WO2010143868A2 - 무선통신 시스템에서 신호 송수신 방법 및 장치 - Google Patents

무선통신 시스템에서 신호 송수신 방법 및 장치 Download PDF

Info

Publication number
WO2010143868A2
WO2010143868A2 PCT/KR2010/003668 KR2010003668W WO2010143868A2 WO 2010143868 A2 WO2010143868 A2 WO 2010143868A2 KR 2010003668 W KR2010003668 W KR 2010003668W WO 2010143868 A2 WO2010143868 A2 WO 2010143868A2
Authority
WO
WIPO (PCT)
Prior art keywords
backhaul
base station
symbols
signal
relay station
Prior art date
Application number
PCT/KR2010/003668
Other languages
English (en)
French (fr)
Other versions
WO2010143868A3 (ko
Inventor
김학성
서한별
김기준
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US13/376,733 priority Critical patent/US8773971B2/en
Priority claimed from KR1020100053905A external-priority patent/KR101637588B1/ko
Publication of WO2010143868A2 publication Critical patent/WO2010143868A2/ko
Publication of WO2010143868A3 publication Critical patent/WO2010143868A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • the present invention relates to wireless communication, and more particularly, to a method and apparatus for transmitting and receiving signals in a wireless communication system including a relay station.
  • ITU-R International Telecommunication Union Radio communication sector
  • IP Internet Protocol
  • 3rd Generation Partnership Project is a system standard that meets the requirements of IMT-Advanced.
  • Long Term Evolution is based on Orthogonal Frequency Division Multiple Access (OFDMA) / Single Carrier-Frequency Division Multiple Access (SC-FDMA) transmission.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • LTE-Advanced is being prepared.
  • LTE-Advanced is one of the potential candidates for IMT-Advanced.
  • the main technologies of LTE-Advanced include relay station technology.
  • a relay station is a device for relaying a signal between a base station and a terminal, and is used to expand cell coverage and improve throughput of a wireless communication system.
  • a signal transmission method between the base station and the relay station is currently being studied. It is problematic to use the signal transmission method between the base station and the terminal as it is for signal transmission between the base station and the relay station.
  • the terminal In the conventional signal transmission method between the base station and the terminal, the terminal generally transmits a signal over one subframe in the time domain.
  • One reason for the UE to transmit a signal in the entire subframe is to set the duration of each channel transmitting the signal as long as possible to reduce the maximum power at the moment the UE consumes.
  • the RS may not transmit or receive a signal over one subframe in the time domain. Since the relay station usually relays signals to a plurality of terminals, frequent reception mode and transmission mode switching occurs. In addition, the RS may receive a signal from the BS or transmit a signal to the RS in the same frequency band. Alternatively, the relay station may receive a signal from the relay station terminal or transmit a signal to the base station in the same frequency band. In the switching between the reception mode and the transmission mode, a predetermined time period in which the relay station does not transmit or receive a signal to prevent inter-signal interference and stabilize the operation between the reception mode section and the transmission mode section (hereinafter referred to as guard time). Is called). This guard interval may be a time interval smaller than one symbol interval.
  • the RS may include a guard interval in a subframe in which the RS transmits or receives a signal.
  • the symbols included in the frequency band at which the relay station transmits or receives a signal may not match the symbol boundaries compared to the symbols in the frequency band at which the macro terminal transmits or receives a signal. As such, when symbol boundaries do not coincide, orthogonality is broken and interference may occur.
  • a method and apparatus for transmitting and receiving a signal that can reduce interference when a symbol boundary does not coincide between a symbol of a frequency band allocated to a relay station and a symbol of a frequency band allocated to a macro terminal.
  • a signal transmission / reception method and apparatus for reducing interference with a signal of a macro terminal are provided.
  • a signal reception method of a relay station includes receiving backhaul resource allocation information from a base station; And receiving backhaul downlink data from the base station through a radio resource indicated by the backhaul resource allocation information, wherein the radio resource includes a plurality of symbols in a time domain and the plurality of symbols are allocated to a macro terminal.
  • the symbol boundary is shifted based on the symbols included in the received frequency band, and the radio resource includes a plurality of subcarriers in a frequency domain, and at least one subcarrier adjacent to a frequency band allocated to the macro terminal among the plurality of subcarriers is It is characterized in that the base station is set to a guard subcarrier that does not transmit a signal.
  • interference with a signal of a macro terminal can be reduced by allocating a guard subcarrier to a radio resource region allocated to the relay station.
  • the present invention can be applied to a backhaul link between a relay station and a base station, but is not limited thereto, and is generally applied to a situation in which symbol boundaries do not coincide between frequency bands, thereby reducing interference that may occur between signals in each frequency band.
  • 1 shows a wireless communication system including a relay station.
  • FIG. 2 shows a radio frame structure of 3GPP LTE.
  • 3 is an exemplary diagram illustrating a resource grid for one downlink slot.
  • 5 shows a structure of an uplink subframe.
  • FIG. 6 shows a signal transmission method in a wireless communication system according to an embodiment of the present invention.
  • FIG. 7 shows an example of a backhaul downlink subframe structure.
  • FIG. 8 shows an example of allocating a protection subcarrier in a resource block included in a radio resource region allocated to a relay station.
  • 9 through 11 illustrate other examples of a backhaul downlink subframe structure including a guard period and a guard subcarrier.
  • FIG. 13 shows another example of a backhaul uplink subframe structure.
  • 14 and 15 illustrate examples of a subframe structure when transmitting a backhaul SRS in a backhaul uplink subframe.
  • 16 and 17 show another example of a backhaul uplink subframe structure.
  • 18 is a block diagram showing a base station and a relay station.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16e (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA), and the like.
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) long term evolution (LTE) is part of an Evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
  • LTE-Advanced (LTE-A) is the evolution of 3GPP LTE.
  • 3GPP LTE / LET-A will be described as an example, but the technical spirit of the present invention is not limited thereto.
  • 1 shows a wireless communication system including a relay station.
  • a wireless communication system 10 including a relay station includes at least one base station 11 (BS).
  • Each base station 11 provides a communication service for a particular geographic area 15, commonly referred to as a cell.
  • the cell can be further divided into a plurality of areas, each of which is called a sector.
  • One or more cells may exist in one base station.
  • the base station 11 generally refers to a fixed station communicating with the terminal 13, and includes an evolved NodeB (eNB), a Base Transceiver System (BTS), an Access Point, an Access Network (AN), and the like. It may be called in other terms.
  • the base station 11 may perform functions such as connectivity, management, control, and resource allocation between the relay station 12 and the terminal 14.
  • a relay station (RS) 12 refers to a device that relays a signal between the base station 11 and the terminal 14 and may be referred to as another term such as a relay node, a repeater, a repeater, and the like.
  • a relay method used by the relay station any method such as AF and ADF may be used, and the technical spirit of the present invention is not limited thereto.
  • Terminals 13 and 14 may be fixed or mobile, and may include a mobile station (MS), a user terminal (UT), a subscriber station (SS), a wireless device, and a personal digital assistant (PDA). ), A wireless modem, a handheld device, and an access terminal (AT).
  • the macro UE (Mac UE, Ma UE, 13) is a terminal that communicates directly with the base station 11
  • the relay terminal refers to a terminal that communicates with the relay station. Even in the macro terminal 13 in the cell of the base station 11, it is possible to communicate with the base station 11 via the relay station 12 to improve the transmission rate according to the diversity effect.
  • the macro link may be divided into a macro downlink and a macro uplink.
  • a macro downlink (M-DL) means communication from the base station 11 to the macro terminal 13
  • a macro uplink , M-UL means communication from the macro terminal 13 to the base station 11.
  • the link between the base station 11 and the relay station 12 will be referred to as a backhaul link.
  • the backhaul link may be divided into a backhaul downlink (B-DL) and a backhaul uplink (B-UL).
  • B-DL backhaul downlink
  • B-UL backhaul uplink
  • the backhaul downlink means communication from the base station 11 to the relay station 12
  • the backhaul uplink means communication from the relay station 12 to the base station 11.
  • the link between the relay station 12 and the relay station terminal 14 will be referred to as an access link.
  • the access link may be divided into an access downlink (A-DL) and an access uplink (A-UL).
  • Access downlink means communication from the relay station 12 to the relay station terminal 14, and access uplink means communication from the relay station terminal 14 to the relay station 12.
  • the wireless communication system 10 including the relay station is a system supporting bidirectional communication.
  • Bidirectional communication may be performed using a time division duplex (TDD) mode, a frequency division duplex (FDD) mode, or the like.
  • TDD mode uses different time resources in uplink transmission and downlink transmission.
  • FDD mode uses different frequency resources in uplink transmission and downlink transmission.
  • FIG. 2 shows a radio frame structure of 3GPP LTE.
  • a radio frame consists of 10 subframes, and one subframe consists of two slots.
  • One subframe may have a length of 1 ms, and one slot may have a length of 0.5 ms.
  • the time taken for one subframe to be transmitted is called a transmission time interval (TTI).
  • TTI may be a minimum unit of scheduling.
  • One slot may include a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain.
  • the OFDM symbol is used to represent one symbol period since 3GPP LTE uses OFDMA in downlink, and may be called a different name according to a multiple access scheme.
  • SC-FDMA orthogonal frequency division multiplexing
  • One slot includes 7 OFDM symbols as an example, but the number of OFDM symbols included in one slot may vary according to the length of a cyclic prefix (CP).
  • CP cyclic prefix
  • one subframe includes 7 OFDM symbols in a normal CP and one subframe includes 6 OFDM symbols in an extended CP.
  • the structure of the radio frame is only an example, and the number of subframes included in the radio frame and the number of slots included in the subframe may be variously changed.
  • the structure of the radio frame described with reference to FIG. 2 is 3GPP TS 36.211 V8.3.0 (2008-05) "Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 8)" See sections 4.1 and 4.
  • 3 is an exemplary diagram illustrating a resource grid for one downlink slot.
  • One slot in the FDD and TDD radio frames includes a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain and includes a plurality of resource blocks (RBs) in the frequency domain.
  • OFDM orthogonal frequency division multiplexing
  • RBs resource blocks
  • the symbol may mean one OFDM symbol or one SC-FDMA symbol.
  • the resource block includes a plurality of consecutive subcarriers in one slot in resource allocation units.
  • a slot (eg, a downlink slot included in a downlink subframe) includes a plurality of OFDM symbols in a time domain.
  • one downlink slot includes 7 OFDM symbols and one resource block includes 12 subcarriers in a frequency domain, but is not limited thereto.
  • the subcarriers in the RB may have an interval of, for example, 15 KHz.
  • Each element on the resource grid is called a resource element, and one resource block includes 12 ⁇ 7 resource elements.
  • the number N DL of resource blocks included in the downlink slot depends on the downlink transmission bandwidth set in the cell.
  • the resource grid described in FIG. 3 may also be applied to uplink.
  • a subframe includes two consecutive slots.
  • the first 3 OFDM symbols of the first slot in the subframe are the control region to which the PDCCH is allocated, and the remaining OFDM symbols are the data region to which the PDSCH is allocated.
  • the control region may be allocated a control channel such as PCFICH and PHICH.
  • the UE may read the data information transmitted through the PDSCH by decoding the control information transmitted through the PDCCH.
  • the control region includes only 3 OFDM symbols, and the control region may include 2 OFDM symbols or 1 OFDM symbol.
  • the number of OFDM symbols included in the control region in the subframe can be known through the PCFICH.
  • the control region is composed of logical CCE columns that are a plurality of CCEs.
  • the CCE column is a collection of all CCEs constituting the control region in one subframe.
  • the CCE corresponds to a plurality of resource element groups.
  • the CCE may correspond to 9 resource element groups.
  • Resource element groups are used to define the mapping of control channels to resource elements.
  • one resource element group may consist of four resource elements.
  • a plurality of PDCCHs may be transmitted in the control region.
  • the PDCCH carries control information such as scheduling assignment.
  • the PDCCH is transmitted on an aggregation of one or several consecutive control channel elements (CCEs).
  • CCEs control channel elements
  • the format of the PDCCH and the number of bits of the PDCCH are determined according to the number of CCEs constituting the CCE group.
  • the number of CCEs used for PDCCH transmission is called a CCE aggregation level.
  • the CCE aggregation level is a CCE unit for searching a PDCCH.
  • the size of the CCE aggregation level is defined by the number of adjacent CCEs.
  • the CCE aggregation level may be an element of ⁇ 1, 2, 4, 8 ⁇ .
  • DCI downlink control information
  • DCI includes uplink scheduling information, downlink scheduling information, system information, system information, uplink power control command, control information for paging, control information for indicating a random access response, etc. It includes.
  • the DCI format includes format 0 for PUSCH scheduling, format 1 for scheduling one physical downlink shared channel (PDSCH) codeword, and format 1A for compact scheduling of one PDSCH codeword.
  • Format 1B for simple scheduling of rank-1 transmission of a single codeword in spatial multiplexing mode
  • format 1C for very simple scheduling of downlink shared channel (DL-SCH)
  • format for PDSCH scheduling in multi-user spatial multiplexing mode 1D format for PDSCH scheduling in multi-user spatial multiplexing mode 1D
  • format 2 for PDSCH scheduling in closed-loop spatial multiplexing mode format 2A for PDSCH scheduling in open-loop spatial multiplexing mode
  • TPC 2-bit power regulation for PUCCH and PUSCH Transmission power control
  • format 3A for transmission of 1-bit power control TPC commands for PUCCH and PUSCH.
  • 5 shows a structure of an uplink subframe.
  • the uplink subframe is allocated a control region in which a physical uplink control channel (PUCCH) carrying uplink control information is allocated in a frequency domain and a physical uplink shared channel (PUSCH) carrying user data. It can be divided into data areas.
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • the PUCCH for one UE is allocated to a resource block (RB) pair (51, 52) in a subframe, and the RBs 51 and 52 belonging to the RB pair occupy different subcarriers in each of two slots. do. This is said that the RB pair allocated to the PUCCH is frequency hopping at the slot boundary.
  • RB resource block
  • PUCCH may support multiple formats. That is, uplink control information having different numbers of bits per subframe may be transmitted according to a modulation scheme. For example, when using Binary Phase Shift Keying (BPSK) (PUCCH format 1a), uplink control information of 1 bit can be transmitted on PUCCH, and when using Quadrature Phase Shift Keying (QPSK) (PUCCH format 1b). 2 bits of uplink control information can be transmitted on the PUCCH.
  • BPSK Binary Phase Shift Keying
  • QPSK Quadrature Phase Shift Keying
  • Format 1 In addition to the PUCCH format, there are Format 1, Format 2, Format 2a, Format 2b, and the like (3GPP TS 36.211 V8.2.0 (2008-03) "Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); See Section 5.4 of “Physical Channels and Modulation (Release 8)”.
  • FIG. 6 shows a signal transmission method in a wireless communication system according to an embodiment of the present invention.
  • the base station transmits backhaul resource allocation information to the relay station (S100).
  • the backhaul resource allocation information includes a radio resource region in which the base station transmits backhaul downlink data to the relay station, and information on a radio resource region in which the relay station transmits control signals and / or backhaul uplink data to the base station.
  • the backhaul resource allocation information may include information on the number of symbols of the PDCCH transmitted by the base station to the macro terminal.
  • the backhaul resource allocation information may include information on a guard interval and a guard subcarrier included in the subframe. The guard period and the guard subcarrier will be described later.
  • the backhaul resource allocation information may be transmitted through a higher layer signal such as radio resource control (RRC) or may be transmitted as a physical layer signal.
  • RRC radio resource control
  • the relay station may know a radio resource region for receiving backhaul resource allocation information from the base station and receiving backhaul downlink data, and a radio resource region for transmitting control signals and / or backhaul uplink data to the base station.
  • This radio resource region will be described in detail below with reference to a backhaul downlink subframe structure and a backhaul uplink subframe structure.
  • the base station transmits control information to the macro terminal (Ma-UE) in a predetermined number of symbols of the subframe (S200-1).
  • the RS transmits control information to the RS Rs-UE in a predetermined number of symbols of the subframe (S200-2).
  • the base station transmits downlink data to the macro terminal in the radio resource region according to the control information (S300), and transmits backhaul downlink data to the relay station in the radio resource region according to the backhaul resource allocation information (S400).
  • the RS receives and decodes the backhaul downlink data in the radio resource region according to the backhaul resource allocation information (S500).
  • the macro terminal transmits uplink data to the base station (S600), and the relay station transmits backhaul uplink data to the base station in the allocated radio resource region according to the backhaul resource allocation information (S700).
  • the macro terminal and the relay station may transmit their signals to the base station using different radio resources in the same subframe.
  • FIG. 7 shows an example of a backhaul downlink subframe structure.
  • the base station transmits control information (via PDCCH) to a macro terminal using a predetermined number of symbols, for example, three symbols in a normal CP and two symbols in an extended CP, and transmits data to a relay station in subsequent symbols.
  • a predetermined number of symbols for example, three symbols in a normal CP and two symbols in an extended CP
  • R-PDSCH radio resource region allocated to the relay station
  • data may be transmitted to the macro terminal in the radio resource area allocated to the macro terminal (area indicated by (Macro UE) PDSCH, hereinafter same).
  • the RS may transmit control information (via PDCCH) using a predetermined number of symbols, for example, up to two symbols, to the RS, and may receive data from the BS in a radio resource region allocated to the RS.
  • the radio resource region allocated to the relay station may include a guard interval in the time domain and may include a guard subcarrier in the frequency domain.
  • the relay station When a relay station is included in a wireless communication system, it is assumed that it is difficult for the relay station to transmit a signal while receiving a signal in the same frequency band. Thus, the relay station receives or transmits signals in the same frequency band at different times.
  • the RS may operate in a manner of receiving a signal from the base station in subframe #n and transmitting a signal to the RS in subframe # n + 1.
  • a guard time between the transmission and reception periods of the signal during transmission and reception switching of the signal is the time required to stabilize, protect, or generate a signal that meets the requirements of the system.
  • the guard period may include a transition time for stabilizing the operation of a power amplifier that amplifies the signal.
  • a guard interval is included in a time domain of a radio resource allocated to a relay station.
  • the guard interval may be a time interval smaller than 1 symbol, for example, a 1/2 symbol interval.
  • the radio resource region allocated to the relay station may not coincide with the radio resource region allocated to the macro terminal.
  • the signals transmitted in the radio resource region allocated to the relay station and the radio resource region allocated to the macro terminal are not maintained orthogonality with each other, and thus interference may occur.
  • the radio resource region allocated to the relay station to remove the above-mentioned interference may include a guard subcarrier. In the backhaul downlink, the base station does not transmit a signal through the guard subcarrier, and in the backhaul uplink, the relay station does not transmit a signal through the guard subcarrier.
  • the base station transmits a signal only in subcarriers other than the guard subcarrier in the resource blocks allocated to the relay station.
  • the relay station transmits signals only on subcarriers other than the guard subcarriers in the resource blocks allocated to the RS.
  • the guard subcarrier can be set semi-statically.
  • FIG. 8 shows an example of allocating a protection subcarrier in a resource block included in a radio resource region allocated to a relay station.
  • a resource block included in a radio resource region allocated to a relay station is called a backhaul RB
  • a resource block included in a radio resource region allocated to a macro terminal is called a macro RB.
  • the base station may allocate at least one subcarrier adjacent to the macro RB as a guard subcarrier in the backhaul RB.
  • 8 shows an example of allocating two subcarriers adjacent to the macro RS as one protection subcarrier in one backhaul RB. In this case, the number of subcarriers usable in the backhaul RB may be 10 instead of 12.
  • the number of subcarriers usable in the backhaul RB adjacent to the macro RB may be eleven.
  • the guard subcarrier 8 illustrates a case in which one subcarrier located at the boundary of the backhaul RB is allocated as a guard subcarrier, but this is not a limitation.
  • a plurality of subcarriers located at the boundary of the backhaul RB (adjacent to the macro RS) may be allocated as a guard subcarrier.
  • at least one backhaul RB may be allocated as a guard subcarrier. That is, the entire subcarriers included in the backhaul RB adjacent to the resource region allocated to the macro terminal may be allocated as a guard subcarrier. That is, the guard subcarriers may be allocated in units of carriers or in units of resource blocks.
  • 9 through 11 illustrate other examples of a backhaul downlink subframe structure including a guard period and a guard subcarrier.
  • the number of symbols of the PDCCH transmitted by the base station to the macro terminal is 2 in FIG. 9, 1 in FIG. 10, and 4 in FIG. 11.
  • FIG. 9 illustrates a case in which the number of symbols of the PDCCH transmitted from the RS to the RS is 1 in the normal CP and 1 in the extended CP.
  • the number of symbols of the PDCCH transmitted by the base station to the macro terminal and the number of symbols of the PDCCH transmitted by the relay station to the RS are identical. Therefore, the RS transmits a PDCCH to the RS using two symbols, and then receives a signal from the BS after providing a guard interval. In addition, a guard period may be needed for the last symbol of the backhaul downlink subframe.
  • the RS when the RS transmits a signal to the RS in the next subframe, a guard interval may be necessary since reception / transmission switching of the signal occurs.
  • the RS may receive backhaul downlink data from the base station using 11 symbols in the normal CP and 9 symbols in the extended CP.
  • a subcarrier located at a boundary of a frequency band adjacent to a frequency band allocated to a macro terminal among frequency bands allocated to the relay station is allocated as a guard subcarrier. That is, as shown in FIG. 9, the frequency bands allocated to the relay stations # 1, # 3, # N-1, and #N (R-PDSCH (RS # 1), R-PDSCH (RS # 3), and R-PDSCH).
  • a guard subcarrier may be included in the frequency bands of (RS # N-1) and R-PDSCH (RS # N).
  • FIG. 10 illustrates a case in which the number of symbols of a PDCCH transmitted from a relay station to a relay station terminal is one in a normal CP and one in an extended CP.
  • the guard period is also required for the last symbol of the backhaul downlink subframe
  • the number of symbols that the relay station can use to receive backhaul downlink data from the base station is 12 for the normal CP and 10 for the extended CP.
  • FIG. 11 illustrates a case in which the number of symbols of the PDCCH transmitted by the RS to the RS is 2 in the normal CP and 2 in the extended CP. That is, the number of symbols of the PDCCH transmitted by the base station to the macro terminal is larger than the number of symbols of the PDCCH transmitted by the relay station to the relay terminal.
  • the guard interval may not be included in the first symbol in the radio resource allocated to the relay station.
  • the RS may receive backhaul downlink data from the base station from the fifth symbol without a guard interval. If the guard period is required for the last symbol of the backhaul downlink subframe, the RS may receive backhaul downlink data using 9 symbols in the normal CP and 8 symbols in the extended CP.
  • the radio resource region allocated to the relay station in the backhaul uplink subframe is called a relay zone.
  • an R-PUCCH for transmitting a control signal by the relay station and an R-PUSCH for transmitting data to the relay station may be allocated.
  • the RS may be located between the PUCCH bands in which the control signal of the macro terminal is transmitted in the frequency domain.
  • the backhaul uplink subframe needs to maintain backward compatibility with an existing wireless communication system, for example, LTE release-8 (R8). Accordingly, as in LTE R8, the PUCCH of the macro terminal may be allocated at the boundary of the frequency band, and the relay station zone may be located between the PUCCH bands of the macro terminal.
  • the relay station zone may include a guard interval in the time domain and a guard subcarrier in the frequency domain.
  • a guard subcarrier may be assigned a subcarrier in a relay station zone adjacent to a boundary in the frequency domain of the relay station zone, that is, a frequency band allocated to a macro terminal.
  • the guard subcarrier may be configured in a subcarrier unit and a resource block unit.
  • a guard subcarrier is allocated in the frequency domain. 12 illustrates a case in which the guard interval is included in the first symbol and the last symbol of the relay station zone. In addition, a case of allocating a subcarrier in a zone of a relay station adjacent to a band allocated to a macro terminal as a guard subcarrier is illustrated.
  • a PUSCH through which the macro terminal transmits uplink data may be allocated.
  • a PUSCH may be allocated even within a relay station zone.
  • a subcarrier located at a boundary within the PUSCH band may be allocated as a guard subcarrier. That is, the subcarrier at the boundary of the PUSCH band allocated to the macro terminal in the relay station zone may be set as a guard subcarrier.
  • FIG. 13 shows another example of a backhaul uplink subframe structure.
  • a guard interval is not included in the last symbol of the backhaul uplink subframe.
  • the guard period is the first of the subframe (the access uplink subframe in which the relay station transmits a signal to the relay station) located after the backhaul uplink subframe. May be included in a symbol.
  • this backhaul uplink subframe structure may be used.
  • This radio resource may be used by the relay station to transmit a backhaul uplink control signal or partial backhaul uplink data.
  • the relay station may be used to transmit the SRS to the base station.
  • a sounding reference signal is a reference signal transmitted from a terminal or a relay station to a base station and is a reference signal not related to uplink data or control signal transmission.
  • SRS is mainly used for channel quality estimation for frequency selective scheduling in uplink (macro uplink or backhaul uplink), but may be used for other purposes. For example, it can be used for power control, initial MCS selection, or initial power control for data transmission.
  • the SRS transmitted from the macro terminal to the base station is called a macro SRS
  • the SRS transmitted from the relay station to the base station is called a backhaul SRS.
  • FIG. 14 and 15 illustrate examples of a subframe structure when transmitting a backhaul SRS in a backhaul uplink subframe.
  • FIG. 14 illustrates a case in which a backhaul SRS is transmitted in a backhaul uplink subframe structure as shown in FIG. 12.
  • FIG. 15 is different from FIG. 14 in that the last symbol of the subframe does not include a guard period. That is, FIG. 15 illustrates a case of transmitting a backhaul SRS in the backhaul uplink subframe structure as shown in FIG. 13.
  • the macro terminal may transmit the macro SRS using the last symbol of the subframe. If the RS transmits the backhaul SRS using the same symbol as that of the macro terminal, that is, the last symbol of the subframe, a method of preventing a collision from occurring is required.
  • the macro SRS and the backhaul SRS may be allocated to different subcarriers and transmitted.
  • the macro SRS may be allocated to an odd subcarrier and the backhaul SRS may be allocated to an even subcarrier.
  • the base station may need to inform the relay station of the backhaul SRS allocation information through a higher layer signal or a physical layer signal such as radio resource control (RRC).
  • RRC radio resource control
  • the RS may transmit a backhaul SRS in symbols other than the symbol in which the macro SRS is transmitted.
  • the RS may transmit a backhaul SRS in the second symbol of the end of the subframe or the first symbol of the RS zone.
  • the first symbol of the relay station zone may be a symbol shifted by a guard interval compared to the radio resource region allocated to the macro terminal.
  • the RS may transmit the backhaul SRS in a symbol located in the middle of the subframe. For example, in a normal CP, 14 symbols are included in a subframe, and the RS can use only 13 symbols due to the guard period. In this case, seven symbols may be included in the first slot and six symbols may be included in the second slot. Then, the backhaul SRS may be transmitted in the last symbol of the first slot. According to this method, the collision does not occur because the backhaul SRS and the macro SRS are not transmitted in different symbols. In addition, when the backhaul SRS does not need to be transmitted, puncturing a corresponding symbol, two slots use six symbols, and thus the slot structure can be symmetrically configured.
  • 16 and 17 show another example of a backhaul uplink subframe structure.
  • symbols in a relay station zone have a symbol boundary shifted by a guard interval compared to a resource region allocated to a macro terminal. Therefore, the number of symbols that can be used in the relay station zone may be 13 in the normal CP and 11 in the extended CP.
  • the relay station may transmit control signals and data in the same frequency band in the relay station zone. That is, the control signal can be transmitted together in the band for transmitting data without separately assigning a frequency band for transmitting the control signal in the relay station zone.
  • FIG. 17 has a difference that a guard period is not included in a last symbol of a backhaul uplink subframe compared to FIG. 16.
  • the present invention can be generally applied when the symbol boundaries of radio resources used in different frequency bands are shifted from the symbol boundaries of radio resources used in specific frequency bands. That is, by setting at least one subcarrier adjacent to the other frequency band among the subcarriers included in a specific frequency band as a protection subcarrier, interference that may occur between frequency bands can be reduced.
  • 18 is a block diagram showing a base station and a relay station.
  • the base station 100 includes a processor 110, a memory 120, and an RF unit 130.
  • the processor 110 implements the proposed functions, processes and / or methods. That is, the backhaul resource allocation information is transmitted to the relay station, and the backhaul downlink data is transmitted from the radio resource according to the backhaul resource allocation information. Also, the backhaul uplink data and the control signal are received through the radio resource indicated by the backhaul resource allocation information.
  • the memory 120 is connected to the processor 110 and stores various information for driving the processor 110.
  • the RF unit 130 is connected to the processor 110 and transmits and / or receives a radio signal.
  • the relay station 200 includes a processor 210, a memory 220, and an RF unit 230.
  • the processor 210 receives backhaul resource allocation information from the base station and receives backhaul downlink data from the base station or transmits backhaul uplink data and control signals through a radio resource indicated by the backhaul resource allocation information.
  • the radio resource includes a plurality of symbols in the time domain, and the plurality of symbols shift the symbol boundary based on the symbols included in the frequency band allocated to the macro terminal.
  • the radio resource for receiving the backhaul downlink data includes a plurality of subcarriers in the frequency domain, and at least one subcarrier adjacent to a frequency band allocated to the macro terminal among the plurality of subcarriers is set as a guard subcarrier in which the base station does not transmit a signal. do.
  • the backhaul uplink data or the control signal may not be transmitted in at least one subcarrier adjacent to the frequency band allocated to the macro terminal.
  • Layers of the air interface protocol may be implemented by the processor 210.
  • the memory 220 is connected to the processor 210 and stores various information for driving the processor 210.
  • the RF unit 230 is connected to the processor 210 to transmit and / or receive a radio signal.
  • Processors 110 and 210 may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, data processing devices, and / or converters for interconverting baseband signals and wireless signals.
  • ASICs application-specific integrated circuits
  • the OFDM transmitter and OFDM receiver of FIG. 7 may be implemented within processors 110 and 210.
  • the memory 120, 220 may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium, and / or other storage device.
  • the RF unit 130 and 230 may include one or more antennas for transmitting and / or receiving a radio signal.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in the memories 120 and 220 and executed by the processors 110 and 210.
  • the memories 120 and 220 may be inside or outside the processors 110 and 210, and may be connected to the processors 110 and 210 by various well-known means.

Abstract

본 발명의 일 측면에 따른 무선통신 시스템에서 중계국의 신호 수신방법은 기지국으로부터 백홀 자원할당 정보를 수신하는 단계; 및 상기 백홀 자원할당 정보가 지시하는 무선자원을 통해 상기 기지국으로부터 백홀 하향링크 데이터를 수신하는 단계를 포함하되, 상기 무선자원은 시간 영역에서 복수의 심벌을 포함하고 상기 복수의 심벌은 매크로 단말에게 할당된 주파수 대역에 포함된 심벌들을 기준으로 심벌 경계가 쉬프트되고, 상기 무선자원은 주파수 영역에서 복수의 부반송파를 포함하고 상기 복수의부반송파 중 상기 매크로 단말에게 할당된 주파수 대역에 인접한 적어도 하나의 부반송파는 상기 기지국이 신호를 전송하지 않는 보호 부반송파로 설정되는 것을 특징으로 한다.

Description

무선통신 시스템에서 신호 송수신 방법 및 장치
본 발명은 무선통신에 관한 것으로, 보다 상세하게는 중계국을 포함하는 무선통신 시스템에서 신호를 송수신하는 방법 및 장치에 관한 것이다.
ITU-R(International Telecommunication Union Radio communication sector)에서는 3세대 이후의 차세대 이동통신 시스템인 IMT(International Mobile Telecommunication)-Advanced의 표준화 작업을 진행하고 있다. IMT-Advanced는 정지 및 저속 이동 상태에서 1Gbps, 고속 이동 상태에서 100Mbps의 데이터 전송률로 IP(Internet Protocol)기반의 멀티미디어 서비스 지원을 목표로 한다.
3GPP(3rd Generation Partnership Project)는 IMT-Advanced의 요구 사항을 충족시키는 시스템 표준으로 OFDMA(Orthogonal Frequency Division Multiple Access)/SC-FDMA(Single Carrier-Frequency Division Multiple Access) 전송방식 기반인 LTE(Long Term Evolution)를 개선한 LTE-Advanced를 준비하고 있다. LTE-Advanced는 IMT-Advanced를 위한 유력한 후보 중의 하나이다. LTE-Advanced의 주요 기술에 중계국(relay station) 기술이 포함된다.
중계국은 기지국과 단말 사이에서 신호를 중계하는 장치로, 무선통신 시스템의 셀 커버리지(cell coverage)를 확장시키고 처리량(throughput)을 향상시키기 위해 사용된다.
중계국을 포함하는 무선통신 시스템에서 기지국과 중계국 간의 신호 전송 방법은 현재 많은 연구가 진행 중이다. 기지국과 중계국 간의 신호 전송에 종래 기지국과 단말 간의 신호 전송 방법을 그대로 사용하는 것은 문제가 있다.
종래 기지국과 단말 간의 신호 전송방법에서, 일반적으로 단말은 시간 영역에서 볼 때 하나의 서브프레임 전체에 걸쳐 신호를 전송한다. 단말이 서브프레임 전체에서 신호를 전송하는 한 가지 이유는 단말이 소모하는 순간 최대 전력을 줄이기 위해 신호를 전송하는 각 채널의 지속 시간을 가능한 길게 설정하기 위한 것이다.
그런데, 중계국은 시간 영역에서 볼 때 하나의 서브프레임 전체에 걸쳐 신호를 전송하거나 수신할 수 없는 경우가 발생한다. 중계국은 보통 다수의 단말들을 대상으로 신호를 중계하므로 잦은 수신 모드 및 전송 모드 스위칭(switching)이 발생한다. 그리고 중계국은 동일한 주파수 대역에서 기지국으로부터 신호를 수신하거나 중계국 단말에게 신호를 전송할 수 있다. 또는 중계국은 동일한 주파수 대역에서 중계국 단말로부터 신호를 수신하거나 기지국에게 신호를 전송할 수 있다. 이러한 수신 모드 및 전송 모드 간의 스위칭 시 수신 모드 구간과 전송 모드 구간 사이에는 신호간 간섭을 방지하고 동작 안정화를 위해 중계국이 신호를 전송하거나 수신하지 않는 소정의 시간 구간(이를 이하에서 보호 구간(guard time)이라 칭한다)이 필요하다. 이러한 보호 구간은 1 심벌 구간보다 작은 시간 구간일 수 있다.
상술한 바와 같이 중계국이 신호를 전송 또는 수신하는 서브프레임 내에 보호 구간을 포함할 수 있다. 이러한 경우 중계국이 신호를 전송 또는 수신하는 주파수 대역에 포함된 심벌들은 매크로 단말이 신호를 전송 또는 수신하는 주파수 대역의 심벌과 비교하여 심벌 경계가 일치하지 않을 수 있다. 이처럼 심벌 경계가 일치하지 않게되면 직교성(orthogonality)이 깨어지게 되어 간섭이 발생할 수 있다.
중계국을 포함하는 무선통신 시스템에서, 중계국에 할당된 주파수 대역의 심벌과 매크로 단말에게 할당된 주파수 대역의 심벌 간에 심벌 경계가 일치하지 않는 경우 간섭을 줄일 수 있는 신호 송수신 방법 및 장치가 필요하다.
중계국을 포함하는 무선통신 시스템에서 매크로 단말의 신호와 간섭을 줄일 수 있는 신호 송수신 방법 및 장치를 제공하고자 한다.
본 발명의 일 측면에 따른 무선통신 시스템에서 중계국의 신호 수신방법은 기지국으로부터 백홀 자원할당 정보를 수신하는 단계; 및 상기 백홀 자원할당 정보가 지시하는 무선자원을 통해 상기 기지국으로부터 백홀 하향링크 데이터를 수신하는 단계를 포함하되, 상기 무선자원은 시간 영역에서 복수의 심벌을 포함하고 상기 복수의 심벌은 매크로 단말에게 할당된 주파수 대역에 포함된 심벌들을 기준으로 심벌 경계가 쉬프트되고, 상기 무선자원은 주파수 영역에서 복수의 부반송파를 포함하고 상기 복수의부반송파 중 상기 매크로 단말에게 할당된 주파수 대역에 인접한 적어도 하나의 부반송파는 상기 기지국이 신호를 전송하지 않는 보호 부반송파로 설정되는 것을 특징으로 한다.
중계국을 포함하는 무선통신 시스템에서 중계국에 할당된 무선자원 영역에 보호 부반송파를 할당함으로써 매크로 단말의 신호와의 간섭을 줄일 수 있다. 본 발명은 중계국-기지국 간의 백홀 링크에 적용될 수 있으나 이에 제한되지 않고 주파수 대역 간에 심벌 경계가 일치하지 않는 상황에 일반적으로 적용되어 각 주파수 대역의 신호 간에 발생할 수 있는 간섭을 줄일 수 있다.
도 1은 중계국을 포함하는 무선통신 시스템을 나타낸다.
도 2는 3GPP LTE의 무선 프레임(radio frame) 구조를 나타낸다.
도 3은 하나의 하향링크 슬롯에 대한 자원 그리드(resource grid)를 나타낸 예시도이다.
도 4는 하향링크 서브프레임의 구조를 나타낸다.
도 5는 상향링크 서브프레임의 구조를 나타낸다.
도 6은 본 발명의 일 실시예에 따른 무선통신 시스템에서 신호 전송 방법을 나타낸다.
도 7은 백홀 하향링크 서브프레임 구조의 일 예를 나타낸다.
도 8은 중계국에 할당된 무선자원 영역에 포함된 자원 블록에서 보호 부반송파를 할당하는 예를 나타낸다.
도 9 내지 도 11은 보호 구간 및 보호 부반송파를 포함하는 백홀 하향링크 서브프레임 구조의 다른 예들을 나타낸다.
도 12는 백홀 상향링크 서브프레임 구조의 일 예를 나타낸다.
도 13은 백홀 상향링크 서브프레임 구조의 다른 예를 나타낸다.
도 14 및 도 15는 백홀 상향링크 서브프레임에서 백홀 SRS를 전송하는 경우 서브프레임 구조의 예들을 나타낸다.
도 16 및 도 17은 백홀 상향링크 서브프레임 구조의 또 다른 예를 나타낸다.
도 18은 기지국 및 중계국을 나타내는 블록도이다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 통신 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16e (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-Advanced(LTE-A)는 3GPP LTE의 진화이다. 이하에서 설명을 명확하게 하기 위해, 3GPP LTE/LET-A를 예로 설명하나 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
도 1은 중계국을 포함하는 무선통신 시스템을 나타낸다.
도 1을 참조하면, 중계국을 포함하는 무선통신 시스템(10)은 적어도 하나의 기지국(11; Base Station, BS)을 포함한다. 각 기지국(11)은 일반적으로 셀(cell)이라고 불리는 특정한 지리적 영역 (15)에 대해 통신 서비스를 제공한다. 셀은 다시 다수의 영역으로 나누어 질 수 있는데 각각의 영역은 섹터(sector)라고 칭한다. 하나의 기지국에는 하나 이상의 셀이 존재할 수 있다. 기지국(11)은 일반적으로 단말(13)과 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point), AN(Access Network) 등 다른 용어로 불릴 수 있다. 기지국(11)은 중계국(12)과 단말(14) 간의 연결성(connectivity), 관리(management), 제어 및 자원 할당과 같은 기능을 수행할 수 있다.
중계국(Relay Station, RS, 12)은 기지국(11)과 단말(14) 사이에서 신호를 중계하는 기기를 말하며, RN(Relay Node), 리피터(repeater), 중계기 등의 다른 용어로 불릴 수 있다. 중계국에서 사용하는 중계 방식으로 AF(amplify and forward) 및 DF(decode and forward) 등 어떠한 방식을 사용할 수 있으며, 본 발명의 기술적 사상은 이에 제한되지 않는다.
단말(13, 14; User Equipment, UE)은 고정되거나 이동성을 가질 수 있으며, MS(Mobile Station), UT(User Terminal), SS(Subscriber Station), 무선기기(Wireless Device), PDA(Personal Digital Assistant), 무선 모뎀(Wireless Modem), 휴대기기(Handheld Device), AT(Access Terminal) 등 다른 용어로 불릴 수 있다. 이하에서 매크로 단말(macro UE, Ma UE, 13)은 기지국(11)과 직접 통신하는 단말이고, 중계국 단말(relay UE, Re UE, 14)은 중계국과 통신하는 단말을 칭한다. 기지국(11)의 셀 내에 있는 매크로 단말(13)이라 할지라도, 다이버시티 효과에 따른 전송속도의 향상을 위하여 중계국(12)을 거쳐서 기지국(11)과 통신할 수 있다.
이하에서 기지국(11)과 매크로 단말(13) 간의 링크를 매크로 링크(macro link)라 칭하기로 한다. 매크로 링크는 매크로 하향링크와 매크로 상향링크로 구분될 수 있다, 매크로 하향링크(macro downlink, M-DL)는 기지국(11)에서 매크로 단말(13)로의 통신을 의미하며, 매크로 상향링크(macro uplink, M-UL)는 매크로 단말(13)에서 기지국(11)으로의 통신을 의미한다.
기지국(11)과 중계국(12)간의 링크는 백홀(backhaul) 링크라 칭하기로 한다. 백홀 링크는 백홀 하향링크(backhaul downlink, B-DL)와 백홀 상향링크(backhaul uplink, B-UL)로 구분될 수 있다. 백홀 하향링크는 기지국(11)에서 중계국(12)으로의 통신을 의미하며, 백홀 상향링크는 중계국(12)에서 기지국(11)으로의 통신을 의미한다.
중계국(12)과 중계국 단말(14)간의 링크는 액세스 링크(access link)라 칭하기로 한다. 액세스 링크는 액세스 하향링크(access downlink, A-DL)와 액세스 상향링크(access uplink, A-UL)로 구분될 수 있다. 액세스 하향링크는 중계국(12)에서 중계국 단말(14)로의 통신을 의미하며, 액세스 상향링크는 중계국 단말(14)에서 중계국(12)으로의 통신을 의미한다.
중계국을 포함하는 무선통신 시스템(10)은 양방향 통신을 지원하는 시스템이다. 양방향 통신은 TDD(Time Division Duplex) 모드, FDD(Frequency Division Duplex) 모드 등을 이용하여 수행될 수 있다. TDD 모드는 상향링크 전송과 하향링크 전송에서 서로 다른 시간 자원을 사용한다. FDD 모드는 상향링크 전송과 하향링크 전송에서 서로 다른 주파수 자원을 사용한다.
도 2는 3GPP LTE의 무선 프레임(radio frame) 구조를 나타낸다.
도 2를 참조하면, 무선 프레임(radio frame)은 10개의 서브프레임(subframe)으로 구성되고, 하나의 서브프레임은 2개의 슬롯(slot)으로 구성된다. 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다. 하나의 서브 프레임이 전송되는 데 걸리는 시간을 TTI(transmission time interval)이라 한다. TTI는 스케줄링의 최소 단위일 수 있다.
하나의 슬롯은 시간 영역에서 복수의 OFDM(orthogonal frequency division multiplexing) 심벌을 포함할 수 있다. OFDM 심벌은 3GPP LTE가 하향링크에서 OFDMA를 사용하므로 하나의 심벌 구간(symbol period)을 표현하기 위한 것으로, 다중 접속 방식에 따라 다른 명칭으로 불리울 수 있다. 예를 들어, 상향링크 다중 접속 방식으로 SC-FDMA가 사용될 경우 SC-FDMA 심벌이라고 할 수 있다. 하나의 슬롯은 7 OFDM 심벌을 포함하는 것을 예시적으로 기술하나, CP(Cyclic Prefix)의 길이에 따라 하나의 슬롯에 포함되는 OFDM 심벌의 수는 바뀔 수 있다. 3GPP TS 36.211 V8.5.0(2008-12)에 의하면, 노멀(normal) CP에서 1 서브프레임은 7 OFDM 심벌을 포함하고, 확장(extended) CP에서 1 서브프레임은 6 OFDM 심벌을 포함한다. 무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 및 서브프레임에 포함되는 슬롯의 수는 다양하게 변경될 수 있다.
도 2를 참조하여 설명한 무선 프레임의 구조는 3GPP TS 36.211 V8.3.0 (2008-05) "Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 8)"의 4.1절 및 4. 2절을 참조할 수 있다.
도 3은 하나의 하향링크 슬롯에 대한 자원 그리드(resource grid)를 나타낸 예시도이다.
FDD 및 TDD 무선 프레임에서 하나의 슬롯은 시간 영역(time domain)에서 복수의 OFDM(orthogonal frequency division multiplexing) 심벌을 포함하고, 주파수 영역에서 다수의 자원블록(resource block, RB)을 포함한다. 이하에서 심벌은 하나의 OFDM 심벌 또는 하나의 SC-FDMA 심벌을 의미할 수 있다. 자원 블록은 자원 할당 단위로 하나의 슬롯에서 복수의 연속하는 부반송파(subcarrier)를 포함한다.
도 3을 참조하면, 슬롯(예를 들어, 하향링크 서브프레임에 포함된 하향링크 슬롯)은 시간 영역(time domain)에서 복수의 OFDM 심벌을 포함한다. 여기서, 하나의 하향링크 슬롯은 7 OFDM 심벌을 포함하고, 하나의 자원블록은 주파수 영역에서 12 부반송파를 포함하는 것을 예시적으로 기술하나, 이에 제한되는 것은 아니다. 자원블록에서 부반송파는 예컨대 15KHz의 간격을 가질 수 있다.
자원 그리드 상의 각 요소(element)를 자원요소(resource element)라 하며, 하나의 자원블록(resource block)은 12×7개의 자원요소를 포함한다. 하향링크 슬롯에 포함되는 자원블록의 수 NDL은 셀에서 설정되는 하향링크 전송 대역폭(bandwidth)에 종속한다. 도 3에서 설명한 자원 그리드는 상향링크에서도 적용될 수 있다.
도 4는 하향링크 서브프레임의 구조를 나타낸다.
도 4를 참조하면, 서브프레임은 2개의 연속적인(consecutive) 슬롯을 포함한다. 서브프레임 내에서 첫 번째 슬롯의 앞선 3 OFDM 심벌들이 PDCCH가 할당되는 제어영역(control region)이고, 나머지 OFDM 심벌들은 PDSCH가 할당되는 데이터영역(data region)이다. 제어영역에는 PDCCH 이외에도 PCFICH, PHICH 등의 제어채널이 할당될 수 있다. 단말은 PDCCH를 통해 전송되는 제어정보를 디코딩하여 PDSCH를 통해 전송되는 데이터 정보를 읽을 수 있다. 여기서, 제어영역이 3 OFDM 심벌을 포함하는 것은 예시에 불과하며, 제어영역에는 2 OFDM 심벌 또는 1 OFDM 심벌이 포함될 수 있다. 서브프레임 내 제어영역이 포함하는 OFDM 심벌의 수는 PCFICH를 통해 알 수 있다.
제어영역은 복수의 CCE(control channel elements)인 논리적인 CCE 열로 구성된다. CCE 열은 하나의 서브프레임 내에서 제어영역을 구성하는 전체 CCE들의 집합이다. CCE는 복수의 자원요소 그룹(resource element group)에 대응된다. 예를 들어, CCE는 9 자원요소 그룹에 대응될 수 있다. 자원요소 그룹은 자원요소로 제어채널을 맵핑하는 것을 정의하기 위해 사용된다. 예를 들어, 하나의 자원요소 그룹은 4개의 자원요소로 구성될 수 있다.
복수의 PDCCH가 제어영역 내에서 전송될 수 있다. PDCCH는 스케줄링 할당과 같은 제어정보(control information)를 나른다. PDCCH는 하나 또는 몇몇 연속적인 CCE(control channel elements)의 집단(aggregation) 상으로 전송된다. CCE 집단을 구성하는 CCE의 수(Number of CCEs)에 따라 PDCCH의 포맷 및 가능한 PDCCH의 비트 수가 결정된다. PDCCH 전송을 위해 사용되는 CCE의 수를 CCE 집단 레벨(aggregation level)이라 한다. 또한, CCE 집단 레벨은 PDCCH를 검색하기 위한 CCE 단위이다. CCE 집단 레벨의 크기는 인접하는 CCE들의 수로 정의된다. 예를 들어, CCE 집단 레벨은 {1, 2, 4, 8}의 원소일 수 있다.
PDCCH를 통해 전송되는 제어정보를 하향링크 제어정보(downlink control information, 이하 DCI)라고 한다. DCI는 상향링크 스케줄링 정보, 하향링크 스케줄링 정보, 시스템 정보(system information), 상향링크 전력 제어 명령(power control command), 페이징을 위한 제어정보, 랜덤 액세스 응답(RACH response)을 지시하기 위한 제어정보 등을 포함한다.
DCI 포맷으로는 PUSCH(Physical Uplink Shared Channel) 스케줄링을 위한 포맷 0, 하나의 PDSCH(Physical Downlink Shared channel) 코드워드의 스케줄링을 위한 포맷 1, 하나의 PDSCH 코드워드의 간단한(compact) 스케줄링을 위한 포맷 1A, 공간 다중화 모드에서 단일 코드워드의 랭크-1 전송에 대한 간단한 스케줄링을 위한 포맷 1B, DL-SCH(Downlink Shared Channel)의 매우 간단한 스케줄링을 위한 포맷 1C, 다중 사용자 공간 다중화 모드에서 PDSCH 스케줄링을 위한 포맷 1D, 폐루프(Closed-loop) 공간 다중화 모드에서 PDSCH 스케줄링을 위한 포맷 2, 개루프(Open-loop) 공간 다중화 모드에서 PDSCH 스케줄링을 위한 포맷 2A, PUCCH 및 PUSCH를 위한 2비트 전력 조절의 TPC(Transmission Power Control) 명령의 전송을 위한 포맷 3, 및 PUCCH 및 PUSCH를 위한 1비트 전력 조절의 TPC 명령의 전송을 위한 포맷 3A 등이 있다.
도 5는 상향링크 서브프레임의 구조를 나타낸다.
도 5를 참조하면, 상향링크 서브 프레임은 주파수 영역에서 상향링크 제어 정보를 나르는 PUCCH(Physical Uplink Control Channel)가 할당되는 제어영역(region)과 사용자 데이터를 나르는 PUSCH(Physical Uplink Shared Channel)가 할당되는 데이터영역으로 나눌 수 있다.
하나의 단말에 대한 PUCCH는 서브프레임에서 자원블록(RB) 쌍(pair, 51, 52)으로 할당되고, RB 쌍에 속하는 RB들(51,52)은 2개의 슬롯들 각각에서 서로 다른 부반송파를 차지한다. 이를 PUCCH에 할당되는 RB 쌍이 슬롯 경계(slot boundary)에서 주파수 도약(frequency hopping)된다고 한다.
PUCCH는 다중 포맷을 지원할 수 있다. 즉, 변조 방식(modualtion scheme)에 따라 서브프레임당 서로 다른 비트 수를 갖는 상향링크 제어 정보를 전송할 수 있다. 예를 들어, BPSK(Binary Phase Shift Keying)을 사용하는 경우(PUCCH 포맷 1a) 1비트의 상향링크 제어 정보를 PUCCH 상으로 전송할 수 있으며, QPSK(Quadrature Phase Shift Keying)을 사용하는 경우(PUCCH 포맷 1b) 2비트의 상향링크 제어 정보를 PUCCH 상으로 전송할 수 있다. PUCCH 포맷은 이외에도 포맷 1, 포맷 2, 포맷 2a, 포맷 2b 등이 있다(이는 3GPP TS 36.211 V8.2.0 (2008-03) "Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 8)"의 5.4절을 참조할 수 있다).
도 6은 본 발명의 일 실시예에 따른 무선통신 시스템에서 신호 전송 방법을 나타낸다.
기지국은 백홀 자원할당 정보를 중계국에게 전송한다(S100). 백홀 자원할당 정보는 기지국이 중계국으로 백홀 하향링크 데이터를 전송하는 무선자원 영역, 중계국이 기지국으로 제어신호 및/또는 백홀 상향링크 데이터를 전송하는 무선자원 영역에 대한 정보를 포함한다. 예를 들어, 백홀 자원할당 정보는 기지국이 매크로 단말에게 전송하는 PDCCH의 심벌 개수에 대한 정보를 포함할 수 있다. 또한, 백홀 자원할당 정보는 서브프레임에 포함되는 보호 구간, 보호 부반송파에 대한 정보를 포함할 수 있다. 보호 구간 및 보호 부반송파에 대해서는 후술한다. 백홀 자원할당 정보는 RRC(radio resource control)와 같은 상위 계층 신호를 통해 전송될 수도 있고 물리 계층 신호로 전송될 수도 있다.
중계국은 기지국으로부터 백홀 자원할당 정보를 수신하여 백홀 하향링크 데이터를 수신하는 무선자원 영역, 기지국으로 제어신호 및/또는 백홀 상향링크 데이터를 전송하는 무선자원 영역을 알 수 있다. 이러한 무선자원 영역은 이하에서 백홀 하향링크 서브프레임 구조, 백홀 상향링크 서브프레임 구조를 참조하여 상세히 설명한다.
기지국은 서브프레임의 소정 개수의 심벌에서 매크로 단말(Ma-UE)에게 제어정보를 전송한다(S200-1). 이 때, 중계국은 상기 서브프레임의 소정 개수의 심벌에서 중계국 단말(Rs-UE)에게 제어 정보를 전송한다(S200-2).
기지국은 상기 제어 정보에 따른 무선자원 영역에서 매크로 단말에게 하향링크 데이터를 전송하고(S300), 백홀 자원할당 정보에 따른 무선자원 영역에서 중계국에게 백홀 하향링크 데이터를 전송한다(S400).
중계국은 백홀 자원할당 정보에 따른 무선자원 영역에서 백홀 하향링크 데이터를 수신하여 디코딩한다(S500).
매크로 단말은 상향링크 데이터를 기지국으로 전송하며(S600), 중계국은 백홀 자원할당 정보에 따라 할당된 무선자원 영역에서 백홀 상향링크 데이터를 기지국으로 전송한다(S700). 이 때 상기 매크로 단말과 중계국은 동일한 서브프레임 내에서 서로 다른 무선자원을 사용하여 각자의 신호를 기지국으로 전송할 수 있다.

도 7은 백홀 하향링크 서브프레임 구조의 일 예를 나타낸다.
기지국은 매크로 단말에게 소정 개수의 심벌 예를 들어, 노멀 CP에서 3개의 심벌, 확장 CP에서 2개의 심벌을 사용하여 제어정보(PDCCH를 통해)를 전송하고, 이후의 심벌들에서 중계국에게 데이터를 전송할 수 있다. 이 때, 도 7에 도시된 바와 같이 중계국에 할당된 무선자원 영역에서는 중계국에게 데이터를 전송하고(R-PDSCH (RS# n, n = 1, 2, 3,…, N-1, N) 로 표시된 영역, 이하 동일), 매크로 단말에게 할당된 무선자원 영역에서는 매크로 단말에게 데이터를 전송할 수 있다((Macro UE)PDSCH로 표시된 영역, 이하 동일).
중계국은 중계국 단말에게 소정 개수의 심벌 예를 들어, 최대 2개의 심벌을 사용하여 제어정보(PDCCH를 통해)를 전송하고, 중계국에 할당된 무선자원 영역에서 기지국으로부터 데이터를 수신할 수 있다. 이 때 중계국에 할당된 무선자원 영역은 시간 영역에서 보호 구간을 포함하고, 주파수 영역에서 보호 부반송파를 포함할 수 있다.
무선통신 시스템에 중계국을 포함하는 경우, 중계국은 동일한 주파수 대역에서 신호를 수신하는 동시에 신호를 전송하는 것은 어렵다고 가정한다. 따라서, 중계국은 서로 다른 시간에 동일한 주파수 대역의 신호를 수신하거나 전송한다. 예를 들어, 중계국은 서브프레임 #n에서 기지국으로부터 신호를 수신하고 서브프레임 #n+1에서 중계국 단말에게 신호를 전송하는 방식으로 동작할 수 있다.
그런데, 중계국이 동일 주파수 대역의 신호를 전송하다가 수신하는 경우, 또는 동일 주파수 대역의 신호를 수신하다가 전송하는 경우와 같이 신호의 송수신 스위칭 시에 신호의 송신구간과 수신구간 사이에 보호 구간(guard time)을 필요로 한다. 보호 구간은 시스템의 안정화, 보호 또는 시스템이 요구하는 요구 조건을 만족하는 신호를 생성하기 위해 필요로 하는 시간이다. 예를 들어, 보호 구간에는 신호를 증폭하는 파워 앰프(power amplifier)의 동작 안정화를 위한 천이 시간(transient time)이 포함될 수 있다. 도 7에 도시된 바와 같이 중계국에 할당된 무선자원의 시간 영역에서 보호 구간을 포함한다. 보호 구간은 1 심벌보다 작은 시간 구간 예를 들면, 1/2 심벌 구간일 수 있다.
상술한 보호 구간으로 인해 중계국에 할당된 무선자원 영역은 매크로 단말에게 할당된 무선자원 영역과 심벌의 경계가 일치하지 않을 수 있다. 심벌의 경계가 일치하지 않는 경우, 중계국에 할당된 무선자원 영역과 매크로 단말에게 할당된 무선자원 영역에서 각각 전송된 신호는 서로 간에 직교성(orthogonality)이 유지되지 않아 간섭이 발생할 수 있다. 상술한 간섭을 제거하기 위해 중계국에 할당된 무선자원 영역에는 보호 부반송파를 포함할 수 있다. 백홀 하향링크에서 기지국은 보호 부반송파를 통해 신호를 전송하지 않고, 백홀 상향링크에서 중계국은 보호 부반송파를 통해 신호를 전송하지 않는다. 즉, 기지국은 중계국에 할당된 자원블록들에서 보호 부반송파를 제외한 부반송파에서만 신호를 전송한다. 마찬가지로 중계국은 자신에게 할당된 자원블록들에서 보호 부반송파를 제외한 부반송파에서만 신호를 전송한다. 보호 부반송파는 반정적(semi-statically)으로 설정될 수 있다.
도 8은 중계국에 할당된 무선자원 영역에 포함된 자원 블록에서 보호 부반송파를 할당하는 예를 나타낸다.
중계국에 할당된 무선자원 영역에 포함되는 자원 블록을 백홀 RB라고 칭하고, 매크로 단말에게 할당된 무선자원 영역에 포함되는 자원 블록을 매크로 RB라고 칭하자. 그러면, 기지국은 백홀 RB에서 매크로 RB와 인접하는 적어도 하나의 부반송파를 보호 부반송파로 할당할 수 있다. 도 8에서는 하나의 백홀 RB에서 매크로 RS와 인접하는 2개의 부반송파를 보호 부반송파로 할당하는 예를 나타내고 있다. 이 경우, 백홀 RB에서 사용 가능한 부반송파의 개수는 12개가 아니라 10개일 수 있다. 만약, 중계국에 할당된 자원 영역에 포함되는 백홀 RB가 복수개라면, 매크로 RB와 인접하는 각 백홀 RB에서 매크로 RB와 인접하는 하나의 부반송파만 보호 부반송파로 할당될 수 있다. 이러한 경우, 매크로 RB와 인접하는 백홀 RB에서 사용 가능한 부반송파의 개수는 11개일 수 있다.
또한, 도 8에서는 백홀 RB의 경계에 위치한 하나의 부반송파를 보호 부반송파로 할당하는 경우를 예시하였으나 이는 제한이 아니다. 예를 들어, 백홀 RB(매크로 RS와 인접한)의 경계에 위치하는 복수개의 부반송파를 보호 부반송파로 할당할 수도 있다. 또는 중계국에 할당된 자원 영역에 복수개의 백홀RB가 포함되는 경우, 적어도 하나 이상의 백홀 RB를 보호 부반송파로 할당할 수도 있다. 즉, 매크로 단말에게 할당된 자원 영역에 인접한 백홀 RB에 포함된 부반송파 전체를 보호 부반송파로 할당할 수도 있다. 즉, 보호 부반송파는 반송파 단위로 할당될 수도 있고 자원블록 단위로 할당될 수도 있다.
도 9 내지 도 11은 보호 구간 및 보호 부반송파를 포함하는 백홀 하향링크 서브프레임 구조의 다른 예들을 나타낸다.
기지국이 매크로 단말에게 전송하는 PDCCH의 심벌 개수는 도 9에서 2개, 도 10에서는 1개, 도 11에서는 4개이다.
도 9는 중계국이 중계국 단말에게 전송하는 PDCCH의 심벌 개수가 노멀 CP에서 2개, 확장 CP에서 1개인 경우를 예시하고 있다. 노멀 CP의 경우, 기지국이 매크로 단말에게 전송하는 PDCCH의 심벌 개수와 중계국이 중계국 단말에게 전송하는 PDCCH의 심벌 개수가 2개로 동일하다. 따라서, 중계국은 2개의 심벌을 이용하여 중계국 단말에게 PDCCH를 전송한 후, 보호 구간을 둔 후 기지국으로부터 신호를 수신하게 된다. 그리고, 백홀 하향링크 서브프레임의 마지막 심벌에도 보호 구간이 필요할 수 있다. 예를 들어, 다음 서브프레임에서 중계국이 중계국 단말에게 신호를 전송하는 경우 신호의 수신/송신 스위칭이 발생하므로 보호 구간이 필요할 수 있다. 이러한 경우, 중계국은 노멀 CP에서 11개의 심벌, 확장 CP에서 9개의 심벌을 사용하여 기지국으로부터 백홀 하향링크 데이터를 수신할 수 있다.
또한, 중계국에 할당된 주파수 대역 중 매크로 단말에게 할당된 주파수 대역과 인접한 주파수 대역의 경계에 위치한 부반송파가 보호 부반송파로 할당된다. 즉, 도 9에 도시된 바와 같이 중계국 #1, #3, #N-1, #N에 할당된 주파수 대역(R-PDSCH(RS#1), R-PDSCH(RS#3), R-PDSCH(RS#N-1), R-PDSCH(RS#N))의 주파수 대역에 보호 부반송파가 포함될 수 있다.
도 10에서는 중계국이 중계국 단말에게 전송하는 PDCCH의 심벌 개수가 노멀 CP에서 1개, 확장 CP에서 1개인 경우를 예시하고 있다. 이러한 경우에 백홀 하향링크 서브프레임의 마지막 심벌에도 보호 구간이 필요하다면, 중계국이 기지국으로부터 백홀 하향링크 데이터를 수신하는데 사용할 수 있는 심벌의 개수는 노멀 CP의 경우 12개, 확장 CP의 경우 10개이다.
도 11에서 중계국이 중계국 단말에게 전송하는 PDCCH의 심벌 개수가 노멀 CP에서 2개, 확장 CP에서 2개인 경우를 예시하고 있다. 즉, 기지국이 매크로 단말에게 전송하는 PDCCH의 심벌 개수가 중계국이 중계국 단말에게 전송하는 PDCCH의 심벌 개수보다 많다. 이러한 경우에는 중계국에 할당된 무선자원에서 첫번째 심벌에 보호 구간을 포함하지 않을 수 있다. 예컨대, 중계국은 노멀 CP의 경우 보호 구간 없이 5번째 심벌에서부터 기지국으로부터 백홀 하향링크 데이터를 수신할 수 있다. 백홀 하향링크 서브프레임의 마지막 심벌에 보호 구간이 필요하다면, 중계국은 노멀 CP에서 9개의 심벌, 확장 CP에서 8개의 심벌을 사용하여 백홀 하향링크 데이터를 수신할 수 있다.
이하에서는 중계국이 기지국으로 신호를 전송하는 백홀 상향링크 서브프레임구조에 대해 설명한다.
도 12는 백홀 상향링크 서브프레임 구조의 일 예를 나타낸다.
백홀 상향링크 서브프레임에서 중계국에게 할당된 무선자원 영역을 중계국 존(relay zone)이라고 칭한다. 중계국 존에는 중계국이 제어 신호를 전송하는 R-PUCCH, 중계국이 데이터를 전송하는 R-PUSCH가 할당될 수 있다. 중계국 존은 주파수 영역에서 매크로 단말의 제어 신호가 전송되는 PUCCH 대역 사이에 위치할 수 있다. 백홀 상향링크 서브프레임은 기존의 무선통신 시스템, 예를 들어 LTE release-8(R8)과의 역호환성(backward compatibility)을 유지할 필요가 있다. 따라서, LTE R8에서와 마찬가지로 주파수 대역의 경계에서는 매크로 단말의 PUCCH가 할당되고, 매크로 단말의 PUCCH 대역 사이에 중계국 존이 위치하게 할 수 있다.
중계국 존은 시간 영역에서 보호 구간을 포함하고, 주파수 영역에서 보호 부반송파를 포함할 수 있다. 보호 부반송파는 중계국 존의 주파수 영역에서의 경계, 즉 매크로 단말에게 할당되는 주파수 대역과 인접한 중계국 존의 부반송파가 할당될 수 있다. 백홀 하향링크 서브프레임 구조에서 상술한 바와 같이 보호 부반송파는 부반송파 단위, 자원블록 단위로 설정될 수 있다.
R-PUCCH, R-PUSCH 대역에서는 보호 구간으로 인해 심벌의 경계가 쉬프트된다. 즉, 매크로 단말에게 할당된 PUCCH, PUSCH 대역과 심벌의 경계가 일치하지 않고 보호 구간만큼 쉬프트될 수 있다. 심벌 경계가 일치하지 않아 발생할 수 있는 간섭을 줄이기 위해 주파수 영역에서 보호 부반송파를 할당한다. 도 12에서는 중계국 존의 첫번째 심벌 및 마지막 심벌에 보호 구간을 포함하는 경우를 예시하고 있다. 또한, 매크로 단말에게 할당되는 대역과 인접한 중계국 존의 부반송파를 보호 부반송파로 할당하는 경우를 예시하고 있다.
중계국 존 내에는 매크로 단말이 상향링크 데이터를 전송하는 PUSCH가 할당될 수 있다. 예를 들어, LTE release 10(R10)에 따라 동작하는 매크로 단말의 경우 중계국 존 내에서도 PUSCH가 할당될 수 있다. 이러한 경우, PUSCH 대역 내에서 경계에 위치한 부반송파를 보호 부반송파로 할당할 수 있다. 즉, 중계국 존 내에서 매크로 단말에게 할당되는 PUSCH 대역 내의 경계에 있는 부반송파를 보호 부반송파로 설정할 수 있다.
도 13은 백홀 상향링크 서브프레임 구조의 다른 예를 나타낸다.
도 13에서 도 12와 비교하여 차이점은 백홀 상향링크 서브프레임의 마지막 심벌에 보호 구간을 포함하지 않는다는 점이다. 이처럼 백홀 상향링크 서브프레임의 마지막 심벌에 보호 구간을 포함하지 않는 경우, 보호 구간은 백홀 상향링크 서브프레임에 이어서 위치하는 서브프레임(중계국 단말이 중계국으로 신호를 전송하는 액세스 상향링크 서브프레임)의 첫번째 심벌에 포함될 수 있다.
또는 중계국이 다음 서브프레임에서도 기지국으로 신호를 전송하는 경우, 이러한 백홀 상향링크 서브프레임 구조가 사용될 수 있다.
백홀 상향링크 서브프레임의 마지막 심벌에 보호 구간이 포함되지 않는 경우 보호 구간만큼 무선자원이 남게 된다. 이러한 무선자원은 중계국이 백홀 상향링크 제어신호를 전송하거나 부분적인 백홀 상향링크 데이터를 전송하는데 사용할 수 있다. 또는 중계국이 기지국으로 SRS를 전송하는데 사용할 수도 있다.
이하에서는 백홀 상향링크 서브프레임 내에서 중계국이 사운딩 참조신호를 전송하는 경우에 대해 설명한다.
사운딩 참조신호(sounding reference signal, SRS)는 단말이나 중계국이 기지국으로 전송하는 참조신호로 상향링크 데이터나 제어신호 전송과 관련되지 않는 참조신호이다. SRS는 주로 상향링크(매크로 상향링크 또는 백홀 상향링크)에서 주파수 선택적 스케줄링을 위한 채널 품질 추정을 위해 사용되나 다른 용도로 사용될 수도 있다. 예를 들면 파워 제어나 최초 MCS 선택, 데이터 전송을 위한 최초 파워 제어 등에도 사용될 수 있다. 이하에서 매크로 단말이 기지국으로 전송하는 SRS를 매크로 SRS라 칭하고, 중계국이 기지국으로 전송하는 SRS를 백홀 SRS라 칭한다.
도 14 및 도 15는 백홀 상향링크 서브프레임에서 백홀 SRS를 전송하는 경우 서브프레임 구조의 예들을 나타낸다. 도 14는 도 12와 같은 백홀 상향링크 서브프레임 구조에서 백홀 SRS를 전송하는 경우이다. 도 15는 도 14와 비교하여 서브프레임의 마지막 심벌에 보호 구간을 포함하지 않는 차이가 있다. 즉, 도 15는 도 13과 같은 백홀 상향링크 서브프레임 구조에서 백홀 SRS를 전송하는 경우이다.
매크로 단말은 서브프레임의 마지막 심벌을 사용하여 매크로 SRS를 전송할 수 있다. 중계국이 매크로 단말과 동일한 심벌, 즉 서브프레임의 마지막 심벌을 사용하여 백홀 SRS를 전송한다면, 충돌이 발생하지 않도록 하는 방법이 요구된다. 예를 들면, 매크로 SRS와 백홀 SRS를 서로 다른 부반송파에 할당하여 전송할 수 있다. 매크로 SRS는 홀수번째 부반송파에 할당하고, 백홀 SRS는 짝수번째 부반송파에 할당할 수 있다. 이를 위해서는 기지국이 RRC(radio resource control)와 같은 상위 계층 신호 또는 물리 계층 신호를 통해 중계국에게 백홀 SRS 할당 정보를 알려주어야 할 수 있다.
중계국은 매크로 SRS가 전송되는 심벌을 제외한 심벌에서 백홀 SRS를 전송할 수 있다. 예를 들어, 중계국은 서브프레임의 마지막에서 2번째 심벌 또는 중계국 존의 첫번째 심벌에서 백홀 SRS를 전송할 수 있다. 여기서 상기 중계국 존의 첫번째 심벌은 매크로 단말에게 할당된 무선자원 영역과 비교하여 보호 구간만큼 쉬프트되어 있는 심벌일 수 있다.
또는 중계국은 백홀 SRS를 서브프레임의 중간에 위치한 심벌에서 전송할 수도 있다. 예를 들어, 노멀 CP에서 서브프레임에는 14개의 심벌이 포함되는데, 중계국은 보호 구간으로 인해 13개의 심벌만을 사용할 수 있다. 이 때, 첫번째 슬롯에 7개의 심벌이 포함되고, 두번째 슬롯에 6개의 심벌이 포함될 수 있다. 그러면, 첫번째 슬롯의 마지막 심벌에서 백홀 SRS를 전송할 수 있다. 이러한 방법에 의하면 백홀 SRS와 매크로 SRS가 서로 다른 심벌에서 전송되지 않기 때문에 충돌이 발생하지 않게 된다. 또한, 백홀 SRS가 전송될 필요가 없는 경우 해당 심벌을 천공(puncturing)하면, 2개의 슬롯이 모두 6개의 심벌을 사용하게 되어 슬롯 구조가 대칭적으로 구성될 수 있다는 장점이 있다.
도 16 및 도 17은 백홀 상향링크 서브프레임 구조의 또 다른 예를 나타낸다.
도 16을 참조하면, 중계국 존에서 심벌들은 매크로 단말에게 할당된 자원 영역과 비교하여 보호 구간만큼 심벌 경계가 쉬프트되어 있다. 따라서, 중계국 존에서 사용할 수 있는 심벌의 개수는 노멀 CP에서 13개이고, 확장 CP에서 11개일 수 있다.
중계국은 중계국 존 내에서 제어 신호와 데이터를 동일한 주파수 대역에 할당하여 전송할 수 있다. 즉, 제어 신호를 전송하는 주파수 대역을 중계국 존 내에 따로 할당하지 않고, 데이터를 전송하는 대역에서 제어 신호를 함께 전송할 수 있다. 도 17은 도 16과 비교하여 백홀 상향링크 서브프레임의 마지막 심벌에 보호 구간을 포함하지 않는 차이가 있다.
상술한 바와 같이 중계국에 할당된 무선자원 영역에서 주파수 영역의 보호 부반송파를 설정함으로써 중계국과 매크로 단말의 신호 전송 또는 수신 시 발생할 수 있는 간섭을 완화시킬 수 있다. 상기 예들에서는 백홀 링크에 대해 설명하였으나 이는 제한이 아니다. 즉, 특정 주파수 대역에서 사용되는 무선자원의 심벌 경계가 다른 주파수 대역에서 사용되는 무선자원의 심벌 경계가 어긋나 있는 경우에 본 발명은 일반적으로 적용될 수 있다. 즉, 특정 주파수 대역에 포함된 부반송파들 중에서 상기 다른 주파수 대역과 인접한 적어도 하나의 부반송파들을 보호 부반송파로 설정함으로써 주파수 대역 간에 발생할 수 있는 간섭을 줄일 수 있다.
도 18은 기지국 및 중계국을 나타내는 블록도이다.
기지국(100)은 프로세서(processor, 110), 메모리(memory, 120) 및 RF부(RF(radio frequency) unit, 130)를 포함한다. 프로세서(110)는 제안된 기능, 과정 및/또는 방법을 구현한다. 즉, 중계국에게 백홀 자원할당 정보를 전송하고 백홀 자원할당 정보에 따른 무선자원에서 백홀 하향링크 데이터를 전송한다. 또한, 백홀 자원할당 정보에서 지시한 무선자원을 통해 백홀 상향링크 데이터 및 제어신호를 수신한다. 메모리(120)는 프로세서(110)와 연결되어, 프로세서(110)를 구동하기 위한 다양한 정보를 저장한다. RF부(130)는 프로세서(110)와 연결되어, 무선 신호를 전송 및/또는 수신한다.
중계국(200)은 프로세서(210), 메모리(220) 및 RF부(230)를 포함한다. 프로세서(210)는 기지국으로부터 백홀 자원할당 정보를 수신하고, 백홀 자원할당 정보가 지시하는 무선자원을 통해 기지국으로부터 백홀 하향링크 데이터를 수신하거나 백홀 상향링크 데이터 및 제어신호를 전송한다. 이 때, 무선자원은 시간 영역에서 복수의 심벌을 포함하고 그 복수의 심벌은 매크로 단말에게 할당된 주파수 대역에 포함된 심벌들을 기준으로 심벌 경계가 쉬프트된다. 또한, 백홀 하향링크 데이터를 수신하는 무선자원은 주파수 영역에서 복수의 부반송파를 포함하고 복수의 부반송파 중 매크로 단말에게 할당된 주파수 대역에 인접한 적어도 하나의 부반송파는 기지국이 신호를 전송하지 않는 보호 부반송파로 설정된다. 백홀 상향링크 데이터 및 제어신호를 전송하는 경우, 매크로 단말에게 할당된 주파수 대역과 인접한 적어도 하나의 부반송파에서는 백홀 상향링크 데이터 또는 제어신호를 전송하지 않을 수 있다. 무선 인터페이스 프로토콜의 계층들은 프로세서(210)에 의해 구현될 수 있다. 메모리(220)는 프로세서(210)와 연결되어, 프로세서(210)를 구동하기 위한 다양한 정보를 저장한다. RF부(230)는 프로세서(210)와 연결되어, 무선 신호를 전송 및/또는 수신한다.
프로세서(110,210)는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로, 데이터 처리 장치 및/또는 베이스밴드 신호 및 무선 신호를 상호 변환하는 변환기를 포함할 수 있다. 도 7의 OFDM 전송기 및 OFDM 수신기는 프로세서(110,210) 내에 구현될 수 있다. 메모리(120,220)는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부(130,230)는 무선 신호를 전송 및/또는 수신하는 하나 이상의 안테나를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리(120,220)에 저장되고, 프로세서(110,210)에 의해 실행될 수 있다. 메모리(120,220)는 프로세서(110,210) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(110,210)와 연결될 수 있다.
이상 본 발명에 대하여 실시예를 참조하여 설명하였지만, 해당 기술 분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시켜 실시할 수 있음을 이해할 수 있을 것이다. 따라서 상술한 실시예에 한정되지 않고, 본 발명은 이하의 특허청구범위의 범위 내의 모든 실시예들을 포함한다고 할 것이다.

Claims (10)

  1. 무선통신 시스템에서 중계국의 신호 수신방법에 있어서, 기지국으로부터 백홀 자원할당 정보를 수신하는 단계; 및상기 백홀 자원할당 정보가 지시하는 무선자원을 통해 상기 기지국으로부터 백홀 하향링크 데이터를 수신하는 단계를 포함하되, 상기 무선자원은 시간 영역에서 복수의 심벌을 포함하고 상기 복수의 심벌은 매크로 단말에게 할당된 주파수 대역에 포함된 심벌들을 기준으로 심벌 경계가 쉬프트되고, 상기 무선자원은 주파수 영역에서 복수의 부반송파를 포함하고 상기 복수의부반송파 중 상기 매크로 단말에게 할당된 주파수 대역에 인접한 적어도 하나의 부반송파는 상기 기지국이 신호를 전송하지 않는 보호 부반송파로 설정되는 것을 특징으로 하는 방법.
  2. 제 1 항에 있어서, 상기 중계국이 중계국 단말에게 제어신호를 전송하는 단계를 더 포함하되, 상기 제어신호를 전송하는 서브프레임 내의 심벌은 상기 서브프레임에서 최초 1개 또는 2개의 심벌이고, 상기 무선자원은 상기 서브프레임에서 상기 최초 1개 또는 2개의 심벌 이후에 위치하는 심벌들을 포함하는 것을 특징으로 하는 방법.
  3. 제 1 항에 있어서, 상기 무선자원은 주파수 영역에서 연속하는 복수의 자원블록을 포함하는 것을 특징으로 하는 방법.
  4. 제 3 항에 있어서, 상기 보호 부반송파는 상기 복수의 자원 블록 중에서 상기 매크로 단말에게 할당된 주파수 대역과 인접한 자원블록에 포함되는 것을 특징으로 하는 방법.
  5. 무선통신 시스템에서 중계국의 신호 전송방법에 있어서, 기지국으로부터 백홀 자원할당 정보를 수신하는 단계; 및 상기 백홀 자원할당 정보가 지시하는 무선자원을 통해 상기 기지국으로 백홀 상향링크 데이터 및 제어신호 중 적어도 하나를 전송하는 단계를 포함하되, 상기 무선자원은 시간 영역에서 복수의 심벌을 포함하고 상기 복수의 심벌은 매크로 단말에게 할당된 주파수 대역에 포함된 심벌들을 기준으로 심벌 경계가 쉬프트되고, 상기 무선자원은 주파수 영역에서 복수의 부반송파를 포함하고 상기 복수의부반송파 중 상기 매크로 단말에게 할당된 주파수 대역에 인접한 적어도 하나의 부반송파는 상기 중계국이 신호를 전송하지 않는 보호 부반송파로 설정되는 것을 특징으로 하는 방법.
  6. 제 5 항에 있어서, 상기 무선자원은 서브프레임의 첫번째 심벌에 보호 구간을 포함하되, 상기 보호 구간은 1 심벌보다 작은 시간 구간인 것을 특징으로 하는 방법.
  7. 제 6 항에 있어서, 상기 서브프레임의 마지막 심벌에 보호 구간을 포함하는 것을 특징으로 하는 방법.
  8. 제 6 항에 있어서, 상기 무선자원 내에 매크로 단말에게 할당되는 주파수 대역이 포함되는 경우, 상기 매크로 단말에게 할당되는 주파수 대역 내에서 경계에 위치하는 적어도 하나의 부반송파는 상기 매크로 단말의 신호 전송에 사용되지 않는 것을 특징으로 하는 방법.
  9. 제 5 항에 있어서, 상기 중계국이 기지국으로 백홀 사운딩 참조신호를 전송하는 경우, 상기 매크로 단말이 사운딩 참조신호를 전송하는 심벌을 제외한 다른 심벌에서 상기 백홀 사운딩 참조신호를 전송하는 것을 특징으로 하는 방법.
  10. 무선신호를 송수신하는 RF부; 및상기 RF부에 연결되는 프로세서를 포함하되, 상기 프로세서는 기지국으로부터 백홀 자원할당 정보를 수신하고, 상기 백홀 자원할당 정보가 지시하는 무선자원을 통해 상기 기지국으로부터 백홀 하향링크 데이터를 수신하되, 상기 무선자원은 시간 영역에서 복수의 심벌을 포함하고 상기 복수의 심벌은 매크로 단말에게 할당된 주파수 대역에 포함된 심벌들을 기준으로 심벌 경계가 쉬프트되고, 상기 무선자원은 주파수 영역에서 복수의 부반송파를 포함하고 상기 복수의부반송파 중 상기 매크로 단말에게 할당된 주파수 대역에 인접한 적어도 하나의 부반송파는 상기 기지국이 신호를 전송하지 않는 보호 부반송파로 설정되는 것을 특징으로 하는 중계국.
PCT/KR2010/003668 2009-06-08 2010-06-08 무선통신 시스템에서 신호 송수신 방법 및 장치 WO2010143868A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/376,733 US8773971B2 (en) 2009-06-08 2010-06-08 Method and apparatus for transmitting/receiving a signal in a wireless communication system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US18518109P 2009-06-08 2009-06-08
US61/185,181 2009-06-08
KR1020100053905A KR101637588B1 (ko) 2009-06-08 2010-06-08 무선통신 시스템에서 신호 송수신 방법 및 장치
KR10-2010-0053905 2010-06-08

Publications (2)

Publication Number Publication Date
WO2010143868A2 true WO2010143868A2 (ko) 2010-12-16
WO2010143868A3 WO2010143868A3 (ko) 2011-03-24

Family

ID=43309353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/003668 WO2010143868A2 (ko) 2009-06-08 2010-06-08 무선통신 시스템에서 신호 송수신 방법 및 장치

Country Status (2)

Country Link
US (1) US8773971B2 (ko)
WO (1) WO2010143868A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014040256A1 (zh) * 2012-09-13 2014-03-20 华为技术有限公司 通信方法、基站、无线通信节点和用户设备
CN110945937A (zh) * 2017-12-01 2020-03-31 Oppo广东移动通信有限公司 用于数据传输时隙中数据符号的确定

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8861424B2 (en) * 2009-07-06 2014-10-14 Qualcomm Incorporated Downlink control channel for relay resource allocation
JP2013038663A (ja) * 2011-08-09 2013-02-21 Fujitsu Ltd マルチキャリア送信装置およびマルチキャリア送信方法
US9923689B2 (en) * 2012-07-27 2018-03-20 Kyocera Corporation Mobile communication system, user terminal, and processor for assigning radio resources for transmission of sounding reference signals and device to device communication resources
JP6364196B2 (ja) * 2014-01-30 2018-07-25 株式会社Nttドコモ ユーザ端末、無線基地局、無線通信システム及び無線通信方法
US20180049204A1 (en) * 2016-08-12 2018-02-15 Motorola Mobility Llc Method and Apparatus Including One or More Parameters for Defining a More Flexible Radio Communication
CN112422211B (zh) * 2017-06-16 2024-03-01 华为技术有限公司 信号传输方法、相关装置及系统
EP3658620B1 (en) 2017-07-26 2022-11-09 INEOS Styrolution Group GmbH Scratch-resistant styrene copolymer composition containing inorganic metal compound nanoparticles
US11225571B2 (en) 2017-07-26 2022-01-18 Ineos Styrolution Group Gmbh Styrene copolymer composition with improved residual gloss
WO2019194669A1 (en) 2018-04-06 2019-10-10 Lg Electronics Inc. Method for determining slot format of user equipment in wireless communication system and user equipment using the same
AU2018444829B2 (en) * 2018-10-12 2021-10-07 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method, terminal equipment and network equipment for repeatedly transmitting information

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080070582A1 (en) * 2006-09-19 2008-03-20 Sean Cai Frame Structure For Multi-Hop Relay In Wireless Communication Systems

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1788740A4 (en) * 2004-09-29 2011-09-21 Panasonic Corp RADIO COMMUNICATION DEVICE AND RADIO COMMUNICATION METHOD
US8644130B2 (en) * 2005-03-18 2014-02-04 Samsung Electronics Co., Ltd. System and method for subcarrier allocation in a wireless multihop relay network
WO2007149290A2 (en) * 2006-06-19 2007-12-27 Interdigital Technology Corporation Method and apparatus for performing random access in a wireless communication system
KR101048444B1 (ko) * 2007-09-03 2011-07-11 삼성전자주식회사 무선통신시스템에서 위치 추정 장치 및 방법
TWI462514B (zh) * 2011-09-29 2014-11-21 Inst Information Industry 分時多工正交分頻多工分佈式天線系統、基地台及遠端存取組件

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080070582A1 (en) * 2006-09-19 2008-03-20 Sean Cai Frame Structure For Multi-Hop Relay In Wireless Communication Systems

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: 'Resource Allocation and Downlink Control Channel Structure for relay Backhaul Link' 3GPP TSG RAN WG1 #56BIS, RL-091194 23 March 2009 - 27 March 2009, *
MOTOROLA: 'Spectrum Aggregation Operation-UE Impact Considerations' 3GPP TSG RAN WG1 #55, RL-084405 10 November 2008 - 14 November 2008, *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014040256A1 (zh) * 2012-09-13 2014-03-20 华为技术有限公司 通信方法、基站、无线通信节点和用户设备
US9674831B2 (en) 2012-09-13 2017-06-06 Huawei Technologies Co., Ltd. Multiple point transmissions
US10129868B2 (en) 2012-09-13 2018-11-13 Huawei Technologies Co., Ltd. Communication method, base station, radio communication node, and user equipment
US10764887B2 (en) 2012-09-13 2020-09-01 Huawei Technologies Co., Ltd. Resource configuration of radio resource sets in communicating with user equipment
US11419106B2 (en) 2012-09-13 2022-08-16 Huawei Technologies Co., Ltd. Communication method, base station, radio communication node, and user equipment
CN110945937A (zh) * 2017-12-01 2020-03-31 Oppo广东移动通信有限公司 用于数据传输时隙中数据符号的确定

Also Published As

Publication number Publication date
US20120076071A1 (en) 2012-03-29
WO2010143868A3 (ko) 2011-03-24
US8773971B2 (en) 2014-07-08

Similar Documents

Publication Publication Date Title
WO2010143868A2 (ko) 무선통신 시스템에서 신호 송수신 방법 및 장치
KR101759366B1 (ko) 기지국과 중계 노드 사이의 백홀 링크 실패를 복구하는 방법 및 장치
US9014082B2 (en) Method and device for signal transmission on a wireless communications system
EP2533443B1 (en) Method and device for transmitting a sounding reference signal
US9698946B2 (en) Method and apparatus for transmitting and receiving signal from relay station in radio communication system
KR101339477B1 (ko) 다중 반송파 시스템에서 중계국의 단위 반송파 이용 방법 및 중계국
US8576900B2 (en) Method and apparatus for transmitting and receiving signal from relay station in radio communication system
JP5373924B2 (ja) 無線通信システムにおける中継局の信号送受信方法及び装置
KR101643025B1 (ko) 중계국 및 중계국의 백홀 상향링크 신호 전송 방법
US8665775B2 (en) Method and apparatus in which a relay station makes a hybrid automatic repeat request in a multi-carrier system
US8503348B2 (en) Method and apparatus in which a relay station transmits a sounding reference signal
KR20120051635A (ko) 백홀 링크 전송을 위한 전송 모드 구성 방법 및 장치
EP2448146B1 (en) Method and device for signal transmission on a wireless communications system
KR20100114463A (ko) 무선 통신 시스템에서 중계국에 의해 수행되는 신호 전송 방법 및 장치
KR101639081B1 (ko) 무선통신 시스템에서 신호 전송 방법 및 장치
KR101832530B1 (ko) 중계국을 포함하는 통신 시스템에서 신호를 송신하는 방법
KR20100126633A (ko) 다중 반송파 시스템에서 중계국의 하이브리드 자동 재전송 요청 수행 방법 및 장치
WO2011002263A2 (ko) 중계국을 포함하는 무선통신 시스템에서 중계국의 제어 정보 수신 방법 및 장치
WO2010137839A2 (ko) 다중 반송파 시스템에서 중계국의 하이브리드 자동 재전송 요청 수행 방법 및 장치
KR101637588B1 (ko) 무선통신 시스템에서 신호 송수신 방법 및 장치
US8867499B2 (en) Method and apparatus for transmitting a signal in a wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10786351

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13376733

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10786351

Country of ref document: EP

Kind code of ref document: A2