WO2010146651A1 - 光電転換器の製造方法 - Google Patents

光電転換器の製造方法 Download PDF

Info

Publication number
WO2010146651A1
WO2010146651A1 PCT/JP2009/060887 JP2009060887W WO2010146651A1 WO 2010146651 A1 WO2010146651 A1 WO 2010146651A1 JP 2009060887 W JP2009060887 W JP 2009060887W WO 2010146651 A1 WO2010146651 A1 WO 2010146651A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
base material
film
polycrystalline silicon
electrode
Prior art date
Application number
PCT/JP2009/060887
Other languages
English (en)
French (fr)
Inventor
王海彪
石濱哲信
馬方太
Original Assignee
Wang Haibiao
Ishihama Tetsunobu
Ma Fangtai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wang Haibiao, Ishihama Tetsunobu, Ma Fangtai filed Critical Wang Haibiao
Priority to PCT/JP2009/060887 priority Critical patent/WO2010146651A1/ja
Publication of WO2010146651A1 publication Critical patent/WO2010146651A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03921Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • This invention relates to a method for manufacturing a photoelectric converter.
  • Patent Document 1 Various proposals have been made regarding a solar cell electrode film for forming a highly accurate electrode on a silicon-based photoelectric conversion element and a solar cell using the same (for example, Patent Document 1).
  • the present invention has a simple manufacturing process and manufacturing equipment, can be manufactured with energy saving, does not require ingots, cutting and polishing, does not cause chemical corrosion, and is environmentally friendly and safe. It aims at proposing the manufacturing method of the photoelectric converter for solar cells which is favorable and has the characteristics, such as a wide range of application.
  • the present invention is a method for manufacturing a photoelectric converter comprising the following steps (1) to (7).
  • the surface of the base material made of a metal material having a predetermined shape is uniformly coated with a pure Si 3 N 4 lining paint to form a lining coating layer.
  • the high-purity silane gas is heated under vacuum. Decomposing on the surface of the base material to form an N-type (or P-type) polycrystalline silicon film layer on the surface of the lining coating layer (3) Forming a polycrystalline silicon thin film using a CVD process (4)
  • the base A conductive tank is engraved with a laser from the back side of the material, and the diffraction grating is processed.
  • a conductive colloid having low resistance is applied to the tank-shaped diffraction grating electrode to form a conductive tank.
  • An anti-erosion protective film is attached to the back surface of the base material, and the electrode is drawn out.
  • a conductive bath is processed with a laser on the front surface of the polycrystalline silicon thin film according to a predetermined requirement, and then a transparent conductive film is printed.
  • Using UV conductive colloid draws electrode terminal.
  • the manufacturing process and manufacturing equipment are simple, energy-saving manufacturing is possible, there is no need for ingots, cutting and polishing, chemical corrosion does not occur, environmental friendliness and safety It is possible to provide a method for manufacturing a photovoltaic converter for a solar cell that has good characteristics and has a wide range of applications.
  • This invention uses a metal foil as a carrier for an electromagnetic external heat source or as a lining material for an extended crystal, and forms a diffraction grating and a conductive electrode by laser engraving on the back of a battery.
  • This is a new method for producing a flexible synthetic film photoelectric converter using a kind of plate-like polycrystalline silicon material by forming a flexible polycrystalline silicon battery film having a single-time and stable photoelectric efficiency.
  • the new technology for processing diffraction grating electrodes by laser engraving on the above-mentioned metal base materials has advantages such as reduced back electrode light scatter, enhanced multi-wavelength diffraction, improved weak light conversion rate, and low cost. It is suitable for the production of large-area plate-like high-purity polycrystalline silicon solar cells.
  • the manufacturing process and manufacturing equipment are simple, energy-saving manufacturing is possible, there is no need for ingots, cutting and polishing, there is no chemical corrosion, and environmental and safety are good. , With features such as broadness of application.
  • the purity is high, the uniformity of crystal shape and resistivity and the stability of electrical performance are good, the period of use is long, the controllability of the thickness of the film layer, the stability of the electrode and the weldability It has characteristics such as good performance and low manufacturing cost.
  • a diffraction grating and a conductive electrode are formed on the back surface of the battery by laser engraving to form a flexible polycrystalline silicon battery film having a one-time and stable photoelectric efficiency.
  • This is a new manufacturing method for manufacturing a flexible synthetic film photoelectric converter using a kind of plate-like polycrystalline silicon material.
  • the feature is the manufacturing process of flexible synthetic photoelectric film as follows.
  • Polished plate or ring metal material with a thickness of 0.01 to 0.1 mm, a length of 0.1 to 1.5 m, and a width of 60 cm or less (materials such as aluminum, iron, zinc, molybdenum, alloy, and stainless steel foil are Any of them can be used) and used as a base material for photoelectric components.
  • a pure Si 3 N 4 lining paint is uniformly applied to the surface of the metal base material.
  • a CuIGSe lining paint copper-iridium-gallium-selenium lining paint
  • the thickness of the coating film is about 0.01 mm.
  • the above-described metal base material is washed, and then the above-mentioned metal base material is charged into a special cylindrical / rotary quartz base material jig. Next, it is fed into a super frequency / electromagnetic quartz deposition reactor.
  • high purity hydrogen and 6N high purity silane gas are simultaneously fed (pressure is controlled to 1.5 ⁇ 10 5 atmospheric pressure or less, flow rate is controlled to 50 sccm or less).
  • the high-purity silane gas is decomposed on the surface of the received metal base material (temperature 300 to 900 ° C.).
  • polycrystalline silicon is deposited on the surface of the lining material, and an N-type (or P-type) polycrystalline silicon film layer is formed (the thickness of the film layer is 10 to 150 microns).
  • a conductive bath is engraved with a laser from the back side of the metal base material to process the diffraction grating (the depth of the conductive bath should pass through the Si 3 N 4 lining coating layer). .
  • a conductive colloid having low resistance is applied in a tank-type diffraction grating electrode. Thus, a conductive tank is formed.
  • the resistivity is measured.
  • an anti-erosion protective film is attached to the back surface of the metal base material, and the electrode is drawn out.
  • the present invention has produced a flexible composite type photo-excited component by adopting a new plate-like high purity silicon process.
  • the manufacturing process is simple, environmental and safety are good, energy is saved, there is no chemical corrosion, and there is a wide range of applications.
  • the purity is high, the uniformity of crystal shape and resistivity and the stability of electrical performance are good, the period of use is long, the conversion rate is good, the area of the membrane layer is It is widely used and has features such as low production costs.
  • the new technology for engraving electrodes with a metal-based material lining coating layer has advantages such as reduced back electrode light scatter, enhanced multiwavelength diffraction, and improved weak light conversion. It is suitable for mass production of inexpensive large-area plate-like high-purity polycrystalline silicon solar cells.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Photovoltaic Devices (AREA)

Abstract

【課題】製造プロセス、製造設備が簡単で、省エネルギにて製造することができ、鋳塊、切断、研磨の必要がなく、化学的な腐食が生じることがなく、環境性・安全性が良好で、応用の広範性などの特徴を有する太陽電池用の光電転換器の製造方法を提案する。 【解決手段】金属の箔板を電磁の外熱源のキャリヤーとして利用し、または、外延結晶のライニング材として利用して、また、電池の裏面にレーザー刻印にて回折格子と導電電極を形成して、一回性で光電効率の安定性を有したフレキシブル多結晶シリコン電池フィルムを形成する。

Description

光電転換器の製造方法
 この発明は光電転換器の製造方法に関する。
従来技術
 シリコン系光電変換素子上に、高精度の電極を形成する太陽電池用電極フィルム及びこれを利用した太陽電池に関しては種々の提案がされている(例えば、特許文献1)。
特開2009-117742
 本発明は、製造プロセス、製造設備が簡単で、省エネルギにて製造することができ、鋳塊、切断、研磨の必要がなく、化学的な腐食が生じることがなく、環境性・安全性が良好で、応用の広範性などの特徴を有する太陽電池用の光電転換器の製造方法を提案することを目的にしている。
 本発明は、以下の(1)~(7)の工程からなることを特徴とする光電転換器の製造方法である。
   (1)所定形状の金属材料からなるベース材料の表面に均一に純Siのライニング塗料を塗装してライニング塗層を形成する
   (2)真空下で高純度シランガスを加熱されている前記ベース材料の表面において分解させ、ライニング塗層の表面にN型(或いはP型)多結晶シリコン膜層を形成する
   (3)CVDプロセスを利用して多結晶シリコン薄膜を形成する
   (4)前記ベース材料の裏面からレーザーにて導電槽を刻印し、回折格子を加工する
   (5)槽型の回折格子電極の中に、抵抗性の低い導電コロイドを塗布して導電槽を形成する
   (6)前記ベース材料の裏面に耐侵食保護膜を付け、電極を引き出す
   (7)前記多結晶シリコン薄膜の正面に所定の要求に従いレーザーにて導電槽を加工し、次いで、透明導電膜を印刷し、UV導電コロイドを使って、電極端子を引き出す。
 この発明によれば、製造プロセス、製造設備が簡単で、省エネルギにて製造することができ、鋳塊、切断、研磨の必要がなく、化学的な腐食が生じることがなく、環境性・安全性が良好で、応用の広範性などの特徴を有する太陽電池用の光電転換器の製造方法を提供することができる。
 この発明は、金属の箔板を電磁の外熱源のキャリヤーとして利用し、または、外延結晶のライニング材として利用して、また、電池の裏面にレーザー刻印にて回折格子と導電電極を形成して、一回性で光電効率の安定性を有したフレキシブル多結晶シリコン電池フィルムを形成し、一種の板状多結晶シリコン材料を利用したフレキシブル合成膜光電転換器を製造する新製法である。
   前述した金属ベース材料に対してレーザー刻印にて回折格子電極を加工する新しい技術は、裏電極の光散射の低減、多波長回折の増強、弱光転換率の向上などの利点を有し、安価な広い面積の板状高純度多結晶シリコンの太陽電池の生産に適している。
   本発明によれば、製造プロセス、製造設備は簡単で、省エネルギにて製造することができ、鋳塊、切断、研磨の必要はなく、化学的な腐食はなく、環境性・安全性は良く、応用の広範性などの特徴を有する。
   同時に、本発明によれば、純度は高く、結晶形状と抵抗率の均一性及び電気性能の安定性は良く、使用期間は長く、膜層の厚さの制御性、電極の安定性と可溶接性は良く、製造コストは安くなどの特徴も有している。
   以下、本発明の製造方法をさらに詳しく説明する。
   金属の箔板を電磁の外熱源のキャリヤーとして利用し、または、外延結晶のライニング材として利用する。また、同時に、電池の裏面にレーザー刻印にて回折格子と導電電極を形成し、一回性で光電効率の安定性を有するフレキシブル多結晶シリコン電池フィルムを形成させる。これによって、一種の板状多結晶シリコン材料の利用によるフレキシブル合成膜光電転換器を製造する新製法である。
   その特徴は、下記通りのフレキシブル合成光電フィルムの製造プロセスである。
   厚さ0.01~0.1mm、長さ0.1~1.5m、幅60cm以下の研磨した板状或いは環状の金属材料(アルミ、鉄、亜鉛、モリブデン、合金、ステンレス箔などの材料はいずれも使用可能)を採用し、光電部品のベース材料として使用とする。
   前述した金属ベース材料の表面に均一に純Siのライニング塗料を塗装する。或いは前述した金属ベース材料の表面に均一にCuIGSeライニング塗料(銅-イリジウム-ガリウム-セレンライニング塗料)を塗装する。いずれの場合も塗装膜の厚さは約0.01mmとする。
   真空乾燥した後、前述した金属ベース材料を洗浄し、その後、特製した円柱状・回転式石英ベース材治具に前述した金属ベース材料を装入する。次いで、超周波・電磁式石英沈積反応釜へ送入する。超周波・電磁式石英沈積反応釜は直径350-450mm、高さ1.5mのものを用いた。次いで、0.1Pa以下の真空状態にした。
   超周波・電磁式石英沈積反応釜の中で、同時に高純度水素と6N高純度シランガスを送入とする(圧力は1.5×10大気圧以下、流量は50sccm以下迄に制御)。これにより、高純度シランガスは受熱した金属ベース材料の表面(温度300-900℃)で分解される。こうして、ライニング材料の表面に多結晶シリコンが沈積し、N型(或いはP型)多結晶シリコン膜層が形成される(膜層の厚さは10~150ミクロン)。
   次いで、真空自動洗浄機へ送入し、沈積された多結晶シリコンフィルムを洗浄する。
   多結晶シリコンフィルムを装入された石英ベース材治具を特製した多結晶拡散炉へ送入する。ここで、重畳式CVD気体混合沈積プロセスに従い、PIN型多結晶シリコン薄膜を沈積させる(膜層の厚さは10~100ミクロン)。
   真空焼きなましを行った後、真空自動洗浄機へ送入し、沈積された多結晶シリコンフィルムを洗浄する。
   混合・拡散・沈積プロセス完了後、金属ベース材料の裏面からレーザーにて導電槽を刻印し、回折格子を加工する(導電槽の深さはSiライニング塗層を通過するものにする)。槽型の回折格子電極の中に、抵抗性の低い導電コロイドを塗布する。こうして導電槽を形成させる。次に、抵抗率を測定する。その後、金属ベース材料の裏面に耐侵食保護膜を付け、電極を引き出す。
   多結晶シリコン合成膜の正面に所定の要求に従い(内連式配列)、レーザーにて導電槽を加工する。次いで、透明導電膜を印刷し、UV導電コロイドを使って、電極端子を引き出す。
   品質検査、分類、測定を経て太陽電池部品として包装する。
   以上により、本発明は、新しい板状高純度シリコンプロセスの採用によるフレキシブル合成型光励起部品を生産している。
   製造プロセスは簡単で、環境性・安全性は良く省エネルギで、化学的な腐食はなく、応用の広範性などの特徴を有する。
   本発明の方法により製造した光電部品の性能としては、純度は高く、結晶形状と抵抗率の均一性及び電気性能の安定性は良く、使用期間は長く、転換率は良く、膜層の面積は広く、生産コストは安くなどの特徴も有している。
   なお、金属ベース材料のライニング塗層に対して、レーザーにて電極を刻印する新しい技術は、裏電極の光散射の低減、多波長回折の増強、弱光転換率の向上などの利点を有し、安価な大面積の板状高純度多結晶シリコンの太陽電池の量産に適している。

Claims (1)

  1.    以下の(1)~(7)の工程からなることを特徴とする光電転換器の製造方法。
       (1)所定形状の金属材料からなるベース材料の表面に均一に純Siのライニング塗料を塗装してライニング塗層を形成する。
       (2)真空下で高純度シランガスを加熱されている前記ベース材料の表面において分解させ、ライニング塗層の表面にN型(或いはP型)多結晶シリコン膜層を形成する。
       (3)CVDプロセスを利用して多結晶シリコン薄膜を形成する。
       (4)前記ベース材料の裏面からレーザーにて導電槽を刻印し、回折格子を加工する。
       (5)槽型の回折格子電極の中に、抵抗性の低い導電コロイドを塗布して導電槽を形成する。
       (6)前記ベース材料の裏面に耐侵食保護膜を付け、電極を引き出す。
       (7)前記多結晶シリコン薄膜の正面に所定の要求に従いレーザーにて導電槽を加工し、次いで、透明導電膜を印刷し、UV導電コロイドを使って、電極端子を引き出す。
PCT/JP2009/060887 2009-06-15 2009-06-15 光電転換器の製造方法 WO2010146651A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/060887 WO2010146651A1 (ja) 2009-06-15 2009-06-15 光電転換器の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/060887 WO2010146651A1 (ja) 2009-06-15 2009-06-15 光電転換器の製造方法

Publications (1)

Publication Number Publication Date
WO2010146651A1 true WO2010146651A1 (ja) 2010-12-23

Family

ID=43355990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060887 WO2010146651A1 (ja) 2009-06-15 2009-06-15 光電転換器の製造方法

Country Status (1)

Country Link
WO (1) WO2010146651A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111370887A (zh) * 2020-04-24 2020-07-03 东莞立讯技术有限公司 板端连接器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6245079A (ja) * 1985-08-22 1987-02-27 Kanegafuchi Chem Ind Co Ltd 太陽電池用基板およびその製法
JPH03160763A (ja) * 1989-11-17 1991-07-10 Sanyo Electric Co Ltd 光起電力装置の製造方法
JPH04116986A (ja) * 1990-09-07 1992-04-17 Canon Inc 集積化太陽電池
JPH04154175A (ja) * 1990-10-17 1992-05-27 Mitsubishi Electric Corp 半導体装置およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6245079A (ja) * 1985-08-22 1987-02-27 Kanegafuchi Chem Ind Co Ltd 太陽電池用基板およびその製法
JPH03160763A (ja) * 1989-11-17 1991-07-10 Sanyo Electric Co Ltd 光起電力装置の製造方法
JPH04116986A (ja) * 1990-09-07 1992-04-17 Canon Inc 集積化太陽電池
JPH04154175A (ja) * 1990-10-17 1992-05-27 Mitsubishi Electric Corp 半導体装置およびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111370887A (zh) * 2020-04-24 2020-07-03 东莞立讯技术有限公司 板端连接器

Similar Documents

Publication Publication Date Title
Chen et al. Spatial control of cocatalysts and elimination of interfacial defects towards efficient and robust CIGS photocathodes for solar water splitting
Yuan et al. Synthesis of WO3@ ZnWO4@ ZnO-ZnO hierarchical nanocactus arrays for efficient photoelectrochemical water splitting
Kwon et al. Drastically enhanced hydrogen evolution activity by 2D to 3D structural transition in anion-engineered molybdenum disulfide thin films for efficient Si-based water splitting photocathodes
Gaillard et al. A nanocomposite photoelectrode made of 2.2 eV band gap copper tungstate (CuWO4) and multi-wall carbon nanotubes for solar-assisted water splitting
US20100032011A1 (en) Back contacted solar cell
KR20090029494A (ko) 비정질 실리콘 및 나노 결정질 실리콘의 복합 박막을이용한 태양전지 및 그 제조방법
Kwon et al. Tungsten disulfide thin film/p-type Si heterojunction photocathode for efficient photochemical hydrogen production
WO2013160736A1 (en) Graphene compositions and methods of making the same
GB2043042A (en) Production of semiconductor bodies made of amorphous silicon
Lu et al. Silicon nanowires@ Co3O4 arrays film with Z‑scheme band alignment for hydrogen evolution
CN109545900A (zh) 一种太阳能电池片用硅片的背表面的钝化方法
Lee et al. Electrochemical approach for preparing conformal methylammonium lead iodide layer
Kang et al. 3D graphene foam/ZnO nanorods array mixed-dimensional heterostructure for photoelectrochemical biosensing
Zhou et al. Ultrathin MoS2-coated Ag@ Si nanosphere arrays as an efficient and stable photocathode for solar-driven hydrogen production
Huang et al. Low-cost processed antimony sulfide nanocrystal photoanodes with increased efficiency and stability
Mishra et al. Synergistic effect of exfoliation and substitutional doping in graphitic carbon nitride for photocatalytic H 2 O 2 production and H 2 generation: a comparison and kinetic study
CN106784915A (zh) 一种不锈钢表面石墨烯防腐涂层的制备方法
US20150299844A1 (en) Method for producing protective layers containing silicides and/or oxidized silicides on substrates
WO2010146651A1 (ja) 光電転換器の製造方法
TW201428989A (zh) 太陽能電池之製造方法及藉由該製造方法而製造的太陽能電池
CN104018200B (zh) 一种提高六棱柱状结构纳米氧化锌材料表面润湿性的方法
CN102544375A (zh) 一种宽光谱响应的太阳能电池柔性光阳极及其制备方法
CN105378938A (zh) 太阳能电池的制造方法
US20200303584A1 (en) Method for Producing a Nitrogen-Free Layer Comprising Silicon Carbide
CN106835242B (zh) 一种Cu2O纳米阵列的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09846144

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/05/2012)

122 Ep: pct application non-entry in european phase

Ref document number: 09846144

Country of ref document: EP

Kind code of ref document: A1