WO2010146811A1 - Behavior suggestion device and method - Google Patents

Behavior suggestion device and method Download PDF

Info

Publication number
WO2010146811A1
WO2010146811A1 PCT/JP2010/003877 JP2010003877W WO2010146811A1 WO 2010146811 A1 WO2010146811 A1 WO 2010146811A1 JP 2010003877 W JP2010003877 W JP 2010003877W WO 2010146811 A1 WO2010146811 A1 WO 2010146811A1
Authority
WO
WIPO (PCT)
Prior art keywords
action
behavior
data
guideline
habit
Prior art date
Application number
PCT/JP2010/003877
Other languages
French (fr)
Japanese (ja)
Inventor
田中毅
愛木清
栗山裕之
河本健
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2011519531A priority Critical patent/JP5216140B2/en
Publication of WO2010146811A1 publication Critical patent/WO2010146811A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4857Indicating the phase of biorhythm

Definitions

  • the present invention relates to a technology that can be worn on a person's body and that presents characteristics of life by presenting human behavior from information on a sensor terminal that measures biological information and behavioral states, and presents improvement means.
  • Non-Patent Document 1 a small sensor node equipped with a sensor, wireless, microcomputer, etc., called Mote (registered trademark), is also in a practical stage. This sensor node is activated only when sensing or wireless communication is necessary, and otherwise it is operated for a long time with a small internal battery, with a small diameter of 3cm, by turning off the power and reducing power consumption. Yes, it is easy for people to wear. Therefore, in daily life, it has become possible to easily collect information on activities, sleep cycles, etc. in daily life, that is, life rhythm.
  • Mote registered trademark
  • Patent Document 1 simultaneously reporting (displaying) a life rhythm obtained by inputting an individual's calorie consumption, heart rate, body temperature, sleep depth, fitness club, hospital record, and other biological information relating to weight and other health
  • Patent Document 1 simultaneously reporting (displaying) a life rhythm obtained by inputting an individual's calorie consumption, heart rate, body temperature, sleep depth, fitness club, hospital record, and other biological information relating to weight and other health
  • Patent Document 2 when a person travels at a high speed for a long distance to overseas or the like, a deviation between a person's life rhythm (biological rhythm) and day / night rhythm is detected from an acceleration sensor or an ambient light sensor to correct jet lag.
  • a means for emitting stimulation light to a living body is disclosed.
  • Patent Document 1 a plurality of life rhythm indicators and biological information such as body weight are simultaneously displayed to present information that leads to improvement of life to the user, but a specific improvement method suitable for each individual is presented. Means to do is not disclosed.
  • Patent Document 2 discloses a means for correcting sleep rhythm related to jet lag, but does not disclose means for improving health indicators obtained from other biological information.
  • An object of the present invention is to provide an action suggesting apparatus and a method for presenting means for estimating a person's action based on biological information such as sleep time, number of steps, and amount of exercise, and improving the health index and the like. . *
  • a processing unit is provided with a processing unit and a storage unit, and the processing unit collects personal ecological information as an action proposing device that makes an action proposal to an individual based on personal biometric information, Based on the collected biological information, individual behavior is discriminated and behavior element data is extracted, and individual behavior data is generated from this behavior element data for a predetermined period.
  • These behavior element data, habit behavior data, and individual Provide an action proposal device and method for generating an individual action guideline based on the target index data set in advance and making an individual action proposal based on the generated action guideline.
  • the action proposal apparatus and method further provided with the display part which displays an action guideline and action proposal as an action proposal apparatus of this invention are provided.
  • the processing unit performs correlation analysis between habitual behavior data and target index data for a plurality of predetermined periods, and habit behavior data having high correlation in the correlation analysis result is used as an action guideline.
  • An action suggesting apparatus and method for adding and displaying on a display unit are provided.
  • the user can easily recall his / her own life pattern and action content for a certain period from the display of the characteristics of the action, the time zone and the length of time, and the combination thereof, and at the same time, Know how to improve the best behavior to achieve better indicators. Furthermore, it is possible to correct the behavior by receiving feedback on the progress of whether or not the presented optimum behavior can be executed.
  • FIG. 10 is a block diagram of a system configuration in which analysis is performed by a server and the result is browsed by a personal computer (PC) browser according to a third embodiment. It is a block diagram which shows an example of an internal structure of PC in each Example. It is a figure which shows an example of the flowchart of the process of the action proposal program in each Example.
  • PC personal computer
  • a program executed by a processing unit of a computer such as a PC or a server may be expressed as a “unit” or “means”.
  • the “behavior guideline generating program” is referred to as “behavior guideline generating unit” or “behavior guideline generating means”.
  • FIG. 1 is a diagram showing a main configuration of a system for generating action guidelines and action proposals according to the first embodiment.
  • the sensor information which is the data measured by the sensor node 1 worn by the user 8 is received, and an index that the user 8 aims to improve day by day, such as work efficiency and results, satisfaction
  • an index that the user 8 aims to improve day by day such as work efficiency and results, satisfaction
  • the past target index data 310 and the behavior element data 300 that records the past behavior determined from the sensor data are analyzed to calculate an improvement guideline, and the display device 3 and the like To the output device.
  • the sensor node 1 is a shape suitable for a person to wear, for example, a wristwatch-type sensor terminal, and measures human information (hereinafter, biological information) such as a pulse and movement, It is transmitted wirelessly as data.
  • biological information human information
  • biological information such as a pulse and movement
  • event information It has a function to record the event type and time. This not only saves the trouble of inputting action contents later, but also prevents forgetting the exact contents and time.
  • a storage unit such as a nonvolatile memory that records the measured data therein is provided.
  • Each sensor node 1 is assigned and stored with a Mac (Media Access Control: MAC) address, which is a unique identification ID. Further, an identification ID (short address) unique only within a network constituted by one base station 6 can be stored. By adding these addresses to the data and wirelessly transmitting, it is possible to identify which sensor node 1 is the transmitted data.
  • Mac Media Access Control: MAC
  • the base station 6 receives a radio wave from the antenna 7 and transmits the contents of the sensor data transmitted from the sensor terminal in accordance with a request from the connected PC 2.
  • the base station 6 configures one wireless network
  • the base station 6 communicates with the sensor node 1 to communicate a network joining procedure called association, and one short address for one MAC address. Is allocated.
  • the base station 6 holds a correspondence table of MAC addresses and short addresses in an internal memory, converts all addresses added to the data received from the sensor node 1 into MAC addresses, and creates a personal computer (Personal Computer: PC) 2.
  • PC Personal Computer
  • the PC 2 has, for example, a normal computer configuration shown in FIG. That is, in FIG. 24, a PC indicated by 2401 is connected via an internal bus 2406 to a central processing unit (CPU) 2403 that is a processing unit, a main storage unit 2404 that is a storage unit, an auxiliary storage unit 2405, and A network device such as the Internet 9 and a network device serving as an interface such as a USB (Universal Serial Bus: USB) connected to the base station 6 necessary for capturing the data of the sensor data 1 into the PC are connected to each other. Further, a display device 3 such as an LCD shown in FIG. 1 and an input device 4 such as a keyboard and a mouse are connected by an appropriate interface.
  • a display device 3 such as an LCD shown in FIG. 1 and an input device 4 such as a keyboard and a mouse are connected by an appropriate interface.
  • This PC 2 includes various programs executed by the CPU, such as a sensor data receiving program 220 that receives sensor data from the base station 6 and stores it in the database, sensor data 280 that is data measured by the sensor node 1, Based on the sensor data 280, various data such as behavior definition data 290, which is a definition of a threshold necessary for determining human behavior, for example, sleep, walking, rest, exercise, etc., is stored in the storage unit. . Further, the PC 2 uses the behavior definition data 290 to read and compare the sensor data 280 in time series, discriminates the behavior, stores the behavior data in the database, and the sensor data to simplify the behavior discrimination.
  • a sensor data receiving program 220 that receives sensor data from the base station 6 and stores it in the database
  • sensor data 280 that is data measured by the sensor node 1
  • various data such as behavior definition data 290, which is a definition of a threshold necessary for determining human behavior, for example, sleep, walking, rest, exercise, etc.
  • behavior definition data 290 which is a definition of
  • the amount of exercise which is intermediate data to be calculated, the number of steps data 320, the individual behavior determined by the behavior determination program 230, the behavior element data 300 which is a database for storing behavior elements, and the behavior of the same behavior definition in the same time zone among the behavior elements Habit behavior data 330 in which elements are grouped, target index data 310 that is a database for storing an index that the user 8 wants to improve, analysis of changes in past behavior element data 300 and target index data 310, How you should change your daily behavior from your behavior, for example early or late
  • An action guideline generation program 240 that generates information indicating that the information is long and slow and displays the information on the display device 3 that is a display unit, action guideline data that is a result of the action guideline generated by the action guideline generation program 240,
  • An action suggestion program 250 that searches the display device 3 for a specific action history of a past person or other person who matches, and displays it on the display device 3.
  • the action history input program 210 for storing the action history in the database, the action history data 270 that is a database storing the action history and comments input by the user 8, and the database stored in the PC 2 via a network such as an intranet or the Internet, Receive and update data from computers such as other servers Equipped with a personal data update program 260 of the eye.
  • the server 5 is connected to the PC 2 via a network 9 such as an intranet or the Internet, and has a processing unit and a storage unit having a normal computer configuration as shown in FIG. Data 506, target index data 510, and action history data 511 are provided.
  • the action definition data 506 and the target index data 510 are the same as or newer than the action definition data 290 and the target index data 310 of the PC 2. For example, when the score of the target index measured by another sensor or the like cannot be directly added to the behavior index data 310, it is stored once in the target index data 510 of the server 5, and can be copied to the PC 2 and updated. it can. Further, when the contents of the action definition data 506 are added, the update work can be facilitated by copying the data of the server 5 to the action definition data 290 by each user.
  • the sensor data receiving program 220 in the PC 2 functions as a biological information receiving unit by program processing of the processing unit, and first recognizes an interface with the base station 6 connected to the PC 2 through dedicated driver software or the like.
  • the sensor data receiving program 220 is a rewritable ID for identifying one user 8 or a plurality of users using the PC 2 and the sensor node 1 worn by each user in association with each other. Holds the table. Therefore, an ID or name for identifying the user 8 can be added to the received data and stored in the sensor data 280 as the biological information of the user.
  • the sensor node 1 when the sensor node 1 is provided with an input means for key operation or button operation, in order for the user 8 to record his / her actions and events, that is, event information without fail, the sensor node 1 is operated and input, It is efficient to receive the same as the sensor data.
  • the sensor data receiving program 220 stores the received event information in the action history data 270.
  • the behavior determination program 230 in FIG. 1 uses the processing definition program stored in the behavior definition data 290 and a list of determination / detection conditions such as threshold values corresponding thereto by program processing in the processing unit. 280 data are compared in time series. As a result, the behavior name or the identification ID of the behavior, the time, and the time information are stored in the behavior element data 300 as a behavior element that matches the determination / detection condition.
  • the sensor data 280 is merely a collection of waveform data measured by an acceleration sensor or the like, but the waveform data can be converted into information that can be seen and understood by humans in the form of behavior.
  • information such as time and time can be added to the action. That is, by recording numerical information such as an action and the time and time associated with the action over a long period of time, it is possible to quantitatively evaluate the change of the action and its transition.
  • the target index data 310 records an index that the user 8 desires to improve over a long period of time. For example, the question of what action should be taken and what should be done when a person wants to improve work efficiency and life satisfaction in their daily life. It becomes. From the viewpoint of work efficiency and satisfaction, work results, goal achievement, objective evaluation, subjective evaluation, etc. can be used. However, in terms of achievement and goal achievement, depending on the type of work, the results may occur once every few months or half a year, and sufficient data necessary for analysis cannot be obtained. Another problem is not being able to capture minute changes every day. In terms of objective evaluation, it is not easy in the long run to ask other people for evaluation on a daily basis.
  • the resulting score can be used as target index data. It is also possible to estimate the subjective evaluation score using the data of the sensor node 1. This depends on the sensor to be applied and the content of the evaluation, but can be made by generating a prediction formula using a known method such as multiple regression analysis. This prediction result can also be applied as the target index data 310.
  • the target index data 310 is not limited to such a score such as satisfaction of work and life.
  • the target index can be a measurement result of biological information such as weight and blood pressure. In the case where the behavior index data 310 is the weight, it is possible to support life improvement for dieting. This can be applied to the same health care purpose in other health indicators such as those obtained in health examinations.
  • the behavior guideline generation program 240 analyzes the time series changes of the behavior element data 300 and the target index data 310 and the correlation by the program processing in the processing unit, and generates a behavior guideline.
  • This action guideline is held in a storage unit (not shown) as action guideline data including action definition ID, date / time, time length, and the like of the action element. If the simplest method is applied, when the time of an action is early (for example, when the attendance time is early), if the job satisfaction score of the target index data 510 is always increased, the time of the action is always set. Guide the action that should be done early. Pearson's product-moment correlation coefficient and the like are generally well known as analysis methods for deriving the correlation between these two values, and these known correlation analysis methods can be applied.
  • This technique is based on, for example, identifying morning and evening commuting, regular meetings, lunch, evening jogging, habitual behavior such as sleep, non-habitable event behavior, and the like, and evaluating daily time changes.
  • action elements having the same action definition in the same time zone are grouped, and one group is set as a habit action. Since this habit behavior includes a plurality of behavior elements, a quantitative evaluation such as correlation analysis can be performed using those times and times.
  • the action history input program 210 displays on the display device 3 a user interface for allowing the user to easily input past or current action contents via the input device 4 by program processing of the processing unit. Is recorded in the action history data 270 as an action history.
  • the action history input program 210 refers to the sensor data 280 and the action element data 300 and displays them, whereby the user 8 can be reminded of past action contents and can assist the user 8 in input.
  • the action history input program 210 can transmit the input action content to the server 5 connected via the network 9 and similarly store it in the action history data 511 that is a database. Thereby, not only data backup and input from a plurality of terminals are enabled, but other users can use the action history data 511 of the server 5 as knowledge of life improvement.
  • the derived guideline is displayed on the display device 3 and notified to the user 8, whereby the life improvement of the user 8 can be promoted. Moreover, the user 8 can ensure privacy by enabling the user to select whether or not to transmit the input action content to the server 5.
  • the action suggestion program 250 receives the action guideline data generated and held in cooperation with the action guideline generation program 240 from the program processing of the processing unit, and receives past action definitions, time, and time, which are the contents of the action guideline.
  • the action history data 270 is searched and the matching action content is displayed on the display device 3.
  • the user 8 can recognize specific measures for life improvement based on his / her past behavior.
  • the action proposal program 250 can also refer to the action history data 511 of the server 5, that is, the action history of another user. Thereby, since effective knowledge may not be obtained from one's past behavior, it is possible to learn from the behavior of others and promote life improvement.
  • FIG. 25 is a flowchart showing in detail the process of the action suggestion program 250 executed by the processing unit of the PC 2 of FIG. 1.
  • a preferred example of a process for generating a more specific action proposal is shown.
  • the action proposal program 250 starts the action proposal process in process 251.
  • the action guideline data generated by the action guideline generation program 240 is read.
  • the action guideline data to be read is the action definition ID 302, the date and time 303, and the time length 306 of the action elements included in the habit action having a high contribution rate to the achievement of the target index.
  • the past action content of the user 8 that matches the action definition ID 302, the date and time 303, and the time length 306 of the action element of the action guide data read in the process 252 is retrieved from the action history data 270 and read.
  • the action history data 270 is read.
  • the PC 2 is connected to the server 5 via the network 9, can read the action history data 511, and if there is an action history input by a user other than the user 8, the action of the action guideline data An action history that matches the element's action definition ID 302, the date and time 303, and the time length 306 is read.
  • FIG. 2 is a block diagram showing in detail the personal data update program 260 of the PC 2.
  • the personal data update program 260 includes an action definition generation program 261, an action evaluation program 262, an action definition update program 263, and a target index update program 264.
  • the action definition generation program 261 can correct the action definition data 290 or add a new definition with reference to the action history data 270 and the sensor data 280.
  • An initial value such as a threshold value stored in the action definition data 290 is set so as to be commonly applied regardless of who the user 8 is.
  • the action history data 270 that is the actual action content
  • the corresponding sensor data 280 is searched and referenced, a new determination condition that can be discriminated with high probability is generated, and added to the action definition data 290b.
  • an action definition that does not exist in the action definition data 290 in the initial state can be added by a similar method.
  • the behavior evaluation program 262 is a program that generates the target index data 310 based on the sensor data 280. As described above, when the target index data 310 is a subjective evaluation related to job satisfaction, an approximate expression for calculating the result of the subjective evaluation based on the sensor data 280 is generated by a technique such as multiple regression analysis. can do. In the simplest implementation method, the behavior evaluation program 262 generates the target index data 310 based on the subjective evaluation approximate expression.
  • the behavior definition update program 263 is a program for communicating with the server 5 to read the behavior definition data 506 and updating the behavior definition data 290 of the PC 2. At this time, items corrected and generated by the action definition generation program 261 in the action definition data 290 are not overwritten. That is, while the determination conditions tailored to each individual are left as they are, the determination conditions common to the whole can reflect the latest contents.
  • the target index update program 264 is a program that reads the target index data 510 of the server 5 and adds it to the target index data 310.
  • the server 5 stores another sensor or a summary result such as a questionnaire, the latest data can be reflected on the PC 2.
  • FIG. 3 is a configuration example of the sensor data 280, and shows a case where data measured by a triaxial acceleration sensor at intervals of 50 milliseconds are stored. Measurement of 10 times or more per second is suitable for accurately identifying human behavior and particularly the number of steps from acceleration data.
  • the date 281 indicates the time at the sensor node 1 when the sensor measures.
  • An acceleration x282, an acceleration y283, and an acceleration z284 each indicate a triaxial acceleration measurement value. When the resolution of the digital value of the acceleration sensor output or the digital value obtained by AD conversion of the analog value of the acceleration sensor output is 8 bits, the value range is 0 to 255. If the measurement range of the acceleration sensor is about ⁇ 3G to ⁇ 5G, it is sufficient to identify human movement.
  • a temperature 285 indicates the temperature measured by the sensor node 1.
  • the pulse wave 286 stores the output value of the pulse waveform only when the sensor node 1 includes a pulse sensor such as an optical type.
  • FIG. 4 shows a method of calculating the number of zero crossings indicating the amount of waveform fluctuation from the acceleration sensor data. Since the number of zero crossings is proportional to the amount of movement, it can be regarded as a momentum. Further, rough behavior such as sleep, exercise, and desk work can be determined from the level of the amount of exercise.
  • the simplest method for obtaining the number of zero crosses is to convert triaxial acceleration into a uniaxial scalar value. When the posture is not taken into consideration, the momentum can be estimated only by the scalar value. At this time, it is preferable to apply a band-pass filter in order to remove a noise component unrelated to human movement.
  • it is preferable to set a threshold value For example, in FIG. 4, only the point 12 where 0.03G and the acceleration scalar value 11 intersect is detected and counted, and when estimating human behavior from the amount of exercise, the most appropriate threshold value based on actual data It is.
  • FIG. 5 shows a configuration example of the exercise amount calculated from the sensor data 280 and the exercise amount and step number data 320 for storing the step number data.
  • the amount of exercise data is intermediate data generated by the behavior determination program 230, and the definition and processing are facilitated by comparing the determination conditions of this data and the behavior definition data 290.
  • the method of calculating the amount of exercise is as shown in FIG.
  • the time range of one value is the minimum time range of the action to be recognized. However, assuming an action unit that can be recalled by a daily action, approximately 1 to 5 minutes is preferable.
  • the date / time 321 indicates that data corresponding to one minute from the indicated value is stored in the same row.
  • the amount of exercise 232 stores a value calculated by the method of FIG. If the simplest method is shown, the step count 323 can detect periodicity with respect to a scalar waveform of acceleration by a known method such as autocorrelation, and calculate the step count from the number of consecutive detected cycles.
  • FIG. 6 shows a configuration example of the action definition data 290.
  • the behavior definition data 290 stores determination conditions for classifying a plurality of behaviors, and it is possible to increase the accuracy and cope with individual differences later by addition and correction. By determining the amount of exercise and the step count data 320, processing and conditions can be easily set.
  • the action definition ID 291 is an identification ID unique to the action to be defined.
  • the action definition name 292 indicates the name of the action determined by the conditions stored in the same row.
  • the determination condition 293 can store a plurality of conditions and threshold values.
  • the action determination program 230 performs a determination process by logical sum (or logical product can also be set) for each condition.
  • One determined behavior unit is called a behavior element.
  • a configuration example of the determination condition is shown below.
  • the momentum 294 indicates a condition corresponding to the momentum 322 stored in the momentum and step count data 320.
  • the step count 295 indicates a condition corresponding to the step count 323.
  • the continuous time 296 indicates how much time is matched with the conditions of the momentum 294 and the number of steps 295 to determine. In other words, it can be matched only when it continues for a certain period of time. This is because if the rest time with little movement is as short as 1 minute, it cannot be regarded as a characteristic action, but if it is resting for about 10 minutes, it is likely to be recalled as a characteristic action. .
  • FIG. 7 shows action element data 300 storing actions determined by the action determination program 230.
  • the action element INDEX 301 is a unique identification ID for all the action elements.
  • the action definition ID 302 stores an action definition ID 291 corresponding to the determined condition.
  • the date and time 303 indicates the date and time when the action element exists, and includes a start date and time 304 and an end date and time 305.
  • the time length 306 is the duration of the action element, and is the difference between the end date / time 305 and the start date / time 304.
  • the behavior element is characterized by the amount of exercise, the number of steps, and the date and time (time), so that the user 8 can recall the actual memory when viewed later. Further, as described later, these times can be analyzed in the long term and quantitative evaluation can be performed.
  • FIG. 8 shows a method for performing a long-term behavior evaluation, that is, a quantitative evaluation of a person's habitual behavior, in the behavior guideline generation program 240 in this embodiment.
  • a long-term behavior evaluation that is, a quantitative evaluation of a person's habitual behavior
  • For the behavior element data 300 if the neighboring time and the same behavior definition are used, they are grouped as similar behaviors. Since this is a similar behavior across multiple days, it can be called habit behavior or life rhythm.
  • FIG. 8 shows an example in which the behavioral element data 300 for one week is analyzed. In the example of FIG. 8, groups 601 to 607 having the same action definition are classified at neighboring times. The neighborhood at this time is processed in the range of about 1 hour before and after. Next, each group is expressed in a transition diagram as habit behaviors 608 to 615.
  • the transition relationship of habit actions from the context of the action elements constituting habit actions 608 to 615. Based on this transition relationship, an arrow can be added to the habit behaviors 608 to 615, making it easier to recognize a life pattern. Moreover, since the transition probability can be calculated from the number of times of each transition, it is possible to know a characteristic behavior transition pattern.
  • the habit actions 608 to 615 are expressed by a figure such as a circle, and indicate the length of time of each action in size.
  • the time length of the habit behavior can be easily calculated by averaging the time lengths of the behavior elements constituting the habit behavior.
  • the position where each habit behavior is expressed is the time point 616 when the central point of the constituent behavior elements and the behavior element 3 are taken as an example.
  • FIG. 9 shows an example of the configuration of the habit behavior data 330 in which the habit behaviors 608 to 615 in FIG.
  • a correlation analysis with the target index data 310 is performed with respect to the time of action elements constituting each habit action.
  • the habit action INDEX 331 is a unique identification number for each habit action.
  • the behavior definition ID 332 indicates a behavior definition ID common to the behavior elements constituting the habit behavior.
  • the start time 333 and the end time 334 are the average start and end times of the behavior elements constituting the habit behavior. Based on this, the display position of habit behavior is changed.
  • the time length 335 is a difference between the end time 334 and the start time 333.
  • the behavior element INDEX 336 is an INDEX of the behavior element constituting the habit behavior. That is, by searching the behavior element data 300 from the behavior element INDEX 336, all information of the behavior elements constituting the habit behavior can be read out. Based on the read time information, correlation analysis with the target index data 310 is performed.
  • the transition source INDEX 337 is information necessary to know the transition relationship of habit behavior. Based on the transition source INDEX 337, an arrow can be connected when displaying a habit action.
  • the number of transitions 338 is obtained by counting the number of transitions from each transition source, and the transition probability can be known based on the number of transitions 338.
  • FIG. 10 shows a configuration example of the action history data 270.
  • the action history data 270 stores results input by the user 8 via the action history input program 210.
  • event information input by the user 8 by button operation in the sensor node 1 is also stored.
  • the period of action is indicated by a start date 272 and an end date 273.
  • the action content 274 stores content directly input by the user 8 using the input device 4 or content selected from a plurality of candidates.
  • FIG. 11 is a display example on the habit action display screen 400 that is generated by the action guideline generation program 240 in the present embodiment, transmitted to the display device 3, and displayed.
  • habit behaviors 403 to 428 are calculated by dividing weekday display 401 and holiday display 402.
  • weekday display 401 and holiday display 402. By separating holidays and weekdays, it is possible to make it easier for the user 8 to recognize his / her habits and lifestyle patterns even when, for example, the weekdays are work and the lifestyle patterns of the weekdays and holidays are large.
  • the meaning may differ completely even if it is a similar action of the same time slot
  • Each of the habit actions 403 to 428 is color-coded by the action legend 429. Typically, it can be intuitively recognized that a warm color system is assigned to an action with a lot of movement and a cold color system is assigned to an action with a little movement. From the color classification, the time of action, and the transition relationship, the user 8 can recall the execution action indicated by explicit.
  • the habit actions 403 to 428 are arranged on the horizontal axis according to the time, but are not specified on the vertical axis, and are arranged so as to be optimized so that they do not overlap each other.
  • FIG. 12 is a graph 500 showing the result of analysis by the action guideline generation program 240 based on the data of one user in an actual year. Each plot shows the average data for one week.
  • the vertical axis of the graph 500 applies an index indicating human work efficiency as the target index data 310.
  • work efficiency indicates how a person is immersed in work during work hours. Results obtained from multiple questionnaires (self-diagnosis) during past work and acceleration data before and after the questionnaire responses. By using multiple regression analysis based on the above, it is possible to calculate the state of being immersed in work from only acceleration data as an index.
  • the horizontal axis of the graph 500 indicates the time length of the behavioral elements constituting the resting habitual behavior that appears around 10:00. As can be seen from FIG.
  • the action guideline generation program 240 displays and proposes an action guideline based on this correlation.
  • FIG. 13 shows a display example of the action guideline display screen 430 generated by the action proposal program 240, transmitted to the display device 3, and displayed.
  • the weekday display 401 shows the same habit behavior as the habit action display 400, but the correlation coefficient between each habit action 403 to 416 and the target index (work efficiency in the example) is calculated by the method shown in FIG. The value on the vertical axis.
  • a direction for improving the behavior that is, a guideline is also shown, an arrow indicating a direction for improving the target index is added to the most relevant habit behavior. For example, using the results shown in FIG. 12, work efficiency improves when the time is extended.
  • FIG. 14 shows a display example of an action proposal display screen 431 that is generated by the action proposal program 250, transmitted to the display device 3, and displayed.
  • the action proposal program 250 searches the action history data 270 based on the result of the action guideline on the action guideline display screen 430 generated by the action guideline generation program 240, and displays the past action history that matches the action guideline. For example, when a search is made for the habit behavior 408, the content actually input in the past is displayed as in the example shown in the behavior proposal display 432. Thereby, the optimal action proposal content based on one's action can be displayed. In addition, it is assumed that knowledge can be obtained from other than the own action history.
  • the action proposal display 433 it is possible to obtain knowledge by searching along the action guideline from the action history data 511 of the server 5, that is, from past actions of others. This is effective when the action history data 270 input by the user is small or when a sufficient improvement result cannot be obtained only from the past actions of the user.
  • FIG. 15 shows a display example of the action input screen 440 generated by the action history input program 210, transmitted to the display device 3, and displayed.
  • the action input screen 440 in order to allow the user 8 to input past actions efficiently, the action amount graph 442 and the time 444 of the date and time specified by the date and time selection 441 are displayed on the determined action element 443.
  • FIG. 16 shows in detail a flowchart of the process of the action determination program 230 executed by the processing unit, and shows a preferred example for realizing a process of determining a person's action from a person's movement and biological information.
  • sensor data obtained by measuring human movement such as acceleration is used as momentum data that represents the amount of movement once.
  • the number of steps is detected from the periodicity of the waveform of the motion data, and is used to determine whether the user is moving.
  • the calculated amount of exercise and the number of steps are compared with the determination condition of the action definition data 290 to determine the action. It is desirable that the amount of unloading and step count data 320 is non-volatile, and the data once calculated is retained even after the action determination program 230 ends.
  • Processing 231. The processing of the action determination program 230 is started.
  • the behavior determination program 230 starts by detecting whether new data is added to the sensor data 280 or updated.
  • process 232 it is confirmed whether or not the exercise amount and the step count data 320 have already been calculated and recorded in the range (period) in which the action is determined for the sensor data. If the calculation has been completed, the process proceeds to process 235 without performing these calculation processes. If the calculation has not been completed, the process proceeds to process 233.
  • the amount of exercise is calculated from the sensor data 280 and recorded in the amount of exercise / step count data 320.
  • the sensor data 280 is waveform data of a three-axis acceleration sensor
  • the number of zero crosses obtained by counting how many times the waveform has shaken per unit time after converting to a scalar value that is an absolute value of a vector is obtained.
  • the unit time here is preferably about 1 minute since a movement of a unit of several seconds is not regarded as an action.
  • the number of steps is calculated from the data obtained by measuring the movement of the person in the sensor data 280.
  • the scalar value is calculated once, and the periodicity is detected by a known means such as FFT (frequency analysis) or autocorrelation analysis.
  • Count the number of steps followed by the number of steps.
  • the calculated number of steps is recorded in the exercise amount / step count data 230.
  • Processing 235 refers to the amount of exercise and step count data 230, and compares the amount of exercise and the number of steps with the discrimination conditions included in the action definition data 290, respectively.
  • process 237 the process of the action determination program 231 is terminated.
  • the behavior determination program 231 is executed every time sensor data 280 is added.
  • FIG. 17 shows the process of the action guideline generation program 240 in detail in a flowchart, and it is preferable that the action guideline optimal for improving the target index is generated from the action element data 300 and the target index data 310. An example is shown.
  • process 241 the process of the action guideline generating program 240 is started.
  • necessary conditions are set for generating the action guideline. For example, the range to be analyzed and the day of the week are specified. This is a fixed value determined in advance by a program, or a value input by the user 8 via the input device 4 is used.
  • the data in the range set in the process 242 is read from the behavior element data 300 and referred to.
  • habit behavior data 330 representing a human behavior pattern is generated.
  • the period set in the processing 242 is applied.
  • the behavior elements of the same behavior definition having the same time are grouped into one habit behavior data regardless of the date.
  • a habit action ID that is an identification ID is added to these habit actions. In setting the closeness of this time, it depends on the granularity of the action pattern that the user 8 wants to see, but in either case, it is preferably about 1 to 2 hours. However, for habitual behaviors that appear only once or twice a day, such as sleep, it is appropriate to set this time to about 5 hours in order to prevent the connection of behaviors from being separated by turning over, for example.
  • the average of the behavioral elements constituting the grouped habitual behavior is taken and the start time and end time of the habitual behavior are recorded. Moreover, ID of the action element which comprises is recorded. Further, the habit behavior immediately before reaching a certain habit behavior from the time series connection of the behavior elements is recorded as a transition source, and the number of transitions from each transition source is recorded. Information on the habit behavior is recorded in the habit behavior data 330.
  • all target index data within the analysis range is read and referenced, and further, habit behavior data corresponding to the date and time of the target index data is read.
  • the target index data is the work efficiency of every weekday in 2008
  • the habit behavior in 2008 is similarly read from the habit behavior data 330 and compared.
  • each weekday behavior element corresponding to the target index is read from each habit behavior.
  • the average of the times is taken as one action element.
  • a correlation analysis is performed between the time and duration of each weekday action element included in each habit behavior, the transition relationship, and the like, and the target variable every weekday, and the correlation coefficient between the habit action and the target variable is calculated.
  • the habit behavior is displayed in association with the display device 3 so that the order of the correlation coefficient is high.
  • an action guideline for improving the target variable is displayed on the habit action having the highest correlation coefficient, for example, an instruction to make the time earlier, slower, longer or shorter.
  • Processing 248 completes the action guideline generation program 240 processing.
  • FIG. 18 shows an example of the configuration of the sensor node 1 in this embodiment.
  • the sensor node 1 functions as a wireless communication unit 106 including an antenna 115, an acceleration sensor 102, a pulse sensor 103, a temperature sensor 104, a microcomputer 120, and a timer for triggering the microcomputer 120 at regular intervals.
  • a real time clock (RTC) 105 that generates time information
  • a storage 140 that is a rewritable non-volatile storage medium
  • an EEPROM (Electrically Erasable and Programmable Read Memory EEPROM) 160 characters
  • Trigger the microcomputer 120 by detecting the USB connection from the external device to the LCD 101 for displaying the waveform, graph, etc.
  • a plurality of switches 110, 111 that can trigger the microcomputer 120, and the terminal 112.
  • An external power supply detection unit 108 that outputs the state to the microcomputer 120, a USB communication unit 107 that transfers data transmitted by serial communication with the microcomputer 120 to an external device connected via USB, a secondary battery 26, a personal computer
  • a charging / power feeding circuit unit 109 that charges the secondary battery 113 with power supplied via a USB connection with an external device such as a computer, or supplies power to the sensor node 1 instead of the secondary battery 113, and a USB
  • the terminal 25 is connected to a cable.
  • the EEPROM 160 has an area 152 for recording the date and time of the event, an event recording table 150 including an area 153 for recording an event ID that is an identification code for classifying the event, and a source for selecting the event ID.
  • the event list table 154 includes an area 155 for recording an event ID that is an item to be displayed, and an area 156 for recording an icon that is data for displaying a corresponding icon image on the LCD 101 when an event ID is selected. . Since the event list table 154 is rewritable, any event that is frequently used can be set and recorded by the user using the sensor node 1.
  • the event contents can be recorded by a simple operation, and the contents can be easily remembered later when viewing the event information.
  • the storage 140 includes a data table 141 for recording sensed data.
  • Data recorded in the data table 141 is delimited by a variable length for each packet transmitted from the wireless communication unit 16.
  • processing can be reduced by enabling data for one packet read from the storage 140 to be transmitted wirelessly or by wire without processing the data as it is.
  • One packet is recorded at the position of the corresponding address 142, and an area 143 for recording a flag is also included in the data table 141.
  • the address 142 is uniquely assigned in the data table 141, and the storage 140 is read from the microcomputer 100 by serial communication, or refers to the address included in the write command, and is stored in an arbitrary position recorded in the storage 160. Data can be read or written.
  • the flag 143 when the data is transmitted wirelessly, 1 is written if all the transmissions are successful, and 0 is written if the data includes transmission failure data. That is, when a packet in the storage 160 is read later, it can be determined whether or not untransmitted data is included, and only untransmitted data can be efficiently read without being left.
  • the microcomputer 120 includes a CPU 121 that executes arithmetic processing, a ROM 130 that records a program 131 executed by the CPU 121, a RAM 127 that temporarily records data, a real-time clock 105, a storage 140, an EEPROM 160, an LCD 11, and an acceleration sensor. 12, temperature sensor 14, pulse sensor 13, wireless communication unit 16, USB communication unit 17, serial communication units 122 and 126 that transmit and receive signals using digital signals, and I / O port 125 that inputs or outputs digital signals. And interrupt control units 123, 124, and 128 that interrupt the CPU 121 that is executing the program 131 by using an external signal as a trigger.
  • the programs 131 recorded in advance in the ROM 130 include a sensing program 132, a connection switching program 133, and an event recording program 134.
  • the processing described in the event recording program 134 is executed by the CPU 121, starts processing using signals from the switches 110 and 111 as a trigger, and communicates with the real-time clock 15 via the serial communication unit 102 to acquire time information. , Recorded in the date and time 152 of the event recording table 150 of the EEPROM 160. Further, by operating the switches 110 and 111, an event ID 155 for classifying an event corresponding to the time information can be selected from the pre-programmed event list table 154 and recorded in the event ID 153. In order to assist the user's operation, an icon 156 corresponding to the event ID 155 is displayed on the LCD 101.
  • the processing described in the sensing program 131 is executed by the CPU 121, and the data sensed by the acceleration sensor 102, the temperature sensor 104, and the pulse sensor 103 is taken into the RAM 127 via the serial communication unit 122 using the signal of the real-time clock 105 as a trigger. Then, the wireless communication unit 106 is controlled to wirelessly transmit the data fetched into the RAM 127 to a predetermined gateway, and further written into the storage 160 and recorded.
  • connection switching program 133 The processing described in the connection switching program 133 is also executed by the CPU 121, starts wired communication with a signal from the external power supply detection unit 108 as a trigger, is recorded in the storage 140, and is transmitted to the outside by wireless or wired communication. Unread data (untransmitted data) is read out, transmitted to the USB communication unit 107, and wired from the USB communication unit 107 to the external device.
  • the real time clock 105 can generate an interrupt signal to the interrupt control unit 123 of the microcomputer 120 at a constant cycle. This period can be changed by a serial communication command. With this interrupt signal, the microcomputer 120 can start the sensing process described in the sensing program 131 at a constant cycle without being affected by the execution state of other processes.
  • the external power source detection unit 108 detects that the power source of the terminal 112 is connected. That is, it is possible to detect connection with an external device via a USB having a power source. When the connection is detected, the external power supply detection unit 108 generates an interrupt signal to the interrupt control unit 124 of the microcomputer 120 and outputs a digital signal 1 to the I / O port 125. When a disconnection is detected, an interrupt signal is generated and a digital signal of 1 is output to the I / O port 125. That is, the microcomputer 120 can immediately detect a change in the connection state to the terminal 112 and start or stop USB communication via the USB communication unit 107.
  • the USB communication unit 107 converts a serial communication signal with the microcomputer 120 into a USB standard signal via the data line (transmission and reception) of the USB terminal 112. Therefore, in the control of the microcomputer 120, only data to be transmitted to the external device can be automatically converted to USB standard data and transmitted to the external device only by transmitting to the USB communication unit 107 by serial communication. In addition, since the power of the USB communication unit 107 is supplied only from an external device via the power terminal 112, extra power is not consumed when the USB is not connected.
  • FIG. 19 shows the external appearance of the sensor node 1 to which the configuration of this embodiment is applied.
  • the USB connection terminal 112 of the sensor node 1 is on the side as viewed from the mounting surface where the pulse sensor 103 is located, the user can always wear it even during wired communication and charging, and sensing can be performed. It is characterized by not obstructing. Each will be described below.
  • a band 116 is attached to both ends of the sensor node 1 and can be worn on the arm like a typical wristwatch. As can be seen from the structure of the band 116 in FIG. 19, the surface having the pulse sensor 103 contacts the user's skin when worn.
  • the pulse sensor 103 is a known optical measurement method, which irradiates the surface of the living body with infrared rays and makes it possible to estimate the pulse from the change in reflected light caused by the pulsation of the blood vessel. That is, it is essential that the pulse sensor 103 is in contact with the user's skin.
  • the terminal 112 is on a different side from the mounting surface on which the pulse sensor 103 is located.
  • the terminal 112 corresponds to a USB cable, and can be connected to an external device compatible with USB through a power terminal and a data terminal (transmission and reception), and can communicate and supply power.
  • the LCD 101 can display the time that the user can always see, the remaining battery level, the wireless communication status, and the like.
  • the LCD 101 can display the time that the user can always see, the remaining battery level, the wireless communication status, and the like.
  • the switches 110 and 111 By displaying the menu on the LCD 101 and operating the switches 110 and 111, the internal functions of the microcomputer 120 such as the CPU 121, the interrupt control unit 128, and various programs in the ROM 130 shown in FIG. The user can change the settings of the wireless channel and the like.
  • FIG. 20 shows the display on the LCD 101 of the sensor node 1.
  • the user 8 can check the waveform display 166 of the sensed data, the time information 164, the radio wave state 161, the remaining battery level 162, and the remaining memory capacity 163 while wearing the sensor node 1.
  • the radio wave state 161 indicates the result of wireless transmission. It is not displayed when no wireless communication is used.
  • the battery remaining amount 162 displays the voltage of the secondary battery 113. Thereby, the user 8 can know the timing when charging is required by USB connection.
  • the remaining memory capacity 163 indicates the amount of untransmitted sensor data that can be recorded in the storage 140.
  • the time for which untransmitted sensor data can be recorded in the storage 140 is estimated. can do.
  • FIG. 21 is a diagram showing an example of display transition of the LCD 101 when the process of selecting and recording an event by pressing the switches 110 and 111 is executed.
  • the display example of FIG. 21 is characterized in that since selection and recording of events are performed only by selecting icons, even in busy daily life, selection and recording can be easily performed in a short time. Needless to say, this display switching control can also be realized by the internal function of the microcomputer 120 shown in FIG.
  • the display When the switch 110 is pressed from the display state of FIG. 20, the display is switched to the display 167. Time information is acquired from the real-time clock 105 using this time as the event occurrence time. When the event ID is 0 when the event ID is not selected, the display 167 is when the event ID is 0. This is recorded when there is no need to classify or when there is no time selected.
  • an icon corresponding to the next event ID is displayed.
  • the display 168 is an icon indicating a meal, and the event ID is 1.
  • the display 169 and the display 170 are sequentially switched.
  • the display 169 is an icon indicating that the vehicle is moving
  • the display 170 is an icon indicating that the vehicle is running.
  • FIG. 22 is a diagram showing a system configuration of the second embodiment.
  • the sensor data reception program 501, the action determination program 502, the sensor data 507, the action definition data 506, the action element data 509, and the target index data 510, action history data 511, action definition generation program 504, action guideline generation program 505, action proposal program 514, exercise amount / step count data 512, and habit action data 513 are provided in the server 5 instead of the PC 2.
  • the server 5 also includes a sensor data reception program 501 that receives data from a base station directly connected to the network 9 and a WEB display generation program 503 that has a WEB server function and generates a display screen of a WEB browser.
  • the PC 2 includes an action guideline generation program 505 and an action guideline / suggestion display program 350 that receives the results generated by the action proposal program 514 via the network 9 and transmits them to the display device 3 for display.
  • the action proposal program 514 has the same function as the action proposal program 250 shown in FIG.
  • the PC 2 receives the data from the base station 6 and stores it in the database, and the action history input for storing the action history and comments such as a diary entered by the user 8 using the input device 4 in the database.
  • the program 210, the action guideline generation program 505 of the server 5 and the result of the action proposal program 514 are received via the network 9, and the action guideline / suggestion display program for displaying on the display device 3 is provided.
  • the sensor data reception program 220 stores the sensor data sent from the base station 6 in the sensor data 507 of the server 5 via the network 9.
  • the action history input program 210 stores the result input by the user 8 via the input device 4 in the action history data 511 via the network 9. That is, the PC 2 does not hold a database.
  • the server 5 Even when the processing of the behavior determination program 502, the behavior definition program 504, the behavior guideline generation program 505, and the behavior proposal program 514 is complicated and cannot be treated by the PC 2, the server 5 often has few restrictions on size and power consumption. It is possible to complete the processing in a short time with a high processing capacity at a low cost.
  • the behavior determination program 502 calculates the amount of exercise and the step count data 512 from the sensor data 507 in the same manner as the behavior determination program 230 of FIG. 1, and determines the behavior name and the corresponding threshold value stored in the behavior definition data 506. Using the list of conditions, the momentum and step count data 512 are discriminated in time series. As a result, the action name or the identification ID of the action, the time, and the time information are stored in the action element data 509 as a single action element that matches the determination condition.
  • the target index data 510 records an index that the user 8 desires to improve over a long period of time. Unlike the target index data 310 of FIG. 1, scores such as results measured by other sensors and work results input via other PCs can also be stored.
  • the action guideline generation program 505 generates habit action data 513 in the same manner as the action guideline generation program 240 of FIG. 1, and the time series changes of the action element data 509 and the target index data 310 included in each habit action and the correlation Analyze and generate an action guideline that is optimal for the user 8.
  • the action guideline generation program 505 can be started by a request from the action guideline / suggestion display program 350 of the PC2.
  • the generated result is transmitted to the action guideline / suggestion display program 350, and the user 8 can view the result using the PC 2.
  • the action proposal program 514 starts in accordance with the request of the action guideline / suggestion display program 350 or at the same time as the end of the action guideline generation program 505, and transmits the result to the action guideline / suggestion display program 350. Can be viewed at. Other processes are the same as those of the action proposal program 250 of FIG.
  • the behavior definition generation program 504 can correct the behavior definition data 290 or add a new definition with reference to the behavior history data 511 and the sensor data 507, similarly to the behavior definition generation program 261 of FIG. Further, unlike the behavior definition generation program 261, analysis processing can be performed using data of other users other than the user 8 stored in the sensor data 507 and the behavior history data 511. And diversification of definitions.
  • FIG. 23 is a diagram showing the system of the third embodiment.
  • the general-purpose WEB browser 520 performs the same processing instead of requiring the action guideline / suggestion program 350 shown in FIG. Have
  • the WEB browser 520 by using the WEB browser 520, it is not necessary to provide a dedicated program in the PC, and it is easy to act from many PCs or mobile phones or terminals having similar functions regardless of location. It is possible to view the guidelines / proposed results.
  • the base station 16 can directly connect to the network 9 and send the received sensor data to the server 5.
  • the server 5 includes a sensor data program 501 similar to the sensor data reception program 220 in FIG.
  • the WEB input / output generation program of the server 5 has the function of the WEB server, and transmits display contents generated by the action guideline generation program 505 and the action proposal program 514 to the WEB browser 520 in accordance with a request from the WEB browser 520.
  • the WEB browser 520 displays the received display content on the display device 3.
  • the WEB input / output generation program 503 transmits an action input screen 440 generated by the action history input program 512 in accordance with a request from the WEB browser 520, and the WEB browser 520 displays the display on the display device 3. Further, the action history input by the user 8 via the input device 4 can be transmitted from the WEB browser 520 to the WEB input / output generation program 503 and stored in the action history data 511 via the action history input program 512.
  • the present invention is useful as a technique that can be worn on a human body, shows the characteristics of life by estimating human behavior from information on sensor terminals that measure biological information and behavioral states, and presents improvement means. high.
  • EEPROM Electrically rewritable nonvolatile storage

Abstract

Provided is a behavior suggestion device that infers a person's behavior on the basis of biological information such as amount of sleep, number of steps walked, and amount of exercise, and presents improvement means that improve health indicators and the like for that person. From the person's biological information and behavior history (information) obtained from sensor nodes over a long period of time, pieces of biological information (sensor data) happening at the same times of day and having the same characteristics are classified as habitual behavior, and a behavior guide generation program on a personal computer computes correlations between the times of, lengths of, and transitions between habitual behaviors and target indicator data that the user wants to improve. The main behaviors of the user are displayed chronologically; simultaneously, a display device presents optimal behavior times and lengths for improving the target indicators, and more concrete behavior examples and comments for implementing said optimal behavior times and lengths. Said optimal behavior times and lengths, behavior examples, and comments are generated using a behavior history inputted and recorded by the user in the past, and behavior history data inputted by other people.

Description

行動提案装置、及びその方法Action suggestion apparatus and method
 本発明は、人の身体に装着可能で、生体情報や行動状態を計測するセンサ端末の情報から、人の行動を推定して生活の特徴を示し、その改善手段を提示する技術に関する。 The present invention relates to a technology that can be worn on a person's body and that presents characteristics of life by presenting human behavior from information on a sensor terminal that measures biological information and behavioral states, and presents improvement means.
 現代の夜型生活や睡眠不足等の生活リズムの乱れは、生活習慣病等の要因となることが指摘されている。一方で、人の動きや歩数などを計測する歩数計や活動量計などが一般的にも認知されるようになった。非特許文献1で紹介されているように、Mote(登録商標)と呼ばれる、センサ、無線、マイコン等を搭載した小型のセンサノードも実用化段階にある。このセンサノードでは、センシングや無線通信が必要なタイミングでのみ起動し、それ以外では電源を切って消費電力を削減する間欠動作により、小型の内蔵電池で長時間動作しながら、直径3cmと小型であり、人が身に付けることも容易である。従って、日常生活において、人の生活の中の活動や睡眠等の周期、つまり生活リズムの情報を容易に収集することが可能になった。 It has been pointed out that disruption of life rhythms such as modern night life and lack of sleep can cause lifestyle-related diseases. On the other hand, pedometers and activity meters that measure people's movements and steps are generally recognized. As introduced in Non-Patent Document 1, a small sensor node equipped with a sensor, wireless, microcomputer, etc., called Mote (registered trademark), is also in a practical stage. This sensor node is activated only when sensing or wireless communication is necessary, and otherwise it is operated for a long time with a small internal battery, with a small diameter of 3cm, by turning off the power and reducing power consumption. Yes, it is easy for people to wear. Therefore, in daily life, it has become possible to easily collect information on activities, sleep cycles, etc. in daily life, that is, life rhythm.
 特許文献1では、個人のカロリー消費量や心拍、体温、睡眠深度、フィットネスクラブや病院の記録等の入力によって得られる生活リズムと、体重やその他健康に関わる生体情報を同時に報知(表示)することによって、生体情報の良否の原因を認識させる手段を開示している。 In Patent Document 1, simultaneously reporting (displaying) a life rhythm obtained by inputting an individual's calorie consumption, heart rate, body temperature, sleep depth, fitness club, hospital record, and other biological information relating to weight and other health Discloses means for recognizing the cause of the quality of biological information.
 特許文献2では、人が海外などへ高速で長距離を移動した場合において、加速度センサや環境光センサから人の生活リズム(生体リズム)と昼夜のリズムのずれを検知して、時差ぼけを補正するように生体への刺激光を発する手段を開示している。 In Patent Document 2, when a person travels at a high speed for a long distance to overseas or the like, a deviation between a person's life rhythm (biological rhythm) and day / night rhythm is detected from an acceleration sensor or an ambient light sensor to correct jet lag. Thus, a means for emitting stimulation light to a living body is disclosed.
特開平9-103413号公報Japanese Patent Laid-Open No. 9-103413 特開平10-68787号公報Japanese Patent Laid-Open No. 10-68787
 非特許文献1に示されるようなセンサで動きや歩数を測定しても、複数のセンサを24時間常時身に付けるということは困難であり、歩数計のように腰や、腕時計のように腕に見つけるものが実用化されている。しかしながら、単一のセンサから得られた情報だけでは、睡眠時間や歩数、運動量等の値しか定量的に評価しておらず、効果的に生活改善を促すことが困難であった。例えばダイエットにおいては、ただ毎日の歩数を増やしただけでは効果的に減量できるとは限らない。 Even if movements and steps are measured with a sensor as shown in Non-Patent Document 1, it is difficult to wear multiple sensors at all times for 24 hours, such as a waist like a pedometer or an arm like a wristwatch. What you will find in practical use. However, only information obtained from a single sensor quantitatively evaluates values such as sleep time, number of steps, and amount of exercise, and it has been difficult to effectively promote life improvement. For example, in a diet, it is not always possible to effectively reduce the amount of weight by simply increasing the number of daily steps.
 特許文献1では、複数の生活リズムの指標と、体重などの生体情報を同時に表示して、ユーザに生活改善につながる情報を提示しているが、各個人に適した具体的な改善方法を提示する手段は開示していない。 In Patent Document 1, a plurality of life rhythm indicators and biological information such as body weight are simultaneously displayed to present information that leads to improvement of life to the user, but a specific improvement method suitable for each individual is presented. Means to do is not disclosed.
 また、特許文献2においても、時差ぼけに関わる睡眠リズムの補正手段を開示しているが、その他の生体情報から得られる健康指標等を改善する手段を開示していない。 Also, Patent Document 2 discloses a means for correcting sleep rhythm related to jet lag, but does not disclose means for improving health indicators obtained from other biological information.
 本発明の目的は、睡眠時間や歩数、運動量等の生体情報に基づき、人の行動を推定し、その健康指標等を改善する手段を提示する行動提案装置、及びその方法を提供することにある。   An object of the present invention is to provide an action suggesting apparatus and a method for presenting means for estimating a person's action based on biological information such as sleep time, number of steps, and amount of exercise, and improving the health index and the like. . *
 上記の目的を達成するため、本発明においては、処理部と記憶部と備え、個人の生体情報に基づき個人に行動提案を行う行動提案装置として、処理部が、個人の生態情報を収集し、収集した生体情報に基づき、個人の行動を判別して行動要素データを抽出し、所定期間のこの行動要素データから、個人の習慣行動データを生成し、これら行動要素データと習慣行動データと、個人が予め設定した目標指標データとに基づき、個人の行動指針を生成し、生成した行動指針に基づき、個人の行動提案を行う行動提案装置及び方法を提供する。
  また、本発明の行動提案装置として、行動指針及び行動提案を表示する表示部を更に備える行動提案装置及び方法を提供する。
  更に、本発明の行動提案装置は、処理部が、複数の所定期間の習慣行動データと目標指標データとの相関分析を行い、その相関分析結果で相関性が高い習慣行動データを、行動指針に付加して表示部に表示する行動提案装置及び方法を提供する。
In order to achieve the above object, in the present invention, a processing unit is provided with a processing unit and a storage unit, and the processing unit collects personal ecological information as an action proposing device that makes an action proposal to an individual based on personal biometric information, Based on the collected biological information, individual behavior is discriminated and behavior element data is extracted, and individual behavior data is generated from this behavior element data for a predetermined period. These behavior element data, habit behavior data, and individual Provide an action proposal device and method for generating an individual action guideline based on the target index data set in advance and making an individual action proposal based on the generated action guideline.
Moreover, the action proposal apparatus and method further provided with the display part which displays an action guideline and action proposal as an action proposal apparatus of this invention are provided.
Further, in the behavior proposing device of the present invention, the processing unit performs correlation analysis between habitual behavior data and target index data for a plurality of predetermined periods, and habit behavior data having high correlation in the correlation analysis result is used as an action guideline. An action suggesting apparatus and method for adding and displaying on a display unit are provided.
 すなわち、上記の目的を達成するため、本発明の好適な態様において、加速度センサ等の情報入力手段によって得られる数週間から数ヶ月の長期間にわたる人の生体情報や行動履歴から、同じ時刻帯で、同じ特徴を有する生体情報を一種の習慣的な行動として分類し、習慣的な行動の時刻や時間の長さや遷移関係などの習慣行動データと、ユーザが改善を求める体重、ストレス、生活満足度、業務効率等の目標指標データとの相関性を算出し、ユーザの主な行動を時系列で表示すると同時に、目標指標を改善するのに最適な行動の時刻や時間の長さを行動提案として表示装置に提示する。また、その最適な行動の時刻や時間の長さを実現するためのより具体的な行動例やコメントを、過去に自らが入力して記録した行動履歴や、他人の入力した行動履歴をも活用して生成、提示する。 That is, in order to achieve the above object, in a preferred embodiment of the present invention, from the biological information and action history of a person over a long period of several weeks to several months obtained by information input means such as an acceleration sensor, the same time zone. Categorizing biometric information with the same characteristics as a kind of habitual behavior, habitual behavior data such as time, length of time and transition relationship of habitual behavior, weight, stress, life satisfaction that the user wants to improve Calculate the correlation with target index data such as business efficiency, display the main actions of the user in time series, and at the same time, propose the action time and length of time that are optimal for improving the target index Present on the display. In addition, we use action history that we entered and recorded more specific action examples and comments to realize the optimal action time and length of time, and action history entered by others. Generate and present.
 本発明によれば、ユーザは一定期間の自らの生活パターンや行動内容を、行動の特徴や時刻帯と時間の長さ等の表示、及びそれらの組み合わせから容易に想起できるのと同時に、目標とする指標の改善を達成するのに最適な行動の改善方法を知ることができる。さらに、提示された最適な行動が実行できているかの進捗状況についてフィードバックを受けて、行動を修正することができる。 According to the present invention, the user can easily recall his / her own life pattern and action content for a certain period from the display of the characteristics of the action, the time zone and the length of time, and the combination thereof, and at the same time, Know how to improve the best behavior to achieve better indicators. Furthermore, it is possible to correct the behavior by receiving feedback on the progress of whether or not the presented optimum behavior can be executed.
第1の実施例に係わる、行動指針、及び行動提案を生成するシステムのブロック図である。It is a block diagram of the system which produces | generates the action guideline and action proposal concerning a 1st Example. 第1の実施例に係わるシステムのデータベースを更新するためのプログラムの構成を示すブロック図である。It is a block diagram which shows the structure of the program for updating the database of the system concerning a 1st Example. 第1の実施例に係わるシステムのセンサデータを格納するデータベースの構成例を示す図である。It is a figure which shows the structural example of the database which stores the sensor data of the system concerning a 1st Example. 第1の実施例に係わるシステムの運動量を算出する方法を説明する図である。It is a figure explaining the method of calculating the momentum of the system concerning a 1st Example. 第1の実施例に係わるシステムの運動量や歩数を格納するデータベースの構成例を示す図である。It is a figure which shows the structural example of the database which stores the exercise | movement amount and step count of the system concerning a 1st Example. 第1の実施例に係わるシステムの、センサデータから行動を判別するための条件を格納する行動定義データベースの構成例を示す図である。It is a figure which shows the structural example of the action definition database which stores the conditions for discriminating action from sensor data of the system concerning a 1st Example. 第1の実施例に係わるシステムの、センサデータから判別した行動である行動要素を格納するデータベースの構成例を示す図である。It is a figure which shows the structural example of the database which stores the action element which is the action discriminate | determined from the sensor data of the system concerning a 1st Example. 第1の実施例に係わるシステムの、毎日の類似した行動を分類した習慣行動を生成する過程と、表示例を示す図である。It is a figure which shows the process of producing | generating the habit action which classified the daily similar action of the system concerning a 1st Example, and a display example. 第1の実施例に係わるシステムの、毎日の類似した行動を分類した習慣行動を格納するデータベースの構成例を示す図である。It is a figure which shows the structural example of the database which stores the habit action which classified the daily similar action of the system concerning a 1st Example. 第1の実施例に係わるシステムの、ユーザが入力した行動履歴を格納するデータベースの構成例を示す図である。It is a figure which shows the structural example of the database which stores the action log | history input by the user of the system concerning a 1st Example. 第1の実施例に係わるシステムの習慣行動表示画面の一例を示す図である。It is a figure which shows an example of the habit action display screen of the system concerning a 1st Example. 第1の実施例に係わるシステムで解析された、あるユーザの目標指標(仕事効率)と、午前の安静時間の相関を示すプロット図である。It is a plot figure which shows the correlation of a certain user's target parameter | index (work efficiency) and morning rest time analyzed with the system concerning a 1st Example. 第1の実施例に係わるシステムの行動指針表示画面の一例を示す図である。It is a figure which shows an example of the action guideline display screen of the system concerning a 1st Example. 第1の実施例に係わるシステムの行動提案表示画面の例を示す図である。It is a figure which shows the example of the action proposal display screen of the system concerning a 1st Example. 第1の実施例に係わるシステムの行動履歴入力画面の例を示す図である。It is a figure which shows the example of the action log | history input screen of the system concerning a 1st Example. 第1の実施例に係わるシステムの行動判別処理の詳細を示すフローチャートを示す図である。It is a figure which shows the flowchart which shows the detail of the action discrimination | determination process of the system concerning a 1st Example. 第1の実施例に係わるシステムの行動指針生成処理の詳細を示すフローチャートを示す図である。It is a figure which shows the flowchart which shows the detail of the action guideline production | generation process of the system concerning a 1st Example. 第1の実施例に係わるシステムのセンサノードのブロック図である。It is a block diagram of the sensor node of the system concerning a 1st Example. 第1の実施例に係わるシステムのセンサノードの外観図である。It is an external view of the sensor node of the system concerning a 1st Example. 第1の実施例に係わるセンサノードの画面表示例を示す図である。It is a figure which shows the example of a screen display of the sensor node concerning a 1st Example. 第1の実施例に係わるセンサノードのイベント入力操作の例を示す図である。It is a figure which shows the example of event input operation of the sensor node concerning a 1st Example. 第2の実施例に係わる、サーバで解析を行うシステム構成のブロック図である。It is a block diagram of the system configuration which analyzes by a server concerning the 2nd example. 第3の実施例に係わる、サーバで解析を行い、パソコン(Personal Computer:PC)のブラウザで結果を閲覧するシステム構成のブロック図である。FIG. 10 is a block diagram of a system configuration in which analysis is performed by a server and the result is browsed by a personal computer (PC) browser according to a third embodiment. 各実施例におけるPCやサーバの内部構成の一例を示すブロック図である。It is a block diagram which shows an example of an internal structure of PC in each Example. 各実施例における行動提案プログラムの処理のフローチャートの一例を示す図である。It is a figure which shows an example of the flowchart of the process of the action proposal program in each Example.
 以下、図面に従い、本発明の実施例を説明する。なお、本明細書において、PCやサーバ等のコンピュータの処理部で実行処理されるプログラムを「部」や「手段」と表現する場合がある。例えば、「行動指針生成プログラム」を「行動指針生成部」や「行動指針生成手段」と呼ぶなどである。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In this specification, a program executed by a processing unit of a computer such as a PC or a server may be expressed as a “unit” or “means”. For example, the “behavior guideline generating program” is referred to as “behavior guideline generating unit” or “behavior guideline generating means”.
 図1は第1の実施例の行動指針、及び行動提案を生成するシステムの主要な構成を示す図である。本システム構成においては、ユーザ8が身に付けたセンサノード1の測定したデータであるセンサ情報を受信して、ユーザ8が日々向上させることを目標とする指標、例えば仕事の効率や成果、満足度を表す指標を改善する方法を提案するため、過去の目標指標データ310と、センサデータから判別した過去の行動を記録した行動要素データ300を分析して改善指針を算出し、表示装置3などの出力装置に出力することを特徴とする。 FIG. 1 is a diagram showing a main configuration of a system for generating action guidelines and action proposals according to the first embodiment. In this system configuration, the sensor information which is the data measured by the sensor node 1 worn by the user 8 is received, and an index that the user 8 aims to improve day by day, such as work efficiency and results, satisfaction In order to propose a method for improving the index representing the degree, the past target index data 310 and the behavior element data 300 that records the past behavior determined from the sensor data are analyzed to calculate an improvement guideline, and the display device 3 and the like To the output device.
 後で説明するように、センサノード1は人が身に付けるのに適した形状、例えば腕時計型のセンサ端末であり、脈、動きなどの人の情報(以下、生体情報)を測定し、センサデータとして無線で送信する。記録して残しておきたい特別な出来事や、何かの行動の時刻を残しておきたい場合に、ボタン操作で液晶表示デバイス(Liquid Crystal Device:LCD)に表示されるアイコンを選択し、イベント情報として、イベント種類と時刻を記録する機能を備える。これは、後から行動内容を入力する手間を省くだけでなく、正確な内容や時刻を忘れることも防止することができる。また、測定したデータを内部に記録する不揮発メモリ等の記憶部を備える。またセンサノード1はそれぞれ固有な識別IDであるマック(Media Access Control:MAC)アドレスが割り当てられて記憶している。また、ひとつの基地局6で構成するネットワーク内でのみ固有な識別ID(ショートアドレス)も記憶可能である。これらのアドレスをデータに付加して無線送信することで、どのセンサノード1から送信されたデータなのか識別することができる。 As will be described later, the sensor node 1 is a shape suitable for a person to wear, for example, a wristwatch-type sensor terminal, and measures human information (hereinafter, biological information) such as a pulse and movement, It is transmitted wirelessly as data. When you want to keep a special event that you want to record and keep a time of action, select an icon displayed on the liquid crystal display device (LCD) with the button operation, event information It has a function to record the event type and time. This not only saves the trouble of inputting action contents later, but also prevents forgetting the exact contents and time. In addition, a storage unit such as a nonvolatile memory that records the measured data therein is provided. Each sensor node 1 is assigned and stored with a Mac (Media Access Control: MAC) address, which is a unique identification ID. Further, an identification ID (short address) unique only within a network constituted by one base station 6 can be stored. By adding these addresses to the data and wirelessly transmitting, it is possible to identify which sensor node 1 is the transmitted data.
 基地局6は、アンテナ7から無線の電波を受信して、センサ端末から送信されたセンサデータの内容を接続されたPC2からの要求に従って送信する。また、基地局6はひとつの無線ネットワークを構成する際に、センサノード1との間で通信してアソシエーションと呼ばれるネットワーク加入の手続きを通信して行い、MACアドレス1つに対し、1つのショートアドレスを割り振る。基地局6は、MACアドレスとショートアドレスの対応表を、内部のメモリに保持し、センサノード1から受信したデータに付加されているアドレスをすべてMACアドレスに変換して、パーソナルコンピュータ(Personal Computer:PC)2に送信する。この結果、PC2では受信したデータの発信元であるセンサノード1を容易に識別することができる。 The base station 6 receives a radio wave from the antenna 7 and transmits the contents of the sensor data transmitted from the sensor terminal in accordance with a request from the connected PC 2. When the base station 6 configures one wireless network, the base station 6 communicates with the sensor node 1 to communicate a network joining procedure called association, and one short address for one MAC address. Is allocated. The base station 6 holds a correspondence table of MAC addresses and short addresses in an internal memory, converts all addresses added to the data received from the sensor node 1 into MAC addresses, and creates a personal computer (Personal Computer: PC) 2. As a result, the PC 2 can easily identify the sensor node 1 that is the transmission source of the received data.
 PC2は、例えば、図24に示す通常のコンピュータ構成を有している。すなわち、図24において、2401で示すPCは内部バス2406を介して、処理部である中央処理部(Central Processing Unit:CPU)2403、記憶部である主記憶部2404、補助記憶部2405、更にはインターネット9などのネットワークや、センサデータ1のデータをPCに取り込むために必要な基地局6と接続するユーエスビー(Universal Serial Bus:USB)等のインターフェースとなるネットワークデバイスが相互に接続される。また、図1に示すLCDなどのディスプレイである表示装置3や、キーボードやマウスなどの入力装置4が適当なインターフェースにより接続されている。 The PC 2 has, for example, a normal computer configuration shown in FIG. That is, in FIG. 24, a PC indicated by 2401 is connected via an internal bus 2406 to a central processing unit (CPU) 2403 that is a processing unit, a main storage unit 2404 that is a storage unit, an auxiliary storage unit 2405, and A network device such as the Internet 9 and a network device serving as an interface such as a USB (Universal Serial Bus: USB) connected to the base station 6 necessary for capturing the data of the sensor data 1 into the PC are connected to each other. Further, a display device 3 such as an LCD shown in FIG. 1 and an input device 4 such as a keyboard and a mouse are connected by an appropriate interface.
 このPC2には、基地局6からのセンサデータを受信してデータベースに格納するセンサデータ受信プログラム220など、CPUで実行される各種プログラムと、センサノード1で測定したデータであるセンサデータ280や、このセンサデータ280をもとに人の行動、例えば睡眠、歩行、安静、運動等の判別をするのに必要な閾値等の定義である行動定義データ290などの各種データが記憶部に記憶される。
  更に、PC2には、行動定義データ290を用いてセンサデータ280を時系列で読み出して比較し、行動を判別し、データベースに格納する行動判別プログラム230、行動判別を簡単にするためにセンサデータから算出する中間データである運動量、歩数データ320、行動判別プログラム230で判別した個別の行動、行動要素を格納するデータベースである行動要素データ300、行動要素の中で同じ時間帯で同じ行動定義の行動要素をグループ分けした習慣行動データ330、ユーザ8が改善したいと望んでいる指標を格納するデータベースである目標指標データ310、過去の行動要素データ300と目標指標データ310の変化を分析して、過去の行動からどのように生活の行動を変えるべきか、例えば時刻の早い遅いや時間が長い遅い、という情報を生成して表示部である表示装置3に表示する行動指針生成プログラム240、行動指針生成プログラム240にて生成された行動指針の結果である行動指針データから、その行動指針と合致する過去の自分、或いは他人の具体的な行動履歴をデータベースから検索して表示装置3に表示する行動提案プログラム250、ユーザ8が入力装置4を用いて入力した日記のような行動履歴やコメントをデータベースに格納する行動履歴入力プログラム210、ユーザ8が自ら入力した行動履歴やコメントを格納したデータベースである行動履歴データ270、PC2に格納されたデータベースを、イントラネットやインターネットなどのネットワークを介して、他のサーバ等のコンピュータからデータを受信して更新するための個人データ更新プログラム260を備える。
  一方、サーバ5は、イントラネット、またはインターネット等のネットワーク9を介してPC2と接続されており、図24に示すような通常のコンピュータ構成の処理部や記憶部を有し、その記憶部に行動定義データ506と目標指標データ510と行動履歴データ511を備える。行動定義データ506と目標指標データ510は、PC2の行動定義データ290、目標指標データ310と同じであるか、より新しい内容である。例えば、別のセンサなどで計測された目標指標のスコアが直接は行動指標データ310に追加できない場合に、一度サーバ5の目標指標データ510に格納され、それをPC2にコピーして更新することができる。また、行動定義データ506の内容を追加した場合に、サーバ5のデータをそれぞれのユーザが行動定義データ290にコピーすることで、更新作業を容易にすることができる。
This PC 2 includes various programs executed by the CPU, such as a sensor data receiving program 220 that receives sensor data from the base station 6 and stores it in the database, sensor data 280 that is data measured by the sensor node 1, Based on the sensor data 280, various data such as behavior definition data 290, which is a definition of a threshold necessary for determining human behavior, for example, sleep, walking, rest, exercise, etc., is stored in the storage unit. .
Further, the PC 2 uses the behavior definition data 290 to read and compare the sensor data 280 in time series, discriminates the behavior, stores the behavior data in the database, and the sensor data to simplify the behavior discrimination. The amount of exercise, which is intermediate data to be calculated, the number of steps data 320, the individual behavior determined by the behavior determination program 230, the behavior element data 300 which is a database for storing behavior elements, and the behavior of the same behavior definition in the same time zone among the behavior elements Habit behavior data 330 in which elements are grouped, target index data 310 that is a database for storing an index that the user 8 wants to improve, analysis of changes in past behavior element data 300 and target index data 310, How you should change your daily behavior from your behavior, for example early or late An action guideline generation program 240 that generates information indicating that the information is long and slow and displays the information on the display device 3 that is a display unit, action guideline data that is a result of the action guideline generated by the action guideline generation program 240, An action suggestion program 250 that searches the display device 3 for a specific action history of a past person or other person who matches, and displays it on the display device 3. An action history or comment such as a diary entered by the user 8 using the input device 4. The action history input program 210 for storing the action history in the database, the action history data 270 that is a database storing the action history and comments input by the user 8, and the database stored in the PC 2 via a network such as an intranet or the Internet, Receive and update data from computers such as other servers Equipped with a personal data update program 260 of the eye.
On the other hand, the server 5 is connected to the PC 2 via a network 9 such as an intranet or the Internet, and has a processing unit and a storage unit having a normal computer configuration as shown in FIG. Data 506, target index data 510, and action history data 511 are provided. The action definition data 506 and the target index data 510 are the same as or newer than the action definition data 290 and the target index data 310 of the PC 2. For example, when the score of the target index measured by another sensor or the like cannot be directly added to the behavior index data 310, it is stored once in the target index data 510 of the server 5, and can be copied to the PC 2 and updated. it can. Further, when the contents of the action definition data 506 are added, the update work can be facilitated by copying the data of the server 5 to the action definition data 290 by each user.
 PC2内のセンサデータ受信プログラム220は、処理部のプログラム処理により、生体情報受信部として機能し、まずPC2に接続された基地局6とのインターフェースを、専用のドライバソフト等を介して認識する。そして、センサデータ受信プログラム220はPC2を使用している1人のユーザ8、或いは複数のユーザと、それぞれのユーザが身に付けているセンサノード1を対応させて識別するための書き換え可能なID表を保持している。従って、受信したデータに、ユーザ8を識別するID、或いは名前を付加して、センサデータ280にこのユーザの生体情報として格納することができる。また、センサノード1にキー操作、又はボタン操作の入力手段を備える場合、ユーザ8が自らの行動や出来事、つまりイベント情報を忘れず記録するためには、センサノード1を操作して入力し、センサデータと同様に受信することが効率的である。この場合、センサデータ受信プログラム220は受信したイベント情報を行動履歴データ270に格納する。 The sensor data receiving program 220 in the PC 2 functions as a biological information receiving unit by program processing of the processing unit, and first recognizes an interface with the base station 6 connected to the PC 2 through dedicated driver software or the like. The sensor data receiving program 220 is a rewritable ID for identifying one user 8 or a plurality of users using the PC 2 and the sensor node 1 worn by each user in association with each other. Holds the table. Therefore, an ID or name for identifying the user 8 can be added to the received data and stored in the sensor data 280 as the biological information of the user. Further, when the sensor node 1 is provided with an input means for key operation or button operation, in order for the user 8 to record his / her actions and events, that is, event information without fail, the sensor node 1 is operated and input, It is efficient to receive the same as the sensor data. In this case, the sensor data receiving program 220 stores the received event information in the action history data 270.
 さて、図1の行動判別プログラム230は、処理部におけるプログラム処理により、行動定義データ290に格納されている行動定義名と、それに対応する閾値等の判定・検出条件のリストを用いて、センサデータ280のデータを時系列に比較していく。その結果、判定・検出条件に合致するものをひとつの行動要素として、その行動名、またはその行動の識別IDと時刻、時間情報を行動要素データ300に格納する。これにより、センサデータ280は加速度センサ等で測定した波形データの集合体に過ぎないが、波形データを行動という形で人がみて理解できる情報に変換することができる。また、それと同時に時刻、時間という情報を行動に付加することができるようになる。つまり、行動とそれに付随する時刻、時間という数値情報を、長期間にわたって記録していくことにより、行動の変化、その変遷を定量評価することが実現できる。 Now, the behavior determination program 230 in FIG. 1 uses the processing definition program stored in the behavior definition data 290 and a list of determination / detection conditions such as threshold values corresponding thereto by program processing in the processing unit. 280 data are compared in time series. As a result, the behavior name or the identification ID of the behavior, the time, and the time information are stored in the behavior element data 300 as a behavior element that matches the determination / detection condition. Thus, the sensor data 280 is merely a collection of waveform data measured by an acceleration sensor or the like, but the waveform data can be converted into information that can be seen and understood by humans in the form of behavior. At the same time, information such as time and time can be added to the action. That is, by recording numerical information such as an action and the time and time associated with the action over a long period of time, it is possible to quantitatively evaluate the change of the action and its transition.
 目標指標データ310は、ユーザ8が改善したいと望む指標を、長期間にわたって記録する。例えば、人が毎日の生活の中で、仕事の効率や生活の満足度を改善したいと望む場合に、どのような行動をとれば良いのか、どのような生活をすればよいのかということが問題となる。仕事の効率や満足度という観点では、仕事の成績、目標達成度、客観評価、主観評価等が利用できると考えられる。しかしながら、成績や目標達成度とした場合には、仕事の業種によっては結果が出る周期が数ヶ月や半年に一回となってしまう場合があり、分析に必要な十分なデータが得られず、また毎日の細かな変化を捉えられないことが問題になる。客観評価に関しても、他人に毎日のように評価を求めるのは長期的にみると容易ではない。
  そこで、主観評価、例えばアンケートを毎日や数時間に一回程度回答して、結果を得るのが最も簡便に実現できる。この結果であるスコアを目標指標データとすることができる。また、センサノード1のデータを利用して、主観評価のスコアを推測することも可能である。これは適用するセンサや、評価内容によっても異なるが、重回帰分析などの公知の手法を用いて予測式を生成することで可能となる。この予測結果も目標指標データ310として適用できる。目標指標データ310はこのような仕事や生活の満足度といったスコアには限定されない。例えば、目標指標を体重や血圧などの生体情報の測定結果とすることもできる。行動指標データ310を体重とした場合においては、ダイエットのための生活改善をサポートすることができるようになる。これは、健康診断などで得られるような、他の健康指標においても同様のヘルスケア目的に応用することが可能になる。
The target index data 310 records an index that the user 8 desires to improve over a long period of time. For example, the question of what action should be taken and what should be done when a person wants to improve work efficiency and life satisfaction in their daily life. It becomes. From the viewpoint of work efficiency and satisfaction, work results, goal achievement, objective evaluation, subjective evaluation, etc. can be used. However, in terms of achievement and goal achievement, depending on the type of work, the results may occur once every few months or half a year, and sufficient data necessary for analysis cannot be obtained. Another problem is not being able to capture minute changes every day. In terms of objective evaluation, it is not easy in the long run to ask other people for evaluation on a daily basis.
Therefore, subjective evaluation, for example, answering a questionnaire about once every day or several hours and obtaining the result can be most easily realized. The resulting score can be used as target index data. It is also possible to estimate the subjective evaluation score using the data of the sensor node 1. This depends on the sensor to be applied and the content of the evaluation, but can be made by generating a prediction formula using a known method such as multiple regression analysis. This prediction result can also be applied as the target index data 310. The target index data 310 is not limited to such a score such as satisfaction of work and life. For example, the target index can be a measurement result of biological information such as weight and blood pressure. In the case where the behavior index data 310 is the weight, it is possible to support life improvement for dieting. This can be applied to the same health care purpose in other health indicators such as those obtained in health examinations.
 行動指針生成プログラム240は、処理部でのプログラム処理により、行動要素データ300と目標指標データ310の時系列変化と、相関関係について分析して行動指針を生成する。この行動指針は行動要素の行動定義ID、日時、時間長さ等からなる行動指針データとして、図示を省略した記憶部に保持される。最も簡単な手法を適用するならば、ある行動の時刻が早いとき(例えば出勤時刻が早い場合)に、目標指標データ510の仕事の満足度スコアがいつもあがるのであれば、その行動の時刻を常に早くすべきであるという行動指針を導き出すことができる。このような2つの値の相関性を導く分析手法としては、ピアソンの積率相関係数などが一般的によく知られているが、これらの公知の相関分析手法を適用することができる。また、本分析を行う際には、行動要素データ300から、日や週を超えて同じ行動というのを認識する必要がある。本手法では、例えば、朝夕の通勤、定例会議、昼食、夜のジョギング、睡眠などの習慣行動、習慣ではないイベント行動などを識別して、その日々の時間変化を評価することに基づいている。このような複数日の中で、同じ時間帯の、同じ行動定義の行動要素をグループ分けし、そのひとつのグループを習慣行動とする。この習慣行動には、複数の行動要素が含まれるため、それらの時刻や時間を用いて、相関分析などの定量評価ができる。 The behavior guideline generation program 240 analyzes the time series changes of the behavior element data 300 and the target index data 310 and the correlation by the program processing in the processing unit, and generates a behavior guideline. This action guideline is held in a storage unit (not shown) as action guideline data including action definition ID, date / time, time length, and the like of the action element. If the simplest method is applied, when the time of an action is early (for example, when the attendance time is early), if the job satisfaction score of the target index data 510 is always increased, the time of the action is always set. Guide the action that should be done early. Pearson's product-moment correlation coefficient and the like are generally well known as analysis methods for deriving the correlation between these two values, and these known correlation analysis methods can be applied. Further, when performing this analysis, it is necessary to recognize from the behavior element data 300 that the same behavior is exceeded across days and weeks. This technique is based on, for example, identifying morning and evening commuting, regular meetings, lunch, evening jogging, habitual behavior such as sleep, non-habitable event behavior, and the like, and evaluating daily time changes. In such a plurality of days, action elements having the same action definition in the same time zone are grouped, and one group is set as a habit action. Since this habit behavior includes a plurality of behavior elements, a quantitative evaluation such as correlation analysis can be performed using those times and times.
 行動履歴入力プログラム210は、処理部のプログラム処理により、ユーザが簡便に過去や現在の行動内容を、入力装置4を介して入力するためのユーザインタフェースを表示装置3に表示し、入力された内容を行動履歴として、行動履歴データ270に記録する。ここで、行動履歴入力プログラム210はセンサデータ280や行動要素データ300を参照して表示することで、ユーザ8に過去の行動内容を想起させ、ユーザ8の入力を補助することができる。また、行動履歴入力プログラム210は、入力された行動内容をネットワーク9を介して接続されたサーバ5に送信して、同様にデータベースである行動履歴データ511に格納することができる。これにより、データのバックアップや、複数端末からの入力を可能にするだけでなく、他のユーザが生活改善の知見として、サーバ5の行動履歴データ511を活用できる。行動指針生成プログラム240では、導き出した指針を表示装置3に表示し、ユーザ8に通知することで、ユーザ8の生活改善を促すことができる。また、ユーザ8は入力した行動内容をサーバ5に送信するか否かを選択することが可能とすることにより、プライバシーを確保できる。 The action history input program 210 displays on the display device 3 a user interface for allowing the user to easily input past or current action contents via the input device 4 by program processing of the processing unit. Is recorded in the action history data 270 as an action history. Here, the action history input program 210 refers to the sensor data 280 and the action element data 300 and displays them, whereby the user 8 can be reminded of past action contents and can assist the user 8 in input. Moreover, the action history input program 210 can transmit the input action content to the server 5 connected via the network 9 and similarly store it in the action history data 511 that is a database. Thereby, not only data backup and input from a plurality of terminals are enabled, but other users can use the action history data 511 of the server 5 as knowledge of life improvement. In the action guideline generation program 240, the derived guideline is displayed on the display device 3 and notified to the user 8, whereby the life improvement of the user 8 can be promoted. Moreover, the user 8 can ensure privacy by enabling the user to select whether or not to transmit the input action content to the server 5.
 行動提案プログラム250は、処理部のプログラム処理より、行動指針生成プログラム240と連携して、生成され保持された行動指針データを受け取り、行動指針の内容である、行動定義、時刻、時間から過去の行動履歴データ270を検索して合致する行動内容を表示装置3に表示する。ユーザ8は自らの過去の行動を知見として、生活改善の具体策を認識することができる。また、行動提案プログラム250は、サーバ5の行動履歴データ511、つまり他のユーザの行動履歴を参照することもできる。これにより、自らの過去の行動から有効な知見が得られない場合もあるので、他人の行動に学び、生活改善を促すことができる。 The action suggestion program 250 receives the action guideline data generated and held in cooperation with the action guideline generation program 240 from the program processing of the processing unit, and receives past action definitions, time, and time, which are the contents of the action guideline. The action history data 270 is searched and the matching action content is displayed on the display device 3. The user 8 can recognize specific measures for life improvement based on his / her past behavior. Moreover, the action proposal program 250 can also refer to the action history data 511 of the server 5, that is, the action history of another user. Thereby, since effective knowledge may not be obtained from one's past behavior, it is possible to learn from the behavior of others and promote life improvement.
 図25は、図1のPC2の処理部で実行される行動提案プログラム250の処理をフローチャートで詳細に示しており、行動指針生成プログラム240で生成された行動指針データと、行動履歴データ270、及びサーバ5の行動履歴データ511から目標指針を達成するために、より具体的な行動提案を生成する処理の好適な例を示している。 FIG. 25 is a flowchart showing in detail the process of the action suggestion program 250 executed by the processing unit of the PC 2 of FIG. 1. The action guideline data generated by the action guideline generation program 240, the action history data 270, and In order to achieve the target guideline from the action history data 511 of the server 5, a preferred example of a process for generating a more specific action proposal is shown.
 行動指針生成プログラム240が完了して、行動指針データが生成保持されると行動提案プログラム250は、処理251で行動提案処理を開始する。 When the action guideline generation program 240 is completed and the action guideline data is generated and held, the action proposal program 250 starts the action proposal process in process 251.
 処理252では、行動指針生成プログラム240で生成した行動指針データを読み出す。読み出す行動指針データは、目標指標の達成に寄与率の高い習慣行動に含まれる行動要素の、行動定義ID302、日時303、時間長さ306である。 In process 252, the action guideline data generated by the action guideline generation program 240 is read. The action guideline data to be read is the action definition ID 302, the date and time 303, and the time length 306 of the action elements included in the habit action having a high contribution rate to the achievement of the target index.
 処理253では、処理252で読み出した行動指針データの行動要素の行動定義ID302、日時303、時間長さ306と一致するユーザ8の過去の行動内容を、行動履歴データ270から検索して、読み出す。また、PC2がサーバ5にネットワーク9を介して接続され、行動履歴データ511を読み出し可能な場合、重複しない行動履歴あれば読み出す。 In the process 253, the past action content of the user 8 that matches the action definition ID 302, the date and time 303, and the time length 306 of the action element of the action guide data read in the process 252 is retrieved from the action history data 270 and read. When the PC 2 is connected to the server 5 via the network 9 and the action history data 511 can be read, the action history that does not overlap is read.
 処理254では、処理253と同様にPC2がサーバ5にネットワーク9を介して接続され、行動履歴データ511を読み出し可能で、ユーザ8以外のユーザが入力した行動履歴がある場合、行動指針データの行動要素の行動定義ID302、日時303、時間長さ306と一致する行動履歴を読み出す。 In the process 254, similarly to the process 253, the PC 2 is connected to the server 5 via the network 9, can read the action history data 511, and if there is an action history input by a user other than the user 8, the action of the action guideline data An action history that matches the element's action definition ID 302, the date and time 303, and the time length 306 is read.
 処理255では、処理253、処理254で読み出した行動履歴を、例えば図14に示す行動指針表示画面431に示すように、ユーザ8の行動履歴は行動提案表示432に、ユーザ8以外のユーザの行動履歴は行動提案表示433に分けて表示する。行動提案表示432、行動提案表示433に表示する順序は、目標指標が改善した順に並べ替える。この場合、表示装置3の画面サイズによってはすべて表示することができないため、並べ替えた順に表示する。また、すべて表示して画面にスクロール操作のユーザインタフェースを加える。 次に図2は、PC2の個人データ更新プログラム260について詳細に示したブロック図である。個人データ更新プログラム260は、行動定義生成プログラム261、行動評価プログラム262,行動定義更新プログラム263、目標指標更新プログラム264から構成される。 In the process 255, as shown in the action guideline display screen 431 shown in FIG. 14, for example, the action history read out in the processes 253 and 254 is displayed on the action suggestion display 432 and the actions of users other than the user 8 are displayed. The history is displayed separately on the action proposal display 433. The order displayed on the action proposal display 432 and the action proposal display 433 is rearranged in the order in which the target index is improved. In this case, depending on the screen size of the display device 3, it is not possible to display all of them, and therefore, the images are displayed in the sorted order. In addition, a user interface for scrolling operation is added to the screen. Next, FIG. 2 is a block diagram showing in detail the personal data update program 260 of the PC 2. The personal data update program 260 includes an action definition generation program 261, an action evaluation program 262, an action definition update program 263, and a target index update program 264.
 同図において、行動定義生成プログラム261は、行動履歴データ270とセンサデータ280を参照して、行動定義データ290を修正、或いは新たな定義を追加できる。行動定義データ290に格納されている閾値等の初期値は、ユーザ8が誰であっても共通して当てはまるように設定される。しかしながら、動き等のセンサデータから人の行動を推測する場合、精度を高めようとすると個人差が問題となる。そこで実際の行動内容である行動履歴データ270をもとに、対応するセンサデータ280を検索して参照し、高い確率で判別可能な新しい判定条件を生成して、行動定義データ290bに追加することができる。また、同様の手法にて初期状態では行動定義データ290には存在しない行動定義を追加することもできる。 In the figure, the action definition generation program 261 can correct the action definition data 290 or add a new definition with reference to the action history data 270 and the sensor data 280. An initial value such as a threshold value stored in the action definition data 290 is set so as to be commonly applied regardless of who the user 8 is. However, when estimating human behavior from sensor data such as movement, individual differences become a problem when attempting to increase accuracy. Therefore, based on the action history data 270 that is the actual action content, the corresponding sensor data 280 is searched and referenced, a new determination condition that can be discriminated with high probability is generated, and added to the action definition data 290b. Can do. In addition, an action definition that does not exist in the action definition data 290 in the initial state can be added by a similar method.
 行動評価プログラム262は、センサデータ280をもとに、目標指標データ310を生成するプログラムである。前記の通り、目標指標データ310を仕事の満足度等に関する主観評価とした場合には、重回帰分析等の手法により、主観評価の結果を、センサデータ280をもとに算出する近似式を生成することができる。行動評価プログラム262は、最も簡単な実装方法では、この主観評価の近似式によって、目標指標データ310を生成するものである。 The behavior evaluation program 262 is a program that generates the target index data 310 based on the sensor data 280. As described above, when the target index data 310 is a subjective evaluation related to job satisfaction, an approximate expression for calculating the result of the subjective evaluation based on the sensor data 280 is generated by a technique such as multiple regression analysis. can do. In the simplest implementation method, the behavior evaluation program 262 generates the target index data 310 based on the subjective evaluation approximate expression.
 行動定義更新プログラム263は、サーバ5と通信して行動定義データ506を読み出して、PC2の行動定義データ290を更新するプログラムである。このとき、行動定義データ290の中でも、行動定義生成プログラム261によって、修正、生成された項目については上書きしない。つまり、個人毎に合わせた判定条件はそのまま残しながら、全体で共通の判定条件は最新の内容を反映することができる。 The behavior definition update program 263 is a program for communicating with the server 5 to read the behavior definition data 506 and updating the behavior definition data 290 of the PC 2. At this time, items corrected and generated by the action definition generation program 261 in the action definition data 290 are not overwritten. That is, while the determination conditions tailored to each individual are left as they are, the determination conditions common to the whole can reflect the latest contents.
 同様に目標指標更新プログラム264は、サーバ5の目標指標データ510を読み出して、目標指標データ310に追加するプログラムである。サーバ5に別のセンサや、アンケート等の集計結果が格納される場合、最新のデータをPC2に反映させることができる。 Similarly, the target index update program 264 is a program that reads the target index data 510 of the server 5 and adds it to the target index data 310. When the server 5 stores another sensor or a summary result such as a questionnaire, the latest data can be reflected on the PC 2.
 図3はセンサデータ280の構成例であり、3軸加速度センサによって50ミリ秒間隔で測定したデータを格納した場合について示している。加速度のデータから人の行動や、特に歩数なども正確に識別するには、1秒間に10回以上の測定が適している。日時281にはセンサが測定した際の、センサノード1における時刻を示している。加速度x282、加速度y283、加速度z284はそれぞれ3軸の加速度測定値を示している。加速度センサの出力のデジタル値、または、加速度センサの出力のアナログ値をAD変換したデジタル値の分解能が8ビットである場合、値の範囲は0~255になる。加速度センサの測定範囲が±3G~±5G程度であれば、人の動きを識別するのに十分である。温度285はセンサノード1で測定した温度を示している。脈波286は、センサノード1に、光学式等の脈拍センサを備えている場合にのみ、脈波形の出力値を格納する。 FIG. 3 is a configuration example of the sensor data 280, and shows a case where data measured by a triaxial acceleration sensor at intervals of 50 milliseconds are stored. Measurement of 10 times or more per second is suitable for accurately identifying human behavior and particularly the number of steps from acceleration data. The date 281 indicates the time at the sensor node 1 when the sensor measures. An acceleration x282, an acceleration y283, and an acceleration z284 each indicate a triaxial acceleration measurement value. When the resolution of the digital value of the acceleration sensor output or the digital value obtained by AD conversion of the analog value of the acceleration sensor output is 8 bits, the value range is 0 to 255. If the measurement range of the acceleration sensor is about ± 3G to ± 5G, it is sufficient to identify human movement. A temperature 285 indicates the temperature measured by the sensor node 1. The pulse wave 286 stores the output value of the pulse waveform only when the sensor node 1 includes a pulse sensor such as an optical type.
 図4は、加速度のセンサデータから、波形が振れた量を示すゼロクロス回数の算出方法を示している。ゼロクロス回数は、動きの量と比例するため、運動量と見なすことができる。また、この運動量のレベルから、睡眠や運動、デスクワーク等の大まかな行動を判別することができる。最も簡単に上述のゼロクロス回数を求める方法としては、3軸の加速度を、1軸のスカラー値に変換することである。姿勢などを考慮しない場合は、スカラー値のみで運動量を推定できる。このとき、人の動きとは無関係な雑音成分を除去するために、バンドパスフィルタをかけることが好適である。また、細かな動きの検出を抑制したい場合には、閾値を設定するのが好適である。例えば、図4では、0.03Gと加速度スカラー値11が交差した点12のみを検出してカウントしており、運動量から人の行動を推定する際に、実際のデータを踏まえ、最も適した閾値である。 FIG. 4 shows a method of calculating the number of zero crossings indicating the amount of waveform fluctuation from the acceleration sensor data. Since the number of zero crossings is proportional to the amount of movement, it can be regarded as a momentum. Further, rough behavior such as sleep, exercise, and desk work can be determined from the level of the amount of exercise. The simplest method for obtaining the number of zero crosses is to convert triaxial acceleration into a uniaxial scalar value. When the posture is not taken into consideration, the momentum can be estimated only by the scalar value. At this time, it is preferable to apply a band-pass filter in order to remove a noise component unrelated to human movement. In addition, when it is desired to suppress detection of fine movement, it is preferable to set a threshold value. For example, in FIG. 4, only the point 12 where 0.03G and the acceleration scalar value 11 intersect is detected and counted, and when estimating human behavior from the amount of exercise, the most appropriate threshold value based on actual data It is.
 図5は、センサデータ280から算出した運動量、および歩数のデータを格納する運動量、歩数データ320の構成例を示している。運動量データは、行動判別プログラム230にて生成される中間データであり、本データと行動定義データ290の判定条件を比較することで、定義や処理を容易にする。運動量の算出方法は図4に示した通りである。ひとつの値の時間範囲は、認識したい行動の最小時間範囲になるが、1日の行動で想起可能な行動単位を想定すると、1分~5分程度が好適である。日時321は、示す値から1分間に対応したデータが、同行に格納されていることを示す。運動量232は、図4の方法で算出した値を格納する。歩数323は、最も簡単な方法を示せば、加速度のスカラー波形に対し、自己相関などの公知の手法で周期性を検出し、検出された周期の連続数から歩数を算出することができる。 FIG. 5 shows a configuration example of the exercise amount calculated from the sensor data 280 and the exercise amount and step number data 320 for storing the step number data. The amount of exercise data is intermediate data generated by the behavior determination program 230, and the definition and processing are facilitated by comparing the determination conditions of this data and the behavior definition data 290. The method of calculating the amount of exercise is as shown in FIG. The time range of one value is the minimum time range of the action to be recognized. However, assuming an action unit that can be recalled by a daily action, approximately 1 to 5 minutes is preferable. The date / time 321 indicates that data corresponding to one minute from the indicated value is stored in the same row. The amount of exercise 232 stores a value calculated by the method of FIG. If the simplest method is shown, the step count 323 can detect periodicity with respect to a scalar waveform of acceleration by a known method such as autocorrelation, and calculate the step count from the number of consecutive detected cycles.
 図6は行動定義データ290の構成例を示している。行動定義データ290は、複数の行動を分類する判定条件を格納しており、後から追加、修正などで高精度化や、個人差への対応が可能である。運動量、歩数データ320に対して判別することで、処理や条件の設定が容易になる。行動定義ID291は、定義される行動に固有の識別IDである。行動定義名292は同行に格納される条件で判別される行動の名前を示している。判別条件293には複数の条件、閾値を格納することができる。例えば、運動量や歩数に関する定義のみならず、その他の検出条件も指定することができ、行動判別プログラム230では、それぞれの条件に対し、論理和(あるいは論理積でも設定可)にて判別処理をする。判別された1つの行動単位を行動要素と呼ぶ。以下に判別条件の構成例を示す。運動量294は運動量、歩数データ320に格納される運動量322に対応する条件を示している。歩数295は歩数323に対応する条件を示す。連続時間296は、運動量294や歩数295の条件にどれだけの時間合致していれば、判別とするかを示す。つまり、ある一定時間継続した場合にのみ合致させることがでる。これは動きの少ない安静時間が1分程度と短ければ特徴的な行動と捉えられないが、10分程度安静にしている場合には、特徴的な行動として想起される可能性が高いからである。 FIG. 6 shows a configuration example of the action definition data 290. The behavior definition data 290 stores determination conditions for classifying a plurality of behaviors, and it is possible to increase the accuracy and cope with individual differences later by addition and correction. By determining the amount of exercise and the step count data 320, processing and conditions can be easily set. The action definition ID 291 is an identification ID unique to the action to be defined. The action definition name 292 indicates the name of the action determined by the conditions stored in the same row. The determination condition 293 can store a plurality of conditions and threshold values. For example, in addition to definitions relating to the amount of exercise and the number of steps, other detection conditions can also be specified, and the action determination program 230 performs a determination process by logical sum (or logical product can also be set) for each condition. . One determined behavior unit is called a behavior element. A configuration example of the determination condition is shown below. The momentum 294 indicates a condition corresponding to the momentum 322 stored in the momentum and step count data 320. The step count 295 indicates a condition corresponding to the step count 323. The continuous time 296 indicates how much time is matched with the conditions of the momentum 294 and the number of steps 295 to determine. In other words, it can be matched only when it continues for a certain period of time. This is because if the rest time with little movement is as short as 1 minute, it cannot be regarded as a characteristic action, but if it is resting for about 10 minutes, it is likely to be recalled as a characteristic action. .
 図7は、行動判別プログラム230によって判別された行動を格納している行動要素データ300を示す。行動要素INDEX301は、すべての行動要素に対し固有な識別IDである。行動定義ID302は判別した条件に対応する行動定義ID291を格納する。日時303は、行動要素の存在する日付と時間を示しており、開始日時304と、終了日時305を含む。時間長さ306は、行動要素の継続時間であり、終了日時305と開始日時304の差分である。上記のように、行動要素は、運動量のレベルや歩数と、日時(時刻)によって特徴付けられ、ユーザ8が後から見て、実際の記憶を想起可能とする。また、これらの時間を後述のように、長期的に分析して、定量的な評価を行うことを可能とする。 FIG. 7 shows action element data 300 storing actions determined by the action determination program 230. The action element INDEX 301 is a unique identification ID for all the action elements. The action definition ID 302 stores an action definition ID 291 corresponding to the determined condition. The date and time 303 indicates the date and time when the action element exists, and includes a start date and time 304 and an end date and time 305. The time length 306 is the duration of the action element, and is the difference between the end date / time 305 and the start date / time 304. As described above, the behavior element is characterized by the amount of exercise, the number of steps, and the date and time (time), so that the user 8 can recall the actual memory when viewed later. Further, as described later, these times can be analyzed in the long term and quantitative evaluation can be performed.
 図8は本実施例における行動指針生成プログラム240で、長期的な行動の評価、つまり人の習慣的な行動について定量的な評価を行う手法を示している。行動要素データ300に対し、近隣の時刻、及び同じ行動定義であれば、類似の行動としてグループ分けする。これは、複数日に跨って類似の行動であるため、習慣行動、あるいは生活リズムと呼ぶことができる。図8は1週間の行動要素データ300を解析した例を示す。図8の例では、近隣の時刻で、同じ行動定義のグループ601~607を分類した。このときの近隣とは前後1時間程度の範囲で処理している。
  次に、それぞれのグループを習慣行動608~615として遷移図状に表現する。また、習慣行動608~615を構成する行動要素の前後関係から、習慣行動の遷移関係を知ることができる。この遷移関係をもとに、習慣行動608~615に矢印を付加することができ、生活のパターンを認識しやすくする。また、それぞれの遷移回数から、遷移確率を算出することができるため、特徴的な行動の遷移パターンを知ることもできる。習慣行動608~615は円などの図形で表現し、大きさでぞれぞれの行動の時間の長さを示す。習慣行動の時間長さとは、習慣行動を構成する行動要素の時間長さを平均して容易に算出可能である。また、それぞれの習慣行動を表現する位置は構成する行動要素の中心点、行動要素の3を例にすれば時刻616となる。上記表現によって、人が見て、色や前後関係から実際の行動を想起できるだけでなく、それぞれの習慣行動について、構成する行動要素の時間変化を定量的に評価できるようになる。
FIG. 8 shows a method for performing a long-term behavior evaluation, that is, a quantitative evaluation of a person's habitual behavior, in the behavior guideline generation program 240 in this embodiment. For the behavior element data 300, if the neighboring time and the same behavior definition are used, they are grouped as similar behaviors. Since this is a similar behavior across multiple days, it can be called habit behavior or life rhythm. FIG. 8 shows an example in which the behavioral element data 300 for one week is analyzed. In the example of FIG. 8, groups 601 to 607 having the same action definition are classified at neighboring times. The neighborhood at this time is processed in the range of about 1 hour before and after.
Next, each group is expressed in a transition diagram as habit behaviors 608 to 615. Further, it is possible to know the transition relationship of habit actions from the context of the action elements constituting habit actions 608 to 615. Based on this transition relationship, an arrow can be added to the habit behaviors 608 to 615, making it easier to recognize a life pattern. Moreover, since the transition probability can be calculated from the number of times of each transition, it is possible to know a characteristic behavior transition pattern. The habit actions 608 to 615 are expressed by a figure such as a circle, and indicate the length of time of each action in size. The time length of the habit behavior can be easily calculated by averaging the time lengths of the behavior elements constituting the habit behavior. Further, the position where each habit behavior is expressed is the time point 616 when the central point of the constituent behavior elements and the behavior element 3 are taken as an example. By the above expression, not only can a person see and recall an actual action from the color and context, but also the temporal change of the constituting behavior element can be quantitatively evaluated for each habit action.
 図9は、図8の習慣行動608~615を例に、行同じ時間帯で同じ行動定義の行動要素をグループ分けした習慣行動データ330の構成例を示す。行動指針生成プログラム240では、習慣行動データ330をもとに、それぞれの習慣行動を構成する行動要素の時間について、目標指数データ310との相関分析を行う。習慣行動INDEX331は、それぞれの習慣行動について固有な識別番号である。行動定義ID332は、習慣行動を構成する行動要素に共通な行動定義IDを示す。開始時刻333と終了時刻334は、習慣行動を構成する行動要素の平均の開始、終了時刻である。これをもとに習慣行動の表示位置を変える。時間長さ335は終了時刻334と開始時刻333の差分である。
  行動要素INDEX336は、習慣行動を構成している行動要素のINDEXである。つまり、この行動要素INDEX336から行動要素データ300を検索することで、習慣行動を構成する行動要素のすべての情報を読み出すことができる。この読み出した時間情報をもとに、目標指数データ310と相関分析を行う。遷移元INDEX337は、習慣行動の遷移関係を知るのに必要な情報である。この遷移元INDEX337に基づいて、習慣行動を表示する際に矢印を結ぶことができる。また、遷移回数338はそれぞれの遷移元から遷移した回数をカウントしたものであり、遷移回数338をもとに遷移確率を知ることができる。
FIG. 9 shows an example of the configuration of the habit behavior data 330 in which the habit behaviors 608 to 615 in FIG. In the action guideline generation program 240, based on the habit action data 330, a correlation analysis with the target index data 310 is performed with respect to the time of action elements constituting each habit action. The habit action INDEX 331 is a unique identification number for each habit action. The behavior definition ID 332 indicates a behavior definition ID common to the behavior elements constituting the habit behavior. The start time 333 and the end time 334 are the average start and end times of the behavior elements constituting the habit behavior. Based on this, the display position of habit behavior is changed. The time length 335 is a difference between the end time 334 and the start time 333.
The behavior element INDEX 336 is an INDEX of the behavior element constituting the habit behavior. That is, by searching the behavior element data 300 from the behavior element INDEX 336, all information of the behavior elements constituting the habit behavior can be read out. Based on the read time information, correlation analysis with the target index data 310 is performed. The transition source INDEX 337 is information necessary to know the transition relationship of habit behavior. Based on the transition source INDEX 337, an arrow can be connected when displaying a habit action. The number of transitions 338 is obtained by counting the number of transitions from each transition source, and the transition probability can be known based on the number of transitions 338.
 図10は、行動履歴データ270の構成例を示している。行動履歴データ270は、ユーザ8が行動履歴入力プログラム210を介して、入力した結果を格納する。また、センサノード1でユーザ8がボタン操作によって入力したイベント情報も格納する。開始日時272と終了日時273によって、行動の期間を示す。行動内容274は、ユーザ8が直接、入力装置4を利用して入力した内容、もしくは複数の候補から選択した内容を格納する。ユーザ8が自ら入力したデータを残すことで、行動定義データ290の修正や追加に利用でき、また入力内容を利用した行動提案内容を生成できる。 FIG. 10 shows a configuration example of the action history data 270. The action history data 270 stores results input by the user 8 via the action history input program 210. In addition, event information input by the user 8 by button operation in the sensor node 1 is also stored. The period of action is indicated by a start date 272 and an end date 273. The action content 274 stores content directly input by the user 8 using the input device 4 or content selected from a plurality of candidates. By leaving the data input by the user 8 himself / herself, the action definition data 290 can be used for correction or addition, and action proposal contents using the input contents can be generated.
 図11は、本実施例における行動指針生成プログラム240が生成して表示装置3に伝送して表示する習慣行動表示画面400で表示例である。この表示例では、2008年の6月について、平日表示401と休日表示402をわけて習慣行動403~428を算出している。休日と平日をわけることにより、例えば平日が仕事で、平日と休日の生活パターンが大きくことなるという場合にも、ユーザ8から見て自らの習慣行動や生活パターンを認識しやすくすることができる。また、休日と平日では、同じ時間帯の類似行動でも、全く意味が異なる場合があるため、解析の精度向上にも繋がる。それぞれの習慣行動403~428は、行動凡例429によって色分けされる。典型的には、動きの多い行動に暖色系、動きの少ない行動に寒色系を割り当てると直感的に認識できる。この色分けと行動の時刻、および遷移関係から、ユーザ8は(…)で示す実行動を想起可能となる。上記の表示方法では、習慣行動403~428の配置は、時刻によって横軸が指定されるが、縦軸には指定はなく、それぞれが重ならないように最適化して並べる。 FIG. 11 is a display example on the habit action display screen 400 that is generated by the action guideline generation program 240 in the present embodiment, transmitted to the display device 3, and displayed. In this display example, for June 2008, habit behaviors 403 to 428 are calculated by dividing weekday display 401 and holiday display 402. By separating holidays and weekdays, it is possible to make it easier for the user 8 to recognize his / her habits and lifestyle patterns even when, for example, the weekdays are work and the lifestyle patterns of the weekdays and holidays are large. Moreover, since the meaning may differ completely even if it is a similar action of the same time slot | zone on a holiday and a weekday, it will also lead to the improvement of the precision of analysis. Each of the habit actions 403 to 428 is color-coded by the action legend 429. Typically, it can be intuitively recognized that a warm color system is assigned to an action with a lot of movement and a cold color system is assigned to an action with a little movement. From the color classification, the time of action, and the transition relationship, the user 8 can recall the execution action indicated by (...). In the above display method, the habit actions 403 to 428 are arranged on the horizontal axis according to the time, but are not specified on the vertical axis, and are arranged so as to be optimized so that they do not overlap each other.
 図12は、実際の1年間のある1人のユーザのデータをもとに、行動指針生成プログラム240にて解析を行った結果をグラフ500に示す。それぞれのプロットが一週間の平均データを示している。グラフ500の縦軸は目標指標データ310として、人の仕事効率を示す指標を適用する。ここで仕事効率は、人が仕事時間内で、いかに仕事に没頭しているかを示しており、過去の仕事中に複数回のアンケート(自己診断)で得た結果と、アンケート回答前後の加速度データに基づく重回帰分析によって、加速度データのみから仕事に没頭している状態を指標として算出できるようにしたものである。グラフ500の横軸には10時ごろに現れる安静の習慣行動を構成する行動要素の時間長さを示す。図12を見てわかるとおり、プロットが直線に近い並びとなることから相関関係にあることが疑われる。また、実際に相関分析をすると、相関係数が0.59となり、有意確率も0.0001以下であることから、有意な相関があることがわかる。従って、この安静時間が長いほど、仕事に没頭しており、仕事効率が高いということがわかる。このように、すべての習慣行動について分析することで、人それぞれの目標指数と習慣行動との相関が得られる。行動指針生成プログラム240では、この相関性をもとに行動指針を表示し、提案する。 FIG. 12 is a graph 500 showing the result of analysis by the action guideline generation program 240 based on the data of one user in an actual year. Each plot shows the average data for one week. The vertical axis of the graph 500 applies an index indicating human work efficiency as the target index data 310. Here, work efficiency indicates how a person is immersed in work during work hours. Results obtained from multiple questionnaires (self-diagnosis) during past work and acceleration data before and after the questionnaire responses. By using multiple regression analysis based on the above, it is possible to calculate the state of being immersed in work from only acceleration data as an index. The horizontal axis of the graph 500 indicates the time length of the behavioral elements constituting the resting habitual behavior that appears around 10:00. As can be seen from FIG. 12, since the plots are arranged close to a straight line, it is suspected that there is a correlation. Further, when the correlation analysis is actually performed, the correlation coefficient is 0.59, and the significance probability is 0.0001 or less, which indicates that there is a significant correlation. Therefore, it can be seen that the longer this rest time, the more immersed in work and the higher the work efficiency. In this way, by analyzing all habit behaviors, a correlation between each person's goal index and habit behavior can be obtained. The action guideline generation program 240 displays and proposes an action guideline based on this correlation.
 図13は、行動提案プログラム240が生成し、表示装置3に伝送して表示する行動指針表示画面430の表示例を示している。平日表示401は習慣行動表示400と同じ習慣行動を示しているが、図12で示した手法によってそれぞれの習慣行動403~416と目標指数(例では仕事効率)との相関係数を算出し、縦軸の値としている。この結果、どの習慣行動と、目標指数の改善が関係しているか一目で認識することができる。さらに、行動を改善するための方向性、つまり指針も同時に示すため、最も関連する習慣行動には、目標指数を改善する方向の矢印を追加する。例えば、図12の結果を用いると、時間を長くすると仕事効率が改善するため、習慣行動408を横に広げる矢印を追加し、ユーザが自らの生活パターンを認識すると同時に、改善方法を一目で認識することができる。また、有意な相関があると認められれば、最も相関のある習慣行動以外にも、同指針を追加して表示することも可能である。 FIG. 13 shows a display example of the action guideline display screen 430 generated by the action proposal program 240, transmitted to the display device 3, and displayed. The weekday display 401 shows the same habit behavior as the habit action display 400, but the correlation coefficient between each habit action 403 to 416 and the target index (work efficiency in the example) is calculated by the method shown in FIG. The value on the vertical axis. As a result, it is possible to recognize at a glance which habit behavior and improvement of the target index are related. Furthermore, since a direction for improving the behavior, that is, a guideline is also shown, an arrow indicating a direction for improving the target index is added to the most relevant habit behavior. For example, using the results shown in FIG. 12, work efficiency improves when the time is extended. Therefore, an arrow that spreads the habit behavior 408 to the side is added, and the user recognizes his / her own life pattern and at the same time recognizes the improvement method at a glance. can do. If it is recognized that there is a significant correlation, it is also possible to display the same guideline in addition to the most correlated habit behavior.
 図14は、行動提案プログラム250が生成して、表示装置3に伝送して表示する行動提案表示画面431の表示例を示している。行動提案プログラム250では、行動指針生成プログラム240が生成した行動指針表示画面430の行動指針の結果をもとに、行動履歴データ270を検索し、行動指針と合致する過去の行動履歴を表示する。例えば、習慣行動408について検索すると、行動提案表示432に示す例のように、過去に実際に入力した内容を表示する。これにより、自己の行動に基づいた、最適な行動提案内容を表示することができる。また、自己の行動履歴以外からも知見を得られる場合も想定される。行動提案表示433では、サーバ5の行動履歴データ511、つまり他人の過去の行動からも、行動指針に沿って検索することで、知見を得ることを可能としている。これは、自分の入力した行動履歴データ270が少ない場合や、自己の過去の行動からだけでは十分な改善結果が得られない場合に有効である。 FIG. 14 shows a display example of an action proposal display screen 431 that is generated by the action proposal program 250, transmitted to the display device 3, and displayed. The action proposal program 250 searches the action history data 270 based on the result of the action guideline on the action guideline display screen 430 generated by the action guideline generation program 240, and displays the past action history that matches the action guideline. For example, when a search is made for the habit behavior 408, the content actually input in the past is displayed as in the example shown in the behavior proposal display 432. Thereby, the optimal action proposal content based on one's action can be displayed. In addition, it is assumed that knowledge can be obtained from other than the own action history. In the action proposal display 433, it is possible to obtain knowledge by searching along the action guideline from the action history data 511 of the server 5, that is, from past actions of others. This is effective when the action history data 270 input by the user is small or when a sufficient improvement result cannot be obtained only from the past actions of the user.
 図15は行動履歴入力プログラム210が生成し、表示装置3に伝送して表示する行動入力画面440の表示例を示している。行動入力画面440では、ユーザ8に対し効率的に過去の行動を入力させるため、日時選択441で指定した日時の運動量グラフ442、時刻444と、判別された行動要素443に表示する。上記の運動量や行動要素を見ながら入力することで、詳細な時間の区切りなどを忘れていても簡便に入力可能であり、既に大まかな行動を行動要素として判別してあるので、より詳細な行動内容やコメントを想起することが可能になる。 FIG. 15 shows a display example of the action input screen 440 generated by the action history input program 210, transmitted to the display device 3, and displayed. In the action input screen 440, in order to allow the user 8 to input past actions efficiently, the action amount graph 442 and the time 444 of the date and time specified by the date and time selection 441 are displayed on the determined action element 443. By entering while observing the above momentum and behavior elements, it is possible to input easily even if you forget detailed time breaks, etc. Since rough actions have already been identified as behavior elements, more detailed behavior It is possible to recall contents and comments.
 図16では処理部が実行する行動判別プログラム230の処理を、フローチャートで詳細に示しており、人の動きや生体情報から、人の行動を判別する処理を実現する好適な例を示している。図3の処理では、人の行動を数種類に分類するならば、動きの量に特徴が現れることを利用し、加速度などの人の動きを計測したセンサデータを、一度動きの量を表す運動量データに変換する。また、動きデータの波形の周期性から、歩数を検出し、移動しているかの判別に利用する。算出した運動量と歩数を、行動定義データ290の判定条件と比較し、行動を判別する。運津量、歩数データ320は、不揮発で、一度計算したデータは、行動判別プログラム230が終了しても保持されることが望ましい。 FIG. 16 shows in detail a flowchart of the process of the action determination program 230 executed by the processing unit, and shows a preferred example for realizing a process of determining a person's action from a person's movement and biological information. In the process of FIG. 3, if human behavior is classified into several types, using the fact that a feature appears in the amount of movement, sensor data obtained by measuring human movement such as acceleration is used as momentum data that represents the amount of movement once. Convert to In addition, the number of steps is detected from the periodicity of the waveform of the motion data, and is used to determine whether the user is moving. The calculated amount of exercise and the number of steps are compared with the determination condition of the action definition data 290 to determine the action. It is desirable that the amount of unloading and step count data 320 is non-volatile, and the data once calculated is retained even after the action determination program 230 ends.
 処理231で。行動判別プログラム230の処理を開始する。行動判別プログラム230は、センサデータ280に新しいデータが追加されたか、更新されたかを検知して開始する。 Processing 231. The processing of the action determination program 230 is started. The behavior determination program 230 starts by detecting whether new data is added to the sensor data 280 or updated.
 処理232では、センサデータに対し、行動判別を行う範囲(期間)において、運動量、歩数データ320が既に算出済みで、記録されているかを確認する。もし、算出済みであれば、これらの算出処理は行わずに処理235に進み、算出済みでなければ処理233に進む。 In the process 232, it is confirmed whether or not the exercise amount and the step count data 320 have already been calculated and recorded in the range (period) in which the action is determined for the sensor data. If the calculation has been completed, the process proceeds to process 235 without performing these calculation processes. If the calculation has not been completed, the process proceeds to process 233.
 処理233では、センサデータ280から運動量を算出し、運動量、歩数データ320に記録する。本処理においては、例えばセンサデータ280が3軸加速度センサの波形データであれば、ベクトルの絶対値であるスカラー値に変換したのち、波形が単位時間当たりに何回振れたかをカウントしたゼロクロス回数を運動量とする。ここでの単位時間は、数秒間という単位の動きは行動と見なさないため、1分程度が望ましい。本処理において、中間的に生成したスカラー値に、バンドパスフィルタをかけて、人の動きと無関係な周波数成分を除去することが望ましい。 In the process 233, the amount of exercise is calculated from the sensor data 280 and recorded in the amount of exercise / step count data 320. In this processing, for example, if the sensor data 280 is waveform data of a three-axis acceleration sensor, the number of zero crosses obtained by counting how many times the waveform has shaken per unit time after converting to a scalar value that is an absolute value of a vector is obtained. Let it be momentum. The unit time here is preferably about 1 minute since a movement of a unit of several seconds is not regarded as an action. In this process, it is desirable to apply a band pass filter to the scalar value generated in the middle to remove frequency components unrelated to human movement.
 処理234では、センサデータ280の人の動きを計測したデータから、歩数を算出する。ここでも前記処理233と同様に、スカラー値を一度算出し、それをFFT(周波数解析)か、自己相関分析等の公知の手段で、周期性を検出し、周期性があれば、単位時間あたりの周期が続いた数をカウントし、歩数とする。算出した歩数を運動量、歩数データ230に記録する。 In the process 234, the number of steps is calculated from the data obtained by measuring the movement of the person in the sensor data 280. Here, similarly to the processing 233, the scalar value is calculated once, and the periodicity is detected by a known means such as FFT (frequency analysis) or autocorrelation analysis. Count the number of steps followed by the number of steps. The calculated number of steps is recorded in the exercise amount / step count data 230.
 処理235では、運動量、歩数データ230を参照し、運動量、歩数の値を、それぞれ行動定義データ290に含まれる判別条件と比較していく。 Processing 235 refers to the amount of exercise and step count data 230, and compares the amount of exercise and the number of steps with the discrimination conditions included in the action definition data 290, respectively.
 処理236では、前記処理235で合致した結果を、その行動定義の名前やID,開始時刻、終了時刻などの情報を行動要素データ300に記録する。 In the process 236, information such as the name and ID of the action definition, the start time, and the end time is recorded in the action element data 300 as a result of matching in the process 235.
 処理237で行動判別プログラム231の処理を終了する。行動判別プログラム231は、センサデータ280が追加される毎に実行する。 In process 237, the process of the action determination program 231 is terminated. The behavior determination program 231 is executed every time sensor data 280 is added.
 図17は、行動指針生成プログラム240の処理をフローチャートで詳細に示しており、行動要素データ300と、目標指標データ310から、目標指標を改善するのに最適な行動指針を生成する処理の好適な例を示している。 FIG. 17 shows the process of the action guideline generation program 240 in detail in a flowchart, and it is preferable that the action guideline optimal for improving the target index is generated from the action element data 300 and the target index data 310. An example is shown.
 処理241で、行動指針生成プログラム240の処理を開始する。 In process 241, the process of the action guideline generating program 240 is started.
 処理242では、行動指針を生成するにあたり、必要な条件を設定する。例えば、分析対象とする範囲、曜日の指定などを行う。これは予めプログラムで定めた固定値であるか、入力装置4を介してユーザ8が入力した値を用いる。 In the process 242, necessary conditions are set for generating the action guideline. For example, the range to be analyzed and the day of the week are specified. This is a fixed value determined in advance by a program, or a value input by the user 8 via the input device 4 is used.
 処理243では、行動要素データ300から、前記処理242で設定した範囲のデータを読み出して、参照する。 In the process 243, the data in the range set in the process 242 is read from the behavior element data 300 and referred to.
 処理244では、人の行動パターンを表す習慣行動データ330を生成する。1つの習慣行動データを生成するための単位期間は前記処理242で設定した期間を適用する。処理244については、図8に示した通り、この単位期間の中で、日付に関わらず、時刻の近い同じ行動定義の行動要素をひとつの習慣行動データをしてグループ分けする。これら習慣行動には識別IDである習慣行動IDを付加する。この時刻の近さの設定においては、ユーザ8が見たい行動パターンの粒度によって異なるが、いずれの場合においても1~2時間程度が望ましい。ただし、睡眠等の1日に1、2回しか現れない習慣行動については、例えば寝返り等で行動の繋がりが分かれるのを防ぐため、この時間を5時間程度にすることが適している。グループ化した習慣行動を構成する行動要素の平均をとって、習慣行動の開始時刻や終了時刻を記録する。また、構成する行動要素のIDを記録する。さらに行動要素の時系列の繋がりから、ある習慣行動に至る直前の習慣行動を遷移元として記録し、それぞれの遷移元からの遷移回数を記録する。上記習慣行動の情報を、習慣行動データ330に記録する。 In process 244, habit behavior data 330 representing a human behavior pattern is generated. As the unit period for generating one habit behavior data, the period set in the processing 242 is applied. In the processing 244, as shown in FIG. 8, within the unit period, the behavior elements of the same behavior definition having the same time are grouped into one habit behavior data regardless of the date. A habit action ID that is an identification ID is added to these habit actions. In setting the closeness of this time, it depends on the granularity of the action pattern that the user 8 wants to see, but in either case, it is preferably about 1 to 2 hours. However, for habitual behaviors that appear only once or twice a day, such as sleep, it is appropriate to set this time to about 5 hours in order to prevent the connection of behaviors from being separated by turning over, for example. The average of the behavioral elements constituting the grouped habitual behavior is taken and the start time and end time of the habitual behavior are recorded. Moreover, ID of the action element which comprises is recorded. Further, the habit behavior immediately before reaching a certain habit behavior from the time series connection of the behavior elements is recorded as a transition source, and the number of transitions from each transition source is recorded. Information on the habit behavior is recorded in the habit behavior data 330.
 処理245では、分析範囲内の目標指数データをすべて読み出して参照し、さらに目標指数データの日時に対応する習慣行動データを読み出す。例えば目標指数データが2008年の毎平日の仕事効率であれば、同様に習慣行動データ330からも2008年の習慣行動を読み出して比較する。分析するために、目標指標と対応する毎平日の行動要素を、それぞれの習慣行動から読み出す。ここで同じ日に複数の行動要素が存在する場合は、時刻の平均をとって1つの行動要素とする。次に、各習慣行動に含まれる毎平日の行動要素の時刻や時間長さ、遷移関係等と、毎平日の目標変数を相関分析し、習慣行動と目標変数の相関係数を算出する。 In the process 245, all target index data within the analysis range is read and referenced, and further, habit behavior data corresponding to the date and time of the target index data is read. For example, if the target index data is the work efficiency of every weekday in 2008, the habit behavior in 2008 is similarly read from the habit behavior data 330 and compared. In order to analyze, each weekday behavior element corresponding to the target index is read from each habit behavior. Here, when there are a plurality of action elements on the same day, the average of the times is taken as one action element. Next, a correlation analysis is performed between the time and duration of each weekday action element included in each habit behavior, the transition relationship, and the like, and the target variable every weekday, and the correlation coefficient between the habit action and the target variable is calculated.
 処理246では、表示装置3に習慣行動を相関係数の高い順がわかるように関連づけて表示する。 In the process 246, the habit behavior is displayed in association with the display device 3 so that the order of the correlation coefficient is high.
 処理247では、最も相関係数の高い習慣行動に、目標変数を向上させるための行動指針、例えば、時間を早くする、遅くする、長くする、短くするなどの指示を表示する。 In the process 247, an action guideline for improving the target variable is displayed on the habit action having the highest correlation coefficient, for example, an instruction to make the time earlier, slower, longer or shorter.
 処理248で行動指針生成プログラム240の処理を完了する。 Processing 248 completes the action guideline generation program 240 processing.
 図18は本実施例におけるセンサノード1の構成の一例を示す。センサノード1は、アンテナ115を備えた無線通信部106と、加速度センサ102、脈拍センサ103、温度センサ104と、マイクロコンピュータ120と、マイクロコンピュータ120に一定間隔でトリガをかけるためのタイマとして機能し、さらに時刻情報を生成するリアルタイムクロック(Real Time Clock:RTC)105と、書き換え可能な不揮発な記憶媒体であるストレージ140、イーイーピーロム(Electrically Erasable and Programmable Read Only Memory:EEPROM)160と、文字や波形、グラフ等を表示するLCD101と、マイクロコンピュータ120に対してトリガをかけることができる複数のスイッチ110、111と、端子112への外部機器からのUSB接続を検出してマイクロコンピュータ120にトリガをかけ、その状態をマイクロコンピュータ120に出力する外部電源検出部108と、マイクロコンピュータ120とのシリアル通信によって送信されたデータをUSB接続の外部機器に転送するUSB通信部107と、2次電池26と、パーソナルコンピュータ等の外部機器とのUSB接続を介して供給される電源で2次電池113を充電し、または2次電池113の代わりにセンサノード1に電力を供給する充電/給電回路部109と、USBケーブルを接続する端子25で構成されている。 FIG. 18 shows an example of the configuration of the sensor node 1 in this embodiment. The sensor node 1 functions as a wireless communication unit 106 including an antenna 115, an acceleration sensor 102, a pulse sensor 103, a temperature sensor 104, a microcomputer 120, and a timer for triggering the microcomputer 120 at regular intervals. Furthermore, a real time clock (RTC) 105 that generates time information, a storage 140 that is a rewritable non-volatile storage medium, an EEPROM (Electrically Erasable and Programmable Read Memory EEPROM) 160, characters, Trigger the microcomputer 120 by detecting the USB connection from the external device to the LCD 101 for displaying the waveform, graph, etc., a plurality of switches 110, 111 that can trigger the microcomputer 120, and the terminal 112. Over An external power supply detection unit 108 that outputs the state to the microcomputer 120, a USB communication unit 107 that transfers data transmitted by serial communication with the microcomputer 120 to an external device connected via USB, a secondary battery 26, a personal computer A charging / power feeding circuit unit 109 that charges the secondary battery 113 with power supplied via a USB connection with an external device such as a computer, or supplies power to the sensor node 1 instead of the secondary battery 113, and a USB The terminal 25 is connected to a cable.
 EEPROM160には、図18に示すように、イベントの日時を記録する領域152と、イベントを分類する識別符号であるイベントIDを記録する領域153を含むイベント記録テーブル150と、イベントIDを選択する元となる項目であるイベントIDを記録する領域155と、イベントIDを選択する際に、対応するアイコン画像をLCD101に表示するためのデータであるアイコンを記録する領域156を含むイベントリストテーブル154を備える。イベントリストテーブル154は書き換え可能であるため、センサノード1を使用するユーザによって使用頻度の高い任意のイベントを設定し、記録することができる。 As shown in FIG. 18, the EEPROM 160 has an area 152 for recording the date and time of the event, an event recording table 150 including an area 153 for recording an event ID that is an identification code for classifying the event, and a source for selecting the event ID. The event list table 154 includes an area 155 for recording an event ID that is an item to be displayed, and an area 156 for recording an icon that is data for displaying a corresponding icon image on the LCD 101 when an event ID is selected. . Since the event list table 154 is rewritable, any event that is frequently used can be set and recorded by the user using the sensor node 1.
 イベント記録テーブル150にはイベント発生の日時だけでなく、イベントIDを付加することにより、簡単な操作でイベントの内容を記し、後からイベント情報を閲覧したときに内容を容易に思い出すことができる。 By adding not only the event occurrence date and time but also the event ID to the event record table 150, the event contents can be recorded by a simple operation, and the contents can be easily remembered later when viewing the event information.
 同図に示すように、ストレージ140には、センシングしたデータを記録するためのデータテーブル141を含む。データテーブル141に記録されるデータは、無線通信部16から送信する際の1パケットごとに可変長で区切る。これにより、ストレージ140から読み出した1パケット分のデータをそのままデータを加工することなく無線または有線送信可能とすることで、処理を減らすことができる。 As shown in the figure, the storage 140 includes a data table 141 for recording sensed data. Data recorded in the data table 141 is delimited by a variable length for each packet transmitted from the wireless communication unit 16. Thus, processing can be reduced by enabling data for one packet read from the storage 140 to be transmitted wirelessly or by wire without processing the data as it is.
 1つのパケットは、対応するアドレス142の位置に記録されており、フラグを記録する領域143もデータテーブル141に含む。アドレス142はデータテーブル141内で一意に割り振られており、ストレージ140はマイクロコンピュータ100からシリアル通信にて読出し、または書込みコマンド内に含まれるアドレスを参照して、ストレージ160に記録された任意の位置のデータを読出し、または書き込むことができる。 One packet is recorded at the position of the corresponding address 142, and an area 143 for recording a flag is also included in the data table 141. The address 142 is uniquely assigned in the data table 141, and the storage 140 is read from the microcomputer 100 by serial communication, or refers to the address included in the write command, and is stored in an arbitrary position recorded in the storage 160. Data can be read or written.
 フラグ143は、そのデータが無線送信された際に、すべて送信成功であった場合には1を、送信失敗のデータを含んでいれば0を書き込んでいる。つまり、後からストレージ160のパケットを読み出した際に、未送信データを含むか否かを判断することができ、未送信データのみを効率的に、残さず読み出すことを可能にする。 In the flag 143, when the data is transmitted wirelessly, 1 is written if all the transmissions are successful, and 0 is written if the data includes transmission failure data. That is, when a packet in the storage 160 is read later, it can be determined whether or not untransmitted data is included, and only untransmitted data can be efficiently read without being left.
 マイクロコンピュータ120は、演算処理を実行するCPU121と、CPU121で実行するプログラム131などを記録するROM130と、データなどを一時的に記録するRAM127と、リアルタイムクロック105とストレージ140とEEPROM160とLCD11と加速度センサ12と温度センサ14と脈拍センサ13と無線通信部16とUSB通信部17とデジタル信号にて信号の送受信を行うシリアル通信部122、126と、デジタル信号を入力、または出力するI/Oポート125と、外部からの信号をトリガとしてプログラム131を実行中のCPU121に割込みをかける割込制御部123,124,128とを含んで構成される。 The microcomputer 120 includes a CPU 121 that executes arithmetic processing, a ROM 130 that records a program 131 executed by the CPU 121, a RAM 127 that temporarily records data, a real-time clock 105, a storage 140, an EEPROM 160, an LCD 11, and an acceleration sensor. 12, temperature sensor 14, pulse sensor 13, wireless communication unit 16, USB communication unit 17, serial communication units 122 and 126 that transmit and receive signals using digital signals, and I / O port 125 that inputs or outputs digital signals. And interrupt control units 123, 124, and 128 that interrupt the CPU 121 that is executing the program 131 by using an external signal as a trigger.
 ROM130に予め記録されているプログラム131には、センシングプログラム132と接続切替プログラム133とイベント記録プログラム134を含む。イベント記録プログラム134に記述される処理はCPU121にて実行され、スイッチ110,111からの信号をトリガとして処理を開始し、リアルタイムクロック15とシリアル通信部102を介して通信して時刻情報を取得し、EEPROM160のイベント記録テーブル150の日時152に記録する。また、さらにスイッチ110,111による操作により、時刻情報に対応するイベントを分類するイベントID155を予めプログラムされたイベントリストテーブル154から選択して、イベントID153に記録することができる。このユーザによる操作を補助するため、イベントID155に対応するアイコン156をLCD101に表示する。 The programs 131 recorded in advance in the ROM 130 include a sensing program 132, a connection switching program 133, and an event recording program 134. The processing described in the event recording program 134 is executed by the CPU 121, starts processing using signals from the switches 110 and 111 as a trigger, and communicates with the real-time clock 15 via the serial communication unit 102 to acquire time information. , Recorded in the date and time 152 of the event recording table 150 of the EEPROM 160. Further, by operating the switches 110 and 111, an event ID 155 for classifying an event corresponding to the time information can be selected from the pre-programmed event list table 154 and recorded in the event ID 153. In order to assist the user's operation, an icon 156 corresponding to the event ID 155 is displayed on the LCD 101.
 センシングプログラム131に記述される処理はCPU121にて実行され、リアルタイムクロック105の信号をトリガとして、シリアル通信部122を介して加速度センサ102、温度センサ104及び脈拍センサ103でセンシングしたデータをRAM127に取り込み、無線通信部106を制御してRAM127に取り込んだデータを所定のゲートウェイに無線送信し、さらにストレージ160に書き込んで記録する。 The processing described in the sensing program 131 is executed by the CPU 121, and the data sensed by the acceleration sensor 102, the temperature sensor 104, and the pulse sensor 103 is taken into the RAM 127 via the serial communication unit 122 using the signal of the real-time clock 105 as a trigger. Then, the wireless communication unit 106 is controlled to wirelessly transmit the data fetched into the RAM 127 to a predetermined gateway, and further written into the storage 160 and recorded.
 接続切り替えプログラム133に記述される処理もまたCPU121にて実行され、外部電源検出部108からの信号をトリガとして有線通信を開始し、ストレージ140に記録され、かつ無線または有線通信により外部に送信されていないデータ(未送信データ)を読み出し、USB通信部107に送信し、USB通信部107から外部機器に有線送信する。 The processing described in the connection switching program 133 is also executed by the CPU 121, starts wired communication with a signal from the external power supply detection unit 108 as a trigger, is recorded in the storage 140, and is transmitted to the outside by wireless or wired communication. Unread data (untransmitted data) is read out, transmitted to the USB communication unit 107, and wired from the USB communication unit 107 to the external device.
 リアルタイムクロック105は一定の周期でマイクロコンピュータ120の割込制御部123に割込み信号を生成することができる。この周期は、シリアル通信のコマンドによって変更することができる。この割込み信号によって、マイクロコンピュータ120ではセンシングプログラム131に記述されたセンシングの処理を、他の処理の実行状態に影響を受けることなく、一定の周期で開始することができる。 The real time clock 105 can generate an interrupt signal to the interrupt control unit 123 of the microcomputer 120 at a constant cycle. This period can be changed by a serial communication command. With this interrupt signal, the microcomputer 120 can start the sensing process described in the sensing program 131 at a constant cycle without being affected by the execution state of other processes.
 外部電源検出部108は、端子112の電源が接続されたことを検出する。つまり、電源を有するUSBを介した外部機器との接続を検出できる。接続が検出されると、外部電源検出部108はマイクロコンピュータ120の割込制御部124に対し割込み信号を生成し、I/Oポート125に対しデジタル信号の1を出力する。また切断を検出した場合も割込み信号を生成し、I/Oポート125に対しデジタル信号の1を出力する。つまり、マイクロコンピュータ120では、端子112への接続状態の変化を直ちに検出し、USB通信部107を介したUSB通信を開始、または停止できる。 The external power source detection unit 108 detects that the power source of the terminal 112 is connected. That is, it is possible to detect connection with an external device via a USB having a power source. When the connection is detected, the external power supply detection unit 108 generates an interrupt signal to the interrupt control unit 124 of the microcomputer 120 and outputs a digital signal 1 to the I / O port 125. When a disconnection is detected, an interrupt signal is generated and a digital signal of 1 is output to the I / O port 125. That is, the microcomputer 120 can immediately detect a change in the connection state to the terminal 112 and start or stop USB communication via the USB communication unit 107.
 USB通信部107はマイクロコンピュータ120とのシリアル通信の信号を、USB端子112のデータ線(送信、受信)を介したUSB規格の信号に変換する。従って、マイクロコンピュータ120の制御では、外部機器へ送信するデータのみをシリアル通信でUSB通信部107に送信するだけで、自動的にUSB規格のデータに変換し、外部機器に送信できる。また、USB通信部107の電源は電源端子112を介して外部機器からのみ供給されるため、USB非接続時には余計な電力を消費しない。 The USB communication unit 107 converts a serial communication signal with the microcomputer 120 into a USB standard signal via the data line (transmission and reception) of the USB terminal 112. Therefore, in the control of the microcomputer 120, only data to be transmitted to the external device can be automatically converted to USB standard data and transmitted to the external device only by transmitting to the USB communication unit 107 by serial communication. In addition, since the power of the USB communication unit 107 is supplied only from an external device via the power terminal 112, extra power is not consumed when the USB is not connected.
 図19は本実施例の構成を適用したセンサノード1の外観を示す。図19においては、センサノード1のUSB接続用の端子112が、脈拍センサ103のある装着面から見て側面にあることから、有線通信及び充電中もユーザが常時装着することができ、センシングを妨げないことを特徴とする。以下、個々について説明する。 FIG. 19 shows the external appearance of the sensor node 1 to which the configuration of this embodiment is applied. In FIG. 19, since the USB connection terminal 112 of the sensor node 1 is on the side as viewed from the mounting surface where the pulse sensor 103 is located, the user can always wear it even during wired communication and charging, and sensing can be performed. It is characterized by not obstructing. Each will be described below.
 センサノード1には、バンド116が両端に付随しており、典型的な腕時計と同様に腕に装着することができる。図19のバンド116の構造からもわかるように、装着時に脈拍センサ103を有する面がユーザの皮膚に接触する。脈拍センサ103は公知の光学式測定方式であり、赤外線を生体表面に照射し、血管の脈動による反射光の変化から脈拍を推定可能とする。つまり、脈拍センサ103はユーザの皮膚に接触していることが不可欠である。 A band 116 is attached to both ends of the sensor node 1 and can be worn on the arm like a typical wristwatch. As can be seen from the structure of the band 116 in FIG. 19, the surface having the pulse sensor 103 contacts the user's skin when worn. The pulse sensor 103 is a known optical measurement method, which irradiates the surface of the living body with infrared rays and makes it possible to estimate the pulse from the change in reflected light caused by the pulsation of the blood vessel. That is, it is essential that the pulse sensor 103 is in contact with the user's skin.
 端子112は脈拍センサ103のある装着面とは異なる側部にある。端子112はUSBケーブルと対応しており、電源端子、データ端子(送信、受信)によってUSBに対応する外部機器と接続し、通信及び電源供給が可能である。 The terminal 112 is on a different side from the mounting surface on which the pulse sensor 103 is located. The terminal 112 corresponds to a USB cable, and can be connected to an external device compatible with USB through a power terminal and a data terminal (transmission and reception), and can communicate and supply power.
 また、LCD101には、ユーザが常時見ることのできる時刻や電池残量、無線通信状態等を表示することができる。LCD101にメニューを表示し、スイッチ110,111を操作することにより、図18に示したCPU121、割込制御部128、ROM130内の各種プログラム等のマイクロコンピュータ120の内部機能を用い、センシングの間隔や、無線チャネル等の設定をユーザが変更することが可能である。 Also, the LCD 101 can display the time that the user can always see, the remaining battery level, the wireless communication status, and the like. By displaying the menu on the LCD 101 and operating the switches 110 and 111, the internal functions of the microcomputer 120 such as the CPU 121, the interrupt control unit 128, and various programs in the ROM 130 shown in FIG. The user can change the settings of the wireless channel and the like.
 図20はセンサノード1のLCD101の表示について示している。図9においては、ユーザ8はセンサノード1を装着中に、センシングしたデータの波形表示166、時刻情報164、無線電波状態161、電池残量162、メモリ残量163を確認することができる。 FIG. 20 shows the display on the LCD 101 of the sensor node 1. In FIG. 9, the user 8 can check the waveform display 166 of the sensed data, the time information 164, the radio wave state 161, the remaining battery level 162, and the remaining memory capacity 163 while wearing the sensor node 1.
 無線電波状態161は、即ち無線送信の結果を示している。また、無線通信を全く使わない場合には表示されない。 The radio wave state 161 indicates the result of wireless transmission. It is not displayed when no wireless communication is used.
 電池残量162は、2次電池113の電圧を表示する。これにより、ユーザ8はUSB接続によって充電が必要なタイミングを知ることができる。 The battery remaining amount 162 displays the voltage of the secondary battery 113. Thereby, the user 8 can know the timing when charging is required by USB connection.
 メモリ残量163は、ストレージ140に記録可能な未送信のセンサデータの量を示しており、ユーザ3は無線または有線通信ができない環境において、ストレージ140に未送信のセンサデータを記録出来る時間を推定することができる。 The remaining memory capacity 163 indicates the amount of untransmitted sensor data that can be recorded in the storage 140. In an environment in which the user 3 cannot perform wireless or wired communication, the time for which untransmitted sensor data can be recorded in the storage 140 is estimated. can do.
 図21はスイッチ110、111を押して、イベントを選択、記録する処理を実行したときの、LCD101の表示の遷移の一例を示す図である。図21の表示例においては、イベントの選択、記録をアイコンの選択のみで行うことから、日常生活で多忙な場合においても、短時間で容易に選択、記録が可能であることを特徴とする。この表示の切替の制御についても、図18のマイクロコンピュータ120の内部機能により実現できることは言うまでもない。 FIG. 21 is a diagram showing an example of display transition of the LCD 101 when the process of selecting and recording an event by pressing the switches 110 and 111 is executed. The display example of FIG. 21 is characterized in that since selection and recording of events are performed only by selecting icons, even in busy daily life, selection and recording can be easily performed in a short time. Needless to say, this display switching control can also be realized by the internal function of the microcomputer 120 shown in FIG.
 図20の表示状態から、スイッチ110を押すと、表示167に切り替わる。この時点をイベント発生時刻として、リアルタイムクロック105から時刻情報を取得する。イベントIDが選択されていない状態をイベントID:0とすると、イベントIDが0の場合が表示167である。特に分類する必要がない場合や、選択している時間がない場合などはこれを記録する。 When the switch 110 is pressed from the display state of FIG. 20, the display is switched to the display 167. Time information is acquired from the real-time clock 105 using this time as the event occurrence time. When the event ID is 0 when the event ID is not selected, the display 167 is when the event ID is 0. This is recorded when there is no need to classify or when there is no time selected.
 さらにスイッチ110を押すと、次のイベントIDに対応するアイコンが表示される。例えば表示168は食事を示すアイコンであり、イベントIDを1とする。 When the switch 110 is further pressed, an icon corresponding to the next event ID is displayed. For example, the display 168 is an icon indicating a meal, and the event ID is 1.
 さらにスイッチ110を押すと、表示169、表示170に順次切り替わる。例として、表示169は車で移動中、表示170はランニング中を示すアイコンである。これら表示167~170がLCD101に表示されている状態で、スイッチ111を押すことで、表示に対応するイベントID(0~3)をEEPROM160に記録できる。 When the switch 110 is further pressed, the display 169 and the display 170 are sequentially switched. For example, the display 169 is an icon indicating that the vehicle is moving, and the display 170 is an icon indicating that the vehicle is running. By pressing the switch 111 while these displays 167 to 170 are displayed on the LCD 101, event IDs (0 to 3) corresponding to the displays can be recorded in the EEPROM 160.
 図22は第2の実施例のシステム構成を示す図である。本実施例の構成においては、図1の実施例とは異なり、センサデータ受信プログラム501と、行動判別プログラム502と、センサデータ507と、行動定義データ506と、行動要素データ509と、目標指標データ510と、行動履歴データ511と、行動定義生成プログラム504と、行動指針生成プログラム505と、行動提案プログラム514と、運動量、歩数データ512と、習慣行動データ513を、PC2ではなく、サーバ5に備える。またサーバ5には、ネットワーク9に直接接続された基地局からデータを受信するセンサデータ受信プログラム501と、WEBサーバの機能を備え、WEBブラウザの表示画面を生成するWEB表示生成プログラム503を備える。これらのプログラムは、サーバ5内部のCPUなどの処理部が実行する。PC2には、行動指針生成プログラム505と、行動提案プログラム514の生成した結果を、ネットワーク9を介して受信して表示装置3に伝送して表示する行動指針/提案表示プログラム350を備えることを特徴とする。なお、行動提案プログラム514は、図25に示した行動提案プログラム250と同様な機能を有する。 FIG. 22 is a diagram showing a system configuration of the second embodiment. In the configuration of the present embodiment, unlike the embodiment of FIG. 1, the sensor data reception program 501, the action determination program 502, the sensor data 507, the action definition data 506, the action element data 509, and the target index data 510, action history data 511, action definition generation program 504, action guideline generation program 505, action proposal program 514, exercise amount / step count data 512, and habit action data 513 are provided in the server 5 instead of the PC 2. . The server 5 also includes a sensor data reception program 501 that receives data from a base station directly connected to the network 9 and a WEB display generation program 503 that has a WEB server function and generates a display screen of a WEB browser. These programs are executed by a processing unit such as a CPU in the server 5. The PC 2 includes an action guideline generation program 505 and an action guideline / suggestion display program 350 that receives the results generated by the action proposal program 514 via the network 9 and transmits them to the display device 3 for display. And The action proposal program 514 has the same function as the action proposal program 250 shown in FIG.
 PC2は、基地局6からデータを受信してデータベースに格納するセンサデータ受信プログラム220と、ユーザ8が入力装置4を用いて入力した日記のような行動履歴やコメントをデータベースに格納する行動履歴入力プログラム210と、サーバ5の行動指針生成プログラム505と行動提案プログラム514の結果を、ネットワーク9を経由して受信し、表示装置3に表示する行動指針/提案表示プログラムを備える。センサデータ受信プログラム220は基地局6から送られたセンサデータを、ネットワーク9を介してサーバ5のセンサデータ507に格納する。また行動履歴入力プログラム210は、ユーザ8が入力装置4を介して入力した結果を、ネットワーク9を介して、行動履歴データ511に格納する。つまりPC2にはデータベースを保持しない。この結果、ネットワーク9に接続されたPCであれば、限定されることなく、どこからでもセンサデータを収集して、サーバ5にて解析し、結果を受信して表示可能とする。また、行動判別プログラム502や行動定義プログラム504、行動指針生成プログラム505、行動提案プログラム514の処理が複雑でPC2で処置できない場合においても、サーバ5では大きさや消費電力に制約が少ない場合が多いため、低コストながら高い処理能力で、短時間で処理を完了することが可能になる。 The PC 2 receives the data from the base station 6 and stores it in the database, and the action history input for storing the action history and comments such as a diary entered by the user 8 using the input device 4 in the database. The program 210, the action guideline generation program 505 of the server 5 and the result of the action proposal program 514 are received via the network 9, and the action guideline / suggestion display program for displaying on the display device 3 is provided. The sensor data reception program 220 stores the sensor data sent from the base station 6 in the sensor data 507 of the server 5 via the network 9. The action history input program 210 stores the result input by the user 8 via the input device 4 in the action history data 511 via the network 9. That is, the PC 2 does not hold a database. As a result, as long as the PC is connected to the network 9, the sensor data is collected from anywhere and analyzed by the server 5 without limitation, and the result can be received and displayed. Even when the processing of the behavior determination program 502, the behavior definition program 504, the behavior guideline generation program 505, and the behavior proposal program 514 is complicated and cannot be treated by the PC 2, the server 5 often has few restrictions on size and power consumption. It is possible to complete the processing in a short time with a high processing capacity at a low cost.
 行動判別プログラム502は、図1の行動判別プログラム230と同様にセンサデータ507から運動量、歩数データ512を算出し、行動定義データ506に格納されている、行動名と、それに対応する閾値等の判別条件のリストを用いて、運動量、歩数データ512を時系列に判別していく。その結果、判定条件に合致するものをひとつの行動要素として、その行動名、またはその行動の識別IDと時刻、時間情報を行動要素データ509に格納する。 The behavior determination program 502 calculates the amount of exercise and the step count data 512 from the sensor data 507 in the same manner as the behavior determination program 230 of FIG. 1, and determines the behavior name and the corresponding threshold value stored in the behavior definition data 506. Using the list of conditions, the momentum and step count data 512 are discriminated in time series. As a result, the action name or the identification ID of the action, the time, and the time information are stored in the action element data 509 as a single action element that matches the determination condition.
 目標指標データ510は、ユーザ8が改善したいと望む指標を、長期間にわたって記録する。図1の目標指標データ310とは異なり、他のセンサで測定した結果や、他のPC経由で入力された仕事の成績などのスコアも格納することができる。 The target index data 510 records an index that the user 8 desires to improve over a long period of time. Unlike the target index data 310 of FIG. 1, scores such as results measured by other sensors and work results input via other PCs can also be stored.
 行動指針生成プログラム505は、図1の行動指針生成プログラム240と同様に習慣行動データ513を生成し、各習慣行動に含まれる行動要素データ509と目標指標データ310の時系列変化と、相関関係について分析し、ユーザ8に最適な行動指針を生成する。行動指針生成プログラム240とは異なり、行動指針生成プログラム505はPC2の行動指針/提案表示プログラム350からの要求によって開始することができる。生成した結果は行動指針/提案表示プログラム350に送信し、PC2を用いてユーザ8は結果を閲覧することができる。 The action guideline generation program 505 generates habit action data 513 in the same manner as the action guideline generation program 240 of FIG. 1, and the time series changes of the action element data 509 and the target index data 310 included in each habit action and the correlation Analyze and generate an action guideline that is optimal for the user 8. Unlike the action guideline generation program 240, the action guideline generation program 505 can be started by a request from the action guideline / suggestion display program 350 of the PC2. The generated result is transmitted to the action guideline / suggestion display program 350, and the user 8 can view the result using the PC 2.
 同様に、行動提案プログラム514は、行動指針/提案表示プログラム350の要求に従うか、行動指針生成プログラム505が終了すると同時に開始され、結果を行動指針/提案表示プログラム350に送信し、ユーザ8がPC2で閲覧できるようになる。他の処理については、図1の行動提案プログラム250と同様である。 Similarly, the action proposal program 514 starts in accordance with the request of the action guideline / suggestion display program 350 or at the same time as the end of the action guideline generation program 505, and transmits the result to the action guideline / suggestion display program 350. Can be viewed at. Other processes are the same as those of the action proposal program 250 of FIG.
 行動定義生成プログラム504は、図2の行動定義生成プログラム261と同様に、行動履歴データ511とセンサデータ507を参照して、行動定義データ290を修正、或いは新たな定義を追加できる。また、行動定義生成プログラム261とは異なり、センサデータ507や行動履歴データ511に格納された、ユーザ8以外の他のユーザのデータを用いて解析処理を行うことができるため、判別条件の高精度化や、定義の多様化が可能である。 The behavior definition generation program 504 can correct the behavior definition data 290 or add a new definition with reference to the behavior history data 511 and the sensor data 507, similarly to the behavior definition generation program 261 of FIG. Further, unlike the behavior definition generation program 261, analysis processing can be performed using data of other users other than the user 8 stored in the sensor data 507 and the behavior history data 511. And diversification of definitions.
 図23は、第3の実施例のシステムを示す図であり、PC2に図22で示した行動指針/提案プログラム350を不要とする変わりに、汎用のWEBブラウザ520によって、同様の処理を行う構成を有する。本実施例によれば、WEBブラウザ520を用いることで、専用のプログラムをPCに備える必要がなく、場所を選ばず、多くのPC、または同様の機能を備える携帯電話、端末等から容易に行動指針/提案結果を閲覧することが可能になる。また、基地局16は、図1や図22で示した基地局6とは異なり、ネットワーク9に直接接続し、サーバ5に受信したセンサデータを送ることが可能である。
  サーバ5には、図1のセンサデータ受信プログラム220と同様のセンサデータプログラム501を備えることで、基地局16からネットワーク9を介して送信されたデータをセンサデータ507に格納することができる。つまり、基地局16をオフィスや家庭に複数設置し、ネットワーク9に接続しておけば、個人のPC等でそれを接続、管理する必要がなく、簡便にセンサデータを収集できる。サーバ5のWEB入出力生成プログラムは、WEBサーバの機能を備え、行動指針生成プログラム505や行動提案プログラム514が生成した表示内容を、WEBブラウザ520からの要求に従って、WEBブラウザ520に送信する。WEBブラウザ520は受信した表示内容を表示装置3に表示する。また、WEB入出力生成プログラム503は、行動履歴入力プログラム512が生成する行動入力画面440を、WEBブラウザ520の要求に従って送信し、WEBブラウザ520は表示装置3に表示する。また、入力装置4を介してユーザ8が入力した行動履歴をWEBブラウザ520がWEB入出力生成プログラム503に送信し、行動履歴入力プログラム512を介して、行動履歴データ511に格納することができる。
FIG. 23 is a diagram showing the system of the third embodiment. In this configuration, the general-purpose WEB browser 520 performs the same processing instead of requiring the action guideline / suggestion program 350 shown in FIG. Have According to the present embodiment, by using the WEB browser 520, it is not necessary to provide a dedicated program in the PC, and it is easy to act from many PCs or mobile phones or terminals having similar functions regardless of location. It is possible to view the guidelines / proposed results. Further, unlike the base station 6 shown in FIG. 1 or FIG. 22, the base station 16 can directly connect to the network 9 and send the received sensor data to the server 5.
The server 5 includes a sensor data program 501 similar to the sensor data reception program 220 in FIG. 1, so that data transmitted from the base station 16 via the network 9 can be stored in the sensor data 507. That is, if a plurality of base stations 16 are installed in an office or home and connected to the network 9, it is not necessary to connect and manage them with a personal PC or the like, and sensor data can be collected easily. The WEB input / output generation program of the server 5 has the function of the WEB server, and transmits display contents generated by the action guideline generation program 505 and the action proposal program 514 to the WEB browser 520 in accordance with a request from the WEB browser 520. The WEB browser 520 displays the received display content on the display device 3. The WEB input / output generation program 503 transmits an action input screen 440 generated by the action history input program 512 in accordance with a request from the WEB browser 520, and the WEB browser 520 displays the display on the display device 3. Further, the action history input by the user 8 via the input device 4 can be transmitted from the WEB browser 520 to the WEB input / output generation program 503 and stored in the action history data 511 via the action history input program 512.
 本発明は、人の身体に装着可能で、生体情報や行動状態を計測するセンサ端末の情報から、人の行動を推定して生活の特徴を示し、その改善手段を提示する技術として有用性が高い。 INDUSTRIAL APPLICABILITY The present invention is useful as a technique that can be worn on a human body, shows the characteristics of life by estimating human behavior from information on sensor terminals that measure biological information and behavioral states, and presents improvement means. high.
1…センサノード
2…パーソナルコンピュータ
7…アンテナ
8…ユーザ
9…ネットワーク
11…加速度スカラー値
12…交差点
105…リアルタイムクロック(RTC)
110、111…スイッチ
112…端子
113…2次電池
114…グランド
115…アンテナ
120…マイクロコンピュータ)
121…演算部(CPU)
127…揮発記憶部(RAM)
130…不揮発記憶部(ROM)
132…センシングプログラム
133…接続切り替えプログラム
134…イベント記録プログラム
141…パケット記録テーブル
153…イベント記録テーブル
154…イベントリストテーブル
160…電気的に書き換え可能な不揮発記憶部(EEPROM)
161…無線通信状態表示
162…電池電圧表示
163…メモリ残量表示
164…時刻表示
165…センシング状態表示
166…センサ波形表示
167~170…イベント表示
231~237、241~248…処理
401…平日の習慣行動表示
402…休日の習慣行動表示
429…行動凡例
442…運動量
443…行動要素
444…時刻
445…行動履歴
403~428、608~615…習慣行動
601~607…類似した行動要素のグループ。
DESCRIPTION OF SYMBOLS 1 ... Sensor node 2 ... Personal computer 7 ... Antenna 8 ... User 9 ... Network 11 ... Acceleration scalar value 12 ... Intersection 105 ... Real time clock (RTC)
110, 111 ... switch 112 ... terminal 113 ... secondary battery 114 ... ground 115 ... antenna 120 ... microcomputer)
121. Calculation unit (CPU)
127 ... Volatile memory (RAM)
130 ... Nonvolatile storage (ROM)
132 ... Sensing program 133 ... Connection switching program 134 ... Event recording program 141 ... Packet recording table 153 ... Event recording table 154 ... Event list table 160 ... Electrically rewritable nonvolatile storage (EEPROM)
161 ... Wireless communication status display 162 ... Battery voltage display 163 ... Memory remaining amount display 164 ... Time display 165 ... Sensing status display 166 ... Sensor waveform display 167-170 ... Event display 231-237, 241-248 ... Processing 401 ... Weekdays Habit action display 402 ... holiday habit action display 429 ... action legend 442 ... amount of exercise 443 ... action element 444 ... time 445 ... action history 403 to 428, 608 to 615 ... habit action 601 to 607 ... groups of similar action elements.

Claims (20)

  1. 処理部と記憶部と備え、個人の生体情報から、個人の行動提案を行う行動提案装置であって、
    前記処理部は、
    収集した前記個人の生体情報に基づき、前記個人の行動を判別して行動要素データとし、
    所定期間の前記行動要素データから、前記個人の習慣行動データを生成し、
    前記行動要素データと前記習慣行動データと、前記個人の目標指標データとに基づき、前記個人の行動指針を生成し、
    生成した前記行動指針に基づき、前記個人のための行動提案を行う、
    ことを特徴とする行動提案装置。
    A behavior suggestion device comprising a processing unit and a storage unit, and performing personal behavior proposal from personal biometric information,
    The processor is
    Based on the collected biometric information of the individual, the behavior of the individual is determined as behavior element data,
    From the behavior element data of a predetermined period, generate the personal habit behavior data,
    Based on the behavior element data, the habit behavior data, and the individual target index data, to generate the individual behavior guidelines,
    Based on the generated action guideline, the action proposal for the individual is performed.
    An action suggestion device characterized by that.
  2. 請求項1に記載の行動提案装置であって、
    前記行動指針及び前記行動提案を表示する表示部を更に備える、
    ことを特徴とする行動提案装置。
    The action proposing device according to claim 1,
    A display unit for displaying the action guideline and the action proposal;
    An action suggestion device characterized by that.
  3. 請求項2に記載の行動提案装置であって、
    前記処理部は、
    前記個人に対応するセンサから、前記生体情報を収集するセンサデータ受信部を備え、前記センサデータ受信部は前記生体情報から抽出した前記行動要素データを前記記憶部に記憶する、
    ことを特徴とする行動提案装置。
    The action suggestion device according to claim 2,
    The processor is
    A sensor data receiving unit that collects the biological information from a sensor corresponding to the individual, and the sensor data receiving unit stores the behavior element data extracted from the biological information in the storage unit;
    An action suggestion device characterized by that.
  4. 請求項3に記載の行動提案装置であって、
    前記処理部は、前記目標指標データと前記行動要素データと前記習慣行動データに基づき、前記行動指針を生成する行動指針生成部を有し、
    前記行動指針生成部は、生成した前記行動指針を前記表示部に表示する、
    ことを特徴とする行動提案装置。
    The action proposing device according to claim 3,
    The processing unit includes an action guideline generating unit that generates the action guideline based on the target index data, the action element data, and the habit action data,
    The action guideline generating unit displays the generated action guideline on the display unit.
    An action suggestion device characterized by that.
  5. 請求項4に記載の行動提案装置であって、
    前記処理部は、前記行動指針基づき、前記行動提案を出力する行動提案部を有し、前記行動提案を前記表示部に表示する、
    ことを特徴とする行動提案装置。
    The action proposing device according to claim 4,
    The processing unit has an action proposal unit that outputs the action proposal based on the action guideline, and displays the action proposal on the display unit.
    An action suggestion device characterized by that.
  6. 請求項5に記載の行動提案装置であって、
    前記処理部は、前記個人の行動履歴を入力する行動履歴入力部を有し、
    前記行動履歴入力部は、入力した前記行動履歴を前記記憶部に蓄積する、
    ことを特徴とする行動提案装置。
    The action proposing device according to claim 5,
    The processing unit has an action history input unit for inputting the individual action history,
    The action history input unit accumulates the input action history in the storage unit,
    An action suggestion device characterized by that.
  7. 請求項6に記載の行動提案装置であって、
    前記行動提案部は、前記行動指針と蓄積された前記行動履歴に基づき、前記行動提案を出力する、
    ことを特徴とする行動提案装置。
    The action proposing device according to claim 6,
    The action suggesting unit outputs the action proposal based on the action guideline and the accumulated action history.
    An action suggestion device characterized by that.
  8. 請求項4に記載の行動提案装置であって、
    前記行動指針生成部は、所定期間の前記行動要素データに基づき、前記習慣行動データを生成し、生成した前記習慣行動データを前記記憶部に保持する、
    ことを特徴とする行動提案装置。
    The action proposing device according to claim 4,
    The behavior guideline generation unit generates the habit behavior data based on the behavior element data of a predetermined period, and holds the generated habit behavior data in the storage unit,
    An action suggestion device characterized by that.
  9. 請求項8に記載の行動提案装置であって、
    前記行動指針生成部は、複数の前記所定期間の保持された前記習慣行動データと前記目標指標データとの相関分析を行い、相関分析結果を前記表示部に表示する、
    ことを特徴とする行動提案装置。
    The action proposing device according to claim 8,
    The behavior guideline generation unit performs a correlation analysis between the habitual behavior data held for a plurality of the predetermined periods and the target index data, and displays a correlation analysis result on the display unit.
    An action suggestion device characterized by that.
  10. 請求項9に記載の行動提案装置であって、
    前記行動指針生成部は、前記相関分析結果で相関性が高い前記習慣行動データを、前記行動指針に付加して、前記表示部に表示する、
    ことを特徴とする行動提案装置。
    The action proposing device according to claim 9,
    The behavior guideline generation unit adds the habitual behavior data having high correlation in the correlation analysis result to the behavior guideline and displays it on the display unit.
    An action suggestion device characterized by that.
  11. 処理部と記憶部と表示部を備え、個人の生体情報から、個人の行動提案を行うシステムにおける行動提案方法であって、
    前記処理部は、
    収集した前記個人の生体情報に基づき、前記個人の行動を判別することにより行動要素データを抽出し、
    所定期間の前記行動要素データから、前記個人の習慣行動データを生成し、
    前記行動要素データと前記習慣行動データと、前記個人の目標指標データとに基づき、前記個人の行動指針を生成し、
    生成された前記行動指針に基づき、前記個人ための行動提案を行う、
    ことを特徴とする行動提案方法。
    A behavior suggestion method in a system that includes a processing unit, a storage unit, and a display unit, and that proposes personal behavior from personal biometric information,
    The processor is
    Based on the collected biometric information of the individual, the behavior element data is extracted by determining the behavior of the individual,
    From the behavior element data of a predetermined period, generate the personal habit behavior data,
    Based on the behavior element data, the habit behavior data, and the individual target index data, to generate the individual behavior guidelines,
    Based on the generated action guideline, the action proposal for the individual is performed.
    An action suggestion method characterized by that.
  12. 請求項11に記載の行動提案方法であって、
    前記処理部は、前記表示部に前記行動指針及び前記行動提案を表示する、
    ことを特徴とする行動提案方法。
    The action suggestion method according to claim 11,
    The processing unit displays the action guideline and the action proposal on the display unit.
    An action suggestion method characterized by that.
  13. 請求項12に記載の行動提案方法であって、
    前記処理部は、
    前記個人に対応するセンサから、前記生体情報を収集し、
    収集した前記生体情報から抽出した前記行動要素データを前記記憶部に蓄積する、
    ことを特徴とする行動提案方法。
    The action suggestion method according to claim 12,
    The processor is
    Collecting the biological information from a sensor corresponding to the individual,
    Storing the behavior element data extracted from the collected biological information in the storage unit;
    An action suggestion method characterized by that.
  14. 請求項13に記載の行動提案方法であって、
    前記処理部は、
    前記目標指標データと前記行動要素データと前記習慣行動データに基づき、前記行動指針を生成し、
    生成した前記行動指針を前記表示部に表示する、
    ことを特徴とする行動提案方法。
    The action suggestion method according to claim 13,
    The processor is
    Based on the target index data, the behavior element data and the habit behavior data, generate the behavior guideline,
    Displaying the generated action guideline on the display unit;
    An action suggestion method characterized by that.
  15. 請求項14に記載の行動提案方法であって、
    前記処理部は、
    入力された前記個人の行動履歴データを前記記憶部に記憶し、
    記憶した前記行動履歴データと前記行動指針に基づき、前記行動提案を出力して前記表示部に表示する、
    ことを特徴とする行動提案方法。
    15. The action proposing method according to claim 14, wherein
    The processor is
    Storing the input action history data of the individual in the storage unit;
    Based on the stored action history data and the action guideline, the action proposal is output and displayed on the display unit.
    An action suggestion method characterized by that.
  16. 請求項14に記載の行動提案方法であって、
    前記処理部は、所定期間の前記行動要素データに基づき、前記習慣行動データを生成し、
    生成した前記習慣行動データを前記記憶部に保持する、
    ことを特徴とする行動提案方法。
    15. The action proposing method according to claim 14, wherein
    The processing unit generates the habit behavior data based on the behavior element data of a predetermined period,
    Holding the generated habit behavior data in the storage unit,
    An action suggestion method characterized by that.
  17. 請求項16に記載の行動提案方法であって、
    前記処理部は、複数の前記所定期間の前記習慣行動データと前記目標指標データとの相関分析を行い、相関分析結果を前記表示部に表示する、
    ことを特徴とする行動提案方法。
    The action proposing method according to claim 16,
    The processing unit performs a correlation analysis between the habit behavior data and the target index data for a plurality of the predetermined periods, and displays a correlation analysis result on the display unit.
    An action suggestion method characterized by that.
  18. 請求項17に記載の行動提案方法であって、
    前記処理部は、前記相関分析結果で相関性が高い前記習慣行動データを、前記行動指針に付加して、前記表示部に表示する、
    ことを特徴とする行動提案方法。
    The action proposing method according to claim 17,
    The processing unit adds the habit behavior data having a high correlation in the correlation analysis result to the behavior guideline and displays the data on the display unit.
    An action suggestion method characterized by that.
  19. 請求項15に記載の行動提案方法であって、
    前記処理部は、
    入力された他人の行動履歴データと、記憶した前記行動履歴データと、前記行動指針に基づき、前記行動提案を出力することを特徴とする行動提案方法。
    The action proposing method according to claim 15,
    The processor is
    A behavior suggestion method comprising: outputting the behavior suggestion based on the inputted behavior history data of another person, the stored behavior history data, and the behavior guideline.
  20. 請求項19に記載の行動提案方法であって、
    前記処理部は、
    前記行動指針と一致する、前記他人の行動履歴データ、又は記憶した前記行動履歴データを検索し、一致した行動履歴を前記行動提案として前記表示部に表示することを特徴とする行動提案方法。
    The action proposing method according to claim 19,
    The processor is
    A behavior suggestion method, wherein the behavior history data of the other person that matches the behavior guideline or the stored behavior history data is searched, and the matched behavior history is displayed on the display unit as the behavior proposal.
PCT/JP2010/003877 2009-06-19 2010-06-10 Behavior suggestion device and method WO2010146811A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011519531A JP5216140B2 (en) 2009-06-19 2010-06-10 Action suggestion apparatus and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009146416 2009-06-19
JP2009-146416 2009-06-19

Publications (1)

Publication Number Publication Date
WO2010146811A1 true WO2010146811A1 (en) 2010-12-23

Family

ID=43356144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003877 WO2010146811A1 (en) 2009-06-19 2010-06-10 Behavior suggestion device and method

Country Status (2)

Country Link
JP (1) JP5216140B2 (en)
WO (1) WO2010146811A1 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012150750A (en) * 2011-01-21 2012-08-09 Kddi Corp Prediction program for predicting result event from action sentence of user, prediction apparatus, and method
JP2013003643A (en) * 2011-06-13 2013-01-07 Sony Corp Information processing apparatus, information processing method, and program
WO2013141386A1 (en) * 2012-03-23 2013-09-26 独立行政法人科学技術振興機構 Device for provision of personal genome information environment, method for provision of personal genome information environment, and program
WO2013179576A1 (en) * 2012-05-28 2013-12-05 セイコーエプソン株式会社 Action recording apparatus and action recording method
JP2014006663A (en) * 2012-06-22 2014-01-16 Tokyo Metropolitan Univ Activity promotion system, activity promotion method, and program for activity promotion system
JP2014030494A (en) * 2012-08-01 2014-02-20 Daiwa House Industry Co Ltd System and method for improving sleep
WO2014133144A1 (en) * 2013-03-01 2014-09-04 オムロンヘルスケア株式会社 Sleep and activity amount display program, device, system, and method
JP2014219850A (en) * 2013-05-09 2014-11-20 パナソニックヘルスケア株式会社 Lifestyle-related diseases improvement support system and control method thereof
CN104204830A (en) * 2012-01-19 2014-12-10 耐克创新有限合伙公司 Power management in an activity monitoring device
JP2015507811A (en) * 2012-01-18 2015-03-12 ナイキ イノベイト シーブイ Activity identification
JP2016099768A (en) * 2014-11-20 2016-05-30 株式会社ニコン Electronic device
US9616289B2 (en) 2010-11-01 2017-04-11 Nike, Inc. Wearable device assembly having athletic functionality and milestone tracking
JP2017074174A (en) * 2015-10-14 2017-04-20 株式会社日立製作所 Living body action evaluation device and living body action evaluation method
US9734477B2 (en) 2010-11-01 2017-08-15 Nike, Inc. Wearable device having athletic functionality
US9757640B2 (en) 2010-11-01 2017-09-12 Nike, Inc. Wearable device assembly having athletic functionality
JP2018503187A (en) * 2015-01-07 2018-02-01 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Scheduling interactions with subjects
WO2018051975A1 (en) * 2016-09-14 2018-03-22 Dynamic Brain Lab合同会社 Biological information measurement device
US10413218B2 (en) 2014-01-15 2019-09-17 Tdk Corporation Wristband-type arm movement determination device and wristband-type activity tracker
WO2019176214A1 (en) * 2018-03-13 2019-09-19 ソニー株式会社 Information processing device, information processing method and program
JP2019160006A (en) * 2018-03-15 2019-09-19 花王株式会社 Methods for prevention of disease, support for prevention of disease and support system for disease prevention
US10444791B2 (en) 2010-11-01 2019-10-15 Nike, Inc. Wearable device assembly having athletic functionality
WO2020100318A1 (en) * 2018-11-14 2020-05-22 オムロン株式会社 Habit improving device, method and program
WO2020100319A1 (en) * 2018-11-14 2020-05-22 オムロン株式会社 Habit improving device, method and program
JPWO2021054186A1 (en) * 2019-09-17 2021-03-25
WO2022065391A1 (en) * 2020-09-25 2022-03-31 テルモ株式会社 Symptom recording device, symptom recording method, and program

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000041953A (en) * 1998-07-30 2000-02-15 Omron Corp Biological information outputting system
JP2002263086A (en) * 2001-03-06 2002-09-17 Microstone Corp Motion measuring instrument
JP2003052648A (en) * 2001-08-20 2003-02-25 Nec Corp Measuring system for health control
JP2004121562A (en) * 2002-10-02 2004-04-22 Suzuken Co Ltd Health management system, activity state measuring device, and data-processing equipment
JP2006106813A (en) * 2004-09-30 2006-04-20 Sanyo Electric Co Ltd State determination system and state determination device
JP2006263002A (en) * 2005-03-22 2006-10-05 Nippon Telegr & Teleph Corp <Ntt> Exercise guidance system and mobile communication terminal thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000041953A (en) * 1998-07-30 2000-02-15 Omron Corp Biological information outputting system
JP2002263086A (en) * 2001-03-06 2002-09-17 Microstone Corp Motion measuring instrument
JP2003052648A (en) * 2001-08-20 2003-02-25 Nec Corp Measuring system for health control
JP2004121562A (en) * 2002-10-02 2004-04-22 Suzuken Co Ltd Health management system, activity state measuring device, and data-processing equipment
JP2006106813A (en) * 2004-09-30 2006-04-20 Sanyo Electric Co Ltd State determination system and state determination device
JP2006263002A (en) * 2005-03-22 2006-10-05 Nippon Telegr & Teleph Corp <Ntt> Exercise guidance system and mobile communication terminal thereof

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9757640B2 (en) 2010-11-01 2017-09-12 Nike, Inc. Wearable device assembly having athletic functionality
US10444791B2 (en) 2010-11-01 2019-10-15 Nike, Inc. Wearable device assembly having athletic functionality
US11798673B2 (en) 2010-11-01 2023-10-24 Nike, Inc. Wearable device assembly having athletic functionality and milestone tracking
US11749395B2 (en) 2010-11-01 2023-09-05 Nike, Inc. Wearable device assembly having athletic functionality and milestone tracking
US11735308B2 (en) 2010-11-01 2023-08-22 Nike, Inc. Wearable device assembly having athletic functionality and milestone tracking
US11495341B2 (en) 2010-11-01 2022-11-08 Nike, Inc. Wearable device assembly having athletic functionality and milestone tracking
US9734477B2 (en) 2010-11-01 2017-08-15 Nike, Inc. Wearable device having athletic functionality
US10456623B2 (en) 2010-11-01 2019-10-29 Nike, Inc. Wearable device assembly having athletic functionality and milestone tracking
US9616289B2 (en) 2010-11-01 2017-04-11 Nike, Inc. Wearable device assembly having athletic functionality and milestone tracking
US9750976B2 (en) 2010-11-01 2017-09-05 Nike, Inc. Wearable device assembly having athletic functionality and trend tracking
JP2012150750A (en) * 2011-01-21 2012-08-09 Kddi Corp Prediction program for predicting result event from action sentence of user, prediction apparatus, and method
JP2013003643A (en) * 2011-06-13 2013-01-07 Sony Corp Information processing apparatus, information processing method, and program
US10016165B2 (en) 2011-06-13 2018-07-10 Sony Corporation Information processing apparatus, information processing method, and program
JP2017204278A (en) * 2012-01-18 2017-11-16 ナイキ イノベイト シーブイ Activity identification
JP2015507811A (en) * 2012-01-18 2015-03-12 ナイキ イノベイト シーブイ Activity identification
CN104204830A (en) * 2012-01-19 2014-12-10 耐克创新有限合伙公司 Power management in an activity monitoring device
US9557386B2 (en) 2012-01-19 2017-01-31 Nike, Inc. Power management in an activity monitoring device
JP2016201991A (en) * 2012-01-19 2016-12-01 ナイキ イノベイト シーブイ Power supply management in activity monitoring device
CN108427075A (en) * 2012-01-19 2018-08-21 耐克创新有限合伙公司 The method for managing power supply of movement monitoring device and it
JP2015513880A (en) * 2012-01-19 2015-05-14 ナイキ イノベイト シーブイ Power management in activity monitoring equipment
US10369413B2 (en) 2012-01-19 2019-08-06 Nike, Inc. Power management in an activity monitoring device
CN108427075B (en) * 2012-01-19 2022-01-28 耐克创新有限合伙公司 Activity monitoring device and power management method thereof
JPWO2013141386A1 (en) * 2012-03-23 2015-08-03 独立行政法人科学技術振興機構 Personal genome information environment providing apparatus, personal genome information environment providing method, and program
JP5514963B2 (en) * 2012-03-23 2014-06-04 独立行政法人科学技術振興機構 Personal genome information environment providing apparatus, personal genome information environment providing method, and program
WO2013141386A1 (en) * 2012-03-23 2013-09-26 独立行政法人科学技術振興機構 Device for provision of personal genome information environment, method for provision of personal genome information environment, and program
US10646166B2 (en) 2012-03-23 2020-05-12 National Institute Of Japan Science And Technology Agency Personal genome information environment providing device, personal genome information environment providing method, and computer program product
JP2013246730A (en) * 2012-05-28 2013-12-09 Seiko Epson Corp Behavior recording device and behavior recording method
WO2013179576A1 (en) * 2012-05-28 2013-12-05 セイコーエプソン株式会社 Action recording apparatus and action recording method
JP2014006663A (en) * 2012-06-22 2014-01-16 Tokyo Metropolitan Univ Activity promotion system, activity promotion method, and program for activity promotion system
JP2014030494A (en) * 2012-08-01 2014-02-20 Daiwa House Industry Co Ltd System and method for improving sleep
US10058279B2 (en) 2013-03-01 2018-08-28 Omron Healthcare Co., Ltd. Sleep and activity amount display program, device, system, and method
WO2014133144A1 (en) * 2013-03-01 2014-09-04 オムロンヘルスケア株式会社 Sleep and activity amount display program, device, system, and method
JP2014219850A (en) * 2013-05-09 2014-11-20 パナソニックヘルスケア株式会社 Lifestyle-related diseases improvement support system and control method thereof
US10413218B2 (en) 2014-01-15 2019-09-17 Tdk Corporation Wristband-type arm movement determination device and wristband-type activity tracker
JP2016099768A (en) * 2014-11-20 2016-05-30 株式会社ニコン Electronic device
JP2018503187A (en) * 2015-01-07 2018-02-01 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Scheduling interactions with subjects
JP2017074174A (en) * 2015-10-14 2017-04-20 株式会社日立製作所 Living body action evaluation device and living body action evaluation method
JPWO2018051975A1 (en) * 2016-09-14 2019-07-04 Dynamic Brain Lab合同会社 Biological information measuring device
WO2018051975A1 (en) * 2016-09-14 2018-03-22 Dynamic Brain Lab合同会社 Biological information measurement device
WO2019176214A1 (en) * 2018-03-13 2019-09-19 ソニー株式会社 Information processing device, information processing method and program
JP2019160006A (en) * 2018-03-15 2019-09-19 花王株式会社 Methods for prevention of disease, support for prevention of disease and support system for disease prevention
JP7214354B2 (en) 2018-03-15 2023-01-30 花王株式会社 Disease prevention support method, disease prevention support device, and disease prevention support system
WO2020100319A1 (en) * 2018-11-14 2020-05-22 オムロン株式会社 Habit improving device, method and program
CN112567467A (en) * 2018-11-14 2021-03-26 欧姆龙株式会社 Habit improving device, method and program
CN112534509A (en) * 2018-11-14 2021-03-19 欧姆龙株式会社 Habit improving device, method and program
JP2020080123A (en) * 2018-11-14 2020-05-28 オムロン株式会社 Habit improvement device, method, and program
JP2020080125A (en) * 2018-11-14 2020-05-28 オムロン株式会社 Habit improvement device, method, and program
JP7351078B2 (en) 2018-11-14 2023-09-27 オムロン株式会社 Habit improvement devices, methods and programs
WO2020100318A1 (en) * 2018-11-14 2020-05-22 オムロン株式会社 Habit improving device, method and program
CN112534509B (en) * 2018-11-14 2024-02-23 欧姆龙株式会社 Habit improving device, habit improving method, and computer-readable storage medium
CN112567467B (en) * 2018-11-14 2024-02-27 欧姆龙株式会社 Habit improving device, habit improving method, and computer-readable storage medium
JPWO2021054186A1 (en) * 2019-09-17 2021-03-25
JP7361784B2 (en) 2019-09-17 2023-10-16 Cyberdyne株式会社 Behavioral task evaluation system and behavioral task evaluation method
WO2022065391A1 (en) * 2020-09-25 2022-03-31 テルモ株式会社 Symptom recording device, symptom recording method, and program

Also Published As

Publication number Publication date
JPWO2010146811A1 (en) 2012-11-29
JP5216140B2 (en) 2013-06-19

Similar Documents

Publication Publication Date Title
JP5216140B2 (en) Action suggestion apparatus and method
US11468976B2 (en) Apparel and location information system
JP5250827B2 (en) Action history generation method and action history generation system
JP5090013B2 (en) Information management system and server
JP6008572B2 (en) Exercise support system and exercise support method
JP6803299B2 (en) System and method
US20140099614A1 (en) Method for delivering behavior change directives to a user
CN102844784A (en) Health management support device, health management support system, and health management support program
WO2016104326A1 (en) Living-habit improvement device, living-habit improvement method, and living-habit improvement system
CN104207753A (en) Personal health monitoring system
CN104814723A (en) Intelligent health adjustment system and method
CN105279362A (en) Personal health monitoring system
JP2004318503A (en) Device, method and program for supporting action management
JP2010146221A (en) Behavior recording input support system, behavior input support method, and server
JP6244292B2 (en) Mastication detection system, method and program
JP2010146223A (en) Behavior extraction system, behavior extraction method, and server
JP2005305134A (en) Apparatus and system for processing living body information
US20160324462A1 (en) Method and system for providing feedback automatically on physiological measurements to a user
US20180110454A1 (en) Mental Suffering Monitoring System
JP7048709B2 (en) System and method
WO2019131256A1 (en) Device, method, and program for processing information
CN110446460B (en) Information processing apparatus and storage medium
EP4335385A2 (en) Menstrual cycle tracking using temperature measurements
JP2003126070A (en) Portable terminal device, method of processing personal information, program, and medium
TWM572560U (en) Health weekly report device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10789194

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011519531

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10789194

Country of ref document: EP

Kind code of ref document: A1