WO2010143909A2 - 진폭변조 레이더 및 그 거리 측정 방법 - Google Patents
진폭변조 레이더 및 그 거리 측정 방법 Download PDFInfo
- Publication number
- WO2010143909A2 WO2010143909A2 PCT/KR2010/003760 KR2010003760W WO2010143909A2 WO 2010143909 A2 WO2010143909 A2 WO 2010143909A2 KR 2010003760 W KR2010003760 W KR 2010003760W WO 2010143909 A2 WO2010143909 A2 WO 2010143909A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- amplitude
- modulation
- target
- radar
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/06—Systems determining position data of a target
- G01S13/08—Systems for measuring distance only
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/74—Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
- G01S13/82—Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein continuous-type signals are transmitted
- G01S13/84—Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein continuous-type signals are transmitted for distance determination by phase measurement
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/06—Systems determining position data of a target
- G01S13/08—Systems for measuring distance only
- G01S13/10—Systems for measuring distance only using transmission of interrupted, pulse modulated waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/06—Systems determining position data of a target
- G01S13/08—Systems for measuring distance only
- G01S13/32—Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
Definitions
- the present invention relates to amplitude modulation (AM) radar, and more particularly to using an amplitude modulation signal sequentially generated by at least two or more signals of a plurality of modulation frequency signals and further leaking from a fixed structure.
- the present invention relates to an amplitude modulation radar and a distance measuring method capable of improving distance measurement accuracy by eliminating unnecessary or reflected signals, and implementing low cost and improving measurement distance limitation due to phase ambiguity.
- Radar is a wireless sensor that detects the distance, speed and direction to the target by using electromagnetic waves.
- the existing radar is mainly used as expensive equipment for military detection, aviation, ships, etc.
- Anti-radar radars have been developed and used in some expensive vehicles.
- Commonly used radars include pulsed Doppler radar, continuous wave (CW) radar, frequency-modulated CW (FMCW) radar, multi-frequency CW radar, and pulse compression radar.
- the radar transmits electromagnetic waves to a target through a transmitting antenna, and receives the electromagnetic waves reflected from the target through a receiving antenna to detect time difference, phase delay, or beat frequency due to a difference between a received signal and a reference signal. Through this, the distance to the target can be determined.
- Important characteristics of a general radar include range accuracy indicating the accuracy of the measured distance, range resolution to distinguish it from other targets in the presence of multiple targets, and range of measurement within range ambiguity. And speed measurement accuracy.
- range accuracy indicating the accuracy of the measured distance
- range resolution to distinguish it from other targets in the presence of multiple targets
- range of measurement within range ambiguity indicating the accuracy of the measured distance
- speed measurement accuracy indicating the accuracy of the measured distance
- the ability to remove it may be a very important characteristic of the radar.
- the accuracy and distance resolution of the distance measurement will be proportional to the frequency band used by the radar. In other words, when the frequency band of the radar is wide, the distance resolution is improved.
- the distance resolution ⁇ R is expressed as c / (2B), where c is the speed of light and B is the frequency band of the radar. it means.
- the use of wide frequency band for distance measurement is generally not allowed.
- the bandwidth of 200 [MHz] of 24.05 ⁇ 24.25 [GHz] is currently used for object sensing wireless sensor.
- the distance resolution is about 75 [cm], and the distance measurement accuracy is similarly obtained.
- the distance resolution of the above-mentioned degree may be sufficient in some applications, but the radar sensor may be applied to a vehicle to be used as a rear detection sensor or a parking assist sensor, or to measure the motion of a high-rise building or a bridge. In order to do so, the accuracy of distance measurement within a few [cm] is required.
- the pulse radar or FMCW radar sensor used in general cannot satisfy the distance measurement accuracy within a few [cm] within the allowable frequency band, and it is within the high precision within a few [cm] while using a limited narrowband ultra-high frequency signal.
- Low-cost radar sensors for measurement have not been developed to date.
- An object according to an embodiment of the present invention which was devised to solve the above-mentioned problems, minimizes phase distortion by detecting only amplitude modulated signals reflected from a target by removing unnecessary signals leaked or reflected from a fixed structure.
- the present invention provides an amplitude modulation radar and its distance measuring method which can improve measurement accuracy and reduce measurement error.
- Another object according to an embodiment of the present invention is to provide an amplitude modulation radar and a method for measuring the distance, which can improve the limitation of the measurement distance due to phase ambiguity and improve the distance measurement accuracy by using a plurality of modulation frequency signals. It is.
- Another object according to an embodiment of the present invention is to measure by amplifying an amplitude modulated signal received from an amplitude modulated radar using an active tag attached to a target in a tag, changing the carrier frequency, and retransmitting it in the amplitude modulated radar direction.
- the present invention provides an amplitude modulation radar and a method for measuring the distance, which can improve the limitation on distance and provide distance information for multiple targets.
- an amplitude modulation radar includes a plurality of modulation frequency signals, and sequentially selects at least two or more of the plurality of modulation frequency signals to perform at least two or more amplitude modulations.
- An amplitude modulated signal generator for sequentially generating signals;
- a transceiver for sequentially transmitting the at least two amplitude modulated signals to a target, and sequentially receiving the at least two amplitude modulated signals reflected from the target;
- a phase for detecting a phase delay for each of the at least two modulation frequency signals by using the at least two amplitude modulation signals reflected from the target received through the transceiver and the selected at least two modulation frequency signals. It may include a detector.
- the phase detector is sequentially received through the transceiver using at least two or more signals sequentially received through the transceiver and the unnecessary signal information measured for each of the selected at least two modulation frequency signals. Only the at least two amplitude modulated signals reflected from the target may be extracted from at least two signals.
- the apparatus may further include a calculator configured to calculate a distance to the target by using a phase delay of each of the at least two modulation frequency signals detected by the phase detector.
- the phase detector may remove the previously measured unnecessary signal from the at least two signals using each of the selected at least two modulation frequency signals.
- the calculation unit may be configured to each of the at least two modulation frequency signals calculated by the calculated distance to the target, the phase delay detected for each of the at least two modulation frequency signals, and the distance to the calculated target.
- the distance to the target may be recalculated using the phase delay for the target.
- a method for measuring a distance of an amplitude modulated radar includes sequentially generating at least two or more amplitude modulated signals by sequentially selecting at least two or more of a plurality of modulation frequency signals; Sequentially transmitting the at least two amplitude modulated signals to a target, and sequentially receiving the at least two amplitude modulated signals reflected from and received from the target; Detecting a phase delay for each of the at least two modulation frequency signals using the at least two amplitude modulation signals reflected from the sequentially received target and the selected at least two modulation frequency signals. It may include.
- a method for measuring a distance of an amplitude modulated radar comprising: transmitting a signal including an ID of a target; Generating an amplitude modulated signal using the modulated frequency signal; Transmitting the amplitude modulated signal to an active tag storing an ID for the target, and receiving the amplitude modulated signal amplified by the active tag; And detecting a phase delay between the modulation frequency signal and the amplitude modulation signal received from the active tag to calculate the distance to the target.
- the receiving may receive an amplitude modulated signal whose carrier frequency is changed by the active tag, and filter only the received signal received by the receiver to detect only the amplitude modulated signal whose carrier frequency is changed.
- Distance measuring system using the amplitude modulation radar is attached to the target, the active tag for amplifying and transmitting the received amplitude modulation signal; And transmitting the amplitude modulated signal generated using the modulation frequency signal to the target, detecting an envelope signal for the amplitude modulated signal received from the active tag, and calculating a distance to the target. And an amplitude modulation radar for detecting a phase delay between the modulation frequency signal and the modulation frequency signal.
- the active tag may change the frequency of the carrier for the amplitude modulated signal transmitted from the amplitude modulated radar to a preset frequency, and transmit the amplitude modulated signal whose frequency of the carrier is changed to the amplitude modulated radar.
- the active tag when the active tag receives an ID for a target transmitted from the amplitude modulation radar, the received ID and the stored ID may be compared with the previously stored ID to transmit the amplified amplitude modulation signal to the amplitude modulation radar. .
- FIG. 1 is a block diagram of an amplitude modulation radar according to an embodiment of the present invention.
- FIG. 2 illustrates an example of an amplitude modulated signal generator shown in FIG. 1.
- FIG. 3 is a flowchart illustrating a method for measuring a distance of an amplitude modulated radar according to an exemplary embodiment of the present invention.
- FIG. 4 is a flowchart illustrating a method for measuring a distance of an amplitude modulated radar according to another exemplary embodiment of the present invention.
- FIG. 5 illustrates a distance measuring system according to an embodiment of the present invention.
- FIG. 6 shows a distance measuring system according to another embodiment of the present invention.
- FIG. 7 illustrates an embodiment configuration for the active tag shown in FIG. 6.
- FIG. 8 is a flowchart illustrating a distance measuring method according to another embodiment of the present invention.
- FIG. 1 is a block diagram of an amplitude modulation radar according to an embodiment of the present invention.
- an amplitude modulation radar includes an amplitude modulation signal generator 110, a transceiver 120, a phase detector 130, and a calculator 140.
- the amplitude modulated signal generator 110 generates an amplitude modulated signal using an RF carrier signal and a modulated frequency signal whose amplitude is adjusted.
- the generated amplitude modulation signal may include an RF carrier signal and both sideband signals generated through amplitude modulation.
- the amplitude modulated signal generator combines the RF carrier wave of the fixed frequency (f 0 ) and the bilateral band signal (f 0 ⁇ f m ) generated by mixing the modulated frequency (f m ) signal with the adjusted amplitude. To generate an amplitude modulated signal.
- the stability of the modulation frequency f m is more important than the stability of the frequency f 0 of the RF carrier signal.
- the transmitter / receiver 120 transmits the amplitude modulated signal generated by the amplitude modulated signal generator 110 to a target for measuring a distance, and receives the amplitude modulated signal reflected from the target.
- the transceiver 120 may include an amplitude modulated signal reflected from a target, an unwanted signal generated by a fixed structure such as a protective plastic cover leaking from a radar or other surrounding material, for example, an antenna front end.
- the amplitude modulation radar should remove these unwanted signals for accurate measurement to the target, and measure the unwanted signals beforehand.
- the method for measuring the unnecessary signal may be various.
- the unnecessary signal due to leakage generates an amplitude modulated signal in a state in which the antenna terminal of the transceiver 120 is terminated with the characteristic impedance of the transmission line.
- the amplitude modulation signal generated by the unit 110 may be used to measure, and the unnecessary signal due to reflection by the antenna front structure may absorb the amplitude modulation signal transmitted to the antenna front of the transceiver 120. It can be measured using an absorber.
- Transceiver 120 is an element connected to the antenna to separate the transmission signal and the reception signal, may use a circulator (hybrid coupler) or a hybrid coupler (hybrid coupler), to reduce the cost can use a hybrid coupler, In the case of using the hybrid coupler, the magnitude of the received signal to the transmitter may be adjusted using a power attenuator.
- the transceiver 120 may be provided separately from the antenna for transmitting a signal and the receiving antenna, may be provided with a plurality of antennas to improve the diversity (diversity).
- the amplitude modulated signal transmitted through the transceiver 120 and the amplitude modulated signal reflected from the target are described as follows.
- the amplitude modulated signal which is transmitted through the transmitting and receiving unit 120 is made of a carrier signal (f 0), the upper sideband signal (f 0 + f m) and the lower sideband signal (f 0 -f m), this amplitude modulation
- the signal can be expressed as Equation 1 below.
- S TX means the amplitude modulation signal to be transmitted
- A means the amplitude of the carrier signal
- m means the amplitude modulation index
- This amplitude modulated signal is reflected from the target after the distance R to the target, and a portion of the reflected amplitude modulated signal power is received through the receiving antenna.
- the amplitude modulation signal reflected from the target received by the transceiver 120 generates a phase delay while propagating the distance R to the target in a round trip, which can be expressed by Equation 2 below.
- S RX denotes an amplitude modulated signal reflected from the target and received
- B denotes an amplitude of a carrier signal reflected and received from the target.
- the phase detector 130 includes a first detector 131, an unnecessary signal remover 132, and a second detector 133.
- the first detector 131 receives an envelope signal for an amplitude modulated signal from a signal received through the transceiver 120, that is, a signal including an amplitude modulated signal and an unwanted signal reflected from a target represented by Equation 2 above. Detect.
- the first detector 131 may detect the envelope signal for the amplitude modulated signal from the signal received through the transceiver 120 using the power detector.
- the unnecessary signal removing unit 132 extracts only the envelope signal for the amplitude modulated signal reflected from the target by removing the previously measured unnecessary signal from the envelope signal for the amplitude modulated signal detected by the first detector 131.
- the unnecessary signal removing unit 132 removes the unnecessary signal included in the received signal in order to extract only the envelope signal for the amplitude modulated signal received by being reflected from the target. By combining a signal having a phase difference of degrees with a received signal, an unnecessary signal can be removed from the received signal.
- the unnecessary signal removing unit 132 may remove the unnecessary signal by using the modulation frequency signal used to generate the amplitude modulation signal, for this purpose to make the amplitude of the modulation frequency signal equal to the measured unnecessary signal
- the power attenuator may include a phase delay unit for making a 180 degree phase difference, and the number of power attenuators and phase delay units may vary according to the number of unnecessary signals.
- the unnecessary signal removing unit 132 may extract only the envelope signal for the amplitude modulation signal reflected from the target by removing the unnecessary signal from the envelope signal for the amplitude modulation signal, and the amplitude modulation signal reflected from the target is
- the extracted envelope signal may be expressed as Equation 3 below.
- C means a constant
- the second detector 133 detects a phase delay between the envelope signal extracted by the unnecessary signal remover 132 and the reference modulated frequency signal.
- the phase delay may be expressed by Equation 4 below.
- the reference modulated frequency signal compared to detect the phase delay means a variation frequency signal.
- the modulated frequency signal may be used as it is, the phase of the modulated frequency signal may be adjusted according to circumstances.
- the reference modulation frequency may be used in this sense.
- ⁇ m means phase delay
- the calculator 140 calculates a distance to the target object through the phase delay detected by the phase detector 130.
- the calculator 140 may calculate the distance to the target by using Equation 5 below.
- the amplitude modulation radar can accurately detect the phase delay by removing the previously measured unwanted signal from the received signal in order to detect only the amplitude modulation signal reflected from the target. Increase the accuracy of the distance measurement to the target.
- the accuracy of the distance measurement can be determined by the error of the phase delay and the modulation frequency, as shown in Equation 5, Table 1 shows the distance measurement error according to the error of the modulation frequency and phase measurement It is shown.
- the distance measurement error increases in proportion to the phase measurement error, and inversely proportional to the modulation frequency. That is, the larger the phase measurement error, the greater the distance measurement error, and the smaller the modulation frequency, the greater the distance measurement error.
- the modulation frequency may be increased to increase the accuracy of the distance measurement.
- the ambiguity of distance measurement may occur due to 2 ⁇ uncertainty. If the phase delay between the transmission signal and the envelope signal for the received signal exceeds 2 ⁇ , the amplitude modulation signal of the single frequency As the phase delay between the envelope and the reference modulation frequency signal, the distance cannot be measured accurately.
- the maximum distance measured using a single modulation frequency decreases as the modulation frequency increases. For example, when the modulation frequency is 10 [MHz], the maximum measurement distance without ambiguity for distance measurement is 15 [m]. When the target is located farther than this distance, ambiguity for distance measurement occurs.
- the amplitude modulation radar uses a plurality of modulation frequencies to solve the accuracy of the distance measurement and the ambiguity of the distance measurement.
- the amplitude modulation signal generator 110 selects one of a plurality of modulation frequency signals to generate an amplitude modulation signal for the selected modulation frequency signal.
- amplitude modulation signals for two or more modulation frequency signals may be sequentially generated.
- the amplitude modulation radar can measure the phase delays ( ⁇ m1 , ⁇ m2 ) for each of the two modulation frequency signals, and calculate the distance to the target by using the difference between the measured two phase delays.
- An amplitude modulation radar using a plurality of modulation frequencies may calculate a distance to a target by using Equation 6 below.
- the amplitude modulation radar can calculate the distance to the target through the difference between the two modulation frequencies (f m2 -f m1 ) and the difference between the two phase delays ( ⁇ m2 - ⁇ m1 ). Two modulation frequencies are used, but the distance to the measurable target can be measured unambiguously by the distance corresponding to the difference between the two modulation frequencies.
- f m1 10 [MHz] and f m2 is 10.1 [MHz]
- f m3 f m2 -f m1
- Table 2 the distance to the target can be measured without ambiguity of the distance up to 1.5 [Km].
- phase measurement data measured at a plurality of modulation frequencies for example, modulation frequencies f m1 and f m2 , can be used to increase the accuracy of distance measurement.
- Equation 7 For example, assuming that the estimated distance calculated from f m3 using Equation 6 is R 'and the distance to the actual target is R', the estimated distance R 'is used to modulate the frequencies f m1 and f m2.
- the phase delays ( ⁇ ' m1 , ⁇ ' m2 ) of the amplitude modulated signals calculated for each of can be expressed by Equation 7 below.
- ⁇ ' m1 and ⁇ ' m2 are values calculated using the estimated distance R 'calculated by Equation (6).
- phase delay error at each of the modulation frequencies f m1 and f m2 according to the actual distance R and the estimated distance R 'to the target can be calculated by Equation 8 below.
- ⁇ m1 and ⁇ m2 represent the phase delays measured for each of the modulation frequencies f m1 and f m2 .
- ⁇ r1 and ⁇ r2 can be calculated using ⁇ m1 and ⁇ m2 detected by the second detection unit 133 of the amplitude modulation radar, and ⁇ ' m1 and ⁇ ' m2 calculated by Equation (7). .
- Equation 9 a relational expression as shown in Equation 9 below can be obtained.
- ⁇ r1 and ⁇ r2 have the same sign and have a proportional relationship through ⁇ Equation 9>.
- the value of ⁇ r1 may be positive or negative due to 2 ⁇ uncertainty. This is because it is uncertain whether the actual distance R is larger or smaller than the estimated distance R '. If the value of ⁇ r1 is positive, then the distance R to the actual target is greater than the estimated distance R ', and if it is negative, the opposite is the case. Of course, even in this case, it is possible to determine the value of ⁇ r1 and its sign satisfying the relational expression of Equation (9).
- the distance to the target can be measured without ambiguity. That is, it may be obtained as in Equation 11 below.
- the difference between the phase delays of the two modulation frequencies is 180 degrees, and the distance to the target is 750 [m] through Equation 6.
- the error for phase measurement is 2 degrees, for example, if the difference in phase delay between two modulation frequencies is measured as 178 degrees, the estimated distance R 'is measured as 741.6 [m] through Equation (6).
- "estimated phase delays for the two modulation frequency by using the ⁇ 'estimate the measured distance and ⁇ R 10MHz, 10.1MHz, and the calculation, the calculated estimated phase delay with ⁇ equation 11> to the measured phase delay obtained by ⁇ 10MHz and using a 10.1MHz ⁇ ⁇ calculates r1 and r2 ⁇ .
- Equation 9 is established, and it can be calculated that the distance R to the actual target is 750 [m] by Equation 10. This distance is calculated as an error of 8.3 [cm] from the actual distance when the phase measurement error is 2 degrees at the 10 [MHz] modulation frequency.
- phase delay error between ⁇ r1 and ⁇ r2 is too small to be discriminated within the phase measurement error, the phase is changed through a third modulation frequency, for example, 11 [MHz], which is different from the modulation frequency of f m1 .
- the amplitude modulation radar according to the embodiment of the present invention improves the accuracy of the distance measurement by reducing the measurement error with respect to the phase delay that may be generated by the unnecessary signal, and uses a plurality of modulation frequencies to determine the distance measurement. Even for long-range targets without any ambiguity, it is possible to reduce the distance measurement error and measure the exact distance to the target.
- This amplitude modulated radar can be used for short distances such as vehicle rear detection sensors, parking assistance sensors, blind spot detection sensors, robot detection sensors, location-based services (LBS), and collision avoidance sensors for ships. Because it can be measured remotely without any ambiguity in measurement, it can be used in various fields such as distance measuring and motion sensing sensors for long distances such as skyscrapers, bridges, and slopes.
- LBS location-based services
- FIG. 3 is a flowchart illustrating a method for measuring a distance of an amplitude modulated radar according to an exemplary embodiment of the present invention, which relates to a method of measuring a distance to a target using a single modulation frequency signal.
- the distance measuring method generates an amplitude modulated signal using an RF carrier and a modulated frequency signal whose amplitude is adjusted (S310).
- the generated amplitude modulated signal is transmitted to the target through an antenna, and the amplitude modulated signal reflected from the target is received (S320 and S330).
- the signal received by the receiving end may include not only a reflection signal reflected from the target but also an unnecessary signal leaking inside the amplitude modulation radar or reflected from a fixed structure outside the radar.
- the unwanted signal previously measured for the amplitude modulation signal is removed from the detected envelope signal ( S340, S350).
- the modulation frequency signal which is used to generate the amplitude modulation signal
- the modulation signal has the same amplitude as the unwanted signal and has a phase difference of 180 degrees.
- the unwanted signal can be removed from the envelope signal.
- the phase delay between the envelope signal from which the unnecessary signal is removed and the reference modulation frequency signal is detected (S360).
- the distance to the target is calculated using the detected phase delay value (S370).
- the distance measuring method improves accuracy in phase measurement by eliminating unnecessary signals that may affect phase detection in an amplitude modulation radar using a single modulation frequency signal. This improves the accuracy of the distance measurement to the target.
- the distance measurement error varies according to the modulation frequency and phase measurement error, and the maximum distance that can be measured without ambiguity is limited.
- the distance that can be measured is limited according to the modulation frequency used, and when using the modulation frequency to increase the measurement distance to the target, the distance measurement error generated by the phase measurement error becomes large. The accuracy will be reduced.
- the distance measuring method can solve a problem that may be caused by using a single modulation frequency by using a plurality of modulation frequencies, which will be described with reference to FIG. 4.
- FIG. 4 is a flowchart illustrating a method for measuring a distance of an amplitude modulated radar according to another exemplary embodiment of the present invention, and a method of measuring a distance to a target using a plurality of modulation frequency signals, for example, two modulation frequency signals. It is about.
- the distance measuring method selects a first modulation frequency f m1 signal from among a plurality of modulation frequency signals and generates a first amplitude modulated signal using the selected first modulation frequency f m1 signal. (S410).
- the generated amplitude modulated signal that is, the first amplitude modulated signal is transmitted to the target through an antenna, and the first amplitude modulated signal reflected from the target is received (S420 and S430).
- the measurement is performed on the first amplitude modulated signal in the detected envelope signal.
- the unnecessary signal is removed (S440, S450).
- the phase delay ⁇ m1 between the envelope signal from which the unnecessary signal for the first amplitude modulated signal is removed and the first modulation frequency signal is detected (S460).
- the second modulation frequency signal f m2 of the plurality of modulation frequency signals is determined to determine whether to perform distance calculation and to calculate phase delay for another modulation frequency.
- a second amplitude modulation signal is generated using the selected second modulation frequency signal f m2 (S470 and S490).
- the second amplitude modulation signal is transmitted to the target object, and steps S420 to S460 of detecting a phase delay ⁇ m2 between two signals with respect to the second modulation frequency are performed again.
- a phase delay ⁇ m2 between the envelope signal from which the unnecessary signal is removed and the second modulation frequency signal is detected (S460).
- the distance to the target is calculated using the two modulation frequencies (f m1 , f m2 ) and phase delays ( ⁇ m1 , ⁇ m2 ) (S480). ).
- the amplitude modulation radar may calculate the distance to the target by using Equation 6.
- Equation 6 the distance to the target with improved accuracy may be calculated using Equation 10.
- the distance measuring method reduces the distance measurement error by measuring the distance to the target using a plurality of modulation frequencies in the amplitude modulation radar, and targets located at a far distance without ambiguity about the distance measurement. The exact distance can be measured even for.
- FIG. 5 illustrates a distance measuring system according to an embodiment of the present invention.
- the distance measurement system includes an amplitude modulation radar 510 and an active tag 520.
- the amplitude modulation radar 510 generates an amplitude modulation signal and transmits it to a target to which the active tag 520 is attached, detects an envelope signal for the amplitude modulation signal retransmitted from the active tag 520, and modulates the detected envelope signal and modulation. By detecting the phase delay using the frequency signal, the distance to the target is calculated.
- the amplitude modulation radar 510 may be further configured according to the carrier frequency of the amplitude modulation signal transmitted from the active tag 520.
- the amplitude modulation radar 510 detects only an envelope signal for an amplitude modulation signal transmitted from the active tag 520 when an amplitude modulation signal including the same RF carrier frequency is received from the active tag 520.
- the previously measured unnecessary signal may be removed from the signal received by the receiver.
- the amplitude modulating radar 510 passes an amplitude modulated signal whose carrier frequency is changed when an amplitude modulated signal including an RF carrier frequency different from the RF carrier frequency of the amplitude modulated signal transmitted from the active tag 520 is received.
- a filter that can be used, it is possible to eliminate interference from unnecessary signals generated by radio wave obstacles and the like, and to detect phase delay due to an amplitude modulated signal. This is not a measurement of the phase delay of the carrier signal traveling back and forth from the amplitude modulation radar to the target, but rather of measuring the phase delay of the amplitude modulated modulation frequency signal. Do not.
- the active tag 520 is attached to the target, receives and amplifies the amplitude modulation signal transmitted from the amplitude modulation radar 510 and transmits it to the amplitude modulation radar 510.
- Such an active tag 520 is very weak when the amplitude modulation signal transmitted from the amplitude modulation radar 510 is reflected from the target when the target is at a distance, thereby causing a reflection signal from an obstacle or a fixed structure. This is to solve the problem that it is difficult to measure the phase of the envelope of the amplitude modulated signal reflected from the desired target by the leakage signal.
- the active tag 520 amplifies and transmits the amplitude modulated signal reflected from the target, thereby solving the difficulty in measuring the phase of the envelope signal in the amplitude modulated radar 510.
- the active tag 520 may only amplify the amplitude modulation signal received by the antenna and then retransmit it in the direction of the amplitude modulation radar. If the RF carrier frequency is changed, the interference caused by radio wave obstacles can be easily removed. That is, the active tag 520 receives the amplitude modulated signal, changes the RF carrier frequency f 0 of the received amplitude modulated signal to another preset carrier frequency f 1 , and then amplifies the amplitude modulated radar 510. By transmitting the signal, the amplitude modulation radar 510 can easily detect the phase delay with respect to the modulated frequency signal without interference by the unnecessary signal.
- FIG. 6 is a diagram illustrating a distance measuring system according to another embodiment of the present invention, in which a plurality of active tags exist.
- the distance measurement system includes an amplitude modulation radar 610 and a plurality (N) of active tags 620.
- Amplitude modulating the radar unit 610 and then transmits the signal including the ID of the target to measure the distance by using a RF carrier (f 0) signal and the modulation frequency (f m1) signal generates an amplitude modulated signal, generated Transmits the amplitude modulation signal and receives the amplitude modulation signal transmitted from the active tag having the ID of the target, and detects the phase delay using the envelope signal and the reference modulation frequency signal for the received amplitude modulation signal. Calculate the distance to the target with that ID.
- a RF carrier (f 0) signal and the modulation frequency (f m1) signal generates an amplitude modulated signal, generated Transmits the amplitude modulation signal and receives the amplitude modulation signal transmitted from the active tag having the ID of the target, and detects the phase delay using the envelope signal and the reference modulation frequency signal for the received amplitude modulation signal.
- the amplitude modulation radar 610 when the amplitude modulation radar 610 receives an amplitude modulation signal including the same RF carrier frequency from the active tag, the amplitude modulation radar 610 detects only the envelope signal for the amplitude modulation signal transmitted from the active tag. It is possible to eliminate the measured unwanted signal, and to configure the filter to pass the changed amplitude modulated signal when an RF modulated frequency modulated signal is received from the active tag, thereby preventing interference from unnecessary signals generated by radio wave obstacles.
- the phase delay may be detected by removing.
- the active tag 620 is attached to the target to store the ID corresponding to the target, and receives the ID for the target transmitted from the amplitude modulation radar 610, if the received ID and the stored ID is the same amplitude modulation received The signal is amplified and retransmitted to the amplitude modulation radar 610. When the received ID and the stored ID are different, the received amplitude modulation signal is blocked from being transmitted to the amplitude modulation radar 610.
- the active tag 620 may only amplify the amplitude modulation signal received by the antenna and then transmit the amplitude modulation radar to the amplitude modulation radar. However, in order to avoid interference from radio wave obstacles, the active tag 620 may convert the RF carrier frequency of the amplitude modulation signal received by the antenna. It may be changed to another preset carrier frequency and transmitted to the amplitude modulation radar.
- each of the plurality of active tags amplifies the received amplitude modulation signal and retransmits it to the amplitude modulation radar only when the same ID as the previously stored ID is received, the distance to each of the plurality of targets can be accurately measured and fixed. Accurate distances can be measured for both targets and liquid targets.
- the active tag can change the RF carrier frequency of the received amplitude modulation signal to another preset carrier frequency and transmit it to the amplitude modulation radar, the interference tag blocks the interference with surrounding radio obstacles and thus the amplitude modulation radar to the target. Theorem can be measured accurately, which improves the accuracy of the measurement distance.
- FIG. 7 illustrates an embodiment configuration for the active tag shown in FIG. 6.
- the active tag 620 includes a transceiver 710, a determiner 720, an amplifier 730, and a changer 740.
- the transceiver 710 receives the ID information and the amplitude modulated signal transmitted from the amplitude modulated radar, and transmits the amplitude modulated signal amplified by the amplifier 730 to the amplitude modulated radar.
- the RF carrier frequency of the amplitude modulated signal transmitted from the transceiver 710 to the amplitude modulation radar may be different from the RF carrier frequency of the amplitude modulated signal received from the transceiver 710.
- the determination unit 720 compares the ID of the target received with the active tag with the ID of the target pre-stored in the active tag, determines whether the two IDs match, and controls the amplifying unit 730.
- the determination unit 720 may output a control signal for amplifying the amplitude modulation signal to a predetermined size when the two IDs match, and block transmission of the amplitude modulation signal when the two IDs are different.
- the control signal can be output to the amplifier 730.
- the changer 740 changes the RF carrier frequency of the amplitude modulated signal received through the transceiver 710 to a different preset RF carrier frequency.
- the amplifier 730 amplifies an amplitude modulated signal whose RF carrier frequency is changed by the changer 740 based on the control signal output from the determiner 720, and then modulates the amplitude through the transceiver 710. It transmits to the radar or blocks the amplitude modulation signal is output through the transceiver 710.
- the amplifying unit 730 may amplify the amplitude modulated signal by using an amplifier constituting the amplifying unit or block output from the transceiver.
- FIG. 8 is a flowchart illustrating a distance measuring method according to another embodiment of the present invention, which relates to a method of using an active tag shown in FIG. 6.
- the distance measuring method transmits an ID for a target to be measured through an antenna, generates an amplitude modulated signal using an RF carrier signal and an amplitude modulated modulation frequency signal, and generates the amplitude.
- the modulated signal is transmitted to a plurality of targets to which the active tag is attached (S810 and S820).
- the amplitude modulation radar receives an amplitude modulation signal amplified and transmitted from an active tag in which a corresponding target ID is stored among active tags attached to each of the plurality of targets, and detects an envelope signal for the received amplitude modulation signal (S830, S840). ).
- the phase delay of the two signals is detected using the detected envelope signal and the reference modulation frequency signal, and the distance to the target object is calculated using the detected phase delay (S850 and S860).
- the method for detecting an envelope signal is to detect an envelope signal after filtering only the received amplitude modulated signal when the RF carrier frequency of the received amplitude modulated signal is different from the RF carrier frequency of the amplitude modulated signal transmitted from the amplitude modulated radar.
- the measured unwanted signal is removed and the envelope signal for the amplitude modulation signal transmitted from the active tag is detected.
- amplitude modulation radar and the distance measuring method according to the present invention can be modified and applied in various forms within the scope of the technical idea of the present invention and are not limited to the above embodiments.
- the embodiments and drawings are merely for the purpose of describing the contents of the invention in detail, not intended to limit the scope of the technical idea of the invention, the present invention described above is common knowledge in the technical field to which the present invention belongs As those skilled in the art can have various substitutions, modifications, and changes without departing from the spirit of the present invention, it is not limited to the embodiments and the accompanying drawings. And should be judged to include equality.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
진폭변조 레이더 및 그 거리 측정 방법이 개시된다. 본 발명의 일 실시예에 따른 진폭변조 레이더는 복수의 변조주파수 신호들을 구비하고, 상기 복수의 변조주파수 신호들 중 적어도 두 개 이상을 순차적으로 선택하여 적어도 두 개 이상의 진폭변조 신호를 순차적으로 생성하는 진폭변조 신호 생성부; 상기 적어도 두 개 이상의 진폭변조 신호를 목표물로 순차적으로 송신하고, 상기 목표물로부터 반사되어 수신되는 상기 적어도 두 개 이상의 진폭변조 신호를 순차적으로 수신하는 송수신부; 및 상기 송수신부를 통해 수신되는 상기 목표물로부터 반사된 상기 적어도 두 개 이상의 진폭변조 신호와 상기 선택된 적어도 두 개 이상의 변조주파수 신호를 이용하여 상기 적어도 두 개 이상의 변조주파수 신호 각각에 대한 위상지연을 검출하는 위상 검출부를 포함할 수 있다.
Description
본 발명은 진폭변조(AM: Amplitude Modulation) 레이더에 관한 것으로서, 보다 상세하게는 복수의 변조주파수 신호들 중 적어도 두 개 이상의 신호에 의해 순차적으로 생성된 진폭변조 신호를 이용하고 나아가 고정된 구조물로부터 누설되거나 반사되는 불요신호를 제거하여 거리측정 정확도를 향상시키며, 저가격으로 구현 가능하고, 위상 모호성에 의한 측정거리 제한을 개선시킬 수 있는 진폭변조 레이더 및 그 거리 측정 방법에 관한 것이다.
레이더(Radar)는 전자파를 사용하여 목표물까지의 거리, 속도 및 방향을 탐지하는 무선센서로서, 기존의 레이더는 군사적 탐지, 항공, 선박 등의 용도로 주로 고가의 장비로서 사용되었고, 최근에는 차량용 충돌방지 레이더가 개발되어 일부 고가의 차량에 장착되어 사용되고 있다.
현재 고정밀 저가격의 레이더 센서에 대한 관심이 고조되고 있고, 다양한 응용분야에 적용될 수 있도록 보급화 레이더 센서의 개발에 전 세계적으로 많은 노력을 기울이고 있다.
일반적으로 많이 사용되는 레이더의 종류로는 펄스도플러 레이더, CW(Continuous Wave) 레이더, FMCW(Frequency-Modulated CW) 레이더, 다중주파수 CW 레이더 및 펄스압축 레이더 등을 들 수 있다.
이러한 레이더는 송신 안테나를 통해 전자파를 목표물로 향해 전송하고, 목표물로부터 반사되는 전자파를 수신 안테나를 통해 수신하여 수신된 신호와 기준신호간의 차이에 의한 시간차, 위상지연 혹은 비트 주파수(beat frequency) 등을 통하여 목표물까지의 거리를 결정할 수 있게 된다.
일반적인 레이더의 중요한 특성으로는 측정한 거리에 대한 정확도를 나타내는 거리측정 정확도(range accuracy), 다중 목표물이 존재할 때 타 목표물과 구분할 수 있게 하는 거리분해능(range resolution), 거리측정 모호성 이내의 거리측정 범위 및 속도측정의 정확성 등이 있다. 또한, 레이더의 수신단에 목표물 이외의 간섭 에코에 해당하는 전파장애물(clutter)에 의한 신호가 존재할 때, 이를 제거해 낼 수 있는 능력도 레이더의 매우 중요한 특성이라 할 수 있다.
일반적으로 거리측정의 정확도 및 거리분해능은 레이더가 사용하는 주파수 대역에 비례하게 된다. 즉, 레이더의 사용 주파수 대역이 넓으면 거리분해능이 향상되는데, 펄스 레이더 및 FMCW 레이더의 경우 거리분해능 ΔR은 c/(2B)로서 표현되며 여기서, c는 빛의 속도, B는 레이더의 주파수 대역을 의미한다.
그러나, 세계 각국 정부의 주파수 규제에 의해 거리측정을 위해 넓은 주파수 대역의 사용이 일반적으로 허락되지 않고 있으며, 우리나라에서는 현재 물체감지 무선센서용으로 24.05~24.25[GHz]의 200[MHz]의 대역폭이 허용되어 있는데, 이 경우 거리분해능은 75[cm] 정도이고, 거리측정 정확도도 비슷하게 얻어진다.
물론, 응용분야에 따라 상술한 정도의 거리분해능으로도 충분한 경우도 많을 수 있지만, 레이더 센서를 차량 등에 적용하여 후방탐지 센서 혹은 주차보조 센서로 활용하거나, 고층빌딩의 움직임 혹은 교량의 움직임 등을 측정하고자 할 때에는 수[cm] 이내의 거리측정 정확도를 요구하게 된다.
하지만, 일반적으로 사용되는 펄스 레이더나 FMCW 레이더 센서로는 허용주파수 대역내에서 수[cm] 이내의 거리측정 정확도를 만족시킬 수 없으며, 제한된 협대역 초고주파 신호를 사용하면서 수[cm]의 이내의 고정밀 측정을 위한 저가격 레이더 센서가 현재까지 개발되지 않은 상태이다.
상기와 같은 문제점을 해결하기 위하여 창안된 본 발명의 실시예에 따른 목적은, 고정된 구조물로부터 누설되거나 반사되는 불요신호를 제거하여 목표물로부터 반사되는 진폭변조 신호만을 검출하여 위상 왜곡을 최소화하고, 이를 통해 거리측정 정확도를 향상시켜 측정 오차를 줄일 수 있는 진폭변조 레이더 및 그 거리 측정 방법을 제공하는데 있다.
본 발명의 실시예에 따른 다른 목적은, 복수의 변조주파수 신호를 이용하여 위상 모호성에 의한 측정거리에 대한 제한을 개선하고, 거리 측정 정확도를 향상시킬 수 있는 진폭변조 레이더 및 그 거리 측정 방법을 제공하는데 있다.
본 발명의 실시예에 따른 또 다른 목적은, 목표물에 부착된 능동 태그를 이용하여 진폭변조 레이더로부터 수신되는 진폭변조 신호를 태그에서 증폭시키고, 반송파 주파수를 변경하여 진폭변조 레이더 방향으로 재전송함으로써, 측정거리에 대한 제한을 개선시킬 수 있고, 다중 목표물에 대한 거리 정보를 제공할 수 있는 진폭변조 레이더 및 그 거리 측정 방법을 제공하는데 있다.
상기 목적을 달성하기 위한, 본 발명의 한 관점에 따른 진폭변조 레이더는 복수의 변조주파수 신호들을 구비하고, 상기 복수의 변조주파수 신호들 중 적어도 두 개 이상을 순차적으로 선택하여 적어도 두 개 이상의 진폭변조 신호를 순차적으로 생성하는 진폭변조 신호 생성부; 상기 적어도 두 개 이상의 진폭변조 신호를 목표물로 순차적으로 송신하고, 상기 목표물로부터 반사되어 수신되는 상기 적어도 두 개 이상의 진폭변조 신호를 순차적으로 수신하는 송수신부; 및 상기 송수신부를 통해 수신되는 상기 목표물로부터 반사된 상기 적어도 두 개 이상의 진폭변조 신호와 상기 선택된 적어도 두 개 이상의 변조주파수 신호를 이용하여 상기 적어도 두 개 이상의 변조주파수 신호 각각에 대한 위상지연을 검출하는 위상 검출부를 포함할 수 있다.
바람직하게, 상기 위상 검출부는 상기 송수신부를 통해 순차적으로 수신되는 적어도 두 개 이상의 신호와 상기 선택된 적어도 두 개 이상의 변조주파수 신호 각각에 대해 기 측정된 불요신호 정보를 이용하여 상기 송수신부를 통해 순차적으로 수신되는 적어도 두 개 이상의 신호로부터 상기 목표물로부터 반사된 상기 적어도 두 개 이상의 진폭변조 신호만을 추출할 수 있다.
나아가, 상기 위상 검출부에 의해 검출된 상기 적어도 두 개 이상의 변조주파수 신호 각각에 대한 위상지연을 이용하여 상기 목표물까지의 거리를 계산하는 계산부를 더 포함할 수 있다.
바람직하게, 상기 위상 검출부는 상기 선택된 적어도 두 개 이상의 변조주파수 신호 각각을 이용하여 상기 적어도 두 개 이상의 신호로부터 상기 기 측정된 불요 신호를 제거할 수 있다.
나아가, 상기 계산부는 상기 계산된 목표물까지의 거리, 상기 적어도 두 개 이상의 변조주파수 신호 각각에 대해 검출된 위상지연 및 상기 계산된 목표물까지의 거리에 의해 계산된 상기 적어도 두 개 이상의 변조주파수 신호 각각에 대한 위상지연을 이용하여 상기 목표물까지의 거리를 재계산할 수 있다.
본 발명의 한 관점에 따른 진폭변조 레이더의 거리 측정 방법은 복수의 변조주파수 신호들 중 적어도 두 개 이상을 순차적으로 선택하여 적어도 두 개 이상의 진폭변조 신호를 순차적으로 생성하는 단계; 상기 적어도 두 개 이상의 진폭변조 신호를 목표물로 순차적으로 송신하고, 상기 목표물로부터 반사되어 수신되는 상기 적어도 두 개 이상의 진폭변조 신호를 순차적으로 수신하는 단계; 및 상기 순차적으로 수신되는 상기 목표물로부터 반사된 상기 적어도 두 개 이상의 진폭변조 신호와 상기 선택된 적어도 두 개 이상의 변조주파수 신호를 이용하여 상기 적어도 두 개 이상의 변조주파수 신호 각각에 대한 위상지연을 검출하는 단계를 포함할 수 있다.
본 발명의 다른 한 관점에 따른 진폭변조 레이더의 거리 측정 방법은 목표물에 대한 아이디(ID)를 포함하는 신호를 송신하는 단계; 변조주파수 신호를 이용하여 진폭변조 신호를 생성하는 단계; 상기 진폭변조 신호를 상기 목표물에 대한 아이디를 저장하고 있는 능동 태그로 송신하고, 상기 능동 태그에 의해 증폭된 진폭변조 신호를 수신하는 단계; 및 상기 목표물까지의 거리를 계산하기 위해, 상기 변조주파수 신호와 상기 능동 태그로부터 수신된 진폭변조 신호간의 위상지연를 검출하는 단계를 포함할 수 있다.
바람직하게, 상기 수신하는 단계는 상기 능동 태그에 의해 반송파 주파수가 변경된 진폭변조 신호를 수신하고, 수신단으로 수신되는 수신 신호를 필터링하여 상기 반송파 주파수가 변경된 진폭변조 신호만을 검출할 수 있다.
본 발명의 한 관점에 따른 진폭변조 레이더를 이용한 거리 측정 시스템은 목표물에 부착되며, 수신되는 진폭변조 신호를 증폭하여 전송하는 능동 태그; 및 변조주파수 신호를 이용하여 생성된 상기 진폭변조 신호를 상기 목표물로 전송하고, 상기 능동 태그로부터 수신된 진폭변조 신호에 대한 포락선 신호를 검출하며, 상기 목표물까지의 거리를 계산하기 위해, 상기 포락선 신호와 상기 변조주파수 신호간의 위상지연를 검출하는 진폭변조 레이더를 포함할 수 있다.
바람직하게, 상기 능동 태그는 상기 진폭변조 레이더로부터 전송되는 상기 진폭변조 신호에 대한 반송파의 주파수를 기 설정된 주파수로 변경하고, 상기 반송파의 주파수가 변경된 진폭변조 신호를 상기 진폭변조 레이더로 전송할 수 있다.
바람직하게, 상기 능동 태그는 상기 진폭변조 레이더로부터 전송된 목표물에 대한 아이디가 수신되면, 수신된 상기 아이디와 기 저장된 아이디를 비교하여 동일한 경우 증폭된 상기 진폭변조 신호를 상기 진폭변조 레이더로 전송할 수 있다.
도 1은 본 발명의 일 실시예에 따른 진폭변조 레이더에 대한 구성도를 나타낸 것이다.
도 2는 도 1에 도시된 진폭변조 신호 생성부에 대한 일 예를 나타낸 것이다.
도 3은 본 발명의 일 실시예에 따른 진폭변조 레이더의 거리 측정 방법에 대한 동작 흐름도이다.
도 4는 본 발명의 다른 일 실시예에 따른 진폭변조 레이더의 거리 측정 방법에 대한 동작 흐름도이다.
도 5는 본 발명의 일 실시예에 따른 거리 측정 시스템을 나타낸 것이다.
도 6은 본 발명의 다른 일 실시예에 따른 거리 측정 시스템을 나타낸 것이다.
도 7은 도 6에 도시된 능동 태그에 대한 일 실시예 구성을 나타낸 것이다.
도 8은 본 발명의 또 다른 일 실시예에 따른 거리 측정 방법에 대한 동작 흐름도이다.
< 도면의 주요 부분에 대한 부호의 설명 >
110: 진폭변조 신호 생성부
120: 송수신부
130: 위상 검출부
131: 제1 검출부
132: 불요신호 제거부
133: 제2 검출부
140: 계산부
상기 목적 외에 본 발명의 다른 목적 및 특징들은 첨부 도면을 참조한 실시 예에 대한 설명을 통하여 명백히 드러나게 될 것이다.
이하에서는, 본 발명의 일 실시예에 따른 진폭변조 레이더 및 그 거리 측정 방법을 첨부된 도 1 내지 도 8을 참조하여 상세히 설명한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
도 1은 본 발명의 일 실시예에 따른 진폭변조 레이더에 대한 구성도를 나타낸 것이다.
도 1을 참조하면, 진폭변조 레이더는 진폭변조 신호 생성부(110), 송수신부(120), 위상 검출부(130) 및 계산부(140)를 포함한다.
진폭변조 신호 생성부(110)는 RF 반송파 신호와 진폭이 조절된 변조주파수 신호를 이용하여 진폭변조 신호를 생성한다.
이때, 생성되는 진폭변조 신호는 RF 반송파 신호와 진폭변조를 통해 발생하는 양측대역 신호를 포함할 수 있다.
즉, 진폭변조 신호 생성부는 고정된 주파수(f0)의 RF 반송파와 진폭이 조절된 변조주파수(fm) 신호를 혼합하여 생성된 양측파대 신호(f0±fm)와, RF 반송파를 결합하여 진폭변조 신호를 생성한다.
여기서, RF 반송파 신호의 주파수(f0)의 안정도보다 변조주파수(fm)의 안정도가 매우 중요하다.
송수신부(120)는 진폭변조 신호 생성부(110)에 의해 생성된 진폭변조 신호를 거리를 측정하기 위한 목표물로 송신하고, 목표물로부터 반사되는 진폭변조 신호를 수신한다.
이때, 송수신부(120)는 목표물로부터 반사되는 진폭변조 신호, 레이더에서 누설되거나 주변 다른 물질 예를 들어, 안테나 전단의 보호 플라스틱 커버 등의 고정된 구조물에 의해 발생되는 불요신호를 포함할 수 있다.
즉, 진폭변조 레이더는 목표물까지의 정확한 측정을 위해서는 이런 불요신호를 제거하여야 하고, 이를 위해 불요신호를 기 측정하여야 한다.
여기서, 불요신호를 측정할 수 있는 방법은 다양할 수 있는데, 일 예로, 누설에 의한 불요신호는 송수신부(120)의 안테나 단자를 전송선의 특성 임피던스로 터미네이션(termination)시킨 상태에서 진폭변조 신호 생성부(110)에 의해 생성된 진폭변조 신호를 이용하여 측정할 수 있으며, 안테나 전면부 구조물에 의한 반사 등에 의한 불요신호는 송수신부(120)의 안테나 전면에 송신된 진폭변조 신호를 흡수할 수 있는 흡수체를 이용하여 측정할 수 있다.
이런 과정을 통해 진폭변조 레이더에서 진폭변조 신호에 대한 불요신호를 측정할 수 있고, 불요신호에 대한 정보는 수신단으로 수신되는 진폭변조 신호 중 목표물로부터 반사되는 진폭변조 신호에 대한 순수한 위상지연을 검출하기 위해 사용될 수 있다.
송수신부(120)는 안테나에 연결되어 송신 신호 및 수신 신호를 분리하기 위한 소자로서, 서큘레이터(circulator) 또는 하이브리드 결합기(hybrid coupler)를 사용할 수 있는데, 비용 절감을 위하여 하이브리드 결합기를 사용할 수 있고, 하이브리드 결합기를 사용하는 경우 송신단으로 진행되는 수신 신호의 크기를 전력감쇠기를 이용하여 조절할 수 있다.
여기서, 송수신부(120)는 신호를 송신하는 안테나와 수신하는 안테나가 별도로 구비될 수도 있으며, 다이버시티(diversity)를 향상시키기 위해 복수의 안테나를 구비할 수도 있다.
송수신부(120)를 통해 송신되는 진폭변조 신호와 목표물로부터 반사되어 수신되는 진폭변조 신호에 대해 설명하면 다음과 같다.
먼저, 송수신부(120)를 통해 송신되는 진폭변조 신호는 반송파 신호(f0), 상측파대 신호(f0+fm) 및 하측파대 신호(f0-fm)로 이루어지며, 이런 진폭변조 신호는 아래 <수학식 1>과 같이 나타낼 수 있다.
여기서, STX는 송신되는 진폭변조 신호를 의미하고, A는 반송파 신호의 진폭을 의미하고, m은 진폭변조 지수를 의미한다.
이런 진폭변조 신호는 목표물까지의 거리 R을 진행한 후 목표물로부터 반사되고, 반사된 진폭변조 신호 전력의 일부가 수신안테나를 통해 수신된다.
송수신부(120)로 수신되는 목표물로부터 반사된 진폭변조 신호는 목표물까지의 거리 R을 왕복으로 전파하는 동안 위상지연이 발생하게 되고, 이는 아래 <수학식 2>와 같이 나타낼 수 있다.
여기서, SRX는 목표물로부터 반사되어 수신된 진폭변조 신호를 의미하고, B는 목표물로부터 반사되어 수신된 반송파 신호의 진폭을 의미한다.
위상 검출부(130)는 제1 검출부(131), 불요신호 제거부(132) 및 제2 검출부(133)를 포함한다.
제1 검출부(131)는 송수신부(120)를 통해 수신되는 신호 즉, 상기 <수학식 2>에 나타낸 목표물로부터 반사되는 진폭변조 신호 및 불요신호가 포함된 신호로부터 진폭변조 신호에 대한 포락선 신호를 검출한다.
이때, 제1 검출부(131)는 전력 검파기를 이용하여 송수신부(120)를 통해 수신되는 신호로부터 진폭변조 신호에 대한 포락선 신호를 검출할 수 있다.
불요신호 제거부(132)는 제1 검출부(131)에 의해 검출된 진폭변조 신호에 대한 포락선 신호로부터 기 측정된 불요신호를 제거하여 목표물로부터 반사된 진폭변조 신호에 대한 포락선 신호만을 추출한다.
이때, 불요신호 제거부(132)는 목표물로부터 반사되어 수신된 진폭변조 신호에 대한 포락선 신호만을 추출하기 위해, 수신 신호에 포함된 불요신호를 제거하는 것으로, 기 측정된 불요신호와 진폭이 같고 180도의 위상차를 갖는 신호를 수신 신호와 결합함으로써, 수신 신호로부터 불요신호를 제거할 수 있다.
이때, 불요신호 제거부(132)는 진폭변조 신호를 생성하는데 사용되는 변조주파수 신호를 이용하여 불요신호를 제거할 수 있는데, 이를 위해 변조주파수 신호의 진폭을 기 측정된 불요신호와 동일하게 만들기 위한 전력 감쇠기와 180도 위상차를 만들기 위한 위상 지연기를 포함할 수 있으며, 불요신호의 개수에 따라 전력 감쇠기와 위상 지연기의 개수는 달라질 수 있다.
따라서, 불요신호 제거부(132)는 진폭변조 신호에 대한 포락선 신호로부터 불요신호를 제거함으로써, 목표물로부터 반사되는 진폭변조 신호에 대한 포락선 신호만을 추출할 수 있으며, 목표물로부터 반사된 진폭변조 신호가 상기 <수학식 2>와 같은 경우, 추출된 포락선 신호는 아래 <수학식 3>과 같이 나타낼 수 있다.
여기서, C는 상수를 의미한다.
제2 검출부(133)는 불요신호 제거부(132)에 의해 추출된 포락선 신호와 기준 변조주파수 신호간의 위상지연를 검출하는데, 위상지연는 아래 <수학식 4>와 같이 나타낼 수 있다.
이때, 위상지연을 검출하기 위해 비교되는 기준 변조주파수 신호는 변주주파수 신호를 의미하는 것으로, 변조주파수 신호 그대로를 사용할 수도 있지만, 상황에 따라 변조주파수 신호의 위상이 소정 조절될 수도 있으며, 이하 사용되는 기준 변조주파수는 이와 같은 의미로 사용될 수 있다.
여기서, Φm은 위상지연를 의미한다.
계산부(140)는 위상 검출부(130)에 의해 검출된 위상지연을 통해 목표물까지의 거리를 계산한다.
즉, 계산부(140)는 아래 <수학식 5>를 이용하여 목표물까지의 거리를 계산할 수 있다.
이와 같이, 본 발명의 일 실시예에 따른 진폭변조 레이더는 목표물로부터 반사되는 진폭변조 신호만을 검출하기 위해, 수신 신호로부터 기 측정된 불요신호를 제거함으로써, 위상지연을 정확하게 검출할 수 있고, 이를 통해 목표물까지의 거리 측정에 대한 정확도를 높일 수 있다.
물론, 거리측정의 정확도는 상기 <수학식 5>를 통해 알 수 있듯이, 위상지연의 오차와 변조주파수에 의해 결정될 수 있는데, [표 1]은 변조주파수와 위상측정의 오차에 따른 거리측정 오차를 나타낸 것이다.
표 1
변조주파수 | 거리측정오차(위상측정오차: 1°) | 거리측정오차(위상측정오차: 2°) |
0.1 MHz | 416.7 cm | 833.3 cm |
0.2 MHz | 208.3 cm | 416.7 cm |
0.3 MHz | 138.9 cm | 208.3 cm |
1 MHz | 41.7 cm | 138.9 cm |
2 MHz | 20.8 cm | 41.7 cm |
5 MHz | 8.3 cm | 20.8 cm |
10 MHz | 4.2 cm | 8.3 cm |
20 MHz | 2.1 cm | 4.2 cm |
50 MHz | 0.8 cm | 1.6 cm |
100 MHz | 0.4 cm | 0.8 cm |
[표 1]에서 알 수 있듯이, 거리측정 오차는 위상측정 오차에 비례하여 커지고, 변조주파수에 반비례하여 커지는 것을 알 수 있다. 즉, 위상측정 오차가 커질수록 거리측정 오차가 커지고, 변조주파수가 작을수록 거리측정 오차가 커진다.
따라서, 위상측정 오차가 일정하다 가정할 때 거리측정의 정확도를 높이기 위해서는 변조주파수를 높이면 된다.
하지만, 진폭변조 레이더는 위상지연를 측정하는데 있어서, 2π 불확실성에 의해 거리측정에 대한 모호성이 발생할 수 있는데, 송신신호와 수신신호에 대한 포락선 신호간의 위상지연이 2π를 초과하면 단일 주파수의 진폭변조 신호의 포락선과 기준 변조주파수 신호간의 위상지연으로서는 거리를 정확하게 측정할 수 없게 된다.
[표 2]는 변조주파수에 따른 거리측정의 모호성이 발생하지 않는 최대 측정거리를 나타낸 것이다.
표 2
변조주파수 | 최대측정 거리 |
0.1 MHz | 1,500 m |
0.2 MHz | 750 m |
0.3 MHz | 500 m |
1 MHz | 150 m |
2 MHz | 75 m |
5 MHz | 30 m |
10 MHz | 15 m |
20 MHz | 7.5 m |
50 MHz | 3 m |
100 MHz | 1.5 m |
[표 2]에서 알 수 있듯이, 단일 변조주파수를 사용하여 측정할 수 있는 최대 거리는 변조주파수가 커질수록 작아지는 것을 알 수 있다. 일 예로, 변조주파수가 10[MHz]인 경우 거리측정에 대한 모호성이 없는 최대측정거리는 15[m]가 되는데, 목표물이 이 거리보다 더 원거리에 위치한 경우에는 거리측정에 대한 모호성이 발생하게 된다.
따라서, 본 발명의 일 실시예에 따른 진폭변조 레이더는 거리측정의 정확도 및 거리측정에 대한 모호성을 해결하기 위하여 복수의 변조주파수를 사용한다.
즉, 진폭변조 신호 생성부(110)는 복수의 변조주파수 신호들 중 어느 하나를 선택할 수 있도록 하여 선택된 변조주파수 신호에 대한 진폭변조 신호를 생성한다.
물론, 복수의 변조주파수 신호들을 포함하기 때문에 두 개 이상의 변조주파수 신호에 대한 진폭변조 신호를 순차적으로 생성할 수도 있다.
예컨대, 도 2에 도시된 진폭변조 신호 생성부(110)에 대한 일 예와 같이, 두 개의 변조주파수(fm1, fm2) 신호(220)를 스위칭할 수 있는 스위칭 수단(210)을 구비함으로써, 진폭변조 레이더는 두 개의 변조주파수 신호 각각에 대한 위상지연(Φm1,Φm2)을 측정하고, 측정된 두 개의 위상지연에 대한 차를 이용하여 목표물까지의 거리를 계산할 수 있다.
복수의 변조주파수를 사용하는 진폭변조 레이더는 아래 <수학식 6>을 이용하여 목표물까지의 거리를 계산할 수 있다.
<수학식 6>에서 알 수 있듯이, 진폭변조 레이더는 두 개의 변조주파수 차이(fm2-fm1)와 두 위상지연의 차이(Φm2-Φm1)를 통해 목표물까지의 거리를 계산할 수 있으며, 두 개의 변조주파수가 사용되지만 측정 가능한 목표물까지의 거리는 두 개의 변조주파수 차이에 해당하는 거리만큼 모호성없이 측정할 수 있다.
예를 들어, fm1이 10[MHz]이고 fm2가 10.1[MHz]라고 하면, fm3(=fm2-fm1)는 0.1[MHz]가 되고, 변조주파수 0.1[MHz]에 대해서는 상기 [표 2]에 도시한 바와 같이, 최대 1.5[Km]까지 거리의 모호성이 없이 목표물까지의 거리를 측정할 수 있다.
이 경우, 낮은 단일 변조주파수를 사용하는 경우에 따라 발생될 수 있는 위상지연의 오차에 따른 거리측정의 오차가 커질 수 있는 문제가 발생될 수 있다. 예를 들어, 위상측정에 대한 오차가 2도이고, 0.1[MHz]의 변조주파수를 사용한 경우 위상 측정오차에 의한 거리의 측정오차는 8.3[m]가 될 수 있는데, 이런 위상 측정오차에 따른 거리의 측정오차를 줄이기 위하여, 복수의 변조주파수 예컨대, 변조주파수 fm1과 fm2에서 각각 측정된 위상측정 데이터를 사용하여 거리측정의 정확도를 높일 수 있다.
예를 들어, fm3으로부터 <수학식 6>을 사용하여 계산된 추정 거리를 R'이라하고, 실제 목표물까지의 거리를 R이라 가정하면, 추정 거리 R'을 사용하여 변조주파수 fm1과 fm2의 각각에 대하여 계산된 진폭변조 신호의 위상지연(Φ'm1, Φ'm2)은 아래 <수학식 7>과 같이 나타낼 수 있다.
<수학식 7>에서 알 수 있듯이, Φ'm1 및 Φ'm2는 <수학식 6>에 의해 계산된 추정 거리 R'을 이용하여 계산된 값이다.
따라서, 목표물까지의 실제거리 R과 추정 거리 R'에 의한 변조주파수 fm1과 fm2 각각에서의 위상지연 오차는 아래 <수학식 8>에 의해 계산될 수 있다.
여기서, Φm1 및 Φm2는 변조주파수 fm1과 fm2 각각에 대해 측정된 위상지연을 나타낸다.
따라서, ΔΦr1과 ΔΦr2는 진폭변조 레이더의 제2 검출부(133)에 의해 검출된 Φm1 및 Φm2 그리고 <수학식 7>에 의해 계산된 Φ'm1 및 Φ'm2를 이용하여 계산할 수 있다.
<수학식 8>을 정리하면, 아래 <수학식 9>와 같은 관계식을 얻을 수 있다.
즉, <수학식 9>를 통해 ΔΦr1과 ΔΦr2는 같은 부호이고, 비례의 관계를 가짐을 알 수 있으며, 실제의 위상측정에서 2π 불확실성에 의해 ΔΦr1의 값이 양이나 음으로 나올 수 있는데, 이는 실제 거리 R이 추정거리 R'에 비해 크거나 작은지 불확실하기 때문이다. ΔΦr1의 값이 양으로 나오는 경우에는 실제의 목표물까지의 거리 R이 추정거리 R'보다 더 큰 경우이고, 음으로 나오는 경우에는 그 반대의 경우이다. 물론, 이런 경우에도 상기 <수학식 9>의 관계식을 만족하는 ΔΦr1의 값과 그 부호를 결정할 수 있다.
따라서, 실제 목표물까지의 거리 R은 아래 <수학식 10>에 의해 얻어질 수 있다.
예를 들어 설명하면, 두 개의 변조주파수 fm1과 fm2가 10[MHz]와 10.1[MHz]이고, 실제 목표물까지 거리가 750[m]이며, 위상측정의 오차를 최대 2도라 가정하면, 두 변조주파수의 차인 0.1[MHz]에 대한 측정거리의 불확실성은 8.3[m]가 된다.
두 변조주파수 10[MHz]와 10.1[MHz]에 대한 위상지연을 측정하고, 두 변조주파수의 위상지연에 대한 차를 구하면, 목표물까지의 거리를 모호성이 없이 측정할 수 있게 된다. 즉, 아래 <수학식 11>과 같이 구해질 수 있다.
따라서, 두 변조주파수의 위상지연에 대한 차를 구하면 180도이고, 목표물까지의 거리는 <수학식 6>을 통해 750[m]임을 확인할 수 있다.
한편, 위상측정에 대한 오차가 2도라고 할 때 예를 들어, 두 변조주파수의 위상지연에 대한 차가 178도로서 측정되었다면, 추정거리 R'은 <수학식 6>을 통해 741.6[m]로 측정되고, 측정된 추정거리 R'을 이용하여 두 변조주파수에 대한 추정 위상지연 Φ'10MHz 및 Φ'10.1MHz를 계산하며, 계산된 추정 위상지연과 <수학식 11>에 의해 구해진 측정된 위상지연 Φ10MHz 및 Φ10.1MHz를 이용하여 ΔΦr1과 ΔΦr2를 계산한다.
여기서, ΔΦr1과 ΔΦr2를 계산하면 201.6도와 203.6도가 된다.
이를 통해, 상기 <수학식 9>가 성립되는 것을 알 수 있으며, 실제 목표물까지의 거리 R은 <수학식 10>에 의해 750[m]라는 것을 계산할 수 있다. 이 거리는 10[MHz] 변조주파수에서 위상측정 오차가 2도라고 할 때 실제의 거리와는 8.3[cm]의 오차로서 구한 값이 된다.
만약, ΔΦr1과 ΔΦr2의 위상지연 오차가 너무 적어 위상측정 오차 내에서 판별하기 어려울 경우에는, fm1의 변조주파수와 차이가 나는 제3의 변조주파수 예를 들어, 11[MHz]를 통해 위상지연을 측정함으로써, 위상 모호성 문제를 해결할 수 있다.
이와 같이, 본 발명의 일 실시예에 따른 진폭변조 레이더는 불요신호에 의해 발생될 수 있는 위상지연에 대한 측정 오차를 줄여 거리측정의 정확도를 개선시키고, 복수의 변조주파수를 이용함으로써, 거리측정에 대한 모호성없이 원거리에 위치한 목표물에 대해서도, 거리측정 오차를 줄여 목표물까지의 정확한 거리를 측정할 수 있다.
이런 진폭변조 레이더는 단거리용으로 차량용 후방탐지 센서, 주차보조 센서, 사각지역 탐지센서, 로봇용 탐지 센서, 위치기반 서비스(LBS: Location-Based Service) 및 선박용 충돌방지 센서 등으로 활용할 수도 있고, 거리측정에 대한 모호성없이 원거리 측정이 가능하기 때문에 초고층 빌딩, 교량 및 경사면 등의 원거리에 대한 거리측정 및 움직임 감지용 센서 등의 다양한 분야에 활용할 수도 있다.
도 3은 본 발명의 일 실시예에 따른 진폭변조 레이더의 거리 측정 방법에 대한 동작 흐름도로서, 단일 변조주파수 신호를 이용하여 목표물까지의 거리를 측정하는 방법에 대한 것이다.
도 3을 참조하면, 거리 측정 방법은 RF 반송파와 진폭이 조절된 변조주파수 신호를 이용하여 진폭변조 신호를 생성한다(S310).
생성된 진폭변조 신호를 안테나를 통해 목표물로 송신하고, 목표물로부터 반사되는 진폭변조 신호를 수신한다(S320, S330).
이때, 수신단으로 수신되는 신호는 목표물로부터 반사되는 반사 신호 뿐만 아니라 진폭변조 레이더의 내부에서 누설되거나 레이더 외부의 고정된 구조물로부터 반사되는 불요신호를 포함할 수 있다.
수신단으로 수신되는 진폭변조 신호에 대한 포락선 신호를 검출하고, 목표물로부터 반사된 진폭변조 신호에 대한 포락선 신호만을 추출하기 위해, 검출된 포락선 신호에서 진폭변조 신호에 대해 기 측정된 불요신호를 제거한다(S340, S350).
여기서, 진폭변조 신호를 생성하기 위해 사용된, 변조주파수 신호를 이용하여 고정된 구조물 등에 의해 발생된 기 측정된 불요신호를 제거할 수 있는데, 불요신호와 동일한 진폭을 가지고 180도의 위상차를 가지도록 변조주파수 신호의 진폭과 위상을 조절하여 검출된 포락선 신호와 결합함으로써, 포락선 신호로부터 불요신호를 제거할 수 있다.
불요신호가 제거된 포락선 신호와 기준 변조주파수 신호간의 위상지연를 검출한다(S360).
즉, 목표물까지 전송되고 반사되어 수신될 때까지의 변조주파수 신호에 대한 위상지연을 검출한다.
위상지연이 검출되면, 검출된 위상지연의 값을 이용하여 목표물까지의 거리를 계산한다(S370).
이와 같이, 본 발명의 일 실시예에 따른 거리 측정 방법은 단일 변조주파수 신호를 이용하여 진폭변조 레이더에서 위상지연을 검출하는데 있어서 영향을 줄 수 있는 불요신호를 제거함으로써, 위상 측정에 있어서 정확도를 개선시키고, 이를 통해 목표물까지의 거리 측정에 대한 정확도를 향상시킬 수 있다.
물론, 진폭변조 레이더에서 단일 변조주파수를 사용하는 경우에 변조주파수와 위상측정 오차에 따라 거리 측정 오차가 달라지고, 모호성없이 측정할 수 있는 최대 거리가 제한적이기 때문에 단일 변조주파수를 이용한 진폭변조 레이더는 사용되는 변조주파수에 따라 측정할 수 있는 목표물의 거리가 한정되고, 목표물까지의 측정거리를 늘이기 위한 변조주파수를 사용하는 경우에는 위상측정 오차에 따라 발생되는 거리측정 오차가 커지게 되어 거리측정에 대한 정확도가 떨어지게 된다.
본 발명의 일 실시예에 따른 거리 측정 방법은 복수의 변조주파수를 사용함으로써, 단일 변조주파수 사용에 의해 발생될 수 있는 문제를 해결할 수 있는데, 이를 도 4를 참조하여 설명한다.
도 4는 본 발명의 다른 일 실시예에 따른 진폭변조 레이더의 거리 측정 방법에 대한 동작 흐름도로서, 복수의 변조주파수 신호 예를 들어, 두 개의 변조주파수 신호를 이용하여 목표물까지의 거리를 측정하는 방법에 대한 것이다.
도 4를 참조하면, 거리 측정 방법은 복수의 변조주파수 신호 중 제1 변조주파수(fm1) 신호를 선택하고, 선택된 제1 변조주파수(fm1) 신호를 이용하여 제1 진폭변조 신호를 생성한다(S410).
생성된 진폭변조 신호 즉, 제1 진폭변조 신호를 안테나를 통해 목표물로 송신하고, 목표물로부터 반사되는 제1 진폭변조 신호를 수신한다(S420, S430).
수신단으로 수신되는 제1 진폭변조 신호에 대한 포락선 신호를 검출하고, 목표물로부터 반사된 제1 진폭변조 신호에 대한 포락선 신호만을 추출하기 위해, 검출된 포락선 신호에서 제1 진폭변조 신호에 대해 기 측정된 불요신호를 제거한다(S440, S450).
제1 진폭변조 신호에 대한 불요신호가 제거된 포락선 신호와 제1 변조주파수 신호간의 위상지연(Φm1)을 검출한다(S460).
제1 변조주파수에 대한 위상지연(Φm1)이 검출되면 거리계산 수행 여부를 판단하고, 다른 변조주파수에 대한 위상지연을 계산하기 위해, 복수의 변조주파수 신호 중 제2 변조주파수(fm2) 신호를 선택하며, 선택된 제2 변조주파수(fm2) 신호를 이용하여 제2 진폭변조 신호를 생성한다(S470, S490).
생성된 제2 진폭변조 신호를 이용하여 목표물까지 송신하고, 제2 변조주파수에 대한 두 신호간의 위상지연(Φm2)을 검출하는 단계 S420 내지 단계 S460을 다시 수행한다.
즉, 목표물로 송신된 제2 진폭변조 신호에 대해 반사되는 신호를 수신하여 수신단으로 수신되는 제2 진폭변조 신호에 대한 포락선 신호를 검출하고, 검출된 포락선 신호에서 제2 진폭변조 신호에 대해 기 측정된 불요신호를 제거하여 목표물로부터 반사된 제2 진폭변조 신호에 대한 포락선 신호만을 검출한다(S430 내지 S450).
불요신호가 제거된 포락선 신호와 제2 변조주파수 신호간의 위상지연(Φm2)을 검출한다(S460).
두 개의 변조주파수에 대한 위상지연(Φm1, Φm2)이 검출되면 두 변조주파수(fm1, fm2)와 위상지연(Φm1, Φm2)을 이용하여 목표물까지의 거리를 계산한다(S480).
이때, 진폭변조 레이더는 상기 <수학식 6>을 이용하여 목표물까지의 거리를 계산할 수 있다.
물론, <수학식 6>에 의해 거리가 계산되면, <수학식 10>을 이용하여 정확도가 향상된 목표물까지의 거리를 계산할 수 있다.
이와 같이, 본 발명의 일 실시예에 따른 거리 측정 방법은 진폭변조 레이더에서 복수의 변조주파수를 이용하여 목표물까지의 거리를 측정함으로써, 거리측정 오차를 줄이고, 거리측정에 대한 모호성없이 원거리에 위치한 목표물에 대해서도 정확한 거리를 측정할 수 있다.
도 5는 본 발명의 일 실시예에 따른 거리 측정 시스템을 나타낸 것이다.
도 5를 참조하면, 거리 측정 시스템은 진폭변조 레이더(510) 및 능동 태그(520)를 포함한다.
진폭변조 레이더(510)는 진폭변조 신호를 생성하여 능동 태그(520)가 부착된 목표물로 전송하고, 능동 태그(520)로부터 재전송된 진폭변조 신호에 대한 포락선 신호를 검출하며 검출된 포락선 신호와 변조주파수 신호를 이용하여 위상지연을 검출함으로써, 목표물까지의 거리를 계산한다.
여기서, 진폭변조 레이더(510)는 능동 태그(520)로부터 전송되는 진폭변조 신호의 반송파 주파수에 따라 그 추가 구성이 달라질 수 있다.
일 예로, 진폭변조 레이더(510)는 능동 태그(520)로부터 동일한 RF 반송파 주파수를 포함하는 진폭변조 신호가 수신되는 경우 능동 태그(520)로부터 전송된 진폭변조 신호에 대한 포락선 신호만을 검출하기 위해, 수신단으로 수신되는 신호에서 기 측정된 불요신호를 제거할 수 있다.
다른 일 예로, 진폭변조 레이더(510)는 능동 태그(520)로부터 전송된 진폭변조 신호의 RF 반송파 주파수와 다른 RF 반송파 주파수를 포함하는 진폭변조 신호가 수신되는 경우 반송파 주파수가 변경된 진폭변조 신호를 통과시킬 수 있는 필터를 구성함으로써, 전파 장애물 등에 의해 발생되는 불요신호로부터의 간섭을 제거하여 진폭변조 신호에 의한 위상지연을 검출할 수 있다. 이는 진폭변조 레이더에서 목표물까지 왕복하는 반송파 신호에 대한 위상지연을 측정하는 것이 아니라 진폭 변조된 변조주파수 신호에 대한 위상지연을 측정하는 것이기 때문에 RF 반송파 주파수가 변경되더라도 변조주파수 신호에 의한 위상지연은 변하지 않는다.
능동 태그(520)는 목표물에 부착되어, 진폭변조 레이더(510)로부터 전송되는 진폭변조 신호를 수신하여 증폭한 후 진폭변조 레이더(510)로 전송한다.
이런 능동 태그(520)는 목표물이 원거리에 있을 때 진폭변조 레이더(510)로부터 송신된 진폭변조 신호가 목표물로부터 반사될 때 그 신호가 매우 미약하게 되고, 이로 인해 장애물로부터의 반사 신호 또는 고정구조물에 의한 누설신호에 의해 원하는 목표물로부터 반사된 진폭변조 신호의 포락선의 위상을 측정하기 어려운 문제를 해결하기 위한 것이다.
즉, 능동 태그(520)는 목표물로부터 반사되는 진폭변조 신호를 증폭시켜 전송함으로써, 진폭변조 레이더(510)에서 포락선 신호의 위상을 측정할 때의 어려움을 해결할 수 있다.
이때, 능동 태그(520)는 안테나로 수신되는 진폭변조 신호를 증폭만 한 후 진폭변조 레이더 방향으로 재전송할 수도 있고, 안테나로 수신되는 진폭변조 신호의 RF 반송파 주파수를 변경하여 진폭변조 레이더 방향으로 재전송할 수도 있는데, RF 반송파 주파수를 변경하면 전파 장애물에 의한 간섭을 용이하게 제거할 수 있다. 즉, 능동 태그(520)는 진폭변조 신호를 수신하고, 수신된 진폭변조 신호의 RF 반송파 주파수(f0)를 기 설정된 다른 반송파 주파수(f1)로 변경시킨 후 증폭하여 진폭변조 레이더(510)로 전송함으로써, 진폭변조 레이더(510)에서 불요신호에 의한 간섭없이 변조주파수 신호에 대한 위상지연을 쉽게 검출할 수 있다.
도 6은 본 발명의 다른 일 실시예에 따른 거리 측정 시스템을 나타낸 것으로, 복수의 능동 태그가 존재하는 경우에 대한 시스템이다.
도 6을 참조하면, 거리 측정 시스템은 진폭변조 레이더(610) 및 복수(N)의 능동 태그(620)를 포함한다.
진폭변조 레이더(610)는 거리를 측정하고자 하는 목표물에 대한 ID를 포함하는 신호를 전송한 후 RF 반송파(f0) 신호와 변조주파수(fm1) 신호를 이용하여 진폭변조 신호를 생성하고, 생성된 진폭변조 신호를 전송하여 목표물에 대한 ID를 갖는 능동 태그로부터 전송된 진폭변조 신호를 수신하며, 수신된 진폭변조 신호에 대한 포락선 신호와 기준 변조주파수 신호를 이용하여 위상지연을 검출하고, 이를 통해 해당 ID를 갖는 목표물까지의 거리를 계산한다.
여기서, 진폭변조 레이더(610)는 능동 태그로부터 동일한 RF 반송파 주파수를 포함하는 진폭변조 신호가 수신되는 경우 능동 태그로부터 전송된 진폭변조 신호에 대한 포락선 신호만을 검출하기 위해, 수신단으로 수신되는 신호에서 기 측정된 불요신호를 제거할 수도 있고, 능동 태그로부터 RF 반송파 주파수가 변경된 진폭변조 신호가 수신되는 경우 변경된 진폭변조 신호를 통과시킬 수 있는 필터를 구성함으로써, 전파 장애물 등에 의해 발생되는 불요신호로부터의 간섭을 제거하여 위상지연을 검출할 수도 있다.
능동 태그(620)는 목표물에 부착되어 목표물에 해당하는 ID를 저장하고 있으며, 진폭변조 레이더(610)로부터 전송된 목표물에 대한 ID를 수신하고, 수신된 ID와 저장된 ID가 동일한 경우 수신된 진폭변조 신호를 증폭하여 진폭변조 레이더(610)로 재전송하고, 수신된 ID와 저장된 ID가 상이한 경우 수신된 진폭변조 신호가 진폭변조 레이더(610)로 전송되는 것을 차단한다.
이때, 능동 태그(620)는 안테나로 수신되는 진폭변조 신호를 증폭만 한 후 진폭변조 레이더로 전송할 수도 있지만, 전파 장애물로부터의 간섭을 회피하기 위해, 안테나로 수신되는 진폭변조 신호의 RF 반송파 주파수를 기 설정된 다른 반송파 주파수로 변경하여 진폭변조 레이더로 전송할 수도 있다.
이와 같이, 복수의 능동 태그 각각이 기 저장된 ID와 동일한 ID가 수신되는 경우에만 수신되는 진폭변조 신호를 증폭하여 진폭변조 레이더로 재전송하기 때문에 복수의 목표물 각각에 대한 거리를 정확하게 측정할 수 있고, 고정된 목표물 뿐만 아니라 유동성이 있는 목표물에 대해서도 정확한 거리를 측정할 수 있다.
나아가, 능동 태그는 수신되는 진폭변조 신호에 대한 RF 반송파 주파수를 기 설정된 다른 반송파 주파수로 변경하여 진폭변조 레이더로 전송할 수 있기에, 주변의 전파 장애물과의 간섭을 차단시켜 진폭변조 레이더에서 해당 목표물까지의 정리를 정확하게 측정할 수 있고, 이를 통해 측정 거리에 대한 정확도를 개선시킬 수 있다. 물론, 도 2에 도시된 일 예와 같이, 진폭변조 레이더에서 복수의 변조주파수를 이용하여 목표물까지의 거리를 측정할 수도 있다는 것은 이 기술 분야에 종사하는 당업자라면 상술한 내용을 바탕으로 용이하게 실시할 수 있다는 것은 자명하다.
또한, 도 5 및 도 6에 도시된 거리 측정 시스템은 복수의 진폭변조 레이더를 구성하고, 구성된 복수의 진폭변조 레이더를 이용하여 진폭변조 레이더 각각의 좌표와 목표물까지의 측정 거리를 토대로, 목표물의 공간(x, y, z) 좌표를 알 수도 있고, 이를 통해 유동적인 목표물인 경우 실시간 움직임을 파악할 수도 있다.
도 7은 도 6에 도시된 능동 태그에 대한 일 실시예 구성을 나타낸 것이다.
도 7을 참조하면, 능동 태그(620)는 송수신부(710), 판단부(720), 증폭부(730) 및 변경부(740)를 포함한다.
송수신부(710)는 진폭변조 레이더로부터 전송된 ID 정보 및 진폭변조 신호를 수신하고, 증폭부(730)에 의해 증폭된 진폭변조 신호를 진폭변조 레이더로 송신한다.
여기서, 송수신부(710)에서 진폭변조 레이더로 전송되는 진폭변조 신호의 RF 반송파 주파수는 송수신부(710)로 수신되는 진폭변조 신호의 RF 반송파 주파수와 상이할 수도 있다.
판단부(720)는 능동 태그로 수신되는 목표물에 대한 ID와 능동 태그에 기 저장된 목표물에 대한 ID를 비교하여 두 ID가 일치하는지 판단하여 증폭부(730)를 제어한다.
이때, 판단부(720)는 두 ID가 일치하면 진폭변조 신호를 일정 크기로 증폭시킬 수 있는 제어신호를 증폭부(730)로 출력하고, 두 ID가 상이하면 진폭변조 신호가 전송되는 것을 차단할 수 있는 제어신호를 증폭부(730)로 출력할 수 있다.
변경부(740)는 송수신부(710)를 통해 수신되는 진폭변조 신호의 RF 반송파 주파수를 기 설정된 상이한 RF 반송파 주파수로 변경한다.
증폭부(730)는 판단부(720)로부터 출력된 제어신호를 기초로 변경부(740)에 의해 RF 반송파 주파수가 변경된 진폭변조 신호를 일정 크기로 증폭한 후 송수신부(710)를 통해 진폭변조 레이더로 전송하거나 진폭변조 신호가 송수신부(710)를 통해 출력되는 것을 차단시킨다.
이때, 증폭부(730)는 증폭부를 구성하는 증폭기를 이용하여 진폭변조 신호를 증폭시키거나 송수신부로 출력되는 것을 차단시킬 수 있다.
도 8은 본 발명의 또 다른 일 실시예에 따른 거리 측정 방법에 대한 동작 흐름도로서, 도 6에 도시된 능동 태그를 이용하는 방법에 대한 것이다.
도 8을 참조하면, 거리 측정 방법은 거리를 측정하고자 하는 목표물에 대한 ID를 안테나를 통해 전송한 후, RF 반송파 신호 및 진폭 조절된 변조주파수 신호를 이용하여 진폭변조 신호를 생성하고, 생성된 진폭변조 신호를 능동 태그가 부착된 복수의 목표물로 전송한다(S810, S820).
진폭변조 레이더는 복수의 목표물 각각에 부착된 능동 태그들 중 해당 목표물 ID가 저장된 능동 태그로부터 증폭되어 전송된 진폭변조 신호를 수신하고, 수신된 진폭변조 신호에 대한 포락선 신호를 검출한다(S830, S840).
검출된 포락선 신호와 기준 변조주파수 신호를 이용하여 두 신호의 위상지연을 검출하고, 검출된 위상지연을 이용하여 해당 목표물까지의 거리를 계산한다(S850, S860).
물론, 포락선 신호를 검출하는 방법은 수신되는 진폭변조 신호의 RF 반송파 주파수가 진폭변조 레이더에서 전송된 진폭변조 신호의 RF 반송파 주파수와 상이한 경우에는 수신되는 진폭변조 신호만을 필터링한 후 포락선 신호를 검출하고, 동일한 RF 반송파 주파수가 사용된 경우에는 기 측정된 불요신호를 제거한 후 능동 태그로부터 전송된 진폭변조 신호에 대한 포락선 신호를 검출한다.
본 발명에 의한, 진폭변조 레이더 및 그 거리 측정 방법은 본 발명의 기술적 사상의 범위 내에서 양한 형태로 변형, 응용 가능하며 상기 실시 예에 한정되지 않는다. 또한, 상기 실시 예와 도면은 발명의 내용을 상세히 설명하기 위한 목적일 뿐, 발명의 기술적 사상의 범위를 한정하고자 하는 목적은 아니며, 이상에서 설명한 본 발명은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하므로 상기 실시 예 및 첨부된 도면에 한정되는 것은 아님은 물론이며, 후술하는 청구범위뿐만이 아니라 청구범위와 균등 범위를 포함하여 판단되어야 한다.
Claims (18)
- 복수의 변조주파수 신호들을 구비하고, 상기 복수의 변조주파수 신호들 중 적어도 두 개 이상을 순차적으로 선택하여 적어도 두 개 이상의 진폭변조 신호를 순차적으로 생성하는 진폭변조 신호 생성부;상기 적어도 두 개 이상의 진폭변조 신호를 목표물로 순차적으로 송신하고, 상기 목표물로부터 반사되어 수신되는 상기 적어도 두 개 이상의 진폭변조 신호를 순차적으로 수신하는 송수신부; 및상기 송수신부를 통해 수신되는 상기 목표물로부터 반사된 상기 적어도 두 개 이상의 진폭변조 신호와 상기 선택된 적어도 두 개 이상의 변조주파수 신호를 이용하여 상기 적어도 두 개 이상의 변조주파수 신호 각각에 대한 위상지연을 검출하는 위상 검출부를 포함하는 진폭 변조 레이더.
- 제1항에 있어서,상기 위상 검출부는상기 송수신부를 통해 순차적으로 수신되는 적어도 두 개 이상의 신호와 상기 선택된 적어도 두 개 이상의 변조주파수 신호 각각에 대해 기 측정된 불요신호 정보를 이용하여 상기 송수신부를 통해 순차적으로 수신되는 적어도 두 개 이상의 신호로부터 상기 목표물로부터 반사된 상기 적어도 두 개 이상의 진폭변조 신호만을 추출하는 진폭 변조 레이더.
- 제1항 또는 제2항에 있어서,상기 위상 검출부에 의해 검출된 상기 적어도 두 개 이상의 변조주파수 신호 각각에 대한 위상지연을 이용하여 상기 목표물까지의 거리를 계산하는 계산부를 더 포함하는 진폭 변조 레이더.
- 제2항에 있어서,상기 위상 검출부는상기 선택된 적어도 두 개 이상의 변조주파수 신호 각각을 이용하여 상기 적어도 두 개 이상의 신호로부터 상기 기 측정된 불요 신호를 제거하는 진폭 변조 레이더.
- 제3항에 있어서,상기 계산부는상기 계산된 목표물까지의 거리, 상기 적어도 두 개 이상의 변조주파수 신호 각각에 대해 검출된 위상지연 및 상기 계산된 목표물까지의 거리에 의해 계산된 상기 적어도 두 개 이상의 변조주파수 신호 각각에 대한 위상지연을 이용하여 상기 목표물까지의 거리를 재계산하는 진폭 변조 레이더.
- 제2항에 있어서,상기 위상 검출부는상기 기 측정된 불요신호와 진폭이 같고 180도의 위상차를 갖는 신호를 상기 송수신부를 통해 수신되는 신호와 결합하여 상기 목표물로부터 반사된 해당 변조주파수에 대한 진폭변조 신호만을 추출하는 진폭 변조 레이더.
- 복수의 변조주파수 신호들 중 적어도 두 개 이상을 순차적으로 선택하여 적어도 두 개 이상의 진폭변조 신호를 순차적으로 생성하는 단계;상기 적어도 두 개 이상의 진폭변조 신호를 목표물로 순차적으로 송신하고, 상기 목표물로부터 반사되어 수신되는 상기 적어도 두 개 이상의 진폭변조 신호를 순차적으로 수신하는 단계; 및상기 순차적으로 수신되는 상기 목표물로부터 반사된 상기 적어도 두 개 이상의 진폭변조 신호와 상기 선택된 적어도 두 개 이상의 변조주파수 신호를 이용하여 상기 적어도 두 개 이상의 변조주파수 신호 각각에 대한 위상지연을 검출하는 단계를 포함하는 진폭 변조 레이더의 거리 측정 방법.
- 제7항에 있어서,상기 검출하는 단계는상기 순차적으로 수신되는 상기 적어도 두 개 이상의 진폭변조 신호를 포함하는 적어도 두 개 이상의 신호와 상기 선택된 적어도 두 개 이상의 변조주파수 신호 각각에 대해 기 측정된 불요신호 정보를 이용하여 상기 순차적으로 수신되는 적어도 두 개 이상의 신호로부터 상기 목표물로부터 반사된 상기 적어도 두 개 이상의 진폭변조 신호만을 추출하는 진폭 변조 레이더의 거리 측정 방법.
- 제7항 또는 제8항에 있어서,상기 검출된 상기 적어도 두 개 이상의 변조주파수 신호 각각에 대한 위상지연을 이용하여 상기 목표물까지의 거리를 계산하는 단계를 더 포함하는 진폭 변조 레이더의 거리 측정 방법.
- 제8항에 있어서,상기 검출하는 단계는상기 선택된 적어도 두 개 이상의 변조주파수 신호 각각을 이용하여 상기 적어도 두 개 이상의 신호로부터 상기 기 측정된 불요 신호를 제거하는 진폭 변조 레이더의 거리 측정 방법.
- 제9항에 있어서,상기 계산하는 단계는상기 계산된 목표물까지의 거리, 상기 적어도 두 개 이상의 변조주파수 신호 각각에 대해 검출된 위상지연 및 상기 계산된 목표물까지의 거리에 의해 계산된 상기 적어도 두 개 이상의 변조주파수 신호 각각에 대한 위상지연을 이용하여 상기 목표물까지의 거리를 재계산하는 진폭 변조 레이더의 거리 측정 방법.
- 목표물에 대한 아이디(ID)를 포함하는 신호를 송신하는 단계;변조주파수 신호를 이용하여 진폭변조 신호를 생성하는 단계;상기 진폭변조 신호를 상기 목표물에 대한 아이디를 저장하고 있는 능동 태그로 송신하고, 상기 능동 태그에 의해 증폭된 진폭변조 신호를 수신하는 단계; 및상기 목표물까지의 거리를 계산하기 위해, 상기 변조주파수 신호와 상기 능동 태그로부터 수신된 진폭변조 신호간의 위상지연을 검출하는 단계를 포함하는 진폭 변조 레이더의 거리 측정 방법.
- 제12항에 있어서,상기 수신하는 단계는상기 능동 태그에 의해 반송파 주파수가 변경된 진폭변조 신호를 수신하고,수신단으로 수신되는 수신 신호를 필터링하여 상기 반송파 주파수가 변경된 진폭변조 신호만을 검출하는 진폭 변조 레이더의 거리 측정 방법.
- 목표물에 부착되며, 수신되는 진폭변조 신호를 증폭하여 전송하는 능동 태그; 및변조주파수 신호를 이용하여 생성된 상기 진폭변조 신호를 상기 목표물로 전송하고, 상기 능동 태그로부터 수신된 진폭변조 신호에 대한 포락선 신호를 검출하며, 상기 목표물까지의 거리를 계산하기 위해, 상기 포락선 신호와 상기 변조주파수 신호간의 위상지연을 검출하는 진폭변조 레이더를 포함하는 진폭변조 레이더를 이용한 거리 측정 시스템.
- 제14항에 있어서,상기 능동 태그는상기 진폭변조 레이더로부터 전송되는 상기 진폭변조 신호에 대한 반송파의 주파수를 기 설정된 주파수로 변경하고, 상기 반송파의 주파수가 변경된 진폭변조 신호를 상기 진폭변조 레이더로 전송하는 진폭변조 레이더를 이용한 거리 측정 시스템.
- 제14항 또는 제15항에 있어서,상기 능동 태그는상기 진폭변조 레이더로부터 전송된 목표물에 대한 아이디가 수신되면, 수신된 상기 아이디와 기 저장된 아이디를 비교하여 동일한 경우 증폭된 상기 진폭변조 신호를 상기 진폭변조 레이더로 전송하는 진폭변조 레이더를 이용한 거리 측정 시스템.
- 제16항에 있어서,상기 능동 태그는수신된 상기 아이디와 기 저장된 상기 아이디가 상이한 경우 수신된 상기 진폭변조 신호가 상기 진폭변조 레이더로 전송되는 것을 차단하는 진폭변조 레이더를 이용한 거리 측정 시스템.
- 제15항에 있어서,상기 진폭변조 레이더는상기 반송파의 주파수가 변경된 진폭변조 신호만을 수신하는 진폭변조 레이더를 이용한 거리 측정 시스템.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2009-0052512 | 2009-06-12 | ||
KR1020090052512A KR100940577B1 (ko) | 2009-06-12 | 2009-06-12 | 진폭변조 레이더 및 그 거리 측정 방법 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2010143909A2 true WO2010143909A2 (ko) | 2010-12-16 |
WO2010143909A3 WO2010143909A3 (ko) | 2011-03-24 |
Family
ID=42083055
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2010/003760 WO2010143909A2 (ko) | 2009-06-12 | 2010-06-11 | 진폭변조 레이더 및 그 거리 측정 방법 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR100940577B1 (ko) |
WO (1) | WO2010143909A2 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113643570A (zh) * | 2021-09-22 | 2021-11-12 | 广东省内河港航产业研究有限公司 | 一种基于相阵控雷达的主、被动联合桥梁防撞系统 |
US20220229175A1 (en) * | 2019-05-09 | 2022-07-21 | Robert Bosch Gmbh | Coherent, Multi-Static Radar System, In Particular For Use In A Vehicle |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101646477B1 (ko) * | 2015-12-24 | 2016-08-08 | 한국공항공사 | Tacan에서의 방사신호 측정 장치 및 방사신호 측정 방법 |
KR102062321B1 (ko) * | 2018-01-25 | 2020-01-03 | 영남대학교 산학협력단 | 대상체의 동작을 인식하기 위하여 복수개의 상이한 주파수들을 이용하는 센서 모듈 및 그 센서 모듈의 동작 방법 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20050008335A (ko) * | 2003-07-15 | 2005-01-21 | 국방과학연구소 | 레이더 및 레디오미터 기능을 구비한 표적탐지장치 |
KR100794533B1 (ko) * | 1999-05-17 | 2008-01-17 | 탈레스 | 표적의 추적을 위한, 자기유도 방법 및 장치 |
JP2008527391A (ja) * | 2005-01-19 | 2008-07-24 | スミスズ グループ ピーエルシー | レーダー装置 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08122428A (ja) * | 1994-10-27 | 1996-05-17 | Honda Motor Co Ltd | Amレーダー装置 |
-
2009
- 2009-06-12 KR KR1020090052512A patent/KR100940577B1/ko not_active IP Right Cessation
-
2010
- 2010-06-11 WO PCT/KR2010/003760 patent/WO2010143909A2/ko active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100794533B1 (ko) * | 1999-05-17 | 2008-01-17 | 탈레스 | 표적의 추적을 위한, 자기유도 방법 및 장치 |
KR20050008335A (ko) * | 2003-07-15 | 2005-01-21 | 국방과학연구소 | 레이더 및 레디오미터 기능을 구비한 표적탐지장치 |
JP2008527391A (ja) * | 2005-01-19 | 2008-07-24 | スミスズ グループ ピーエルシー | レーダー装置 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220229175A1 (en) * | 2019-05-09 | 2022-07-21 | Robert Bosch Gmbh | Coherent, Multi-Static Radar System, In Particular For Use In A Vehicle |
CN113643570A (zh) * | 2021-09-22 | 2021-11-12 | 广东省内河港航产业研究有限公司 | 一种基于相阵控雷达的主、被动联合桥梁防撞系统 |
CN113643570B (zh) * | 2021-09-22 | 2022-12-06 | 广东省内河港航产业研究有限公司 | 一种基于相控阵雷达的主、被动联合桥梁防撞系统 |
Also Published As
Publication number | Publication date |
---|---|
WO2010143909A3 (ko) | 2011-03-24 |
KR100940577B1 (ko) | 2010-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010143909A2 (ko) | 진폭변조 레이더 및 그 거리 측정 방법 | |
WO2012148153A2 (ko) | 거리 측정 방법 및 장치와, 측위 방법 | |
WO2015068909A1 (en) | People counting method and apparatus | |
US8330651B2 (en) | Single-antenna FM/CW marine radar | |
WO2014146514A1 (zh) | 联合gps、wifi、基站的定位方法、装置及系统 | |
WO2019050262A1 (ko) | 송신 신호 또는 수신 신호를 처리하기 위한 무선 통신 시스템을 포함하는 전자 장치 | |
WO2020040554A1 (ko) | 복수의 안테나들에 입력되는 신호의 위상을 조정하는 방법 및 이를 구현한 전자 장치 | |
WO2015008953A1 (en) | Method and apparatus for calculating location of electronic device | |
EP0825452A2 (en) | Monolithic, low-noise, synchronous direct detection receiver for passive microwave/millimeter-wave radiometric imaging systems | |
WO2013100574A1 (ko) | 지상 조정통제국 기반 우주항공노드 통신중계 측위 시스템 | |
WO2015102166A1 (ko) | 저전력 엔벨로프 검출 수신기에서 간섭 신호를 검출하는 방법 및 장치 | |
WO2020256458A1 (en) | Electronic device for determining location information of external device | |
US5200753A (en) | Monopulse radar jammer using millimeter wave techniques | |
WO2014109472A1 (ko) | 위치 확인 시스템 및 방법 | |
WO2021060574A1 (ko) | 오브젝트의 위치 측위 장치, 방법 및 시스템 | |
US20210293921A1 (en) | Radar apparatus | |
USH1033H (en) | Anti-jamming system for tracking and surveillance radar | |
WO2023043049A1 (ko) | Uwb 통신을 이용하는 로봇 청소기 및 그 제어 방법 | |
US5050986A (en) | Synchronization system for controlling switches | |
WO2010101417A2 (en) | Rfid transmitting and receiving device, radio frequency communication system and method of controlling the same | |
WO2022245118A1 (ko) | 자산 추적 시스템 및 방법 | |
JPH10206535A (ja) | レーダ遮蔽域支援装置 | |
CN103250068A (zh) | 基带放大部件以及脉冲雷达装置 | |
WO2020067691A1 (ko) | 무선 통신 시스템에서 빔포밍을 수행하는 방법 및 장치 | |
US8060007B2 (en) | Adaptive crosspole technique |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10786392 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10786392 Country of ref document: EP Kind code of ref document: A2 |