WO2010147009A1 - Unidirectional electromagnetic steel sheet and method for producing same - Google Patents

Unidirectional electromagnetic steel sheet and method for producing same Download PDF

Info

Publication number
WO2010147009A1
WO2010147009A1 PCT/JP2010/059541 JP2010059541W WO2010147009A1 WO 2010147009 A1 WO2010147009 A1 WO 2010147009A1 JP 2010059541 W JP2010059541 W JP 2010059541W WO 2010147009 A1 WO2010147009 A1 WO 2010147009A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
steel sheet
electrical steel
unidirectional electrical
iron loss
Prior art date
Application number
PCT/JP2010/059541
Other languages
French (fr)
Japanese (ja)
Inventor
圭司 岩田
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to JP2010537187A priority Critical patent/JP4719319B2/en
Publication of WO2010147009A1 publication Critical patent/WO2010147009A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets

Definitions

  • the present invention relates to a unidirectional electrical steel sheet suitable for an iron core or the like of a transformer and a method for manufacturing the same.
  • the unidirectional electrical steel sheet having an easy axis in the rolling direction of the steel sheet is used for the iron core of a power converter such as a transformer.
  • the iron core material is strongly required to have low iron loss characteristics in order to reduce the loss generated during energy conversion.
  • the iron loss of electrical steel sheets is roughly divided into hysteresis loss and eddy current loss.
  • Hysteresis loss is affected by crystal orientation, defects, grain boundaries, and the like.
  • Eddy current loss is affected by thickness, electrical resistance, 180-degree magnetic domain width, and the like.
  • a technique of highly aligning crystal grains in the (110) [001] orientation or reducing crystal defects is employed to reduce hysteresis loss.
  • a technique of reducing the thickness of the electromagnetic steel sheet increasing the electric resistance value, or subdividing the 180-degree magnetic domain is employed.
  • the Si content is increased, and in order to subdivide the 180-degree magnetic domain, a tension coating is applied to the surface of the electrical steel sheet.
  • Patent Documents 1 to 7 In recent years, in order to drastically reduce iron loss, in order to significantly reduce eddy current loss, which accounts for a large portion of iron loss, in addition to applying tension to the surface of the electromagnetic steel sheet, In addition, a technique for further introducing a groove and / or strain and further subdividing the 180-degree magnetic domain has been proposed (Patent Documents 1 to 7). These conventional techniques are premised on forming a film on the surface of the electrical steel sheet. That is, formation of a film is indispensable.
  • An object of the present invention is to provide a unidirectional electrical steel sheet capable of obtaining good iron loss characteristics even when the tensile tension from the film is not sufficient, and a method for producing the same.
  • the unidirectional electrical steel sheet according to the present invention has a plurality of first grooves crossing at least one of the front surface or the back surface of the steel sheet in a first direction inclined from the rolling direction of the steel sheet, and the first groove as a starting point. And a plurality of second grooves having a predetermined length extending in a second direction inclined from the first direction.
  • FIG. 1 is a graph showing the relationship between external tension and iron loss in a unidirectional electrical steel sheet.
  • FIG. 2 is a diagram showing a magnetic domain structure generated in a steel plate.
  • FIG. 3 is a diagram showing a magnetic domain structure in a unidirectional electrical steel sheet having grooves.
  • FIG. 4A is a diagram showing the structure of the groove.
  • FIG. 4B is a diagram illustrating a relationship between grooves.
  • FIG. 5 is a graph showing the relationship between external tension and iron loss in the embodiment of the present invention.
  • FIG. 6 is a graph showing the relationship between the depth a and the interval b and the iron loss in the unidirectional electrical steel sheet.
  • FIG. 7 is a graph showing the relationship between depth e and iron loss in a unidirectional electrical steel sheet.
  • FIG. 1 is a graph showing the relationship between external tension and iron loss in a unidirectional electrical steel sheet.
  • FIG. 2 is a diagram showing a magnetic domain structure generated in a steel plate.
  • FIG. 8 is a graph showing the relationship between width c and width d and iron loss in a unidirectional electrical steel sheet.
  • FIG. 9 is a graph showing the relationship between the arrangement interval f and the iron loss in the unidirectional electrical steel sheet.
  • FIG. 10 is a graph showing the relationship between the angle g and the iron loss in the unidirectional electrical steel sheet.
  • FIG. 11 is a diagram showing the relationship between the angle g of 50 ° to 130 ° and the rolling direction.
  • FIG. 12 is a diagram illustrating an example of the planar shape of the sub-groove.
  • FIG. 13 is a diagram illustrating another example of the planar shape of the sub-groove.
  • the present inventors conducted a confirmation test on a conventional technique for reducing iron loss by combining the formation of grooves on the surface of a unidirectional electrical steel sheet or the introduction of strain and the application of a film. I found a problem.
  • FIG. 1 is a graph showing the relationship between external tension and iron loss in a conventional unidirectional electrical steel sheet.
  • “No groove” in FIG. 1 shows the relationship in the unidirectional electrical steel sheet from which the finish annealing film has been removed, and “with groove” means one direction in which the finish annealing film has been removed and grooves have been formed on the surface. It shows the relationship in the electrical steel sheet.
  • the groove depth was 20 ⁇ m
  • the groove width was 100 ⁇ m
  • the groove pitch was 5 mm.
  • the iron loss is reduced by the formation of the groove, and the iron loss is reduced as the external tension acting on the whole unidirectional electrical steel sheet is increased by the external stress.
  • a stress is applied to the unidirectional electrical steel sheet by a coating applied to the surface thereof, and the magnitude thereof is approximately 5 MPa of external tension in FIG. Equivalent to.
  • FIG. 2 is a diagram showing a magnetic domain structure generated in a unidirectional electrical steel sheet.
  • the magnetic domain 21 is composed of magnetic spins 22 that are parallel or antiparallel to the rolling direction.
  • a 180-degree domain wall 23 exists at the boundary between the magnetic domains 21 in which the directions of the magnetic spins 22 are opposite to each other.
  • the dimension of the magnetic domain in the direction (plate width direction) orthogonal to the rolling direction is called a 180-degree magnetic domain width.
  • the 180-degree magnetic domain width is narrowed and the magnetic domains are subdivided.
  • the subdivision of the magnetic domain reduces the moving distance of the domain wall, so that the eddy current loss induced as the domain wall moves decreases.
  • the inventors have found that the magnetic pole 33 is generated on the side surface of the groove 31 and the magnetic pole 33 is regenerated from the magnetic domain 32 as shown in FIG.
  • the composition was promoted, and as a result, it was found that the 180-degree magnetic domain was subdivided.
  • the present inventors have also found that the generation of the magnetic pole 33 is weakened in the vicinity of the groove 31 due to the detour of the magnetic spin 32 as shown in FIG.
  • a plurality of line-shaped sub-grooves 44 (first groove) extending in the rolling direction starting from the main groove 41 (first groove) extending in the plate width direction ( A second groove) is provided.
  • channel 45 is comprised from the main groove
  • channel 45 is arranged in parallel with each other in the rolling direction.
  • FIG. 5 is a graph showing the relationship between the iron loss W17 / 50 (frequency 50 Hz, magnetic flux density 1.7 T) and external tension in the unidirectional electrical steel sheet according to the embodiment of the present invention.
  • the unidirectional electrical steel sheet which concerns on embodiment of this invention was manufactured as follows. First, the finish annealing film was removed from the surface of the unidirectional electrical steel sheet, and a groove 45 was formed by wet etching on the surface where the film did not exist.
  • the depth a of the sub-groove 44 is 150 ⁇ m
  • the interval b between the sub-grooves 44 adjacent to each other is 50 ⁇ m
  • the width c of the sub-groove 44 is 50 ⁇ m
  • the width d of the main groove 41 is 50 ⁇ m
  • the depth e was 15 ⁇ m.
  • the direction in which the main grooves 41 extend was defined as the plate width direction
  • the direction in which the sub grooves 44 extended was defined as the rolling direction
  • the interval (arrangement interval) f between the adjacent main grooves 41 was 5 mm.
  • strain relief annealing was performed at 800 ° C. for 2 hours. Note that the interval (arrangement interval) f between the main grooves 41 means a distance between the center lines of the main grooves 41 and is sometimes called a pitch.
  • FIG. 5 also shows a relationship with “grooved” in FIG. 1 in addition to the embodiment of the present invention for comparison.
  • a stress corresponding to an external tension of about 5 MPa is applied to a commercialized unidirectional electrical steel sheet by coating. Therefore, the iron loss of the conventional unidirectional electrical steel sheet in which the groove is formed and the film is further applied is about 0.75 W / kg.
  • the iron loss is about 0.75 W / kg even in a state where the external tension is not acting, that is, in a state where the film is not applied.
  • the iron loss is reduced to the same level as that of the conventional unidirectional electrical steel sheet in which the iron loss is reduced not only by the groove but also by the film even in the state where the film is not applied. Means you can. Therefore, when a film is applied to the embodiment of the present invention, iron loss can be reliably reduced even if a stress corresponding to an external tension of about 5 MPa cannot be obtained due to variations in the manufacturing process. Furthermore, low iron loss can be obtained even after strain relief annealing.
  • the groove 41 includes the main groove 41 and the plurality of grooves 44.
  • the magnetic pole amount generated on the side surface of the groove is increased, the magnetic domain is reconfigured, the 180-degree magnetic domain is subdivided, and the eddy current loss is reduced. Therefore, even if a stress corresponding to an external tension of about 5 MPa cannot be obtained due to variations in the manufacturing process, the iron loss can be reliably reduced. Moreover, even if the strain relief annealing is performed, the iron loss can be kept low. For this reason, it is suitable for the material for wound iron cores.
  • the sub-groove 44 does not need to be formed on both sides of the main groove 41 in plan view, and may be formed only on one side of the main groove 41. Even in this case, since the detour of the magnetic spin is suppressed in the vicinity of the sub-groove 44, the ratio of the magnetic spin 42 facing the direction perpendicular to the side surface of the main groove 41 is increased as compared with the conventional one.
  • the present inventors investigated the relationship between the iron loss and the depth a of the auxiliary groove 44 and the interval b of the auxiliary groove 44 in the unidirectional electrical steel sheet.
  • the finish annealed film was removed, and a plurality of grooves 45 having a depth e of 15 ⁇ m were formed on the surface by wet etching.
  • a resist having an opening having a comb-like planar shape was used as a mask. Note that the width c of the sub-groove 44 and the width d of the main groove 41 were matched with the interval b.
  • the main grooves 41 are formed so as to extend in a direction perpendicular to the rolling direction (plate width direction), and the arrangement interval f is 5 mm.
  • interval b differ was measured.
  • FIG. FIG. 6 is a graph showing the relationship between the depth a and the interval b and the iron loss in the unidirectional electrical steel sheet.
  • the broken line in FIG. 6 indicates an iron loss W17 / 50 of about 0.75 W / kg, and this value is a conventional one-way direction in which only a linear groove is formed and a tension film is further applied. This is comparable to the iron loss of heat-resistant electrical steel sheets.
  • the iron loss lower than 0.75 W / kg can be obtained if the distance b is in the range of 20 ⁇ m to 300 ⁇ m. Is solved. In the sample where the depth a exceeded 500 ⁇ m, the iron loss was slightly high. This is because as the proportion of the sub-groove 44 increases, the magnetic part decreases and the non-magnetic part increases, so the magnetic flux density decreases. Further, even in the sample where the distance b exceeded 300 ⁇ m, the iron loss was slightly increased. This is because the magnetic grooves 42 are likely to be detoured because the ratio of the sub-grooves 44 is low.
  • the interval b is set to 20 ⁇ m or more is that it is not easy to stably manufacture the sub-groove 44 with the interval b less than 20 ⁇ m.
  • the depth a of the sub-groove 44 is preferably 100 ⁇ m to 500 ⁇ m, and the interval b of the sub-groove 44 is preferably 20 ⁇ m to 300 ⁇ m.
  • the present inventors investigated the relationship between the depth e of the groove 45 and the iron loss in the unidirectional electrical steel sheet.
  • the grooves 45 were formed by the same method as the above investigation.
  • the depth a of the sub-groove 44 was 200 ⁇ m
  • the interval b of the sub-groove 44, the width c of the sub-groove 44, and the width d of the main groove 41 were 50 ⁇ m.
  • the main grooves 41 are formed to extend in the plate width direction, and the arrangement interval f is 5 mm.
  • the iron loss of the sample of the various unidirectional electrical steel plate from which the depth e differs was measured. The result is shown in FIG. FIG.
  • FIG. 7 is a graph showing the relationship between depth e and iron loss in a unidirectional electrical steel sheet.
  • the broken line in FIG. 7 has shown the iron loss W17 / 50 of about 0.75 W / kg.
  • “No sub-groove” in FIG. 7 indicates the iron loss of a conventional unidirectional electrical steel sheet in which only a straight groove is formed and a tension film is applied.
  • the iron loss lower than 0.75 W / kg can be obtained if the depth e is in the range of 5 ⁇ m to 30 ⁇ m. That is, it can be seen that a lower iron loss can be obtained as compared with the case where the sub-groove 44 is not formed.
  • the iron loss was slightly high. This is because as the proportion of the groove 45 increases, the magnetic part decreases and the nonmagnetic part increases, so that the magnetic flux density decreases. Further, even in the sample having a depth e of less than 5 ⁇ m, the iron loss was slightly increased. This is because the area where the magnetic pole 43 can be generated is reduced, and the total amount of the magnetic pole 43 is reduced.
  • the depth e of the groove 45 is preferably 5 ⁇ m to 30 ⁇ m.
  • the grooves 45 were formed by the same method as the above investigation.
  • the depth a of the sub-groove 44 was 200 ⁇ m, and the distance b between the sub-grooves 44 was 50 ⁇ m.
  • the main grooves 41 are formed to extend in the plate width direction, and the arrangement interval f is 5 mm.
  • the iron loss of the sample of the various unidirectional electrical steel sheet from which width c and width d differ was measured.
  • FIG. FIG. 8 is a graph showing the relationship between width c and width d and iron loss in a unidirectional electrical steel sheet.
  • the broken line in FIG. 8 has shown the iron loss W17 / 50 of about 0.75 W / kg.
  • the width c and the width d are 20 ⁇ m or more is that the sub-groove 44 is stably formed with a width c of less than 20 ⁇ m, and the main groove 41 is stably formed with a width d of less than 20 ⁇ m. It is not easy.
  • the width c of the sub-groove 44 is preferably 20 ⁇ m to 300 ⁇ m
  • the width d of the main groove 41 is preferably 20 ⁇ m to 300 ⁇ m.
  • the present inventors investigated the relationship between the arrangement interval f of the grooves 45 and the iron loss in the unidirectional electrical steel sheet.
  • the grooves 45 were formed by the same method as the above investigation.
  • the depth a of the sub-groove 44 is 200 ⁇ m
  • the interval b of the sub-groove 44, the width c of the sub-groove 44, and the width d of the main groove 41 are 50 ⁇ m
  • the depth e of the groove 45 is 15 ⁇ m.
  • the main groove 41 was formed to extend in the plate width direction.
  • interval f differs was measured. The result is shown in FIG.
  • FIG. 9 is a graph showing the relationship between the arrangement interval f and the iron loss in the unidirectional electrical steel sheet.
  • the broken line in FIG. 9 has shown the iron loss W17 / 50 of about 0.75 W / kg.
  • the arrangement interval f is preferably in the range of 1 mm to 10 mm.
  • the iron loss was slightly high. This is because as the proportion of the groove 45 increases, the magnetic part decreases and the nonmagnetic part increases, so that the magnetic flux density decreases. Further, even in the sample where the arrangement interval f exceeded 10 mm, the iron loss was slightly increased. This is because the magnetic grooves 42 are likely to be detoured because the ratio of the sub-grooves 44 is low.
  • the present inventors investigated the relationship between the angle g between the direction in which the main groove 41 extends in the unidirectional electrical steel sheet and the rolling direction and the iron loss.
  • the grooves 45 were formed by the same method as the above investigation.
  • the depth a of the sub-groove 44 is 200 ⁇ m
  • the interval b of the sub-groove 44, the width c of the sub-groove 44, and the width d of the main groove 41 are 50 ⁇ m
  • the depth e of the groove 45 is 15 ⁇ m.
  • the arrangement interval f was 5 mm.
  • the iron loss of the sample of the various unidirectional electrical steel plate from which angle g differs was measured. The result is shown in FIG.
  • FIG. 10 is a graph showing the relationship between the angle g and the iron loss in the unidirectional electrical steel sheet.
  • the broken line in FIG. 10 has shown the iron loss W17 / 50 of about 0.75 W / kg.
  • the angle g is preferably 50 ° to 130 °.
  • FIG. 11 shows the relationship between the angle g of 50 ° to 130 ° and the rolling direction. As shown in FIG. 11, the range of 50 ° to 130 ° corresponds to a range in which the deviation of the direction in which the main groove 41 extends from the plate width direction is within 40 °.
  • the angle g is less than 50 ° or more than 130 ° C., the ratio of the magnetic spins 42 facing the direction of the easy axis, that is, the rolling direction, penetrating the side surface of the main groove 41 is reduced, and the magnetic domain subdivision is reduced.
  • the iron loss is slightly high.
  • the planar shape of the sub-groove 44 when the angle g between the direction in which the main groove 41 extends and the rolling direction is 90 °, the planar shape of the sub-groove 44 is rectangular, but the angle g is in the range of 50 ° to 130 °. If the angle is not 90 °, the planar shape of the sub-groove 44 is a parallelogram. Even in this case, the preferable ranges of the depth a, the interval b, and the width c are the same as those in the case where the angle g is 90 °.
  • the depth a is preferably in the range of 100 ⁇ m to 500 ⁇ m
  • the interval b is preferably in the range of 20 ⁇ m to 300 ⁇ m
  • the width c is preferably in the range of 20 ⁇ m to 300 ⁇ m.
  • the width d is preferably in the range of 20 ⁇ m to 300 ⁇ m
  • the depth e is preferably in the range of 5 ⁇ m to 30 ⁇ m
  • the arrangement interval f is preferably in the range of 1 mm to 10 mm
  • the angle g is preferably in the range of 50 ° to 130 °.
  • the method for forming the groove 45 is not particularly limited. For example, it may be formed by processing using gears, or by press processing, electrolytic etching processing, electroless etching processing, dry etching processing, laser beam processing, water jet processing, or blast processing. May be. Moreover, you may form by cutting which is machining, and you may form by electrical discharge machining. In addition, when etching is performed, resist patterning may be required, but the patterning method is not particularly limited. For example, photolithography, gravure printing, laser patterning, or the like may be employed.
  • the cross-sectional shapes of the main groove 41 and the sub-groove 44 are not particularly limited, and examples thereof include a rectangle, a trapezoid, and a shape in which a rectangle or a trapezoid is distorted. In any case, it is only necessary that the concave main groove 41 and the sub-groove 44 are formed on the surface of the unidirectional electrical steel sheet.
  • the planar shape of the sub-groove 44 is not particularly limited.
  • the vicinity of the portion connected to the main groove 41 of the sub-groove 44 may be curved, and the planar shape of the protruding portion 46 existing between the sub-grooves 44 may be elliptical.
  • the shape can define the depth a in the rolling direction and the dimension (width c) in the direction orthogonal to the depth a.
  • the length of the protrusion 46 between the sub-grooves 44 corresponds to the depth a
  • the width of the root of the protrusion 46 corresponds to the distance b
  • the distance between the roots of adjacent protrusions 46 is the width. It corresponds to c
  • the distance between the tips of the protruding portions 46 facing each other corresponds to the width d.
  • the etching can proceed in a direction parallel to the surface of the unidirectional electrical steel sheet to some extent, so the vicinity of the portion connected to the main groove 41 of the sub-groove 44 is Easy to bend.
  • the sub-groove 44 may not be arranged in mirror symmetry with the main groove 41 as the center of symmetry. Furthermore, the depth a, the interval b, and the width c do not need to be constant. However, in each sub-groove 44, it is preferable that the depth a, the interval b, and the width c are within the above-described ranges.
  • the sub-groove 44 is preferably formed so as to be aligned with the 180-degree domain wall, but is not necessarily aligned. That is, even if the sub-groove 44 is formed over two adjacent magnetic domains, the bypass of magnetic spin can be reduced. Further, even when the sub-groove 44 having a width c narrower than the 180-degree magnetic domain width is located in one magnetic domain, the bypassing of the magnetic spin can be reduced.
  • the iron loss W17 / 50 of each unidirectional electrical steel sheet was measured using the single plate magnetic apparatus.
  • the iron loss W17 / 50 indicates the value of the iron loss when the frequency is 50 Hz and the magnetic flux density is 1.7T. The results are shown in Table 1.
  • Example No. 1-No. In No. 4 a particularly low iron loss was obtained because the dimensions of the groove were within the preferred range.
  • Example No. 1 of the first experiment was used. 1 and no. Two unidirectional electrical steel sheets were subjected to strain relief annealing at 800 ° C. for 2 hours. And the iron loss W17 / 50 of each unidirectional electrical steel sheet was measured using the single plate magnetic apparatus. Further, Comparative Example No. 1 in which distortion was generated by irradiating a laser beam without forming a groove on a unidirectional electrical steel sheet produced in the same manner as in the first experiment. 11 was also produced. Comparative Example No. In the production of 11, the surface of the unidirectional electrical steel sheet was irradiated with laser light at intervals of 5 mm in the rolling direction. And comparative example No. 11 iron loss W17 / 50 was measured. Further, Comparative Example No. 11 was subjected to stress relief annealing at 800 ° C. for 2 hours, and the subsequent iron loss W17 / 50 was also measured. These results are shown in Table 2.
  • the present invention can be used, for example, in the electrical steel sheet manufacturing industry and the electrical steel sheet utilizing industry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

A unidirectional electromagnetic steel plate is provided with a plurality of first grooves on at least one of the top surface and the bottom surface of the steel plate, and which traverse in a first direction which is inclined from the direction of rolling of the aforementioned steel plate; and a plurality of second grooves having a predetermined length originating at the aforementioned first grooves, and extending in a second direction, which is inclined from the aforementioned first direction.

Description

一方向性電磁鋼板及びその製造方法Unidirectional electrical steel sheet and manufacturing method thereof
 本発明は、変圧器(トランス)の鉄心等に好適な一方向性電磁鋼板及びその製造方法に関する。 The present invention relates to a unidirectional electrical steel sheet suitable for an iron core or the like of a transformer and a method for manufacturing the same.
 鋼板の圧延方向に磁化容易軸をもつ一方向性電磁鋼板は、変圧器等の電力変換器の鉄心に用いられている。鉄心の材料には、エネルギ変換時に生じる損失を小さくするために、低い鉄損特性が強く要求されている。 The unidirectional electrical steel sheet having an easy axis in the rolling direction of the steel sheet is used for the iron core of a power converter such as a transformer. The iron core material is strongly required to have low iron loss characteristics in order to reduce the loss generated during energy conversion.
 電磁鋼板の鉄損は、ヒステリシス損と渦電流損とに大別される。ヒステリシス損は、結晶方位、欠陥、及び粒界等の影響を受ける。渦電流損は、厚さ、電気抵抗値、及び180度磁区幅等の影響を受ける。 The iron loss of electrical steel sheets is roughly divided into hysteresis loss and eddy current loss. Hysteresis loss is affected by crystal orientation, defects, grain boundaries, and the like. Eddy current loss is affected by thickness, electrical resistance, 180-degree magnetic domain width, and the like.
 そして、電磁鋼板の製造に際しては、ヒステリシス損を低減するために、結晶粒を(110)[001]方位に高度に揃えたり、結晶の欠陥を少なくしたりする技術が採用されている。また、渦電流損を低減するために、電磁鋼板の厚さを薄くしたり、電気抵抗値を高めたり、180度磁区を細分化したりする技術が採用されている。電気抵抗値の上昇のためには、Si含有量の増加等が行われ、180度磁区の細分化のためには、張力皮膜の電磁鋼板の表面への塗布等が行われている。 In the production of electrical steel sheets, a technique of highly aligning crystal grains in the (110) [001] orientation or reducing crystal defects is employed to reduce hysteresis loss. In order to reduce eddy current loss, a technique of reducing the thickness of the electromagnetic steel sheet, increasing the electric resistance value, or subdividing the 180-degree magnetic domain is employed. In order to increase the electric resistance value, the Si content is increased, and in order to subdivide the 180-degree magnetic domain, a tension coating is applied to the surface of the electrical steel sheet.
 近年では、鉄損を飛躍的に減少させるために、鉄損の大部分を占める渦電流損を大幅に低減すべく、電磁鋼板の表面への張力の付与に加えて、電磁鋼板の表面に人為的に溝及び/又は歪みを導入して、更に180度磁区を細分化させる技術も提案されている(特許文献1~7)。これらの従来の技術は、電磁鋼板の表面に皮膜を形成することを前提としている。つまり、皮膜の形成が不可欠である。 In recent years, in order to drastically reduce iron loss, in order to significantly reduce eddy current loss, which accounts for a large portion of iron loss, in addition to applying tension to the surface of the electromagnetic steel sheet, In addition, a technique for further introducing a groove and / or strain and further subdividing the 180-degree magnetic domain has been proposed (Patent Documents 1 to 7). These conventional techniques are premised on forming a film on the surface of the electrical steel sheet. That is, formation of a film is indispensable.
 しかしながら、製造工程のばらつき等のために、皮膜の張力の大きさが十分に得られない場合がある。そして、このような場合には、良好な鉄損特性を得ることができない。この対策として、皮膜を厚く塗ることも行われているが、皮膜を厚くすることは、必然的に非磁性層の増加につながり、磁束密度が低下してしまう。このため、変圧器の作製時に、電磁鋼板をより多く使う必要性が生じてしまい、重量が増加したり、コストが増加したりする。 However, there may be a case where the film tension cannot be sufficiently obtained due to variations in the manufacturing process. In such a case, good iron loss characteristics cannot be obtained. As a countermeasure against this, a thick film is also applied. However, increasing the film inevitably leads to an increase in the nonmagnetic layer, resulting in a decrease in magnetic flux density. For this reason, when producing a transformer, the necessity to use more electromagnetic steel plates arises, and a weight increases or cost increases.
特開昭55-18566号公報JP-A-55-18586 特開昭61-117218号公報JP 61-117218 A 特開2000-169946号公報JP 2000-169946 A 特開2003-301272号公報JP 2003-301272 A 特開平7-320921号公報Japanese Patent Laid-Open No. 7-320921 特開昭61-91331号公報JP-A-61-91331 特開2001-303261号公報JP 2001-303261 A
 本発明の目的は、皮膜からの引張張力が十分でない場合であっても良好な鉄損特性を得ることができる一方向性電磁鋼板及びその製造方法を提供することにある。 An object of the present invention is to provide a unidirectional electrical steel sheet capable of obtaining good iron loss characteristics even when the tensile tension from the film is not sufficient, and a method for producing the same.
 本発明に係る一方向性電磁鋼板は、鋼板の表面又は裏面の少なくとも一方を、前記鋼板の圧延方向から傾斜した第1の方向に横切る複数の第1の溝と、前記第1の溝を起点とし、前記第1の方向から傾斜した第2の方向に延びる所定の長さの複数の第2の溝と、を有することを特徴とする。 The unidirectional electrical steel sheet according to the present invention has a plurality of first grooves crossing at least one of the front surface or the back surface of the steel sheet in a first direction inclined from the rolling direction of the steel sheet, and the first groove as a starting point. And a plurality of second grooves having a predetermined length extending in a second direction inclined from the first direction.
 本発明に係る一方向性電磁鋼板の製造方法は、鋼板の表面又は裏面の少なくとも一方に、前記鋼板の圧延方向から傾斜した第1の方向に横切る複数の第1の溝と、前記第1の溝を起点とし、前記第1の方向から傾斜した第2の方向に延びる所定の長さの複数の第2の溝と、を形成する工程を有することを特徴とする。 In the method for producing a unidirectional electrical steel sheet according to the present invention, a plurality of first grooves crossing in a first direction inclined from a rolling direction of the steel sheet on at least one of a front surface and a back surface of the steel sheet, and the first And a step of forming a plurality of second grooves having a predetermined length starting from the groove and extending in a second direction inclined from the first direction.
 本発明によれば、表面に塗布された皮膜から作用する張力が十分でなくても、十分に低い鉄損を得ることができる。 According to the present invention, a sufficiently low iron loss can be obtained even if the tension acting from the coating applied to the surface is not sufficient.
図1は、一方向性電磁鋼板における外部張力と鉄損との関係を示すグラフである。FIG. 1 is a graph showing the relationship between external tension and iron loss in a unidirectional electrical steel sheet. 図2は、鋼板に生じる磁区構造を示す図である。FIG. 2 is a diagram showing a magnetic domain structure generated in a steel plate. 図3は、溝が形成された一方向性電磁鋼板における磁区構造を示す図である。FIG. 3 is a diagram showing a magnetic domain structure in a unidirectional electrical steel sheet having grooves. 図4Aは、溝の構造を示す図である。FIG. 4A is a diagram showing the structure of the groove. 図4Bは、溝同士の関係を示す図である。FIG. 4B is a diagram illustrating a relationship between grooves. 図5は、本発明の実施形態における外部張力と鉄損との関係を示すグラフである。FIG. 5 is a graph showing the relationship between external tension and iron loss in the embodiment of the present invention. 図6は、一方向性電磁鋼板における奥行きa及び間隔bと鉄損との関係を示すグラフである。FIG. 6 is a graph showing the relationship between the depth a and the interval b and the iron loss in the unidirectional electrical steel sheet. 図7は、一方向性電磁鋼板における深さeと鉄損との関係を示すグラフである。FIG. 7 is a graph showing the relationship between depth e and iron loss in a unidirectional electrical steel sheet. 図8は、一方向性電磁鋼板における幅c及び幅dと鉄損との関係を示すグラフである。FIG. 8 is a graph showing the relationship between width c and width d and iron loss in a unidirectional electrical steel sheet. 図9は、一方向性電磁鋼板における配列間隔fと鉄損との関係を示すグラフである。FIG. 9 is a graph showing the relationship between the arrangement interval f and the iron loss in the unidirectional electrical steel sheet. 図10は、一方向性電磁鋼板における角度gと鉄損との関係を示すグラフである。FIG. 10 is a graph showing the relationship between the angle g and the iron loss in the unidirectional electrical steel sheet. 図11は、50°~130°の角度gと圧延方向との関係を示す図である。FIG. 11 is a diagram showing the relationship between the angle g of 50 ° to 130 ° and the rolling direction. 図12は、副溝の平面形状の一例を示す図である。FIG. 12 is a diagram illustrating an example of the planar shape of the sub-groove. 図13は、副溝の平面形状の他の一例を示す図である。FIG. 13 is a diagram illustrating another example of the planar shape of the sub-groove.
 本発明者らは、一方向性電磁鋼板の表面への溝の形成又は歪みの導入と皮膜の塗布とを組み合わせた鉄損を低減するための従来の技術について確認試験を行ったところ、以下の問題点を見出した。 The present inventors conducted a confirmation test on a conventional technique for reducing iron loss by combining the formation of grooves on the surface of a unidirectional electrical steel sheet or the introduction of strain and the application of a film. I found a problem.
 図1は、従来の一方向性電磁鋼板における外部張力と鉄損との関係を示すグラフである。図1中の「溝なし」は、仕上げ焼鈍皮膜が除去された一方向性電磁鋼板における関係を示し、「溝あり」は、仕上げ焼鈍皮膜が除去され、かつ表面に溝が形成された一方向性電磁鋼板における関係を示している。なお、溝の深さは20μmとし、溝の幅は100μmとし、溝のピッチは5mmとした。 FIG. 1 is a graph showing the relationship between external tension and iron loss in a conventional unidirectional electrical steel sheet. “No groove” in FIG. 1 shows the relationship in the unidirectional electrical steel sheet from which the finish annealing film has been removed, and “with groove” means one direction in which the finish annealing film has been removed and grooves have been formed on the surface. It shows the relationship in the electrical steel sheet. The groove depth was 20 μm, the groove width was 100 μm, and the groove pitch was 5 mm.
 図1に示すように、溝の形成により鉄損が低下し、また、外部応力によって一方向性電磁鋼板全体に作用する外部張力が大きくなるほど、鉄損が低下する。従来の製品化されている一方向性電磁鋼板では、その表面に塗布された皮膜により応力が一方向性電磁鋼板に作用しており、その大きさは、図1中の約5MPaの外部張力に相当する。 As shown in FIG. 1, the iron loss is reduced by the formation of the groove, and the iron loss is reduced as the external tension acting on the whole unidirectional electrical steel sheet is increased by the external stress. In a conventional unidirectional electrical steel sheet that has been commercialized, a stress is applied to the unidirectional electrical steel sheet by a coating applied to the surface thereof, and the magnitude thereof is approximately 5 MPa of external tension in FIG. Equivalent to.
 但し、皮膜と一方向性電磁鋼板との密着性等の限界により、5MPa以上の外部張力を安定して得ることは難しい。また、製造プロセスのばらつき等により、設計通りの表面性状、即ち十分な外部張力が得られず、良好な鉄損特性が得られない場合もある。従って、一方向性電磁鋼板の表面への溝の形成と皮膜の塗布とを組み合わせた従来の技術では、鉄損が低い一方向性電磁鋼板を安定して製造することが難しい。 However, it is difficult to stably obtain an external tension of 5 MPa or more due to limitations such as adhesion between the film and the unidirectional electrical steel sheet. In addition, due to variations in the manufacturing process, surface properties as designed, that is, sufficient external tension may not be obtained, and good iron loss characteristics may not be obtained. Therefore, it is difficult to stably manufacture a unidirectional electrical steel sheet having a low iron loss by the conventional technique that combines the formation of grooves on the surface of the unidirectional electrical steel sheet and the application of a film.
 次に、本発明の実施形態について説明する。図2は、一方向性電磁鋼板に生じる磁区構造を示す図である。一般に、一方向性電磁鋼板の磁化容易軸は圧延方向を向いているため、磁区21は圧延方向に平行又は反平行な磁気スピン22で構成される。そして、互いに磁気スピン22の方向が逆向きの磁区21の境界には180度磁壁23が存在する。また、圧延方向に直交する方向(板幅方向)における磁区の寸法は180度磁区幅とよばれる。このような一方向性電磁鋼板の表面に板幅方向に延びる溝を形成すると、180度磁区幅が狭くなり、磁区が細分化される。磁区の細分化は、磁壁の移動距離を減少させるので、磁壁の移動に伴って誘導される渦電流損が低下する。 Next, an embodiment of the present invention will be described. FIG. 2 is a diagram showing a magnetic domain structure generated in a unidirectional electrical steel sheet. In general, since the easy axis of the unidirectional electrical steel sheet faces the rolling direction, the magnetic domain 21 is composed of magnetic spins 22 that are parallel or antiparallel to the rolling direction. A 180-degree domain wall 23 exists at the boundary between the magnetic domains 21 in which the directions of the magnetic spins 22 are opposite to each other. Moreover, the dimension of the magnetic domain in the direction (plate width direction) orthogonal to the rolling direction is called a 180-degree magnetic domain width. When a groove extending in the plate width direction is formed on the surface of such a unidirectional electrical steel sheet, the 180-degree magnetic domain width is narrowed and the magnetic domains are subdivided. The subdivision of the magnetic domain reduces the moving distance of the domain wall, so that the eddy current loss induced as the domain wall moves decreases.
 本発明者らは、溝の形成による磁区の細分化のメカニズムについて磁区構造解析から検討した結果、図3に示すように、溝31の側面に磁極33が発生し、磁極33が磁区32の再構成を促し、結果的に180度磁区が細分化されることを見出した。更に、本発明者らは、図3に示すように、溝31の近傍では、磁気スピン32の迂回が生じるため磁極33の発生が弱まっていることも見出した。 As a result of examining the subdivision mechanism of the magnetic domain due to the formation of the groove from the magnetic domain structure analysis, the inventors have found that the magnetic pole 33 is generated on the side surface of the groove 31 and the magnetic pole 33 is regenerated from the magnetic domain 32 as shown in FIG. The composition was promoted, and as a result, it was found that the 180-degree magnetic domain was subdivided. Further, the present inventors have also found that the generation of the magnetic pole 33 is weakened in the vicinity of the groove 31 due to the detour of the magnetic spin 32 as shown in FIG.
 そこで、本発明の実施形態では、図4A及び図4Bに示すように、板幅方向に延びる主溝41(第1の溝)を起点として圧延方向に延びる線分状の複数の副溝44(第2の溝)を設けている。そして、主溝41及びこれを起点とする複数の副溝44から溝45を構成し、このような溝45を、圧延方向に、複数、互いに平行に配列している。この結果、磁気スピン42の迂回が抑えられ、主溝41の側面に垂直な方向を向く磁気スピン42の割合が増加し、主溝41の側面の磁極43の発生が強められる。 Therefore, in the embodiment of the present invention, as shown in FIG. 4A and FIG. 4B, a plurality of line-shaped sub-grooves 44 (first groove) extending in the rolling direction starting from the main groove 41 (first groove) extending in the plate width direction ( A second groove) is provided. And the groove | channel 45 is comprised from the main groove | channel 41 and the some subgroove 44 which makes this the starting point, Such a groove | channel 45 is arranged in parallel with each other in the rolling direction. As a result, the detour of the magnetic spin 42 is suppressed, the ratio of the magnetic spin 42 facing the direction perpendicular to the side surface of the main groove 41 is increased, and the generation of the magnetic pole 43 on the side surface of the main groove 41 is strengthened.
 図5は、本発明の実施形態に係る一方向性電磁鋼板における鉄損W17/50(周波数50Hz、磁束密度1.7T)と外部張力との関係を示すグラフである。なお、本発明の実施形態に係る一方向性電磁鋼板は、次のようにして製造した。先ず、一方向性電磁鋼板の表面から仕上げ焼鈍皮膜を除去し、皮膜が存在しない表面に、湿式のエッチングにより溝45を形成した。このとき、副溝44の奥行きaを150μm、互いに隣接する副溝44の間隔bを50μm、副溝44の幅cを50μm、主溝41の幅dを50μm、主溝41及び副溝44の深さeを15μmとした。また、主溝41が延びる方向を板幅方向とし、副溝44が延びる方向を圧延方向とし、互いに隣接する主溝41の間隔(配列間隔)fを5mmとした。次いで、800℃で2時間の歪取焼鈍を行った。なお、主溝41の間隔(配列間隔)fは、主溝41の中心線間の距離を意味し、ピッチとよばれることもある。 FIG. 5 is a graph showing the relationship between the iron loss W17 / 50 (frequency 50 Hz, magnetic flux density 1.7 T) and external tension in the unidirectional electrical steel sheet according to the embodiment of the present invention. In addition, the unidirectional electrical steel sheet which concerns on embodiment of this invention was manufactured as follows. First, the finish annealing film was removed from the surface of the unidirectional electrical steel sheet, and a groove 45 was formed by wet etching on the surface where the film did not exist. At this time, the depth a of the sub-groove 44 is 150 μm, the interval b between the sub-grooves 44 adjacent to each other is 50 μm, the width c of the sub-groove 44 is 50 μm, the width d of the main groove 41 is 50 μm, The depth e was 15 μm. The direction in which the main grooves 41 extend was defined as the plate width direction, the direction in which the sub grooves 44 extended was defined as the rolling direction, and the interval (arrangement interval) f between the adjacent main grooves 41 was 5 mm. Next, strain relief annealing was performed at 800 ° C. for 2 hours. Note that the interval (arrangement interval) f between the main grooves 41 means a distance between the center lines of the main grooves 41 and is sometimes called a pitch.
 図5には、比較のために、本発明の実施形態の他に、図1中の「溝あり」における関係も示している。上述のように、製品化されている一方向性電磁鋼板には、皮膜の塗布により約5MPaの外部張力に相当する応力が作用している。従って、溝が形成され、更に皮膜が塗布された従来の一方向性電磁鋼板の鉄損は0.75W/kg程度である。これに対し、本発明の実施形態では、外部張力が作用していない状態、つまり、皮膜が塗布されていない状態でも、鉄損は0.75W/kg程度である。このことは、本発明の実施形態では、皮膜が塗布されていない状態でも、溝だけなく皮膜によっても鉄損が下げられている従来の一方向性電磁鋼板と同程度にまで鉄損を下げることができることを意味している。従って、本発明の実施形態に皮膜を塗布した場合に、製造プロセスのばらつき等により、5MPa程度の外部張力に相当する応力を得られなくても、確実に鉄損を低下させることができる。更に、歪取焼鈍後においても低い鉄損を得ることができる。 FIG. 5 also shows a relationship with “grooved” in FIG. 1 in addition to the embodiment of the present invention for comparison. As described above, a stress corresponding to an external tension of about 5 MPa is applied to a commercialized unidirectional electrical steel sheet by coating. Therefore, the iron loss of the conventional unidirectional electrical steel sheet in which the groove is formed and the film is further applied is about 0.75 W / kg. On the other hand, in the embodiment of the present invention, the iron loss is about 0.75 W / kg even in a state where the external tension is not acting, that is, in a state where the film is not applied. This means that in the embodiment of the present invention, the iron loss is reduced to the same level as that of the conventional unidirectional electrical steel sheet in which the iron loss is reduced not only by the groove but also by the film even in the state where the film is not applied. Means you can. Therefore, when a film is applied to the embodiment of the present invention, iron loss can be reliably reduced even if a stress corresponding to an external tension of about 5 MPa cannot be obtained due to variations in the manufacturing process. Furthermore, low iron loss can be obtained even after strain relief annealing.
 このように、本発明の実施形態では、溝41に主溝41及び複数の溝44が含まれている。この結果、溝の側面に発生する磁極量が増加し、磁区の再構成が促され、180度磁区が細分化され、渦電流損が低減される。従って、製造プロセスのばらつき等により、5MPa程度の外部張力に相当する応力を得られなくても、確実に鉄損を低下させることができる。また、歪取焼鈍が行われても、鉄損を低く維持することができる。このため、巻き鉄心用の材料に好適である。 As described above, in the embodiment of the present invention, the groove 41 includes the main groove 41 and the plurality of grooves 44. As a result, the magnetic pole amount generated on the side surface of the groove is increased, the magnetic domain is reconfigured, the 180-degree magnetic domain is subdivided, and the eddy current loss is reduced. Therefore, even if a stress corresponding to an external tension of about 5 MPa cannot be obtained due to variations in the manufacturing process, the iron loss can be reliably reduced. Moreover, even if the strain relief annealing is performed, the iron loss can be kept low. For this reason, it is suitable for the material for wound iron cores.
 なお、副溝44は、平面視で主溝41の両側に形成されている必要はなく、主溝41の片側のみに形成されていてもよい。この場合でも、副溝44の近傍において磁気スピンの迂回が抑制されるため、従来のものと比較して、主溝41の側面に垂直な方向を向く磁気スピン42の割合が増加する。 The sub-groove 44 does not need to be formed on both sides of the main groove 41 in plan view, and may be formed only on one side of the main groove 41. Even in this case, since the detour of the magnetic spin is suppressed in the vicinity of the sub-groove 44, the ratio of the magnetic spin 42 facing the direction perpendicular to the side surface of the main groove 41 is increased as compared with the conventional one.
 次に、効果をより確実に得るための溝45に関する条件について説明する。つまり、奥行きa、間隔b、幅c、幅d、深さe、配列間隔f、及び主溝41が延びる方向と圧延方向とがなす角度g等の好ましい範囲について説明する。 Next, conditions regarding the groove 45 for obtaining the effect more reliably will be described. That is, preferable ranges such as the depth a, the interval b, the width c, the width d, the depth e, the arrangement interval f, and the angle g formed by the direction in which the main grooves 41 extend and the rolling direction will be described.
 本発明者らは、一方向性電磁鋼板における副溝44の奥行きa及び副溝44の間隔bと鉄損との関係について調査した。この調査では、一方向性電磁鋼板の製造に際して、仕上げ焼鈍皮膜を除去し、その表面に、湿式のエッチングにより深さeが15μmの複数の溝45を形成した。湿式のエッチングの際には、平面形状が櫛歯状の開口部を備えたレジストをマスクとして用いた。なお、副溝44の幅c及び主溝41の幅dは間隔bに一致させた。また、主溝41は圧延方向に直交する方向(板幅方向)に延びるように形成し、配列間隔fは5mmとした。そして、奥行きa及び間隔bが異なる種々の一方向性電磁鋼板の試料の鉄損を測定した。この結果を図6に示す。図6は、一方向性電磁鋼板における奥行きa及び間隔bと鉄損との関係を示すグラフである。なお、図6中の破線は、約0.75W/kgの鉄損W17/50を示しており、この値は、直線状の溝のみが形成され、更に張力皮膜が塗布された従来の一方向性電磁鋼板の鉄損と同程度である。 The present inventors investigated the relationship between the iron loss and the depth a of the auxiliary groove 44 and the interval b of the auxiliary groove 44 in the unidirectional electrical steel sheet. In this investigation, when the unidirectional electrical steel sheet was manufactured, the finish annealed film was removed, and a plurality of grooves 45 having a depth e of 15 μm were formed on the surface by wet etching. At the time of wet etching, a resist having an opening having a comb-like planar shape was used as a mask. Note that the width c of the sub-groove 44 and the width d of the main groove 41 were matched with the interval b. The main grooves 41 are formed so as to extend in a direction perpendicular to the rolling direction (plate width direction), and the arrangement interval f is 5 mm. And the iron loss of the sample of the various unidirectional electrical steel plate from which depth a and the space | interval b differ was measured. The result is shown in FIG. FIG. 6 is a graph showing the relationship between the depth a and the interval b and the iron loss in the unidirectional electrical steel sheet. The broken line in FIG. 6 indicates an iron loss W17 / 50 of about 0.75 W / kg, and this value is a conventional one-way direction in which only a linear groove is formed and a tension film is further applied. This is comparable to the iron loss of heat-resistant electrical steel sheets.
 図6に示す結果から、奥行きaが100μmから500μmまでの範囲内にある場合は、間隔bが20μmから300μmまでの範囲内にあれば、0.75W/kgよりも低い鉄損が得られることが解かる。奥行きaが500μmを超えた試料では、鉄損がやや高くなった。これは、副溝44の割合の増加に伴って磁性を示す部分が減り、非磁性の部分が増加するため、磁束密度が低下したからである。また、間隔bが300μmを超えた試料でも、鉄損がやや高くなった。これは、副溝44の割合が低いため、磁気スピン42の迂回が生じやすかったからである。つまり、副溝44が形成されていない状態に近づいたからである。なお、間隔bを20μm以上としたのは、20μm未満の間隔bで副溝44を安定して製造することが容易ではないからである。 From the results shown in FIG. 6, when the depth a is in the range of 100 μm to 500 μm, the iron loss lower than 0.75 W / kg can be obtained if the distance b is in the range of 20 μm to 300 μm. Is solved. In the sample where the depth a exceeded 500 μm, the iron loss was slightly high. This is because as the proportion of the sub-groove 44 increases, the magnetic part decreases and the non-magnetic part increases, so the magnetic flux density decreases. Further, even in the sample where the distance b exceeded 300 μm, the iron loss was slightly increased. This is because the magnetic grooves 42 are likely to be detoured because the ratio of the sub-grooves 44 is low. That is, it is close to the state where the sub-groove 44 is not formed. The reason why the interval b is set to 20 μm or more is that it is not easy to stably manufacture the sub-groove 44 with the interval b less than 20 μm.
 従って、副溝44の奥行きaは100μm~500μmであることが好ましく、副溝44の間隔bは20μm~300μmであることが好ましい。 Therefore, the depth a of the sub-groove 44 is preferably 100 μm to 500 μm, and the interval b of the sub-groove 44 is preferably 20 μm to 300 μm.
 本発明者らは、一方向性電磁鋼板における溝45の深さeと鉄損との関係について調査した。この調査では、一方向性電磁鋼板の製造に際して、上記の調査と同様の方法により溝45を形成した。なお、副溝の44の奥行きaは200μmとし、副溝44の間隔b、副溝44の幅c、及び主溝41の幅dは50μmとした。また、主溝41は板幅方向に延びるように形成し、配列間隔fは5mmとした。そして、深さeが異なる種々の一方向性電磁鋼板の試料の鉄損を測定した。この結果を図7に示す。図7は、一方向性電磁鋼板における深さeと鉄損との関係を示すグラフである。なお、図7中の破線は、約0.75W/kgの鉄損W17/50を示している。また、図7中の「副溝なし」は、直線状の溝のみが形成され、更に張力皮膜が塗布された従来の一方向性電磁鋼板の鉄損を示している。 The present inventors investigated the relationship between the depth e of the groove 45 and the iron loss in the unidirectional electrical steel sheet. In this investigation, when the unidirectional electrical steel sheet was manufactured, the grooves 45 were formed by the same method as the above investigation. The depth a of the sub-groove 44 was 200 μm, the interval b of the sub-groove 44, the width c of the sub-groove 44, and the width d of the main groove 41 were 50 μm. The main grooves 41 are formed to extend in the plate width direction, and the arrangement interval f is 5 mm. And the iron loss of the sample of the various unidirectional electrical steel plate from which the depth e differs was measured. The result is shown in FIG. FIG. 7 is a graph showing the relationship between depth e and iron loss in a unidirectional electrical steel sheet. In addition, the broken line in FIG. 7 has shown the iron loss W17 / 50 of about 0.75 W / kg. “No sub-groove” in FIG. 7 indicates the iron loss of a conventional unidirectional electrical steel sheet in which only a straight groove is formed and a tension film is applied.
 図7に示す結果から、深さeが5μmから30μmまでの範囲内にあれば、0.75W/kgよりも低い鉄損が得られることが解かる。つまり、副溝44が形成されていない場合と比較して、低い鉄損が得られることが解かる。深さeが30μmを超えた試料では、鉄損がやや高くなった。これは、溝45の割合の増加に伴って磁性を示す部分が減り、非磁性の部分が増加するため、磁束密度が低下したからである。また、深さeが5μm未満の試料でも、鉄損がやや高くなった。これは、磁極43が発生し得る面積が小さくなり、磁極43の総量が減少したからである。 7 that the iron loss lower than 0.75 W / kg can be obtained if the depth e is in the range of 5 μm to 30 μm. That is, it can be seen that a lower iron loss can be obtained as compared with the case where the sub-groove 44 is not formed. In the sample where the depth e exceeded 30 μm, the iron loss was slightly high. This is because as the proportion of the groove 45 increases, the magnetic part decreases and the nonmagnetic part increases, so that the magnetic flux density decreases. Further, even in the sample having a depth e of less than 5 μm, the iron loss was slightly increased. This is because the area where the magnetic pole 43 can be generated is reduced, and the total amount of the magnetic pole 43 is reduced.
 従って、溝45の深さeは、5μm~30μmであることが好ましい。 Therefore, the depth e of the groove 45 is preferably 5 μm to 30 μm.
 本発明者らは、一方向性電磁鋼板における副溝44の幅c及び主溝41の幅dと鉄損との関係について調査した。この調査では、一方向性電磁鋼板の製造に際して、上記の調査と同様の方法により溝45を形成した。なお、副溝44の奥行きaは200μmとし、副溝44の間隔bは50μmとした。また、主溝41は板幅方向に延びるように形成し、配列間隔fは5mmとした。そして、幅c及び幅dが異なる種々の一方向性電磁鋼板の試料の鉄損を測定した。この結果を図8に示す。図8は、一方向性電磁鋼板における幅c及び幅dと鉄損との関係を示すグラフである。なお、図8中の破線は、約0.75W/kgの鉄損W17/50を示している。 The inventors investigated the relationship between the iron loss and the width c of the secondary groove 44 and the width d of the main groove 41 in the unidirectional electrical steel sheet. In this investigation, when the unidirectional electrical steel sheet was manufactured, the grooves 45 were formed by the same method as the above investigation. The depth a of the sub-groove 44 was 200 μm, and the distance b between the sub-grooves 44 was 50 μm. The main grooves 41 are formed to extend in the plate width direction, and the arrangement interval f is 5 mm. And the iron loss of the sample of the various unidirectional electrical steel sheet from which width c and width d differ was measured. The result is shown in FIG. FIG. 8 is a graph showing the relationship between width c and width d and iron loss in a unidirectional electrical steel sheet. In addition, the broken line in FIG. 8 has shown the iron loss W17 / 50 of about 0.75 W / kg.
 図8に示す結果から、幅cが20μmから300μmまでの範囲内にあり、幅dが20μm~300μmの範囲内にある場合に、0.75W/kgよりも低い鉄損が得られることが解かる。幅cが300μmを超えた試料では、鉄損がやや高くなった。これは、副溝44の先端部付近において磁気スピン42が迂回しやすくなり、磁区の細分化が鈍り、磁極43の総量が減少したからである。また、幅dが300μmを超えた試料でも、鉄損がやや高くなった。これは、主溝41の割合の増加に伴って磁性を示す部分が減り、非磁性の部分が増加するため、磁束密度が低下したからである。なお、幅c及び幅dを20μm以上としたのは、20μm未満の幅cで副溝44を安定して形成すること、及び20μm未満の幅dで主溝41を安定して形成することが容易ではないからである。 From the results shown in FIG. 8, it is understood that when the width c is in the range from 20 μm to 300 μm and the width d is in the range from 20 μm to 300 μm, an iron loss lower than 0.75 W / kg can be obtained. Karu. In the sample where the width c exceeded 300 μm, the iron loss was slightly high. This is because the magnetic spin 42 is easily detoured in the vicinity of the tip portion of the sub-groove 44, the subdivision of the magnetic domain is dulled, and the total amount of the magnetic pole 43 is reduced. Further, even in a sample having a width d exceeding 300 μm, the iron loss slightly increased. This is because as the proportion of the main groove 41 increases, the magnetic part decreases and the non-magnetic part increases, so that the magnetic flux density decreases. The reason why the width c and the width d are 20 μm or more is that the sub-groove 44 is stably formed with a width c of less than 20 μm, and the main groove 41 is stably formed with a width d of less than 20 μm. It is not easy.
 従って、副溝44の幅cは20μm~300μmであることが好ましく、主溝41の幅dは20μm~300μmであることが好ましい。 Accordingly, the width c of the sub-groove 44 is preferably 20 μm to 300 μm, and the width d of the main groove 41 is preferably 20 μm to 300 μm.
 本発明者らは、一方向性電磁鋼板における溝45の配列間隔fと鉄損との関係について調査した。この調査では、一方向性電磁鋼板の製造に際して、上記の調査と同様の方法により溝45を形成した。なお、副溝44の奥行きaは200μmとし、副溝44の間隔b、副溝44の幅c、及び主溝41の幅dは50μmとし、溝45の深さeは15μmとした。また、主溝41は板幅方向に延びるように形成した。そして、配列間隔fが異なる種々の一方向性電磁鋼板の試料の鉄損を測定した。この結果を図9に示す。図9は、一方向性電磁鋼板における配列間隔fと鉄損との関係を示すグラフである。なお、図9中の破線は、約0.75W/kgの鉄損W17/50を示している。 The present inventors investigated the relationship between the arrangement interval f of the grooves 45 and the iron loss in the unidirectional electrical steel sheet. In this investigation, when the unidirectional electrical steel sheet was manufactured, the grooves 45 were formed by the same method as the above investigation. The depth a of the sub-groove 44 is 200 μm, the interval b of the sub-groove 44, the width c of the sub-groove 44, and the width d of the main groove 41 are 50 μm, and the depth e of the groove 45 is 15 μm. The main groove 41 was formed to extend in the plate width direction. And the iron loss of the sample of the various unidirectional electrical steel sheet from which arrangement | sequence space | interval f differs was measured. The result is shown in FIG. FIG. 9 is a graph showing the relationship between the arrangement interval f and the iron loss in the unidirectional electrical steel sheet. In addition, the broken line in FIG. 9 has shown the iron loss W17 / 50 of about 0.75 W / kg.
 図9に示す結果から、配列間隔fは1mm~10mmの範囲内にあることが好ましいといえる。配列間隔fが1mm未満の試料では、鉄損がやや高くなった。これは、溝45の割合の増加に伴って磁性を示す部分が減り、非磁性の部分が増加するため、磁束密度が低下したからである。また、配列間隔fが10mmを超えた試料でも、鉄損がやや高くなった。これは、副溝44の割合が低いため、磁気スピン42の迂回が生じやすかったからである。 From the results shown in FIG. 9, it can be said that the arrangement interval f is preferably in the range of 1 mm to 10 mm. In the sample with the arrangement interval f of less than 1 mm, the iron loss was slightly high. This is because as the proportion of the groove 45 increases, the magnetic part decreases and the nonmagnetic part increases, so that the magnetic flux density decreases. Further, even in the sample where the arrangement interval f exceeded 10 mm, the iron loss was slightly increased. This is because the magnetic grooves 42 are likely to be detoured because the ratio of the sub-grooves 44 is low.
 本発明者らは、一方向性電磁鋼板における主溝41が延びる方向と圧延方向との間の角度gと鉄損との関係について調査した。この調査では、一方向性電磁鋼板の製造に際して、上記の調査と同様の方法により溝45を形成した。なお、副溝44の奥行きaは200μmとし、副溝44の間隔b、副溝44の幅c、及び主溝41の幅dは50μmとし、溝45の深さeは15μmとした。また、配列間隔fは5mmとした。そして、角度gが異なる種々の一方向性電磁鋼板の試料の鉄損を測定した。この結果を図10に示す。図10は、一方向性電磁鋼板における角度gと鉄損との関係を示すグラフである。なお、図10中の破線は、約0.75W/kgの鉄損W17/50を示している。 The present inventors investigated the relationship between the angle g between the direction in which the main groove 41 extends in the unidirectional electrical steel sheet and the rolling direction and the iron loss. In this investigation, when the unidirectional electrical steel sheet was manufactured, the grooves 45 were formed by the same method as the above investigation. The depth a of the sub-groove 44 is 200 μm, the interval b of the sub-groove 44, the width c of the sub-groove 44, and the width d of the main groove 41 are 50 μm, and the depth e of the groove 45 is 15 μm. The arrangement interval f was 5 mm. And the iron loss of the sample of the various unidirectional electrical steel plate from which angle g differs was measured. The result is shown in FIG. FIG. 10 is a graph showing the relationship between the angle g and the iron loss in the unidirectional electrical steel sheet. In addition, the broken line in FIG. 10 has shown the iron loss W17 / 50 of about 0.75 W / kg.
 図10に示す結果から、角度gは50°~130°であることが好ましいといえる。図11に、50°~130°の角度gと圧延方向との関係を示す。図11に示すように、50°~130°という範囲は、主溝41が延びる方向の板幅方向からのずれが40°以内の範囲に相当する。そして、角度gが50°未満となるか、130℃を超えると、磁化容易軸の方向、即ち圧延方向を向いている磁気スピン42が主溝41の側面を貫く割合が小さくなり、磁区の細分化が十分にならず、鉄損がやや高くなる。 From the results shown in FIG. 10, it can be said that the angle g is preferably 50 ° to 130 °. FIG. 11 shows the relationship between the angle g of 50 ° to 130 ° and the rolling direction. As shown in FIG. 11, the range of 50 ° to 130 ° corresponds to a range in which the deviation of the direction in which the main groove 41 extends from the plate width direction is within 40 °. When the angle g is less than 50 ° or more than 130 ° C., the ratio of the magnetic spins 42 facing the direction of the easy axis, that is, the rolling direction, penetrating the side surface of the main groove 41 is reduced, and the magnetic domain subdivision is reduced. The iron loss is slightly high.
 なお、本実施形態では、主溝41が延びる方向と圧延方向との間の角度gが90°の場合、副溝44の平面形状は長方形であるが、角度gが50°~130°の範囲内で90°ではない場合、副溝44の平面形状は平行四辺形となる。このよう場合であっても、上記の奥行きa、間隔b及び幅cの好ましい範囲は角度gが90°の場合と同様である。 In the present embodiment, when the angle g between the direction in which the main groove 41 extends and the rolling direction is 90 °, the planar shape of the sub-groove 44 is rectangular, but the angle g is in the range of 50 ° to 130 °. If the angle is not 90 °, the planar shape of the sub-groove 44 is a parallelogram. Even in this case, the preferable ranges of the depth a, the interval b, and the width c are the same as those in the case where the angle g is 90 °.
 このように、奥行きaは100μm~500μmの範囲内にあることが好ましく、間隔bは20μm~300μmの範囲内にあることが好ましく、幅cは20μm~300μmの範囲内にあることが好ましい。また、幅dは20μm~300μmの範囲内にあることが好ましく、深さeは5μm~30μmの範囲内にあることが好ましく、配列間隔fは1mm~10mmの範囲内にあることが好ましく、角度gは50°~130°の範囲内にあることが好ましい。 Thus, the depth a is preferably in the range of 100 μm to 500 μm, the interval b is preferably in the range of 20 μm to 300 μm, and the width c is preferably in the range of 20 μm to 300 μm. The width d is preferably in the range of 20 μm to 300 μm, the depth e is preferably in the range of 5 μm to 30 μm, the arrangement interval f is preferably in the range of 1 mm to 10 mm, and the angle g is preferably in the range of 50 ° to 130 °.
 なお、溝45を形成する方法は特に限定されない。例えば、歯車を用いた加工により形成してもよく、プレス加工、電解エッチングによる加工、無電解エッチングによる加工、乾式エッチングによる加工、レーザ光を用いた加工、ウォータージェット加工、又はブラスト加工により形成してもよい。また、機械加工である切削により形成してもよく、放電加工により形成してもよい。また、エッチングを行う場合等にはレジストのパターニングが必要になることがあるが、このパターニングの方法も特に限定されない。例えば、ホトリソグラフィー、グラビア印刷、レーザパターニング等を採用してもよい。また、主溝41及び副溝44の断面の形状も特に限定されず、例えば、矩形、台形、及び、矩形又は台形等が歪んだ形等が挙げられる。いずれにしても、一方向性電磁鋼板の表面に凹状の主溝41及び副溝44が形成されていればよい。 The method for forming the groove 45 is not particularly limited. For example, it may be formed by processing using gears, or by press processing, electrolytic etching processing, electroless etching processing, dry etching processing, laser beam processing, water jet processing, or blast processing. May be. Moreover, you may form by cutting which is machining, and you may form by electrical discharge machining. In addition, when etching is performed, resist patterning may be required, but the patterning method is not particularly limited. For example, photolithography, gravure printing, laser patterning, or the like may be employed. The cross-sectional shapes of the main groove 41 and the sub-groove 44 are not particularly limited, and examples thereof include a rectangle, a trapezoid, and a shape in which a rectangle or a trapezoid is distorted. In any case, it is only necessary that the concave main groove 41 and the sub-groove 44 are formed on the surface of the unidirectional electrical steel sheet.
 副溝44の平面形状も特に限定されない。例えば、図12に示すように、副溝44の主溝41と繋がる部分の近傍が湾曲して、副溝44の間に存在する突起部分46の平面形状が楕円状になっていてもよい。但し、圧延方向の奥行きa及びこれに直交する方向の寸法(幅c)を定義できる形状であることが好ましい。図12に示す例では、副溝44間の突起部分46の長さが奥行きaに相当し、突起部分46の根元の幅が間隔bに相当し、隣り合う突起部分46の根元の間隔が幅cに相当し、互いに対向する突起部分46の先端の間隔が幅dに相当する。 The planar shape of the sub-groove 44 is not particularly limited. For example, as shown in FIG. 12, the vicinity of the portion connected to the main groove 41 of the sub-groove 44 may be curved, and the planar shape of the protruding portion 46 existing between the sub-grooves 44 may be elliptical. However, it is preferable that the shape can define the depth a in the rolling direction and the dimension (width c) in the direction orthogonal to the depth a. In the example shown in FIG. 12, the length of the protrusion 46 between the sub-grooves 44 corresponds to the depth a, the width of the root of the protrusion 46 corresponds to the distance b, and the distance between the roots of adjacent protrusions 46 is the width. It corresponds to c, and the distance between the tips of the protruding portions 46 facing each other corresponds to the width d.
 湿式のエッチング等により溝45を形成しようとすると、若干とはいえ一方向性電磁鋼板の表面に平行な方向にもエッチングが進行し得るため、副溝44の主溝41と繋がる部分の近傍は湾曲しやすい。 When trying to form the groove 45 by wet etching or the like, the etching can proceed in a direction parallel to the surface of the unidirectional electrical steel sheet to some extent, so the vicinity of the portion connected to the main groove 41 of the sub-groove 44 is Easy to bend.
 また、図13に示すように、副溝44は、主溝41を対称の中心とした鏡面対称で配置されていなくてもよい。更に、奥行きa、間隔b、及び幅cが一定である必要はない。但し、各副溝44において、奥行きa、間隔b、及び幅cが上記の範囲内にあることが好ましい。 Further, as shown in FIG. 13, the sub-groove 44 may not be arranged in mirror symmetry with the main groove 41 as the center of symmetry. Furthermore, the depth a, the interval b, and the width c do not need to be constant. However, in each sub-groove 44, it is preferable that the depth a, the interval b, and the width c are within the above-described ranges.
 更に、副溝44は180度磁壁と整合するように形成されていることが好ましいが、必ずしも整合していなくてもよい。つまり、副溝44が隣り合う2個の磁区にわたって形成されていても、磁気スピンの迂回を低減することができる。また、180度磁区幅よりも幅cが狭い副溝44が1個の磁区内に位置していても、磁気スピンの迂回を低減することができる。 Furthermore, the sub-groove 44 is preferably formed so as to be aligned with the 180-degree domain wall, but is not necessarily aligned. That is, even if the sub-groove 44 is formed over two adjacent magnetic domains, the bypass of magnetic spin can be reduced. Further, even when the sub-groove 44 having a width c narrower than the 180-degree magnetic domain width is located in one magnetic domain, the bypassing of the magnetic spin can be reduced.
 次に、本発明者らが行った実験について説明する。これらの実験における条件等は、本発明の実施可能性及び効果を確認するために採用した例であり、本発明は、これらの例に限定されるものではない。 Next, the experiment conducted by the inventors will be described. The conditions in these experiments are examples adopted for confirming the feasibility and effects of the present invention, and the present invention is not limited to these examples.
 (第1の実験)
 第1の実験では、先ず、Siを約3質量%含有し、残部がFe及び不純物からなり、厚さが0.23mmの一方向性電磁鋼板を作製した。その後、一方向性電磁鋼板の表面に、レジストを塗布し、湿式エッチングにより、表1に示すように、奥行きa、間隔b、幅c、幅d、深さe、配列間隔f、及び角度gが異なる種々の形状の溝を形成した。このとき、レジストの開口部の平面形状は、櫛歯状とした。上記の寸法は、レジストのパターン及び湿式エッチング時間の変更により調整した。そして、単板磁気装置を用いて、各一方向性電磁鋼板の鉄損W17/50を測定した。鉄損W17/50は、周波数が50Hz、磁束密度が1.7Tのときの鉄損の値を示す。この結果を表1に示す。
(First experiment)
In the first experiment, first, a unidirectional electrical steel sheet containing about 3% by mass of Si, the balance being Fe and impurities, and having a thickness of 0.23 mm was prepared. Thereafter, a resist is applied to the surface of the unidirectional electrical steel sheet, and by wet etching, as shown in Table 1, the depth a, the interval b, the width c, the width d, the depth e, the arrangement interval f, and the angle g The grooves were formed in various shapes. At this time, the planar shape of the opening of the resist was comb-like. The above dimensions were adjusted by changing the resist pattern and wet etching time. And the iron loss W17 / 50 of each unidirectional electrical steel sheet was measured using the single plate magnetic apparatus. The iron loss W17 / 50 indicates the value of the iron loss when the frequency is 50 Hz and the magnetic flux density is 1.7T. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、実施例No.1~No.4では、溝の寸法が好ましい範囲内にあるため、特に低い鉄損が得られた。 As is clear from Table 1, Example No. 1-No. In No. 4, a particularly low iron loss was obtained because the dimensions of the groove were within the preferred range.
 (第2の実験)
 第2の実験では、第1の実験の実施例No.1及びNo.2の一方向性電磁鋼板に対して、800℃で2時間の歪取焼鈍を施した。そして、単板磁気装置を用いて、各一方向性電磁鋼板の鉄損W17/50を測定した。また、第1の実験と同様にして作製した一方向性電磁鋼板に対して、溝の形成を行わずにレーザ光の照射により歪を生じさせた比較例No.11も作製した。比較例No.11の作製では、一方向性電磁鋼板の表面に、圧延方向に5mmの間隔でレーザ光を照射した。そして、比較例No.11の鉄損W17/50を測定した。更に、比較例No.11に800℃で2時間の歪取焼鈍を施し、その後の鉄損W17/50も測定した。これらの結果を表2に示す。
(Second experiment)
In the second experiment, Example No. 1 of the first experiment was used. 1 and no. Two unidirectional electrical steel sheets were subjected to strain relief annealing at 800 ° C. for 2 hours. And the iron loss W17 / 50 of each unidirectional electrical steel sheet was measured using the single plate magnetic apparatus. Further, Comparative Example No. 1 in which distortion was generated by irradiating a laser beam without forming a groove on a unidirectional electrical steel sheet produced in the same manner as in the first experiment. 11 was also produced. Comparative Example No. In the production of 11, the surface of the unidirectional electrical steel sheet was irradiated with laser light at intervals of 5 mm in the rolling direction. And comparative example No. 11 iron loss W17 / 50 was measured. Further, Comparative Example No. 11 was subjected to stress relief annealing at 800 ° C. for 2 hours, and the subsequent iron loss W17 / 50 was also measured. These results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように、本発明範囲に属する実施例No.1及びNo.2では、歪取焼鈍によっても鉄損W17/50がほとんど上昇しなかった。一方、比較例No.11では、副溝を形成していないため、歪取焼鈍により鉄損W17/50が大きく上昇してしまった。このことから、実施例No.1及びNo.2は、歪取焼鈍に対する耐性が高いといえる。 As is clear from Table 2, Example No. belonging to the scope of the present invention. 1 and no. In No. 2, the iron loss W17 / 50 hardly increased even by strain relief annealing. On the other hand, Comparative Example No. In No. 11, since the sub-groove was not formed, the iron loss W17 / 50 significantly increased due to the strain relief annealing. From this, Example No. 1 and no. 2 can be said to have high resistance to strain relief annealing.
 (第3の実験)
 第3の実験では、先ず、Siを約3質量%含有し、残部がFe及び不純物からなり、厚さが0.23mmの一方向性電磁鋼板を作製した。その後、一方向性電磁鋼板の表面に、歯車を用いた加工又はプレス加工により、表3に示すように、奥行きa、間隔b、幅c、幅d、深さe、配列間隔f、及び角度gが異なる種々の形状の溝を形成した。次いで、第2の実験と同様に、800℃で2時間の歪取焼鈍を施した。そして、単板磁気装置を用いて、各一方向性電磁鋼板の鉄損W17/50を測定した。この結果を表3に示す。なお、比較例No.12では、歯車を用いた加工により副溝がない直線状の溝を形成し、比較例No.13では、プレス加工により副溝がない直線状の溝を形成した。
(Third experiment)
In the third experiment, first, a unidirectional electrical steel sheet containing about 3% by mass of Si, the balance being Fe and impurities, and having a thickness of 0.23 mm was produced. After that, as shown in Table 3, the surface of the unidirectional electrical steel sheet is processed by using gears or by pressing, as shown in Table 3, depth a, interval b, width c, width d, depth e, arrangement interval f, and angle. Various shapes of grooves having different g were formed. Next, as in the second experiment, strain relief annealing was performed at 800 ° C. for 2 hours. And the iron loss W17 / 50 of each unidirectional electrical steel sheet was measured using the single plate magnetic apparatus. The results are shown in Table 3. Comparative Example No. In No. 12, a straight groove without a secondary groove is formed by processing using a gear. In No. 13, a straight groove having no sub-groove was formed by pressing.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3から明らかなように、本発明範囲に属する実施例No.7及びNo.8では、低い鉄損を得ることができた。一方、比較例No.12及び比較例No.13では、副溝を形成していないため、鉄損が高くなった。 As is apparent from Table 3, Example No. belonging to the scope of the present invention. 7 and no. In No. 8, a low iron loss could be obtained. On the other hand, Comparative Example No. 12 and Comparative Example No. In No. 13, since the subgroove was not formed, the iron loss increased.
 本発明は、例えば、電磁鋼板製造産業及び電磁鋼板利用産業において利用することができる。 The present invention can be used, for example, in the electrical steel sheet manufacturing industry and the electrical steel sheet utilizing industry.

Claims (16)

  1.  鋼板の表面又は裏面の少なくとも一方を、前記鋼板の圧延方向から傾斜した第1の方向に横切る複数の第1の溝と、
     前記第1の溝を起点とし、前記第1の方向から傾斜した第2の方向に延びる所定の長さの複数の第2の溝と、
     を有することを特徴とする一方向性電磁鋼板。
    A plurality of first grooves crossing at least one of the front surface or the back surface of the steel plate in a first direction inclined from the rolling direction of the steel plate;
    A plurality of second grooves having a predetermined length starting from the first groove and extending in a second direction inclined from the first direction;
    A unidirectional electrical steel sheet characterized by comprising:
  2.  前記第2の方向は前記圧延方向と平行であることを特徴とする請求項1に記載の一方向性電磁鋼板。 The unidirectional electrical steel sheet according to claim 1, wherein the second direction is parallel to the rolling direction.
  3.  前記圧延方向と前記第1の方向との間の角度が50°乃至130°であることを特徴とする請求項1に記載の一方向性電磁鋼板。 The unidirectional electrical steel sheet according to claim 1, wherein an angle between the rolling direction and the first direction is 50 ° to 130 °.
  4.  前記第1の溝の配列間隔が1mm乃至10mmであることを特徴とする請求項1に記載の一方向性電磁鋼板。 The unidirectional electrical steel sheet according to claim 1, wherein an interval between the first grooves is 1 mm to 10 mm.
  5.  前記第1の溝の幅が20μm乃至300μmであり、
     前記第1の溝の深さが5μm乃至30μmであることを特徴とする請求項1に記載の一方向性電磁鋼板。
    The width of the first groove is 20 μm to 300 μm;
    2. The unidirectional electrical steel sheet according to claim 1, wherein a depth of the first groove is 5 μm to 30 μm.
  6.  前記第2の溝の奥行きが100μm乃至500μmであり、
     前記第2の溝の幅が20μm乃至300μmであり、
     前記第2の溝の深さが5μm乃至30μmであり、
     前記第2の溝の間隔が20μm乃至300μmであることを特徴とする請求項1に記載の一方向性電磁鋼板。
    The depth of the second groove is 100 μm to 500 μm;
    The width of the second groove is 20 μm to 300 μm;
    The depth of the second groove is 5 μm to 30 μm;
    The unidirectional electrical steel sheet according to claim 1, wherein a distance between the second grooves is 20 µm to 300 µm.
  7.  前記複数の第1の溝は、互いに平行に延びていることを特徴とする請求項1に記載の一方向性電磁鋼板。 The unidirectional electrical steel sheet according to claim 1, wherein the plurality of first grooves extend in parallel to each other.
  8.  前記複数の第2の溝は、互いに平行に延びていることを特徴とする請求項1に記載の一方向性電磁鋼板。 The unidirectional electrical steel sheet according to claim 1, wherein the plurality of second grooves extend in parallel to each other.
  9.  前記第2の溝は、前記第1の溝の一側方のみに形成されていることを特徴とする請求項1に記載の一方向性電磁鋼板。 The unidirectional electrical steel sheet according to claim 1, wherein the second groove is formed only on one side of the first groove.
  10.  前記第2の溝は、前記第1の溝の両側方に形成されていることを特徴とする請求項1に記載の一方向性電磁鋼板。 The unidirectional electrical steel sheet according to claim 1, wherein the second groove is formed on both sides of the first groove.
  11.  鋼板の表面又は裏面の少なくとも一方に、
     前記鋼板の圧延方向から傾斜した第1の方向に横切る複数の第1の溝と、
     前記第1の溝を起点とし、前記第1の方向から傾斜した第2の方向に延びる所定の長さの複数の第2の溝と、
     を形成する工程を有することを特徴とする一方向性電磁鋼板の製造方法。
    On at least one of the front or back surface of the steel plate,
    A plurality of first grooves crossing in a first direction inclined from the rolling direction of the steel sheet;
    A plurality of second grooves having a predetermined length starting from the first groove and extending in a second direction inclined from the first direction;
    The manufacturing method of the unidirectional electrical steel sheet characterized by having the process of forming.
  12.  前記第2の方向は前記圧延方向と平行であることを特徴とする請求項11に記載の一方向性電磁鋼板の製造方法。 The method for producing a unidirectional electrical steel sheet according to claim 11, wherein the second direction is parallel to the rolling direction.
  13.  前記圧延方向と前記第1の方向との間の角度が50°乃至130°であることを特徴とする請求項11に記載の一方向性電磁鋼板の製造方法。 The method for producing a unidirectional electrical steel sheet according to claim 11, wherein an angle between the rolling direction and the first direction is 50 ° to 130 °.
  14.  前記第1の溝の配列間隔が1mm乃至10mmであることを特徴とする請求項11に記載の一方向性電磁鋼板の製造方法。 The method for producing a unidirectional electrical steel sheet according to claim 11, wherein an interval between the first grooves is 1 mm to 10 mm.
  15.  前記第1の溝の幅が20μm乃至300μmであり、
     前記第1の溝の深さが5μm乃至30μmであることを特徴とする請求項11に記載の一方向性電磁鋼板の製造方法。
    The width of the first groove is 20 μm to 300 μm;
    12. The method for producing a unidirectional electrical steel sheet according to claim 11, wherein the depth of the first groove is 5 to 30 [mu] m.
  16.  前記第2の溝の奥行きが100μm乃至500μmであり、
     前記第2の溝の幅が20μm乃至300μmであり、
     前記第2の溝の深さが5μm乃至30μmであり、
     前記第2の溝の間隔が20μm乃至300μmであることを特徴とする請求項11に記載の一方向性電磁鋼板の製造方法。
    The depth of the second groove is 100 μm to 500 μm;
    The width of the second groove is 20 μm to 300 μm;
    The depth of the second groove is 5 μm to 30 μm;
    The method for producing a unidirectional electrical steel sheet according to claim 11, wherein an interval between the second grooves is 20 μm to 300 μm.
PCT/JP2010/059541 2009-06-19 2010-06-04 Unidirectional electromagnetic steel sheet and method for producing same WO2010147009A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010537187A JP4719319B2 (en) 2009-06-19 2010-06-04 Unidirectional electrical steel sheet and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009146719 2009-06-19
JP2009-146719 2009-06-19

Publications (1)

Publication Number Publication Date
WO2010147009A1 true WO2010147009A1 (en) 2010-12-23

Family

ID=43356330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/059541 WO2010147009A1 (en) 2009-06-19 2010-06-04 Unidirectional electromagnetic steel sheet and method for producing same

Country Status (2)

Country Link
JP (1) JP4719319B2 (en)
WO (1) WO2010147009A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011162086A1 (en) 2010-06-25 2011-12-29 新日本製鐵株式会社 Method for producing unidirectional electromagnetic steel sheet
WO2015080051A1 (en) * 2013-11-29 2015-06-04 東芝産業機器システム株式会社 Vector-magnetic-property-controlling material, and iron core
JP2018131680A (en) * 2017-02-17 2018-08-23 Jfeスチール株式会社 Grain-oriented electrical steel sheet
WO2021054409A1 (en) 2019-09-18 2021-03-25 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6947248B1 (en) 2020-06-09 2021-10-13 Jfeスチール株式会社 Directional electrical steel sheet
JP7435486B2 (en) 2021-01-18 2024-02-21 Jfeスチール株式会社 Grain-oriented electrical steel sheet and its manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5753419B2 (en) * 1980-01-25 1982-11-12
JPS57198217A (en) * 1981-05-27 1982-12-04 Nippon Steel Corp Magnetic characteristic improvidng method of directional electrical sheet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5753419B2 (en) * 1980-01-25 1982-11-12
JPS57198217A (en) * 1981-05-27 1982-12-04 Nippon Steel Corp Magnetic characteristic improvidng method of directional electrical sheet

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011162086A1 (en) 2010-06-25 2011-12-29 新日本製鐵株式会社 Method for producing unidirectional electromagnetic steel sheet
US8734658B2 (en) 2010-06-25 2014-05-27 Nippon Steel & Sumitomo Metal Corporation Method for manufacturing grain-oriented electrical steel sheet
US10192669B2 (en) 2013-11-29 2019-01-29 Toshiba Industrial Products & Systems Corporation Vector magnetic characteristic controlled material and iron core
JP2015106631A (en) * 2013-11-29 2015-06-08 東芝産業機器システム株式会社 Vector magnetic characteristic controlled material and iron core
WO2015080051A1 (en) * 2013-11-29 2015-06-04 東芝産業機器システム株式会社 Vector-magnetic-property-controlling material, and iron core
JP2018131680A (en) * 2017-02-17 2018-08-23 Jfeスチール株式会社 Grain-oriented electrical steel sheet
WO2018150791A1 (en) * 2017-02-17 2018-08-23 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet
KR20190107079A (en) * 2017-02-17 2019-09-18 제이에프이 스틸 가부시키가이샤 Directional electrical steel sheet
CN110300808A (en) * 2017-02-17 2019-10-01 杰富意钢铁株式会社 Orientation electromagnetic steel plate
RU2714729C1 (en) * 2017-02-17 2020-02-19 ДжФЕ СТИЛ КОРПОРЕЙШН Textured sheet of electrical steel
KR102290567B1 (en) 2017-02-17 2021-08-17 제이에프이 스틸 가부시키가이샤 Grain-oriented electrical steel sheet
US11293070B2 (en) 2017-02-17 2022-04-05 Jfe Steel Corporation Grain-oriented electrical steel sheet
WO2021054409A1 (en) 2019-09-18 2021-03-25 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet
KR20220044350A (en) 2019-09-18 2022-04-07 닛폰세이테츠 가부시키가이샤 grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JP4719319B2 (en) 2011-07-06
JPWO2010147009A1 (en) 2012-12-06

Similar Documents

Publication Publication Date Title
JP4593678B2 (en) Low iron loss unidirectional electrical steel sheet and manufacturing method thereof
JP5613972B2 (en) Unidirectional electrical steel sheet with excellent iron loss characteristics
JP4719319B2 (en) Unidirectional electrical steel sheet and manufacturing method thereof
TWI305548B (en) Low core loss grain-oriented electrical steel sheet and method for producing the same
KR101421391B1 (en) Grain oriented electrical steel sheet
RU2572636C1 (en) Sheet of textured electric steel, and method for its production
US11984249B2 (en) Grain-oriented electrical steel sheet, wound transformer core using the same, and method for producing wound core
CN104024451A (en) Grain-Oriented Electromagnetic Steel Sheet
CA3095320C (en) Iron core for transformer
JP5241095B2 (en) Low iron loss unidirectional electrical steel sheet
KR20160009707A (en) Grain-oriented electrical steel sheet and transformer iron core using same
EP2573193A1 (en) Method for producing unidirectional electromagnetic steel sheet
JP4344264B2 (en) Low iron loss unidirectional electrical steel sheet
WO2020158732A1 (en) Grain-oriented electrical steel sheet, and method of manufacturing same
CA3088125C (en) Grain-oriented electrical steel sheet, stacked transformer core using the same, and method for producing stacked core
JP5429213B2 (en) Method for producing unidirectional electrical steel sheet with excellent iron loss characteristics
JP6090553B2 (en) Iron core for three-phase transformer
JP5256594B2 (en) Iron core transformer and method for manufacturing the same
CN111886662B (en) Iron core for transformer
KR100450621B1 (en) Grain-oriented electrical steel sheet used for a transformer having reduced noise
JP6575732B1 (en) Iron core for transformer
JP2002069594A (en) Silicon steel sheet for low-noise transformer
JP5691886B2 (en) Oriented electrical steel sheet and method for forming insulating coating on grain oriented electrical steel sheet
Kosuge et al. Microstructures and magnetic properties of heatproof domain-refined grain-oriented silicon steel sheets

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2010537187

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10789384

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10789384

Country of ref document: EP

Kind code of ref document: A1