方法は、ブランキング期間において、切離しスイッチでテジタル・アナログ変換手段と出力端子とを切り離し、短絡スイッチで出力端子間を短絡する。これにより、同一出力端子に印加される駆動信号を反転する際に、出力端子間が短絡して同電位となるまでの期間の電力消費を無くすことができる。 Further, as a method for reducing power consumption associated with charging / discharging of liquid crystal in the dot inversion driving, there is a method described in Patent Document 3 called charge sharing. In this method, in the blanking period, the digital / analog converting means and the output terminal are disconnected by a disconnect switch, and the output terminals are short-circuited by a short-circuit switch. Thereby, when inverting the drive signal applied to the same output terminal, it is possible to eliminate power consumption during a period from when the output terminals are short-circuited to the same potential.
 なお、上記電力消費は、出力端子間が短絡して同電位となった後、反転までの期間において発生するが、出力端子間短絡により同電位となった出力端子の電位は、反転時の駆動信号の電位に近くなっているので、駆動信号反転時の消費電力を低減することができる。 The above power consumption occurs in the period from when the output terminals are short-circuited to the same potential until the inversion, but the potential of the output terminals that have become the same potential due to the short-circuit between the output terminals is the driving during inversion. Since it is close to the potential of the signal, power consumption when the drive signal is inverted can be reduced.
 ところが、本来は消費電流が少なく、発熱の少ない駆動方式であるソースブロック反転駆動方式であるが、キラー・パターンと呼ばれる特殊な画像のパターンを表示すると、消費電流が多くなり発熱の問題が発生することが分かってきた。 However, it is a source block inversion driving method that is originally a driving method that consumes less current and generates less heat. However, when a special image pattern called a killer pattern is displayed, current consumption increases and a problem of heat generation occurs. I understand that.
 図24は、ソースブロック反転駆動方式のキラー・パターンと呼ばれるパターンを示しており、(a)は当該パターンを示し、(b)は奇数ラインのパターンを示し、(c)は偶数ラインのパターンを示している。 FIG. 24 shows a pattern called a killer pattern of the source block inversion driving method, where (a) shows the pattern, (b) shows an odd line pattern, and (c) shows an even line pattern. Show.
 図24の(a)に示すように、キラー・パターンは、走査信号線方向2画素毎に黒と白とが交互に表示され、データ線毎に黒と白とが交互に表示されるパターンである。このキラー・パターンを飛び越し走査した場合、奇数ラインの表示は図24の(b)に示すようになり、偶数ラインの表示は図24の(c)に示すようになる。このため、ソースドライバは、1走査信号線の駆動電圧が出力される毎に、黒の駆動電圧と白の駆動電圧とを出力する。 As shown in FIG. 24A, the killer pattern is a pattern in which black and white are alternately displayed for every two pixels in the scanning signal line direction, and black and white are alternately displayed for each data line. is there. When this killer pattern is interlaced, the odd lines are displayed as shown in FIG. 24B, and the even lines are displayed as shown in FIG. For this reason, the source driver outputs a black driving voltage and a white driving voltage each time the driving voltage of one scanning signal line is output.
 ここで、ノーマリーホワイト方式の表示タイプとすると、白の駆動電圧は、液晶画素に電圧が掛からない状態にするため、液晶パネルの共通電極の電圧と等しい。黒の駆動電圧は、液晶画素に電圧をかけた状態にする電圧であり、共通電極に対してプラスの電圧(正極性)とマイナスの電圧(負極性)とを掛ける場合がある。例えば、白の駆動電圧が6Vに対して、黒の駆動電圧は0Vおよび+12Vである。それゆえ、ソースドライバの出力が黒と白とを交互に出力した場合、走査信号線毎に出力電圧が変化するため、消費電流が増加し発熱が問題となる。 Here, in the case of a normally white display type, the white driving voltage is equal to the voltage of the common electrode of the liquid crystal panel so that no voltage is applied to the liquid crystal pixels. The black driving voltage is a voltage for applying a voltage to the liquid crystal pixels, and a positive voltage (positive polarity) and a negative voltage (negative polarity) may be applied to the common electrode. For example, the white driving voltage is 6V, while the black driving voltage is 0V and + 12V. Therefore, when the output of the source driver alternately outputs black and white, the output voltage changes for each scanning signal line, so that current consumption increases and heat generation becomes a problem.
 ソースブロック反転駆動方式では、ブロック内では飛び越し走査を行うため走査毎に極性が変化しないので、チャージシェアを行わないのが一般的だが、ここで、消費電力を低減する目的で、ソースブロック反転駆動を行ってキラー・パターンを表示したときに、特許文献3のように出力間のチャージシェアを行う場合を考える。例えば、図24の(b)に示すように、出力1のライン1は+極性の黒であり、出力2のライン1は-極性の白である。この電位状態を図25の(a)(b)に示す。 In the source block inversion driving method, since the interlace scanning is performed in the block, the polarity does not change every scanning, so it is common not to perform charge sharing. However, here, in order to reduce power consumption, source block inversion driving Let us consider a case where charge sharing between outputs is performed as shown in Patent Document 3 when a killer pattern is displayed. For example, as shown in FIG. 24B, line 1 of output 1 is black with positive polarity, and line 1 of output 2 is white with negative polarity. This potential state is shown in FIGS.
 図25は、出力1と出力2との間でチャージシェアを行った場合における、(a)は出力1の電位変化を示し、(b)は出力2の電位変化を示す。ソースブロック反転駆動ではライン1とライン3との間にチャージシェアを行うので、出力1と出力2とを短絡した場合、出力1の電圧および出力2の電圧は、+黒と-白との中間電圧である“a”の電圧になる。そして、短絡を開放した後、ライン3に表示を行うために、出力1は+白の電圧を出力し、出力2は-黒の電圧を出力する。 25A shows a change in the potential of output 1 and FIG. 25B shows a change in the potential of output 2 when charge sharing is performed between output 1 and output 2. FIG. In source block inversion drive, charge sharing is performed between line 1 and line 3, so when output 1 and output 2 are short-circuited, the voltage of output 1 and the voltage of output 2 are intermediate between + black and -white. The voltage is “a”. Then, after opening the short circuit, output 1 outputs a + white voltage and output 2 outputs a -black voltage in order to display on line 3.
 この結果、出力2は、一端反対方向に電位が変化した後、ライン3で出力すべき-黒の電圧になるため、-黒の電圧を出力する際に、チャージシェアを行わない場合と比べて電流を多く流す必要がある。ライン3からライン5へ走査する場合も同様であり、出力1と出力2との短絡により+白と-黒との中間電圧である“b”の電圧になるため、出力1が+黒を出力する際に、より多くの電流を必要としてしまう。よって、ソースブロック反転駆動を行ってキラー・パターンを表示する際、出力間のチャージシェアは消費電力の低減に有効ではない。 As a result, since the output 2 becomes a black voltage to be output on the line 3 after the potential changes in the opposite direction, the output 2 is compared with the case where the charge sharing is not performed when the black voltage is output. It is necessary to pass a large amount of current. The same is true when scanning from line 3 to line 5; output 1 outputs + black because the output 1 and output 2 are short-circuited, resulting in a voltage of “b” that is an intermediate voltage between + white and −black. When doing so, more current is required. Therefore, when a killer pattern is displayed by performing source block inversion driving, charge sharing between outputs is not effective in reducing power consumption.
 そこで、例えば、特許文献4に、画像の代表階調を判断してチャージシェアを行う技術が記載されている。特許文献4に記載の技術では、垂直方向2ライン毎ドット反転駆動において、データ毎にチャージシェアを行うのではなく、(1)データ電圧の極性変更毎にチャージシェアを行うとともに、(2)極性変更しない場合で、かつ表示している階調と次に表示する階調とで白から黒に変わる場合(代表階調がホワイト階調からブラック階調に変化するとき)にチャージシェアを行う。 Therefore, for example, Patent Document 4 describes a technique for performing charge sharing by determining a representative gradation of an image. In the technique described in Patent Document 4, charge sharing is not performed for each data in the dot inversion driving every two lines in the vertical direction, but (1) charge sharing is performed every time the polarity of the data voltage is changed. Charge sharing is performed when there is no change and when the displayed gradation and the gradation to be displayed change from white to black (when the representative gradation changes from the white gradation to the black gradation).
 また、特許文献4に記載の技術では、通常、水平方向は1ライン毎ドット反転駆動を行っているが、脆弱パターンを検出したときには、水平方向も2ライン毎ドット反転にすることにより、脆弱パターンでの表示不具合が起こらないようにしている。 In the technique described in Patent Document 4, normally, the dot inversion drive is performed for each line in the horizontal direction. However, when the weak pattern is detected, the weak pattern is also obtained by performing the dot inversion for every two lines in the horizontal direction. The display trouble in is prevented from occurring.
日本国公開特許公報「特開平8-320674号公報(1996年12月3日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 8-32074 (published on Dec. 3, 1996)” 日本国公開特許公報「特開平11-352938号公報(1999年12月24日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 11-352938 (published December 24, 1999)” 日本国公開特許公報「特開平9-212137公報(1997年8月15日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 9-212137 (published on August 15, 1997)” 日本国公開特許公報「特開2009-9088(平成21年1月15日公開)」Japanese Patent Publication “JP 2009-9088 (published Jan. 15, 2009)”
 しかしながら、特許文献4に記載の技術では、図26に示すような特定のパターンの表示の際にチャージシェアを適用した場合、逆に消費電流が増加するという問題点を有しており、全てのパターンに対し有効なチャージシェアを適用できない。 However, the technique described in Patent Document 4 has a problem that current consumption increases when charge sharing is applied in displaying a specific pattern as shown in FIG. A valid charge share cannot be applied to the pattern.
 図27は、図26に示すパターンにおいて出力1と出力2との間でチャージシェアを行った場合における、(a)は出力1の電位変化を示し、(b)は出力2の電位変化を示す。出力1と出力2との間でチャージシェアを行った場合、図27の(a)(b)に示すように、a点・b点がチャージシェア電圧になる。よって、特に、図27の(b)に示す出力2において、逆に消費電流が増加する現象が発生している。 27A shows the potential change of output 1 and FIG. 27B shows the potential change of output 2 when charge sharing is performed between output 1 and output 2 in the pattern shown in FIG. . When charge sharing is performed between the output 1 and the output 2, as shown in FIGS. 27A and 27B, the points a and b become the charge sharing voltage. Therefore, in particular, in the output 2 shown in FIG. 27 (b), a phenomenon occurs in which the current consumption increases.
 このため、特許文献4では、白から黒への変化時のみにチャージシェアを行うことにしており、黒から白に変わる場合や、白黒から黒白、黒白から白黒に変化する場合には対応することができない。また、特許文献4では、脆弱パターンを検出するものの、上述のようにその対策はチャージシェアを行うことではないため、消費電流の低減は十分になされていない。 For this reason, in Patent Document 4, charge sharing is performed only when the color changes from white to black, and it corresponds to the case where the color changes from black to white, or from black and white to black and white, and from black and white to black and white. I can't. Further, in Patent Document 4, although a weak pattern is detected, as described above, the countermeasure is not to perform charge sharing, and thus the current consumption is not sufficiently reduced.
 本発明は、上記従来の問題点に鑑みなされたものであって、その目的は、ソースブロック反転駆動において、キラー・パターンと呼ばれる特殊な画像を表示するときであっても、消費電流を低減し、これに起因する発熱を低減することができるデータ信号線駆動回路、液晶表示装置、および液晶表示装置の駆動方法を提供することにある。 The present invention has been made in view of the above-described conventional problems, and its purpose is to reduce current consumption even when displaying a special image called a killer pattern in source block inversion driving. Another object of the present invention is to provide a data signal line driving circuit, a liquid crystal display device, and a driving method for the liquid crystal display device, which can reduce heat generation due to this.
 本発明のデータ信号線駆動回路は、上記課題を解決するために、行列に配置された複数の画素電極、同一行の上記画素電極に走査信号をそれぞれ供給するための複数の走査信号線、および、同一列の上記画素電極にデータ信号をそれぞれ供給するための複数のデータ信号線を有する液晶表示部に対して、該液晶表示部の各データ信号線に、階調データに応じて作成した上記データ信号を隣り合う出力で極性を反対にしてそれぞれ出力するデータ信号線駆動回路であって、上記隣り合う出力の極性を反転する極性反転手段と、上記隣り合う出力間を短絡する短絡手段と、第1制御信号に基づいて、上記極性反転手段に対し上記隣り合う出力の極性を反転させる第1制御手段と、第2制御信号に基づいて、上記短絡手段に対し上記隣り合う出力間を短絡させる第2制御手段と、上記第1制御信号を上記第1制御手段に出力するとともに、上記第2制御信号を上記第2制御手段に出力する判断手段とを備え、上記階調データは、上記液晶表示部が列方向に複数に分割された区域毎に、奇数行または偶数行の上記走査信号線が順番に走査された後に、偶数行または奇数行の上記走査信号線が順番に走査される飛び越し走査に対応して、順次供給されており、上記判断手段は、上記階調データを順次取得し、前回取得した1行分の階調データにおける、上記隣り合う出力での表示が透過になる透過状態および非透過になる非透過状態からなる表示パターンの多数派の表示パターンと、今回取得した1行分の階調データにおける、上記隣り合う出力での上記透過状態および上記非透過状態からなる表示パターンの多数派の表示パターンとに基づいて、上記第1制御信号および上記第2制御信号を選択的に出力することを特徴としている。 In order to solve the above problems, a data signal line driving circuit of the present invention includes a plurality of pixel electrodes arranged in a matrix, a plurality of scanning signal lines for supplying scanning signals to the pixel electrodes in the same row, and For the liquid crystal display unit having a plurality of data signal lines for supplying data signals to the pixel electrodes in the same column, each data signal line of the liquid crystal display unit is created according to the gradation data. A data signal line drive circuit for outputting data signals with opposite polarities at adjacent outputs, polarity inversion means for inverting the polarity of the adjacent outputs, and short-circuit means for short-circuiting between the adjacent outputs, The first control means for inverting the polarity of the adjacent output to the polarity inverting means based on the first control signal, and the adjacent output to the short-circuit means based on the second control signal. And a second control means for outputting the first control signal to the first control means and a determination means for outputting the second control signal to the second control means. The odd-numbered or even-numbered scanning signal lines are scanned in order after the liquid crystal display section is divided into a plurality of sections in the column direction, and then the even-numbered or odd-numbered scanning signal lines are scanned in order. The determination means sequentially acquires the gradation data, and the display at the adjacent output in the previously acquired gradation data for one row is transmitted. The display pattern of the majority of the display pattern consisting of the transparent state that becomes non-transparent and the non-transparent state that becomes non-transparent, and the transmissive state and non-transparent state of the adjacent output in the gradation data for one row acquired this time From Based on the majority of the display pattern of the display pattern that is characterized by selectively outputting the first control signal and the second control signal.
 上記の構成によれば、判断手段は、飛び越し走査で前回走査された走査信号線に対応する1ラインにおける多数派の表示パターンと、今回走査されている走査信号線に対応する1ラインにおける多数派の表示パターンとに基づいて、隣り合う出力で極性反転を行い、かつ隣り合う出力間でチャージシェアを行うことが有効か否か、また、上記極性反転を行わずに隣り合う出力間でチャージシェアを行うことが有効か否かを判断することが可能となる。つまりは、判断手段は、表示する画像のパターンを認識して、上記判断を行うことが可能となる。 According to the above configuration, the determination means includes the majority display pattern in one line corresponding to the scanning signal line previously scanned by the interlaced scanning and the majority in one line corresponding to the scanning signal line currently scanned. Based on the display pattern, whether or not it is effective to invert polarity between adjacent outputs and perform charge sharing between adjacent outputs, and charge sharing between adjacent outputs without performing the above polarity inversion It is possible to determine whether or not it is effective. That is, the determination means can recognize the pattern of the image to be displayed and make the above determination.
 隣り合う出力で極性反転を行い、かつ隣り合う出力間でチャージシェアを行うことが有効と判断した場合は、第1制御信号および第2制御信号の両方を出力することで、第1制御手段により極性反転手段は隣り合う出力の極性を反転し、第2制御手段により短絡手段は隣り合う出力間を短絡する。 When it is determined that it is effective to invert the polarity with adjacent outputs and perform charge sharing between adjacent outputs, the first control means outputs both the first control signal and the second control signal. The polarity inversion means inverts the polarity of adjacent outputs, and the second control means causes the short-circuit means to short-circuit between adjacent outputs.
 また、極性反転を行わずに隣り合う出力間でチャージシェアを行うことが有効と判断した場合は、第2制御信号を出力することで、第2制御手段により短絡手段は隣り合う出力間を短絡する。 In addition, when it is judged that it is effective to perform charge sharing between adjacent outputs without performing polarity reversal, the second control means outputs a short circuit between adjacent outputs by outputting the second control signal. To do.
 よって、有効的にチャージシェアが行われるので、液晶表示部が列方向に複数に分割された区域毎に飛び越し走査が行われる駆動において、キラー・パターンと呼ばれる特殊な画像を表示するときであっても、消費電流を低減し、これに起因する発熱を低減することが可能となる。 Therefore, since effective charge sharing is performed, when the liquid crystal display unit displays a special image called a killer pattern in driving in which interlaced scanning is performed for each of the divided areas in the column direction. However, current consumption can be reduced, and heat generation due to this can be reduced.
 本発明の液晶表示装置は、行列に配置された複数の画素電極、同一行の上記画素電極に走査信号をそれぞれ供給するための複数の走査信号線、および、同一列の上記画素電極にデータ信号をそれぞれ供給するための複数のデータ信号線を有する液晶表示部と、上記液晶表示部の各データ信号線に、階調データに応じて作成した上記データ信号を隣り合う出力で極性を反対にしてそれぞれ出力する上記データ信号線駆動回路とを備えることを特徴としている。 The liquid crystal display device of the present invention includes a plurality of pixel electrodes arranged in a matrix, a plurality of scanning signal lines for supplying scanning signals to the pixel electrodes in the same row, and a data signal to the pixel electrodes in the same column. A liquid crystal display unit having a plurality of data signal lines for supplying each of the data signals, and the data signal created according to the gradation data to each of the data signal lines of the liquid crystal display unit with opposite outputs at adjacent outputs. And a data signal line driving circuit that outputs the data.
 上記の構成によれば、データ信号線駆動回路では有効的にチャージシェアが行われるので、液晶表示部が列方向に複数に分割された区域毎に飛び越し走査が行われる駆動において、キラー・パターンと呼ばれる特殊な画像を表示するときであっても、消費電流を低減し、発熱の低減を図る液晶表示装置を実現することが可能となる。 According to the above configuration, since the charge sharing is effectively performed in the data signal line driving circuit, in the driving in which the liquid crystal display unit performs interlaced scanning for each of the divided areas in the column direction, a killer pattern and Even when displaying a special image called, it is possible to realize a liquid crystal display device that reduces current consumption and reduces heat generation.
 本発明の液晶表示装置の駆動方法は、行列に配置された複数の画素電極、同一行の上記画素電極に走査信号をそれぞれ供給するための複数の走査信号線、および、同一列の上記画素電極にデータ信号をそれぞれ供給するための複数のデータ信号線を有する液晶表示部と、上記液晶表示部の各データ信号線に、階調データに応じて作成した上記データ信号を隣り合う出力で極性を反対にしてそれぞれ出力するデータ信号線駆動回路とを備える液晶表示装置の駆動方法であって、上記階調データが、上記液晶表示部が列方向に複数に分割された区域毎に、奇数行または偶数行の上記走査信号線が順番に走査された後に、偶数行または奇数行の上記走査信号線が順番に走査される飛び越し走査に対応して、順次供給されており、上記階調データを順次取得し、前回取得した1行分の階調データにおける、上記隣り合う出力での表示が透過になる透過状態および非透過になる非透過状態からなる表示パターンの多数派の表示パターンと、今回取得した1行分の階調データにおける、上記隣り合う出力での上記透過状態および上記非透過状態からなる表示パターンの多数派の表示パターンとに基づいて、上記データ信号線駆動回路の隣り合う出力の極性反転、および、上記データ信号線駆動回路の隣り合う出力間の短絡の要否を判断する第1ステップと、上記極性反転が必要と判断したとき、上記データ信号線駆動回路の隣り合う出力の極性反転を行う第2ステップと、上記短絡が必要と判断したとき、上記データ信号線駆動回路の隣り合う出力間の短絡を行う第3ステップとを含むことを特徴としている。 The liquid crystal display device driving method of the present invention includes a plurality of pixel electrodes arranged in a matrix, a plurality of scanning signal lines for supplying scanning signals to the pixel electrodes in the same row, and the pixel electrodes in the same column. A liquid crystal display unit having a plurality of data signal lines for supplying data signals to the liquid crystal display unit, and each data signal line of the liquid crystal display unit has the polarity of the data signal created according to the gradation data with an adjacent output. A method of driving a liquid crystal display device comprising a data signal line drive circuit that outputs each of them in reverse, wherein the gradation data is divided into an odd row or a row for each area in which the liquid crystal display section is divided into a plurality of columns. Corresponding to the interlaced scanning in which the even-numbered or odd-numbered scanning signal lines are sequentially scanned after the even-numbered scanning signal lines are sequentially scanned, the gradation data is Next, the majority display pattern of the display pattern consisting of a transmission state in which the display at the adjacent output is transparent and a non-transmission state in which it is non-transparent in the gradation data for one line acquired last time, and this time The adjacent output of the data signal line driving circuit based on the display pattern of the majority of the display patterns composed of the transmission state and the non-transmission state in the adjacent output in the acquired gradation data for one row. The first step of determining whether the polarity inversion and the short circuit between the adjacent outputs of the data signal line driving circuit are necessary, and the adjacent output of the data signal line driving circuit when the polarity inversion is determined to be necessary And a third step of performing a short circuit between adjacent outputs of the data signal line drive circuit when it is determined that the short circuit is necessary. It is a symptom.
 上記の構成によれば、飛び越し走査で前回走査された走査信号線に対応する1ラインにおける多数派の表示パターンと、今回走査されている走査信号線に対応する1ラインにおける多数派の表示パターンとに基づいて、データ信号線駆動回路の隣り合う出力で極性反転を行い、かつ隣り合う出力間でチャージシェアを行うことが有効か否か、また、上記極性反転を行わずに隣り合う出力間でチャージシェアを行うことが有効か否かを判断することが可能となる。つまりは、表示する画像のパターンを認識して、上記判断を行うことが可能となる。 According to the above configuration, the majority display pattern in one line corresponding to the scanning signal line previously scanned by interlaced scanning, and the majority display pattern in one line corresponding to the scanning signal line currently scanned are Based on the above, whether or not it is effective to perform polarity inversion at adjacent outputs of the data signal line drive circuit and charge sharing between adjacent outputs, and between adjacent outputs without performing the above polarity inversion It is possible to determine whether or not charge sharing is effective. That is, the above determination can be made by recognizing the pattern of the image to be displayed.
 隣り合う出力で極性反転を行い、かつ隣り合う出力間でチャージシェアを行うことが有効と判断した場合は、データ信号線駆動回路の隣り合う出力の極性反転を行うとともに、データ信号線駆動回路の隣り合う出力間の短絡を行う。また、極性反転を行わずに隣り合う出力間でチャージシェアを行うことが有効と判断した場合は、データ信号線駆動回路の隣り合う出力間の短絡を行う。 If it is determined that it is effective to invert the polarity of the adjacent outputs and perform charge sharing between the adjacent outputs, the polarity of the adjacent outputs of the data signal line drive circuit is reversed and the data signal line drive circuit Short circuit between adjacent outputs. If it is determined that it is effective to perform charge sharing between adjacent outputs without performing polarity inversion, a short circuit between adjacent outputs of the data signal line driving circuit is performed.
 よって、有効的にチャージシェアを行うので、液晶表示部が列方向に複数に分割された区域毎に飛び越し走査が行われる駆動において、キラー・パターンと呼ばれる特殊な画像を表示するときであっても、消費電流を低減し、これに起因する発熱を低減することが可能となる。 Therefore, since effective charge sharing is performed, even when the liquid crystal display unit displays a special image called a killer pattern in driving in which interlaced scanning is performed for each of the divided areas in the column direction. Thus, current consumption can be reduced, and heat generation due to this can be reduced.
 以上のように、本発明のデータ信号線駆動回路は、行列に配置された複数の画素電極、同一行の上記画素電極に走査信号をそれぞれ供給するための複数の走査信号線、および、同一列の上記画素電極にデータ信号をそれぞれ供給するための複数のデータ信号線を有する液晶表示部に対して、該液晶表示部の各データ信号線に、階調データに応じて作成した上記データ信号を隣り合う出力で極性を反対にしてそれぞれ出力するデータ信号線駆動回路であって、上記隣り合う出力の極性を反転する極性反転手段と、上記隣り合う出力間を短絡する短絡手段と、第1制御信号に基づいて、上記極性反転手段に対し上記隣り合う出力の極性を反転させる第1制御手段と、第2制御信号に基づいて、上記短絡手段に対し上記隣り合う出力間を短絡させる第2制御手段と、上記第1制御信号を上記第1制御手段に出力するとともに、上記第2制御信号を上記第2制御手段に出力する判断手段とを備え、上記階調データは、上記液晶表示部が列方向に複数に分割された区域毎に、奇数行または偶数行の上記走査信号線が順番に走査された後に、偶数行または奇数行の上記走査信号線が順番に走査される飛び越し走査に対応して、順次供給されており、上記判断手段は、上記階調データを順次取得し、前回取得した1行分の階調データにおける、上記隣り合う出力での表示が透過になる透過状態および非透過になる非透過状態からなる表示パターンの多数派の表示パターンと、今回取得した1行分の階調データにおける、上記隣り合う出力での上記透過状態および上記非透過状態からなる表示パターンの多数派の表示パターンとに基づいて、上記第1制御信号および上記第2制御信号を選択的に出力する構成である。 As described above, the data signal line driving circuit of the present invention includes a plurality of pixel electrodes arranged in a matrix, a plurality of scanning signal lines for supplying scanning signals to the pixel electrodes in the same row, and the same column. With respect to a liquid crystal display unit having a plurality of data signal lines for supplying data signals to the pixel electrodes, the data signal created according to the gradation data is applied to each data signal line of the liquid crystal display unit. A data signal line drive circuit for outputting the opposite outputs of the adjacent outputs, the polarity inversion means for inverting the polarity of the adjacent outputs, the short-circuit means for short-circuiting the adjacent outputs, and a first control Based on the signal, the first control means for inverting the polarity of the adjacent output with respect to the polarity inverting means, and the short-circuit means with respect to the adjacent output based on the second control signal. A second control unit; and a determination unit that outputs the first control signal to the first control unit and outputs the second control signal to the second control unit. In each area where the display section is divided into a plurality of columns, the odd-numbered or even-numbered scanning signal lines are sequentially scanned, and then the even-numbered or odd-numbered scanning signal lines are scanned sequentially. The determination means sequentially obtains the gradation data corresponding to the scanning, and the transmission at the adjacent output in the gradation data for one line obtained last time becomes transparent. Display of the transmission state and the non-transmission state at the adjacent output in the display pattern of the majority of the display patterns consisting of the non-transmission state and the non-transmission state and the gradation data for one row acquired this time Patter Based on the majority of the display pattern of emission is selectively output to constitute the first control signal and the second control signal.
 また、本発明の液晶表示装置の駆動方法は、行列に配置された複数の画素電極、同一行の上記画素電極に走査信号をそれぞれ供給するための複数の走査信号線、および、同一列の上記画素電極にデータ信号をそれぞれ供給するための複数のデータ信号線を有する液晶表示部と、上記液晶表示部の各データ信号線に、階調データに応じて作成した上記データ信号を隣り合う出力で極性を反対にしてそれぞれ出力するデータ信号線駆動回路とを備える液晶表示装置の駆動方法であって、上記階調データが、上記液晶表示部が列方向に複数に分割された区域毎に、奇数行または偶数行の上記走査信号線が順番に走査された後に、偶数行または奇数行の上記走査信号線が順番に走査される飛び越し走査に対応して、順次供給されており、上記階調データを順次取得し、前回取得した1行分の階調データにおける、上記隣り合う出力での表示が透過になる透過状態および非透過になる非透過状態からなる表示パターンの多数派の表示パターンと、今回取得した1行分の階調データにおける、上記隣り合う出力での上記透過状態および上記非透過状態からなる表示パターンの多数派の表示パターンとに基づいて、上記データ信号線駆動回路の隣り合う出力の極性反転、および、上記データ信号線駆動回路の隣り合う出力間の短絡の要否を判断する第1ステップと、上記極性反転が必要と判断したとき、上記データ信号線駆動回路の隣り合う出力の極性反転を行う第2ステップと、上記短絡が必要と判断したとき、上記データ信号線駆動回路の隣り合う出力間の短絡を行う第3ステップとを含む方法である。 Further, the driving method of the liquid crystal display device of the present invention includes a plurality of pixel electrodes arranged in a matrix, a plurality of scanning signal lines for supplying scanning signals to the pixel electrodes in the same row, and the above in the same column. A liquid crystal display unit having a plurality of data signal lines for supplying data signals to the pixel electrodes respectively, and the data signal created according to the gradation data to each data signal line of the liquid crystal display unit with adjacent outputs A driving method of a liquid crystal display device comprising a data signal line driving circuit that outputs the signals with opposite polarities, wherein the gradation data is an odd number for each area in which the liquid crystal display section is divided into a plurality of columns. Corresponding to the interlaced scanning in which the scanning signal lines in the even or odd rows are sequentially scanned after the scanning signal lines in the rows or the even rows are sequentially scanned, the gradation data is supplied. The display pattern of the majority of the display pattern consisting of a transmission state in which the display at the adjacent output is transparent and a non-transmission state in which the transmission is non-transparent in the gradation data for one row acquired previously. Based on the display pattern of the majority of the display pattern composed of the transmission state and the non-transmission state in the adjacent outputs in the gradation data for one row acquired this time, the adjacent data signal line driving circuit A first step of determining whether polarity inversion of matching outputs and a short circuit between adjacent outputs of the data signal line driving circuit are necessary, and when determining that polarity inversion is necessary, adjacent to the data signal line driving circuit A second step of performing polarity reversal of matching outputs and a third step of performing a short circuit between adjacent outputs of the data signal line drive circuit when it is determined that the short circuit is necessary. It is the law.
 それゆえ、有効的にチャージシェアを行うので、液晶表示部が列方向に複数に分割された区域毎に飛び越し走査が行われる駆動において、キラー・パターンと呼ばれる特殊な画像を表示するときであっても、消費電流を低減し、これに起因する発熱を低減することができるという効果を奏する。 Therefore, since effective charge sharing is performed, the liquid crystal display unit displays a special image called a killer pattern in a drive in which interlaced scanning is performed for each of the divided areas in the column direction. In addition, there is an effect that current consumption can be reduced and heat generation due to this can be reduced.
本発明における液晶表示装置の実施の一形態を示すものであり、極性反転スイッチ回路がa側に切り替えられているときを示すブロック図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 illustrates an embodiment of a liquid crystal display device according to the present invention, and is a block diagram illustrating a case where a polarity inversion switch circuit is switched to an a side. 上記液晶表示装置において、極性反転スイッチ回路がb側に切り替えられているときを示すブロック図である。In the said liquid crystal display device, it is a block diagram which shows when the polarity inversion switch circuit is switched to the b side. 上記液晶表示装置における判断回路の一構成例を示すブロック図である。It is a block diagram which shows one structural example of the judgment circuit in the said liquid crystal display device. 上記判断回路におけるパターン検出回路の一構成例を示す回路図である。It is a circuit diagram which shows one structural example of the pattern detection circuit in the said determination circuit. 上記パターン検出回路における黒照合回路の一構成例を示すブロック図である。It is a block diagram which shows the example of 1 structure of the black collation circuit in the said pattern detection circuit. 上記黒照合回路における論理回路の真理値表である。It is a truth table of the logic circuit in the said black collation circuit. 上記パターン検出回路における白照合回路の一構成例を示すブロック図である。It is a block diagram which shows one structural example of the white collation circuit in the said pattern detection circuit. 上記白照合回路における論理回路の真理値表である。It is a truth table of a logic circuit in the white matching circuit. 上記パターン検出回路におけるパターン照合回路の一構成例を示す回路図である。It is a circuit diagram which shows one structural example of the pattern collation circuit in the said pattern detection circuit. 上記液晶表示装置のデータ信号線駆動ドライバの隣接する出力対の表示状態における、上記パターン照合回路の入力および出力の状態を示す表である。It is a table | surface which shows the input and output state of the said pattern collation circuit in the display state of the adjacent output pair of the data signal line drive driver of the said liquid crystal display device. 上記パターン検出回路におけるカウンタの真理値表である。It is a truth table of the counter in the pattern detection circuit. 上記判断回路における極性反転およびチャージシェア決定回路の一構成例を示す回路図である。It is a circuit diagram which shows one structural example of the polarity inversion and charge share determination circuit in the said judgment circuit. 上記液晶表示装置におけるデータ信号線駆動ドライバの1画面を表示するときの処理フローを示すフローチャートである。It is a flowchart which shows the processing flow when displaying one screen of the data signal line drive driver in the said liquid crystal display device. 図13の処理フローで実行されるフローチャート1を示すフローチャートである。It is a flowchart which shows the flowchart 1 performed with the processing flow of FIG. 図13の処理フローで実行されるフローチャート2を示すフローチャートである。It is a flowchart which shows the flowchart 2 performed with the processing flow of FIG. キラー・パターンを極性反転したときのパターンを示す図であり、(a)は当該パターンを示し、(b)は奇数ラインのパターンを示し、(c)は偶数ラインのパターンを示す。It is a figure which shows a pattern when the polarity of a killer pattern is reversed, (a) shows the said pattern, (b) shows the pattern of an odd line, (c) shows the pattern of an even line. 図16のパターンの出力1と出力2との間でチャージシェアを行った場合における電位変化を示す図であり、(a)は出力1の電位変化を示し、(b)は出力2の電位変化を示す。FIG. 17 is a diagram showing a potential change when charge sharing is performed between output 1 and output 2 of the pattern of FIG. 16, (a) shows a potential change of output 1, and (b) shows a potential change of output 2. Indicates. 2行横縞のパターンを示す図であり、(a)は当該パターンを示し、(b)は奇数ラインのパターンを示し、(c)は偶数ラインのパターンを示す。It is a figure which shows the pattern of 2 rows horizontal stripes, (a) shows the said pattern, (b) shows the pattern of an odd line, (c) shows the pattern of an even line. 図18のパターンの出力1と出力2との間でチャージシェアを行った場合における電位変化を示す図であり、(a)は出力1の電位変化を示し、(b)は出力2の電位変化を示す。FIG. 19 is a diagram showing a potential change when charge sharing is performed between the output 1 and the output 2 of the pattern of FIG. 18, (a) shows the potential change of the output 1, and (b) shows the potential change of the output 2. Indicates. ドット反転駆動方式で液晶パネルを駆動した場合のソースドライバの出力波形を示す図である。It is a figure which shows the output waveform of a source driver at the time of driving a liquid crystal panel by a dot inversion drive system. 飛び越し走査を行った場合のソースドライバの出力波形を示す図である。It is a figure which shows the output waveform of the source driver at the time of performing interlaced scanning. 飛び越し走査を行った場合の、奇数行と偶数行との両方の走査が完了した時点でのソースドライバの出力波形を示す図である。It is a figure which shows the output waveform of a source driver at the time of scanning of both odd-numbered rows and even-numbered rows when interlaced scanning is performed. ソースブロック反転駆動を行った場合の走査順序を示す図である。It is a figure which shows the scanning order at the time of performing a source block inversion drive. ソースブロック反転駆動方式のキラー・パターンと呼ばれるパターンを示す図であり、(a)は当該パターンを示し、(b)は奇数ラインのパターンを示し、(c)は偶数ラインのパターンを示す。It is a figure which shows the pattern called a killer pattern of a source block inversion drive system, (a) shows the said pattern, (b) shows the pattern of odd lines, (c) shows the pattern of even lines. 図24のパターンの出力1と出力2との間でチャージシェアを行った場合における電位変化を示す図であり、(a)は出力1の電位変化を示し、(b)は出力2の電位変化を示す。FIG. 25 is a diagram illustrating a potential change when charge sharing is performed between the output 1 and the output 2 of the pattern of FIG. 24, where (a) illustrates a potential change of the output 1 and (b) illustrates a potential change of the output 2. Indicates. 特定のパターンを示す図である。It is a figure which shows a specific pattern. 図26のパターンの出力1と出力2との間でチャージシェアを行った場合における電位変化を示す図であり、(a)は出力1の電位変化を示し、(b)は出力2の電位変化を示す。27 is a diagram showing a potential change when charge sharing is performed between the output 1 and the output 2 of the pattern of FIG. 26, (a) shows the potential change of the output 1, and (b) shows the potential change of the output 2. Indicates.
 本発明の一実施形態について図面に基づいて説明すれば、以下の通りである。 An embodiment of the present invention will be described below with reference to the drawings.
 図1は、液晶表示装置10の一構成例を示すものであり、極性反転スイッチ回路33・41がa側に切り替えられているときを示すブロック図である。図2は、図1の液晶表示装置10において、極性反転スイッチ回路33・41がb側に切り替えられているときを示すブロック図である。 FIG. 1 shows an example of the configuration of the liquid crystal display device 10, and is a block diagram showing when the polarity reversal switch circuits 33 and 41 are switched to the a side. FIG. 2 is a block diagram showing a case where the polarity reversal switch circuits 33 and 41 are switched to the b side in the liquid crystal display device 10 of FIG.
 本実施の形態の液晶表示装置10は、例えば、TVなどの設置機器や、携帯電話などの携帯端末に搭載されているディスプレイデバイスであり、図1・2に示すように、液晶パネル20(液晶表示部)およびデータ信号線駆動ドライバ30(データ信号線駆動回路)を備えている。なお、液晶表示装置10における図示しない残りの部分は、従来の一般的な構成(走査線駆動ドライバやタイミングジェネレータなど)で実現可能である。 The liquid crystal display device 10 according to the present embodiment is a display device mounted on, for example, an installation device such as a TV or a portable terminal such as a mobile phone. As shown in FIGS. Display section) and a data signal line driver 30 (data signal line driver circuit). The remaining part (not shown) of the liquid crystal display device 10 can be realized by a conventional general configuration (such as a scanning line driver or a timing generator).
 液晶パネル20は、互いに対向する2枚の透明基板(図示せず)を含んでいる。一方の透明基板には、共通の電圧が印加される共通電極26が形成されている。他方の透明基板には、ゲートライン21(走査信号線)、ソースライン22(データ信号線)、TFT23、および画素電極24が形成されている。 The liquid crystal panel 20 includes two transparent substrates (not shown) facing each other. On one transparent substrate, a common electrode 26 to which a common voltage is applied is formed. On the other transparent substrate, gate lines 21 (scanning signal lines), source lines 22 (data signal lines), TFTs 23, and pixel electrodes 24 are formed.
 ゲートライン21およびソースライン22は、互いに直交するように複数本ずつ配されており、それぞれが交差する部分に対応して、TFT23および画素電極24がそれぞれ配されている。つまり、TFT23および画素電極24は行列状に複数配置されている。ゲートライン21は、同一行の画素電極24に選択信号(走査信号)をそれぞれ供給するためのものであり、ソースライン22は、同一列の画素電極24にデータ信号をそれぞれ供給するためのものである。 A plurality of gate lines 21 and source lines 22 are arranged so as to be orthogonal to each other, and a TFT 23 and a pixel electrode 24 are arranged corresponding to a portion where each intersects. That is, a plurality of TFTs 23 and pixel electrodes 24 are arranged in a matrix. The gate lines 21 are for supplying selection signals (scanning signals) to the pixel electrodes 24 in the same row, and the source lines 22 are for supplying data signals to the pixel electrodes 24 in the same column. is there.
 画素電極24は、TFT23を介してソースライン22に接続されており、TFT23のゲートは、ゲートライン21に接続されている。ゲートライン21には走査線駆動ドライバ(図示せず)から選択信号が順次出力され、これに応じてTFT23のオン・オフが切り替えられる。TFT23がオンのとき、画素電極24はソースライン22と電気的に接続され、TFT23がオフのとき、画素電極24はソースライン22と電気的に遮断される。 The pixel electrode 24 is connected to the source line 22 via the TFT 23, and the gate of the TFT 23 is connected to the gate line 21. A selection signal is sequentially output to the gate line 21 from a scanning line driver (not shown), and the TFT 23 is turned on / off accordingly. When the TFT 23 is on, the pixel electrode 24 is electrically connected to the source line 22, and when the TFT 23 is off, the pixel electrode 24 is electrically disconnected from the source line 22.
 2枚の透明基板の間には液晶層が形成されており、共通電極26とその共通電極26に対向して位置する画素電極24との間で挟持された液晶(液晶セル25)が、1画素を構成している。液晶セル25には、画素電極24に印加される電圧と共通電極26に印加される電圧との差が印加される。印加電圧の大きさによって、液晶の配列が変化することで、表示に変化が与えられる。 A liquid crystal layer is formed between the two transparent substrates, and the liquid crystal (liquid crystal cell 25) sandwiched between the common electrode 26 and the pixel electrode 24 positioned opposite to the common electrode 26 is 1 Constitutes a pixel. A difference between a voltage applied to the pixel electrode 24 and a voltage applied to the common electrode 26 is applied to the liquid crystal cell 25. The display is changed by changing the alignment of the liquid crystal depending on the magnitude of the applied voltage.
 データ信号線駆動ドライバ30は、表示すべき画像に応じたデータ信号(階調電圧、駆動電圧)を各画素電極24に順次出力する駆動回路であり、ソースライン22に接続されている。データ信号線駆動ドライバ30は、シフトレジスタ31、データラッチ32、極性反転スイッチ回路33(極性反転手段)、ホールドラッチ34、レベルシフタ35、正極性側DAC36、負極性側DAC37、正極性用オペアンプ38、負極性用オペアンプ39、短絡スイッチ回路40(短絡手段)、極性反転スイッチ回路41(極性反転手段)、出力パッド42、判断回路43(判断手段)、極性切替制御回路44(第1制御手段)、出力短絡制御回路45(第2制御手段)、および設定レジスタ46を備えている。 The data signal line driver 30 is a drive circuit that sequentially outputs data signals (grayscale voltage, drive voltage) corresponding to an image to be displayed to each pixel electrode 24, and is connected to the source line 22. The data signal line driver 30 includes a shift register 31, a data latch 32, a polarity inversion switch circuit 33 (polarity inversion means), a hold latch 34, a level shifter 35, a positive polarity side DAC 36, a negative polarity side DAC 37, a positive polarity operational amplifier 38, Op-amp 39 for negative polarity, short circuit switch circuit 40 (short circuit means), polarity reversal switch circuit 41 (polarity reversal means), output pad 42, determination circuit 43 (determination means), polarity switching control circuit 44 (first control means), An output short-circuit control circuit 45 (second control means) and a setting register 46 are provided.
 なお、データ信号線駆動ドライバ30は、414出力のデータライン駆動回路として設計されており、液晶パネル20には、水平方向に画素が414設けられている。但し、特に言及しない限り、以下では、説明の便宜上、データ信号線駆動ドライバ30の出力が6つ(OUT1~OUT6)設けられている場合について説明する。 The data signal line driver 30 is designed as a 414-output data line driver circuit, and the liquid crystal panel 20 is provided with 414 pixels in the horizontal direction. However, unless otherwise specified, a case where six outputs (OUT1 to OUT6) of the data signal line driver 30 are provided will be described below for convenience of explanation.
 また、データ信号線駆動ドライバ30は、詳細に後述するように、出力の極性反転を行うとともに、隣接する出力同士でチャージシェアを行う。それゆえ、以下では、説明の便宜上、同等の機能を有する構成要素については、図1・2において左側のデータ出力ラインから順に1の番号をつけて呼ぶこととする。 Further, as will be described in detail later, the data signal line driver 30 performs output polarity reversal and charge sharing between adjacent outputs. Therefore, in the following, for convenience of explanation, components having equivalent functions will be referred to as numbered 1 in order from the left data output line in FIGS.
 データ信号線駆動ドライバ30は、外部(例えば、液晶表示装置10に設けられたコントローラなど)からデータバスを介して供給される、画像データ(表示データ)である8ビット(256階調)の階調データData[7:0]を順次取得し、階調データData[7:0]をデータ信号に変換して、そのデータ信号をソースライン22に出力する。 The data signal line driving driver 30 is an 8-bit (256 gradation) level that is image data (display data) supplied from the outside (for example, a controller provided in the liquid crystal display device 10) via a data bus. Gradation data Data [7: 0] is sequentially acquired, gradation data Data [7: 0] is converted into a data signal, and the data signal is output to the source line 22.
 シフトレジスタ31は、外部からの制御に従って、パルス信号ENB1~ENB6を順次作成し、各パルス信号を対応するデータラッチ32に出力する。データラッチ32は、パルス信号ENB1~ENB6に同期して、データバスを介して供給されている階調データData[7:0]をラッチする。 The shift register 31 sequentially creates pulse signals ENB1 to ENB6 according to control from the outside, and outputs each pulse signal to the corresponding data latch 32. The data latch 32 latches the gradation data Data [7: 0] supplied via the data bus in synchronization with the pulse signals ENB1 to ENB6.
 極性反転スイッチ回路33は、データラッチ32とホールドラッチ34との間に挿入されている。極性反転スイッチ回路33は、極性切替制御回路44から出力される極性反転信号Opt_REVに基づいて、対応するデータラッチ32の接続先をa端子(a側)とb端子(b側)とに切り替える。1,3,5番目の極性反転スイッチ回路33は、a端子が1,3,5番目のホールドラッチ34に接続され、b端子が2,4,6番目のホールドラッチ34に接続されている。2,4,6番目の極性反転スイッチ回路33は、a端子が2,4,6番目のホールドラッチ34に接続され、b端子が1,3,5番目のホールドラッチ34に接続されている。 The polarity reversing switch circuit 33 is inserted between the data latch 32 and the hold latch 34. The polarity inversion switch circuit 33 switches the connection destination of the corresponding data latch 32 between the a terminal (a side) and the b terminal (b side) based on the polarity inversion signal Opt_REV output from the polarity switching control circuit 44. In the first, third, and fifth polarity reversing switch circuits 33, the terminal a is connected to the first, third, and fifth hold latches 34, and the terminal b is connected to the second, fourth, and sixth hold latches 34. In the second, fourth and sixth polarity reversing switch circuits 33, the a terminal is connected to the second, fourth and sixth hold latches 34, and the b terminal is connected to the first, third and fifth hold latches 34.
 つまりは、奇数番目の極性反転スイッチ回路33は、対応する奇数番目のデータラッチ32の接続先を、対応する奇数番目のホールドラッチ34(a側)と、対応する奇数番目から1足した偶数番目のホールドラッチ34(b側)との間で切り替える。偶数番目の極性反転スイッチ回路33は、対応する偶数番目のデータラッチ32の接続先を、対応する偶数番目のホールドラッチ34(a側)と、対応する偶数番目から1引いた奇数番目のホールドラッチ34(b側)との間で切り替える。 In other words, the odd-numbered polarity reversing switch circuit 33 connects the corresponding odd-numbered data latch 32 to the even-numbered number obtained by adding one to the corresponding odd-numbered hold latch 34 (a side). And the hold latch 34 (b side). The even-numbered polarity reversing switch circuit 33 has a corresponding even-numbered data latch 32 connected to the corresponding even-numbered hold latch 34 (a side) and an odd-numbered hold latch obtained by subtracting 1 from the corresponding even-numbered latch. 34 (b side).
 ホールドラッチ34は、外部からの制御に従って、データラッチ32の出力、すなわち極性反転スイッチ回路33の切替に応じて接続されているデータラッチ32の保持データをラッチする。これにより、各ホールドラッチ34に、画面の1水平ラインの画素に対応する画像データが保持される。 The hold latch 34 latches data held by the data latch 32 connected in accordance with the output of the data latch 32, that is, according to switching of the polarity inversion switch circuit 33, in accordance with control from the outside. As a result, the image data corresponding to the pixels of one horizontal line on the screen is held in each hold latch 34.
 レベルシフタ35は、入力した階調データの信号レベルを変換する。奇数番目のレベルシフタ35は、レベル変換した階調データを、正極性側DAC36に出力する。偶数番目のレベルシフタ35は、レベル変換した階調データを、負極性側DAC37に出力する。 The level shifter 35 converts the signal level of the input gradation data. The odd level shifter 35 outputs the level-converted gradation data to the positive polarity DAC 36. The even level shifter 35 outputs the level-converted gradation data to the negative polarity side DAC 37.
 正極性側DAC36は、レベルシフタ35にてレベル変換された階調データに応じて、外部から供給される正極性側階調電圧から1つの電圧を選択し、正極性用オペアンプ38に出力する。負極性側DAC37は、レベルシフタ35にてレベル変換された階調データに応じて、外部から供給される負極性側階調電圧から1つの電圧を選択し、負極性用オペアンプ39に出力する。これにより、正極性用オペアンプ38および負極性用オペアンプ39には、階調データに応じて選択(変換)された正極性または負極性のデータ信号(階調電圧)が出力される。 The positive polarity side DAC 36 selects one voltage from the positive polarity side gradation voltage supplied from the outside according to the gradation data level-converted by the level shifter 35, and outputs it to the positive polarity operational amplifier 38. The negative polarity side DAC 37 selects one voltage from the negative polarity side gradation voltage supplied from the outside according to the gradation data level-converted by the level shifter 35, and outputs it to the negative polarity operational amplifier 39. As a result, the positive polarity operational amplifier 38 and the negative polarity operational amplifier 39 output a positive or negative polarity data signal (gradation voltage) selected (converted) according to the gradation data.
 正極性用オペアンプ38および負極性用オペアンプ39は、出力バッファとして機能しており、その出力は極性反転スイッチ回路41を介して出力パッド42に接続されている。出力パッド42は、液晶パネル20の対応するソースライン22に接続されている。これにより、階調データに応じたデータ信号が、ソースライン22に出力される。 The positive-polarity operational amplifier 38 and the negative-polarity operational amplifier 39 function as output buffers, and their outputs are connected to the output pad 42 via the polarity inversion switch circuit 41. The output pad 42 is connected to the corresponding source line 22 of the liquid crystal panel 20. As a result, a data signal corresponding to the gradation data is output to the source line 22.
 短絡スイッチ回路40は、隣接する正極性用オペアンプ38および負極性用オペアンプ39の出力間に設けられている。短絡スイッチ回路40は、出力短絡制御回路45から出力される短絡信号Opt_CSに基づいて、隣接する正極性用オペアンプ38および負極性用オペアンプ39の出力間を短絡する(短絡スイッチ回路40:オン)。 The short-circuit switch circuit 40 is provided between the outputs of the adjacent positive polarity operational amplifier 38 and negative polarity operational amplifier 39. The short-circuit switch circuit 40 short-circuits the outputs of the adjacent positive-polarity operational amplifier 38 and negative-polarity operational amplifier 39 based on the short-circuit signal Opt_CS output from the output short-circuit control circuit 45 (short-circuit switch circuit 40: ON).
 極性反転スイッチ回路41は、正極性用オペアンプ38および負極性用オペアンプ39と、出力パッド42との間に挿入されている。極性反転スイッチ回路41は、極性切替制御回路44から出力される極性反転信号Opt_REVに基づいて、対応する正極性用オペアンプ38および負極性用オペアンプ39の接続先をa端子(a側)とb端子(b側)とに切り替える。1,3,5番目の極性反転スイッチ回路41は、a端子が1,3,5番目の出力パッド42に接続され、b端子が2,4,6番目の出力パッド42に接続されている。2,4,6番目の極性反転スイッチ回路41は、a端子が2,4,6番目の出力パッド42に接続され、b端子が1,3,5番目の出力パッド42に接続されている。 The polarity reversing switch circuit 41 is inserted between the positive polarity operational amplifier 38 and the negative polarity operational amplifier 39 and the output pad 42. Based on the polarity reversal signal Opt_REV output from the polarity switching control circuit 44, the polarity reversing switch circuit 41 determines the connection destination of the corresponding positive polarity operational amplifier 38 and negative polarity operational amplifier 39 as a terminal (a side) and b terminal. Switch to (b side). In the first, third and fifth polarity reversing switch circuits 41, the terminal a is connected to the first, third and fifth output pads 42, and the terminal b is connected to the second, fourth and sixth output pads 42. In the second, fourth and sixth polarity reversing switch circuits 41, the a terminal is connected to the second, fourth and sixth output pads 42, and the b terminal is connected to the first, third and fifth output pads 42.
 つまりは、奇数番目の極性反転スイッチ回路41は、対応する正極性用オペアンプ38の接続先を、対応する奇数番目の出力パッド42(a側)と、対応する奇数番目から1足した偶数番目の出力パッド42(b側)との間で切り替える。偶数番目の極性反転スイッチ回路41は、対応する負極性用オペアンプ39の接続先を、対応する偶数番目の出力パッド42(a側)と、対応する偶数番目から1引いた奇数番目の出力パッド42(b側)との間で切り替える。 In other words, the odd polarity inversion switch circuit 41 connects the corresponding positive polarity operational amplifier 38 to the corresponding odd number output pad 42 (a side) and the even number obtained by adding one to the corresponding odd number. Switch between output pad 42 (b side). The even-numbered polarity reversing switch circuit 41 has a connection destination of the corresponding negative-polarity operational amplifier 39 connected to the corresponding even-numbered output pad 42 (a side) and the odd-numbered output pad 42 obtained by subtracting 1 from the corresponding even-numbered output pad 42. Switch between (b side).
 判断回路43は、データ信号線駆動ドライバ30に供給される階調データData[7:0]から、極性反転およびチャージシェアの要否を判断する。判断回路43は、走査線の走査を行う前のタイミングで上記判断を行い、判断の結果、極性反転が必要であれば制御信号Ctrl_REV(第1制御信号)を極性切替制御回路44に出力し、チャージシェアが必要であれば制御信号Ctrl_CS(第2制御信号)を出力短絡制御回路45に出力する。すなわち、判断回路43は、判断結果に応じて、制御信号Ctrl_REVおよび制御信号Ctrl_CSを選択的に出力する。 The determination circuit 43 determines the necessity of polarity inversion and charge sharing from the gradation data Data [7: 0] supplied to the data signal line driver 30. The determination circuit 43 performs the above determination at a timing before scanning of the scanning line. If the result of determination is that polarity inversion is necessary, the control circuit Ctrl_REV (first control signal) is output to the polarity switching control circuit 44. If charge sharing is necessary, a control signal Ctrl_CS (second control signal) is output to the output short-circuit control circuit 45. That is, the determination circuit 43 selectively outputs the control signal Ctrl_REV and the control signal Ctrl_CS according to the determination result.
 また、判断回路43は、上記判断の際、設定レジスタ46に記憶された、黒表示を判断するための基準(データCrit_Black[2:0])、白表示を判断するための基準(データCrit_White[2:0])、および、多数派を判断するための基準(データCrit_Majority[2:0])を用いる。設定レジスタ46は、外部から信号を与えることで、任意に書き換え可能となっている。 In addition, the determination circuit 43 stores the reference (data Crit_Black [2: 0]) for determining the black display and the reference (data Crit_White [data] stored in the setting register 46 for determining the white display). 2: 0]) and criteria for determining the majority (data Crit_Majority [2: 0]). The setting register 46 can be arbitrarily rewritten by giving a signal from the outside.
 極性切替制御回路44は、外部からの極性切替指令REVと、判断回路43から出力される制御信号Ctrl_REVに基づいて、データ信号線駆動ドライバ30すなわち出力パッド42からの出力OUT1~OUT6の極性を反転する。外部からの極性切替指令REVは、ブロック内で奇数ラインの走査から偶数ラインの走査(またはその反対)に移行するときに入力され、これにより極性反転が行われるが、判断回路43からの制御信号Ctrl_REVが出力された場合、極性切替指令REVに関係なく極性反転が行われる。具体的には、極性切替制御回路44は、極性反転を行うための制御信号である極性反転信号Opt_REVを、極性反転スイッチ回路33・41に出力することで、極性反転スイッチ回路33・41をa側とb側との間で切り替える。極性切替制御回路44は、例えば、外部からの極性切替指令REVが“1”もしくは制御信号Ctrl_REVが“1”になることで極性反転の動作を行う。 The polarity switching control circuit 44 inverts the polarity of the outputs OUT1 to OUT6 from the data signal line driver 30 or the output pad 42 based on the polarity switching command REV from the outside and the control signal Ctrl_REV output from the determination circuit 43. To do. An external polarity switching command REV is input when shifting from odd-numbered line scanning to even-numbered line scanning (or vice versa) within the block, and thus polarity inversion is performed. When Ctrl_REV is output, polarity inversion is performed regardless of the polarity switching command REV. Specifically, the polarity switching control circuit 44 outputs a polarity reversal signal Opt_REV, which is a control signal for performing polarity reversal, to the polarity reversing switch circuits 33 and 41, thereby causing the polarity reversing switch circuits 33 and 41 to a. Switch between side and b side. For example, the polarity switching control circuit 44 performs the polarity inversion operation when the polarity switching command REV from the outside becomes “1” or the control signal Ctrl_REV becomes “1”.
 出力短絡制御回路45は、外部からの短絡指令CSと、判断回路43から供給される制御信号Ctrl_CSに基づいて、データ信号線駆動ドライバ30すなわち出力パッド42からの出力OUT1~OUT6を短絡する。外部からの短絡指令CSは、ブロックとブロックとで走査が移行するときに入力され、これにより短絡が行われるが、判断回路43からのCtrl_CSが出力された場合、短絡指令CSに関係なく短絡が行われる。具体的には、出力短絡制御回路45は、短絡すなわちチャージシェアを行うための制御信号である短絡信号Opt_CSを、短絡スイッチ回路40に出力することで、短絡スイッチ回路40をオンにする。出力短絡制御回路45は、例えば、外部からの短絡指令CSが“1”もしくは制御信号Ctrl_CSが“1”になることでチャージシェアの動作を行う。 The output short-circuit control circuit 45 short-circuits the outputs OUT1 to OUT6 from the data signal line drive driver 30, that is, the output pad 42, based on the external short-circuit command CS and the control signal Ctrl_CS supplied from the determination circuit 43. The short-circuit command CS from the outside is input when scanning is shifted between blocks, and this causes a short-circuit. However, when Ctrl_CS is output from the determination circuit 43, a short-circuit is generated regardless of the short-circuit command CS. Done. Specifically, the output short circuit control circuit 45 outputs a short circuit signal Opt_CS, which is a control signal for performing a short circuit, that is, charge sharing, to the short circuit switch circuit 40, thereby turning on the short circuit switch circuit 40. For example, the output short-circuit control circuit 45 performs the charge sharing operation when the external short-circuit command CS is “1” or the control signal Ctrl_CS is “1”.
 上記構成を有するデータ信号線駆動ドライバ30では、従来と同様に表示のための動作が行われる一方、判断回路43により画像データの白黒パターン(透過状態と非透過状態とのパターン)から極性反転およびチャージシェアの要否が判断され、必要に応じてそれらが行われる。 In the data signal line driver 30 having the above-described configuration, an operation for display is performed in the same manner as in the prior art. The necessity of charge sharing is determined, and these are performed as necessary.
 図1に示すように、極性切替制御回路44からの極性反転信号Opt_REVにより極性反転スイッチ回路33・41がa側に切り替えられている場合、奇数番目のデータラッチ32の階調データは、対応する奇数番目のホールドラッチ34に転送される。そして、奇数番目のホールドラッチ34から出力された階調データは、対応する奇数番目のレベルシフタ35でレベルシフトされた後、正極性側DAC36でデータ信号に変換され、正極性用オペアンプ38により奇数番目の出力パッド42に出力される。 As shown in FIG. 1, when the polarity reversal switch circuits 33 and 41 are switched to the a side by the polarity reversal signal Opt_REV from the polarity switching control circuit 44, the gradation data of the odd-numbered data latch 32 corresponds. It is transferred to the odd-numbered hold latch 34. The grayscale data output from the odd-numbered hold latch 34 is level-shifted by the corresponding odd-numbered level shifter 35, converted to a data signal by the positive polarity side DAC 36, and odd-numbered by the positive polarity operational amplifier 38. Are output to the output pad 42.
 またこの場合、偶数番目のデータラッチ32の階調データは、対応する偶数番目のホールドラッチ34に転送される。そして、偶数番目のホールドラッチ34から出力された階調データは、対応する偶数番目のレベルシフタ35でレベルシフトされた後、負極性側DAC37でデータ信号に変換され、負極性用オペアンプ39により偶数番目の出力パッド42に出力される。 In this case, the gradation data of the even-numbered data latch 32 is transferred to the corresponding even-numbered hold latch 34. The gradation data output from the even-numbered hold latch 34 is level-shifted by the corresponding even-numbered level shifter 35, converted into a data signal by the negative polarity side DAC 37, and even-numbered by the negative polarity operational amplifier 39. Are output to the output pad 42.
 一方、図2に示すように、極性反転スイッチ回路33がb側に切り替えられている場合、奇数番目のデータラッチ32の階調データは、その奇数番目から1足した偶数番目のホールドラッチ34に転送される。そして、偶数番目のホールドラッチ34から出力された階調データは、対応する偶数番目のレベルシフタ35でレベルシフトされた後、負極性側DAC37でデータ信号に変換され、負極性用オペアンプ39により奇数番目の出力パッド42に出力される。 On the other hand, as shown in FIG. 2, when the polarity reversing switch circuit 33 is switched to the b side, the gradation data of the odd-numbered data latch 32 is supplied to the even-numbered hold latch 34, which is one added from the odd-numbered data latch 32. Transferred. The gradation data output from the even-numbered hold latch 34 is level-shifted by the corresponding even-numbered level shifter 35, converted to a data signal by the negative polarity side DAC 37, and odd-numbered by the negative polarity operational amplifier 39. Are output to the output pad 42.
 またこの場合、偶数番目のデータラッチ32の階調データは、その偶数番目から1引いた奇数番目のホールドラッチ34に転送される。そして、奇数番目のホールドラッチ34から出力された階調データは、対応する奇数番目のレベルシフタ35でレベルシフトされた後、正極性側DAC36でデータ信号に変換され、正極性用オペアンプ38により偶数番目の出力パッド42に出力される。 In this case, the gradation data of the even-numbered data latch 32 is transferred to the odd-numbered hold latch 34 obtained by subtracting 1 from the even-numbered data latch 32. The gradation data output from the odd-numbered hold latch 34 is level-shifted by the corresponding odd-numbered level shifter 35, converted into a data signal by the positive polarity side DAC 36, and even-numbered by the positive polarity operational amplifier 38. Are output to the output pad 42.
 このように、極性切替制御回路44からの極性反転信号Opt_REVにより、極性反転スイッチ回路33・41をa側とb側とで切り替えることによって、出力パッド42すなわちデータ信号線駆動ドライバ30からの出力OUT1~OUT6の極性が反転される。 In this way, by switching the polarity inversion switch circuits 33 and 41 between the a side and the b side by the polarity inversion signal Opt_REV from the polarity switching control circuit 44, the output OUT1 from the output pad 42, that is, the data signal line driver 30. The polarity of ~ OUT6 is inverted.
 また、出力短絡制御回路45からの短絡信号Opt_CSにより、短絡スイッチ回路40をオンに切り替えることによって、出力パッド42すなわちデータ信号線駆動ドライバ30からの出力OUT1~OUT6が短絡される。一方、短絡スイッチ回路40がオフに切り替えられている場合、出力パッド42からの出力OUT1~OUT6は、対応するソースライン22に出力される。 Further, the output pad 42, that is, the outputs OUT1 to OUT6 from the data signal line driver 30 are short-circuited by turning on the short-circuit switch circuit 40 by the short-circuit signal Opt_CS from the output short-circuit control circuit 45. On the other hand, when the short circuit switch circuit 40 is switched off, the outputs OUT1 to OUT6 from the output pad 42 are output to the corresponding source line 22.
 したがって、極性反転およびチャージシェアが必要な場合、判断回路43が、極性切替制御回路44および出力短絡制御回路45に、制御信号Ctrl_REVおよび制御信号Ctrl_CSを出力するだけで、極性反転およびチャージシェアを行うことが可能となる。 Therefore, when polarity inversion and charge sharing are required, the determination circuit 43 performs polarity inversion and charge sharing only by outputting the control signal Ctrl_REV and the control signal Ctrl_CS to the polarity switching control circuit 44 and the output short-circuit control circuit 45. It becomes possible.
 ここで、データ信号線駆動ドライバ30では、極性反転およびチャージシェアの要否、すなわち制御信号Ctrl_REVおよび制御信号Ctrl_CSの出力が有効か無効かを、入力される画像データ(階調データData[7:0])から判断回路43が判断している。次いで、判断回路43の詳細な構成および動作について順番に説明する。 Here, the data signal line driver 30 determines whether or not polarity inversion and charge sharing are necessary, that is, whether the output of the control signal Ctrl_REV and the control signal Ctrl_CS is valid or invalid, as input image data (gradation data Data [7: 0]) is determined by the determination circuit 43. Next, the detailed configuration and operation of the determination circuit 43 will be described in order.
 図3に、判断回路43の一構成例を示す。図3に示すように、判断回路43は、パターン検出回路101、並びに、極性反転およびチャージシェア決定回路102を備えている。 FIG. 3 shows a configuration example of the determination circuit 43. As shown in FIG. 3, the determination circuit 43 includes a pattern detection circuit 101 and a polarity inversion and charge share determination circuit 102.
 パターン検出回路101は、設定レジスタ46に設定された基準と比較して、入力された階調データData[7:0]における、隣り合う出力対の黒・白の組合せパターンの判定結果の中で多数を占めたもの(多数派)を検出する回路である。上記基準としては、黒表示と判断する階調数を示すデータCrit_Black[2:0]、白表示と判断する階調数を示すデータCrit_White[2:0]、および、多数派を決める設定数を示すデータCrit_Majority[2:0]を用いる。また、パターン検出回路101には、制御信号SRA・SRB・LSも個別に入力される。 The pattern detection circuit 101 compares the reference value set in the setting register 46 with the black / white combination pattern of the adjacent output pairs in the input gradation data Data [7: 0]. This circuit detects the majority (majority). The above criteria include data Crit_Black [2: 0] indicating the number of gradations determined to be black display, data Crit_White [2: 0] indicating the number of gradations determined to be white display, and a set number for determining the majority. The indicated data Crit_Majority [2: 0] is used. Further, control signals SRA, SRB, and LS are also individually input to the pattern detection circuit 101.
 なお、上記隣り合う出力対は、具体的に言うと、データ信号線駆動ドライバ30における出力OUT1・OUT2、出力OUT3・OUT4、並びに、出力OUT5・OUT6に該当する。隣り合う出力対の黒・白の組合せパターンは、「黒黒」「白白」「黒白」「白黒」の4つである。パターン検出回路101は、水平1ラインにおける各出力対の黒・白の組合せパターンから、多数派の組合せパターンを検出する。 More specifically, the adjacent output pairs correspond to the outputs OUT1 and OUT2, the outputs OUT3 and OUT4, and the outputs OUT5 and OUT6 in the data signal line driver 30. There are four black / white combination patterns of adjacent output pairs: “black and black”, “white and white”, “black and white”, and “monochrome”. The pattern detection circuit 101 detects a majority combination pattern from the black / white combination patterns of each output pair in one horizontal line.
 パターン検出回路101は、検出した結果に応じて、「黒黒」が多数派であることを示すフラグflgMBB、「白白」が多数派であることを示すフラグflgMWW、「黒白」が多数派であることを示すフラグflgMBW、および、「白黒」が多数派であることを示すフラグflgMWBを、極性反転およびチャージシェア決定回路102に出力する。黒黒が多数派の場合フラグflgMBBが“1”になり、白白が多数派の場合フラグflgMWWが“1”になり、黒白が多数派の場合フラグflgMBWが“1”になり、白黒が多数派の場合フラグflgMWBが“1”になる。多数派が無い場合は、全てのフラグは“0”となる。 The pattern detection circuit 101 has a flag flgMBB indicating that “black and black” is the majority, a flag flgMWW indicating that “white and white” is the majority, and “black and white” are the majority according to the detection result. The flag flgMBW indicating that this is the case and the flag flgMWB indicating that “monochrome” is the majority are output to the polarity inversion and charge share determination circuit 102. The flag flgMBB is set to “1” when black and black are majority, the flag flgMWW is set to “1” when white and white are majority, and the flag flgMBW is set to “1” when black and white is majority. In this case, the flag flgMWB becomes “1”. If there is no majority, all flags are “0”.
 極性反転およびチャージシェア決定回路102は、パターン検出回路101の多数派検出結果に基づいて、極性反転およびチャージシェアの要否を決定する回路である。極性反転およびチャージシェア決定回路102は、パターン検出回路101から出力されるフラグflgMBB・flgMWW・flgMBW・flgMWBを用いて、前ラインの多数派の組合せパターンと現ラインの多数派の組合せパターンとを比較することで、1画面の画像のパターンを識別し、極性反転およびチャージシェアの要否を決定する。また、極性反転およびチャージシェア決定回路102には、制御信号PSも入力される。 The polarity inversion and charge share determination circuit 102 is a circuit that determines the necessity of polarity inversion and charge share based on the majority detection result of the pattern detection circuit 101. The polarity inversion and charge share determination circuit 102 uses the flags flgMBB, flgMWW, flgMBW, and flgMWB output from the pattern detection circuit 101 to compare the majority combination pattern of the previous line with the majority combination pattern of the current line. Thus, the pattern of the image on one screen is identified, and the necessity of polarity inversion and charge sharing is determined. Further, the control signal PS is also input to the polarity inversion and charge share determination circuit 102.
 極性反転およびチャージシェア決定回路102は、決定した結果に応じて、制御信号Ctrl_REVおよび制御信号Ctrl_CSを、極性切替制御回路44および出力短絡制御回路45にそれぞれ出力する。極性反転を行う場合制御信号Ctrl_REVが“1”になり、チャージシェアを行う場合制御信号Ctrl_CSが“1”になる。何れも行わない場合は、全ての制御信号は“0”となる。 The polarity inversion and charge share determination circuit 102 outputs a control signal Ctrl_REV and a control signal Ctrl_CS to the polarity switching control circuit 44 and the output short-circuit control circuit 45, respectively, according to the determined result. When polarity inversion is performed, the control signal Ctrl_REV is “1”, and when charge sharing is performed, the control signal Ctrl_CS is “1”. If neither is performed, all control signals are “0”.
 図4に、パターン検出回路101の一構成例を示す。図4に示すように、パターン検出回路101は、黒照合回路111(表示状態判定手段)、白照合回路112(表示状態判定手段)、D-FF113、D-FF114、パターン照合回路115(表示パターン作成手段)、カウンタ116~119、並びに、多数派照合回路120~123(多数派判定手段)を備えている。 FIG. 4 shows a configuration example of the pattern detection circuit 101. As shown in FIG. 4, the pattern detection circuit 101 includes a black matching circuit 111 (display state determining means), a white matching circuit 112 (display state determining means), a D-FF 113, a D-FF 114, and a pattern matching circuit 115 (display pattern). Creating means), counters 116 to 119, and majority collating circuits 120 to 123 (majority judging means).
 黒照合回路111は、データCrit_Black[2:0]と比較して、階調データData[7:0]が、黒表示であるかどうかを調べる回路である。黒照合回路111は、調べた結果に応じて、黒表示であることを示すフラグflgBをD-FF113およびパターン照合回路115に出力する。黒表示である場合フラグflgBは“1”になり、それ以外の場合フラグflgBは“0”になる。 The black collation circuit 111 is a circuit that checks whether or not the gradation data Data [7: 0] is black display compared to the data Crit_Black [2: 0]. The black matching circuit 111 outputs a flag flgB indicating black display to the D-FF 113 and the pattern matching circuit 115 according to the result of the examination. In the case of black display, the flag flgB is “1”, otherwise the flag flgB is “0”.
 白照合回路112は、データCrit_ White[2:0]と比較して、階調データData[7:0]が、白表示であるかどうかを調べる回路である。白照合回路112は、調べた結果に応じて、白表示であることを示すフラグflgWをD-FF114およびパターン照合回路115に出力する。白表示である場合フラグflgWは“1”になり、それ以外の場合フラグflgBは“0”になる。 The white collation circuit 112 is a circuit that checks whether or not the gradation data Data [7: 0] is white display compared to the data Crit_ White [2: 0]. The white matching circuit 112 outputs a flag flgW indicating white display to the D-FF 114 and the pattern matching circuit 115 according to the result of the examination. In the case of white display, the flag flgW is “1”. In other cases, the flag flgB is “0”.
 D-FF113およびD-FF114は、制御信号SRAの入力タイミングに基づいて、黒照合回路111および白照合回路112の出力をラッチする。すなわち、D-FF113は、フラグflgBの値をラッチし、データregBとして保持する。D-FF114は、フラグflgWの値をラッチし、データregWとして保持する。D-FF113およびD-FF114は、保持しているデータregBおよびデータregWを、パターン照合回路115に出力する。 The D-FF 113 and the D-FF 114 latch the outputs of the black matching circuit 111 and the white matching circuit 112 based on the input timing of the control signal SRA. That is, the D-FF 113 latches the value of the flag flgB and holds it as data regB. The D-FF 114 latches the value of the flag flgW and holds it as data regW. The D-FF 113 and the D-FF 114 output the retained data regB and data regW to the pattern matching circuit 115.
 パターン照合回路115は、現階調データから調べられた黒表示・白表示を示すフラグflgB・flgWと、前階調データから調べられた黒表示・白表示を示すデータregB・regWとを比較する。その結果に応じて、パターン照合回路115は、出力対に対応する階調データのパターンが、黒黒・白白・黒白・白黒のパターンであることを示すフラグflgBB・flgWW・flgBW・flgWBを、カウンタ116~119にそれぞれ出力する。黒黒パターンの場合フラグflgBBが“1”になり、白白パターンの場合フラグflgWWが“1”になり、黒白パターンの場合フラグflgBWが“1”になり、白黒パターンの場合フラグflgWBが“1”になる。該当する組合せが無い場合は、全てのフラグは“0”となる。 The pattern matching circuit 115 compares the flag flgB / flgW indicating black display / white display determined from the current gradation data and the data regB / regW indicating black display / white display determined from the previous gradation data. . In accordance with the result, the pattern matching circuit 115 counts the flags flgBB, flgWW, flgBW, flgWB indicating that the pattern of gradation data corresponding to the output pair is a black-black-white-white-black-white-monochrome pattern. 116 to 119, respectively. The flag flgBB is set to “1” for the black / black pattern, the flag flgWW is set to “1” for the white / white pattern, the flag flgBW is set to “1” for the black / white pattern, and the flag flgWB is set to “1” for the black / white pattern. become. When there is no corresponding combination, all the flags are “0”.
 階調データData[7:0]は、外部からシリアルで入力される階調データを時分割で取り込んだデータであり、全出力端子に対応する階調データが供給される。制御信号SRAにより、D-FF113およびD-FF114がフラグflgBおよびフラグflgWの値をそれぞれラッチした後に、次の階調データData[7:0]がデータバスに供給される。このことにより、D-FF113およびD-FF114がラッチしたデータregBおよびデータregWは、前階調データから調べられた黒表示・白表示を示すデータとすることができ、D-FF113およびD-FF114の入力であるフラグflgBおよびフラグflgWを、現階調データから調べられた黒表示・白表示を示すフラグとすることができる。 Gradation data Data [7: 0] is data obtained by time-sharing gradation data input serially from the outside, and gradation data corresponding to all output terminals is supplied. After the D-FF 113 and D-FF 114 latch the values of the flags flgB and flgW, respectively, according to the control signal SRA, the next gradation data Data [7: 0] is supplied to the data bus. As a result, the data regB and data regW latched by the D-FF 113 and D-FF 114 can be data indicating black display / white display checked from the previous gradation data, and the D-FF 113 and D-FF 114 The flag flgB and the flag flgW, which are inputs of, can be used as flags indicating black display / white display examined from the current gradation data.
 カウンタ116~119は、制御信号SRBの入力タイミングに応じて、出力対の表示状態を示すフラグflgBB・flgWW・flgBW・flgWBが“1”であればカウントアップする。カウンタ116~119としては、CNT207を用いている。制御信号SRBは、フラグflgBB・flgWW・flgBW・flgWBの値が決まった後に出力される。カウンタ116~119は、カウント値を示す8ビットのデータcntBB[7:0]・cntWW[7:0]・cntBW[7:0]・cntWB[7:0]を、多数派照合回路120~123にそれぞれ出力する。 Counters 116 to 119 count up according to the input timing of control signal SRB if flags flgBB, flgWW, flgBW, flgWB indicating the display state of the output pair are “1”. As the counters 116 to 119, CNTs 207 are used. The control signal SRB is output after the values of the flags flgBB, flgWW, flgBW, flgWB are determined. The counters 116 to 119 use 8-bit data cntBB [7: 0], cntWW [7: 0], cntBW [7: 0], and cntWB [7: 0] indicating the count values to the majority collating circuits 120 to 123, respectively. Respectively.
 多数派照合回路120~123は、データCrit_Majority[2:0]と比較して、カウンタ116~119から出力されるカウント値が、データCrit_Majority[2:0]で設定される数以上になるかを調べる回路である。多数派照合回路120~123は、カウント値が設定数以上になると、多数派であることを示すフラグflgMBB・flgMWW・flgMBW・flgMWBを、極性反転およびチャージシェア決定回路102に出力する。 The majority collation circuits 120 to 123 compare with the data Crit_Majority [2: 0] whether the count value output from the counters 116 to 119 is greater than or equal to the number set by the data Crit_Majority [2: 0]. It is a circuit to check. The majority collation circuits 120 to 123 output flags flgMBB, flgMWW, flgMBW, flgMWB indicating the majority to the polarity inversion and charge share determination circuit 102 when the count value exceeds the set number.
 なお、カウンタ116~119の動作は、水平1ラインの出力対の数分行われる。カウンタ116~119のRST端子に入力される制御信号LSは、1ラインの表示に対し、データ信号線駆動ドライバ30が出力を開始する際に出力される。制御信号LSが入力されると、カウンタ116~119はリセットされ、カウンタ値はクリアされる。 The operations of the counters 116 to 119 are performed for the number of output pairs of one horizontal line. The control signal LS input to the RST terminals of the counters 116 to 119 is output when the data signal line driver 30 starts outputting for one line display. When the control signal LS is input, the counters 116 to 119 are reset and the counter value is cleared.
 図5に、黒照合回路111の一構成例を示す。図5に示すように、黒照合回路111は、論理回路131、OR回路132~136、AND回路137、並びに、AND回路138を備えている。 FIG. 5 shows an example of the configuration of the black matching circuit 111. As shown in FIG. 5, the black matching circuit 111 includes a logic circuit 131, OR circuits 132 to 136, an AND circuit 137, and an AND circuit 138.
 論理回路131は、データCrit_Black[2:0]の値に基づいて、表示を黒と判定する階調数を演算する。論理回路131は、予め定められた真理値に沿ってデータCrit_Black[2:0]を演算した結果に応じて、データOPEをAND回路138に出力するとともに、データN_Enable[4:0]をOR回路132~136にそれぞれ出力する。 The logic circuit 131 calculates the number of gradations for determining that the display is black based on the value of the data Crit_Black [2: 0]. The logic circuit 131 outputs the data OPE to the AND circuit 138 according to the result of calculating the data Crit_Black [2: 0] along a predetermined truth value, and outputs the data N_Enable [4: 0] to the OR circuit. Output to 132 to 136, respectively.
 OR回路132~136は、階調データData[4:0]とデータN_Enable[4:0]とをOR演算した結果データを、AND回路137に出力する。AND回路137は、データData[7:5]と、OR回路132~136の出力とをAND演算した結果データをAND回路138に出力する。AND回路138は、論理回路131からのデータOPEと、AND回路137の出力とをAND演算した結果データを、フラグflgBとして出力する。 OR circuits 132 to 136 output, to AND circuit 137, result data obtained by performing OR operation on gradation data Data [4: 0] and data N_Enable [4: 0]. The AND circuit 137 outputs the result data obtained by performing an AND operation on the data Data [7: 5] and the outputs of the OR circuits 132 to 136 to the AND circuit 138. The AND circuit 138 outputs the result data obtained by ANDing the data OPE from the logic circuit 131 and the output of the AND circuit 137 as a flag flgB.
 図6に、論理回路131の真理値表を示す。データCrit_Black[2:0]は3ビットのデータであり、0(000H)および7(111H)のときに出力データOPEを“0”とし、その他の1~6のときに出力データOPEを“1”としている。データCrit_Black[2:0]の値は、設定レジスタ46に1~6のデータを入力することで設定・変更することができる。 FIG. 6 shows a truth table of the logic circuit 131. Data Crit_Black [2: 0] is 3-bit data. The output data OPE is “0” when 0 (000H) and 7 (111H), and the output data OPE is “1” when the other 1-6. " The value of the data Crit_Black [2: 0] can be set / changed by inputting data 1 to 6 to the setting register 46.
 データCrit_Black[2:0]が1(001H)の場合、データN_Enable[4:0]は(00000H)になる。そのため、データN_Enable[4:0]が入力されるOR回路132~136は、階調データData[4]からData[0]が“1”のとき、出力が“1”になる。それゆえ、AND回路137は、階調データData[7:0]が255(11111111H)のときのみ、出力が“1”になる。よって、データOPEは“1”であるので、AND回路138の出力すなわちフラグflgBは“1”になる。 When the data Crit_Black [2: 0] is 1 (001H), the data N_Enable [4: 0] is (00000H). Therefore, the OR circuits 132 to 136 to which the data N_Enable [4: 0] is input have an output of “1” when the gradation data Data [4] to Data [0] are “1”. Therefore, the output of the AND circuit 137 is “1” only when the gradation data Data [7: 0] is 255 (11111111H). Therefore, since the data OPE is “1”, the output of the AND circuit 138, that is, the flag flgB becomes “1”.
 したがって、データCrit_Black[2:0]を1に設定すると、階調データData[7:0]が255のとき、フラグflgBが“1”になる。つまりは、256階調の階調データのときのみ、黒と判定されることになる。 Therefore, when the data Crit_Black [2: 0] is set to 1, when the gradation data Data [7: 0] is 255, the flag flgB becomes “1”. That is, it is determined to be black only in the case of 256 gradation data.
 このように、論理回路131は、階調データData[7:0]が黒またはそれに近い値のときに1を、それ以外の時に0を返すようになっている。階調が黒またはそれに近いと判断する基準は、
 Data>255-X のとき、flgB=1 (黒または黒に近いと判定)
 その他のとき、flgB=0 (そうでないと判定)
となっている。
In this manner, the logic circuit 131 returns 1 when the gradation data Data [7: 0] is black or a value close thereto, and returns 0 otherwise. The standard for judging that the gradation is black or close to it is
When Data> 255−X, flgB = 1 (determined as black or close to black)
In other cases, flgB = 0 (determined otherwise)
It has become.
 なお、データCrit_Black[2:0]の設定により黒と判定される階調数1から32は、後述する図14のフローチャート1の設定である黒とみなす階調数Xに対応する。データ信号線駆動ドライバ30では、この設定数Xを、1、2、4、8,16、32に設定できるようにしている。 Note that the number of gradations 1 to 32 determined to be black by the setting of the data Crit_Black [2: 0] corresponds to the number of gradations X regarded as black, which is the setting of the flowchart 1 in FIG. In the data signal line driver 30, the set number X can be set to 1, 2, 4, 8, 16, 32.
 図7に、白照合回路112の一構成例を示す。図7に示すように、白照合回路112は、論理回路141、AND回路142~146、NOR回路147、並びに、AND回路148を備えている。 FIG. 7 shows a configuration example of the white matching circuit 112. As shown in FIG. 7, the white matching circuit 112 includes a logic circuit 141, AND circuits 142 to 146, a NOR circuit 147, and an AND circuit 148.
 論理回路141は、データCrit_White[2:0]の値に基づいて、表示を白と判定する階調数を演算する。論理回路141は、予め定められた真理値に沿ってデータCrit_White[2:0]を演算した結果に応じて、データOPEをAND回路148に出力するとともに、データN_Enable[4:0]をAND回路142~146にそれぞれ出力する。 The logic circuit 141 calculates the number of gradations for determining that the display is white based on the value of the data Crit_White [2: 0]. The logic circuit 141 outputs the data OPE to the AND circuit 148 according to the result of calculating the data Crit_White [2: 0] according to a predetermined truth value, and outputs the data N_Enable [4: 0] to the AND circuit. Output to 142 to 146, respectively.
 AND回路142~146は、階調データData[4:0]とデータN_Enable[4:0]とをAND演算した結果を、NOR回路147に出力する。NOR回路147は、階調データData[7:5]と、AND回路142~146の出力とをNOR演算した結果をAND回路148に出力する。AND回路148は、論理回路141からのデータOPEと、NOR回路147の出力とをAND演算した結果を、フラグflgWとして出力する。 AND circuits 142 to 146 output the result of AND operation of the gradation data Data [4: 0] and the data N_Enable [4: 0] to the NOR circuit 147. The NOR circuit 147 outputs a result obtained by performing a NOR operation on the gradation data Data [7: 5] and the outputs of the AND circuits 142 to 146 to the AND circuit 148. The AND circuit 148 outputs a result obtained by performing an AND operation on the data OPE from the logic circuit 141 and the output of the NOR circuit 147 as a flag flgW.
 図8に、論理回路141の真理値表を示す。データCrit_White[2:0]は3ビットのデータであり、0(000H)および7(111H)のときに出力データOPEを“0”とし、その他の1~6のときに出力データOPEを“1”としている。データCrit_White[2:0]の値は、設定レジスタ46に1~6のデータを入力することで設定・変更することができる。 FIG. 8 shows a truth table of the logic circuit 141. The data Crit_White [2: 0] is 3-bit data. The output data OPE is “0” when 0 (000H) and 7 (111H), and the output data OPE is “1” when the other 1-6. " The value of the data Crit_White [2: 0] can be set / changed by inputting data 1 to 6 to the setting register 46.
 データCrit_White[2:0]が1(001H)の場合、データN_Enable[4:0]は(11111H)になる。そのため、データN_Enable[4:0]が入力されるAND回路142~146は、階調データData[4]からData[0]が“0”のとき、出力が“0”になる。それゆえ、NOR回路147は、階調データData[7:0]が0(00000000H)のときのみ、出力が“1”になる。よって、データOPEは“1”であるので、AND回路148の出力すなわちフラグflgWは“1”になる。 When the data Crit_White [2: 0] is 1 (001H), the data N_Enable [4: 0] is (11111H). Therefore, the AND circuits 142 to 146 to which the data N_Enable [4: 0] is input have an output of “0” when the data [0] is “0” from the gradation data Data [4]. Therefore, the NOR circuit 147 outputs “1” only when the gradation data Data [7: 0] is 0 (00000000H). Therefore, since the data OPE is “1”, the output of the AND circuit 148, that is, the flag flgW becomes “1”.
 したがって、データCrit_White[2:0]を1に設定すると、階調データData[7:0]が0のとき、フラグflgWが“1”になる。つまりは、1階調の階調データのときのみ、白と判定されることになる。 Therefore, when the data Crit_White [2: 0] is set to 1, when the gradation data Data [7: 0] is 0, the flag flgW becomes “1”. That is, it is determined to be white only when the gradation data is one gradation.
 また、データCrit_White[2:0]に2(010H)を設定した場合、データN_Enable[4:0]は(11110H)になる。そのため、データN_Enable[0]が入力されるAND回路146は、データN_Enable[0]が“0”であるので、常に出力が“0”になる。よって、階調データData[7:0]が0(00000000H)および1(00000001H)のとき、フラグflgWが“1”になる。つまりは、1階調および2階調の階調データのときのみ、白と判定されることになる。 In addition, when 2 (010H) is set in the data Crit_White [2: 0], the data N_Enable [4: 0] becomes (11110H). Therefore, since the data N_Enable [0] is “0”, the AND circuit 146 to which the data N_Enable [0] is input always outputs “0”. Therefore, when the gradation data Data [7: 0] is 0 (00000000H) and 1 (00000001H), the flag flgW becomes “1”. That is, it is determined to be white only in the case of gradation data of 1 gradation and 2 gradations.
 同様に、データCrit_White[2:0]に3(011H)を設定した場合、階調データData[7:0]が0~3のとき、1階調から4階調の4階調が白と判定される。データCrit_White[2:0]に4(100H)を設定した場合、階調データData[7:0]が0~7のとき、1階調から8階調の8階調が白と判定される。データCrit_White[2:0]に5(101H)を設定した場合、階調データData[7:0]が0~15のとき、1階調から16階調の16階調が白と判定される。データCrit_White[2:0]に6(110H)を設定した場合、階調データData[7:0]が0~31のとき、1階調から32階調の32階調が白と判定される。 Similarly, when 3 (011H) is set in the data Crit_White [2: 0], when the gradation data Data [7: 0] is 0 to 3, four gradations from the first gradation to the fourth gradation are white. Determined. When 4 (100H) is set in the data Crit_White [2: 0], when the gradation data Data [7: 0] is 0 to 7, 8 gradations from 1 gradation to 8 gradations are determined to be white. . When 5 (101H) is set in the data Crit_White [2: 0], when the gradation data Data [7: 0] is 0 to 15, 16 gradations from 1 gradation to 16 gradations are determined to be white. . When 6 (110H) is set in the data Crit_White [2: 0], when the gradation data Data [7: 0] is 0 to 31, 32 gradations from 1 gradation to 32 gradations are determined to be white. .
 このように、論理回路141は、階調データData[7:0]が白またはそれに近い値のときに1を、それ以外の時に0を返すようになっている。階調が白またはそれに近いと判断する基準は、
 Data<Y のとき、flgW=1 (白または白に近いと判定)
 その他のとき、flgW=0 (そうでないと判定)
となっている。
In this way, the logic circuit 141 returns 1 when the gradation data Data [7: 0] is white or a value close thereto, and returns 0 otherwise. The criterion for judging that the gradation is white or close to it is
When Data <Y, flgW = 1 (determined as white or close to white)
In other cases, flgW = 0 (determined otherwise)
It has become.
 なお、データCrit_White[2:0]の設定により白と判定される階調数1から32は、後述する図14のフローチャート1の設定である白とみなす階調数Yに対応する。データ信号線駆動ドライバ30では、この設定数Yを、1、2、4、8,16、32に設定できるようにしている。 Note that the gradation numbers 1 to 32 determined to be white by the setting of the data Crit_White [2: 0] correspond to the gradation number Y regarded as white, which is the setting of the flowchart 1 of FIG. The data signal line driver 30 can set the set number Y to 1, 2, 4, 8, 16, 32.
 図9に、パターン照合回路115の一構成例を示す。図9に示すように、パターン照合回路115は、AND回路151~154を備えている。 FIG. 9 shows a configuration example of the pattern matching circuit 115. As shown in FIG. 9, the pattern matching circuit 115 includes AND circuits 151 to 154.
 AND回路151は、現階調データから判定された黒表示を示すフラグflgBと、前階調データから判定された黒表示を示すデータregBとをAND演算した結果に応じて、フラグflgBBを出力する。AND回路152は、現階調データから判定された白表示を示すフラグflgWと、前階調データから判定された白表示を示すデータregWとをAND演算した結果に応じて、フラグflgWWを出力する。AND回路153は、現階調データから判定された黒表示を示すフラグflgBと、前階調データから判定された白表示を示すデータregWとをAND演算した結果に応じて、フラグflgBWを出力する。AND回路154は、現階調データから判定された白表示を示すフラグflgWと、前階調データから判定された黒表示を示すデータregBとをAND演算した結果に応じて、フラグflgWBを出力する。 The AND circuit 151 outputs the flag flgBB in accordance with the result of ANDing the flag flgB indicating black display determined from the current gradation data and the data regB indicating black display determined from the previous gradation data. . The AND circuit 152 outputs the flag flgWW according to the result of ANDing the flag flgW indicating white display determined from the current gradation data and the data regW indicating white display determined from the previous gradation data. . The AND circuit 153 outputs the flag flgBW according to the result of ANDing the flag flgB indicating black display determined from the current gradation data and the data regW indicating white display determined from the previous gradation data. . The AND circuit 154 outputs the flag flgWB in accordance with the result of ANDing the flag flgW indicating white display determined from the current gradation data and the data regB indicating black display determined from the previous gradation data. .
 図10に、隣接する出力対の表示状態における、パターン照合回路115の入力および出力の状態を示す。例えば、隣接する出力対の表示状態が「黒黒」の場合、入力はフラグflgBおよびデータregBが“1”になり、出力はフラグflgBBが“1”になる。また、表示状態が黒・白のいずれでもないと判定されたもの(他)が含まれている場合、出力はいずれのフラグも“0”になる。なお、図10に示す以外の状態は存在しない。 FIG. 10 shows the input and output states of the pattern matching circuit 115 in the display state of adjacent output pairs. For example, when the display state of the adjacent output pair is “black and black”, the input flag flgB and data regB are “1”, and the output flag flag flgBB is “1”. If the display state is determined to be neither black nor white (others), the output is “0” for both flags. There is no state other than that shown in FIG.
 ここで、データ信号線駆動ドライバ30は、414出力のデータライン駆動回路として設計してあるので、出力対は207本である。このため、カウンタ116~119の最大カウント値は207であるので、このままでは、多数派照合回路120~123が出力するフラグflgは常に“0”である。それゆえ、カウンタ116~119は、カウント数103の次は152になるようにして、207のカウントにより出力の状態を(11111111H)になるようにしてある。 Here, since the data signal line drive driver 30 is designed as a data line drive circuit with 414 outputs, there are 207 output pairs. Therefore, since the maximum count value of the counters 116 to 119 is 207, the flag flg output from the majority collation circuits 120 to 123 is always “0”. Therefore, the counters 116 to 119 are set to 152 after the count number 103, and the output state is set to (11111111H) by the count of 207.
 図11に、カウンタ116~119の真理値表を示す。カウント数103までは通常の8ビットのカウンタであるが、105のカウントでビット反転を行い、カウント数104での出力8ビットの状態を152(10011000H)にしている。これにより、207のカウント時には、出力8ビットの状態は255(11111111H)になる。 FIG. 11 shows a truth table of the counters 116 to 119. Up to the count number 103, a normal 8-bit counter is used, but bit inversion is performed at a count of 105, and the output 8-bit state at the count number 104 is set to 152 (10011000H). As a result, at the time of counting 207, the output 8-bit state becomes 255 (11111111H).
 このようにカウンタの値を変更しているので、データCrit_Majority[2:0]に1を設定すると、多数派照合回路120~123は、カウント数207のときに多数派としてフラグflgを“1”にする。また、データCrit_Majority[2:0]に2を設定すると、多数派照合回路120~123は、カウント数206以上のときに多数派としてフラグflgを“1”にする。データCrit_Majority[2:0]に3を設定すると、多数派照合回路120~123は、カウント数204以上のときに多数派としてフラグflgを“1”にする。データCrit_Majority[2:0]に4を設定すると、多数派照合回路120~123は、カウント数200以上のときに多数派としてフラグflgを“1”にする。データCrit_Majority[2:0]に5を設定すると、多数派照合回路120~123は、カウント数192以上のときに多数派としてフラグflgを“1”にする。データCrit_Majority[2:0]に6を設定すると、多数派照合回路120~123は、カウント数176以上のときに多数派としてフラグflgを“1”にする。 Since the counter value is changed in this way, when data Crit_Majority [2: 0] is set to 1, the majority collation circuits 120 to 123 set the flag flg to “1” as the majority when the count number is 207. To. When 2 is set in the data Crit_Majority [2: 0], the majority collation circuits 120 to 123 set the flag flg to “1” as the majority when the count number is 206 or more. When the data Crit_Majority [2: 0] is set to 3, the majority collation circuits 120 to 123 set the flag flg to “1” as the majority when the count number is 204 or more. When the data Crit_Majority [2: 0] is set to 4, the majority collation circuits 120 to 123 set the flag flg to “1” as the majority when the count number is 200 or more. When the data Crit_Majority [2: 0] is set to 5, the majority collation circuits 120 to 123 set the flag flg to “1” as the majority when the count number is 192 or more. When the data Crit_Majority [2: 0] is set to 6, the majority collation circuits 120 to 123 set the flag flg to “1” as the majority when the count number is 176 or more.
 なお、多数派照合回路120~123は、黒照合回路111と同一の構成で実現することができる。つまりは、図5に示す構成において、階調データData[7:0]に替えて、カウント値を示すデータcntBB[7:0]・cntWW[7:0]・cntBW[7:0]・cntWB[7:0]を入力するとともに、データCrit_Black[2:0]に替えて、データCrit_Majority[2:0]を入力すればよい。これにより、AND回路138から、多数派であることを示すフラグflgMBB・flgMWW・flgMBW・flgMWBが出力される。 The majority collation circuits 120 to 123 can be realized with the same configuration as the black collation circuit 111. That is, in the configuration shown in FIG. 5, instead of the gradation data Data [7: 0], data indicating the count value cntBB [7: 0] · cntWW [7: 0] · cntBW [7: 0] · cntWB [7: 0] is input, and data Crit_Majority [2: 0] may be input instead of the data Crit_Black [2: 0]. As a result, the flag flgMBB / flgMWW / flgMBW / flgMWB indicating the majority is output from the AND circuit 138.
 また、データCrit_Majority[2:0]の設定により多数派と決める設定値は、後述する図15のフローチャート2の設定である多数派を決める設定値Zに対応する。データ信号線駆動ドライバ30では、この設定数Zを、1、2、4、8,16、32に設定できるようにしている。また、データCrit_Majority[2:0]の値は、設定レジスタ46に1~6のデータを入力することで設定・変更することができる。 Also, the setting value determined as the majority by setting the data Crit_Majority [2: 0] corresponds to the setting value Z that determines the majority, which is the setting of the flowchart 2 of FIG. In the data signal line driver 30, the set number Z can be set to 1, 2, 4, 8, 16, 32. Further, the value of the data Crit_Majority [2: 0] can be set / changed by inputting data 1 to 6 to the setting register 46.
 図12に、極性反転およびチャージシェア決定回路102の一構成例を示す。図12に示すように、極性反転およびチャージシェア決定回路102は、D-FF161~163(保持手段)、AND回路164~166(制御信号出力手段)、OR回路167・168(制御信号出力手段)、並びに、D-FF169・170(制御信号出力手段)を備えている。 FIG. 12 shows a configuration example of the polarity inversion and charge share determination circuit 102. As shown in FIG. 12, the polarity inversion and charge share determination circuit 102 includes D-FFs 161 to 163 (holding means), AND circuits 164 to 166 (control signal output means), and OR circuits 167 and 168 (control signal output means). And D-FF 169 and 170 (control signal output means).
 D-FF161~163は、制御信号PSの入力タイミングに基づいて、パターン検出回路101の出力であるフラグflgMBB・flgMBW・flgMWBの値をラッチする。すなわち、D-FF161は、フラグflgMBBの値をラッチし、データregMBBとして保持する。D-FF162は、フラグflgMBWの値をラッチし、データregMBWとして保持する。D-FF163は、フラグflgMWBの値をラッチし、データregMWBとして保持する。D-FF161~163は、保持しているデータregMBB・regMBW・regMWBを、AND回路164~166にそれぞれ出力する。 The D-FFs 161 to 163 latch the values of the flags flgMBB, flgMBW, and flgMWB, which are the outputs of the pattern detection circuit 101, based on the input timing of the control signal PS. That is, the D-FF 161 latches the value of the flag flgMBB and holds it as data regMBB. The D-FF 162 latches the value of the flag flgMBW and holds it as data regMBW. The D-FF 163 latches the value of the flag flgMWB and holds it as data regMWB. The D-FFs 161 to 163 output the held data regMBB, regMBW, regMWB to the AND circuits 164 to 166, respectively.
 AND回路164は、今回取得した1ライン分の階調データから判定されたフラグflgMWBと、前回取得した1ライン分の階調データから判定されたデータregMBWとをAND演算した結果データを、OR回路167に出力する。AND回路165は、今回取得した1ライン分の階調データから判定されたフラグflgMBWと、前回取得した1ライン分の階調データから判定されたデータregMWBとをAND演算した結果データを、OR回路167に出力する。AND回路166は、今回取得した1ライン分の階調データから判定されたフラグflgMWWと、前回取得した1ライン分の階調データから判定されたデータregMBBとをAND演算した結果データを、OR回路168に出力する。 The AND circuit 164 ORs the result data obtained by ANDing the flag flgMWB determined from the gradation data for one line acquired this time and the data regMBW determined from the gradation data for one line acquired last time. To 167. The AND circuit 165 ORs the result data obtained by ANDing the flag flgMBW determined from the gradation data for one line acquired this time and the data regMWB determined from the gradation data for one line acquired last time. To 167. The AND circuit 166 ORs the result data obtained by ANDing the flag flgMWW determined from the gradation data for one line acquired this time and the data regMBB determined from the gradation data for one line acquired last time. To 168.
 OR回路167は、AND回路164の出力とAND回路165の出力とをOR演算した結果データを、D-FF169に出力するとともに、OR回路168に出力する。OR回路168は、OR回路167の出力とAND回路166の出力とをOR演算した結果データを、D-FF170に出力する。 The OR circuit 167 outputs the result data obtained by ORing the output of the AND circuit 164 and the output of the AND circuit 165 to the D-FF 169 and also to the OR circuit 168. The OR circuit 168 outputs the result data obtained by ORing the output of the OR circuit 167 and the output of the AND circuit 166 to the D-FF 170.
 D-FF169は、制御信号PSの入力タイミングに基づいて、OR回路167の出力をラッチする。そして、D-FF169は、保持しているデータを制御信号Ctrl_REVとして、極性切替制御回路44に出力する。 The D-FF 169 latches the output of the OR circuit 167 based on the input timing of the control signal PS. Then, the D-FF 169 outputs the held data to the polarity switching control circuit 44 as the control signal Ctrl_REV.
 D-FF170は、制御信号PSの入力タイミングに基づいて、OR回路168の出力をラッチする。そして、D-FF170は、保持しているデータを制御信号Ctrl_CSとして、出力短絡制御回路45に出力する。 The D-FF 170 latches the output of the OR circuit 168 based on the input timing of the control signal PS. Then, the D-FF 170 outputs the held data to the output short-circuit control circuit 45 as the control signal Ctrl_CS.
 上記データregMBB・regMBW・regMWBは、1つ前の走査ラインにおける階調データにおいて、多数派の組合せパターンが何であったかを示している。データregMBBが“1”であれば前のラインの表示は黒黒が多数派であり、データregMBWが“1”であれば黒白が多数派であり、データregMWBが“1”であれば白黒が多数派であったことを示している。 The above data regMBB, regMBW, regMWB indicate what the majority combination pattern was in the gradation data in the previous scanning line. If the data regMBB is “1”, the display of the previous line is majority in black and black, if the data regMBW is “1”, the majority is black and white, and if the data regMBB is “1”, black and white is displayed. It shows that it was a majority.
 一方、フラグflgMBB・flgMWW・flgMBW・flgMWBは、現在の走査ラインにおける階調データの、多数派の組合せパターンを示している。フラグflgMBBが“1”であれば黒黒が多数派であり、フラグflgMWWが“1”であれば白白が多数派であり、フラグflgMBWが“1”であれば黒白が多数派であり、フラグflgMWBが“1”であれば白黒が多数派であることを示している。 On the other hand, flags flgMBB, flgMWW, flgMBW, and flgMWB indicate a majority combination pattern of gradation data in the current scan line. If the flag flgMBB is “1”, black and black is the majority, if the flag flgMWW is “1”, the white is the majority, and if the flag flgMBW is “1”, the black and white is the majority. If flgMWB is “1”, it indicates that black and white is majority.
 AND回路164には、データregMBWとフラグflgMWBとが入力されているので、前ラインが黒白、現ラインが白黒が多数派のときに出力が“1”になる。AND回路165は、データregMWBとフラグflgMBWとが入力されているので、前ラインが白黒、現ラインが黒白が多数派のときに出力が“1”になる。AND回路166には、データregMBBとフラグflgWWとが入力されているので、前ラインが黒黒、現ラインが白白が多数派のときに出力が“1”になる。 Since the data regMBW and the flag flgMWB are input to the AND circuit 164, the output is “1” when the previous line is black and white and the current line is majority. Since the AND circuit 165 receives the data regMWB and the flag flgMBW, the output is “1” when the previous line is black and white and the current line is black and white. Since the data regMBB and the flag flgWW are input to the AND circuit 166, the output is “1” when the front line is black-black and the current line is white-white.
 OR回路167には、AND回路164の出力とAND回路165の出力とが入力されているので、AND回路164の出力とAND回路165の出力とのどちらかが“1”のときに、出力が“1”になる。つまり、前ラインが黒白、現ラインが白黒が多数派、または、前ラインが白黒、現ラインが黒白が多数派のときに、出力が“1”になる。OR回路167の出力状態は、制御信号PSの入力タイミングにより、D-FF169にラッチされ、制御信号Ctrl_REVになる。 Since the output of the AND circuit 164 and the output of the AND circuit 165 are input to the OR circuit 167, the output is output when either the output of the AND circuit 164 or the output of the AND circuit 165 is “1”. Becomes “1”. That is, the output is “1” when the front line is black and white and the current line is black and white, or the front line is black and white and the current line is black and white. The output state of the OR circuit 167 is latched by the D-FF 169 according to the input timing of the control signal PS and becomes the control signal Ctrl_REV.
 OR回路168には、OR回路167の出力とAND回路166の出力とが入力されているので、OR回路167の出力とAND回路166の出力とのどちらかが“1”のときに、出力が“1”になる。つまり、前ラインが黒白、現ラインが白黒が多数派、前ラインが白黒、現ラインが黒白が多数派、または、前ラインが黒黒、現ラインが白白が多数派のときに、出力が“1”になる。OR回路168の出力状態は、制御信号PSの入力タイミングにより、D-FF170にラッチされ、制御信号Ctrl_CSになる。 Since the output of the OR circuit 167 and the output of the AND circuit 166 are input to the OR circuit 168, the output is output when either the output of the OR circuit 167 or the output of the AND circuit 166 is “1”. Becomes “1”. In other words, when the previous line is black and white, the current line is black and white, the previous line is black and white, the current line is black and white, or the previous line is black and white, and the current line is white and white, the output is “ 1 ”. The output state of the OR circuit 168 is latched by the D-FF 170 according to the input timing of the control signal PS and becomes the control signal Ctrl_CS.
 制御信号Ctrl_REVは、極性反転を行うように極性切替制御回路44を動作させる信号である。それゆえ、OR回路167の出力が“1”のとき、つまり、前ラインが黒白、現ラインが白黒が多数派、または、前ラインが白黒、現ラインが黒白が多数派のときに、極性反転を行うことになる。 The control signal Ctrl_REV is a signal for operating the polarity switching control circuit 44 so as to invert the polarity. Therefore, when the output of the OR circuit 167 is “1”, that is, when the previous line is black and white and the current line is majority black and white, or the previous line is black and white and the current line is black and white majority, the polarity is inverted. Will do.
 制御信号Ctrl_CSは、チャージシェアを行うように出力短絡制御回路45を動作させる信号である。それゆえ、OR回路168が“1”のとき、つまり、前ラインが黒白、現ラインが白黒が多数派、前ラインが白黒、現ラインが黒白が多数派、または、前ラインが黒黒、現ラインが白白が多数派のときに、チャージシェアを行うことになる。 The control signal Ctrl_CS is a signal for operating the output short-circuit control circuit 45 so as to perform charge sharing. Therefore, when the OR circuit 168 is “1”, that is, the previous line is black and white, the current line is black and white, the previous line is black and white, the current line is black and white, or the previous line is black and white, When the line is majority white and white, charge sharing is performed.
 また、制御信号PSが入力されると、制御信号Ctrl_REVと制御信号Ctrl_CSとがラッチされるとともに、データregMBB・regMBW・regMWBがラッチされる。よって、この動作により、データregMBB・regMBW・regMWBは、現ラインの多数派の状態に変更され、次のラインの多数派の情報と比較する準備が完了する。 Further, when the control signal PS is input, the control signal Ctrl_REV and the control signal Ctrl_CS are latched, and the data regMBB / regMBW / regMWB are latched. Thus, this operation changes the data regMBB, regMBW, regMWB to the majority state of the current line, and the preparation for comparison with the majority information of the next line is completed.
 次に、ソースブロック反転駆動において、データ信号線駆動ドライバ30が、パターンを検出し、必要に応じて表示方法の変更を行うときの処理動作について説明する。 Next, the processing operation when the data signal line driver 30 detects the pattern and changes the display method as necessary in the source block inversion driving will be described.
 図13は、1画面を表示するときの、データ信号線駆動ドライバ30の処理フローを示すフローチャートである。また、図14に、図13に示す処理フローで実行されるフローチャート1を示す。図15に、図13に示す処理フローで実行されるフローチャート2を示す。 FIG. 13 is a flowchart showing a processing flow of the data signal line driver 30 when one screen is displayed. FIG. 14 shows a flowchart 1 executed in the processing flow shown in FIG. FIG. 15 shows a flowchart 2 executed in the processing flow shown in FIG.
 表示を行う場合、図13に示すように、まず、データ信号線駆動ドライバ30は、シフトレジスタ31およびデータラッチ32により、1画面の画像データにおいて、表示を開始する第1ラインの階調データData[7:0]を順次取り込む(ステップS201)。これにより、ホールドラッチ34、レベルシフタ35、正極性側DAC36、負極性側DAC37、正極性用オペアンプ38、および負極性用オペアンプ39の処理によって、出力パッド42を介して、ソースライン22にデータ信号が出力される。そして、このデータ信号が第1ラインの画素電極24に印加されて、液晶パネル20は表示を行う(ステップS203)。 When the display is performed, as shown in FIG. 13, first, the data signal line driver 30 uses the shift register 31 and the data latch 32 to display grayscale data Data of the first line for starting display in one screen image data. [7: 0] are sequentially fetched (step S201). As a result, a data signal is sent to the source line 22 via the output pad 42 by the processing of the hold latch 34, the level shifter 35, the positive polarity side DAC 36, the negative polarity side DAC 37, the positive polarity operational amplifier 38, and the negative polarity operational amplifier 39. Is output. Then, the data signal is applied to the pixel electrode 24 of the first line, and the liquid crystal panel 20 performs display (step S203).
 なお、上記階調データData[7:0]は、液晶パネル20の駆動方式に対応してデータバスに順次出力されている。ここで、液晶パネル20は、ソースブロック反転駆動されているとする。 The gradation data Data [7: 0] is sequentially output to the data bus corresponding to the driving method of the liquid crystal panel 20. Here, it is assumed that the liquid crystal panel 20 is driven by source block inversion.
 一方、判断回路43は、第1ライン分の階調データData[7:0]から、図14のフローチャート1および図15のフローチャート2に示す処理を行い、第1ラインの階調データData[7:0]における、隣り合う出力対の黒と白との組合せパターンを調べる。これにより、第1ラインの組合せの多数派を示すデータregMBB・regMBW・regMWBを得る(ステップS202)。 On the other hand, the determination circuit 43 performs the processing shown in the flowchart 1 of FIG. 14 and the flowchart 2 of FIG. 15 from the gradation data Data [7: 0] for the first line, and the gradation data Data [7 of the first line. : 0], the combination pattern of black and white of adjacent output pairs is examined. As a result, data regMBB, regMBW, regMWB indicating the majority of the combination of the first line is obtained (step S202).
 このステップS202の処理について具体的に説明する。 The processing in step S202 will be specifically described.
 図14に示すように、まず、判断回路43の処理に必要な基準値(階調数=n、黒とみなす階調数=X、白とみなす階調数=Y)を予め設定しておく(ステップS231)。例えば、256階調の256階調側が黒表示である場合、黒とみなす階調数を8(X=8)とすると、248階調から256階調が黒と判定される。同様に、白とみなす階調数を8(Y=8)とすると、1階調から8階調が白と判定される。 As shown in FIG. 14, first, reference values (number of gradations = n, number of gradations regarded as black = X, number of gradations regarded as white = Y) necessary for the processing of the determination circuit 43 are set in advance. (Step S231). For example, when 256 gradations of 256 gradations are black, assuming that the number of gradations regarded as black is 8 (X = 8), 256 gradations to 256 gradations are determined to be black. Similarly, if the number of gradations regarded as white is 8 (Y = 8), 1 to 8 gradations are determined to be white.
 また、判断回路43では、前ラインに対して処理を行ったときのフラグflgBB・flgWW・flgBW・flgWBの出現回数が、パターン検出回路101のカウンタ116~119に保持されている。そのため、カウンタ116~119に制御信号LSを与えることで、フラグflgBB・flgWW・flgBW・flgWBの出現回数をリセットする(ステップS232)。 Also, in the determination circuit 43, the number of appearances of the flags flgBB, flgWW, flgBW, flgWB when processing is performed on the previous line is held in the counters 116 to 119 of the pattern detection circuit 101. Therefore, the number of appearances of the flags flgBB, flgWW, flgBW, flgWB is reset by giving a control signal LS to the counters 116 to 119 (step S232).
 続いて、出力対において、第1の出力に対応する階調データをKとし、第2の出力に対応する階調データをLとする(ステップS233)。そして、判断回路43、すなわちパターン検出回路101の黒照合回路111および白照合回路112は、KおよびLのデータが黒を表示するのか、白を表示するのかを調べる。 Subsequently, in the output pair, the gradation data corresponding to the first output is set to K, and the gradation data corresponding to the second output is set to L (step S233). Then, the determination circuit 43, that is, the black collation circuit 111 and the white collation circuit 112 of the pattern detection circuit 101, examines whether the K and L data display black or white.
 KおよびLのデータを調べた後、判断回路43すなわちパターン照合回路115は、「K>n-X」かつ「L>n-X」(KおよびLが黒)を満たすかを判定する(ステップS234)。 After examining the data of K and L, the determination circuit 43, that is, the pattern matching circuit 115 determines whether or not “K> n−X” and “L> n−X” (K and L are black) are satisfied (step S1). S234).
 「K>n-X」かつ「L>n-X」を満たす場合(ステップS234にてYES)、パターン照合回路115は、組合せパターンが「黒黒」であると判定し、フラグflgBBを“1”にして、カウンタ116のカウント値をカウントアップさせる(ステップS235)。 When “K> n−X” and “L> n−X” are satisfied (YES in step S234), pattern matching circuit 115 determines that the combination pattern is “black and black” and sets flag flgBB to “1”. In step S235, the count value of the counter 116 is counted up.
 そして、判断回路43は、出力対が最後であるかを調べ(ステップS242)、最後である場合(ステップS242にてYES)は、図15のフローチャート2の処理に移り、最後でない場合(ステップS242にてNO)は、次段の出力対のデータへ移動し(ステップS243)、ステップS233に戻って、次の出力対の組合せパターンの判定処理を行う。 Then, the determination circuit 43 checks whether the output pair is the last (step S242). If it is the last (YES in step S242), the process proceeds to the process of the flowchart 2 in FIG. 15, and if not the last (step S242). NO) is moved to the next output pair data (step S243), and the process returns to step S233 to determine the combination pattern of the next output pair.
 一方、「K>n-X」かつ「L>n-X」を満たさない場合(ステップS234にてNO)、パターン照合回路115は、次いで、「K<Y」かつ「L<Y」(KおよびLが白)を満たすかを判定する(ステップS236)。 On the other hand, when “K> n−X” and “L> n−X” are not satisfied (NO in step S234), pattern matching circuit 115 then selects “K <Y” and “L <Y” (K And L satisfies white) (step S236).
 「K<Y」かつ「L<Y」を満たす場合(ステップS236にてYES)、パターン照合回路115は、組合せパターンが「白白」であると判定し、フラグflgWWを“1”にして、カウンタ117のカウント値をカウントアップさせる(ステップS237)。そして、判断回路43は、同様に、出力対が最後であるかを調べて(ステップS242)、次の処理に進む。 If “K <Y” and “L <Y” are satisfied (YES in step S236), pattern matching circuit 115 determines that the combination pattern is “white and white”, sets flag flgWW to “1”, and sets the counter The count value 117 is counted up (step S237). Similarly, the determination circuit 43 checks whether the output pair is the last (step S242), and proceeds to the next process.
 一方、「K<Y」かつ「L<Y」を満たさない場合(ステップS236にてNO)、パターン照合回路115は、次いで、「K>n-X」かつ「L<Y」(Kが黒、Lが白)を満たすかを判定する(ステップS238)。 On the other hand, when “K <Y” and “L <Y” are not satisfied (NO in step S236), pattern matching circuit 115 then selects “K> n−X” and “L <Y” (K is black). , L is white (step S238).
 「K>n-X」かつ「L<Y」を満たす場合(ステップS238にてYES)、パターン照合回路115は、組合せパターンが「黒白」であると判定し、フラグflgBWを“1”にして、カウンタ118のカウント値をカウントアップさせる(ステップS239)。そして、判断回路43は、同様に、出力対が最後であるかを調べて(ステップS242)、次の処理に進む。 If “K> n−X” and “L <Y” are satisfied (YES in step S238), pattern matching circuit 115 determines that the combination pattern is “black and white” and sets flag flgBW to “1”. Then, the count value of the counter 118 is counted up (step S239). Similarly, the determination circuit 43 checks whether the output pair is the last (step S242), and proceeds to the next process.
 一方、「K>n-X」かつ「L<Y」を満たさない場合(ステップS238にてNO)、パターン照合回路115は、次いで、「K<Y」かつ「L>n-X」(Kが白、Lが黒)を満たすかを判定する(ステップS240)。 On the other hand, if “K> n−X” and “L <Y” are not satisfied (NO in step S238), pattern matching circuit 115 then selects “K <Y” and “L> n−X” (K Is white and L is black) (step S240).
 「K<Y」かつ「L>n-X」を満たす場合(ステップS240にてYES)、パターン照合回路115は、組合せパターンが「白黒」であると判定し、フラグflgWBを“1”にして、カウンタ119のカウント値をカウントアップさせる(ステップS241)。そして、判断回路43は、同様に、出力対が最後であるかを調べて(ステップS242)、次の処理に進む。 When “K <Y” and “L> n−X” are satisfied (YES in step S240), pattern matching circuit 115 determines that the combination pattern is “monochrome” and sets flag flgWB to “1”. Then, the count value of the counter 119 is counted up (step S241). Similarly, the determination circuit 43 checks whether the output pair is the last (step S242), and proceeds to the next process.
 一方、「K<Y」かつ「L>n-X」を満たさない場合(ステップS240にてNO)、判断回路43は、出力対の組合せパターンは、黒黒・白白・黒白・白黒のいずれにも該当しなかったと判定し、同様に、出力対が最後であるかを調べて(ステップS242)、次の処理に進む。 On the other hand, when “K <Y” and “L> n−X” are not satisfied (NO in step S240), determination circuit 43 determines whether the output pair combination pattern is black / black / white / white / black / white / monochrome. Similarly, it is determined whether the output pair is the last (step S242), and the process proceeds to the next process.
 このように、判断回路43は、図14のフローチャート1を実行して、1ラインの全ての出力対に対し、組合せパターンを判定して、1ラインにおける、黒黒を表示する場合、白白を表示する場合、黒白を表示する場合、白黒を表示する場合の出現回数をカウントする。 In this way, the determination circuit 43 executes the flowchart 1 of FIG. 14 to determine the combination pattern for all output pairs of one line, and when displaying black and black in one line, display white and white. When displaying black and white, the number of appearances when displaying black and white is counted.
 続いて、判断回路43は、図15のフローチャート2を実行して、いずれの組合せパターンが多数出現しているかを調べる。図15に示すように、1ライン中にどの程度パターンが発生した場合を多数出現とみなすかを設定するために、多数派を決める設定値=Zを予め設定しておく(ステップS261)。よって、出力対の総数=mとすると、多数派となる数はm-Zで表される。例えば、414出力のデータ信号線駆動ドライバ30では、m=207となり、Zを16とした場合、多数派となる数は207-16=191になる。 Subsequently, the determination circuit 43 executes the flowchart 2 in FIG. 15 to check which combination pattern appears in large numbers. As shown in FIG. 15, in order to set how many patterns are generated in one line and regarded as the appearance of a large number, a setting value = Z for determining the majority is set in advance (step S261). Therefore, if the total number of output pairs = m, the number that becomes the majority is represented by m−Z. For example, in the data signal line driver 30 with 414 outputs, m = 207, and when Z is 16, the number that becomes the majority is 207-16 = 191.
 続いて、判断回路43、すなわちパターン検出回路101の多数派照合回路120は、「flgBB(黒黒パターンの出現回数)>m-Z」を満たすかを判定する(ステップS262)。 Subsequently, the determination circuit 43, that is, the majority collation circuit 120 of the pattern detection circuit 101 determines whether or not “flgBB (number of occurrences of black and black pattern)> m−Z” is satisfied (step S262).
 「flgBB>m-Z」を満たす場合(ステップS262にてYES)、多数派照合回路120は、黒黒のパターンが多数派であると判定し、フラグflgMBBを“1”にする。そして、これを極性反転およびチャージシェア決定回路102のD-FF131がラッチすることにより、データregMBBが“1”になる。また、データregMWW・regMBW・regMWBは“0”になる(ステップS263)。この結果を得て、判断回路43は、図13のフローチャートの処理に戻る。 If “flgBB> m−Z” is satisfied (YES in step S262), the majority collation circuit 120 determines that the black and black pattern is the majority, and sets the flag flgMBB to “1”. Then, this is latched by the D-FF 131 of the polarity inversion and charge share determination circuit 102, so that the data regMBB becomes “1”. The data regMWW / regMBW / regMWB is “0” (step S263). Obtaining this result, the determination circuit 43 returns to the processing of the flowchart of FIG.
 一方、「flgBB>m-Z」を満たさない場合(ステップS262にてNO)、多数派照合回路120は、次いで、「flgWW(白白パターンの出現回数)>m-Z」を満たすかを判定する(ステップS264)。 On the other hand, when “flgBB> m−Z” is not satisfied (NO in step S262), majority check circuit 120 then determines whether “flgWW (number of appearances of white and white pattern)> m−Z” is satisfied. (Step S264).
 「flgWW>m-Z」を満たす場合(ステップS264にてYES)、多数派照合回路120は、白白のパターンが多数派であると判定し、フラグflgMWWを“1”にする。そして、これによりデータregMWWが“1”になる。また、データregMBB・regMBW・regMWBは“0”になる(ステップS265)。この結果を得て、判断回路43は、図13のフローチャートの処理に戻る。 If “flgWW> m−Z” is satisfied (YES in step S264), the majority collation circuit 120 determines that the white / white pattern is the majority, and sets the flag flgMWW to “1”. As a result, the data regMWW becomes “1”. Further, the data regMBB, regMBW, regMWB becomes “0” (step S265). Obtaining this result, the determination circuit 43 returns to the processing of the flowchart of FIG.
 一方、「flgWW>m-Z」を満たさない場合(ステップS264にてNO)、多数派照合回路120は、次いで、「flgBW(黒白パターンの出現回数)>m-Z」を満たすかを判定する(ステップS266)。 On the other hand, when “flgWW> m−Z” is not satisfied (NO in step S264), majority check circuit 120 then determines whether “flgBW (number of appearances of black and white pattern)> m−Z” is satisfied. (Step S266).
 「flgBW>m-Z」を満たす場合(ステップS266にてYES)、多数派照合回路120は、黒白のパターンが多数派であると判定し、フラグflgMBWを“1”にする。そして、これをD-FF132がラッチすることにより、データregMBWが“1”になる。また、データregMBB・regMWW・regMWBは“0”になる(ステップS267)。この結果を得て、判断回路43は、図13のフローチャートの処理に戻る。 If “flgBW> m−Z” is satisfied (YES in step S266), the majority collation circuit 120 determines that the black and white pattern is the majority, and sets the flag flgMBW to “1”. Then, the data regMBW becomes “1” when the D-FF 132 latches this. Further, the data regMBB / regMWW / regMWB becomes “0” (step S267). Obtaining this result, the determination circuit 43 returns to the processing of the flowchart of FIG.
 一方、「flgBW>m-Z」を満たさない場合(ステップS266にてNO)、多数派照合回路120は、次いで、「flgWB(白黒パターンの出現回数)>m-Z」を満たすかを判定する(ステップS268)。 On the other hand, when “flgBW> m−Z” is not satisfied (NO in step S266), majority check circuit 120 then determines whether “flgWB (number of appearances of black and white pattern)> m−Z” is satisfied. (Step S268).
 「flgWB>m-Z」を満たす場合(ステップS268にてYES)、多数派照合回路120は、白黒のパターンが多数派であると判定し、フラグflgMWBを“1”にする。そして、これをD-FF133がラッチすることにより、データregMWBが“1”になる。また、データregMBB・regMWW・regMBWは“0”になる(ステップS269)。この結果を得て、判断回路43は、図13のフローチャートの処理に戻る。 If “flgWB> m−Z” is satisfied (YES in step S268), the majority collation circuit 120 determines that the black and white pattern is the majority, and sets the flag flgMWB to “1”. Then, this is latched by the D-FF 133, so that the data regMWB becomes “1”. Further, the data regMBB / regMWW / regMBW becomes “0” (step S269). Obtaining this result, the determination circuit 43 returns to the processing of the flowchart of FIG.
 一方、「flgWB>m-Z」を満たさない場合(ステップS268にてNO)、判断回路43は、多数を占める組合せパターンは無いと判定する。これにより、全てのデータregMBB・regMWW・regMBW・regMWBは“0”になる(ステップS270)。そして、この結果を得て、判断回路43は、図13のフローチャートの処理に戻る。 On the other hand, when “flgWB> m−Z” is not satisfied (NO in step S268), the determination circuit 43 determines that there is no combination pattern occupying a large number. As a result, all the data regMBB, regMWW, regMBW, regMWB become “0” (step S270). Then, after obtaining this result, the determination circuit 43 returns to the processing of the flowchart of FIG.
 このようにして、判断回路43は、データregMBB・regMBW・regMWBの値を得る(図13のステップS202)。なお、ステップS202の処理は、階調データを取り込む毎に行っても良いし、1ライン分の階調データ全てを取り込んだ後に行っても良い。 In this way, the determination circuit 43 obtains the values of the data regMBB, regMBW, and regMWB (step S202 in FIG. 13). Note that the processing in step S202 may be performed every time the gradation data is captured, or may be performed after all the gradation data for one line is captured.
 続いて、判断回路43は、次段のラインを表示するための階調データData[7:0]を取り込む(ステップS204)。そして、判断回路43は、取り込んだ階調データData[7:0]を用いて、1ラインの全ての出力対に対し、組合せパターンを判定して、1ラインにおける、黒黒を表示する場合、白白を表示する場合、黒白を表示する場合、白黒を表示する場合の出現回数をカウントする。これにより、フラグflgBB・flgWW・flgBW・flgWBの出現回数の値を得る(ステップS205)。この出現回数の取得動作は、図14のフローチャート1の動作と同じである。 Subsequently, the determination circuit 43 takes in the gradation data Data [7: 0] for displaying the next line (step S204). Then, the determination circuit 43 determines the combination pattern for all output pairs of one line using the fetched gradation data Data [7: 0], and displays black and black in one line. When white and white are displayed, black and white are displayed, and the number of appearances when black and white is displayed is counted. Thereby, the value of the number of appearances of the flags flgBB, flgWW, flgBW, flgWB is obtained (step S205). The appearance count acquisition operation is the same as the operation in the flowchart 1 of FIG.
 続いて、判断回路43は、いずれの組合せパターンが多数出現しているかを調べる。この多数派の判断動作は、図15のフローチャート2と同じである。多数派を決める設定値=Z、出力対の総数=mは、先に設定されたものを用いる(ステップS206)。 Subsequently, the determination circuit 43 checks which combination pattern appears in large numbers. This majority decision operation is the same as in the flowchart 2 of FIG. As the setting value for determining the majority = Z and the total number of output pairs = m, those previously set are used (step S206).
 続いて、判断回路43、すなわちパターン検出回路101の多数派照合回路120は、「flgBB(黒黒パターンの出現回数)>m-Z」を満たすかを判定する(ステップS207)。 Subsequently, the determination circuit 43, that is, the majority collation circuit 120 of the pattern detection circuit 101 determines whether “flgBB (number of appearances of black and black pattern)> m−Z” is satisfied (step S207).
 「flgBB>m-Z」を満たす場合(ステップS207にてYES)、多数派照合回路120は、黒黒のパターンが多数派であると判定し、フラグflgMBBを“1”にする。この場合、つまり出力する1ラインの表示が黒黒が多数派の場合は、判断回路43は、出力の極性反転およびチャージシェアは必要ないと判断する。これにより、表示方法を変更せずに、液晶パネルは表示を行う(ステップS216)。 If “flgBB> m−Z” is satisfied (YES in step S207), the majority collation circuit 120 determines that the black and black pattern is the majority, and sets the flag flgMBB to “1”. In this case, that is, when the display of one line to be output is majority black and black, the determination circuit 43 determines that output polarity inversion and charge sharing are not necessary. Accordingly, the liquid crystal panel performs display without changing the display method (step S216).
 そして、フラグflgMBBを極性反転およびチャージシェア決定回路102のD-FF131がラッチすることにより、データregMBBが“1”になる。また、データregMWW・regMBW・regMWBは“0”になる(ステップS217)。すなわち、データregMBB・regMWW・regMBW・regMWBの値を、次段のラインより取得したフラグflgMBB・flgMWW・flgMBW・flgMWBの値で変更している。 Then, the flag flgMBB is latched by the D-FF 131 of the polarity inversion and charge share determination circuit 102, so that the data regMBB becomes “1”. Further, the data regMWW / regMBW / regMWB becomes “0” (step S217). That is, the values of the data regMBB, regMWW, regMBW, regMWB are changed with the values of the flags flgMBB, flgMWW, flgMBW, flgMWB obtained from the next line.
 この結果を得た後、判断回路43は、取得したデータが最終ラインのものであるかを判定する(ステップS218)。最終ラインの場合(ステップS218にてYES)、判断回路43は、処理を終了する。最終ラインでない場合(ステップS218にてNO)、ステップS204に戻って、判断回路43は、次段のラインの階調データを順次取得し、同様に処理する。 After obtaining this result, the determination circuit 43 determines whether the acquired data is for the last line (step S218). In the case of the last line (YES in step S218), determination circuit 43 ends the process. If it is not the last line (NO in step S218), the process returns to step S204, and the determination circuit 43 sequentially obtains the gradation data of the next line and performs the same processing.
 一方、「flgBB>m-Z」を満たさない場合(ステップS207にてNO)、多数派照合回路120は、次いで、「flgWW(白白パターンの出現回数)>m-Z」を満たすかを判定する(ステップS208)。 On the other hand, when “flgBB> m−Z” is not satisfied (NO in step S207), majority check circuit 120 then determines whether “flgWW (number of appearances of white and white pattern)> m−Z” is satisfied. (Step S208).
 「flgWW>m-Z」を満たす場合(ステップS208にてYES)、多数派照合回路120は、白白のパターンが多数派であると判定し、フラグflgMWWを“1”にする。そして、判断回路43、すなわちAND回路136は、前のラインから取得したデータregMBBが“1”かどうかを判定する(ステップS209)。 If “flgWW> m−Z” is satisfied (YES in step S208), the majority collation circuit 120 determines that the white / white pattern is the majority, and sets the flag flgMWW to “1”. Then, the determination circuit 43, that is, the AND circuit 136 determines whether or not the data regMBB acquired from the previous line is “1” (step S209).
 データregMBBが“1”の場合(ステップS209にてYES)、つまり出力する1ラインの表示が白白が多数派で、前のラインの表示が黒黒が多数派の場合は、判断回路43は、チャージシェアが必要と判断する。よって、D-FF140からの制御信号Ctrl_CSが“1”となり、チャージシェアを行う(ステップS210)。これにより、チャージシェアを行うように表示方法を変更して、液晶パネルは表示を行う(ステップS216)。 When the data regMBB is “1” (YES in step S209), that is, when the display of one line to be output is white / white majority and the previous line display is black / black majority, the determination circuit 43 Judge that charge sharing is necessary. Therefore, the control signal Ctrl_CS from the D-FF 140 becomes “1”, and charge sharing is performed (step S210). Thus, the display method is changed so as to perform charge sharing, and the liquid crystal panel performs display (step S216).
 そして、これによりデータregMWWが“1”になる。また、データregMBB・regMBW・regMWBは“0”になる(ステップS217)。なお、データregMBBが“0”の場合(ステップS209にてNO)、表示方法を変更せずに液晶パネルは表示を行い(ステップS216)、判断回路43は上記データを取得する(ステップS217)。そして、この結果を得た後、判断回路43は、同様に、取得したデータが最終ラインのものであるかを判定し(ステップS218)、次の処理に進むか、処理を終了する。 As a result, the data regMWW becomes “1”. Further, the data regMBB / regMBW / regMWB becomes “0” (step S217). If data regMBB is “0” (NO in step S209), the liquid crystal panel performs display without changing the display method (step S216), and determination circuit 43 acquires the data (step S217). After obtaining this result, the determination circuit 43 similarly determines whether the acquired data is for the last line (step S218), and proceeds to the next process or ends the process.
 一方、「flgWW>m-Z」を満たさない場合(ステップS208にてNO)、多数派照合回路120は、次いで、「flgBW(黒白パターンの出現回数)>m-Z」を満たすかを判定する(ステップS211)。 On the other hand, if “flgWW> m−Z” is not satisfied (NO in step S208), majority collation circuit 120 then determines whether “flgBW (number of occurrences of black and white pattern)> m−Z” is satisfied. (Step S211).
 「flgBW>m-Z」を満たす場合(ステップS211にてYES)、多数派照合回路120は、黒白のパターンが多数派であると判定し、フラグflgMBWを“1”にする。そして、判断回路43、すなわちAND回路135は、前のラインから取得したデータregMWBが“1”かどうかを判定する(ステップS212)。 If “flgBW> m−Z” is satisfied (YES in step S211), the majority collation circuit 120 determines that the black and white pattern is the majority, and sets the flag flgMBW to “1”. Then, the determination circuit 43, that is, the AND circuit 135 determines whether or not the data regMWB acquired from the previous line is “1” (step S212).
 データregMWBが“1”の場合(ステップS212にてYES)、つまり出力する1ラインの表示が黒白が多数派で、前のラインの表示が白黒が多数派の場合は、判断回路43は、極性反転およびチャージシェアが必要と判断する。よって、D-FF139からの制御信号Ctrl_REVが“1”となるとともに、D-FF140からの制御信号Ctrl_CSが“1”となり、極性反転およびチャージシェアを行う(ステップS213)。これにより、極性反転およびチャージシェアを行うように表示方法を変更して、液晶パネルは表示を行う(ステップS216)。 If the data regMWB is “1” (YES in step S212), that is, if the output of one line is majority in black and white and the display in the previous line is majority in black and white, the determination circuit 43 determines the polarity. Judge that reversal and charge sharing are necessary. Therefore, the control signal Ctrl_REV from the D-FF 139 becomes “1” and the control signal Ctrl_CS from the D-FF 140 becomes “1”, and polarity inversion and charge sharing are performed (step S213). Thereby, the display method is changed so as to perform polarity inversion and charge sharing, and the liquid crystal panel performs display (step S216).
 そして、フラグflgMBWを極性反転およびチャージシェア決定回路102のD-FF132がラッチすることにより、データregMBWが“1”になる。また、データregMBB・regMWW・regMWBは“0”になる(ステップS217)。なお、データregMWBが“0”の場合(ステップS212にてNO)、表示方法を変更せずに液晶パネルは表示を行い(ステップS216)、判断回路43は上記データを取得する(ステップS217)。そして、この結果を得た後、判断回路43は、同様に、取得したデータが最終ラインのものであるかを判定し(ステップS218)、次の処理に進むか、処理を終了する。 Then, the flag flgMBW is latched by the D-FF 132 of the polarity inversion and charge share determination circuit 102, so that the data regMBW becomes “1”. Further, the data regMBB / regMWW / regMWB becomes “0” (step S217). If data regMWB is “0” (NO in step S212), the liquid crystal panel performs display without changing the display method (step S216), and determination circuit 43 acquires the data (step S217). After obtaining this result, the determination circuit 43 similarly determines whether the acquired data is for the last line (step S218), and proceeds to the next process or ends the process.
 一方、「flgBW>m-Z」を満たさない場合(ステップS211にてNO)、多数派照合回路120は、次いで、「flgWB(白黒パターンの出現回数)>m-Z」を満たすかを判定する(ステップS214)。 On the other hand, if “flgBW> m−Z” is not satisfied (NO in step S211), majority check circuit 120 then determines whether “flgWB (number of appearances of monochrome pattern)> m−Z” is satisfied. (Step S214).
 「flgWB>m-Z」を満たす場合(ステップS214にてYES)、多数派照合回路120は、白黒のパターンが多数派であると判定し、フラグflgMWBを“1”にする。そして、判断回路43、すなわちAND回路134は、前のラインから取得したデータregMBWが“1”かどうかを判定する(ステップS215)。 If “flgWB> m−Z” is satisfied (YES in step S214), the majority collation circuit 120 determines that the monochrome pattern is the majority, and sets the flag flgMWB to “1”. Then, the determination circuit 43, that is, the AND circuit 134 determines whether or not the data regMBW acquired from the previous line is “1” (step S215).
 データregMBWが“1”の場合(ステップS215にてYES)、つまり出力する1ラインの表示が白黒が多数派で、前のラインの表示が黒白が多数派の場合は、判断回路43は、極性反転およびチャージシェアが必要と判断する。よって、D-FF139からの制御信号Ctrl_REVが“1”となるとともに、D-FF140からの制御信号Ctrl_CSが“1”となり、極性反転およびチャージシェアを行う(ステップS213)。これにより、極性反転およびチャージシェアを行うように表示方法を変更して、液晶パネルは表示を行う(ステップS216)。 If the data regMBW is “1” (YES in step S215), that is, if the output of one line to be displayed is majority in black and white and the display in the previous line is majority in black and white, the determination circuit 43 determines the polarity. Judge that reversal and charge sharing are necessary. Therefore, the control signal Ctrl_REV from the D-FF 139 becomes “1” and the control signal Ctrl_CS from the D-FF 140 becomes “1”, and polarity inversion and charge sharing are performed (step S213). Thereby, the display method is changed so as to perform polarity inversion and charge sharing, and the liquid crystal panel performs display (step S216).
 そして、フラグflgMWBを極性反転およびチャージシェア決定回路102のD-FF133がラッチすることにより、データregMWBが“1”になる。また、データregMBB・regMWW・regMBWは“0”になる(ステップS217)。なお、データregMBWが“0”の場合(ステップS215にてNO)、表示方法を変更せずに液晶パネルは表示を行い(ステップS216)、判断回路43は上記データを取得する(ステップS217)。そして、この結果を得た後、判断回路43は、同様に、取得したデータが最終ラインのものであるかを判定し(ステップS218)、次の処理に進むか、処理を終了する。 Then, the flag flgMWB is latched by the D-FF 133 of the polarity inversion and charge share determination circuit 102, so that the data regMWB becomes “1”. Further, the data regMBB / regMWW / regMBW becomes “0” (step S217). If data regMBW is “0” (NO in step S215), the liquid crystal panel performs display without changing the display method (step S216), and determination circuit 43 acquires the data (step S217). After obtaining this result, the determination circuit 43 similarly determines whether the acquired data is for the last line (step S218), and proceeds to the next process or ends the process.
 このようにして、データ信号線駆動ドライバ30は、1画面の表示の際、表示を行うようにデータ信号を出力する一方、極性反転およびチャージシェアが必要かどうかの判断を最終ラインまで繰り返し行う。 In this manner, the data signal line driver 30 outputs a data signal so as to perform display when displaying one screen, and repeatedly determines whether polarity inversion and charge sharing are necessary up to the final line.
 ここで、上記処理において、判断回路43は、出力する1ラインの表示が黒白が多数派で、前のラインの表示が白黒が多数派の場合、および、出力する1ラインの表示が白黒が多数派で、前のラインの表示が黒白が多数派の場合に、極性反転およびチャージシェアが必要と判断している。この2つの場合は、図24に示したソースブロック反転駆動でのキラー・パターンのときに起こり得る。すなわち、キラー・パターンとして水平方向に隣り合う表示が白黒や黒白が多いパターンを抽出することで、極性反転およびチャージシェアが必要と判断している。 Here, in the above processing, the determination circuit 43 determines that the output of one line to be output is majority in black and white, the display of the previous line is majority in black and white, and the output of one line to be output is numerous in black and white. If the display of the previous line is black and white majority, it is judged that polarity reversal and charge sharing are necessary. These two cases may occur in the case of the killer pattern in the source block inversion driving shown in FIG. That is, it is determined that polarity inversion and charge sharing are necessary by extracting a pattern in which the display adjacent in the horizontal direction has many black and white and black and white as a killer pattern.
 図16に、図24の(a)に示したキラー・パターンを極性反転したときのパターンを示し、(a)に当該パターンを示し、(b)に奇数ラインのパターンを示し、(c)に偶数ラインのパターンを示す。キラー・パターンと比べて、極性は反転しているが、黒と白とのパターンは変わらない。 FIG. 16 shows a pattern obtained by reversing the polarity of the killer pattern shown in FIG. 24A, FIG. 16A shows the pattern, FIG. 16B shows an odd line pattern, and FIG. An even line pattern is shown. Compared to the killer pattern, the polarity is reversed, but the black and white pattern does not change.
 図17は、図16に示すパターンの出力1と出力2との間でチャージシェアを行った場合における、(a)は出力1の電位変化を示し、(b)は出力2の電位変化を示す。ライン1とライン3との間のチャージシェアのために出力1と出力2とを短絡した場合、出力1および出力2は、+黒と-白との中間電圧である“a’”の電圧になる。このときの電圧の変化は、出力1が保持する電荷と出力2が保持する電荷とが打ち消しあうため、電流は流れない。 17A shows the potential change of output 1 and FIG. 17B shows the potential change of output 2 when charge sharing is performed between output 1 and output 2 of the pattern shown in FIG. . When output 1 and output 2 are short-circuited due to charge sharing between line 1 and line 3, output 1 and output 2 are set to a voltage of “a ′” which is an intermediate voltage between + black and −white. Become. In this change in voltage, since the charge held by the output 1 and the charge held by the output 2 cancel each other, no current flows.
 短絡を開放後、出力1は“a’”から-白の電位へ、出力2は“a’”から+黒の電位へ移行するため、データ信号線駆動ドライバ30はデータ線を駆動する。このとき、駆動する電圧は、チャージシェアを行わない場合に比べ半分の電圧になり、データ線を駆動する電流も少なくて済む。結果、データ信号線駆動ドライバ30の発熱も少なくなる。 After the short circuit is opened, the output 1 shifts from “a ′” to the −white potential, and the output 2 shifts from “a ′” to the + black potential, so the data signal line driver 30 drives the data lines. At this time, the driving voltage is half that of the case where charge sharing is not performed, and the current for driving the data line can be reduced. As a result, the heat generation of the data signal line driver 30 is also reduced.
 また、ライン3とライン5との間のチャージシェアのために出力1と出力2とを短絡した場合、出力1および出力2は、-白と+黒との中間電圧である“b’”の電圧になる。よって、同様に電流は流れず、次の電位へ移行するときも少ない電流で済むので、データ信号線駆動ドライバ30の発熱も少なくなる。よって、全体として、データ信号線駆動ドライバ30の発熱を大きく低減することが可能となる。 When the output 1 and the output 2 are short-circuited due to the charge sharing between the line 3 and the line 5, the output 1 and the output 2 are “b ′” which is an intermediate voltage between −white and + black. Become a voltage. Accordingly, no current flows in the same manner, and a small amount of current is sufficient when shifting to the next potential, so that the data signal line driver 30 generates less heat. Therefore, as a whole, the heat generation of the data signal line driver 30 can be greatly reduced.
 なお、判断回路43は、上記のような多数派の組合せパターンで画像のパターンを認識しているので、完全にキラー・パターンの表示である場合に限らず、キラー・パターンに類似したパターンであっても認識することが可能である。これにより、極性反転およびチャージシェアを行うことで、ほぼ同等の効果を奏することができる。 Note that the determination circuit 43 recognizes the pattern of the image with the majority combination pattern as described above. Therefore, the determination circuit 43 is not limited to a completely killer pattern display, and is a pattern similar to the killer pattern. Can be recognized. Thereby, substantially the same effect can be produced by performing polarity inversion and charge sharing.
 また、上記処理において、判断回路43は、出力する1ラインの表示が白白が多数派で、前のラインの表示が黒黒が多数派の場合に、チャージシェアが必要と判断している。この場合は、2行が白もしくは黒で、次の2行が黒もしくは白になる、2行横縞のパターンと考えられる。 In the above processing, the determination circuit 43 determines that charge sharing is necessary when the output of one line is majority white and white and the previous line is black and black. In this case, it can be considered as a two-row horizontal stripe pattern in which two rows are white or black and the next two rows are black or white.
 図18に、2行横縞のパターンを示し、(a)に当該パターンを示し、(b)に奇数ラインのパターンを示し、(c)に偶数ラインのパターンを示す。 FIG. 18 shows a two-row horizontal stripe pattern, (a) showing the pattern, (b) showing an odd line pattern, and (c) showing an even line pattern.
 白の駆動電圧がコモン電位の場合、ライン1からライン3のように、黒を表示した後に白を表示する場合は、チャージシェアにより黒を表示していた電圧をコモン電圧付近にすることができる。例えば、隣り合う出力1と出力2とは、ライン1では+黒と-黒との表示を行っている。それゆえ、チャージシェアを行った場合、白の駆動電圧である“c”の電圧になる。よって、次のライン3の出力の白表示では、ほとんど駆動電力を必要としない。 When the white driving voltage is a common potential, when displaying white after displaying black as in lines 1 to 3, the voltage displaying black due to charge sharing can be made close to the common voltage. . For example, the adjacent output 1 and output 2 display + black and −black on the line 1. Therefore, when charge sharing is performed, the voltage is “c”, which is a white driving voltage. Therefore, almost no driving power is required for the white display of the next line 3 output.
 このように、チャージシェアが電流低減に有効な手段となっているので、判断回路43は、2行横縞のパターンの場合、チャージシェアが必要と判断している。また、判断回路43は、完全に2行横縞のパターンの表示である場合に限らず、2行横縞のパターンに類似したパターンであっても認識することが可能である。 Thus, since charge sharing is an effective means for reducing current, the determination circuit 43 determines that charge sharing is necessary in the case of a two-row horizontal stripe pattern. Further, the determination circuit 43 is not limited to completely displaying a two-row horizontal stripe pattern, and can recognize a pattern similar to the two-row horizontal stripe pattern.
 なお、図19に示すように、白を表示した後に黒を表示する場合は、正極性の白の電圧と負極性の白の電圧とが同じであることから、チャージシェアの効果がないため、チャージシェアは行わない。 In addition, as shown in FIG. 19, when displaying black after displaying white, since the positive white voltage and the negative white voltage are the same, there is no charge sharing effect, There is no charge sharing.
 また、上記処理において、判断回路43は、出力する1ラインの表示が黒黒が多数派の場合、および、上述の3つの場合以外の場合は、チャージシェアが有効でないと判断する。このため、そのまま表示を行っている。 In the above processing, the determination circuit 43 determines that the charge share is not valid when the output of one line to be output is majority black and black, and in cases other than the above three cases. For this reason, the display is performed as it is.
 以上のように、データ信号線駆動ドライバ30では、判断回路43は、飛び越し走査で前回走査されたゲートライン21に対応する1ラインにおける多数派の組合せパターンと、今回走査されているゲートライン21に対応する1ラインにおける多数派の組合せパターンとに基づいて、隣り合う出力で極性反転を行い、かつ隣り合う出力間でチャージシェアを行うことが有効か否か、また、上記極性反転を行わずに隣り合う出力間でチャージシェアを行うことが有効か否かを判断している。つまりは、判断回路43は、表示する画像のパターンを認識して、上記判断を行うことが可能となっている。 As described above, in the data signal line driver 30, the determination circuit 43 applies the majority combination pattern in one line corresponding to the gate line 21 previously scanned by the interlace scanning and the gate line 21 scanned this time. Based on the corresponding majority combination pattern in one line, whether or not it is effective to perform polarity inversion on adjacent outputs and charge sharing between adjacent outputs, and without performing the above polarity inversion It is determined whether it is effective to perform charge sharing between adjacent outputs. That is, the determination circuit 43 can recognize the pattern of the image to be displayed and make the above determination.
 隣り合う出力で極性反転を行い、かつ隣り合う出力間でチャージシェアを行うことが有効と判断した場合は、制御信号Ctrl_REVおよび制御信号Ctrl_CSの両方を出力することで、極性切替制御回路44により極性反転スイッチ回路33・41は強制的に隣り合う出力の極性を反転し、出力短絡制御回路45により短絡スイッチ回路40は隣り合う出力間を短絡する。 If it is determined that it is effective to invert the polarity between adjacent outputs and perform charge sharing between adjacent outputs, the polarity switching control circuit 44 outputs the polarity by outputting both the control signal Ctrl_REV and the control signal Ctrl_CS. The inversion switch circuits 33 and 41 forcibly invert the polarity of adjacent outputs, and the output short circuit control circuit 45 causes the short circuit switch circuit 40 to short-circuit between adjacent outputs.
 また、極性反転を行わずに隣り合う出力間でチャージシェアを行うことが有効と判断した場合は、制御信号Ctrl_CSを出力することで、出力短絡制御回路45により短絡スイッチ回路40は隣り合う出力間を短絡する。 In addition, when it is determined that it is effective to perform charge sharing between adjacent outputs without performing polarity inversion, the output short circuit control circuit 45 causes the short circuit switch circuit 40 to switch between adjacent outputs by outputting the control signal Ctrl_CS. Short circuit.
 よって、有効的にチャージシェアが行われるので、液晶パネル20がソースブロック反転駆動されるときに、キラー・パターンと呼ばれる特殊な画像を表示するときであっても、消費電流を低減し、これに起因する発熱を低減することが可能となる。 Therefore, since effective charge sharing is performed, current consumption is reduced even when a special image called a killer pattern is displayed when the liquid crystal panel 20 is driven to invert the source block. The resulting heat generation can be reduced.
 なお、上述した液晶表示装置10は、1出力で1ピクセルを駆動する場合を示しているが、1ピクセルがR・G・Bの3画素で構成される場合は、データ信号線駆動ドライバ30のR・G・Bに対応する3出力が1出力単位となる。このため、表示の極性は1出力単位毎に変更することになり、出力対も出力単位で対を成すように構成する必要がある。具体的には、R・G・Bに対応する3出力が1出力単位であれば、3出力毎に極性が変更され、出力対の表示の判断もR同士、G同士,B同士行う必要がある。 The liquid crystal display device 10 described above shows a case where one pixel is driven by one output, but when one pixel is composed of three pixels of R, G and B, the data signal line driver 30 Three outputs corresponding to R, G, and B are one output unit. For this reason, the polarity of display is changed for each output unit, and it is necessary to configure the output pair to form a pair in the output unit. Specifically, if the three outputs corresponding to R, G, and B are in units of one output, the polarity is changed every three outputs, and it is necessary to judge the display of output pairs between R, G, and B. is there.
 また、データ信号線駆動ドライバ30の出力数も414出力に限らない。データ信号線駆動ドライバ30の出力は,図1・2中の水平方向の画素数に応じて必要となっており、2~2n(n:正の整数)で設定することができる。 Further, the number of outputs of the data signal line driver 30 is not limited to 414 outputs. The output of the data signal line driver 30 is required according to the number of pixels in the horizontal direction in FIGS. 1 and 2, and can be set to 2 to 2n (n: positive integer).
 また、上述した液晶表示装置10は、液晶素子を使用した液晶パネル20を備える表示装置であり、液晶セル25に電圧を掛けないときを透過(バックライト光を透過することにより白)の状態とし、液晶セル25に電圧を掛けたときを非透過(バックライトの光を透過しないので黒)の状態としている(ノーマリーホワイト方式)。そして、光を一番透過する状態を1階調とし、電圧を変化させることにより透過率が変わることで階調を表し、最も透過しない状態を256階調としている。 Further, the above-described liquid crystal display device 10 is a display device including the liquid crystal panel 20 using a liquid crystal element. When the voltage is not applied to the liquid crystal cell 25, the liquid crystal display device 10 is in a transmissive state (white by transmitting backlight light). When the voltage is applied to the liquid crystal cell 25, the liquid crystal cell 25 is in a non-transmissive state (black because it does not transmit light from the backlight) (normally white method). The state where light is most transmitted is one gradation, the gradation is expressed by changing the transmittance by changing the voltage, and the state where the light is least transmitted is 256 gradations.
 しかし、液晶素子の特性によっては、電圧を掛けない状態が非透過の場合(ノーマリーブラック方式)や、黒側を1階調とする場合があり、階調数も256階調よりも多くなる場合も少なくなる場合もある。データ信号線駆動ドライバ30は、ノーマリーホワイト方式およびノーマリーブラック方式のいずれの表示タイプの液晶パネルにも対応可能であるとともに、各条件は適宜変更することが可能であるので、広く対応可能である。 However, depending on the characteristics of the liquid crystal element, there is a case where the state where no voltage is applied is non-transmissive (normally black method) or the black side is one gradation, and the number of gradations is larger than 256 gradations. There may be fewer cases. The data signal line driver 30 is compatible with both normally white and normally black display type liquid crystal panels, and each condition can be changed as appropriate, so it can be widely used. is there.
 また、上述した液晶表示装置10では、データ信号線駆動ドライバ30の判断回路43が、極性反転およびチャージシェアの要否を判断する構成となっていたが、この判断処理は、外部のコントローラなどが行うことも可能である。 In the liquid crystal display device 10 described above, the determination circuit 43 of the data signal line driver 30 determines whether polarity inversion and charge sharing are necessary. This determination process is performed by an external controller or the like. It is also possible to do this.
 本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiment, and various modifications can be made within the scope indicated in the claims. That is, embodiments obtained by combining technical means appropriately modified within the scope of the claims are also included in the technical scope of the present invention.
 本発明のデータ信号線駆動回路は、行列に配置された複数の画素電極、同一行の上記画素電極に走査信号をそれぞれ供給するための複数の走査信号線、および、同一列の上記画素電極にデータ信号をそれぞれ供給するための複数のデータ信号線を有する液晶表示部に対して、該液晶表示部の各データ信号線に、階調データに応じて作成した上記データ信号を隣り合う出力で極性を反対にしてそれぞれ出力するデータ信号線駆動回路であって、上記隣り合う出力の極性を反転する極性反転手段と、上記隣り合う出力間を短絡する短絡手段と、第1制御信号に基づいて、上記極性反転手段に対し上記隣り合う出力の極性を反転させる第1制御手段と、第2制御信号に基づいて、上記短絡手段に対し上記隣り合う出力間を短絡させる第2制御手段と、上記第1制御信号を上記第1制御手段に出力するとともに、上記第2制御信号を上記第2制御手段に出力する判断手段とを備え、上記階調データは、上記液晶表示部が列方向に複数に分割された区域毎に、奇数行または偶数行の上記走査信号線が順番に走査された後に、偶数行または奇数行の上記走査信号線が順番に走査される飛び越し走査に対応して、順次供給されており、上記判断手段は、上記階調データを順次取得し、前回取得した1行分の階調データにおける、上記隣り合う出力での表示が透過になる透過状態および非透過になる非透過状態からなる表示パターンの多数派の表示パターンと、今回取得した1行分の階調データにおける、上記隣り合う出力での上記透過状態および上記非透過状態からなる表示パターンの多数派の表示パターンとに基づいて、上記第1制御信号および上記第2制御信号を選択的に出力する構成を有する。 The data signal line driving circuit of the present invention includes a plurality of pixel electrodes arranged in a matrix, a plurality of scanning signal lines for supplying scanning signals to the pixel electrodes in the same row, and the pixel electrodes in the same column. For a liquid crystal display unit having a plurality of data signal lines for supplying data signals, the polarity of the data signal created in accordance with the gradation data is applied to each data signal line of the liquid crystal display unit with an adjacent output. A signal signal line drive circuit that outputs the signals opposite to each other, the polarity inversion means for inverting the polarity of the adjacent outputs, the short-circuit means for short-circuiting the adjacent outputs, and the first control signal, First control means for inverting the polarity of the adjacent output with respect to the polarity inverting means, and second control means for shorting the adjacent outputs with respect to the short-circuit means based on a second control signal. Determining means for outputting the first control signal to the first control means and outputting the second control signal to the second control means, wherein the liquid crystal display section is arranged in a column direction. Corresponding to the interlaced scanning in which the odd-numbered or even-numbered scanning signal lines are scanned in order after the odd-numbered or even-numbered scanning signal lines are scanned in order for each of the divided areas. Are sequentially supplied, and the determination means sequentially acquires the gradation data, and in the gradation data for one line acquired last time, the display at the adjacent output is transparent and non-transparent. A display pattern of the non-transparent state and a majority of the display patterns of the transparent state and the non-transparent state in the adjacent output in the gradation data for one row acquired this time. Based on the shown pattern has a selectively outputs constituting the first control signal and the second control signal.
 また、本発明のデータ信号線駆動回路は、上記判断手段は、上記階調データを順次取得して、該階調データが上記透過状態および上記非透過状態であるかを判定する表示状態判定手段と、上記判定結果を用いて、上記隣り合う出力での上記透過状態および上記非透過状態からなる表示パターンを作成する表示パターン作成手段と、上記作成した各表示パターンをそれぞれ数えて、1行分の上記階調データにおける多数派の表示パターンを判定する多数派判定手段と、上記多数派判定手段により前回判定された1行分の上記階調データにおける多数派の表示パターンを保持する保持手段と、上記保持されている前回判定された1行分の上記階調データにおける多数派の表示パターンと、上記今回判定された1行分の上記階調データにおける多数派の表示パターンとに基づいて、上記第1制御信号および上記第2制御信号を選択的に出力する制御信号出力手段とを備えていることが望ましい。 In the data signal line driving circuit of the present invention, the determination means sequentially acquires the gradation data and determines whether the gradation data is in the transmissive state and the non-transmissive state. And using the determination result, display pattern creation means for creating a display pattern composed of the transmission state and the non-transmission state in the adjacent outputs, and count each of the created display patterns for one line. A majority determination means for determining a majority display pattern in the gradation data, and a holding means for holding the majority display pattern in the gradation data for one line previously determined by the majority determination means. The display pattern of the majority in the gradation data for one row that has been determined last time, and the number of the gradation data in the gradation data for one row that has been determined this time. Based on the school display pattern, it is desirable that a control signal output means for selectively outputting said first control signal and the second control signal.
 また、本発明のデータ信号線駆動回路は、上記判断手段の表示状態判定手段は、予め定められた階調の範囲に基づいて、上記取得した階調データが上記透過状態および上記非透過状態であるかを判定することが好ましい。これにより、階調データが示す階調範囲で、透過状態および非透過状態を判断することが可能となる。 In the data signal line driving circuit of the present invention, the display state determination unit of the determination unit is configured so that the acquired gradation data is in the transmission state and the non-transmission state based on a predetermined gradation range. It is preferable to determine whether it exists. Thus, it is possible to determine the transmission state and the non-transmission state within the gradation range indicated by the gradation data.
 また、本発明のデータ信号線駆動回路は、上記予め定められた階調の範囲は、外部から与えられる信号により変更可能であることが好ましい。これにより、認識する透過状態および非透過状態の調整が可能となる。 In the data signal line driving circuit of the present invention, it is preferable that the predetermined gradation range can be changed by a signal supplied from the outside. This makes it possible to adjust the transmissive state and the non-transmissive state to be recognized.
 また、本発明のデータ信号線駆動回路は、上記判断手段の多数派判定手段は、上記表示パターン作成手段により作成された上記隣り合う出力での上記透過状態および上記非透過状態からなる表示パターンのうち、予め定められた数以上ある表示パターンを上記多数派の表示パターンと判定することが好ましい。これにより、数を適切に定めることでキラー・パターンを判断することが可能となる。 In the data signal line driving circuit according to the present invention, the majority determination means of the determination means is configured to display a display pattern composed of the transmission state and the non-transmission state in the adjacent outputs generated by the display pattern generation means. Among them, it is preferable to determine a display pattern having a predetermined number or more as the display pattern of the majority. This makes it possible to determine the killer pattern by appropriately determining the number.
 また、本発明のデータ信号線駆動回路は、上記予め定められた数は、外部から与えられる信号により変更可能であることが好ましい。これにより、認識するパターンの調整が可能となる。 Further, in the data signal line driving circuit of the present invention, it is preferable that the predetermined number can be changed by a signal given from the outside. Thereby, the recognition pattern can be adjusted.
 本発明の液晶表示装置の駆動方法は、行列に配置された複数の画素電極、同一行の上記画素電極に走査信号をそれぞれ供給するための複数の走査信号線、および、同一列の上記画素電極にデータ信号をそれぞれ供給するための複数のデータ信号線を有する液晶表示部と、上記液晶表示部の各データ信号線に、階調データに応じて作成した上記データ信号を隣り合う出力で極性を反対にしてそれぞれ出力するデータ信号線駆動回路とを備える液晶表示装置の駆動方法であって、上記階調データが、上記液晶表示部が列方向に複数に分割された区域毎に、奇数行または偶数行の上記走査信号線が順番に走査された後に、偶数行または奇数行の上記走査信号線が順番に走査される飛び越し走査に対応して、順次供給されており、上記階調データを順次取得し、前回取得した1行分の階調データにおける、上記隣り合う出力での表示が透過になる透過状態および非透過になる非透過状態からなる表示パターンの多数派の表示パターンと、今回取得した1行分の階調データにおける、上記隣り合う出力での上記透過状態および上記非透過状態からなる表示パターンの多数派の表示パターンとに基づいて、上記データ信号線駆動回路の隣り合う出力の極性反転、および、上記データ信号線駆動回路の隣り合う出力間の短絡の要否を判断する第1ステップと、上記極性反転が必要と判断したとき、上記データ信号線駆動回路の隣り合う出力の極性反転を行う第2ステップと、上記短絡が必要と判断したとき、上記データ信号線駆動回路の隣り合う出力間の短絡を行う第3ステップとを含む構成を有する。 The liquid crystal display device driving method of the present invention includes a plurality of pixel electrodes arranged in a matrix, a plurality of scanning signal lines for supplying scanning signals to the pixel electrodes in the same row, and the pixel electrodes in the same column. A liquid crystal display unit having a plurality of data signal lines for supplying data signals to the liquid crystal display unit, and each data signal line of the liquid crystal display unit has the polarity of the data signal created according to the gradation data with an adjacent output. A method of driving a liquid crystal display device comprising a data signal line drive circuit that outputs each of them in reverse, wherein the gradation data is divided into an odd row or a row for each area in which the liquid crystal display section is divided into a plurality of columns. Corresponding to the interlaced scanning in which the even-numbered or odd-numbered scanning signal lines are sequentially scanned after the even-numbered scanning signal lines are sequentially scanned, the gradation data is Next, the majority display pattern of the display pattern consisting of a transmission state in which the display at the adjacent output is transparent and a non-transmission state in which it is non-transparent in the gradation data for one line acquired last time, and this time The adjacent output of the data signal line driving circuit based on the display pattern of the majority of the display patterns composed of the transmission state and the non-transmission state in the adjacent output in the acquired gradation data for one row. The first step of determining whether the polarity inversion and the short circuit between the adjacent outputs of the data signal line driving circuit are necessary, and the adjacent output of the data signal line driving circuit when the polarity inversion is determined to be necessary And a third step of performing a short circuit between adjacent outputs of the data signal line driving circuit when it is determined that the short circuit is necessary. To.
 また、本発明の液晶表示装置の駆動方法は、上記第1ステップは、上記階調データを順次取得して、該階調データが上記透過状態および上記非透過状態であるかを判定する表示状態判定ステップと、上記判定結果を用いて、上記隣り合う出力での上記透過状態および上記非透過状態からなる表示パターンを作成する表示パターン作成ステップと、上記作成した各表示パターンをそれぞれ数えて、1行分の上記階調データにおける多数派の表示パターンを判定する多数派判定ステップと、上記多数派判定ステップで前回判定された1行分の上記階調データにおける多数派の表示パターンを保持する保持ステップと、上記保持されている前回判定された1行分の上記階調データにおける多数派の表示パターンと、上記今回判定された1行分の上記階調データにおける多数派の表示パターンとに基づいて、上記第1制御信号および上記第2制御信号を選択的に出力する制御信号出力ステップを含むことが望ましい。 Further, in the driving method of the liquid crystal display device of the present invention, the first step is a display state in which the gradation data is sequentially acquired to determine whether the gradation data is in the transmissive state or the non-transmissive state. Using the determination step, the determination result, a display pattern generation step for generating a display pattern composed of the transmission state and the non-transmission state at the adjacent outputs, and each of the generated display patterns is counted. A majority determination step for determining a majority display pattern in the gradation data for a row, and a holding for holding the majority display pattern in the gradation data for one row previously determined in the majority determination step A step, a display pattern of the majority in the gradation data for the previously determined one row, and the upper portion of the currently determined one row Based on the majority of the display pattern in the gradation data, it is desirable to include a control signal output step for selectively outputting the first control signal and the second control signal.
 また、本発明の液晶表示装置の駆動方法は、上記表示状態判定ステップでは、予め定められた階調の範囲に基づいて、上記取得した階調データが上記非透過状態および上記透過状態であるかを判定することが好ましい。これにより、階調データが示す階調範囲で、透過状態および非透過状態を判断することが可能となる。 In the driving method of the liquid crystal display device of the present invention, in the display state determination step, based on a predetermined gradation range, whether the acquired gradation data is in the non-transmissive state or the transmissive state. Is preferably determined. Thus, it is possible to determine the transmission state and the non-transmission state within the gradation range indicated by the gradation data.
 また、本発明の液晶表示装置の駆動方法は、上記多数派判定ステップでは、上記表示パターン作成ステップで作成した上記隣り合う出力での上記透過状態および上記非透過状態からなる表示パターンのうち、予め定められた数以上ある表示パターンを上記多数派の表示パターンと判定することが好ましい。これにより、数を適切に定めることでキラー・パターンを判断することが可能となる。 In the driving method of the liquid crystal display device of the present invention, in the majority determination step, the display pattern composed of the transmission state and the non-transmission state in the adjacent outputs created in the display pattern creation step is selected in advance. It is preferable that a display pattern having a predetermined number or more is determined as the majority display pattern. This makes it possible to determine the killer pattern by appropriately determining the number.
 また、本発明の液晶表示装置の駆動方法は、上記液晶表示部は、ノーマリーホワイト方式の表示タイプであり、上記第1ステップでは、上記前回取得した1行分の階調データにおける多数派の表示パターンが、「非透過状態・非透過状態」の表示パターンであり、上記今回取得した1行分の階調データにおける多数派の表示パターンが、「透過状態・透過状態」の表示パターンである場合、上記極性反転は不要、かつ上記短絡は必要と判断することが好ましい。これにより、消費電流を低減することが可能となる。 In the driving method of the liquid crystal display device according to the present invention, the liquid crystal display unit is a normally white display type, and in the first step, the majority of the gradation data for one row acquired previously is used. The display pattern is a “non-transparent state / non-transparent state” display pattern, and the majority display pattern in the gradation data for one row acquired this time is the “transparent state / transparent state” display pattern. In this case, it is preferable that the polarity reversal is unnecessary and the short circuit is necessary. Thereby, current consumption can be reduced.
 また、本発明の液晶表示装置の駆動方法は、上記液晶表示部は、ノーマリーホワイト方式の表示タイプであり、上記第1ステップでは、上記前回取得した1行分の階調データにおける多数派の表示パターンが、「透過状態・非透過状態」の表示パターンであり、上記今回取得した1行分の階調データにおける多数派の表示パターンが、「非透過状態・透過状態」の表示パターンである場合、上記極性反転は必要、かつ上記短絡は必要と判断することが好ましい。これにより、消費電流を低減することが可能となる。 In the driving method of the liquid crystal display device according to the present invention, the liquid crystal display unit is a normally white display type, and in the first step, the majority of the gradation data for one row acquired previously is used. The display pattern is a “transparent state / non-transparent state” display pattern, and the majority display pattern in the gradation data for one line acquired this time is the “non-transparent state / transparent state” display pattern. In this case, it is preferable to determine that the polarity reversal is necessary and the short circuit is necessary. Thereby, current consumption can be reduced.
 また、本発明の液晶表示装置の駆動方法は、上記液晶表示部は、ノーマリーホワイト方式の表示タイプであり、上記第1ステップでは、上記前回取得した1行分の階調データにおける多数派の表示パターンが、「非透過状態・透過状態」の表示パターンであり、上記今回取得した1行分の階調データにおける多数派の表示パターンが、「透過状態・非透過状態」の表示パターンである場合、上記極性反転は必要、かつ上記短絡は必要と判断することが好ましい。これにより、消費電流を低減することが可能となる。 In the driving method of the liquid crystal display device according to the present invention, the liquid crystal display unit is a normally white display type, and in the first step, the majority of the gradation data for one row acquired previously is used. The display pattern is a “non-transparent state / transparent state” display pattern, and the majority display pattern in the gradation data for one line acquired this time is the “transparent state / non-transparent state” display pattern. In this case, it is preferable to determine that the polarity reversal is necessary and the short circuit is necessary. Thereby, current consumption can be reduced.
 また、本発明の液晶表示装置の駆動方法は、上記液晶表示部は、ノーマリーブラック方式の表示タイプであり、上記第1ステップでは、上記前回取得した1行分の階調データにおける多数派の表示パターンが、「透過状態・透過状態」の表示パターンであり、上記今回取得した1行分の階調データにおける多数派の表示パターンが、「非透過状態・非透過状態」の表示パターンである場合、上記極性反転は不要、かつ上記短絡は必要と判断することが好ましい。これにより、消費電流を低減することが可能となる。 In the driving method of the liquid crystal display device according to the present invention, the liquid crystal display unit is a normally black display type. In the first step, the majority of the gradation data for one row acquired last time is used. The display pattern is a “transparent state / transparent state” display pattern, and the majority display pattern in the gradation data for one line acquired this time is the “non-transparent state / non-transparent state” display pattern. In this case, it is preferable that the polarity reversal is unnecessary and the short circuit is necessary. Thereby, current consumption can be reduced.
 また、本発明の液晶表示装置の駆動方法は、上記液晶表示部は、ノーマリーブラック方式の表示タイプであり、上記第1ステップでは、上記前回取得した1行分の階調データにおける多数派の表示パターンが、「非透過状態・透過状態」の表示パターンであり、上記今回取得した1行分の階調データにおける多数派の表示パターンが、「透過状態・非透過状態」の表示パターンである場合、上記極性反転は必要、かつ上記短絡は必要と判断することが好ましい。これにより、消費電流を低減することが可能となる。 In the driving method of the liquid crystal display device according to the present invention, the liquid crystal display unit is a normally black display type. In the first step, the majority of the gradation data for one row acquired last time is used. The display pattern is a “non-transparent state / transparent state” display pattern, and the majority display pattern in the gradation data for one line acquired this time is the “transparent state / non-transparent state” display pattern. In this case, it is preferable to determine that the polarity reversal is necessary and the short circuit is necessary. Thereby, current consumption can be reduced.
 また、本発明の液晶表示装置の駆動方法は、上記液晶表示部は、ノーマリーブラック方式の表示タイプであり、上記第1ステップでは、上記前回取得した1行分の階調データにおける多数派の表示パターンが、「透過状態・非透過状態」の表示パターンであり、上記今回取得した1行分の階調データにおける多数派の表示パターンが、「非透過状態・透過状態」の表示パターンである場合、上記極性反転は必要、かつ上記短絡は必要と判断することが好ましい。これにより、消費電流を低減することが可能となる。 In the driving method of the liquid crystal display device according to the present invention, the liquid crystal display unit is a normally black display type. In the first step, the majority of the gradation data for one row acquired last time is used. The display pattern is a “transparent state / non-transparent state” display pattern, and the majority display pattern in the gradation data for one line acquired this time is the “non-transparent state / transparent state” display pattern. In this case, it is preferable to determine that the polarity reversal is necessary and the short circuit is necessary. Thereby, current consumption can be reduced.
 また、本発明の液晶表示装置の駆動方法は、上記データ信号線駆動回路の隣り合う出力の極性反転、および、上記データ信号線駆動回路の隣り合う出力間の短絡の要否の判断は、上記データ信号線駆動回路内で行うことが望ましい。 Further, in the driving method of the liquid crystal display device of the present invention, the polarity inversion of the adjacent outputs of the data signal line driving circuit and the necessity of short circuit between the adjacent outputs of the data signal line driving circuit are determined as described above. It is desirable to carry out in the data signal line driving circuit.
 本発明は、液晶パネルにデータ信号を出力するデータ信号線駆動回路に関する分野に好適に用いることができるだけでなく、データ信号線駆動回路の製造方法、データ信号線駆動回路の制御方法に関する分野に好適に用いることができ、さらには、データ信号線駆動回路を備えるTVや携帯電話などの液晶表示装置、およびその製造方法の分野にも広く用いることができる。 INDUSTRIAL APPLICABILITY The present invention can be suitably used in the field related to a data signal line driving circuit that outputs a data signal to a liquid crystal panel, and is also suitable in the field related to a method for manufacturing a data signal line driving circuit and a method for controlling a data signal line driving circuit. Further, it can be widely used in the field of liquid crystal display devices such as TVs and mobile phones provided with a data signal line driver circuit, and manufacturing methods thereof.
  10 液晶表示装置
  20 液晶パネル(液晶表示部)
  21 ゲートライン(走査信号線)
  22 ソースライン(データ信号線)
  24 画素電極
  30 データ信号線駆動ドライバ(データ信号線駆動回路)
  31 シフトレジスタ
  32 データラッチ
  33,41 極性反転スイッチ回路(極性反転手段)
  34 ホールドラッチ
  35 レベルシフタ
  36 正極性側DAC
  37 負極性側DAC
  38 正極性用オペアンプ
  39 負極性用オペアンプ
  40 短絡スイッチ回路(短絡手段)
  41 極性反転スイッチ回路
  43 判断回路(判断手段)
  44 極性切替制御回路(第1制御手段)
  45 出力短絡制御回路(第2制御手段)
  46 設定レジスタ
 101 パターン検出回路
 102 チャージシェア決定回路
 111 黒照合回路(表示状態判定手段)
 112 白照合回路(表示状態判定手段)
 113,114 D-FF
 115 パターン照合回路(表示パターン作成手段)
 116~119 カウンタ
 120~123 多数派照合回路(多数派判定手段)
 161~163 D-FF(保持手段)
 164~166 AND回路(制御信号出力手段)
 167,168 OR回路(制御信号出力手段)
 169,170 D-FF(制御信号出力手段)
10 Liquid crystal display device 20 Liquid crystal panel (liquid crystal display part)
21 Gate line (scanning signal line)
22 Source line (data signal line)
24 pixel electrode 30 data signal line driver (data signal line driver circuit)
31 Shift register 32 Data latch 33, 41 Polarity inversion switch circuit (polarity inversion means)
34 Hold latch 35 Level shifter 36 Positive side DAC
37 Negative polarity DAC
38 Operational amplifier for positive polarity 39 Operational amplifier for negative polarity 40 Short-circuit switch circuit (short-circuit means)
41 polarity reversing switch circuit 43 determination circuit (determination means)
44 Polarity switching control circuit (first control means)
45 Output short-circuit control circuit (second control means)
46 setting register 101 pattern detection circuit 102 charge share determination circuit 111 black verification circuit (display state determination means)
112 White verification circuit (display state determination means)
113,114 D-FF
115 Pattern matching circuit (display pattern creation means)
116 to 119 Counter 120 to 123 Majority verification circuit (majority determination means)
161-163 D-FF (holding means)
164 to 166 AND circuit (control signal output means)
167,168 OR circuit (control signal output means)
169, 170 D-FF (control signal output means)

Claims (18)

  1.  行列に配置された複数の画素電極、同一行の上記画素電極に走査信号をそれぞれ供給するための複数の走査信号線、および、同一列の上記画素電極にデータ信号をそれぞれ供給するための複数のデータ信号線を有する液晶表示部に対して、該液晶表示部の各データ信号線に、階調データに応じて作成した上記データ信号を隣り合う出力で極性を反対にしてそれぞれ出力するデータ信号線駆動回路であって、
     上記隣り合う出力の極性を反転する極性反転手段と、
     上記隣り合う出力間を短絡する短絡手段と、
     第1制御信号に基づいて、上記極性反転手段に対し上記隣り合う出力の極性を反転させる第1制御手段と、
     第2制御信号に基づいて、上記短絡手段に対し上記隣り合う出力間を短絡させる第2制御手段と、
     上記第1制御信号を上記第1制御手段に出力するとともに、上記第2制御信号を上記第2制御手段に出力する判断手段とを備え、
     上記階調データは、上記液晶表示部が列方向に複数に分割された区域毎に、奇数行または偶数行の上記走査信号線が順番に走査された後に、偶数行または奇数行の上記走査信号線が順番に走査される飛び越し走査に対応して、順次供給されており、
     上記判断手段は、上記階調データを順次取得し、前回取得した1行分の階調データにおける、上記隣り合う出力での表示が透過になる透過状態および非透過になる非透過状態からなる表示パターンの多数派の表示パターンと、今回取得した1行分の階調データにおける、上記隣り合う出力での上記透過状態および上記非透過状態からなる表示パターンの多数派の表示パターンとに基づいて、上記第1制御信号および上記第2制御信号を選択的に出力することを特徴とするデータ信号線駆動回路。
    A plurality of pixel electrodes arranged in a matrix, a plurality of scanning signal lines for supplying scanning signals to the pixel electrodes in the same row, and a plurality of data signals for supplying data signals to the pixel electrodes in the same column, respectively. A data signal line for outputting the data signal created in accordance with the gradation data to each data signal line of the liquid crystal display unit with the opposite polarity with adjacent outputs to the liquid crystal display unit having the data signal line A drive circuit,
    Polarity inversion means for inverting the polarity of the adjacent outputs;
    Short-circuit means for short-circuiting the adjacent outputs;
    First control means for inverting the polarity of the adjacent output with respect to the polarity inverting means based on a first control signal;
    Second control means for short-circuiting between the adjacent outputs to the short-circuit means based on a second control signal;
    Determining means for outputting the first control signal to the first control means and outputting the second control signal to the second control means;
    The gradation data is obtained by scanning the odd-numbered or even-numbered scanning signal lines in order for each of the areas in which the liquid crystal display section is divided into a plurality of columns, and then scanning the even-numbered or odd-numbered scanning signals. Corresponding to the interlaced scanning, in which the lines are scanned sequentially,
    The determination means sequentially acquires the grayscale data, and in the previously acquired grayscale data for one row, a display comprising a transmissive state in which the display at the adjacent output is transmissive and a non-transmissive state in which it is non-transmissive. Based on the display pattern of the pattern majority and the display pattern of the display pattern consisting of the transmission state and the non-transmission state in the adjacent outputs in the gradation data for one line acquired this time, A data signal line driving circuit which selectively outputs the first control signal and the second control signal.
  2.  上記判断手段は、
     上記階調データを順次取得して、該階調データが上記透過状態および上記非透過状態であるかを判定する表示状態判定手段と、
     上記判定結果を用いて、上記隣り合う出力での上記透過状態および上記非透過状態からなる表示パターンを作成する表示パターン作成手段と、
     上記作成した各表示パターンをそれぞれ数えて、1行分の上記階調データにおける多数派の表示パターンを判定する多数派判定手段と、
     上記多数派判定手段により前回判定された1行分の上記階調データにおける多数派の表示パターンを保持する保持手段と、
     上記保持されている前回判定された1行分の上記階調データにおける多数派の表示パターンと、上記今回判定された1行分の上記階調データにおける多数派の表示パターンとに基づいて、上記第1制御信号および上記第2制御信号を選択的に出力する制御信号出力手段とを備えていることを特徴とする請求項1に記載のデータ信号線駆動回路。
    The above judgment means is
    Display state determination means for sequentially acquiring the gradation data and determining whether the gradation data is in the transmission state and the non-transmission state;
    Display pattern creating means for creating a display pattern composed of the transmissive state and the non-transmissive state at the adjacent outputs using the determination result;
    A majority determination means for counting each of the created display patterns and determining a display pattern of the majority in the gradation data for one line;
    Holding means for holding the display pattern of the majority in the gradation data for one row determined last time by the majority determination means;
    Based on the held majority display pattern in the gradation data for one row determined last time and the majority display pattern in the gradation data for one row determined this time, 2. The data signal line driving circuit according to claim 1, further comprising control signal output means for selectively outputting the first control signal and the second control signal.
  3.  上記判断手段の表示状態判定手段は、予め定められた階調の範囲に基づいて、上記取得した階調データが上記透過状態および上記非透過状態であるかを判定することを特徴とする請求項2に記載のデータ信号線駆動回路。 The display state determination unit of the determination unit determines whether the acquired gradation data is the transmission state and the non-transmission state based on a predetermined gradation range. 3. A data signal line drive circuit according to 2.
  4.  上記予め定められた階調の範囲は、外部から与えられる信号により変更可能であることを特徴とする請求項3に記載のデータ信号線駆動回路。 4. The data signal line driving circuit according to claim 3, wherein the predetermined gradation range can be changed by an externally applied signal.
  5.  上記判断手段の多数派判定手段は、上記表示パターン作成手段により作成された上記隣り合う出力での上記透過状態および上記非透過状態からなる表示パターンのうち、予め定められた数以上ある表示パターンを上記多数派の表示パターンと判定することを特徴とする請求項2に記載のデータ信号線駆動回路。 The majority determination means of the determination means includes display patterns having a predetermined number or more of display patterns composed of the transmission state and the non-transmission state at the adjacent outputs generated by the display pattern generation means. 3. The data signal line drive circuit according to claim 2, wherein the display pattern is determined as the majority display pattern.
  6.  上記予め定められた数は、外部から与えられる信号により変更可能であることを特徴とする請求項5に記載のデータ信号線駆動回路。 6. The data signal line driving circuit according to claim 5, wherein the predetermined number can be changed by a signal given from outside.
  7.  行列に配置された複数の画素電極、同一行の上記画素電極に走査信号をそれぞれ供給するための複数の走査信号線、および、同一列の上記画素電極にデータ信号をそれぞれ供給するための複数のデータ信号線を有する液晶表示部と、
     上記液晶表示部の各データ信号線に、階調データに応じて作成した上記データ信号を隣り合う出力で極性を反対にしてそれぞれ出力するデータ信号線駆動回路とを備える液晶表示装置であって、
     上記データ信号線駆動回路は、請求項1~6のいずれか1項に記載のデータ信号線駆動回路であることを特徴とする液晶表示装置。
    A plurality of pixel electrodes arranged in a matrix, a plurality of scanning signal lines for supplying scanning signals to the pixel electrodes in the same row, and a plurality of data signals for supplying data signals to the pixel electrodes in the same column, respectively. A liquid crystal display unit having data signal lines;
    A liquid crystal display device comprising, on each data signal line of the liquid crystal display unit, a data signal line driving circuit that outputs the data signal created according to grayscale data with adjacent outputs in opposite polarities,
    The liquid crystal display device according to claim 1, wherein the data signal line driving circuit is the data signal line driving circuit according to any one of claims 1 to 6.
  8.  行列に配置された複数の画素電極、同一行の上記画素電極に走査信号をそれぞれ供給するための複数の走査信号線、および、同一列の上記画素電極にデータ信号をそれぞれ供給するための複数のデータ信号線を有する液晶表示部と、
     上記液晶表示部の各データ信号線に、階調データに応じて作成した上記データ信号を隣り合う出力で極性を反対にしてそれぞれ出力するデータ信号線駆動回路とを備える液晶表示装置の駆動方法であって、
     上記階調データが、上記液晶表示部が列方向に複数に分割された区域毎に、奇数行または偶数行の上記走査信号線が順番に走査された後に、偶数行または奇数行の上記走査信号線が順番に走査される飛び越し走査に対応して、順次供給されており、
     上記階調データを順次取得し、前回取得した1行分の階調データにおける、上記隣り合う出力での表示が透過になる透過状態および非透過になる非透過状態からなる表示パターンの多数派の表示パターンと、今回取得した1行分の階調データにおける、上記隣り合う出力での上記透過状態および上記非透過状態からなる表示パターンの多数派の表示パターンとに基づいて、上記データ信号線駆動回路の隣り合う出力の極性反転、および、上記データ信号線駆動回路の隣り合う出力間の短絡の要否を判断する第1ステップと、
     上記極性反転が必要と判断したとき、上記データ信号線駆動回路の隣り合う出力の極性反転を行う第2ステップと、
     上記短絡が必要と判断したとき、上記データ信号線駆動回路の隣り合う出力間の短絡を行う第3ステップとを含むことを特徴とする液晶表示装置の駆動方法。
    A plurality of pixel electrodes arranged in a matrix, a plurality of scanning signal lines for supplying scanning signals to the pixel electrodes in the same row, and a plurality of data signals for supplying data signals to the pixel electrodes in the same column, respectively. A liquid crystal display unit having data signal lines;
    According to a driving method of a liquid crystal display device, the data signal line of the liquid crystal display unit is provided with a data signal line driving circuit that outputs the data signal created according to the gradation data in an adjacent output with opposite polarity to each data signal line. There,
    The gradation data is scanned evenly or oddly after the scanning signal lines of odd or even rows are sequentially scanned for each of the areas where the liquid crystal display section is divided into a plurality of columns. Corresponding to the interlaced scanning, in which the lines are scanned sequentially,
    The gradation data is sequentially acquired, and in the previously acquired gradation data for one row, the majority of display patterns having a transmission state in which the display at the adjacent output is transparent and a non-transmission state in which the transmission is non-transparent The data signal line driving based on the display pattern and the display pattern of the majority of the display pattern composed of the transmission state and the non-transmission state at the adjacent outputs in the gradation data for one row acquired this time. A first step of determining the necessity of a polarity inversion of adjacent outputs of the circuit and a short circuit between adjacent outputs of the data signal line driving circuit;
    A second step of performing polarity reversal of adjacent outputs of the data signal line drive circuit when it is determined that the polarity reversal is necessary;
    And a third step of performing a short circuit between adjacent outputs of the data signal line drive circuit when it is determined that the short circuit is necessary.
  9.  上記第1ステップは、
     上記階調データを順次取得して、該階調データが上記透過状態および上記非透過状態であるかを判定する表示状態判定ステップと、
     上記判定結果を用いて、上記隣り合う出力での上記透過状態および上記非透過状態からなる表示パターンを作成する表示パターン作成ステップと、
     上記作成した各表示パターンをそれぞれ数えて、1行分の上記階調データにおける多数派の表示パターンを判定する多数派判定ステップと、
     上記多数派判定ステップで前回判定された1行分の上記階調データにおける多数派の表示パターンを保持する保持ステップと、
     上記保持されている前回判定された1行分の上記階調データにおける多数派の表示パターンと、上記今回判定された1行分の上記階調データにおける多数派の表示パターンとに基づいて、上記第1制御信号および上記第2制御信号を選択的に出力する制御信号出力ステップを含むことを特徴とする請求項8に記載の液晶表示装置の駆動方法。
    The first step is
    A display state determination step of sequentially acquiring the gradation data and determining whether the gradation data is in the transmission state and the non-transmission state;
    Using the determination result, a display pattern creating step for creating a display pattern composed of the transmissive state and the non-transmissive state at the adjacent outputs;
    A majority determination step of counting each of the created display patterns and determining a display pattern of the majority in the gradation data for one row;
    A holding step for holding the display pattern of the majority in the gradation data for one row determined last time in the majority determination step;
    Based on the held majority display pattern in the gradation data for one row determined last time and the majority display pattern in the gradation data for one row determined this time, 9. The method of driving a liquid crystal display device according to claim 8, further comprising a control signal output step of selectively outputting the first control signal and the second control signal.
  10.  上記表示状態判定ステップでは、予め定められた階調の範囲に基づいて、上記取得した階調データが上記非透過状態および上記透過状態であるかを判定することを特徴とする請求項9に記載の液晶表示装置の駆動方法。 10. The display state determination step of determining whether the acquired gradation data is in the non-transmission state or the transmission state based on a predetermined gradation range. Driving method for liquid crystal display device.
  11.  上記多数派判定ステップでは、上記表示パターン作成ステップで作成した上記隣り合う出力での上記透過状態および上記非透過状態からなる表示パターンのうち、予め定められた数以上ある表示パターンを上記多数派の表示パターンと判定することを特徴とする請求項9に記載の液晶表示装置の駆動方法。 In the majority determination step, a display pattern having a predetermined number or more of the display patterns composed of the transmission state and the non-transmission state in the adjacent outputs generated in the display pattern generation step is selected from the majority. The method for driving a liquid crystal display device according to claim 9, wherein the display pattern is determined.
  12.  上記液晶表示部は、ノーマリーホワイト方式の表示タイプであり、
     上記第1ステップでは、上記前回取得した1行分の階調データにおける多数派の表示パターンが、「非透過状態・非透過状態」の表示パターンであり、上記今回取得した1行分の階調データにおける多数派の表示パターンが、「透過状態・透過状態」の表示パターンである場合、上記極性反転は不要、かつ上記短絡は必要と判断することを特徴とする請求項8に記載の液晶表示装置の駆動方法。
    The liquid crystal display is a normally white display type,
    In the first step, the majority display pattern in the gradation data for one line acquired last time is a display pattern of “non-transmission state / non-transmission state”, and the gradation for one line acquired this time 9. The liquid crystal display according to claim 8, wherein when the majority display pattern in the data is a “transmission state / transmission state” display pattern, the polarity inversion is unnecessary and the short circuit is necessary. Device driving method.
  13.  上記液晶表示部は、ノーマリーホワイト方式の表示タイプであり、
     上記第1ステップでは、上記前回取得した1行分の階調データにおける多数派の表示パターンが、「透過状態・非透過状態」の表示パターンであり、上記今回取得した1行分の階調データにおける多数派の表示パターンが、「非透過状態・透過状態」の表示パターンである場合、上記極性反転は必要、かつ上記短絡は必要と判断することを特徴とする請求項8に記載の液晶表示装置の駆動方法。
    The liquid crystal display is a normally white display type,
    In the first step, the majority display pattern in the gradation data for one line acquired last time is a display pattern of “transparent state / non-transmission state”, and the gradation data for one line acquired this time is displayed. 9. The liquid crystal display according to claim 8, wherein when the majority display pattern is a display pattern of “non-transmission state / transmission state”, the polarity inversion is necessary and the short circuit is necessary. Device driving method.
  14.  上記液晶表示部は、ノーマリーホワイト方式の表示タイプであり、
     上記第1ステップでは、上記前回取得した1行分の階調データにおける多数派の表示パターンが、「非透過状態・透過状態」の表示パターンであり、上記今回取得した1行分の階調データにおける多数派の表示パターンが、「透過状態・非透過状態」の表示パターンである場合、上記極性反転は必要、かつ上記短絡は必要と判断することを特徴とする請求項8に記載の液晶表示装置の駆動方法。
    The liquid crystal display is a normally white display type,
    In the first step, the majority display pattern in the gradation data for one line acquired last time is a display pattern of “non-transmission state / transmission state”, and the gradation data for one line acquired this time is displayed. 9. The liquid crystal display according to claim 8, wherein when the majority display pattern is a display pattern of “transmission state / non-transmission state”, it is determined that the polarity inversion is necessary and the short circuit is necessary. Device driving method.
  15.  上記液晶表示部は、ノーマリーブラック方式の表示タイプであり、
     上記第1ステップでは、上記前回取得した1行分の階調データにおける多数派の表示パターンが、「透過状態・透過状態」の表示パターンであり、上記今回取得した1行分の階調データにおける多数派の表示パターンが、「非透過状態・非透過状態」の表示パターンである場合、上記極性反転は不要、かつ上記短絡は必要と判断することを特徴とする請求項8に記載の液晶表示装置の駆動方法。
    The liquid crystal display is a normally black display type,
    In the first step, the majority display pattern in the gradation data for one line acquired last time is a display pattern of “transmission state / transmission state”, and in the gradation data for one line acquired this time, 9. The liquid crystal display according to claim 8, wherein when the majority display pattern is a display pattern of “non-transmission state / non-transmission state”, it is determined that the polarity inversion is unnecessary and the short circuit is necessary. Device driving method.
  16.  上記液晶表示部は、ノーマリーブラック方式の表示タイプであり、
     上記第1ステップでは、上記前回取得した1行分の階調データにおける多数派の表示パターンが、「非透過状態・透過状態」の表示パターンであり、上記今回取得した1行分の階調データにおける多数派の表示パターンが、「透過状態・非透過状態」の表示パターンである場合、上記極性反転は必要、かつ上記短絡は必要と判断することを特徴とする請求項8に記載の液晶表示装置の駆動方法。
    The liquid crystal display is a normally black display type,
    In the first step, the majority display pattern in the gradation data for one line acquired last time is a display pattern of “non-transmission state / transmission state”, and the gradation data for one line acquired this time is displayed. 9. The liquid crystal display according to claim 8, wherein when the majority display pattern is a display pattern of “transmission state / non-transmission state”, it is determined that the polarity inversion is necessary and the short circuit is necessary. Device driving method.
  17.  上記液晶表示部は、ノーマリーブラック方式の表示タイプであり、
     上記第1ステップでは、上記前回取得した1行分の階調データにおける多数派の表示パターンが、「透過状態・非透過状態」の表示パターンであり、上記今回取得した1行分の階調データにおける多数派の表示パターンが、「非透過状態・透過状態」の表示パターンである場合、上記極性反転は必要、かつ上記短絡は必要と判断することを特徴とする請求項8に記載の液晶表示装置の駆動方法。
    The liquid crystal display is a normally black display type,
    In the first step, the majority display pattern in the gradation data for one line acquired last time is a display pattern of “transparent state / non-transmission state”, and the gradation data for one line acquired this time is displayed. 9. The liquid crystal display according to claim 8, wherein when the majority display pattern is a display pattern of “non-transmission state / transmission state”, the polarity inversion is necessary and the short circuit is necessary. Device driving method.
  18.  上記データ信号線駆動回路の隣り合う出力の極性反転、および、上記データ信号線駆動回路の隣り合う出力間の短絡の要否の判断は、上記データ信号線駆動回路内で行うことを特徴とする請求項8に記載の液晶表示装置の駆動方法。
     
    The polarity inversion of adjacent outputs of the data signal line driving circuit and the necessity of short circuit between adjacent outputs of the data signal line driving circuit are performed in the data signal line driving circuit. The method for driving a liquid crystal display device according to claim 8.
PCT/JP2010/059870 2009-06-16 2010-06-10 Data signal-line driving circuit, liquid-crystal display device, and driving method of liquid-crystal display device WO2010147049A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009143610A JP5073712B2 (en) 2009-06-16 2009-06-16 Data signal line driving circuit, liquid crystal display device, and liquid crystal display device driving method
JP2009-143610 2009-06-16

Publications (1)

Publication Number Publication Date
WO2010147049A1 true WO2010147049A1 (en) 2010-12-23

Family

ID=43356369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/059870 WO2010147049A1 (en) 2009-06-16 2010-06-10 Data signal-line driving circuit, liquid-crystal display device, and driving method of liquid-crystal display device

Country Status (3)

Country Link
JP (1) JP5073712B2 (en)
TW (1) TW201106332A (en)
WO (1) WO2010147049A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017208954A1 (en) * 2016-06-01 2017-12-07 シャープ株式会社 Video signal line drive circuit, display device including same, and video signal line drive method
CN113038235A (en) * 2021-03-17 2021-06-25 福建捷联电子有限公司 Method and system for eliminating split joint television wall dynamic picture fracture through reverse scanning
US11137813B2 (en) 2014-03-14 2021-10-05 Semiconductor Energy Laboratory Co., Ltd. Analog arithmetic circuit, semiconductor device, and electronic device
US11329071B2 (en) 2017-01-31 2022-05-10 Semiconductor Energy Laboratory Co., Ltd. Display device, display module, and electronic device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101868851B1 (en) * 2011-07-21 2018-06-19 엘지디스플레이 주식회사 Liquid crystal display device and method for driving the same
TWI581230B (en) * 2015-04-20 2017-05-01 奇景光電股份有限公司 Source driver
TWI567721B (en) * 2015-08-18 2017-01-21 矽創電子股份有限公司 Source driver and lcd display using the same
TWI753383B (en) * 2020-03-18 2022-01-21 友達光電股份有限公司 Gate driver circuit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06222330A (en) * 1993-01-25 1994-08-12 Hitachi Ltd Liquid crystal display device
JP2001174783A (en) * 1999-12-14 2001-06-29 Fujitsu Ltd Liquid crystal display device, driving method and driving circuit
JP2009009088A (en) * 2007-06-28 2009-01-15 Lg Display Co Ltd Liquid crystal display and driving method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06222330A (en) * 1993-01-25 1994-08-12 Hitachi Ltd Liquid crystal display device
JP2001174783A (en) * 1999-12-14 2001-06-29 Fujitsu Ltd Liquid crystal display device, driving method and driving circuit
JP2009009088A (en) * 2007-06-28 2009-01-15 Lg Display Co Ltd Liquid crystal display and driving method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11137813B2 (en) 2014-03-14 2021-10-05 Semiconductor Energy Laboratory Co., Ltd. Analog arithmetic circuit, semiconductor device, and electronic device
WO2017208954A1 (en) * 2016-06-01 2017-12-07 シャープ株式会社 Video signal line drive circuit, display device including same, and video signal line drive method
US11329071B2 (en) 2017-01-31 2022-05-10 Semiconductor Energy Laboratory Co., Ltd. Display device, display module, and electronic device
US11515340B2 (en) 2017-01-31 2022-11-29 Semiconductor Energy Laboratory Co., Ltd. Display device, display module, and electronic device
CN113038235A (en) * 2021-03-17 2021-06-25 福建捷联电子有限公司 Method and system for eliminating split joint television wall dynamic picture fracture through reverse scanning

Also Published As

Publication number Publication date
JP2011002513A (en) 2011-01-06
TW201106332A (en) 2011-02-16
JP5073712B2 (en) 2012-11-14

Similar Documents

Publication Publication Date Title
JP5073712B2 (en) Data signal line driving circuit, liquid crystal display device, and liquid crystal display device driving method
CN109036319B (en) Driving method, device and equipment of display panel and storage medium
US8232950B2 (en) Liquid crystal display and method of driving the same capable of increasing display quality by preventing polarity lean of data
US9934736B2 (en) Liquid crystal display and method for driving the same
US8830155B2 (en) Method and source driver for driving liquid crystal display
US6734840B2 (en) Liquid crystal display device with judging section
JP4856052B2 (en) Liquid crystal display device and driving method thereof
CN110310609B (en) Display panel driving circuit and method
US8922603B2 (en) Multi-primary color display device
JP5085268B2 (en) Liquid crystal display device and driving method thereof
KR100463817B1 (en) Data signal line driving circuit and image display device including the same
US20110242065A1 (en) Display panel
KR100614471B1 (en) Lcd panel driving circuit
US5438342A (en) Liquid crystal display apparatus and method and apparatus for driving same
US20130063499A1 (en) Display device, driving method of display device, and electronic apparatus
US20100033456A1 (en) Display device and display method thereof
KR20030004988A (en) Image display device
JP4466710B2 (en) Electro-optical device and electronic apparatus
CN101315473B (en) Crystal display device and driving method thereof
CN107945758A (en) The driving method and display device of a kind of display panel
CN107633823B (en) The polarity reversal driving method and source electrode driver of liquid crystal display
US10930235B2 (en) Driving method and device of display panel, and display device
WO2017208954A1 (en) Video signal line drive circuit, display device including same, and video signal line drive method
KR100303449B1 (en) Liquid crystal display apparatus for reducing a flickering and driving method of performing thereof
CN113470584B (en) Display panel and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10789424

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10789424

Country of ref document: EP

Kind code of ref document: A1