WO2010143739A1 - Vehicle control device - Google Patents

Vehicle control device Download PDF

Info

Publication number
WO2010143739A1
WO2010143739A1 PCT/JP2010/060062 JP2010060062W WO2010143739A1 WO 2010143739 A1 WO2010143739 A1 WO 2010143739A1 JP 2010060062 W JP2010060062 W JP 2010060062W WO 2010143739 A1 WO2010143739 A1 WO 2010143739A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
rotational speed
power
clutch
input shaft
Prior art date
Application number
PCT/JP2010/060062
Other languages
French (fr)
Japanese (ja)
Inventor
忠彦 加藤
Original Assignee
株式会社ユニバンス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ユニバンス filed Critical 株式会社ユニバンス
Priority to JP2011518597A priority Critical patent/JP5490115B2/en
Publication of WO2010143739A1 publication Critical patent/WO2010143739A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/30Control strategies involving selection of transmission gear ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/383One-way clutches or freewheel devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/19Improvement of gear change, e.g. by synchronisation or smoothing gear shift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D41/00Freewheels or freewheel clutches
    • F16D41/06Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface
    • F16D41/069Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface the intermediate members wedging by pivoting or rocking, e.g. sprags
    • F16D41/07Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface the intermediate members wedging by pivoting or rocking, e.g. sprags between two cylindrical surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/0437Smoothing ratio shift by using electrical signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • F16H63/50Signals to an engine or motor
    • F16H63/502Signals to an engine or motor for smoothing gear shifts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4833Step up or reduction gearing driving generator, e.g. to operate generator in most efficient speed range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/081Speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H2061/044Smoothing ratio shift when a freewheel device is disengaged or bridged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2306/00Shifting
    • F16H2306/40Shifting activities
    • F16H2306/44Removing torque from current gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/10Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts with one or more one-way clutches as an essential feature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a vehicle control device, and more particularly to a vehicle control device capable of preventing a shift shock without giving a feeling of deceleration when the vehicle is accelerated.
  • Patent Document 1 discloses an input shaft to which power is transmitted from a power source, an output shaft parallel to the input shaft, and an input shaft and an output shaft that are always meshed with each other and have different speed changes.
  • an apparatus including a plurality of gear pairs set to have a ratio and a two-way clutch provided on one gear of each gear pair.
  • the two-way clutch includes an inner ring whose outer peripheral surface is a polygonal cross section, an outer ring having an inner peripheral surface having a circular cross section facing the outer peripheral surface of the inner ring, and an inner periphery of the outer ring.
  • a cage for holding a plurality of rollers in the circumferential direction is provided between the surface and the outer peripheral surface of the inner ring.
  • the speed change shock can be mitigated by adjusting the rotation speed of the input side member to the rotation speed after the shift.
  • the rotation speed of the input side member is increased or decreased, there is a gap between the inner ring and the outer ring in the opposite direction.
  • the roller is engaged and the inner ring and the outer ring are locked.
  • a change in the rotation speed of the input side member appears as a change in the rotation speed of the output shaft, and the traveling speed of the vehicle changes.
  • a feeling of deceleration occurs when the rotational speed of the input member is reduced.
  • a feeling of acceleration occurs, which causes a problem that the vehicle driver and passengers feel uncomfortable.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a vehicle control device that can prevent a shift shock without giving a feeling of deceleration when the vehicle is accelerated.
  • the rotational speed of the input shaft is the synchronous rotational speed after the shift.
  • the high-speed stage rotational speed determining means for determining whether the speed is below or not, and the high-speed stage rotational speed determining means determines that the input shaft rotational speed is equal to or lower than the synchronous rotational speed after the shift.
  • Load release means for releasing the load applied to the sprags of the first clutch disposed in the high-speed gear pair as an operation, so that during the upshift, the rotational speed of the input shaft is the synchronous rotational speed after the shift.
  • the load applied to the sprags of the high-speed first clutch is released.
  • the sprag is tilted by the urging force of the urging member of the first clutch disposed on the high-speed gear pair.
  • the rotational speed (number of rotations) of the inner ring or the outer ring on the output shaft side of the first clutch depends on the gear ratio difference between the gear pair at the low speed stage and the gear pair at the high speed stage if the rotational speed of the input shaft is the same.
  • the rotational speed at the high speed stage is always higher than the rotational speed at the low speed stage.
  • the sprags in the high speed stage can be engaged with the outer ring and the inner ring.
  • the rotational speed of the input shaft is reduced to prevent a shift shock during the upshift.
  • the rotational speed of the input shaft is reduced, the sprag of the first clutch in the low speed stage is tilted in the anti-self-locking direction, so that the brake force that reduces the rotational speed of the input shaft can be input without being transmitted to the output shaft.
  • the number of rotations of the shaft can be reduced.
  • the rotational speed of the input shaft can be reduced without reducing the speed of the vehicle and without giving a feeling of deceleration. Therefore, there is an effect that it is possible to prevent a feeling of deceleration during acceleration of the vehicle.
  • control for preventing the shift shock is performed based only on the rotational speed of the input shaft, and the speed can be changed by simply switching between the operation and non-operation of the load applying device, so that the control can be simplified.
  • the load releasing means determines that the rotational speed of the input shaft is equal to or higher than the target rotational speed which is lower than the synchronous rotational speed after the shift by a predetermined rotational speed and is equal to or lower than the synchronous rotational speed.
  • the load applying device is deactivated, and the load applied to the sprags of the first clutch disposed in the high-speed gear pair is released, so that the rotational speed of the input shaft during upshifting is less than the target rotational speed. Can be prevented. Therefore, in addition to the effect of the first aspect, it is possible to shorten the time until the synchronous rotational speed at which power is transmitted, and to shorten the time from the shift request to the completion of the shift.
  • the minimum allowable rotational speed determination means for determining whether the rotational speed of the input shaft is less than the minimum allowable rotational speed of the power source after the shift, and the minimum allowable rotational speed determination.
  • First maintaining means for maintaining the current operating or non-operating state of the load applying device when the means determines that the rotational speed is less than the minimum allowable rotational speed of the power source after shifting.
  • the vehicle control device of the fourth aspect when it is determined that the vehicle has a request for shifting to the low speed stage, it is determined whether the rotational speed of the input shaft is equal to or lower than the synchronized rotational speed after the shift.
  • the load applying device is operated to change the gear of the current speed stage. Since the load applying means for applying a load to the sprags of the first clutch disposed in the pair is provided, at the time of downshift, it is determined that the rotational speed of the power source has decreased below the synchronous rotational speed after the shift.
  • a load is applied to the sprags of the first clutch.
  • the sprags of the first clutch disposed in the gear pair of the current gear stage tilt in the anti-self-lock direction, and the engagement of the sprags with the outer ring and the inner ring is forcibly released.
  • the sprag can be engaged with the outer ring and the inner ring.
  • the rotational speed of the input shaft decreases because the vehicle is in a decelerating state. Also at this time, since the sprag of the first clutch is tilted in the anti-self-locking direction, the influence of the rotational speed of the input shaft can be prevented from appearing on the output shaft. Therefore, there is an effect that it is possible to prevent the traveling speed of the vehicle from changing at the time of downshift, and to prevent the driver or passenger of the vehicle from feeling uncomfortable.
  • the maximum allowable rotation speed determination means for determining whether the rotation speed of the input shaft is larger than the maximum allowable rotation speed of the power source after the shift, and the maximum allowable rotation speed determination means.
  • the second maintaining means for maintaining the current operation or non-operation state of the load applying device is provided.
  • the vehicle transmits the power from the engine to the input shaft and the power transmitted between the first transmission shaft and the generator motor.
  • Two transmission shafts and when the upshift request determination means determines that the vehicle has a request for shifting to a high speed, the power of the input shaft input to the first transmission shaft is transmitted to the second transmission shaft. Since it is equipped with motor input means to input to the generator motor, when it is determined that there is a shift request to the high speed stage, by transmitting the power from the engine to the generator motor, the engine energy is consumed, The rotational speed of the input shaft can be reduced in a short time. Therefore, in addition to the effect of any one of claims 1 to 5, it is possible to reduce the time from the shift request to the completion of the upshift, increase the amount of power generated by the generator motor, and effectively use energy. is there.
  • the vehicle transmits a first transmission shaft that transmits power from the engine to the input shaft, and transmission of power between the first transmission shaft and the generator motor.
  • Two transmission shafts and when the downshift request determining means determines that the vehicle has a request for shifting to a low speed, the power of the generator motor input to the second transmission shaft is transmitted to the first transmission shaft. Since the assist means for inputting to the input shaft is provided, the rotational speed of the input shaft can be increased in a short time by the driving force of the generator motor. Therefore, in addition to the effect of any one of claims 4 to 6, there is an effect that the time from the shift request to the completion of the downshift can be shortened.
  • the vehicle transmits the power input from the first transmission shaft to the second transmission shaft so as to be cut off, while the power from the second transmission shaft to the first transmission shaft.
  • the third clutch cuts off the transmission of power from the first transmission shaft to the second transmission shaft
  • the second clutch removes the second transmission shaft from the first transmission shaft.
  • the rotational speed of the input shaft can be increased in a short time by transmitting the power of the generator motor from the second transmission shaft to the input shaft via the third clutch.
  • the third clutch cuts off the transmission of power from the first transmission shaft to the second transmission shaft, so that the internal resistance and inertia of the generator motor act as driving resistance and energy It is possible to prevent loss and to effectively use energy.
  • FIG. 4 is a sectional view of the first clutch taken along line IV-IV in FIG. It is the elements on larger scale of the 1st clutch which expanded and showed the part shown by V of FIG.
  • V of FIG. It is the schematic diagram which showed the internal structure of the 2nd clutch typically.
  • FIG. 1 is a schematic diagram schematically showing a vehicle 100 on which a vehicle control device 1 according to an embodiment of the present invention is mounted. Note that arrows FB and LR in FIG. 1 indicate the front-rear direction and the left-right direction of the vehicle 100, respectively.
  • the vehicle 100 includes a front unit 110 that drives a front wheel 101 (a left front wheel 101FL and a right front wheel 101FR).
  • the front unit 110 includes an engine 111 and a generator motor 112 as power sources, a power transmission device 1 that transmits the power of the engine 111 and the generator motor 112 to the front wheels 101, and a vehicle for performing a shift control process of the power transmission device 1.
  • the control device 130 is mainly provided, and the front wheel 101 can be driven by using two types of power of the engine 111 and the generator motor 112 separately. Either engine 111 or generator motor 112 can be used as a power source.
  • FIG. 2 is a schematic diagram schematically showing the internal structure of the power transmission device 1. In FIG. 2, only the configuration having a function of transmitting power is illustrated for easy understanding.
  • the power transmission device 1 controlled by the vehicle control device 130 includes a first transmission shaft 2 that transmits power from the engine 111 and power transmitted from the first transmission shaft 2 to a generator motor. Power transmission between the first transmission shaft 2 and the second transmission shaft 9 disposed on the power transmission path from the first transmission shaft 2 to the second transmission shaft 9.
  • a switching device 8 for switching the direction is mainly provided. In the present embodiment, the switching device 8 is disposed on the first transmission shaft 2.
  • the power transmission device 1 is disposed in parallel to the transmission gear pair 2a to which power is transmitted from the first transmission shaft 2, the input shaft 3 to which power is transmitted from the transmission gear pair 2a, and the input shaft 3.
  • the output shaft 4 mainly includes a plurality of gear pairs 5, 6, and 7 that are disposed on the output shaft 4 and the input shaft 3 and that are engaged with each other and set to have different gear ratios. The power transmitted to the output shaft 4 is output to the outside of the power transmission device 1 and transmitted to the front wheels 101.
  • the gear pairs 5, 6, and 7 are disposed on the input shaft 3 and are driven by power transmitted from the first transmission shaft 2, and the drive gears 5 a, 6 a, and 7 a are disposed on the output shaft 4. And driven gears 5b, 6b, 7b driven by 6a, 7a.
  • the gear pairs 5, 6 and 7 are first gear, second gear, and third gear in descending order of the transmission gear pair 2a in descending order of gear ratio (number of teeth of driven gear / number of teeth of drive gear).
  • the gear pair 5 is the first speed
  • the gear pair 6 is the second speed
  • the gear pair 7 is the third speed.
  • a pinion gear may be inserted between the gear pairs 5, 6, 7.
  • the drive gears 5a, 6a, 7a constituting the gear pairs 5, 6, 7 are each formed integrally with the input shaft 3.
  • driven gears 5b, 6b, and 7b that mesh with the driving gears 5a, 6a, and 7a, respectively are fixed to the output shaft 4 via a first clutch 10 that will be described later.
  • the first clutch 10 transmits power from the input shaft 3 to the output shaft 4, while blocking transmission of power from the output shaft 4 to the input shaft 3, and transmits power from the input shaft 3 to the output shaft 4. The transmission can be cut off.
  • the first clutch 10 includes a first inner ring 11, a first outer ring 12 that surrounds the outer periphery of the first inner ring 11, and between the first inner ring 11 and the first outer ring 12.
  • a plurality of first sprags 13, a retainer 14 for holding the first sprags 13, and a load applying device 15 are mainly provided.
  • the first inner ring 11 is a member having a function of transmitting power, and includes an outer peripheral surface 11a having a circular cross section as shown in FIGS. 3 and 4, and is configured to be rotatable around an axis O.
  • the first inner ring 11 is formed integrally with the output shaft 4 (see FIG. 2).
  • the first outer ring 12 is a member having a function of transmitting power together with the first inner ring 11, and as shown in FIGS. 3 and 4, the inner peripheral surface having a circular cross section facing the outer peripheral surface 11a of the first inner ring 11. 12a, and is configured to be rotatable around the axis O in the same manner as the first inner ring 11.
  • the first outer ring 12 is formed integrally with each driven gear 5b, 6b, 7b (see FIG. 2).
  • the 1st sprag 13 is a member which bears the function which engages the 1st inner ring
  • a plurality of elements are arranged at equal intervals in the circumferential direction between the outer peripheral surface 11 a and the inner peripheral surface 12 a facing each other.
  • FIG. 5 is a partially enlarged cross-sectional view of the first clutch 10 showing the portion indicated by V in FIG. 4 in an enlarged manner.
  • the ribbon spring 16 applies an urging force to the first sprag 13 so that the engaging surfaces 13a and 13b are in contact with the outer peripheral surface 11a and the inner peripheral surface 12a.
  • 5 is a member that generates a rotational moment in the “locking direction”, and is formed by applying a wave-like bending process to a metal material as shown in FIG. 5, and applies an urging force to the first sprag 13 using its elasticity. It is configured to be grantable.
  • the ribbon spring 16 may be constituted by a coil spring.
  • the first sprag 13 tilts in the self-locking direction so that the engaging surfaces 13a and 13b are in contact with the outer peripheral surface 11a and the inner peripheral surface 12a.
  • frictional force is generated at the contact A between the inner peripheral surface 12a and the engagement surface 13b and the contact B between the outer peripheral surface 11a and the engagement surface 13a, and the outer peripheral surface 11a and the inner peripheral surface.
  • the first outer ring 12 rotates relative to the first sprag 13 relative to the first inner ring 11 in the direction of the arrow Ro in FIG. 5 (hereinafter referred to as “lock direction”) as viewed from the first inner ring 11 side.
  • lock direction the first sprag 13 is engaged with the first inner ring 11 and the first outer ring 12.
  • the first inner ring 11 rotates together with the first outer ring 12.
  • the first outer ring 12 is rotated relative to the first inner ring 11 with respect to the first sprag 13 as viewed from the first inner ring 11 side in the direction of the opposite arrow Ro in FIG. 5 (hereinafter referred to as “free direction”).
  • the first sprag 13 When rotating, the first sprag 13 is tilted in the anti-self-locking direction against the urging force of the ribbon spring 16 by the frictional force acting on the contact A, and the first sprocket 13 is applied to the first inner ring 11 and the first outer ring 12. The sprag 13 is disengaged. As a result, the first outer ring 12 idles around the first inner ring 11.
  • the retainer 14 is a member that retains the first sprag 13 so as to be tiltable in the circumferential direction of the outer peripheral surface 11a and the inner peripheral surface 12a. As shown in FIGS. 3 and 4, the retainer 14a and the load transmission unit 14b.
  • the holding portion 14 a is a portion that holds the first sprag 13 and extends in the direction of the axis O as shown in FIGS. 3 and 4 and holds the upper end side of the first sprag 13.
  • the load transmitting portion 14b is a portion to which the load is transmitted from the load applying device 15, and extends in a direction intersecting with the direction of the axis O as shown in FIG. Thereby, compared with the case where the load transmission part 14b is extended in the axial center O direction, the dimension of the axial direction O of the holder
  • retainer 14 can be shortened, and size reduction of the 1st clutch 10 can be achieved.
  • the load transmitting portion 14b is formed in a gear shape so that a load is transmitted from the load applying device 15 through a gear mechanism configured between the load transmitting portion 14b and a pinion 15b described later. It is configured. Thereby, the energy loss produced in the load transmission path from the load applying device 15 to the cage 14 can be reduced, and the load can be efficiently transmitted to the cage 14.
  • the load applying device 15 applies a load to the first sprag 13 against the urging force of the ribbon spring 16 to tilt the first sprag 13 in the anti-self-lock direction (the counter arrow S rotation direction in FIG. 5).
  • the apparatus includes an actuator 15 a and a pinion 15 b.
  • the actuator 15a is a power source that generates a load to be applied to the first sprag 13, and is configured by an electric motor (an AC motor or a DC motor) and configured to be drivable by electric power supplied from a power source (not shown). .
  • the structure of the load provision apparatus 15 can be simplified and size reduction can be achieved. it can.
  • the load applying device 15 is increased in size, leading to an increase in the size of the first clutch 10.
  • the structure of the load applying device 15 is simplified and downsized. If possible, the first clutch 10 can be downsized.
  • the pinion 15b is a member for transmitting the motive power of the actuator 15a to the cage 14, and is formed in a gear shape that meshes with the load transmission portion 14b of the cage 14 as shown in FIG. 3, and is connected to the load transmission portion 14b. A gear mechanism is formed between them.
  • the power of the actuator 15 a is transmitted to the retainer 14 by the pinion 15 b, so that a load is applied to the first sprag 13 via the retainer 14.
  • the load application device 15 since the load application device 15 applies a load to the first sprags 13 via the retainer 14, it can apply a load to the plurality of first sprags 13 at a time, and the first sprags 13 can be efficiently applied. A load can be applied to the.
  • the load applying device 15 configured as described above, by applying a load to the first sprag 13 against the urging force of the ribbon spring 16, the first sprag 13 is tilted in the anti-self-lock direction.
  • the engagement of the first sprag 13 to the first inner ring 11 and the first outer ring 12 can be forcibly released.
  • the power transmitted from the engine 111 (see FIG. 2) and the generator motor 112 to the input shaft 3 is input to the first outer ring 12 of the first clutch 10, and the first outer ring 12 enters the first sprag 13.
  • the load application device 15 forcibly releases the engagement of the first sprag 13 from the first inner ring 11 and the first outer ring 12.
  • the transmission of power from the input shaft 3 to the output shaft 4 can be interrupted by causing the outer ring 12 to idle.
  • the power transmission device 1 transmits power between the generator motor 112 including the stator 112 s and the rotor 112 r and the first transmission shaft 2 via the speed increaser 50.
  • the speed increaser 50 is configured to include a planetary gear device.
  • the planetary gear device includes a sun gear 50s that rotates when an input rotation from the second transmission shaft 9 connected to the rotor 112r is transmitted, and a plurality of planetary gears 50p that mesh with the outer periphery of the sun gear 50s.
  • a ring gear 50r meshed with the plurality of planetary gears 50p, a carrier 50c that supports the plurality of planetary gears 50p and is rotated around the rotation center of the sun gear 50s to transmit the input rotation from the second transmission shaft 9 to the switching device 8. It has.
  • the ring gear 50r is fixed to the case 1a that forms the outline of the power transmission device 1 in a non-rotatable manner.
  • the reduction ratio of the gearbox 50 (the rotational speed of the sun gear 50s / the rotational speed of the carrier 50c). Is 1 + c / a regardless of the number of teeth b of the planetary gear 50p, and the rotational speed of the sun gear 50s is (1 + c / a) times the rotational speed of the carrier 50c.
  • the rotational speed of the second transmission shaft 9 is increased to increase the rotational speed of the rotor 112r, and the amount of power generated by the generator motor 112 is increased. Can be increased.
  • the power of the generator motor 112 is transmitted from the second transmission shaft 9 to the first transmission shaft 2, such as at the time of starting the engine 111 or driving assist by the generator motor 121, the torque of the first transmission shaft 2 And the starting performance and acceleration performance of the engine 111 can be improved.
  • the switching device 8 includes a second clutch 20 and a third clutch 30. Since the second clutch 20 is configured in the same manner as the first clutch 10, a detailed description thereof is omitted.
  • the second clutch 20 transmits the power input from the first transmission shaft 2 to the second transmission shaft 9, while blocking the transmission of power from the second transmission shaft 9 to the first transmission shaft 2, and the first clutch The transmission of power from the transmission shaft 2 to the second transmission shaft 9 is configured to be cut off.
  • the second inner ring 21 (see FIG. 2) of the second clutch 20 is connected to the carrier 50c, and the second outer ring 22 is connected to the first transmission shaft 2.
  • the power of the generator motor 112 is input from the second inner ring 21, and the second inner ring 21 is in the second sprag 23 as viewed from the second outer ring 22 side by relative rotation with the second outer ring 22.
  • the engagement of the second sprag 23 with the second inner ring 21 and the second outer ring 22 is released, and the second inner ring 21 is in the second state.
  • the outer ring 22 is idled.
  • the second inner ring 21 rotates relative to the second outer ring 22 in the direction of the arrow Ri (locking direction) in FIG.
  • the second sprag 23 is engaged with the second outer ring 22.
  • the second inner ring 21 rotates with the second outer ring 22, and power is transmitted from the second inner ring 21 to the second outer ring 22.
  • the second outer ring 22 is second sprags as viewed from the second inner ring 21 side due to relative rotation with the second inner ring 21.
  • the second sprag 23 is engaged with the second inner ring 21 and the second outer ring 22 by rotating in the arrow Ro direction (locking direction) in FIG.
  • the second inner ring 21 rotates with the second outer ring 22, and power is transmitted from the second outer ring 22 to the second inner ring 21.
  • the second outer ring 22 rotates relative to the second inner ring 21 in the counter arrow Ro direction (free direction) in FIG.
  • the engagement of the second sprag 23 with the 21 and the second outer ring 22 is released.
  • the second outer ring 22 idles the second inner ring 21, and transmission of power from the second outer ring 22 to the second inner ring 21 is interrupted.
  • the second clutch 20 includes the load applying device 15 (see FIG. 4) as in the first clutch 10, power is transmitted to the second inner ring 21 and the second outer ring 22, and the second inner ring 21. Even when the second outer ring 22 rotates in the locking direction (arrow Ri direction or arrow Ro direction) with respect to the second sprag 23, the second sprag 23 to the second inner ring 21 and the second outer ring 22 by the load applying device 15. Can be forcibly released. Thereby, the transmission of power can be interrupted by idling the second outer ring 22.
  • FIG. 6 is a schematic diagram schematically showing the internal structure of the third clutch 30. However, description of the urging member 16 and the like is omitted.
  • the third clutch 30 is a member that transmits power input from the second transmission shaft 9 to the first transmission shaft 2, while blocking transmission of power from the first transmission shaft 2 to the second transmission shaft 9.
  • the third inner ring 31 of the third clutch 30 is connected to the carrier 50c (see FIG. 2), and the third outer ring 32 is connected to the first transmission shaft 2 (see FIG. 2).
  • the 3rd sprag 33 is a member which bears the function which engages the 3rd inner ring 31 and the 3rd outer ring 32, and is in contact with outer peripheral surface 31a and inner peripheral surface 32a.
  • the power of the generator motor 112 is input from the third inner ring 31, and viewed from the third outer ring 32 side by the relative rotation with the third outer ring 32, the third inner ring 31. Is rotated in the direction of the arrow Ri (locking direction) in FIG.
  • the third sprag 33 engages with the third inner ring 31 and the third outer ring 32.
  • the third inner ring 31 rotates with the third outer ring 32 and power is transmitted from the third inner ring 31 to the third outer ring 32.
  • the third inner ring 31 rotates relative to the third outer ring 32 in the counter arrow Ri direction (free direction) of FIG.
  • the engagement of the third sprag 33 with the third inner ring 31 and the third outer ring 32 is released, and the third inner ring 31 idles the third outer ring 32.
  • the third outer ring is viewed from the third inner ring 31 side by relative rotation with the third inner ring 31. 32 rotates with respect to the third sprag 33 in the direction opposite to the arrow Ro (free direction) in FIG. 6, and the engagement of the third sprag 33 with the third inner ring 31 and the third outer ring 32 is released. As a result, the third outer ring 32 idles the third inner ring 31, and the transmission of power is interrupted. On the other hand, when the third outer ring 32 rotates relative to the third inner ring 31 in the direction of the arrow Ro (locking direction) in FIG. The third sprag 33 engages with the three inner rings 31 and the third outer ring 32. As a result, the third inner ring 31 rotates with the third outer ring 32 to transmit power.
  • a fourth clutch 40 is disposed on the first transmission shaft 2 from the engine 111 to the switching device 8. Transmission of power from the engine 111 to the input shaft 3 can be interrupted by the fourth clutch 40.
  • FIGS. 7 to 9 schematically show a front view of the internal structure of the power transmission device 1.
  • the power transmission path is indicated by an arrow P
  • the rotation direction of the drive gears 5a, 6a, 7a and the first outer ring 12 of the first clutch 10 is indicated by an arrow.
  • the load applying device 15 see FIG.
  • first clutch 10 and the second clutch 20 is operated to engage the first sprag 13 with the first inner ring 11 and the first outer ring 12, the second inner ring 21 and
  • the case where the engagement of the second sprag 23 to the second outer ring 22 is released is expressed as “ON”, the load applying device 15 of the first clutch 10 and the second clutch 20 is deactivated, and the first inner ring 11 and the second
  • the case where the first sprag 13 can be engaged with the first outer ring 12 and the second sprag 23 can be engaged with the second inner ring 21 and the second outer ring 22 is indicated as “OFF”.
  • the gear pairs 5, 6 and 7 are arranged in descending order of the gear ratio (number of teeth of the driven gear / number of teeth of the driving gear) in the order closer to the transmission gear pair 2a. It is installed. If the gear ratios of the gear pairs are k1, k2, and k3 in this order, the gear ratios have a relationship of k1> k2> k3.
  • FIG. 7 is a schematic diagram schematically showing the internal structure of the power transmission device 1 when the generator motor 112 assists in traveling.
  • the fourth clutch 40 is coupled and the load applying device 15 (see FIG. 4) of the second clutch 20 is operated (ON).
  • the load applying device 15 of the first clutch 10 of the gear pair 5 is deactivated (OFF), and the load applying device 15 of the first clutch 10 of the gear pairs 6 and 7 is operated (ON).
  • the second inner ring 21 of the second clutch 20 is rotated by the relative rotation with the second outer ring 22. 2
  • the third inner ring 31 (see FIG. 2) of the third clutch 30 rotates in the counter arrow Ri direction (free direction) of FIG.
  • the second inner ring 21 of the second clutch 20 idles the second outer ring 22.
  • the driven gears 5b, 6b, 7b of the gear pairs 5, 6, 7 are rotated, and the first clutch 10 is rotated.
  • the first outer ring 12 (see FIG. 5) rotates.
  • the first outer ring 12 of the first clutch 10 rotates relative to the first inner ring 11 in the direction of the arrow Ro (locking direction) in FIG. 5 when viewed from the first inner ring 11 side. Since the load applying device 15 (see FIG. 4) of the first clutch 10 is operated (ON), the first outer ring 12 of the first clutch 10 of the gear pairs 6 and 7 idles the first inner ring 11.
  • the load applying device 15 of the first clutch 10 of the gear pair 5 is inactive (OFF)
  • the first outer ring 12 (see FIG. 5) of the first clutch 10 of the first speed gear pair 5 is changed to the first.
  • Power is transmitted to the inner ring 11 and the output shaft 4 rotates.
  • the rotational speed of the output shaft 4 is ⁇ 1, which is equal to the rotational speed of the driven gear 5b of the gear pair 5.
  • the front wheel 101 (see FIG. 1) of the vehicle 100 rotates (rotational speed ⁇ 1), and the vehicle 100 travels forward.
  • FIG. 8 is a schematic diagram schematically showing the internal structure of the power transmission device 1 when the rotational speed of the input shaft 3 is reduced
  • FIG. 9 is a schematic diagram of the internal structure of the power transmission device 1 in the second speed traveling. It is the schematic diagram shown in.
  • the operation of the load applying device 15 (see FIG. 4) of the first clutch 10 is stopped (OFF).
  • the first sprag 13 can be engaged with the first inner ring 11 (see FIG. 5) and the first outer ring 12 in the first clutch 10 of the first gear pair 5 and the second gear pair 6. It becomes.
  • the rotational speed ⁇ 1 ′ of the driven gear 5b is based on the rotational speed ( ⁇ 1) of the output shaft 5b.
  • the rotational speed ( ⁇ 1 ′) of the first outer ring 12 is slower than the rotational speed ( ⁇ 1) of the first inner ring 11, and the first inner ring 11 is relatively free. It is equal to the state of rotating to. Therefore, in the first clutch 10 of the gear pair 5, the first sprag 13 cannot be engaged with the first inner ring 11 and the first outer ring 12 at the present time. As a result, the driven gear 5b idles the output shaft 4 and no power is transmitted.
  • the rotational speed ⁇ 3 ′ of the driven gear 7b of the gear pair 7 (the rotational speed of the driven gear 7b at the rotational speed ⁇ ′ of the input shaft 3; ⁇ 3 ′ ⁇ 3) is the rotational speed of the driven gear 6b of the gear pair 6. Since it is faster than ⁇ 2 ′ ( ⁇ 2 ′ ⁇ 3 ′), the first outer ring 12 of the first clutch 10 of the gear pair 7 has a higher rotational speed than the first outer ring 12 of the first clutch 10 of the gear pair 6, and FIG. Rotate in the direction indicated by the arrow Ro (lock direction). However, since the load applying device 15 (see FIG. 4) is operating in the gear pair 7 (ON), the first sprag 13 cannot be engaged, and the first outer ring 12 idles the first inner ring 11 to transmit power. Is cut off.
  • the rotation speed ⁇ ′ ⁇ / k1 ⁇ k2 determined by the relationship between the rotation speed of the input shaft 3 before the shift and the gear ratios of the gear pairs 5 and 6 before and after the shift is the second speed gear pair in the case of the shift-up shift. 6 is referred to as “synchronous rotation speed”.
  • the synchronous rotation speed is a rotation speed at which the rotation speeds of the first inner ring 11 and the first outer ring 12 of the first clutch 10 disposed in the gear pair 6 after the shift are equal.
  • the transmission of power from the input shaft 3 to the output shaft 4 can be cut off by setting the rotational speed (rotational speed) of the input shaft 3 before the shift to the synchronous rotational speed or less.
  • the synchronous rotation speed in the third gear pair 7 in the case of the upshift is ⁇ / k2 ⁇ k3 (where ⁇ is the input shaft before the shift) 3 rotation speed (number of rotations)).
  • the shift can be performed only by stopping the operation of the load applying device 15 of the first clutch 10 of the high-speed gear pair 6. Further, when the rotational speed of the input shaft 3 is lower than the synchronous rotational speed of the gear pair 7 after shifting, the first sprag 13 in the high-speed gear pair 6 is tilted in the anti-self-locking direction, so that the engine 111 Power is not transmitted from the (power source) to the high-speed gear pair 6.
  • the rotational speed of the input shaft 3 can be reduced in a short time to perform a smooth speed change, and the energy can be effectively utilized to increase the amount of power generation. Can be made. Further, since the first sprag 13 of the low-speed first clutch 10 is tilted in the anti-self-locking direction while the rotational speed of the input shaft 3 is reduced, a braking force that reduces the rotational speed of the input shaft 3 is applied. Transmission to the output shaft 4 can be prevented. Thereby, the rotation speed of the input shaft 3 can be reduced without reducing the speed of the vehicle 100 and without giving a feeling of deceleration. Therefore, it is possible to prevent a feeling of deceleration when the vehicle 100 is accelerated. The same applies when shifting from the second speed to the third speed, and the description of the operation when performing the upshift from the second speed to the third speed is omitted.
  • the power transmission device 1 when performing a downshift is described. Even when the downshift is performed, the shift can be performed by switching between the operation and non-operation of the load applying device 15 (see FIG. 4) of the first clutch 10 as in the case of the upshift.
  • the load application device 15 of the first clutch 10 of the second-speed driven gear 6b is operated (ON).
  • the rotational speed ( ⁇ 1) of the first outer ring 12 is slower than the rotational speed ( ⁇ 2) of the output shaft 4, that is, the rotational speed ( ⁇ 2) of the first inner ring 11. Therefore ( ⁇ 1 ⁇ 2), the first outer ring 12 rotates in the free direction in the direction of the opposite arrow Ro (see FIG. 5) as viewed from the first inner ring 11 due to the relative rotation with the first inner ring 11. For this reason, the 1st-speed driven gear 5b idles the output shaft 4 and no power is transmitted.
  • rotational speed ⁇ 1 ′′ rotational speed of the first outer ring 12 of the first clutch 10 in the first gear pair 5
  • rotational speed ⁇ 2 of the output shaft 4 rotational speed ⁇ 1 ′′
  • the first outer ring 12 relatively rotates in the locking direction, and the first sprag 13 engages with the first inner ring 11 and the first outer ring 12.
  • the first-speed driven gear 5b rotates with the output shaft 4.
  • the downshift can be performed from the second speed traveling state to the first speed.
  • the rotational speed ⁇ 1 ′′ of the driven gear 5b is greater than the rotational speed ⁇ 2 of the output shaft 4.
  • ⁇ 1 ′′ ⁇ ′′ / k1 (where ⁇ ′′ is the rotational speed (number of rotations) of the input shaft 3 after the shift).
  • ⁇ 2 ⁇ / k2. Since ⁇ 1 ′′> ⁇ 2 must be satisfied, ⁇ ′′ / k1> ⁇ / k2.
  • ⁇ ′′ ⁇ / k 2 ⁇ k 1. That is, when the rotational speed ⁇ ′′ of the input shaft 3 ⁇ ⁇ / k 2 ⁇ k 1, no power is transmitted to the first speed gear pair 5.
  • the rotation speed ⁇ ′′ ⁇ / k2 ⁇ k1 determined by the relationship between the rotation speed of the input shaft 3 before the shift and the gear ratios of the gear pairs 5 and 6 before and after the shift is the first speed gear pair in the case of the shift down shift. 5 is referred to as “synchronous rotation speed”.
  • the synchronous rotation speed is a rotation speed at which the rotation speeds of the first inner ring 11 and the first outer ring 12 of the first clutch 10 disposed in the gear pair 5 after the shift are equal.
  • the transmission of power from the input shaft 3 to the output shaft 4 can be cut off by setting the rotational speed (rotational speed) of the input shaft 3 before the shift to the synchronous rotational speed or less.
  • the synchronous rotational speed of the second speed gear pair 6 in the case of the downshift is ⁇ / k3 ⁇ k2 (where ⁇ is the input shaft before the shift) 3 rotation speed (number of rotations)).
  • the shift can be performed only by operating the load applying device 15 of the first clutch 10 of the gear pair 6 at the current shift stage.
  • the first sprags 13 of the gear pair 5 at the low speed stage are tilted in the anti-self-locking direction. Power is not transmitted from the (engine 111) to the low-speed gear pair 5.
  • FIG. 10 is a block diagram showing an electrical configuration of the vehicle control device 130.
  • the vehicle control device 130 includes a CPU 61, a ROM 62, and a RAM 63, which are connected to the input / output port 65 via the bus line 64.
  • the input / output port 65 is connected to a device such as the load applying device 15.
  • the CPU 61 is an arithmetic unit that controls each unit connected by the bus line 64, and the ROM 62 is a control program (for example, the program of the flowchart shown in FIGS. 11 and 12) executed by the CPU 61 or the gear pair 5.
  • This is a non-rewritable nonvolatile memory storing fixed value data such as transmission ratios of 6 and 7.
  • the RAM 63 is a memory for storing various data in a rewritable manner when executing the control program.
  • the ROM 62 stores an optimum shift speed map (not shown) corresponding to the traveling speed of the vehicle 100.
  • the optimum gear map is, for example, the first gear is the optimum gear when the running speed is less than V1, the second gear is the optimum gear when the running speed is V1 to V2, and the optimum when the running speed is V2 or higher.
  • the gear position is set as the third speed (however, V1 ⁇ V2).
  • the shift switch sensor device 70 is a device for detecting the presence or absence of an upshift operation or a downshift operation by the driver and outputting the detection result to the CPU 61.
  • the present embodiment mainly includes a sequential switch built in a shift lever device (not shown) and an output circuit (not shown) that processes an output signal of the sequential switch and outputs it to the CPU 61. Yes.
  • downshifting can be performed by kickdown.
  • the shift switch sensor device 70 detects a downshift operation due to kickdown and outputs the detection result to the CPU 61.
  • the travel speed detection device 71 is a device for detecting a pulse proportional to the rotational speed of the axle and outputting the detection result to the CPU 61.
  • the CPU 61 can acquire the traveling speed of the vehicle 100 from the detection result input from the traveling speed detection device 71.
  • the load application sensor device 72 detects the operation (ON) or the non-operation (OFF) of each load application device 15 of each first clutch 10 disposed in the gear pair 5, 6 and 7, and the detection result is obtained.
  • a device for outputting to the CPU 61, a load application sensor (not shown) for detecting the operation (ON) or non-operation (OFF) of the load application device 15 and the detection results of each load application sensor are processed.
  • the CPU 61 determines that the load applying device 15 of the first clutch 10 of the gear pair 5 is OFF and the load applying device 15 of the first clutch 10 of the gear pairs 6 and 7 is ON.
  • the load applying device 15 of each first clutch 10 of the first speed gear pair 5, 6 is OFF and the load applying device 15 of the first clutch 10 of the gear pair 7 is ON, the second speed, gear pair 5, If the load applying devices 15 of the first and sixth clutches 6 and 7 are OFF, the third speed is acquired.
  • the accelerator pedal sensor device 73 is a device for detecting the amount of operation of an accelerator pedal (not shown) and the acceleration / deceleration speed of the accelerator pedal, and outputting the detection result to the CPU 61, and detects the amount of depression of the accelerator pedal.
  • Mainly Mainly.
  • the input shaft rotational speed sensor device 74 is a device for detecting the rotational speed of the input shaft 3 and outputting the detection result to the CPU 61.
  • the rotational speed sensor (not shown) and detection of the rotational speed sensor An output circuit (not shown) that processes the result and outputs it to the CPU 61 is mainly provided. Further, the CPU 61 calculates the above-described synchronous rotational speed based on the detection result of the rotational speed of the input shaft 3 input from the input shaft rotational speed sensor device 74 and the gear ratios of the gear pairs 5, 6, and 7.
  • an acceleration sensor for detecting the acceleration of the vehicle 100 is exemplified.
  • the CPU 61 can also determine whether there is a shift request.
  • FIG. 11 is a flowchart showing the shift control process in the first embodiment.
  • This process is a process that is repeatedly executed by the CPU 61 (for example, at intervals of 0.2 ms) while the power of the vehicle control device 130 is turned on, and switches between the operation and non-operation of each load applying device 15. Thus, the shift shock described above is prevented.
  • the CPU61 first acquires the traveling speed of the vehicle 100 regarding a shift control process (S1). This process is performed using the detection result of the traveling speed detection device 71 (see FIG. 10) as described above. Next, the optimum shift speed and the current shift speed (current shift speed) corresponding to the travel speed of the vehicle 100 acquired in the process of S1 are acquired (S2). As described above, this process is performed using the optimum shift speed map (not shown) stored in the ROM 62 and the detection result of the load application sensor device 72 (see FIG. 10). Next, the CPU 61 acquires the rotation speed of the input shaft 3 (S3). This process is performed using the detection result of the input shaft rotational speed sensor device 74 as described above.
  • the CPU 61 determines whether or not the current gear position and the optimum gear position are equal (S4). As a result, when it is determined that the current shift speed is equal to the optimal shift speed (S4: Yes), it is determined that there is no shift request, and thus the shift control process is terminated. On the other hand, if it is determined as a result of the process of S4 that the current gear position is different from the optimum gear position (S4: No), then the CPU 61 determines whether the current gear position is smaller than the optimum gear position. (S5).
  • the synchronous rotational speed of the high speed (the second speed when the current speed is the first speed and the third speed when the current speed is the second speed) is acquired (S6). Is calculated and acquired from the rotational speed of the input shaft 3 acquired in the process of S3 and the gear ratios of the gear pairs 5, 6 and 7 stored in the ROM 62, as described above.
  • the CPU 61 outputs a rotation speed down command for the engine 111 as a power source in order to reduce the rotation speed of the input shaft 3 (S7).
  • the rotational speed down command is a command for performing one or more processes such as closing a valve and closing a throttle valve in order to reduce the rotational speed of the engine 111.
  • the rotational speed of the engine 111 is decreased, and the rotational speed of the input shaft 3 is decreased.
  • the CPU 61 turns off the load applying device 15 of the second clutch 20 (S8).
  • the rotational speed (rotational speed) of the input shaft 3 can be reduced in a short time by driving the generator motor 112 using the rotational energy of the input shaft 3.
  • the CPU 61 obtains the rotational speed of the input shaft 3 that has decreased due to the processing of S7 and S8 (S9). This process is performed using the detection result of the input shaft rotational speed sensor device 74 as described above.
  • the CPU 61 compares the target rotational speed and the synchronous rotational speed that are lower than the synchronous rotational speed of the gear pair in the high speed stage by a predetermined rotational speed ( ⁇ ) with the rotational speed of the input shaft 3 acquired by the process of S9. It is determined whether the rotational speed of the input shaft 3 is equal to or higher than the target rotational speed and equal to or lower than the synchronous rotational speed (S10). Note that ⁇ can be about 10% of the synchronous rotational speed, although it depends on the accuracy of each sensor.
  • the third clutch 30 cuts off the transmission of power from the first transmission shaft 2 to the second transmission shaft 9, and the second clutch 20 Since the transmission of power from the first transmission shaft 2 to the second transmission shaft 9 is interrupted by operating the load applying device 15 (see FIG. 4), the internal resistance and inertia of the generator motor 112 become drive resistance. Energy loss can be prevented and energy can be used effectively.
  • the sprag at the high speed stage is tilted in the anti-self-lock direction, so that the engine 111 (power source) No power is transmitted to the gear pair.
  • the driver increases the amount of depression of an accelerator pedal (not shown) and the rotational speed of the input shaft 3 exceeds the synchronous rotational speed after shifting, the first sprag 13 in the high-speed gear pair is moved in the self-locking direction. It tilts and power is transmitted from the input shaft 3 to the high-speed gear pair.
  • the control for preventing the shift shock is performed based only on the rotational speed of the input shaft 3, and the speed can be changed by simply switching between the operation and the non-operation of the load applying device 15. Therefore, the control can be simplified.
  • the rotational speed of the input shaft 3 is set to the target rotational speed when the processing of S11 is started. Can be prevented. Therefore, the time from when the rotational speed of the input shaft 3 exceeds the synchronous rotational speed until the power is transmitted can be shortened, and the time from the shift request to the completion of the shift can be shortened.
  • the CPU 61 compares the synchronous rotational speed at the low speed stage with the rotational speed of the input shaft 3, and determines whether the rotational speed of the input shaft 3 is equal to or lower than the synchronous rotational speed (S13). As a result, when it is determined that the rotational speed is greater than the synchronous rotational speed (S13: No), this shift control process is terminated in order to maintain the current shift speed without performing a downshift. On the other hand, in the process of S13, when it is determined that the rotation speed of the input shaft 3 is equal to or less than the synchronous rotation speed (S13: Yes), it is determined that no shift shock will occur, and therefore the current shift stage load.
  • the assigning device 15 is turned on (S14), and downshifting is performed.
  • the CPU 61 outputs a drive command for the generator motor 112 (see FIG. 2) (S15), and ends this shift control process.
  • the driving force by the generator motor 112 is transmitted to the second transmission shaft 9 and the carrier 50c, and is transmitted to the first transmission shaft 2, the transmission gear pair 2a, and the input shaft 3 via the third clutch 30.
  • the rotational speed of the input shaft 3 can be increased to the synchronous rotational speed in a short time. Therefore, the time from the downshift request to the completion of the downshift can be shortened.
  • the third clutch 30 blocks the input of power from the input shaft 3 to the generator motor 112, so that the internal resistance and inertia of the generator motor 112 can be prevented from becoming driving resistance for traveling of the vehicle 100.
  • the first sprag 13 in the low speed stage is tilted in the anti-self-lock direction, and therefore the engine 111 (power source ) To the low speed gear pair.
  • the driver increases the amount of depression of the accelerator pedal and the rotational speed of the input shaft 3 exceeds the synchronous rotational speed after the shift, the first sprag 13 at the low speed stage tilts in the self-locking direction, and the low speed stage from the input shaft 3 Power is transmitted to the gear pair.
  • FIG. 12 is a flowchart showing this shift control process.
  • This process is a process for preventing a shift shock when the driver requests an upshift or a downshift using a shift lever device (not shown). This process is repeatedly executed by the CPU 61 (for example, at intervals of 0.2 ms) while the vehicle control device 130 is powered on.
  • the CPU 61 first acquires the current shift speed (current shift speed) regarding the shift control process (S21). This process is performed using the detection result of the load application sensor device 72 as described above. Next, the CPU 61 acquires the rotational speed of the input shaft 3 (S22). This process is performed using the input shaft rotational speed sensor device 74 as described above. Next, the CPU 61 determines whether a downshift signal has been input (S23). This process is performed using the shift switch sensor device 70 as described above. As a result, when it is determined that the downshift signal has not been input (S23: No), the CPU 61 then determines whether the upshift signal has been input (S24). As a result of the process of S24, when it is determined that the upshift signal is not input (S24: No), it is determined that the driver does not intend to perform a shift, and thus the shift control process is terminated.
  • the upshift signal has been input as a result of the processing in S24 (S24: Yes)
  • the synchronous rotational speed of the high speed stage (second speed when the current gear stage is the first speed, and third speed when the current gear stage is the second speed) and the power source (the engine 111 in the present embodiment). )
  • the synchronous rotation speed is obtained by calculating from the rotation speed of the input shaft 3 and the gear ratio of the gear pairs 5, 6, 7 acquired in the process of S 22, and the high speed stage stored in the ROM 62 is acquired. Get the minimum allowable speed.
  • the minimum allowable rotational speed is the minimum rotational speed of the input shaft 3 that does not cause knocking in the engine 111, and is set for each gear pair.
  • the CPU 61 determines whether or not the rotation speed acquired in the process of S22 is smaller than the minimum allowable rotation speed (S26). As a result of the processing of S26, when it is determined that the rotational speed is smaller than the minimum allowable rotational speed (S26: Yes), knocking is prevented because the engine 111 is likely to knock when shifting to the high speed stage. In order to do this, the current gear position is maintained, and this shift control process is terminated.
  • the CPU 61 reduces the rotational speed of the input shaft 3 for the purpose of preventing a shift shock. Therefore, an engine speed reduction command for the engine 111 as a power source is output (S27). Since the rotation speed down command is the same as that described in the first embodiment, the description thereof is omitted. Next, the CPU 61 turns off the load applying device 15 of the second clutch 20 (S28).
  • the rotational speed (rotational speed) of the input shaft 3 is reduced in a short time by driving the generator motor 112 using the rotational energy of the input shaft 3. And can increase the amount of power generation and effectively use energy. Further, as described in the first embodiment, since the influence of the decrease in the rotational speed of the input shaft 3 does not appear on the output shaft 4, it is possible to prevent the driver from feeling decelerated.
  • the CPU 61 obtains the rotational speed of the input shaft 3 that has decreased due to the processing of S27 and S28 (S29).
  • the CPU 61 compares the target rotational speed and the synchronous rotational speed that are lower than the synchronous rotational speed in the gear pair in the high speed stage by a predetermined rotational speed ( ⁇ ) with the rotational speed of the input shaft 3 acquired by the process of S29, It is determined whether the rotational speed of the input shaft 3 is equal to or higher than the target rotational speed and equal to or lower than the synchronous rotational speed (S30).
  • can be about 10% of the synchronous rotational speed, although it depends on the accuracy of each sensor.
  • the CPU 61 determines whether the accelerator pedal is depressed (S32). This process is performed using the accelerator pedal sensor device 73 as described above. As a result of the processing of S32, when it is determined that the amount of depression of the accelerator pedal is not 0 (S32: No), it is determined that the driver depresses the accelerator pedal and intends to downshift by kickdown. This shift control process ends.
  • the synchronous rotational speed of the low speed stage (the second speed when the current speed stage is the third speed and the first speed when the current speed stage is the second speed) and the maximum allowable speed of the low speed stage are acquired ( S33).
  • the synchronous rotational speed is obtained by calculating from the rotational speed of the input shaft 3 and the gear ratio of the gear pairs 5, 6 and 7 obtained in the processing of S22, and the maximum of the low speed stage stored in the ROM 62 is obtained. Get the allowable rotation speed.
  • the maximum permissible rotational speed is the maximum rotational speed of the input shaft that does not cause overrev in the engine 111 (power source), and is set for each gear pair.
  • the CPU 61 determines whether or not the rotation speed acquired in the process of S22 is larger than the maximum allowable rotation speed (S34). If it is determined as a result of the process of S34 that the rotational speed is greater than the maximum allowable rotational speed (S34: Yes), the engine 111 is likely to cause an overrev when shifting to a low speed stage, thus preventing the overrev. In order to do this, the current gear position is maintained, and this shift control process is terminated. On the other hand, if it is determined as a result of the process of S34 that the rotational speed is equal to or lower than the maximum allowable rotational speed (S34: No), the CPU 61 compares the synchronous rotational speed at the low speed stage with the rotational speed of the input shaft 3.
  • the CPU 61 may output a drive command for the generator motor 112 (see FIG. 2) after the process of S36 (assist means).
  • the rotational speed of the input shaft 3 can be increased to the synchronous rotational speed in a short time by the driving force of the generator motor 112. Therefore, the time from the downshift request to the completion of the downshift can be shortened.
  • the processing at S9 is performed as the rotational speed acquisition means according to claim 1
  • the processing at S4 and S5 is performed as the upshift request determining means.
  • the load releasing means is the process of S11.
  • the downshift request means according to claim 4 corresponds to the processes of S4 and S5
  • the low speed stage rotation speed determination means corresponds to the process of S13
  • the load application means corresponds to the process of S14.
  • the motor input means according to claim 6 corresponds to the process of S8, and the assist means according to claim 7 corresponds to the process of S15.
  • the processing of S22 and S29 is performed as the rotational speed acquisition unit according to claim 1, and the processing of S23 and S24 is performed as the upshift request determination unit.
  • the process of S30 corresponds to the process, and the process of S31 corresponds to the load releasing means.
  • the process of S26 corresponds to the minimum allowable rotational speed determination means according to claim 3, and the process when the result of the process of S26 is determined to be Yes as the first maintenance means.
  • the downshift request means described in claim 4 corresponds to the processes of S23 and S32, the low speed stage rotation speed determination means corresponds to S35, and the load application means corresponds to S36.
  • the process of S34 corresponds to the maximum allowable rotational speed determination means according to claim 5, and the process when the result of the process of S34 is determined as Yes as the second maintenance means.
  • the motor input means described in claim 6 corresponds to the processing of S28.
  • FIG. 13 is a schematic diagram schematically showing a rear-wheel drive vehicle 200 on which the vehicle control device 130 is mounted.
  • the vehicle 200 includes a rear unit 120 that drives the rear wheels 102 (the left rear wheel 102FL and the right rear wheel 102FR).
  • the rear unit 120 includes an engine 111 and a generator motor 112 as a power source, a power transmission device 201 that transmits the power of the engine 111 and the generator motor 112 to the rear wheels 102, and a vehicle that performs a shift control process of the power transmission device 201.
  • the power control device 130 is mainly provided, and the power transmitted to the output shaft 4 of the power transmission device 201 is transmitted to the left and right rear wheels 102 via the differential device.
  • the rear wheel 102 can be driven by selectively using the two powers of the engine 111 and the generator motor 112, but may be configured by either the engine 111 or the generator motor 112. Either engine 111 or generator motor 112 can be used as a power source.
  • FIG. 14 is a schematic diagram schematically showing the internal structure of the power transmission device 201.
  • the second clutch 20 and the third clutch 30 that interrupt transmission of power are disposed between the first transmission shaft 2 and the second transmission shaft 9.
  • the second clutch 20, the third clutch 30, and the fourth clutch 40 are not provided, and the first transmission shaft 2 is the carrier 50 c of the speed increaser 50.
  • the second clutch 20 and the third clutch 30 are not connected.
  • the ring gear 50r of the speed increaser 50 is fixed to a case 201a that forms an outline of the power transmission device 201 so as not to rotate.
  • the generator motor 112 is connected to the first transmission shaft 2 connected to the engine 111 via the speed increaser 50, in the case of an upshift, as in the above embodiments.
  • the rotational speed of the input shaft 3 can be reduced in a short time.
  • the rotational speed of the input shaft 3 can be increased in a short time by the driving force generated by the generator motor 112, and the time from the downshift request to the completion of the shift can be shortened.
  • the power transmission device 201 can also be mounted on the front-wheel drive vehicle 100.
  • the description of the shift control process in the first embodiment is omitted, in the process of S11, only the load applying device 15 of the first clutch 10 of the high speed gear pair 6 is deactivated, and the low speed gear pair 5 is operated.
  • the load applying device 15 of the first clutch 10 may be operated to forcibly release the engagement of the first sprag 13 to the first inner ring 11 and the first outer ring 12.
  • the process of S31 only the load applying device 15 of the first clutch 10 of the high speed gear pair 6 is deactivated, and the first clutch 10 of the low speed gear pair 5 is deactivated.
  • the load applying device 15 may be operated to forcibly release the engagement of the first sprag 13 from the first inner ring 11 and the first outer ring 12.
  • the process of S7 or S8 may be omitted. Moreover, the order of the process of S7 and the process of S8 may be switched. Similarly, in the second embodiment, the process of S7 or S9 may be omitted. Moreover, the order of the process of S7 and the process of S8 may be switched. This is because in either case, the rotational speed of the input shaft 3 can be reduced.
  • the present invention is not necessarily limited to this, and a motor may be used as a power source.
  • the motor is used as the power source, in the process of S7 in the first embodiment and the process of S27 in the second embodiment (rotational speed down command), the rotational speed of the motor is reduced by suppressing the current supplied to the motor. Reduce.
  • the process of S26 (minimum allowable rotation speed determination means) in the second embodiment can be omitted. This is because knocking does not occur.
  • each said embodiment demonstrated the case where the load provision apparatus 15 (actuator 15a) was comprised by the electric motor (alternating current motor or direct current motor), it is not necessarily restricted to this, Other power sources are used. It is naturally possible to adopt. Examples of other power sources include a DC motor, a hydraulic motor, a pneumatic cylinder, a hydraulic cylinder, an AC solenoid, and a DC solenoid.
  • the actuator 15a when configured by a solenoid, the actuator 15a is not limited to the case where a load is applied to the sprag 13 by a gear mechanism or the like.
  • the actuator 15a is configured to apply a load to the sprag 13 using electromagnetic force. Also good.
  • the present invention is not necessarily limited to this, and it is naturally possible to provide the first clutch 10 on the input shaft 3.
  • the present invention is not necessarily limited thereto.
  • the first clutch 10 may be provided between the driven gears 5b, 6b, and 7b, and the first outer ring 12 of the first clutch 10 and the driven gears 5b, 6b, and 7b may be connected.
  • the second clutch 20 is configured to include the sprag type one-way clutch with the release function of the second sprag 23
  • the present invention is not necessarily limited thereto. Any other clutch can be used as long as it has a function of transmitting power in a certain direction and blocking the power transmission. Examples of the other clutch include a clutch to which power is transmitted by a roller or the like.
  • the case where the third clutch 30 is configured to include the sprag type one-way clutch has been described, but is not necessarily limited thereto.
  • Another clutch can be used as long as it has a function of transmitting power in a certain direction. Examples of the other clutch include a clutch to which power is transmitted by a roller or the like.
  • Second transmission shaft 10 First clutch 11 First inner ring (inner ring) 11a outer peripheral surface 12 1st outer ring (outer ring) 12a Inner peripheral surface 13 First sprag (sprag) 13a, 13b Engagement surface 14 Cage 15 Load applying device 16 Ribbon spring (biasing member) 20 Second clutch 30 Third clutch 100, 200 Vehicle 111 Engine (power source) 112 Generator motor (power source) 130 Vehicle Control Device A, B Contact O Axis

Abstract

Disclosed is a vehicle control device that can prevent shift shock without causing a sense of deceleration when the vehicle is accelerating. Said vehicle control device is provided with: a high-gear rotational speed determination means that, when it has been determined that there has been a request to shift to a high gear, determines whether the rotational speed of an input shaft is less than or equal to a synchronous rotational speed; and a load removal means that, if the high-gear rotational speed determination means has determined that the input shaft speed is less than or equal to the synchronous rotational speed, removes a load applied to a sprag disposed on the high gear by turning off a load-application device. In this way, when the input shaft speed is lower than the synchronous rotational speed, the sprag on the high gear becomes tilted in the direction opposite a self-lock direction, so power is not transmitted. However when the input shaft speed exceeds the synchronous rotational speed, the sprag tilts in the self-lock direction, and power is transmitted. Thus, power transmission occurs simultaneously with the input shaft speed matching the synchronous rotational speed, which is the same as there being no change in rotational speed upon shifting; shift shock is therefore prevented.

Description

車両用制御装置Vehicle control device
 本発明は、車両用制御装置に関し、特に、車両の加速時に減速感を与えることなく変速ショックを防止できる車両用制御装置に関するものである。 The present invention relates to a vehicle control device, and more particularly to a vehicle control device capable of preventing a shift shock without giving a feeling of deceleration when the vehicle is accelerated.
 車両の変速装置として、例えば、特許文献1には、動力源から動力が伝達される入力軸と、入力軸に平行な出力軸と、入力軸および出力軸に配設され互いに常時噛み合って異なる変速比となるように設定された複数の歯車対と、歯車対のそれぞれ一方の歯車に設けられたツーウェイクラッチと、を備えるものが開示されている。 As a vehicle transmission device, for example, Patent Document 1 discloses an input shaft to which power is transmitted from a power source, an output shaft parallel to the input shaft, and an input shaft and an output shaft that are always meshed with each other and have different speed changes. There is disclosed an apparatus including a plurality of gear pairs set to have a ratio and a two-way clutch provided on one gear of each gear pair.
 特許文献1に開示される変速装置では、ツーウェイクラッチは、外周面が断面多角形状の内輪と、その内輪の外周面に対向する断面円形状の内周面を有する外輪と、その外輪の内周面と内輪の外周面との間に複数のローラを円周方向に保持する保持器とを備えている。このツーウェイクラッチは、保持器が中立状態にあると、外輪の内周面とローラとの間に隙間が存在するため、内輪と外輪とは自由に相対回転する(空転して動力は伝達されない)。これに対し、保持器を円周方向に変位させてローラを移動させた状態で、内輪と外輪との相対的な回転速度に差が生じると、ローラが外輪の内周面と内輪の外周面との間に楔のように噛み込まれ、内輪と外輪とがロックされる(内輪と外輪との間に動力が伝達される)。このように、この変速装置では、内輪と外輪との間にローラを噛み込ませることにより、内輪と外輪との相対回転を規制して、高速段や低速段への変速を行うことができる。 In the transmission disclosed in Patent Document 1, the two-way clutch includes an inner ring whose outer peripheral surface is a polygonal cross section, an outer ring having an inner peripheral surface having a circular cross section facing the outer peripheral surface of the inner ring, and an inner periphery of the outer ring. A cage for holding a plurality of rollers in the circumferential direction is provided between the surface and the outer peripheral surface of the inner ring. In this two-way clutch, when the cage is in a neutral state, there is a gap between the inner peripheral surface of the outer ring and the roller, so the inner ring and the outer ring freely rotate relative to each other (idle and no power is transmitted). . On the other hand, if a difference occurs in the relative rotational speed between the inner ring and the outer ring in a state where the roller is moved by displacing the cage in the circumferential direction, the roller will move to the outer peripheral surface of the inner ring and the inner ring of the inner ring. And the inner ring and the outer ring are locked (power is transmitted between the inner ring and the outer ring). As described above, in this transmission, the roller can be engaged between the inner ring and the outer ring, thereby restricting the relative rotation between the inner ring and the outer ring and shifting to the high speed stage or the low speed stage.
特開2007-298145号公報JP 2007-298145 A
 しかしながら、特許文献1に開示される変速装置では、低速段から高速段に変速するアップシフト時には、内輪と外輪との間にローラが噛み込まれて内輪と外輪とがロックされると、動力源に連結されている入力側の部材の回転数が急激に変化(低下)する。この変化が急激なため、回転数変化に伴う慣性トルクが大きくなり、変速ショックが発生するという問題点があった。また、高速段から低速段に変速するダウンシフト時にも、回転数が急激に変化(増加)して、同様に変速ショックが発生するという問題点があった。 However, in the transmission disclosed in Patent Document 1, when an upshift in which the speed is changed from the low speed stage to the high speed stage, if a roller is caught between the inner ring and the outer ring and the inner ring and the outer ring are locked, the power source The number of rotations of the input side member connected to the abruptly changes (decreases). Since this change is abrupt, there is a problem that the inertia torque accompanying the change in the rotational speed increases and a shift shock occurs. In addition, there is a problem in that a shift shock occurs in the same manner when the downshift in which the speed is changed from the high speed to the low speed is changed (increased) rapidly.
 また、入力側の部材の回転数を変速後の回転数に合わせることにより変速ショックを緩和できるが、入力側の部材の回転数を増加または低下させると、反対方向の内輪と外輪との間にローラが噛み込まれて内輪と外輪とがロックされる。これにより、入力側の部材の回転数の変化が出力軸の回転数の変化となって表れ、車両の走行速度が変化する。その結果、車両の加速時において、入力側の部材の回転数を低下させる際に減速感が生じるという問題点があった。また、車両の減速時には逆に加速感が生じるため、車両の運転者や同乗者に違和感が生じるという問題点があった。 In addition, the speed change shock can be mitigated by adjusting the rotation speed of the input side member to the rotation speed after the shift. However, if the rotation speed of the input side member is increased or decreased, there is a gap between the inner ring and the outer ring in the opposite direction. The roller is engaged and the inner ring and the outer ring are locked. As a result, a change in the rotation speed of the input side member appears as a change in the rotation speed of the output shaft, and the traveling speed of the vehicle changes. As a result, when the vehicle is accelerated, there is a problem that a feeling of deceleration occurs when the rotational speed of the input member is reduced. In addition, when the vehicle is decelerated, a feeling of acceleration occurs, which causes a problem that the vehicle driver and passengers feel uncomfortable.
 本発明は、上述した問題点を解決するためになされたものであり、車両の加速時に減速感を与えることなく変速ショックを防止できる車両用制御装置を提供することを目的としている。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a vehicle control device that can prevent a shift shock without giving a feeling of deceleration when the vehicle is accelerated.
課題を解決するための手段および発明の効果Means for Solving the Problems and Effects of the Invention
 この目的を達成するために、請求項1記載の車両用制御装置によれば、車両に高速段への変速要求があると判断される場合に、入力軸の回転数が変速後の同期回転数以下であるかを判断する高速段回転数判断手段と、その高速段回転数判断手段により入力軸の回転数が変速後の同期回転数以下であると判断される場合に、荷重付与装置を非作動として高速段の歯車対に配設された第1クラッチのスプラグに付与した荷重を解除する荷重解除手段とを備えているので、アップシフト時には、入力軸の回転数が変速後の同期回転数以下に低下したと判断される場合に、高速段の第1クラッチのスプラグに付与した荷重が解除される。その結果、荷重が解除された瞬間に、高速段の歯車対に配設された第1クラッチの付勢部材の付勢力により、スプラグが傾動する。また、第1クラッチの出力軸側における内輪または外輪の回転速度(回転数)は、入力軸の回転速度が同一であれば、低速段における歯車対と高速段における歯車対との変速比差により、高速段における回転速度が低速段における回転速度より常に速くなる。これにより、低速段ではスプラグの外輪および内輪への係合が自然に解除され、動力の伝達が遮断される。一方、高速段におけるスプラグは外輪および内輪に係合可能な状態となる。 In order to achieve this object, according to the vehicle control device of the first aspect, when it is determined that the vehicle has a shift request to the high speed stage, the rotational speed of the input shaft is the synchronous rotational speed after the shift. The high-speed stage rotational speed determining means for determining whether the speed is below or not, and the high-speed stage rotational speed determining means determines that the input shaft rotational speed is equal to or lower than the synchronous rotational speed after the shift. Load release means for releasing the load applied to the sprags of the first clutch disposed in the high-speed gear pair as an operation, so that during the upshift, the rotational speed of the input shaft is the synchronous rotational speed after the shift. When it is determined that the load has dropped below, the load applied to the sprags of the high-speed first clutch is released. As a result, at the moment when the load is released, the sprag is tilted by the urging force of the urging member of the first clutch disposed on the high-speed gear pair. Further, the rotational speed (number of rotations) of the inner ring or the outer ring on the output shaft side of the first clutch depends on the gear ratio difference between the gear pair at the low speed stage and the gear pair at the high speed stage if the rotational speed of the input shaft is the same. The rotational speed at the high speed stage is always higher than the rotational speed at the low speed stage. Thereby, at the low speed stage, the engagement of the sprags with the outer ring and the inner ring is naturally released, and the transmission of power is cut off. On the other hand, the sprags in the high speed stage can be engaged with the outer ring and the inner ring.
 ここで、高速段の同期回転数は低速段の同期回転数より低いため、入力軸の回転数を低下させて、アップシフトの際の変速ショックを防止する。入力軸の回転数を低下させる間、低速段の第1クラッチのスプラグは反セルフロック方向に傾動した状態となるため、入力軸の回転数を低下させるブレーキ力を出力軸に伝達させずに入力軸の回転数を低下させることができる。これにより、車両の速度を低下させることなく、減速感を与えずに入力軸の回転数を低下させることができる。よって、車両の加速時に減速感が生じることを防止できるという効果がある。 Here, since the synchronous rotational speed of the high speed stage is lower than the synchronous rotational speed of the low speed stage, the rotational speed of the input shaft is reduced to prevent a shift shock during the upshift. While the rotational speed of the input shaft is reduced, the sprag of the first clutch in the low speed stage is tilted in the anti-self-locking direction, so that the brake force that reduces the rotational speed of the input shaft can be input without being transmitted to the output shaft. The number of rotations of the shaft can be reduced. Thereby, the rotational speed of the input shaft can be reduced without reducing the speed of the vehicle and without giving a feeling of deceleration. Therefore, there is an effect that it is possible to prevent a feeling of deceleration during acceleration of the vehicle.
 また、入力軸の回転数が変速後の同期回転数より低いときは、高速段におけるスプラグは反セルフロック方向に傾動した状態となるため、動力源から高速段の歯車対に動力は伝達されない。しかし、入力軸の回転数が変速後の同期回転数を超えると、高速段におけるスプラグはセルフロック方向に傾動し、入力軸から高速段の歯車対に動力が伝達され、動力の伝達が切り替えられる。このように、入力軸の回転数と同期回転数とが一致することと動力伝達とが同時に行われるため、変速時に回転数変化がないことと等しくなる。よって、アップシフト時の変速ショックを防止できるという効果がある。 Also, when the rotational speed of the input shaft is lower than the synchronous rotational speed after shifting, the sprags in the high speed stage are tilted in the anti-self-locking direction, so that no power is transmitted from the power source to the high speed gear pair. However, when the rotational speed of the input shaft exceeds the synchronized rotational speed after shifting, the sprags at the high speed stage tilt in the self-locking direction, and power is transmitted from the input shaft to the high speed gear pair, and the transmission of power is switched. . As described above, since the rotational speed of the input shaft and the synchronous rotational speed coincide with each other and the power transmission is performed at the same time, this is equivalent to no change in the rotational speed at the time of shifting. Therefore, there is an effect that shift shock at the time of upshift can be prevented.
 また、変速ショックを防止する制御が入力軸の回転数だけに基づいて行われると共に、荷重付与装置の作動と非作動とを切り替えるだけで変速できるため、制御を簡素化できるという効果がある。 Also, the control for preventing the shift shock is performed based only on the rotational speed of the input shaft, and the speed can be changed by simply switching between the operation and non-operation of the load applying device, so that the control can be simplified.
 請求項2記載の車両用制御装置によれば、荷重解除手段は、入力軸の回転数が変速後の同期回転数より所定回転数低い目標回転数以上かつ同期回転数以下であると判断される場合に、荷重付与装置を非作動として、高速段の歯車対に配設された第1クラッチのスプラグに付与した荷重を解除するので、アップシフト時における入力軸の回転数が目標回転数未満になることを防ぐことができる。よって、請求項1の効果に加え、動力が伝達される同期回転数になるまでの時間を短くすることができ、変速要求から変速完了までの時間を短縮できるという効果がある。 According to the vehicle control device of the second aspect, the load releasing means determines that the rotational speed of the input shaft is equal to or higher than the target rotational speed which is lower than the synchronous rotational speed after the shift by a predetermined rotational speed and is equal to or lower than the synchronous rotational speed. In this case, the load applying device is deactivated, and the load applied to the sprags of the first clutch disposed in the high-speed gear pair is released, so that the rotational speed of the input shaft during upshifting is less than the target rotational speed. Can be prevented. Therefore, in addition to the effect of the first aspect, it is possible to shorten the time until the synchronous rotational speed at which power is transmitted, and to shorten the time from the shift request to the completion of the shift.
 請求項3記載の車両用制御装置によれば、入力軸の回転数が変速後の動力源の最小許容回転数未満にあるかを判断する最小許容回転数判断手段と、その最小許容回転数判断手段により回転数が変速後の動力源の最小許容回転数未満であると判断される場合に、荷重付与装置の現在の作動または非作動の状態を維持する第1維持手段とを備えている。これにより、請求項1又は2の効果に加え、入力軸の回転数が低すぎる場合にはアップシフトを行わないようにして、動力源(エンジン)にノッキングが生じることを防止できるという効果がある。 According to the vehicle control device of the third aspect, the minimum allowable rotational speed determination means for determining whether the rotational speed of the input shaft is less than the minimum allowable rotational speed of the power source after the shift, and the minimum allowable rotational speed determination. First maintaining means for maintaining the current operating or non-operating state of the load applying device when the means determines that the rotational speed is less than the minimum allowable rotational speed of the power source after shifting. As a result, in addition to the effect of the first or second aspect, when the rotational speed of the input shaft is too low, the upshift is not performed, and the occurrence of knocking in the power source (engine) can be prevented. .
 請求項4記載の車両用制御装置によれば、車両に低速段への変速要求があると判断される場合に、入力軸の回転数が変速後の同期回転数以下であるかを判断する低速段回転数判断手段と、その低速段回転数判断手段により入力軸の回転数が変速後の同期回転数以下であると判断される場合に、荷重付与装置を作動させて現在の変速段の歯車対に配設された第1クラッチのスプラグに荷重を付与する荷重付与手段とを備えているので、ダウンシフト時には、動力源の回転数が変速後の同期回転数以下に低下したと判断される場合に、第1クラッチのスプラグに荷重が付与される。これにより、現在の変速段の歯車対に配設された第1クラッチのスプラグが反セルフロック方向に傾動し、外輪および内輪へのスプラグの係合が強制的に解除される。これに対し、低速段においては外輪および内輪へスプラグが係合可能な状態となる。 According to the vehicle control device of the fourth aspect, when it is determined that the vehicle has a request for shifting to the low speed stage, it is determined whether the rotational speed of the input shaft is equal to or lower than the synchronized rotational speed after the shift. When the rotational speed of the input shaft is determined to be equal to or lower than the synchronous rotational speed after the shift by the speed determining means and the low speed speed determining means, the load applying device is operated to change the gear of the current speed stage. Since the load applying means for applying a load to the sprags of the first clutch disposed in the pair is provided, at the time of downshift, it is determined that the rotational speed of the power source has decreased below the synchronous rotational speed after the shift. In some cases, a load is applied to the sprags of the first clutch. As a result, the sprags of the first clutch disposed in the gear pair of the current gear stage tilt in the anti-self-lock direction, and the engagement of the sprags with the outer ring and the inner ring is forcibly released. On the other hand, in the low speed stage, the sprag can be engaged with the outer ring and the inner ring.
 ここで、入力軸の回転数が変速後の同期回転数より低いときは、低速段におけるスプラグは反セルフロック方向に傾動した状態となるため、動力源から低速段の歯車対に動力は伝達されない。しかし、入力軸の回転数が変速後の同期回転数を超えると、低速段におけるスプラグはセルフロック方向に傾動し、入力軸から低速段の歯車対に動力が伝達され、変速された状態となる。このように、入力軸の回転数と同期回転数とが一致することと動力伝達とが同時に行われるため、変速時に回転数変化がないことと等しくなる。よって、請求項1から3のいずれかの効果に加え、ダウンシフト時の変速ショックを防止できるという効果がある。 Here, when the rotational speed of the input shaft is lower than the synchronous rotational speed after shifting, the sprags in the low speed stage are tilted in the anti-self-locking direction, so power is not transmitted from the power source to the gear pair in the low speed stage. . However, when the rotational speed of the input shaft exceeds the synchronized rotational speed after shifting, the sprags in the low speed stage tilt in the self-locking direction, and power is transmitted from the input shaft to the gear pair in the low speed stage, resulting in a shifted state. . As described above, since the rotational speed of the input shaft and the synchronous rotational speed coincide with each other and the power transmission is performed at the same time, this is equivalent to no change in the rotational speed at the time of shifting. Therefore, in addition to the effect of any one of claims 1 to 3, there is an effect that a shift shock at the time of downshift can be prevented.
 また、車両に低速段への変速要求がある場合は、車両が減速状態にあるため、入力軸の回転数は低下している。このときも第1クラッチのスプラグは反セルフロック方向に傾動した状態となるため、入力軸の回転数の影響が出力軸に表れることを防止できる。よって、ダウンシフト時に車両の走行速度が変化することを防ぎ、車両の運転者や同乗者に違和感が生じることを防止できるという効果がある。 Also, when the vehicle has a request for shifting to a low speed, the rotational speed of the input shaft decreases because the vehicle is in a decelerating state. Also at this time, since the sprag of the first clutch is tilted in the anti-self-locking direction, the influence of the rotational speed of the input shaft can be prevented from appearing on the output shaft. Therefore, there is an effect that it is possible to prevent the traveling speed of the vehicle from changing at the time of downshift, and to prevent the driver or passenger of the vehicle from feeling uncomfortable.
 請求項5記載の車両用制御装置によれば、入力軸の回転数が変速後の動力源の最大許容回転数より大きいかを判断する最大許容回転数判断手段と、その最大許容回転数判断手段により回転数が変速後の動力源の最大許容回転数より大きいと判断される場合に、荷重付与装置の現在の作動または非作動の状態を維持する第2維持手段とを備えている。これにより、請求項4の効果に加え、入力軸の回転数が高すぎる場合にはダウンシフトを行わないようにして、動力源(エンジンやモータ)にオーバーレブが生じる(過回転数となる)ことを防止できるという効果がある。 According to the vehicle control device of the fifth aspect, the maximum allowable rotation speed determination means for determining whether the rotation speed of the input shaft is larger than the maximum allowable rotation speed of the power source after the shift, and the maximum allowable rotation speed determination means. When the rotational speed is determined to be greater than the maximum allowable rotational speed of the power source after the shift, the second maintaining means for maintaining the current operation or non-operation state of the load applying device is provided. As a result, in addition to the effect of the fourth aspect, when the rotational speed of the input shaft is too high, a downshift is not performed and an overrev is generated in the power source (engine or motor) (becomes an excessive rotational speed). There is an effect that can be prevented.
 請求項6記載の車両用制御装置によれば、車両は、入力軸にエンジンからの動力を伝達する第1伝達軸と、その第1伝達軸とジェネレータモータとの間の動力の伝達を行う第2伝達軸とを備え、アップシフト要求判断手段により車両に高速段への変速要求があると判断される場合に、第1伝達軸に入力される入力軸の動力を第2伝達軸に伝達しジェネレータモータに入力するモータ入力手段を備えているので、高速段への変速要求があると判断される場合に、エンジンからの動力をジェネレータモータに伝達することにより、エンジンのエネルギーを消費させて、入力軸の回転数を短時間で低下させることができる。よって、請求項1から5のいずれかの効果に加え、変速要求からアップシフトを完了するまでの時間を短縮できると共に、ジェネレータモータによる発電量を増やすことができ、エネルギーを有効活用できるという効果がある。 According to the vehicle control device of the sixth aspect, the vehicle transmits the power from the engine to the input shaft and the power transmitted between the first transmission shaft and the generator motor. Two transmission shafts, and when the upshift request determination means determines that the vehicle has a request for shifting to a high speed, the power of the input shaft input to the first transmission shaft is transmitted to the second transmission shaft. Since it is equipped with motor input means to input to the generator motor, when it is determined that there is a shift request to the high speed stage, by transmitting the power from the engine to the generator motor, the engine energy is consumed, The rotational speed of the input shaft can be reduced in a short time. Therefore, in addition to the effect of any one of claims 1 to 5, it is possible to reduce the time from the shift request to the completion of the upshift, increase the amount of power generated by the generator motor, and effectively use energy. is there.
 請求項7記載の車両用制御装置によれば、車両は、入力軸にエンジンからの動力を伝達する第1伝達軸と、その第1伝達軸とジェネレータモータとの間の動力の伝達を行う第2伝達軸とを備え、ダウンシフト要求判断手段により車両に低速段への変速要求があると判断される場合に、第2伝達軸に入力されるジェネレータモータの動力を第1伝達軸に伝達し入力軸に入力するアシスト手段を備えているので、ジェネレータモータによる駆動力で、入力軸の回転数を短時間で上昇させることができる。よって、請求項4から6のいずれかの効果に加え、変速要求からダウンシフトを完了するまでの時間を短縮できるという効果がある。 According to the vehicle control device of the seventh aspect, the vehicle transmits a first transmission shaft that transmits power from the engine to the input shaft, and transmission of power between the first transmission shaft and the generator motor. Two transmission shafts, and when the downshift request determining means determines that the vehicle has a request for shifting to a low speed, the power of the generator motor input to the second transmission shaft is transmitted to the first transmission shaft. Since the assist means for inputting to the input shaft is provided, the rotational speed of the input shaft can be increased in a short time by the driving force of the generator motor. Therefore, in addition to the effect of any one of claims 4 to 6, there is an effect that the time from the shift request to the completion of the downshift can be shortened.
 請求項8記載の車両用制御装置によれば、車両は、第1伝達軸から入力される動力を第2伝達軸に遮断可能に伝達する一方、第2伝達軸から第1伝達軸への動力の伝達を遮断する第2クラッチと、第2伝達軸から入力される動力を第1伝達軸に伝達する一方、第1伝達軸から第2伝達軸への動力の伝達を遮断する第3クラッチとを備えている。これにより、アップシフト後、エンジンの回転数を上昇させる際に、第3クラッチは第1伝達軸から第2伝達軸への動力の伝達を遮断し、第2クラッチにより第1伝達軸から第2伝達軸への動力の伝達を遮断することにより、ジェネレータモータの内部抵抗やイナーシャが駆動抵抗となってエネルギー損失が生じることを防止でき、請求項6又は7の効果に加え、エネルギーを有効活用できるという効果がある。 According to the vehicle control device of the eighth aspect, the vehicle transmits the power input from the first transmission shaft to the second transmission shaft so as to be cut off, while the power from the second transmission shaft to the first transmission shaft. A second clutch that cuts off transmission of power, and a third clutch that cuts off transmission of power from the first transmission shaft to the second transmission shaft while transmitting power input from the second transmission shaft to the first transmission shaft. It has. As a result, when the engine speed is increased after the upshift, the third clutch cuts off the transmission of power from the first transmission shaft to the second transmission shaft, and the second clutch removes the second transmission shaft from the first transmission shaft. By interrupting the transmission of power to the transmission shaft, it is possible to prevent the internal resistance and inertia of the generator motor from becoming a driving resistance and causing energy loss. In addition to the effects of claim 6 or 7, energy can be used effectively. There is an effect.
 また、ダウンシフト時には、ジェネレータモータの動力を第2伝達軸から第3クラッチを介して入力軸に伝達することにより、入力軸の回転数を短時間で上昇させることができる。変速後、エンジンの回転数を上昇させる際に、第3クラッチは第1伝達軸から第2伝達軸への動力の伝達を遮断するので、ジェネレータモータの内部抵抗やイナーシャが駆動抵抗となってエネルギー損失が生じることを防止でき、エネルギーを有効活用できるという効果がある。 Also, at the time of downshift, the rotational speed of the input shaft can be increased in a short time by transmitting the power of the generator motor from the second transmission shaft to the input shaft via the third clutch. When the engine speed is increased after shifting, the third clutch cuts off the transmission of power from the first transmission shaft to the second transmission shaft, so that the internal resistance and inertia of the generator motor act as driving resistance and energy It is possible to prevent loss and to effectively use energy.
本発明の実施の形態における車両用制御装置が搭載される車両を模式的に示した模式図である。It is the schematic diagram which showed typically the vehicle by which the vehicle control apparatus in embodiment of this invention is mounted. 動力伝達装置の内部構造を模式的に示した模式図である。It is the schematic diagram which showed typically the internal structure of a power transmission device. 第1クラッチの断面図である。It is sectional drawing of a 1st clutch. 図3のIV-IV線における第1クラッチの断面図である。FIG. 4 is a sectional view of the first clutch taken along line IV-IV in FIG. 図4のVで示す部分を拡大して示した第1クラッチの部分拡大断面図である。It is the elements on larger scale of the 1st clutch which expanded and showed the part shown by V of FIG. 第2クラッチの内部構造を模式的に示した模式図である。It is the schematic diagram which showed the internal structure of the 2nd clutch typically. ジェネレータモータによる走行アシスト時における動力伝達装置の内部構造を模式的に示した模式図である。It is the schematic diagram which showed typically the internal structure of the power transmission device at the time of the travel assistance by a generator motor. 入力軸の回転数を低下させる場合の動力伝達装置の内部構造を模式的に示した模式図である。It is the schematic diagram which showed typically the internal structure of the power transmission device in the case of reducing the rotation speed of an input shaft. 第2速走行における動力伝達装置の内部構造を模式的に示した模式図である。It is the schematic diagram which showed typically the internal structure of the power transmission device in 2nd speed driving | running | working. 車両用制御装置の電気的構成を示したブロック図である。It is the block diagram which showed the electric constitution of the control apparatus for vehicles. 第1実施の形態における変速制御処理を示すフローチャートである。It is a flowchart which shows the shift control process in 1st Embodiment. 第2実施の形態における変速制御処理を示すフローチャートである。It is a flowchart which shows the shift control process in 2nd Embodiment. 車両用制御装置が搭載される後輪駆動の車両を模式的に示した模式図である。It is the schematic diagram which showed typically the vehicle of the rear-wheel drive by which the control apparatus for vehicles is mounted. 他の動力伝達装置の内部構造を模式的に示した模式図である。It is the schematic diagram which showed typically the internal structure of the other power transmission device.
 以下、本発明の好ましい実施の形態について、添付図面を参照して説明する。図1は、本発明の実施の形態における車両用制御装置1が搭載される車両100を模式的に示した模式図である。なお、図1の矢印F-B,L-Rは、車両100の前後方向、左右方向をそれぞれ示している。 Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic diagram schematically showing a vehicle 100 on which a vehicle control device 1 according to an embodiment of the present invention is mounted. Note that arrows FB and LR in FIG. 1 indicate the front-rear direction and the left-right direction of the vehicle 100, respectively.
 まず、車両100の概略構成について説明する。図1に示すように、車両100は前輪101(左の前輪101FL及び右の前輪101FR)を駆動するフロントユニット110を備えている。フロントユニット110は、動力源としてのエンジン111及びジェネレータモータ112と、それらエンジン111及びジェネレータモータ112の動力を前輪101に伝達する動力伝達装置1と、動力伝達装置1の変速制御処理を行う車両用制御装置130とを主に備え、エンジン111及びジェネレータモータ112の2つの動力を使い分けて前輪101を駆動可能に構成されている。エンジン111、ジェネレータモータ112のいずれも動力源とすることが可能である。 First, a schematic configuration of the vehicle 100 will be described. As shown in FIG. 1, the vehicle 100 includes a front unit 110 that drives a front wheel 101 (a left front wheel 101FL and a right front wheel 101FR). The front unit 110 includes an engine 111 and a generator motor 112 as power sources, a power transmission device 1 that transmits the power of the engine 111 and the generator motor 112 to the front wheels 101, and a vehicle for performing a shift control process of the power transmission device 1. The control device 130 is mainly provided, and the front wheel 101 can be driven by using two types of power of the engine 111 and the generator motor 112 separately. Either engine 111 or generator motor 112 can be used as a power source.
 次いで、図2を参照して、車両用制御装置130により制御される動力伝達装置1の詳細構成について説明する。図2は、動力伝達装置1の内部構造を模式的に示した模式図である。なお、図2では理解を容易とするために、動力を伝達する機能を担う構成のみを図示している。 Next, a detailed configuration of the power transmission device 1 controlled by the vehicle control device 130 will be described with reference to FIG. FIG. 2 is a schematic diagram schematically showing the internal structure of the power transmission device 1. In FIG. 2, only the configuration having a function of transmitting power is illustrated for easy understanding.
 車両用制御装置130により制御される動力伝達装置1は、図2に示すように、エンジン111からの動力を伝達する第1伝達軸2と、第1伝達軸2から伝達された動力をジェネレータモータ112に伝達する第2伝達軸9と、第1伝達軸2から第2伝達軸9までの動力伝達経路上に配設され第1伝達軸2と第2伝達軸9との間の動力の伝達方向を切り替える切替装置8とを主に備えて構成されている。本実施の形態においては、切替装置8は、第1伝達軸2に配設されている。 As shown in FIG. 2, the power transmission device 1 controlled by the vehicle control device 130 includes a first transmission shaft 2 that transmits power from the engine 111 and power transmitted from the first transmission shaft 2 to a generator motor. Power transmission between the first transmission shaft 2 and the second transmission shaft 9 disposed on the power transmission path from the first transmission shaft 2 to the second transmission shaft 9. A switching device 8 for switching the direction is mainly provided. In the present embodiment, the switching device 8 is disposed on the first transmission shaft 2.
 さらに、動力伝達装置1は、第1伝達軸2から動力が伝達される伝達歯車対2aと、伝達歯車対2aから動力が伝達される入力軸3と、入力軸3に平行に配設された出力軸4と、出力軸4及び入力軸3に配設され互いに噛み合って異なる変速比となるように設定された複数の歯車対5,6,7とを主に備えて構成されている。なお、出力軸4に伝達された動力が動力伝達装置1の外部に出力され、前輪101に伝達されるように構成されている。 Further, the power transmission device 1 is disposed in parallel to the transmission gear pair 2a to which power is transmitted from the first transmission shaft 2, the input shaft 3 to which power is transmitted from the transmission gear pair 2a, and the input shaft 3. The output shaft 4 mainly includes a plurality of gear pairs 5, 6, and 7 that are disposed on the output shaft 4 and the input shaft 3 and that are engaged with each other and set to have different gear ratios. The power transmitted to the output shaft 4 is output to the outside of the power transmission device 1 and transmitted to the front wheels 101.
 歯車対5,6,7は、入力軸3に配設され第1伝達軸2から伝達される動力により駆動される駆動歯車5a,6a,7aと、出力軸4に配設され駆動歯車5a,6a,7aにより従動駆動される被動歯車5b,6b,7bとを備えている。ここで、歯車対5,6,7は、変速比(被動歯車の歯数÷駆動歯車の歯数)の大きなものから、伝達歯車対2aに近い順に第1速、第2速、第3速とされ、本実施の形態においては、歯車対5が第1速、歯車対6が第2速、歯車対7が第3速である。なお、後進段については、図示を省略している。後進段の場合は、歯車対5,6,7の間にピニオン歯車を挿入すれば良い。 The gear pairs 5, 6, and 7 are disposed on the input shaft 3 and are driven by power transmitted from the first transmission shaft 2, and the drive gears 5 a, 6 a, and 7 a are disposed on the output shaft 4. And driven gears 5b, 6b, 7b driven by 6a, 7a. Here, the gear pairs 5, 6 and 7 are first gear, second gear, and third gear in descending order of the transmission gear pair 2a in descending order of gear ratio (number of teeth of driven gear / number of teeth of drive gear). In this embodiment, the gear pair 5 is the first speed, the gear pair 6 is the second speed, and the gear pair 7 is the third speed. Note that illustration of the reverse gear is omitted. In the case of the reverse gear, a pinion gear may be inserted between the gear pairs 5, 6, 7.
 歯車対5,6,7を構成する駆動歯車5a,6a,7aは、それぞれ入力軸3と一体に形成されている。一方、駆動歯車5a,6a,7aにそれぞれ対向して噛み合う被動歯車5b,6b,7bは、後述する第1クラッチ10を介して出力軸4に固定されている。第1クラッチ10は、入力軸3から出力軸4へ動力を伝達する一方、出力軸4から入力軸3への動力の伝達を遮断するものであり、入力軸3から出力軸4への動力の伝達を遮断可能に構成されている。 The drive gears 5a, 6a, 7a constituting the gear pairs 5, 6, 7 are each formed integrally with the input shaft 3. On the other hand, driven gears 5b, 6b, and 7b that mesh with the driving gears 5a, 6a, and 7a, respectively, are fixed to the output shaft 4 via a first clutch 10 that will be described later. The first clutch 10 transmits power from the input shaft 3 to the output shaft 4, while blocking transmission of power from the output shaft 4 to the input shaft 3, and transmits power from the input shaft 3 to the output shaft 4. The transmission can be cut off.
 ここで、図3及び図4を参照して、第1クラッチ10の詳細構成について説明する。図3は、第1クラッチ10の断面図であり、図4は、図3のIV-IV線における第1クラッチ10の断面図である。第1クラッチ10は、図3及び図4に示すように、第1内輪11と、その第1内輪11の外周を囲む第1外輪12と、それら第1内輪11と第1外輪12との間に配設される複数の第1スプラグ13と、それら第1スプラグ13を保持する保持器14と、荷重付与装置15とを主に備えて構成されている。 Here, the detailed configuration of the first clutch 10 will be described with reference to FIGS. 3 is a cross-sectional view of the first clutch 10, and FIG. 4 is a cross-sectional view of the first clutch 10 taken along the line IV-IV in FIG. As shown in FIGS. 3 and 4, the first clutch 10 includes a first inner ring 11, a first outer ring 12 that surrounds the outer periphery of the first inner ring 11, and between the first inner ring 11 and the first outer ring 12. A plurality of first sprags 13, a retainer 14 for holding the first sprags 13, and a load applying device 15 are mainly provided.
 第1内輪11は、動力を伝達する機能を担う部材であり、図3及び図4に示すように、断面円形状の外周面11aを備え、軸心O回りに回転可能に構成されている。また、この第1内輪11は、出力軸4(図2参照)と一体に形成されている。 The first inner ring 11 is a member having a function of transmitting power, and includes an outer peripheral surface 11a having a circular cross section as shown in FIGS. 3 and 4, and is configured to be rotatable around an axis O. The first inner ring 11 is formed integrally with the output shaft 4 (see FIG. 2).
 第1外輪12は、第1内輪11と共に動力を伝達する機能を担う部材であり、図3及び図4に示すように、第1内輪11の外周面11aに対向する断面円形状の内周面12aを備え、第1内輪11と同様に軸心O回りに回転可能に構成されている。また、この第1外輪12は、各被動歯車5b,6b,7b(図2参照)と一体に形成されている。 The first outer ring 12 is a member having a function of transmitting power together with the first inner ring 11, and as shown in FIGS. 3 and 4, the inner peripheral surface having a circular cross section facing the outer peripheral surface 11a of the first inner ring 11. 12a, and is configured to be rotatable around the axis O in the same manner as the first inner ring 11. The first outer ring 12 is formed integrally with each driven gear 5b, 6b, 7b (see FIG. 2).
 第1スプラグ13は、第1内輪11と第1外輪12とを係合する機能を担う部材であり、外周面11a及び内周面12aにそれぞれ接する係合面13a,13b(図5参照)を備え、図4に示すように、外周面11a及び内周面12aの対向間において円周方向に等間隔で複数配設されている。 The 1st sprag 13 is a member which bears the function which engages the 1st inner ring | wheel 11 and the 1st outer ring | wheel 12, and has engagement surface 13a, 13b (refer FIG. 5) which each contact | connects the outer peripheral surface 11a and the inner peripheral surface 12a. In addition, as shown in FIG. 4, a plurality of elements are arranged at equal intervals in the circumferential direction between the outer peripheral surface 11 a and the inner peripheral surface 12 a facing each other.
 また、この第1スプラグ13は、リボンスプリング16(図5参照)により内周面11a及び外周面12aの円周方向に付勢されている。ここで、図5を参照して、リボンスプリング16について説明する。図5は、図4のVで示す部分を拡大して示した第1クラッチ10の部分拡大断面図である。 Further, the first sprag 13 is urged in the circumferential direction of the inner peripheral surface 11a and the outer peripheral surface 12a by a ribbon spring 16 (see FIG. 5). Here, the ribbon spring 16 will be described with reference to FIG. FIG. 5 is a partially enlarged cross-sectional view of the first clutch 10 showing the portion indicated by V in FIG. 4 in an enlarged manner.
 リボンスプリング16は、第1スプラグ13に付勢力を付与して外周面11a及び内周面12aに係合面13a,13bが接するように第1スプラグ13に図5の矢印S方向(以下「セルフロック方向」と称す)の回転モーメントを発生させる部材であり、図5に示すように、金属材料に波状の曲げ加工を施して形成され、その弾性を利用して第1スプラグ13に付勢力を付与可能に構成されている。但し、このリボンスプリング16は、コイルばねにより構成しても良い。 The ribbon spring 16 applies an urging force to the first sprag 13 so that the engaging surfaces 13a and 13b are in contact with the outer peripheral surface 11a and the inner peripheral surface 12a. 5 is a member that generates a rotational moment in the “locking direction”, and is formed by applying a wave-like bending process to a metal material as shown in FIG. 5, and applies an urging force to the first sprag 13 using its elasticity. It is configured to be grantable. However, the ribbon spring 16 may be constituted by a coil spring.
 このリボンスプリング16により第1スプラグ13に付勢力が付与されることで、外周面11a及び内周面12aに係合面13a,13bが接するように第1スプラグ13がセルフロック方向へ傾動する。その結果、図5に示すように、内周面12aと係合面13bとの接点A及び外周面11aと係合面13aとの接点Bに摩擦力が発生すると共に外周面11a及び内周面12aの円周方向における各接点A,Bの位置ずれにより、第1内輪11及び第1外輪12が所定の方向へ回転する場合には、第1内輪11及び第1外輪12に第1スプラグ13が係合する。 By applying a biasing force to the first sprag 13 by the ribbon spring 16, the first sprag 13 tilts in the self-locking direction so that the engaging surfaces 13a and 13b are in contact with the outer peripheral surface 11a and the inner peripheral surface 12a. As a result, as shown in FIG. 5, frictional force is generated at the contact A between the inner peripheral surface 12a and the engagement surface 13b and the contact B between the outer peripheral surface 11a and the engagement surface 13a, and the outer peripheral surface 11a and the inner peripheral surface. When the first inner ring 11 and the first outer ring 12 rotate in a predetermined direction due to the displacement of the respective contacts A and B in the circumferential direction of 12a, the first sprag 13 is added to the first inner ring 11 and the first outer ring 12. Engage.
 即ち、第1外輪12が第1スプラグ13に対して、第1内輪11との相対回転で第1内輪11側から見て、図5の矢印Ro方向(以下「ロック方向」と称す)へ回転する場合には、第1内輪11及び第1外輪12に第1スプラグ13が係合する。これにより、第1内輪11は第1外輪12と共に回転する。一方、第1外輪12が第1スプラグ13に対して、第1内輪11との相対回転で第1内輪11側から見て、図5の反矢印Ro方向(以下「フリー方向」と称す)へ回転する場合には、接点Aに作用する摩擦力により第1スプラグ13がリボンスプリング16の付勢力に抗して反セルフロック方向へ傾動し、第1内輪11及び第1外輪12への第1スプラグ13の係合が解除される。その結果、第1外輪12は第1内輪11の回りを空転する。 That is, the first outer ring 12 rotates relative to the first sprag 13 relative to the first inner ring 11 in the direction of the arrow Ro in FIG. 5 (hereinafter referred to as “lock direction”) as viewed from the first inner ring 11 side. When doing so, the first sprag 13 is engaged with the first inner ring 11 and the first outer ring 12. As a result, the first inner ring 11 rotates together with the first outer ring 12. On the other hand, the first outer ring 12 is rotated relative to the first inner ring 11 with respect to the first sprag 13 as viewed from the first inner ring 11 side in the direction of the opposite arrow Ro in FIG. 5 (hereinafter referred to as “free direction”). When rotating, the first sprag 13 is tilted in the anti-self-locking direction against the urging force of the ribbon spring 16 by the frictional force acting on the contact A, and the first sprocket 13 is applied to the first inner ring 11 and the first outer ring 12. The sprag 13 is disengaged. As a result, the first outer ring 12 idles around the first inner ring 11.
 また、第1外輪12との相対回転で第1外輪12側から見て、第1内輪11が第1スプラグ13に対して図5の矢印Ri方向(ロック方向)へ回転する場合には、第1内輪11及び第1外輪12に第1スプラグ13が係合する。その結果、第1外輪12は第1内輪11と共に回転する。一方、第1外輪12との相対回転で第1外輪12側から見て、第1内輪11が第1スプラグ13に対して図5の反矢印Ri方向(フリー方向)へ回転する場合には、接点Bに作用する摩擦力により第1スプラグ13がリボンスプリング16の付勢力に抗して反セルフロック方向へ傾動し、第1外輪12は第1内輪11の回りを空転する。 In addition, when the first inner ring 11 rotates in the direction of the arrow Ri (locking direction) in FIG. 5 with respect to the first sprag 13 as viewed from the first outer ring 12 side by relative rotation with the first outer ring 12, The first sprag 13 engages with the first inner ring 11 and the first outer ring 12. As a result, the first outer ring 12 rotates together with the first inner ring 11. On the other hand, when the first inner ring 11 rotates relative to the first outer ring 12 in the counter arrow Ri direction (free direction) of FIG. The first sprag 13 tilts in the anti-self-lock direction against the urging force of the ribbon spring 16 due to the frictional force acting on the contact B, and the first outer ring 12 idles around the first inner ring 11.
 図3及び図4に戻って説明する。保持器14は、第1スプラグ13を外周面11a及び内周面12aの円周方向へ傾動可能に保持する部材であり、図3及び図4に示すように、保持部14aと、荷重伝達部14bとを備えて構成されている。保持部14aは、第1スプラグ13を保持する部位であり、図3及び図4に示すように、軸心O方向に延設され、第1スプラグ13の上端側を保持している。 Referring back to FIG. 3 and FIG. The retainer 14 is a member that retains the first sprag 13 so as to be tiltable in the circumferential direction of the outer peripheral surface 11a and the inner peripheral surface 12a. As shown in FIGS. 3 and 4, the retainer 14a and the load transmission unit 14b. The holding portion 14 a is a portion that holds the first sprag 13 and extends in the direction of the axis O as shown in FIGS. 3 and 4 and holds the upper end side of the first sprag 13.
 荷重伝達部14bは、荷重付与装置15から荷重が伝達される部位であり、図3に示すように、軸心O方向と交差する方向に延設されている。これにより、荷重伝達部14bを軸心O方向に延設する場合と比較して、保持器14の軸心O方向の寸法を短縮でき、第1クラッチ10の小型化を図ることができる。 The load transmitting portion 14b is a portion to which the load is transmitted from the load applying device 15, and extends in a direction intersecting with the direction of the axis O as shown in FIG. Thereby, compared with the case where the load transmission part 14b is extended in the axial center O direction, the dimension of the axial direction O of the holder | retainer 14 can be shortened, and size reduction of the 1st clutch 10 can be achieved.
 また、この荷重伝達部14bは、図4に示すように、歯車状に形成され、後述するピニオン15bとの間に構成される歯車機構を介して荷重付与装置15から荷重が伝達されるように構成されている。これにより、荷重付与装置15から保持器14までの荷重の伝達経路中に生じるエネルギー損失を小さくでき、効率良く保持器14に荷重を伝達することができる。 Further, as shown in FIG. 4, the load transmitting portion 14b is formed in a gear shape so that a load is transmitted from the load applying device 15 through a gear mechanism configured between the load transmitting portion 14b and a pinion 15b described later. It is configured. Thereby, the energy loss produced in the load transmission path from the load applying device 15 to the cage 14 can be reduced, and the load can be efficiently transmitted to the cage 14.
 荷重付与装置15は、リボンスプリング16の付勢力に抗して第1スプラグ13に荷重を付与して第1スプラグ13を反セルフロック方向(図5の反矢印S回転方向)へ傾動させるための装置であり、図3及び図4に示すように、アクチュエータ15aと、ピニオン15bとを備えて構成されている。 The load applying device 15 applies a load to the first sprag 13 against the urging force of the ribbon spring 16 to tilt the first sprag 13 in the anti-self-lock direction (the counter arrow S rotation direction in FIG. 5). As shown in FIGS. 3 and 4, the apparatus includes an actuator 15 a and a pinion 15 b.
 アクチュエータ15aは、第1スプラグ13に付与する荷重を生み出す動力源であり、電動機(交流モータ又は直流モータ)により構成され、電源(図示せず)から供給される電力により駆動可能に構成されている。このように、アクチュエータ15aが電動機により構成されているので、例えば、アクチュエータ15aをシリンダやソレノイド等により構成する場合と比較して、荷重付与装置15の構造を簡素化すると共に小型化を図ることができる。また、荷重付与装置15の構造が複雑な場合には、荷重付与装置15が大型化し、第1クラッチ10の大型化を招くところ、荷重付与装置15の構造を簡素化すると共に小型化を図ることができれば、第1クラッチ10の小型化を図ることができる。 The actuator 15a is a power source that generates a load to be applied to the first sprag 13, and is configured by an electric motor (an AC motor or a DC motor) and configured to be drivable by electric power supplied from a power source (not shown). . Thus, since the actuator 15a is comprised with the electric motor, compared with the case where the actuator 15a is comprised with a cylinder, a solenoid, etc., for example, the structure of the load provision apparatus 15 can be simplified and size reduction can be achieved. it can. In addition, when the structure of the load applying device 15 is complicated, the load applying device 15 is increased in size, leading to an increase in the size of the first clutch 10. However, the structure of the load applying device 15 is simplified and downsized. If possible, the first clutch 10 can be downsized.
 ピニオン15bは、アクチュエータ15aの動力を保持器14に伝達するための部材であり、図3に示すように、保持器14の荷重伝達部14bと噛み合う歯車状に形成され、荷重伝達部14bとの間に歯車機構を構成している。このピニオン15bによりアクチュエータ15aの動力が保持器14に伝達されることで、保持器14を介して第1スプラグ13に荷重が付与される。このように、荷重付与装置15は、保持器14を介して第1スプラグ13に荷重を付与するので、複数の第1スプラグ13に一度に荷重を付与することができ、効率良く第1スプラグ13に荷重を付与することができる。 The pinion 15b is a member for transmitting the motive power of the actuator 15a to the cage 14, and is formed in a gear shape that meshes with the load transmission portion 14b of the cage 14 as shown in FIG. 3, and is connected to the load transmission portion 14b. A gear mechanism is formed between them. The power of the actuator 15 a is transmitted to the retainer 14 by the pinion 15 b, so that a load is applied to the first sprag 13 via the retainer 14. Thus, since the load application device 15 applies a load to the first sprags 13 via the retainer 14, it can apply a load to the plurality of first sprags 13 at a time, and the first sprags 13 can be efficiently applied. A load can be applied to the.
 上述したように構成される荷重付与装置15によれば、リボンスプリング16の付勢力に抗して第1スプラグ13に荷重を付与することで、第1スプラグ13を反セルフロック方向へ傾動させて、第1内輪11及び第1外輪12への第1スプラグ13の係合を強制的に解除することができる。これにより、エンジン111(図2参照)やジェネレータモータ112から入力軸3へと伝達された動力が、第1クラッチ10の第1外輪12に入力されて、第1外輪12が第1スプラグ13に対してロック方向(図5の矢印Ro方向)へ回転する場合でも、荷重付与装置15により第1内輪11及び第1外輪12への第1スプラグ13の係合を強制的に解除することで第1外輪12を空転させて、入力軸3から出力軸4への動力の伝達を遮断することができる。 According to the load applying device 15 configured as described above, by applying a load to the first sprag 13 against the urging force of the ribbon spring 16, the first sprag 13 is tilted in the anti-self-lock direction. The engagement of the first sprag 13 to the first inner ring 11 and the first outer ring 12 can be forcibly released. As a result, the power transmitted from the engine 111 (see FIG. 2) and the generator motor 112 to the input shaft 3 is input to the first outer ring 12 of the first clutch 10, and the first outer ring 12 enters the first sprag 13. On the other hand, even when rotating in the locking direction (the direction of arrow Ro in FIG. 5), the load application device 15 forcibly releases the engagement of the first sprag 13 from the first inner ring 11 and the first outer ring 12. The transmission of power from the input shaft 3 to the output shaft 4 can be interrupted by causing the outer ring 12 to idle.
 図2に戻って説明する。動力伝達装置1は、ステータ112s及びロータ112rを備えるジェネレータモータ112と第1伝達軸2との間の動力の伝達を、増速機50を介して行う。本実施の形態においては、増速機50は遊星歯車装置を備えて構成されている。遊星歯車装置(増速機50)は、ロータ112rに連結された第2伝達軸9からの入力回転が伝達されて回転するサンギヤ50sと、サンギヤ50sの外周に噛合される複数のプラネタリギヤ50pと、それら複数のプラネタリギヤ50pに噛合されるリングギヤ50rと、複数のプラネタリギヤ50pを支持すると共にサンギヤ50sの回転中心回りに回転されて第2伝達軸9からの入力回転を切替装置8に伝達するキャリア50cとを備えている。リングギヤ50rは動力伝達装置1の外郭をなすケース1aに回転不能に固定されている。 Referring back to FIG. The power transmission device 1 transmits power between the generator motor 112 including the stator 112 s and the rotor 112 r and the first transmission shaft 2 via the speed increaser 50. In the present embodiment, the speed increaser 50 is configured to include a planetary gear device. The planetary gear device (speed increaser 50) includes a sun gear 50s that rotates when an input rotation from the second transmission shaft 9 connected to the rotor 112r is transmitted, and a plurality of planetary gears 50p that mesh with the outer periphery of the sun gear 50s. A ring gear 50r meshed with the plurality of planetary gears 50p, a carrier 50c that supports the plurality of planetary gears 50p and is rotated around the rotation center of the sun gear 50s to transmit the input rotation from the second transmission shaft 9 to the switching device 8. It has. The ring gear 50r is fixed to the case 1a that forms the outline of the power transmission device 1 in a non-rotatable manner.
 ここで、サンギヤ50sの歯数をa、プラネタリギヤ50pの歯数をb、リングギヤ50rの歯数をcとした場合、増速機50の減速比(サンギヤ50sの回転速度/キャリア50cの回転速度)は、プラネタリギヤ50pの歯数bに関係なく1+c/aとなり、サンギヤ50sの回転速度はキャリア50cの回転速度の(1+c/a)倍となる。これにより、第1伝達軸2から第2伝達軸9に動力が伝達される場合には、第2伝達軸9の回転速度を増加させてロータ112rの回転速度を増やし、ジェネレータモータ112による発電量を増やすことができる。一方、エンジン111の始動時やジェネレータモータ121による走行アシスト時のように、第2伝達軸9から第1伝達軸2にジェネレータモータ112の動力が伝達される場合は、第1伝達軸2のトルクを増加させ、エンジン111の始動性能や加速性能を向上させることができる。 Here, when the number of teeth of the sun gear 50s is a, the number of teeth of the planetary gear 50p is b, and the number of teeth of the ring gear 50r is c, the reduction ratio of the gearbox 50 (the rotational speed of the sun gear 50s / the rotational speed of the carrier 50c). Is 1 + c / a regardless of the number of teeth b of the planetary gear 50p, and the rotational speed of the sun gear 50s is (1 + c / a) times the rotational speed of the carrier 50c. Thereby, when power is transmitted from the first transmission shaft 2 to the second transmission shaft 9, the rotational speed of the second transmission shaft 9 is increased to increase the rotational speed of the rotor 112r, and the amount of power generated by the generator motor 112 is increased. Can be increased. On the other hand, when the power of the generator motor 112 is transmitted from the second transmission shaft 9 to the first transmission shaft 2, such as at the time of starting the engine 111 or driving assist by the generator motor 121, the torque of the first transmission shaft 2 And the starting performance and acceleration performance of the engine 111 can be improved.
 切替装置8は、第2クラッチ20と第3クラッチ30とを備えて構成されている。第2クラッチ20は、第1クラッチ10と同様に構成されているため、詳細な説明を省略する。第2クラッチ20は、第1伝達軸2から入力される動力を第2伝達軸9に伝達する一方、第2伝達軸9から第1伝達軸2への動力の伝達を遮断すると共に、第1伝達軸2から第2伝達軸9への動力の伝達を遮断可能に構成されている。第2クラッチ20の第2内輪21(図2参照)は、キャリア50cと連結されており、第2外輪22は第1伝達軸2と連結されている。 The switching device 8 includes a second clutch 20 and a third clutch 30. Since the second clutch 20 is configured in the same manner as the first clutch 10, a detailed description thereof is omitted. The second clutch 20 transmits the power input from the first transmission shaft 2 to the second transmission shaft 9, while blocking the transmission of power from the second transmission shaft 9 to the first transmission shaft 2, and the first clutch The transmission of power from the transmission shaft 2 to the second transmission shaft 9 is configured to be cut off. The second inner ring 21 (see FIG. 2) of the second clutch 20 is connected to the carrier 50c, and the second outer ring 22 is connected to the first transmission shaft 2.
 第2クラッチ20によれば、ジェネレータモータ112の動力が第2内輪21から入力されて、第2外輪22との相対回転で第2外輪22側から見て、第2内輪21が第2スプラグ23に対して図5の反矢印Ri方向(フリー方向)に回転する場合には、第2内輪21及び第2外輪22への第2スプラグ23の係合が解除され、第2内輪21は第2外輪22を空転する。一方、第2外輪22との相対回転で第2外輪22側から見て、第2内輪21が第2スプラグ23に対して図5の矢印Ri方向(ロック方向)に回転すると、第2内輪21及び第2外輪22へ第2スプラグ23が係合する。その結果、第2内輪21は第2外輪22と共に回転し第2内輪21から第2外輪22へ動力が伝達される。 According to the second clutch 20, the power of the generator motor 112 is input from the second inner ring 21, and the second inner ring 21 is in the second sprag 23 as viewed from the second outer ring 22 side by relative rotation with the second outer ring 22. On the other hand, when rotating in the counter arrow Ri direction (free direction) in FIG. 5, the engagement of the second sprag 23 with the second inner ring 21 and the second outer ring 22 is released, and the second inner ring 21 is in the second state. The outer ring 22 is idled. On the other hand, when the second inner ring 21 rotates relative to the second outer ring 22 in the direction of the arrow Ri (locking direction) in FIG. The second sprag 23 is engaged with the second outer ring 22. As a result, the second inner ring 21 rotates with the second outer ring 22, and power is transmitted from the second inner ring 21 to the second outer ring 22.
 また、エンジン111からの動力が第1伝達軸2から第2クラッチ20に伝達されると、第2内輪21との相対回転で第2内輪21側から見て、第2外輪22が第2スプラグ23に対して図5の矢印Ro方向(ロック方向)に回転し、第2内輪21及び第2外輪22へ第2スプラグ23が係合する。その結果、第2内輪21は第2外輪22と共に回転し、第2外輪22から第2内輪21へ動力が伝達される。一方、第2内輪21との相対回転で第2内輪21側から見て、第2外輪22が第2スプラグ23に対して図5の反矢印Ro方向(フリー方向)に回転すると、第2内輪21及び第2外輪22への第2スプラグ23の係合が解除される。その結果、第2外輪22は第2内輪21を空転し、第2外輪22から第2内輪21への動力の伝達が遮断される。 Further, when power from the engine 111 is transmitted from the first transmission shaft 2 to the second clutch 20, the second outer ring 22 is second sprags as viewed from the second inner ring 21 side due to relative rotation with the second inner ring 21. The second sprag 23 is engaged with the second inner ring 21 and the second outer ring 22 by rotating in the arrow Ro direction (locking direction) in FIG. As a result, the second inner ring 21 rotates with the second outer ring 22, and power is transmitted from the second outer ring 22 to the second inner ring 21. On the other hand, when the second outer ring 22 rotates relative to the second inner ring 21 in the counter arrow Ro direction (free direction) in FIG. The engagement of the second sprag 23 with the 21 and the second outer ring 22 is released. As a result, the second outer ring 22 idles the second inner ring 21, and transmission of power from the second outer ring 22 to the second inner ring 21 is interrupted.
 なお、第2クラッチ20は、第1クラッチ10と同様に荷重付与装置15(図4参照)を備えているので、第2内輪21や第2外輪22に動力が伝達されて、第2内輪21や第2外輪22が第2スプラグ23に対してロック方向(矢印Ri方向または矢印Ro方向)へ回転する場合でも、荷重付与装置15により第2内輪21及び第2外輪22への第2スプラグ23の係合を強制的に解除できる。これにより、第2外輪22を空転させて動力の伝達を遮断することができる。 Since the second clutch 20 includes the load applying device 15 (see FIG. 4) as in the first clutch 10, power is transmitted to the second inner ring 21 and the second outer ring 22, and the second inner ring 21. Even when the second outer ring 22 rotates in the locking direction (arrow Ri direction or arrow Ro direction) with respect to the second sprag 23, the second sprag 23 to the second inner ring 21 and the second outer ring 22 by the load applying device 15. Can be forcibly released. Thereby, the transmission of power can be interrupted by idling the second outer ring 22.
 次に、切替装置8の第3クラッチ30について説明する。この第3クラッチ30は、荷重付与装置15が省略されている以外は第1クラッチ10(図5参照)と同様に構成されているため、詳細な説明を省略する。図6は第3クラッチ30の内部構造を模式的に示した模式図である。但し、付勢部材16などの記載は省略している。第3クラッチ30は、第2伝達軸9から入力される動力を第1伝達軸2に伝達する一方、第1伝達軸2から第2伝達軸9への動力の伝達を遮断する部材である。 Next, the third clutch 30 of the switching device 8 will be described. Since the third clutch 30 is configured in the same manner as the first clutch 10 (see FIG. 5) except that the load applying device 15 is omitted, detailed description thereof is omitted. FIG. 6 is a schematic diagram schematically showing the internal structure of the third clutch 30. However, description of the urging member 16 and the like is omitted. The third clutch 30 is a member that transmits power input from the second transmission shaft 9 to the first transmission shaft 2, while blocking transmission of power from the first transmission shaft 2 to the second transmission shaft 9.
 第3クラッチ30の第3内輪31は、キャリア50c(図2参照)と連結されており、第3外輪32は第1伝達軸2(図2参照)と連結されている。第3スプラグ33は、第3内輪31と第3外輪32とを係合する機能を担う部材であり、外周面31a及び内周面32aに接している。第3クラッチ30によれば、ジェネレータモータ112(図2参照)の動力が第3内輪31から入力されて、第3外輪32との相対回転で第3外輪32側から見て、第3内輪31が第3スプラグ33に対して図6の矢印Ri方向(ロック方向)に回転すると、第3内輪31及び第3外輪32へ第3スプラグ33が係合する。その結果、第3内輪31は第3外輪32と共に回転し第3内輪31から第3外輪32へ動力が伝達される。一方、第3外輪32との相対回転で第3外輪32側から見て、第3内輪31が第3スプラグ33に対して図6の反矢印Ri方向(フリー方向)に回転する場合には、第3内輪31及び第3外輪32への第3スプラグ33の係合が解除され、第3内輪31は第3外輪32を空転する。 The third inner ring 31 of the third clutch 30 is connected to the carrier 50c (see FIG. 2), and the third outer ring 32 is connected to the first transmission shaft 2 (see FIG. 2). The 3rd sprag 33 is a member which bears the function which engages the 3rd inner ring 31 and the 3rd outer ring 32, and is in contact with outer peripheral surface 31a and inner peripheral surface 32a. According to the third clutch 30, the power of the generator motor 112 (see FIG. 2) is input from the third inner ring 31, and viewed from the third outer ring 32 side by the relative rotation with the third outer ring 32, the third inner ring 31. Is rotated in the direction of the arrow Ri (locking direction) in FIG. 6 with respect to the third sprag 33, the third sprag 33 engages with the third inner ring 31 and the third outer ring 32. As a result, the third inner ring 31 rotates with the third outer ring 32 and power is transmitted from the third inner ring 31 to the third outer ring 32. On the other hand, when the third inner ring 31 rotates relative to the third outer ring 32 in the counter arrow Ri direction (free direction) of FIG. The engagement of the third sprag 33 with the third inner ring 31 and the third outer ring 32 is released, and the third inner ring 31 idles the third outer ring 32.
 また、エンジン111(図2参照)からの動力が第1伝達軸2から第3クラッチ30に伝達されると、第3内輪31との相対回転で第3内輪31側から見て、第3外輪32が第3スプラグ33に対して図6の反矢印Ro方向(フリー方向)に回転し、第3内輪31及び第3外輪32への第3スプラグ33の係合が解除される。その結果、第3外輪32は第3内輪31を空転し動力の伝達が遮断される。一方、第3内輪31との相対回転で第3内輪31側から見て、第3外輪32が第3スプラグ33に対して図6の矢印Ro方向(ロック方向)に回転する場合には、第3内輪31及び第3外輪32へ第3スプラグ33が係合する。その結果、第3内輪31は第3外輪32と共に回転し動力が伝達される。 Further, when power from the engine 111 (see FIG. 2) is transmitted from the first transmission shaft 2 to the third clutch 30, the third outer ring is viewed from the third inner ring 31 side by relative rotation with the third inner ring 31. 32 rotates with respect to the third sprag 33 in the direction opposite to the arrow Ro (free direction) in FIG. 6, and the engagement of the third sprag 33 with the third inner ring 31 and the third outer ring 32 is released. As a result, the third outer ring 32 idles the third inner ring 31, and the transmission of power is interrupted. On the other hand, when the third outer ring 32 rotates relative to the third inner ring 31 in the direction of the arrow Ro (locking direction) in FIG. The third sprag 33 engages with the three inner rings 31 and the third outer ring 32. As a result, the third inner ring 31 rotates with the third outer ring 32 to transmit power.
 図2に戻って説明する。エンジン111から切替装置8までの第1伝達軸2には、第4クラッチ40が配設されている。第4クラッチ40により、エンジン111から入力軸3への動力の伝達を遮断できる。 Referring back to FIG. A fourth clutch 40 is disposed on the first transmission shaft 2 from the engine 111 to the switching device 8. Transmission of power from the engine 111 to the input shaft 3 can be interrupted by the fourth clutch 40.
 次いで、図7から図9を参照して、上述したように構成される動力伝達装置1の作動状態について説明する。図7から図9は、動力伝達装置1の内部構造の正面視を模式的に示している。図7から図9では、理解を容易とするために、動力の伝達経路を矢印Pで示すと共に、駆動歯車5a,6a,7a、第1クラッチ10の第1外輪12の回転方向を矢印で示している。また、第1クラッチ10及び第2クラッチ20の荷重付与装置15(図4参照)を作動させて、第1内輪11及び第1外輪12への第1スプラグ13の係合、第2内輪21及び第2外輪22への第2スプラグ23の係合を解除した場合を「ON」と表記し、第1クラッチ10及び第2クラッチ20の荷重付与装置15を非作動として、第1内輪11及び第1外輪12への第1スプラグ13の係合、第2内輪21及び第2外輪22への第2スプラグ23の係合が可能な場合を「OFF」と表記している。 Next, the operation state of the power transmission device 1 configured as described above will be described with reference to FIGS. 7 to 9 schematically show a front view of the internal structure of the power transmission device 1. 7 to 9, for easy understanding, the power transmission path is indicated by an arrow P, and the rotation direction of the drive gears 5a, 6a, 7a and the first outer ring 12 of the first clutch 10 is indicated by an arrow. ing. Further, the load applying device 15 (see FIG. 4) of the first clutch 10 and the second clutch 20 is operated to engage the first sprag 13 with the first inner ring 11 and the first outer ring 12, the second inner ring 21 and The case where the engagement of the second sprag 23 to the second outer ring 22 is released is expressed as “ON”, the load applying device 15 of the first clutch 10 and the second clutch 20 is deactivated, and the first inner ring 11 and the second The case where the first sprag 13 can be engaged with the first outer ring 12 and the second sprag 23 can be engaged with the second inner ring 21 and the second outer ring 22 is indicated as “OFF”.
 また、上述のとおり、本実施の形態においては、歯車対5,6,7は、伝達歯車対2aに近い順に、変速比(被動歯車の歯数÷駆動歯車の歯数)の大きなものから配設されている。歯車対の変速比を順にk1,k2,k3とすると、変速比はk1>k2>k3の関係となる。このため、入力軸3(回転速度をαとする)から出力軸4に動力が伝達された場合、被動歯車5b,6b,6bの回転速度をそれぞれα1,α2,α3とすると、各回転速度は入力軸3の回転速度によって一義的に定まり、変速比の関係からα1<α2<α3となる。また、出力軸4の回転速度は、変速段に応じた回転速度となる。 Further, as described above, in the present embodiment, the gear pairs 5, 6 and 7 are arranged in descending order of the gear ratio (number of teeth of the driven gear / number of teeth of the driving gear) in the order closer to the transmission gear pair 2a. It is installed. If the gear ratios of the gear pairs are k1, k2, and k3 in this order, the gear ratios have a relationship of k1> k2> k3. Therefore, when power is transmitted from the input shaft 3 (rotation speed is α) to the output shaft 4, assuming that the rotation speeds of the driven gears 5b, 6b, and 6b are α1, α2, and α3, respectively, It is uniquely determined by the rotational speed of the input shaft 3, and α1 <α2 <α3 from the relationship of the gear ratio. Further, the rotational speed of the output shaft 4 is a rotational speed corresponding to the gear position.
 まず、図7を参照して、エンジン111の駆動力をジェネレータモータ112の駆動力でアシストして車両100(図1参照)を始動する場合の動力伝達装置1について説明する。図7は、ジェネレータモータ112による走行アシスト時における動力伝達装置1の内部構造を模式的に示した模式図である。ジェネレータモータ112による走行アシスト時においては、第4クラッチ40を結合させると共に、第2クラッチ20の荷重付与装置15(図4参照)を作動させる(ON)。さらに、歯車対5の第1クラッチ10の荷重付与装置15を非作動とし(OFF)、歯車対6,7の第1クラッチ10の荷重付与装置15を作動させる(ON)。この状態において、エンジン111からの動力が第1伝達軸2に伝達されると、第2クラッチ20の第2外輪22は、第2内輪21との相対回転で第2内輪21側から見て、図5の矢印Ro方向(ロック方向)に回転する。しかし、第2クラッチ20の荷重付与装置15が作動されているため、第2クラッチ20の第2外輪22は第2内輪21を空転する。また、第3クラッチ30では第3外輪32は、第3内輪31との相対回転で第3内輪31側から見て、図6の反矢印Ro方向(フリー方向)に回転するため、第3クラッチ30の第3外輪32も第3内輪31を空転する。よって、第1伝達軸2からジェネレータモータ112への動力の伝達は遮断される。 First, with reference to FIG. 7, the power transmission device 1 when the driving force of the engine 111 is assisted by the driving force of the generator motor 112 to start the vehicle 100 (see FIG. 1) will be described. FIG. 7 is a schematic diagram schematically showing the internal structure of the power transmission device 1 when the generator motor 112 assists in traveling. At the time of driving assist by the generator motor 112, the fourth clutch 40 is coupled and the load applying device 15 (see FIG. 4) of the second clutch 20 is operated (ON). Further, the load applying device 15 of the first clutch 10 of the gear pair 5 is deactivated (OFF), and the load applying device 15 of the first clutch 10 of the gear pairs 6 and 7 is operated (ON). In this state, when power from the engine 111 is transmitted to the first transmission shaft 2, the second outer ring 22 of the second clutch 20 is viewed from the second inner ring 21 side by relative rotation with the second inner ring 21. It rotates in the direction of arrow Ro (locking direction) in FIG. However, since the load applying device 15 of the second clutch 20 is operated, the second outer ring 22 of the second clutch 20 idles the second inner ring 21. Further, in the third clutch 30, the third outer ring 32 rotates in the counter arrow Ro direction (free direction) in FIG. 6 when viewed from the third inner ring 31 side by the relative rotation with the third inner ring 31, so that the third clutch The third outer ring 32 of 30 also idles the third inner ring 31. Therefore, power transmission from the first transmission shaft 2 to the generator motor 112 is interrupted.
 一方、ジェネレータモータ112を駆動させてロータ112rからの動力が切替装置8(図2参照)に伝達されると、第2クラッチ20の第2内輪21が、第2外輪22との相対回転で第2外輪22側から見て、図5の反矢印Ri方向(フリー方向)に回転し、第3クラッチ30の第3内輪31(図2参照)が、第3外輪32との相対回転で第3外輪32側から見て、図6の矢印Ri方向(ロック方向)に回転する。第2クラッチ20の第2内輪21の相対回転方向は反矢印Ri方向(フリー方向)のため、第2クラッチ20の第2内輪21は第2外輪22を空転する。一方、第3クラッチ30の第3内輪31(図6参照)が回転することにより、第3スプラグ33が係合した第3外輪32が回転し、それに伴い第1伝達軸2が回転する。よって、第1伝達軸2にエンジン111からの動力に加え、ジェネレータモータ112からの動力が伝達される。 On the other hand, when the generator motor 112 is driven and the power from the rotor 112r is transmitted to the switching device 8 (see FIG. 2), the second inner ring 21 of the second clutch 20 is rotated by the relative rotation with the second outer ring 22. 2 When viewed from the outer ring 22 side, the third inner ring 31 (see FIG. 2) of the third clutch 30 rotates in the counter arrow Ri direction (free direction) of FIG. As viewed from the outer ring 32 side, it rotates in the direction of arrow Ri (locking direction) in FIG. Since the relative rotational direction of the second inner ring 21 of the second clutch 20 is in the direction opposite to the arrow Ri (free direction), the second inner ring 21 of the second clutch 20 idles the second outer ring 22. On the other hand, when the third inner ring 31 (see FIG. 6) of the third clutch 30 rotates, the third outer ring 32 engaged with the third sprag 33 rotates, and accordingly, the first transmission shaft 2 rotates. Therefore, the power from the generator motor 112 is transmitted to the first transmission shaft 2 in addition to the power from the engine 111.
 次に、第1伝達軸2から動力が伝達歯車対2aを介して入力軸3に伝達されると、歯車対5,6,7の被動歯車5b,6b,7bが回転し、第1クラッチ10の第1外輪12(図5参照)が回転する。第1クラッチ10の第1外輪12は、第1内輪11との相対回転で第1内輪11側から見て、図5の矢印Ro方向(ロック方向)に回転するが、歯車対6,7の第1クラッチ10の荷重付与装置15(図4参照)が作動されているため(ON)、歯車対6,7の第1クラッチ10の第1外輪12は第1内輪11を空転する。これに対し、歯車対5の第1クラッチ10の荷重付与装置15は非作動のため(OFF)、第1速の歯車対5の第1クラッチ10の第1外輪12(図5参照)から第1内輪11に動力が伝達され、出力軸4は回転する。出力軸4の回転速度は、歯車対5の被動歯車5bの回転速度と等しいα1である。これにより、車両100の前輪101(図1参照)は回転し(回転速度α1)、車両100は前進走行する。 Next, when power is transmitted from the first transmission shaft 2 to the input shaft 3 via the transmission gear pair 2a, the driven gears 5b, 6b, 7b of the gear pairs 5, 6, 7 are rotated, and the first clutch 10 is rotated. The first outer ring 12 (see FIG. 5) rotates. The first outer ring 12 of the first clutch 10 rotates relative to the first inner ring 11 in the direction of the arrow Ro (locking direction) in FIG. 5 when viewed from the first inner ring 11 side. Since the load applying device 15 (see FIG. 4) of the first clutch 10 is operated (ON), the first outer ring 12 of the first clutch 10 of the gear pairs 6 and 7 idles the first inner ring 11. On the other hand, since the load applying device 15 of the first clutch 10 of the gear pair 5 is inactive (OFF), the first outer ring 12 (see FIG. 5) of the first clutch 10 of the first speed gear pair 5 is changed to the first. Power is transmitted to the inner ring 11 and the output shaft 4 rotates. The rotational speed of the output shaft 4 is α1, which is equal to the rotational speed of the driven gear 5b of the gear pair 5. As a result, the front wheel 101 (see FIG. 1) of the vehicle 100 rotates (rotational speed α1), and the vehicle 100 travels forward.
 以上は、ジェネレータモータ112によりエンジン111の駆動をアシストする場合について説明したが、第4クラッチ40の結合を解除し、エンジン111と第1伝達軸2との動力の伝達を遮断して、ジェネレータモータ112だけの駆動力で走行することも可能である。また、ジェネレータモータ112の駆動を停止することにより、エンジン111だけの駆動力で走行することも可能である。 The above has described the case where the generator 111 is used to assist the drive of the engine 111. However, the coupling of the fourth clutch 40 is released, the transmission of power between the engine 111 and the first transmission shaft 2 is interrupted, and the generator motor 112 It is also possible to travel with a driving force of only 112. Further, by stopping the driving of the generator motor 112, it is possible to travel with the driving force of only the engine 111.
 次に、図8及び図9を参照して、車両100を始動させた後、ジェネレータモータ112の駆動を停止し、エンジン111の駆動力だけで走行している場合のシフトアップ変速について説明する。まず、シフトアップ時の変速ショックを防止するため、入力軸3の回転数を低下させる操作について説明し、次いで、シフトアップ変速の操作について説明する。図8は入力軸3の回転数を低下させる場合の動力伝達装置1の内部構造を模式的に示した模式図であり、図9は第2速走行における動力伝達装置1の内部構造を模式的に示した模式図である。 Next, with reference to FIG. 8 and FIG. 9, the shift-up shift when the vehicle 100 is started and then the drive of the generator motor 112 is stopped and the vehicle is running only with the driving force of the engine 111 will be described. First, in order to prevent a shift shock at the time of upshifting, an operation for decreasing the rotation speed of the input shaft 3 will be described, and then an operation for upshifting will be described. FIG. 8 is a schematic diagram schematically showing the internal structure of the power transmission device 1 when the rotational speed of the input shaft 3 is reduced, and FIG. 9 is a schematic diagram of the internal structure of the power transmission device 1 in the second speed traveling. It is the schematic diagram shown in.
 第1速の走行状態(図7参照)から第2速(入力軸3から歯車対6を介して出力軸4に動力を伝達)にシフトアップ変速する場合、図8に示すように、第4クラッチ40を結合させた状態で第2クラッチ20の荷重付与装置15(図4参照)を非作動とする(OFF)。歯車対5,6,7の第1クラッチ10の荷重付与装置15の作動状態は、第1速の走行状態の場合と同じとする。その結果、第2クラッチ20の第2外輪22(図2参照)は、第2内輪21との相対回転で第2内輪21側から見て、図5の矢印Ro方向(ロック方向)に回転し、第3クラッチ30では第3外輪32(図6参照)は反矢印Ro方向(フリー方向)に回転する。このため、第2クラッチ20の第2スプラグ23(図2参照)が第2内輪21に係合し、第2外輪22と共に回転する。図2に示すように、第2クラッチ20の第2内輪21の回転に伴いキャリア50cが回転し、プラネタリギヤ50pに噛合うサンギヤ50sが回転する。その結果、サンギヤ50sから第2伝達軸9に動力が伝達され、ロータ112rが回転し発電が行われる。このように、第1伝達軸2に伝達されたエネルギーの一部がロータ112rの回転に使用され消費されるため、第1伝達軸2と連結するエンジン111及び入力軸3の回転数(回転速度)は短時間で低下する。低下した入力軸3の回転速度をα´とする(α´<α)。 When shifting up from the first speed traveling state (see FIG. 7) to the second speed (power is transmitted from the input shaft 3 to the output shaft 4 via the gear pair 6), as shown in FIG. With the clutch 40 coupled, the load application device 15 (see FIG. 4) of the second clutch 20 is deactivated (OFF). The operating state of the load applying device 15 of the first clutch 10 of the gear pairs 5, 6, 7 is the same as in the traveling state of the first speed. As a result, the second outer ring 22 (see FIG. 2) of the second clutch 20 rotates relative to the second inner ring 21 in the direction of the arrow Ro (locking direction) in FIG. 5 when viewed from the second inner ring 21 side. In the third clutch 30, the third outer ring 32 (see FIG. 6) rotates in the opposite direction of the arrow Ro (free direction). For this reason, the second sprag 23 (see FIG. 2) of the second clutch 20 is engaged with the second inner ring 21 and rotates together with the second outer ring 22. As shown in FIG. 2, the carrier 50c rotates with the rotation of the second inner ring 21 of the second clutch 20, and the sun gear 50s that meshes with the planetary gear 50p rotates. As a result, power is transmitted from the sun gear 50s to the second transmission shaft 9, and the rotor 112r rotates to generate power. Thus, since a part of the energy transmitted to the first transmission shaft 2 is used and consumed for the rotation of the rotor 112r, the rotational speed (rotational speed) of the engine 111 and the input shaft 3 coupled to the first transmission shaft 2 is used. ) Decreases in a short time. Let α ′ be the reduced rotational speed of the input shaft 3 (α ′ <α).
 一方、歯車対5においては、入力軸3の回転数の低下に伴い駆動歯車5aの回転数が低下し、被動歯車5bの回転数も低下する。その結果、第1クラッチ10の第1外輪12は、第1内輪11との相対回転で第1内輪11側から見て、図5の反矢印Ro方向(フリー方向)に回転するため、第1外輪12は第1内輪11を空転する。その結果、被動歯車5bは出力軸4を空転する。また、歯車対6,7においては荷重付与装置15が作動しているため(ON)、被動歯車6b,7bは出力軸4を空転する。そのため、入力軸3から出力軸4への動力の伝達が遮断されると共に、前輪101(図1参照)に連結された出力軸4は被動歯車5b,6b,7bを空転するので、車両100の走行速度はほとんど低下しない(出力軸4の回転速度もほとんど低下せずα1を維持する)。よって、車両100の運転者や同乗者に減速感を与えることを防止できる。 On the other hand, in the gear pair 5, as the rotational speed of the input shaft 3 decreases, the rotational speed of the drive gear 5a decreases and the rotational speed of the driven gear 5b also decreases. As a result, the first outer ring 12 of the first clutch 10 rotates relative to the first inner ring 11 in the direction opposite to the arrow Ro (free direction) in FIG. The outer ring 12 idles the first inner ring 11. As a result, the driven gear 5b idles the output shaft 4. Further, since the load applying device 15 is operating in the gear pairs 6 and 7 (ON), the driven gears 6 b and 7 b idle the output shaft 4. Therefore, transmission of power from the input shaft 3 to the output shaft 4 is interrupted, and the output shaft 4 connected to the front wheel 101 (see FIG. 1) idles the driven gears 5b, 6b, 7b. The traveling speed hardly decreases (the rotation speed of the output shaft 4 hardly decreases and α1 is maintained). Therefore, it is possible to prevent the driver and passengers of the vehicle 100 from feeling slowed down.
 次に、図9に示すように、現在の変速段(本実施の形態においては第1速)からみて高速段以下(本実施の形態においては第2速および第1速)の歯車対5,6の第1クラッチ10の荷重付与装置15(図4参照)の作動を停止する(OFF)。その結果、第1速の歯車対5及び第2速の歯車対6の第1クラッチ10において、第1内輪11(図5参照)及び第1外輪12へ第1スプラグ13が係合可能な状態となる。 Next, as shown in FIG. 9, the gear pair 5 at the high speed or less (second speed and first speed in the present embodiment) as viewed from the current gear position (first speed in the present embodiment). The operation of the load applying device 15 (see FIG. 4) of the first clutch 10 is stopped (OFF). As a result, the first sprag 13 can be engaged with the first inner ring 11 (see FIG. 5) and the first outer ring 12 in the first clutch 10 of the first gear pair 5 and the second gear pair 6. It becomes.
 ここで、入力軸3の回転速度α´の場合、歯車対5の被動歯車5bの回転速度をα1´とすると、被動歯車5bの回転速度α1´は、出力軸5bの回転速度(α1)より遅くなる。このため、歯車対5の第1クラッチ10では、第1外輪12の回転速度(α1´)が第1内輪11の回転速度(α1)よりも遅くなり、相対的に第1内輪11がフリー方向へ回転している状態と等しくなる。よって、歯車対5の第1クラッチ10では、現時点においては、第1スプラグ13は第1内輪11及び第1外輪12へ係合できない。この結果、被動歯車5bは出力軸4を空転し動力は伝達されない。 Here, in the case of the rotational speed α ′ of the input shaft 3, if the rotational speed of the driven gear 5b of the gear pair 5 is α1 ′, the rotational speed α1 ′ of the driven gear 5b is based on the rotational speed (α1) of the output shaft 5b. Become slow. Therefore, in the first clutch 10 of the gear pair 5, the rotational speed (α1 ′) of the first outer ring 12 is slower than the rotational speed (α1) of the first inner ring 11, and the first inner ring 11 is relatively free. It is equal to the state of rotating to. Therefore, in the first clutch 10 of the gear pair 5, the first sprag 13 cannot be engaged with the first inner ring 11 and the first outer ring 12 at the present time. As a result, the driven gear 5b idles the output shaft 4 and no power is transmitted.
 また、歯車対6の被動歯車6bの回転速度α2´(入力軸の回転速度α´のときの被動歯車6bの回転速度。α2´<α2)が、出力軸6bの回転速度α1より速いと、第1内輪11(図5参照)との相対回転で第1内輪11からみて、第1外輪12が図5の矢印Ro方向(ロック方向)へ回転する。その結果、第1外輪12から第1内輪11に向かって動力が伝達され、被動歯車6bは出力軸4と共に回転し、入力軸3から第2速の歯車対6を介して出力軸4へ動力が伝達される。 When the rotational speed α2 ′ of the driven gear 6b of the gear pair 6 (the rotational speed of the driven gear 6b when the rotational speed α ′ of the input shaft is α. Α2 ′ <α2) is faster than the rotational speed α1 of the output shaft 6b, The first outer ring 12 rotates in the direction of the arrow Ro (locking direction) in FIG. 5 when viewed from the first inner ring 11 by relative rotation with the first inner ring 11 (see FIG. 5). As a result, power is transmitted from the first outer ring 12 toward the first inner ring 11, the driven gear 6 b rotates with the output shaft 4, and power is transmitted from the input shaft 3 to the output shaft 4 via the second speed gear pair 6. Is transmitted.
 また、歯車対7の被動歯車7bの回転速度α3´(入力軸3の回転速度α´のときの被動歯車7bの回転速度。α3´<α3)は、歯車対6の被動歯車6bの回転速度α2´より速いため(α2´<α3´)、歯車対7の第1クラッチ10の第1外輪12は、歯車対6の第1クラッチ10の第1外輪12よりも速い回転速度で、図5に示す矢印Ro方向(ロック方向)へ回転する。しかし、歯車対7では荷重付与装置15(図4参照)が作動しているため(ON)、第1スプラグ13が係合できず、第1外輪12が第1内輪11を空転し動力の伝達が遮断される。 Further, the rotational speed α3 ′ of the driven gear 7b of the gear pair 7 (the rotational speed of the driven gear 7b at the rotational speed α ′ of the input shaft 3; α3 ′ <α3) is the rotational speed of the driven gear 6b of the gear pair 6. Since it is faster than α2 ′ (α2 ′ <α3 ′), the first outer ring 12 of the first clutch 10 of the gear pair 7 has a higher rotational speed than the first outer ring 12 of the first clutch 10 of the gear pair 6, and FIG. Rotate in the direction indicated by the arrow Ro (lock direction). However, since the load applying device 15 (see FIG. 4) is operating in the gear pair 7 (ON), the first sprag 13 cannot be engaged, and the first outer ring 12 idles the first inner ring 11 to transmit power. Is cut off.
 ここで、歯車対6において第1外輪12(図5参照)が相対的に矢印Ro方向(ロック方向)へ回転するには、被動歯車6bの回転速度α2´が出力軸4の回転速度α1より速いことが必要である。歯車対5の変速比k1を考慮すると、α1=α/k1である。また、歯車対6の変速比を考慮すると、α2´=α´/k2である。α2´>α1でなければならないため、α´/k2>α/k1となる。これを解くとα´>α/k1・k2となる。即ち、低下した入力軸3の回転速度α´≦α/k1・k2の場合、第2速の歯車対6には動力が伝達されない。変速前の入力軸3の回転数と変速前後の歯車対5,6の変速比との関係で決まる回転数α´=α/k1・k2を、シフトアップ変速の場合の第2速の歯車対6における「同期回転数」と称する。同期回転数は、変速後の歯車対6に配設された第1クラッチ10の第1内輪11と第1外輪12との回転数が等しくなる回転数である。このように、入力軸3から第1クラッチ10を介して出力軸4に動力を伝達するためには、変速後の入力軸3の回転速度(回転数)を同期回転数より大きくする必要がある。逆に、変速前の入力軸3の回転速度(回転数)を同期回転数以下にすることにより、入力軸3から出力軸4への動力の伝達を遮断できる。なお、本実施の形態においては、同様に計算すると、シフトアップ変速の場合の第3速の歯車対7における同期回転数は、α/k2・k3となる(但し、αは変速前における入力軸3の回転速度(回転数))。 Here, in order to relatively rotate the first outer ring 12 (see FIG. 5) in the direction of the arrow Ro (locking direction) in the gear pair 6, the rotational speed α2 ′ of the driven gear 6b is greater than the rotational speed α1 of the output shaft 4. It needs to be fast. Considering the gear ratio k1 of the gear pair 5, α1 = α / k1. In consideration of the gear ratio of the gear pair 6, α2 ′ = α ′ / k2. Since α2 ′> α1 must be satisfied, α ′ / k2> α / k1. Solving this, α ′> α / k1 · k2. That is, when the rotational speed α ′ ≦ α / k1 · k2 of the reduced input shaft 3 is reached, no power is transmitted to the second-speed gear pair 6. The rotation speed α ′ = α / k1 · k2 determined by the relationship between the rotation speed of the input shaft 3 before the shift and the gear ratios of the gear pairs 5 and 6 before and after the shift is the second speed gear pair in the case of the shift-up shift. 6 is referred to as “synchronous rotation speed”. The synchronous rotation speed is a rotation speed at which the rotation speeds of the first inner ring 11 and the first outer ring 12 of the first clutch 10 disposed in the gear pair 6 after the shift are equal. Thus, in order to transmit power from the input shaft 3 to the output shaft 4 via the first clutch 10, it is necessary to make the rotational speed (rotational speed) of the input shaft 3 after shifting greater than the synchronous rotational speed. . On the contrary, the transmission of power from the input shaft 3 to the output shaft 4 can be cut off by setting the rotational speed (rotational speed) of the input shaft 3 before the shift to the synchronous rotational speed or less. In the present embodiment, when calculated in the same manner, the synchronous rotation speed in the third gear pair 7 in the case of the upshift is α / k2 · k3 (where α is the input shaft before the shift) 3 rotation speed (number of rotations)).
 このように、シフトアップ変速を行う場合には、高速段の歯車対6の第1クラッチ10の荷重付与装置15の作動を停止するだけで、変速が可能となる。また、入力軸3の回転数が変速後の歯車対7における同期回転数より低いときは、高速段の歯車対6における第1スプラグ13は反セルフロック方向に傾動した状態となるため、エンジン111(動力源)から高速段の歯車対6に動力は伝達されない。しかし、入力軸3の回転数を上げて、回転数が変速後の歯車対6における同期回転数を超えると、歯車対6における第1スプラグ13はセルフロック方向に傾動し、入力軸3から高速段の歯車対6に動力が伝達される状態となる。このように、動力の伝達が行われる変速時には入力軸3の回転数と同期回転数とが一致するため、回転数変化がないことと等しくなる。よって、アップシフト時の変速ショックを防止できる。 In this way, when performing a shift-up shift, the shift can be performed only by stopping the operation of the load applying device 15 of the first clutch 10 of the high-speed gear pair 6. Further, when the rotational speed of the input shaft 3 is lower than the synchronous rotational speed of the gear pair 7 after shifting, the first sprag 13 in the high-speed gear pair 6 is tilted in the anti-self-locking direction, so that the engine 111 Power is not transmitted from the (power source) to the high-speed gear pair 6. However, when the rotational speed of the input shaft 3 is increased and the rotational speed exceeds the synchronous rotational speed in the gear pair 6 after the shift, the first sprag 13 in the gear pair 6 tilts in the self-locking direction, and the high speed from the input shaft 3 increases. Power is transmitted to the stage gear pair 6. In this way, the speed of the input shaft 3 coincides with the synchronous speed at the time of transmission where power is transmitted, which is equivalent to no change in the speed. Therefore, a shift shock at the time of upshift can be prevented.
 さらに、入力軸3の回転エネルギーでロータ112rを回転させることにより、短時間で入力軸3の回転数を低下させてスムーズな変速を行うことができると共に、エネルギーを有効に活用し発電量を増加させることができる。また、入力軸3の回転数を低下させる間、低速段の第1クラッチ10の第1スプラグ13は反セルフロック方向に傾動した状態となるため、入力軸3の回転数を低下させるブレーキ力が出力軸4に伝達されることを防止できる。これにより、車両100の速度を低下させることなく、減速感を与えずに入力軸3の回転数を低下させることができる。よって、車両100の加速時に減速感が生じることを防止できる。なお、第2速から第3速に変速する場合も同様なので、第2速から第3速へシフトアップ変速を行う場合の操作については、説明を省略する。 Furthermore, by rotating the rotor 112r with the rotational energy of the input shaft 3, the rotational speed of the input shaft 3 can be reduced in a short time to perform a smooth speed change, and the energy can be effectively utilized to increase the amount of power generation. Can be made. Further, since the first sprag 13 of the low-speed first clutch 10 is tilted in the anti-self-locking direction while the rotational speed of the input shaft 3 is reduced, a braking force that reduces the rotational speed of the input shaft 3 is applied. Transmission to the output shaft 4 can be prevented. Thereby, the rotation speed of the input shaft 3 can be reduced without reducing the speed of the vehicle 100 and without giving a feeling of deceleration. Therefore, it is possible to prevent a feeling of deceleration when the vehicle 100 is accelerated. The same applies when shifting from the second speed to the third speed, and the description of the operation when performing the upshift from the second speed to the third speed is omitted.
 次に、図7及び図9を参照して、シフトダウン変速を行う場合の動力伝達装置1について説明する。シフトダウン変速を行う場合も、シフトアップ変速の場合と同様に、第1クラッチ10の荷重付与装置15(図4参照)の作動および非作動を切り替えることで変速が可能である。図9に示す第2速走行の状態(入力軸3の回転速度をαとし、出力軸4の回転速度をα2とする)から、第1速へシフトダウン変速を行うときは、図7に示すように、第2速の被動歯車6bの第1クラッチ10の荷重付与装置15を作動させる(ON)。その結果、第2速の被動歯車6bの第1クラッチ10において、第1内輪11(図5参照)及び第1外輪12への第1スプラグ13の係合が解除されるため、第2速の被動歯車6bは出力軸4を空転し動力は伝達されなくなる。 Next, with reference to FIG. 7 and FIG. 9, the power transmission device 1 when performing a downshift is described. Even when the downshift is performed, the shift can be performed by switching between the operation and non-operation of the load applying device 15 (see FIG. 4) of the first clutch 10 as in the case of the upshift. When a downshift to the first speed is performed from the state of the second speed traveling shown in FIG. 9 (the rotational speed of the input shaft 3 is α and the rotational speed of the output shaft 4 is α2), it is shown in FIG. Thus, the load application device 15 of the first clutch 10 of the second-speed driven gear 6b is operated (ON). As a result, in the first clutch 10 of the second speed driven gear 6b, the engagement of the first sprag 13 to the first inner ring 11 (see FIG. 5) and the first outer ring 12 is released, so that the second speed The driven gear 6b runs idle on the output shaft 4 and no power is transmitted.
 一方、第1速の被動歯車5bにおける第1クラッチ10では、第1外輪12の回転速度(α1)が出力軸4の回転速度(α2)、即ち第1内輪11の回転速度(α2)より遅いため(α1<α2)、第1内輪11との相対回転で第1内輪11からみて第1外輪12が反矢印Ro方向(図5参照)のフリー方向に回転する。このため、第1速の被動歯車5bは出力軸4を空転し動力は伝達されない。しかし、第1速の歯車対5における第1クラッチ10の第1外輪12の回転速度(回転数)(以下、この回転速度をα1″とする。)が出力軸4の回転速度α2より速くなると、第1外輪12がロック方向へ相対回転し、第1内輪11及び第1外輪12へ第1スプラグ13が係合する。その結果、第1速の被動歯車5bが出力軸4と共に回転することとなり、第2速走行の状態から第1速にシフトダウン変速できる。 On the other hand, in the first clutch 10 in the first speed driven gear 5b, the rotational speed (α1) of the first outer ring 12 is slower than the rotational speed (α2) of the output shaft 4, that is, the rotational speed (α2) of the first inner ring 11. Therefore (α1 <α2), the first outer ring 12 rotates in the free direction in the direction of the opposite arrow Ro (see FIG. 5) as viewed from the first inner ring 11 due to the relative rotation with the first inner ring 11. For this reason, the 1st-speed driven gear 5b idles the output shaft 4 and no power is transmitted. However, when the rotational speed (rotational speed) of the first outer ring 12 of the first clutch 10 in the first gear pair 5 (hereinafter referred to as “rotational speed α1 ″) is faster than the rotational speed α2 of the output shaft 4. The first outer ring 12 relatively rotates in the locking direction, and the first sprag 13 engages with the first inner ring 11 and the first outer ring 12. As a result, the first-speed driven gear 5b rotates with the output shaft 4. Thus, the downshift can be performed from the second speed traveling state to the first speed.
 ここで、歯車対5において第1外輪12(図5参照)が相対的に矢印Ro方向(ロック方向)へ回転するには、被動歯車5bの回転速度α1″が出力軸4の回転速度α2より速いことが必要である。歯車対5の変速比k1を考慮すると、α1″=α″/k1である(但し、α″は変速後の入力軸3の回転速度(回転数))。また、歯車対6の変速比を考慮すると、α2=α/k2である。α1″>α2でなければならないため、α″/k1>α/k2となる。これを解くとα″>α/k2・k1となる。即ち、入力軸3の回転速度α″≦α/k2・k1の場合、第1速の歯車対5には動力が伝達されない。変速前の入力軸3の回転数と変速前後の歯車対5,6の変速比との関係で決まる回転数α″=α/k2・k1を、シフトダウン変速の場合の第1速の歯車対5における「同期回転数」と称する。同期回転数は、変速後の歯車対5に配設された第1クラッチ10の第1内輪11と第1外輪12との回転数が等しくなる回転数である。このように、入力軸3から第1クラッチ10を介して出力軸4に動力を伝達するためには、変速後の入力軸3の回転速度(回転数)を同期回転数より大きくする必要がある。逆に、変速前の入力軸3の回転速度(回転数)を同期回転数以下にすることにより、入力軸3から出力軸4への動力の伝達を遮断できる。なお、本実施の形態においては、同様に計算すると、シフトダウン変速の場合の第2速の歯車対6における同期回転数は、α/k3・k2となる(但し、αは変速前における入力軸3の回転速度(回転数))。 Here, in order to relatively rotate the first outer ring 12 (see FIG. 5) in the direction of the arrow Ro (locking direction) in the gear pair 5, the rotational speed α1 ″ of the driven gear 5b is greater than the rotational speed α2 of the output shaft 4. In consideration of the gear ratio k1 of the gear pair 5, α1 ″ = α ″ / k1 (where α ″ is the rotational speed (number of rotations) of the input shaft 3 after the shift). In consideration of the gear ratio of the gear pair 6, α2 = α / k2. Since α1 ″> α2 must be satisfied, α ″ / k1> α / k2. Solving this, α ″> α / k 2 · k 1. That is, when the rotational speed α ″ of the input shaft 3 ≦ α / k 2 · k 1, no power is transmitted to the first speed gear pair 5. The rotation speed α ″ = α / k2 · k1 determined by the relationship between the rotation speed of the input shaft 3 before the shift and the gear ratios of the gear pairs 5 and 6 before and after the shift is the first speed gear pair in the case of the shift down shift. 5 is referred to as “synchronous rotation speed”. The synchronous rotation speed is a rotation speed at which the rotation speeds of the first inner ring 11 and the first outer ring 12 of the first clutch 10 disposed in the gear pair 5 after the shift are equal. Thus, in order to transmit power from the input shaft 3 to the output shaft 4 via the first clutch 10, it is necessary to make the rotational speed (rotational speed) of the input shaft 3 after shifting greater than the synchronous rotational speed. . On the contrary, the transmission of power from the input shaft 3 to the output shaft 4 can be cut off by setting the rotational speed (rotational speed) of the input shaft 3 before the shift to the synchronous rotational speed or less. In the present embodiment, when calculated in the same manner, the synchronous rotational speed of the second speed gear pair 6 in the case of the downshift is α / k3 · k2 (where α is the input shaft before the shift) 3 rotation speed (number of rotations)).
 このように、シフトダウン変速を行う場合には、現状の変速段の歯車対6の第1クラッチ10の荷重付与装置15を作動させるだけで、変速が可能となる。また、入力軸3の回転数が変速後の歯車対5の同期回転数より低いときは、低速段における歯車対5の第1スプラグ13は反セルフロック方向に傾動した状態となるため、動力源(エンジン111)から低速段の歯車対5に動力は伝達されない。しかし、入力軸3の回転数を上げて変速後の歯車対5における同期回転数と等しくなると、低速段の歯車対5における第1スプラグ13はセルフロック方向に傾動し、入力軸3から低速段の歯車対5に動力が伝達される状態となる。このように、動力の伝達が行われる変速時には入力軸3の回転数と同期回転数とが一致するため、回転数変化がないことと等しくなる。よって、ダウンシフト時の変速ショックを防止できる。 Thus, when a downshift is performed, the shift can be performed only by operating the load applying device 15 of the first clutch 10 of the gear pair 6 at the current shift stage. When the rotational speed of the input shaft 3 is lower than the synchronous rotational speed of the gear pair 5 after the shift, the first sprags 13 of the gear pair 5 at the low speed stage are tilted in the anti-self-locking direction. Power is not transmitted from the (engine 111) to the low-speed gear pair 5. However, when the rotational speed of the input shaft 3 is increased to be equal to the synchronous rotational speed of the gear pair 5 after the speed change, the first sprags 13 in the low speed gear pair 5 are tilted in the self-locking direction, and the low speed stage from the input shaft 3 The power is transmitted to the gear pair 5. In this way, the speed of the input shaft 3 coincides with the synchronous speed at the time of transmission where power is transmitted, which is equivalent to no change in the speed. Therefore, a shift shock at the time of downshift can be prevented.
 次いで、図10を参照して、車両用制御装置130の詳細構成について説明する。図10は、車両用制御装置130の電気的構成を示したブロック図である。車両用制御装置130は、図7に示すように、CPU61、ROM62及びRAM63を備え、それらがバスライン64を介して入出力ポート65に接続されている。また、入出力ポート65には、荷重付与装置15等の装置が接続されている。 Next, a detailed configuration of the vehicle control device 130 will be described with reference to FIG. FIG. 10 is a block diagram showing an electrical configuration of the vehicle control device 130. As shown in FIG. 7, the vehicle control device 130 includes a CPU 61, a ROM 62, and a RAM 63, which are connected to the input / output port 65 via the bus line 64. The input / output port 65 is connected to a device such as the load applying device 15.
 CPU61は、バスライン64により接続された各部を制御する演算装置であり、ROM62は、CPU61により実行される制御プログラム(例えば、図11や図12に図示されるフローチャートのプログラム)や歯車対5,6,7の変速比などの固定値データ等を格納した書き換え不能な不揮発性のメモリである。RAM63は、制御プログラムの実行時に各種のデータを書き換え可能に記憶するためのメモリである。なお、ROM62は、車両100の走行速度に応じた最適変速段マップ(図示せず)を格納している。最適変速段マップは、例えば、走行速度がV1未満のときの最適変速段は第1速、走行速度がV1~V2のときの最適変速段は第2速、走行速度がV2以上のときの最適変速段は第3速(但し、V1<V2)のように設定されている。 The CPU 61 is an arithmetic unit that controls each unit connected by the bus line 64, and the ROM 62 is a control program (for example, the program of the flowchart shown in FIGS. 11 and 12) executed by the CPU 61 or the gear pair 5. This is a non-rewritable nonvolatile memory storing fixed value data such as transmission ratios of 6 and 7. The RAM 63 is a memory for storing various data in a rewritable manner when executing the control program. The ROM 62 stores an optimum shift speed map (not shown) corresponding to the traveling speed of the vehicle 100. The optimum gear map is, for example, the first gear is the optimum gear when the running speed is less than V1, the second gear is the optimum gear when the running speed is V1 to V2, and the optimum when the running speed is V2 or higher. The gear position is set as the third speed (however, V1 <V2).
 シフトスイッチセンサ装置70は、運転者によるアップシフト操作またはダウンシフト操作の有無を検出すると共に、その検出結果をCPU61に出力するための装置である。本実施の形態においては、シフトレバー装置(図示せず)に内蔵されたシーケンシャルスイッチと、そのシーケンシャルスイッチの出力信号を処理してCPU61に出力する出力回路(図示せず)とを主に備えている。なお、自動変速装置においては、キックダウンによってダウンシフトを行うことができるが、この場合、シフトスイッチセンサ装置70は、キックダウンによるダウンシフト操作を検出すると共に、その検出結果をCPU61に出力する。 The shift switch sensor device 70 is a device for detecting the presence or absence of an upshift operation or a downshift operation by the driver and outputting the detection result to the CPU 61. The present embodiment mainly includes a sequential switch built in a shift lever device (not shown) and an output circuit (not shown) that processes an output signal of the sequential switch and outputs it to the CPU 61. Yes. In the automatic transmission, downshifting can be performed by kickdown. In this case, the shift switch sensor device 70 detects a downshift operation due to kickdown and outputs the detection result to the CPU 61.
 走行速度検出装置71は、車軸の回転速度に比例したパルスを検出すると共に、その検出結果をCPU61に出力するための装置である。CPU61は、走行速度検出装置71から入力された検出結果から、車両100の走行速度を取得することができる。 The travel speed detection device 71 is a device for detecting a pulse proportional to the rotational speed of the axle and outputting the detection result to the CPU 61. The CPU 61 can acquire the traveling speed of the vehicle 100 from the detection result input from the traveling speed detection device 71.
 荷重付与センサ装置72は、歯車対5,6,7に配設された各第1クラッチ10の各荷重付与装置15の作動(ON)または非作動(OFF)を検出すると共に、その検出結果をCPU61に出力するための装置であり、荷重付与装置15の作動(ON)または非作動(OFF)をそれぞれ検出する荷重付与センサ(図示せず)と、それら各荷重付与センサの検出結果を処理してCPU61に出力する出力回路(図示せず)とを主に備えている。また、CPU61は、荷重付与センサ装置72から入力された検出結果に基づき、現在の変速段(現状変速段)を取得する。本実施の形態においては、CPU61は、歯車対5の第1クラッチ10の荷重付与装置15がOFFであり歯車対6,7の各第1クラッチ10の荷重付与装置15がONである場合は第1速、歯車対5,6の各第1クラッチ10の荷重付与装置15がOFFであり歯車対7の第1クラッチ10の荷重付与装置15がONである場合は第2速、歯車対5,6,7の各第1クラッチ10の各荷重付与装置15がOFFである場合は第3速と取得する。 The load application sensor device 72 detects the operation (ON) or the non-operation (OFF) of each load application device 15 of each first clutch 10 disposed in the gear pair 5, 6 and 7, and the detection result is obtained. A device for outputting to the CPU 61, a load application sensor (not shown) for detecting the operation (ON) or non-operation (OFF) of the load application device 15 and the detection results of each load application sensor are processed. And an output circuit (not shown) for outputting to the CPU 61. Further, the CPU 61 acquires the current shift speed (current shift speed) based on the detection result input from the load application sensor device 72. In the present embodiment, the CPU 61 determines that the load applying device 15 of the first clutch 10 of the gear pair 5 is OFF and the load applying device 15 of the first clutch 10 of the gear pairs 6 and 7 is ON. When the load applying device 15 of each first clutch 10 of the first speed gear pair 5, 6 is OFF and the load applying device 15 of the first clutch 10 of the gear pair 7 is ON, the second speed, gear pair 5, If the load applying devices 15 of the first and sixth clutches 6 and 7 are OFF, the third speed is acquired.
 アクセルペダルセンサ装置73は、アクセルペダル(図示せず)の操作量およびアクセルペダルの踏み込み加減速度を検出すると共に、その検出結果をCPU61に出力するための装置であり、アクセルペダルの踏み込み量を検出する角度センサ(図示せず)と、アクセルペダルの踏み込み加減速度を検出する角速度センサ(図示せず)と、その角度センサや角速度センサの検出結果を処理してCPU61に出力する出力回路(図示せず)とを主に備えている。 The accelerator pedal sensor device 73 is a device for detecting the amount of operation of an accelerator pedal (not shown) and the acceleration / deceleration speed of the accelerator pedal, and outputting the detection result to the CPU 61, and detects the amount of depression of the accelerator pedal. An angle sensor (not shown) for detecting, an angular velocity sensor (not shown) for detecting acceleration / deceleration of the accelerator pedal, and an output circuit (not shown) for processing the detection results of the angle sensor and the angular velocity sensor and outputting them to the CPU 61 )) Mainly.
 入力軸回転数センサ装置74は、入力軸3の回転数を検出すると共に、その検出結果をCPU61に出力するための装置であり、回転数センサ(図示せず)と、その回転数センサの検出結果を処理してCPU61に出力する出力回路(図示せず)とを主に備えている。また、CPU61は、入力軸回転数センサ装置74から入力された入力軸3の回転数の検出結果と歯車対5,6,7の変速比とに基づき、上述の同期回転数を算出する。 The input shaft rotational speed sensor device 74 is a device for detecting the rotational speed of the input shaft 3 and outputting the detection result to the CPU 61. The rotational speed sensor (not shown) and detection of the rotational speed sensor An output circuit (not shown) that processes the result and outputs it to the CPU 61 is mainly provided. Further, the CPU 61 calculates the above-described synchronous rotational speed based on the detection result of the rotational speed of the input shaft 3 input from the input shaft rotational speed sensor device 74 and the gear ratios of the gear pairs 5, 6, and 7.
 図10に示す他の入出力装置80としては、例えば、車両100の加速度を検出する加速度センサなどが例示される。車両100の加速度の検出結果を考慮して、CPU61は変速要求があるかの判断を行うことも可能である。 As another input / output device 80 shown in FIG. 10, for example, an acceleration sensor for detecting the acceleration of the vehicle 100 is exemplified. In consideration of the detection result of the acceleration of the vehicle 100, the CPU 61 can also determine whether there is a shift request.
 次いで、図11を参照して、車両用制御装置130における変速制御処理について説明する。図11は第1実施の形態における変速制御処理を示すフローチャートである。この処理は、車両用制御装置130の電源が投入されている間、CPU61によって繰り返し(例えば、0.2ms間隔で)実行される処理であり、各荷重付与装置15の作動または非作動を切り替えることで、上述した変速ショックを防止する。 Next, with reference to FIG. 11, the shift control process in the vehicle control device 130 will be described. FIG. 11 is a flowchart showing the shift control process in the first embodiment. This process is a process that is repeatedly executed by the CPU 61 (for example, at intervals of 0.2 ms) while the power of the vehicle control device 130 is turned on, and switches between the operation and non-operation of each load applying device 15. Thus, the shift shock described above is prevented.
 CPU61は変速制御処理に関し、まず、車両100の走行速度を取得する(S1)。なお、この処理は、上述したように、走行速度検出装置71(図10参照)の検出結果を用いて行われる。次いで、S1の処理で取得した車両100の走行速度に応じた最適変速段と現状変速段(現在の変速段)を取得する(S2)。なお、この処理は、上述したように、ROM62に格納された最適変速段マップ(図示せず)と荷重付与センサ装置72(図10参照)の検出結果を用いて行われる。次に、CPU61は入力軸3の回転数を取得する(S3)。なお、この処理は、上述したように、入力軸回転数センサ装置74の検出結果を用いて行われる。 CPU61 first acquires the traveling speed of the vehicle 100 regarding a shift control process (S1). This process is performed using the detection result of the traveling speed detection device 71 (see FIG. 10) as described above. Next, the optimum shift speed and the current shift speed (current shift speed) corresponding to the travel speed of the vehicle 100 acquired in the process of S1 are acquired (S2). As described above, this process is performed using the optimum shift speed map (not shown) stored in the ROM 62 and the detection result of the load application sensor device 72 (see FIG. 10). Next, the CPU 61 acquires the rotation speed of the input shaft 3 (S3). This process is performed using the detection result of the input shaft rotational speed sensor device 74 as described above.
 次に、CPU61は現状変速段と最適変速段とが等しいかを判断する(S4)。その結果、現状変速段が最適変速段と等しいと判断される場合には(S4:Yes)、変速要求がないと判断されるため、この変速制御処理を終了する。一方、S4の処理の結果、現状変速段と最適変速段とが異なると判断される場合には(S4:No)、次に、CPU61は、現状変速段が最適変速段より小さいかを判断する(S5)。その結果、現状変速段が最適変速段より小さいと判断される場合には(S5:Yes)、現状変速段から高速段にシフトアップして最適変速段にするアップシフト要求があると判断されるため、次に、高速段(現状変速段が第1速の場合は第2速、現状変速段が第2速の場合は第3速)の同期回転数を取得する(S6)なお、この処理は、上述したように、S3の処理において取得した入力軸3の回転数とROM62に格納された歯車対5,6,7の変速比とから算出して取得する。 Next, the CPU 61 determines whether or not the current gear position and the optimum gear position are equal (S4). As a result, when it is determined that the current shift speed is equal to the optimal shift speed (S4: Yes), it is determined that there is no shift request, and thus the shift control process is terminated. On the other hand, if it is determined as a result of the process of S4 that the current gear position is different from the optimum gear position (S4: No), then the CPU 61 determines whether the current gear position is smaller than the optimum gear position. (S5). As a result, when it is determined that the current shift speed is smaller than the optimal shift speed (S5: Yes), it is determined that there is an upshift request to shift from the current shift speed to the high speed speed to the optimal shift speed. Therefore, the synchronous rotational speed of the high speed (the second speed when the current speed is the first speed and the third speed when the current speed is the second speed) is acquired (S6). Is calculated and acquired from the rotational speed of the input shaft 3 acquired in the process of S3 and the gear ratios of the gear pairs 5, 6 and 7 stored in the ROM 62, as described above.
 次に、CPU61は入力軸3の回転数を低下させるため、動力源であるエンジン111の回転数ダウン指令を出力する(S7)。回転数ダウン指令は、エンジン111の回転数を低下させるために、バルブを閉止する、絞り弁を閉止する等のいずれか1以上の処理を行う指令である。この処理により、エンジン111の回転数を低下させ、入力軸3の回転数を低下させる。次いで、CPU61は第2クラッチ20の荷重付与装置15をオフする(S8)。これにより、図8を参照して説明したように、入力軸3の回転エネルギーを利用してジェネレータモータ112を駆動させることで、入力軸3の回転数(回転速度)を短時間で低下させることができると共に、発電量を増やしエネルギーを有効活用できる。さらに、低速段の第1クラッチ10の第1スプラグ13は反セルフロック方向に傾動した状態となり、高速段の第1クラッチ10の荷重付与装置15は作動しているため(ON)、前輪101(図1参照)に連結された出力軸4は被動歯車5b,6b,7b(図2参照)を空転する。その結果、車両100(図1参照)の走行速度はほとんど変化しない。よって、運転者に減速感を与えることなく、入力軸3の回転数を低下させることができる。 Next, the CPU 61 outputs a rotation speed down command for the engine 111 as a power source in order to reduce the rotation speed of the input shaft 3 (S7). The rotational speed down command is a command for performing one or more processes such as closing a valve and closing a throttle valve in order to reduce the rotational speed of the engine 111. By this process, the rotational speed of the engine 111 is decreased, and the rotational speed of the input shaft 3 is decreased. Next, the CPU 61 turns off the load applying device 15 of the second clutch 20 (S8). As a result, as described with reference to FIG. 8, the rotational speed (rotational speed) of the input shaft 3 can be reduced in a short time by driving the generator motor 112 using the rotational energy of the input shaft 3. Can increase the amount of power generation and effectively use energy. Further, since the first sprag 13 of the first clutch 10 at the low speed stage is tilted in the anti-self-lock direction, and the load applying device 15 of the first clutch 10 at the high speed stage is operating (ON), the front wheel 101 ( The output shaft 4 connected to (see FIG. 1) idles the driven gears 5b, 6b, 7b (see FIG. 2). As a result, the traveling speed of the vehicle 100 (see FIG. 1) hardly changes. Therefore, the rotational speed of the input shaft 3 can be reduced without giving the driver a feeling of deceleration.
 次いで、CPU61は、S7及びS8の処理によって低下した入力軸3の回転数を取得する(S9)。なお、この処理は、上述したように、入力軸回転数センサ装置74の検出結果を用いて行われる。次に、CPU61は、高速段における歯車対における同期回転数より所定回転数(γ)低い目標回転数および同期回転数と、S9の処理によって取得した入力軸3の回転数とを比較して、入力軸3の回転数が目標回転数以上かつ同期回転数以下であるかを判断する(S10)。なお、γは各センサの精度にもよるが、同期回転数の10%程度とすることができる。その結果、回転数が目標回転数より小さいか同期回転数より大きいと判断される場合には(S10:No)、S7の処理に戻って処理を続行する。一方、S10の処理の結果、回転数が目標回転数以上かつ同期回転数以下であると判断される場合には(S10:Yes)、変速ショックが生じないと判断されるため、高速段(現状変速段が第1速の場合は第2速、現状変速段が第2速の場合は第3速)の各荷重付与装置15をオフすると共に、第2クラッチ20の荷重付与装置15をオンして(S11)、シフトアップを行い、この変速制御処理を終了する。アップシフト後、エンジン111(図2参照)の回転数を上昇させる際に、第3クラッチ30は第1伝達軸2から第2伝達軸9への動力の伝達を遮断し、第2クラッチ20は荷重付与装置15(図4参照)を作動することによりにより第1伝達軸2から第2伝達軸9への動力の伝達を遮断するので、ジェネレータモータ112の内部抵抗やイナーシャが駆動抵抗となってエネルギー損失が生じることを防止でき、エネルギーを有効活用できる。 Next, the CPU 61 obtains the rotational speed of the input shaft 3 that has decreased due to the processing of S7 and S8 (S9). This process is performed using the detection result of the input shaft rotational speed sensor device 74 as described above. Next, the CPU 61 compares the target rotational speed and the synchronous rotational speed that are lower than the synchronous rotational speed of the gear pair in the high speed stage by a predetermined rotational speed (γ) with the rotational speed of the input shaft 3 acquired by the process of S9. It is determined whether the rotational speed of the input shaft 3 is equal to or higher than the target rotational speed and equal to or lower than the synchronous rotational speed (S10). Note that γ can be about 10% of the synchronous rotational speed, although it depends on the accuracy of each sensor. As a result, if it is determined that the rotational speed is smaller than the target rotational speed or larger than the synchronous rotational speed (S10: No), the process returns to S7 and continues. On the other hand, if it is determined that the rotational speed is equal to or higher than the target rotational speed and equal to or lower than the synchronous rotational speed as a result of the process of S10 (S10: Yes), it is determined that no shift shock will occur, so The load applying device 15 for the second speed when the gear position is the first speed and the third speed when the current gear position is the second speed) is turned off, and the load applying device 15 for the second clutch 20 is turned on. (S11), the upshift is performed, and this shift control process is terminated. When the rotational speed of the engine 111 (see FIG. 2) is increased after the upshift, the third clutch 30 cuts off the transmission of power from the first transmission shaft 2 to the second transmission shaft 9, and the second clutch 20 Since the transmission of power from the first transmission shaft 2 to the second transmission shaft 9 is interrupted by operating the load applying device 15 (see FIG. 4), the internal resistance and inertia of the generator motor 112 become drive resistance. Energy loss can be prevented and energy can be used effectively.
 S11の処理により、入力軸3の回転数が変速後の同期回転数より低くければ、高速段におけるスプラグは反セルフロック方向に傾動した状態となるため、エンジン111(動力源)から高速段の歯車対に動力は伝達されない。次いで、運転者がアクセルペダル(図示せず)の踏込量を増やし、入力軸3の回転数が変速後の同期回転数を超えると、高速段の歯車対における第1スプラグ13はセルフロック方向に傾動し、入力軸3から高速段の歯車対に動力が伝達される状態となる。このように、動力が伝達される変速時には、入力軸3の回転数と同期回転数とが一致するため、回転数変化がないことと等しくなる。よって、アップシフト時の変速ショックを防止できる。 If the rotation speed of the input shaft 3 is lower than the synchronized rotation speed after the shift in the process of S11, the sprag at the high speed stage is tilted in the anti-self-lock direction, so that the engine 111 (power source) No power is transmitted to the gear pair. Next, when the driver increases the amount of depression of an accelerator pedal (not shown) and the rotational speed of the input shaft 3 exceeds the synchronous rotational speed after shifting, the first sprag 13 in the high-speed gear pair is moved in the self-locking direction. It tilts and power is transmitted from the input shaft 3 to the high-speed gear pair. In this way, at the time of a shift in which power is transmitted, the rotational speed of the input shaft 3 and the synchronous rotational speed coincide with each other, which is equivalent to no change in the rotational speed. Therefore, a shift shock at the time of upshift can be prevented.
 また、入力軸3の回転数が変速後の同期回転数より低い間は、高速段における第1スプラグ13は反セルフロック方向に傾動した状態のため、動力は伝達されないが、車両100は惰性走行しほとんど減速しない。このため運転者に減速感を与えずに変速できる。さらに、変速ショックを防止する制御が入力軸3の回転数だけに基づいて行われると共に、荷重付与装置15の作動と非作動とを切り替えるだけで変速できるため、制御を簡素化できる。 Further, while the rotational speed of the input shaft 3 is lower than the synchronous rotational speed after the shift, the first sprag 13 at the high speed stage is tilted in the anti-self-locking direction, so that no power is transmitted, but the vehicle 100 is coasting. And hardly slow down. For this reason, it is possible to shift without giving the driver a feeling of deceleration. Furthermore, the control for preventing the shift shock is performed based only on the rotational speed of the input shaft 3, and the speed can be changed by simply switching between the operation and the non-operation of the load applying device 15. Therefore, the control can be simplified.
 また、S10の処理において入力軸3の回転数が目標回転数以上かつ同期回転数以下であるかを判断するので、S11の処理が開始される時点で、入力軸3の回転数が目標回転数未満になることを防ぐことができる。よって、入力軸3の回転数が同期回転数を超えて、動力が伝達されるようになるまでの時間を短くすることができ、変速要求から変速完了までの時間を短縮できる。 Further, since it is determined in the process of S10 whether the rotational speed of the input shaft 3 is equal to or higher than the target rotational speed and equal to or lower than the synchronous rotational speed, the rotational speed of the input shaft 3 is set to the target rotational speed when the processing of S11 is started. Can be prevented. Therefore, the time from when the rotational speed of the input shaft 3 exceeds the synchronous rotational speed until the power is transmitted can be shortened, and the time from the shift request to the completion of the shift can be shortened.
 一方、S5の処理の結果、現状変速段が最適変速段より大きいと判断される場合には(S5:No)、現状変速段から低速段に落として最適変速段にするダウンシフト要求があると判断されるため、次に、CPU61は低速段(現状変速段が第3速の場合は第2速、現状変速段が第2速の場合は第1速)の同期回転数を取得する(S12)なお、この処理は、上述したように、S3の処理において取得した入力軸3の回転数と歯車対5,6,7の変速比とから算出して取得する。次いで、CPU61は低速段における同期回転数と入力軸3の回転数とを比較して、入力軸3の回転数が同期回転数以下かを判断する(S13)。その結果、回転数が同期回転数より大きいと判断される場合には(S13:No)、シフトダウンを行わずに現状の変速段を維持するため、この変速制御処理を終了する。一方、S13の処理において、入力軸3の回転数が同期回転数以下であると判断される場合には(S13:Yes)、変速ショックが生じないと判断されるため、現状の変速段の荷重付与装置15をオンして(S14)、シフトダウンを行う。 On the other hand, if it is determined as a result of the process of S5 that the current shift speed is greater than the optimal shift speed (S5: No), there is a downshift request to drop the current shift speed to the low speed speed to the optimal shift speed. Next, the CPU 61 obtains the synchronous rotational speed at the low speed (the second speed when the current speed is the third speed and the first speed when the current speed is the second speed) (S12). Note that, as described above, this process is obtained by calculating from the rotational speed of the input shaft 3 and the gear ratios of the gear pairs 5, 6 and 7 obtained in the process of S3. Next, the CPU 61 compares the synchronous rotational speed at the low speed stage with the rotational speed of the input shaft 3, and determines whether the rotational speed of the input shaft 3 is equal to or lower than the synchronous rotational speed (S13). As a result, when it is determined that the rotational speed is greater than the synchronous rotational speed (S13: No), this shift control process is terminated in order to maintain the current shift speed without performing a downshift. On the other hand, in the process of S13, when it is determined that the rotation speed of the input shaft 3 is equal to or less than the synchronous rotation speed (S13: Yes), it is determined that no shift shock will occur, and therefore the current shift stage load. The assigning device 15 is turned on (S14), and downshifting is performed.
 次に、CPU61は、ジェネレータモータ112(図2参照)の駆動指令を出力し(S15)、この変速制御処理を終了する。この処理の結果、ジェネレータモータ112による駆動力が、第2伝達軸9、キャリア50cと伝達され、第3クラッチ30を介して第1伝達軸2、伝達歯車対2a、入力軸3と伝達されることにより、入力軸3の回転数を短時間で同期回転数まで上昇させることができる。よって、ダウンシフト変速要求からダウンシフトを完了するまでの時間を短縮できる。なお、第3クラッチ30は、入力軸3からジェネレータモータ112への動力の入力を遮断するので、ジェネレータモータ112の内部抵抗やイナーシャが、車両100の走行の駆動抵抗となることを防止できる。 Next, the CPU 61 outputs a drive command for the generator motor 112 (see FIG. 2) (S15), and ends this shift control process. As a result of this processing, the driving force by the generator motor 112 is transmitted to the second transmission shaft 9 and the carrier 50c, and is transmitted to the first transmission shaft 2, the transmission gear pair 2a, and the input shaft 3 via the third clutch 30. As a result, the rotational speed of the input shaft 3 can be increased to the synchronous rotational speed in a short time. Therefore, the time from the downshift request to the completion of the downshift can be shortened. The third clutch 30 blocks the input of power from the input shaft 3 to the generator motor 112, so that the internal resistance and inertia of the generator motor 112 can be prevented from becoming driving resistance for traveling of the vehicle 100.
 ここで、S14の処理により、入力軸3の回転数が変速後の同期回転数より小さければ、低速段における第1スプラグ13は反セルフロック方向に傾動した状態となるため、エンジン111(動力源)から低速段の歯車対に動力は伝達されない。運転者がアクセルペダルの踏込量を増やし、入力軸3の回転数が変速後の同期回転数を超えると、低速段における第1スプラグ13はセルフロック方向に傾動し、入力軸3から低速段の歯車対に動力が伝達される状態となる。このように、動力の伝達の切り替えが行われる変速時には、入力軸3の回転数と同期回転数とが一致するため、回転数変化がないことと等しくなる。よって、ダウンシフト時の変速ショックを防止できる。 Here, if the rotation speed of the input shaft 3 is smaller than the synchronized rotation speed after the shift in the process of S14, the first sprag 13 in the low speed stage is tilted in the anti-self-lock direction, and therefore the engine 111 (power source ) To the low speed gear pair. When the driver increases the amount of depression of the accelerator pedal and the rotational speed of the input shaft 3 exceeds the synchronous rotational speed after the shift, the first sprag 13 at the low speed stage tilts in the self-locking direction, and the low speed stage from the input shaft 3 Power is transmitted to the gear pair. In this way, at the time of shifting in which the transmission of power is switched, the rotational speed of the input shaft 3 and the synchronous rotational speed coincide with each other, which is equivalent to no change in the rotational speed. Therefore, a shift shock at the time of downshift can be prevented.
 次いで、図12を参照して、第2実施の形態における変速制御処理について説明する。図12はこの変速制御処理を示すフローチャートである。この処理は、運転者がシフトレバー装置(図示せず)を用いてアップシフトやダウンシフトの要求を行う場合に、変速ショックの防止を図るための処理である。この処理は、車両用制御装置130の電源が投入されている間、CPU61によって繰り返し(例えば、0.2ms間隔で)実行される。 Next, the shift control process in the second embodiment will be described with reference to FIG. FIG. 12 is a flowchart showing this shift control process. This process is a process for preventing a shift shock when the driver requests an upshift or a downshift using a shift lever device (not shown). This process is repeatedly executed by the CPU 61 (for example, at intervals of 0.2 ms) while the vehicle control device 130 is powered on.
 CPU61は変速制御処理に関し、まず、現状変速段(現在の変速段)を取得する(S21)。なお、この処理は、上述したように、荷重付与センサ装置72の検出結果を用いて行われる。次に、CPU61は入力軸3の回転数を取得する(S22)。なお、この処理は、上述したように、入力軸回転数センサ装置74を用いて行われる。次に、CPU61はシフトダウン信号が入力されたかを判断する(S23)。なお、この処理は、上述したように、シフトスイッチセンサ装置70を用いて行う。その結果、シフトダウン信号が入力されていないと判断される場合には(S23:No)、次に、CPU61は、シフトアップ信号が入力されたかを判断する(S24)。S24の処理の結果、シフトアップ信号も入力されていないと判断される場合には(S24:No)、運転者は変速を行う意思がないと判断されるため、この変速制御処理を終了する。 CPU 61 first acquires the current shift speed (current shift speed) regarding the shift control process (S21). This process is performed using the detection result of the load application sensor device 72 as described above. Next, the CPU 61 acquires the rotational speed of the input shaft 3 (S22). This process is performed using the input shaft rotational speed sensor device 74 as described above. Next, the CPU 61 determines whether a downshift signal has been input (S23). This process is performed using the shift switch sensor device 70 as described above. As a result, when it is determined that the downshift signal has not been input (S23: No), the CPU 61 then determines whether the upshift signal has been input (S24). As a result of the process of S24, when it is determined that the upshift signal is not input (S24: No), it is determined that the driver does not intend to perform a shift, and thus the shift control process is terminated.
 一方、S24の処理の結果、シフトアップ信号が入力されたと判断される場合には(S24:Yes)、運転者に現状変速段から高速段へのアップシフト要求があると判断されるため、次に、高速段(現状変速段が第1速の場合は第2速、現状変速段が第2速の場合は第3速)の同期回転数と、動力源(本実施の形態においてはエンジン111)の高速段の最小許容回転数を取得する(S26)。なお、この処理は、S22の処理において取得した入力軸3の回転数と歯車対5,6,7の変速比とから算出して同期回転数を取得すると共に、ROM62に格納された高速段の最小許容回転数を取得する。最少許容回転数は、エンジン111にノッキングを生じさせない最小の入力軸3の回転数であり、歯車対毎に設定されている。 On the other hand, if it is determined that the upshift signal has been input as a result of the processing in S24 (S24: Yes), it is determined that the driver has requested to upshift from the current gear position to the high speed gear. In addition, the synchronous rotational speed of the high speed stage (second speed when the current gear stage is the first speed, and third speed when the current gear stage is the second speed) and the power source (the engine 111 in the present embodiment). ) Is acquired (S26). In this process, the synchronous rotation speed is obtained by calculating from the rotation speed of the input shaft 3 and the gear ratio of the gear pairs 5, 6, 7 acquired in the process of S 22, and the high speed stage stored in the ROM 62 is acquired. Get the minimum allowable speed. The minimum allowable rotational speed is the minimum rotational speed of the input shaft 3 that does not cause knocking in the engine 111, and is set for each gear pair.
 次に、CPU61は、S22の処理において取得した回転数が、最小許容回転数より小さいかを判断する(S26)。S26の処理の結果、回転数が最小許容回転数より小さいと判断される場合は(S26:Yes)、高速段への変速を行うとエンジン111がノッキングを起こす可能性が高いため、ノッキングを防止するために現在の変速段を維持して、この変速制御処理を終了する。 Next, the CPU 61 determines whether or not the rotation speed acquired in the process of S22 is smaller than the minimum allowable rotation speed (S26). As a result of the processing of S26, when it is determined that the rotational speed is smaller than the minimum allowable rotational speed (S26: Yes), knocking is prevented because the engine 111 is likely to knock when shifting to the high speed stage. In order to do this, the current gear position is maintained, and this shift control process is terminated.
 一方、S26の処理の結果、回転数が動力源の最小許容回転数以上であると判断される場合は(S26:No)、CPU61は変速ショックを防止する目的で入力軸3の回転数を低下させるため、動力源であるエンジン111の回転数ダウン指令を出力する(S27)。回転数ダウン指令は、第1実施の形態において説明したものと同様なので、説明を省略する。次いで、CPU61は第2クラッチ20の荷重付与装置15をオフする(S28)。これにより、第1実施の形態における変速制御処理と同様に、入力軸3の回転エネルギーを利用してジェネレータモータ112を駆動させることで、入力軸3の回転数(回転速度)を短時間で低下させることができると共に、発電量を増やしエネルギーを有効活用できる。さらに、第1実施の形態において説明したように、入力軸3の回転数低下の影響が出力軸4に表れないので、運転者に減速感を与えることを防止できる。 On the other hand, if it is determined as a result of the processing in S26 that the rotational speed is equal to or greater than the minimum allowable rotational speed of the power source (S26: No), the CPU 61 reduces the rotational speed of the input shaft 3 for the purpose of preventing a shift shock. Therefore, an engine speed reduction command for the engine 111 as a power source is output (S27). Since the rotation speed down command is the same as that described in the first embodiment, the description thereof is omitted. Next, the CPU 61 turns off the load applying device 15 of the second clutch 20 (S28). Thereby, similarly to the shift control process in the first embodiment, the rotational speed (rotational speed) of the input shaft 3 is reduced in a short time by driving the generator motor 112 using the rotational energy of the input shaft 3. And can increase the amount of power generation and effectively use energy. Further, as described in the first embodiment, since the influence of the decrease in the rotational speed of the input shaft 3 does not appear on the output shaft 4, it is possible to prevent the driver from feeling decelerated.
 次いで、CPU61は、S27及びS28の処理によって低下した入力軸3の回転数を取得する(S29)。次に、CPU61は、高速段における歯車対における同期回転数より所定回転数(γ)低い目標回転数および同期回転数と、S29の処理によって取得した入力軸3の回転数とを比較して、入力軸3の回転数が目標回転数以上かつ同期回転数以下であるかを判断する(S30)。なお、γは各センサの精度にもよるが、同期回転数の10%程度とすることができる。その結果、回転数が目標回転数より小さいか同期回転数より大きいと判断される場合には(S30:No)、S27の処理に戻って処理を続行する。一方、S30の処理の結果、回転数が目標回転数以上かつ同期回転数以下であると判断される場合には(S30:Yes)、変速ショックが生じないと判断されるため、高速段(現状変速段が第1速の場合は第2速、現状変速段が第2速の場合は第3速)の荷重付与装置15をオフすると共に、第2クラッチ20の荷重付与装置15をオンして(S31)、シフトアップを行い、この変速制御処理を終了する。 Next, the CPU 61 obtains the rotational speed of the input shaft 3 that has decreased due to the processing of S27 and S28 (S29). Next, the CPU 61 compares the target rotational speed and the synchronous rotational speed that are lower than the synchronous rotational speed in the gear pair in the high speed stage by a predetermined rotational speed (γ) with the rotational speed of the input shaft 3 acquired by the process of S29, It is determined whether the rotational speed of the input shaft 3 is equal to or higher than the target rotational speed and equal to or lower than the synchronous rotational speed (S30). Note that γ can be about 10% of the synchronous rotational speed, although it depends on the accuracy of each sensor. As a result, when it is determined that the rotational speed is smaller than the target rotational speed or larger than the synchronous rotational speed (S30: No), the process returns to S27 and continues. On the other hand, if it is determined that the rotational speed is equal to or higher than the target rotational speed and equal to or lower than the synchronous rotational speed as a result of the processing in S30 (S30: Yes), it is determined that no shift shock will occur, so When the gear position is the first speed, the load application device 15 for the second speed and the third speed when the current gear position is the second speed) is turned off, and the load application device 15 for the second clutch 20 is turned on. (S31) A shift up is performed, and this shift control process is terminated.
 この変速制御処理においては、S26の処理の結果、回転数が変速後の最小許容回転数未満であると判断される場合に(S26:Yes)、変速制御処理を終了し、荷重付与装置15の現在の作動または非作動の状態を維持するので、動力源(エンジン111)にノッキングが生じることを防止できる。 In this shift control process, when it is determined that the rotation speed is less than the minimum allowable rotation speed after the shift (S26: Yes), the shift control process is terminated and the load applying device 15 Since the current operating or non-operating state is maintained, knocking of the power source (engine 111) can be prevented.
 一方、S23の処理の結果、シフトダウン信号が入力されたと判断される場合には(S23:Yes)、次に、CPU61はアクセルペダルが踏み込まれているかを判断する(S32)。なお、この処理は、上述のとおり、アクセルペダルセンサ装置73を用いて行う。S32の処理の結果、アクセルペダルの踏込量が0でないと判断される場合は(S32:No)、運転者はアクセルペダルを踏み込んで、キックダウンによりダウンシフトを行う意思があると判断されるため、この変速制御処理は終了する。 On the other hand, if it is determined that the downshift signal has been input as a result of the process of S23 (S23: Yes), the CPU 61 then determines whether the accelerator pedal is depressed (S32). This process is performed using the accelerator pedal sensor device 73 as described above. As a result of the processing of S32, when it is determined that the amount of depression of the accelerator pedal is not 0 (S32: No), it is determined that the driver depresses the accelerator pedal and intends to downshift by kickdown. This shift control process ends.
 一方、S32の処理の結果、アクセルペダルの踏込量が0であると判断される場合は(S32:Yes)、現状変速段から低速段へのダウンシフト要求があると判断されるため、次に、低速段(現状変速段が第3速の場合は第2速、現状変速段が第2速の場合は第1速)の同期回転数と、低速段の最大許容回転数とを取得する(S33)。なお、この処理は、S22の処理において取得した入力軸3の回転数と歯車対5,6,7の変速比とから算出して同期回転数を取得し、ROM62に格納された低速段の最大許容回転数を取得する。最大許容回転数は、エンジン111(動力源)にオーバーレブを生じさせない最大の入力軸の回転数であり、歯車対毎に設定されている。 On the other hand, if it is determined that the amount of depression of the accelerator pedal is 0 as a result of the processing of S32 (S32: Yes), it is determined that there is a downshift request from the current gear position to the low speed gear. The synchronous rotational speed of the low speed stage (the second speed when the current speed stage is the third speed and the first speed when the current speed stage is the second speed) and the maximum allowable speed of the low speed stage are acquired ( S33). In this process, the synchronous rotational speed is obtained by calculating from the rotational speed of the input shaft 3 and the gear ratio of the gear pairs 5, 6 and 7 obtained in the processing of S22, and the maximum of the low speed stage stored in the ROM 62 is obtained. Get the allowable rotation speed. The maximum permissible rotational speed is the maximum rotational speed of the input shaft that does not cause overrev in the engine 111 (power source), and is set for each gear pair.
 次に、CPU61はS22の処理において取得した回転数が最大許容回転数より大きいかを判断する(S34)。S34の処理の結果、回転数が最大許容回転数より大きいと判断される場合は(S34:Yes)、低速段への変速を行うとエンジン111がオーバーレブを起こす可能性が高いため、オーバーレブを防止するために現在の変速段を維持して、この変速制御処理を終了する。一方、S34の処理の結果、回転数が最大許容回転数以下であると判断される場合は(S34:No)、CPU61は低速段における同期回転数と入力軸3の回転数とを比較して、入力軸3の回転数が同期回転数以下かを判断する(S35)。その結果、回転数が同期回転数より大きいと判断される場合には(S35:No)、シフトダウンを行わずに現状の変速段を維持するため、この変速制御処理を終了する。一方、S35の処理において、入力軸3の回転数が同期回転数以下であると判断される場合には(S35:Yes)、変速ショックが生じないと判断されるため、現状の変速段の荷重付与装置15をオンして(S36)、シフトダウンを行い、この変速制御処理を終了する。 Next, the CPU 61 determines whether or not the rotation speed acquired in the process of S22 is larger than the maximum allowable rotation speed (S34). If it is determined as a result of the process of S34 that the rotational speed is greater than the maximum allowable rotational speed (S34: Yes), the engine 111 is likely to cause an overrev when shifting to a low speed stage, thus preventing the overrev. In order to do this, the current gear position is maintained, and this shift control process is terminated. On the other hand, if it is determined as a result of the process of S34 that the rotational speed is equal to or lower than the maximum allowable rotational speed (S34: No), the CPU 61 compares the synchronous rotational speed at the low speed stage with the rotational speed of the input shaft 3. Then, it is determined whether the rotational speed of the input shaft 3 is equal to or lower than the synchronous rotational speed (S35). As a result, when it is determined that the rotational speed is greater than the synchronous rotational speed (S35: No), this shift control process is terminated in order to maintain the current shift stage without performing a downshift. On the other hand, in the process of S35, when it is determined that the rotation speed of the input shaft 3 is equal to or lower than the synchronous rotation speed (S35: Yes), it is determined that no shift shock will occur, and therefore the current shift stage load. The imparting device 15 is turned on (S36), downshifting is performed, and this shift control process is terminated.
 この変速制御処理においては、S34の処理において、回転数が変速後の最大許容回転数より大きいと判断される場合に、変速制御処理を終了して、荷重付与装置15の現在の作動または非作動の状態を維持する。よって、入力軸3の回転数が高すぎる場合にはダウンシフトを行わないようにして、動力源(エンジン111)にオーバーレブが生じることを防止できる。 In this shift control process, if it is determined in S34 that the rotational speed is greater than the maximum allowable rotational speed after the shift, the shift control process is terminated and the current application or non-operation of the load applying device 15 is performed. Maintain the state. Therefore, when the rotational speed of the input shaft 3 is too high, it is possible to prevent the power source (engine 111) from being overrev by not performing a downshift.
 なお、本実施の形態においても第1実施の形態と同様に、CPU61は、S36の処理の後、ジェネレータモータ112(図2参照)の駆動指令を出力する場合もある(アシスト手段)。この処理により、ジェネレータモータ112による駆動力で入力軸3の回転数を短時間で同期回転数まで上昇させることができる。よって、ダウンシフト変速要求からダウンシフトを完了するまでの時間を短縮できる。 In this embodiment as well, as in the first embodiment, the CPU 61 may output a drive command for the generator motor 112 (see FIG. 2) after the process of S36 (assist means). With this process, the rotational speed of the input shaft 3 can be increased to the synchronous rotational speed in a short time by the driving force of the generator motor 112. Therefore, the time from the downshift request to the completion of the downshift can be shortened.
 なお、図11に示すフローチャート(変速制御処理)において、請求項1記載の回転数取得手段としてはS9の処理が、アップシフト要求判断手段としてはS4及びS5の処理が、高速段回転数判断手段としてはS10の処理が、荷重解除手段としてはS11の処理がそれぞれ該当する。請求項4記載のダウンシフト要求手段としてはS4及びS5の処理が、低速段回転数判断手段としてはS13の処理が、荷重付与手段としてはS14の処理がそれぞれ該当する。請求項6記載のモータ入力手段としてはS8の処理が該当し、請求項7記載のアシスト手段としてはS15の処理が該当する。 In the flow chart (shift control process) shown in FIG. 11, the processing at S9 is performed as the rotational speed acquisition means according to claim 1, and the processing at S4 and S5 is performed as the upshift request determining means. Is the process of S10, and the load releasing means is the process of S11. The downshift request means according to claim 4 corresponds to the processes of S4 and S5, the low speed stage rotation speed determination means corresponds to the process of S13, and the load application means corresponds to the process of S14. The motor input means according to claim 6 corresponds to the process of S8, and the assist means according to claim 7 corresponds to the process of S15.
 図12に示すフローチャート(変速制御処理)において、請求項1記載の回転数取得手段としてはS22及びS29の処理が、アップシフト要求判断手段としてはS23及びS24の処理が、高速段回転数判断手段としてはS30の処理が、荷重解除手段としてはS31の処理がそれぞれ該当する。請求項3記載の最小許容回転数判断手段としてはS26の処理が、第1維持手段としてはS26の処理の結果、Yesと判断された場合の処理がそれぞれ該当する。請求項4記載のダウンシフト要求手段としてはS23及びS32の処理が、低速段回転数判断手段としてはS35の処理が、荷重付与手段としてはS36の処理がそれぞれ該当する。請求項5記載の最大許容回転数判断手段としてはS34の処理が、第2維持手段としてはS34の処理の結果、Yesと判断された場合の処理がそれぞれ該当する。請求項6記載のモータ入力手段としてはS28の処理が該当する。 In the flowchart (shift control process) shown in FIG. 12, the processing of S22 and S29 is performed as the rotational speed acquisition unit according to claim 1, and the processing of S23 and S24 is performed as the upshift request determination unit. The process of S30 corresponds to the process, and the process of S31 corresponds to the load releasing means. The process of S26 corresponds to the minimum allowable rotational speed determination means according to claim 3, and the process when the result of the process of S26 is determined to be Yes as the first maintenance means. The downshift request means described in claim 4 corresponds to the processes of S23 and S32, the low speed stage rotation speed determination means corresponds to S35, and the load application means corresponds to S36. The process of S34 corresponds to the maximum allowable rotational speed determination means according to claim 5, and the process when the result of the process of S34 is determined as Yes as the second maintenance means. The motor input means described in claim 6 corresponds to the processing of S28.
 以上、実施の形態に基づき本発明を説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。 The present invention has been described above based on the embodiments. However, the present invention is not limited to the above embodiments, and various improvements and modifications can be made without departing from the spirit of the present invention. It can be easily guessed.
 上記各実施の形態では、車両用制御装置130は、図1に示す前輪駆動の車両100に搭載される場合について説明したが、必ずしもこれに限られるものではなく、後輪駆動の車両に搭載することも当然可能である。図13は、車両用制御装置130が搭載される後輪駆動の車両200を模式的に示した模式図である。車両200は、図13に示すように、後輪102(左の後輪102FL及び右の後輪102FR)を駆動するリアユニット120を備えている。リアユニット120は、動力源としてのエンジン111及びジェネレータモータ112と、それらエンジン111及びジェネレータモータ112の動力を後輪102に伝達する動力伝達装置201と、動力伝達装置201の変速制御処理を行う車両用制御装置130とを主に備えており、動力伝達装置201の出力軸4に伝達された動力がデファレンシャル装置を介して左右の後輪102に伝達されるよう構成されている。なお、エンジン111及びジェネレータモータ112の2つの動力を使い分けて後輪102を駆動可能に構成されているが、エンジン111又はジェネレータモータ112のいずれか片方で構成されている場合もある。エンジン111、ジェネレータモータ112のいずれも動力源とすることが可能である。 In each of the above-described embodiments, the case where the vehicle control device 130 is mounted on the front-wheel drive vehicle 100 shown in FIG. 1 is described, but the present invention is not necessarily limited to this, and is mounted on the rear-wheel drive vehicle. Of course it is also possible. FIG. 13 is a schematic diagram schematically showing a rear-wheel drive vehicle 200 on which the vehicle control device 130 is mounted. As shown in FIG. 13, the vehicle 200 includes a rear unit 120 that drives the rear wheels 102 (the left rear wheel 102FL and the right rear wheel 102FR). The rear unit 120 includes an engine 111 and a generator motor 112 as a power source, a power transmission device 201 that transmits the power of the engine 111 and the generator motor 112 to the rear wheels 102, and a vehicle that performs a shift control process of the power transmission device 201. The power control device 130 is mainly provided, and the power transmitted to the output shaft 4 of the power transmission device 201 is transmitted to the left and right rear wheels 102 via the differential device. Note that the rear wheel 102 can be driven by selectively using the two powers of the engine 111 and the generator motor 112, but may be configured by either the engine 111 or the generator motor 112. Either engine 111 or generator motor 112 can be used as a power source.
 図14は動力伝達装置201の内部構造を模式的に示した模式図である。上記各実施の形態における動力伝達装置1は、第1伝達軸2と第2伝達軸9との間に、動力の伝達を遮断する第2クラッチ20及び第3クラッチ30が配設されている場合について説明した。これに対し、図14に示す動力伝達装置201は、第2クラッチ20、第3クラッチ30及び第4クラッチ40が配設されておらず、第1伝達軸2が、増速機50のキャリア50cに、第2クラッチ20及び第3クラッチ30を介さずに連結されている。なお、増速機50のリングギヤ50rは動力伝達装置201の外郭をなすケース201aに回転不能に固定されている。動力伝達装置201は、エンジン111に連結された第1伝達軸2に増速機50を介してジェネレータモータ112が連結されているので、上記各実施の形態と同様に、アップシフトの際に、エンジン111からの動力をジェネレータモータ112に伝達することにより、入力軸3の回転数を短時間で低下させることができる。また、ジェネレータモータ112による駆動力で入力軸3の回転数を短時間で上昇させることができ、ダウンシフト変速要求から変速完了までの時間を短縮できる。なお、動力伝達装置201を前輪駆動の車両100に搭載することも可能である。 FIG. 14 is a schematic diagram schematically showing the internal structure of the power transmission device 201. In the power transmission device 1 in each of the above-described embodiments, the second clutch 20 and the third clutch 30 that interrupt transmission of power are disposed between the first transmission shaft 2 and the second transmission shaft 9. Explained. On the other hand, in the power transmission device 201 shown in FIG. 14, the second clutch 20, the third clutch 30, and the fourth clutch 40 are not provided, and the first transmission shaft 2 is the carrier 50 c of the speed increaser 50. In addition, the second clutch 20 and the third clutch 30 are not connected. Note that the ring gear 50r of the speed increaser 50 is fixed to a case 201a that forms an outline of the power transmission device 201 so as not to rotate. In the power transmission device 201, since the generator motor 112 is connected to the first transmission shaft 2 connected to the engine 111 via the speed increaser 50, in the case of an upshift, as in the above embodiments. By transmitting the power from the engine 111 to the generator motor 112, the rotational speed of the input shaft 3 can be reduced in a short time. Further, the rotational speed of the input shaft 3 can be increased in a short time by the driving force generated by the generator motor 112, and the time from the downshift request to the completion of the shift can be shortened. The power transmission device 201 can also be mounted on the front-wheel drive vehicle 100.
 上記第1実施の形態における変速制御処理では説明を省略したが、S11の処理において、高速段の歯車対6の第1クラッチ10の荷重付与装置15だけを非作動とし、低速段の歯車対5の第1クラッチ10の荷重付与装置15は作動させて、第1内輪11及び第1外輪12への第1スプラグ13の係合を強制的に解除しても良い。また、上記第2実施の形態においても、S31の処理において、高速段の歯車対6の第1クラッチ10の荷重付与装置15だけを非作動とし、低速段の歯車対5の第1クラッチ10の荷重付与装置15は作動させて第1内輪11及び第1外輪12への第1スプラグ13の係合を強制的に解除しても良い。 Although the description of the shift control process in the first embodiment is omitted, in the process of S11, only the load applying device 15 of the first clutch 10 of the high speed gear pair 6 is deactivated, and the low speed gear pair 5 is operated. The load applying device 15 of the first clutch 10 may be operated to forcibly release the engagement of the first sprag 13 to the first inner ring 11 and the first outer ring 12. Also in the second embodiment, in the process of S31, only the load applying device 15 of the first clutch 10 of the high speed gear pair 6 is deactivated, and the first clutch 10 of the low speed gear pair 5 is deactivated. The load applying device 15 may be operated to forcibly release the engagement of the first sprag 13 from the first inner ring 11 and the first outer ring 12.
 上記第1実施の形態における変速制御処理において、S7又はS8の処理を省略する場合もある。また、S7の処理とS8の処理の順序を入れ替える場合もある。上記第2実施の形態においても同様に、S7又はS9の処理を省略する場合もある。また、S7の処理とS8の処理の順序を入れ替える場合もある。いずれの場合も、入力軸3の回転数を低下させることができるからである。 In the shift control process in the first embodiment, the process of S7 or S8 may be omitted. Moreover, the order of the process of S7 and the process of S8 may be switched. Similarly, in the second embodiment, the process of S7 or S9 may be omitted. Moreover, the order of the process of S7 and the process of S8 may be switched. This is because in either case, the rotational speed of the input shaft 3 can be reduced.
 上記第1実施の形態における変速制御処理において、S10の処理では、入力軸3の回転数が目標回転数(同期回転数-γ)以上かつ同期回転数以下であるかを判断した。また、上記第2実施の形態における変速制御処理においても同様に、S30の処理では、入力軸3の回転数が目標回転数(同期回転数-γ)以上かつ同期回転数以下であるかを判断した。必ずしもこれらに限定されるものではなく、入力軸3の回転数が同期回転数以下(目標回転数より低くなる場合を含む)であるかを判断する場合もある。これらの場合も、減速感を生じさせることを防ぐと共に変速ショックを防止できるからである。 In the shift control process in the first embodiment, in the process of S10, it is determined whether the rotational speed of the input shaft 3 is equal to or higher than the target rotational speed (synchronous rotational speed−γ) and equal to or lower than the synchronous rotational speed. Similarly, in the shift control process in the second embodiment, in the process of S30, it is determined whether the rotational speed of the input shaft 3 is equal to or higher than the target rotational speed (synchronous rotational speed−γ) and equal to or lower than the synchronous rotational speed. did. It is not necessarily limited to these, and it may be determined whether the rotational speed of the input shaft 3 is equal to or lower than the synchronous rotational speed (including a case where the rotational speed is lower than the target rotational speed). This is also because in these cases, it is possible to prevent a feeling of deceleration and to prevent a shift shock.
 上記各実施の形態においては、エンジン111を動力源とする場合について説明したが、必ずしもこれに限られるものではなく、モータを動力源とする場合もある。モータを動力源とする場合、第1実施の形態におけるS7の処理および第2実施の形態におけるS27の処理(回転数ダウン指令)では、モータに供給する電流を抑制する等によりモータの回転数を低下させる。なお、モータを動力源とする場合は、第2実施の形態におけるS26の処理(最小許容回転数判断手段)を省略できる。ノッキングは生じないからである。 In each of the above embodiments, the case where the engine 111 is used as a power source has been described. However, the present invention is not necessarily limited to this, and a motor may be used as a power source. When the motor is used as the power source, in the process of S7 in the first embodiment and the process of S27 in the second embodiment (rotational speed down command), the rotational speed of the motor is reduced by suppressing the current supplied to the motor. Reduce. If the motor is used as the power source, the process of S26 (minimum allowable rotation speed determination means) in the second embodiment can be omitted. This is because knocking does not occur.
 また、上記各実施の形態では、荷重付与装置15(アクチュエータ15a)が電動機(交流電動機または直流電動機)により構成される場合を説明したが、必ずしもこれに限られるものではなく、他の動力源を採用することは当然可能である。他の動力源としては、例えば、直流電動機、油圧モータ、空気圧シリンダ、油圧シリンダ、交流ソレノイド及び直流ソレノイド等が例示される。 Moreover, although each said embodiment demonstrated the case where the load provision apparatus 15 (actuator 15a) was comprised by the electric motor (alternating current motor or direct current motor), it is not necessarily restricted to this, Other power sources are used. It is naturally possible to adopt. Examples of other power sources include a DC motor, a hydraulic motor, a pneumatic cylinder, a hydraulic cylinder, an AC solenoid, and a DC solenoid.
 ここで、アクチュエータ15aをソレノイドにより構成する場合には、歯車機構などによりスプラグ13に荷重を付与する場合に限られず、例えば、電磁力を利用してスプラグ13に荷重を付与するように構成しても良い。 Here, when the actuator 15a is configured by a solenoid, the actuator 15a is not limited to the case where a load is applied to the sprag 13 by a gear mechanism or the like. For example, the actuator 15a is configured to apply a load to the sprag 13 using electromagnetic force. Also good.
 上記各実施の形態では、第1クラッチ10を出力軸4に設けた場合について説明したが、必ずしもこれに限られるものではなく、入力軸3に設けることも当然可能である。また、第1クラッチ10の第1外輪12の外側に被動歯車5b,6b,7bが形成された場合について説明したが、必ずしもこれに限られるものではない。被動歯車5b,6b,7bの間に第1クラッチ10を設け、第1クラッチ10の第1外輪12と被動歯車5b,6b,7bとを連結した構成とすることも可能である。 In each of the above embodiments, the case where the first clutch 10 is provided on the output shaft 4 has been described. However, the present invention is not necessarily limited to this, and it is naturally possible to provide the first clutch 10 on the input shaft 3. Moreover, although the case where the driven gears 5b, 6b, and 7b were formed outside the first outer ring 12 of the first clutch 10 was described, the present invention is not necessarily limited thereto. The first clutch 10 may be provided between the driven gears 5b, 6b, and 7b, and the first outer ring 12 of the first clutch 10 and the driven gears 5b, 6b, and 7b may be connected.
 上記各実施の形態においては、増速機50は遊星歯車装置で構成されている場合について説明したが、必ずしもこれに限られるものではなく、遊星歯車装置以外の歯車装置を用いることは当然可能である。 In each of the above embodiments, the case where the speed increasing gear 50 is configured by a planetary gear device has been described. However, the present invention is not necessarily limited thereto, and it is naturally possible to use a gear device other than the planetary gear device. is there.
 上記各実施の形態では、第2クラッチ20が、第2スプラグ23の解除機能付きのスプラグ型ワンウェイクラッチを備えて構成される場合について説明したが、必ずしもこれに限られるものではない。一定の方向に動力が伝達され、その動力の伝達を遮断できる機能を有していれば、他のクラッチを用いることが可能である。他のクラッチとしては、ローラ等により動力が伝達されるクラッチを挙げることができる。第3クラッチ30についても同様に、スプラグ型ワンウェイクラッチを備えて構成される場合について説明したが、必ずしもこれに限られるものではない。一定の方向に動力が伝達される機能を有していれば、他のクラッチを用いることが可能である。他のクラッチとしては、ローラ等により動力が伝達されるクラッチを挙げることができる。 In each of the above embodiments, the case where the second clutch 20 is configured to include the sprag type one-way clutch with the release function of the second sprag 23 has been described, but the present invention is not necessarily limited thereto. Any other clutch can be used as long as it has a function of transmitting power in a certain direction and blocking the power transmission. Examples of the other clutch include a clutch to which power is transmitted by a roller or the like. Similarly, the case where the third clutch 30 is configured to include the sprag type one-way clutch has been described, but is not necessarily limited thereto. Another clutch can be used as long as it has a function of transmitting power in a certain direction. Examples of the other clutch include a clutch to which power is transmitted by a roller or the like.
 2       第1伝達軸
 3       入力軸
 4       出力軸
 5,6,7   歯車対
 9       第2伝達軸
 10      第1クラッチ
 11      第1内輪(内輪)
 11a     外周面
 12      第1外輪(外輪)
 12a     内周面
 13      第1スプラグ(スプラグ)
 13a,13b 係合面
 14      保持器
 15      荷重付与装置
 16      リボンスプリング(付勢部材)
 20      第2クラッチ
 30      第3クラッチ
 100,200 車両
 111     エンジン(動力源)
 112     ジェネレータモータ(動力源)
 130     車両用制御装置
 A,B     接点
 O       軸心
2 First transmission shaft 3 Input shaft 4 Output shaft 5, 6, 7 Gear pair 9 Second transmission shaft 10 First clutch 11 First inner ring (inner ring)
11a outer peripheral surface 12 1st outer ring (outer ring)
12a Inner peripheral surface 13 First sprag (sprag)
13a, 13b Engagement surface 14 Cage 15 Load applying device 16 Ribbon spring (biasing member)
20 Second clutch 30 Third clutch 100, 200 Vehicle 111 Engine (power source)
112 Generator motor (power source)
130 Vehicle Control Device A, B Contact O Axis

Claims (8)

  1.  動力源からの動力が入力される入力軸と、その入力軸に平行に配設された出力軸と、その出力軸および前記入力軸に配設され互いに噛み合って異なる変速比となるように設定された複数の歯車対と、その歯車対のそれぞれ一方の歯車に配設され前記入力軸から入力される動力を前記出力軸に遮断可能に伝達する一方、前記出力軸から前記入力軸への動力の伝達を遮断する第1クラッチとを備え、
     前記第1クラッチは、
     断面円形状の外周面を有し軸心回りに回転可能に構成され前記入力軸若しくは前記出力軸または前記歯車に連結される内輪と、
     その内輪の外周面に対向する断面円形状の内周面を有し前記軸心回りに回転可能に構成され前記歯車または前記入力軸若しくは前記出力軸に連結される外輪と、
     その外輪の内周面および前記内輪の外周面にそれぞれ接する係合面を有し前記内輪の外周面および前記外輪の内周面の対向間において円周方向に複数配設されるスプラグと、
     そのスプラグを前記内輪の外周面および前記外輪の内周面の円周方向へ傾動可能に保持する保持器と、
     前記スプラグに付勢力を付与して前記内輪の外周面および前記外輪の内周面に前記スプラグの係合面が接するようにそのスプラグを前記円周方向のセルフロック方向へ傾動させる付勢部材と、
     その付勢部材の付勢力に抗して前記保持器を介して前記スプラグに荷重を付与して前記セルフロック方向とは逆方向であって前記円周方向の反セルフロック方向へ前記スプラグを傾動させる荷重付与装置とを備えた車両に用いられる車両用制御装置であって、
     前記入力軸の回転数を取得する回転数取得手段と、
     高速段への変速要求が前記車両にあるかを判断するアップシフト要求判断手段と、
     そのアップシフト要求判断手段により前記車両に高速段への変速要求があると判断される場合に、前記回転数取得手段により取得された回転数が変速後の前記歯車対に配設された前記第1クラッチの前記内輪と前記外輪との回転数が等しくなる同期回転数以下であるかを判断する高速段回転数判断手段と、
     その高速段回転数判断手段により前記回転数が変速後の同期回転数以下であると判断される場合に、所定の前記荷重付与装置を非作動として、高速段の前記歯車対に配設された前記第1クラッチの前記スプラグに付与した荷重を解除する荷重解除手段とを備えていることを特徴とする車両用制御装置。
    An input shaft to which power from a power source is input, an output shaft disposed in parallel to the input shaft, and the output shaft and the input shaft that are engaged with each other and set to have different gear ratios. A plurality of gear pairs, and the power input from the input shaft disposed on one gear of each of the gear pairs is transmitted to the output shaft so as to be cut off, while the power from the output shaft to the input shaft is transmitted. A first clutch for interrupting transmission;
    The first clutch is
    An inner ring having an outer peripheral surface having a circular cross section and configured to be rotatable about an axis and connected to the input shaft or the output shaft or the gear;
    An outer ring having a circular inner peripheral surface facing the outer peripheral surface of the inner ring and configured to be rotatable about the axis and connected to the gear or the input shaft or the output shaft;
    A plurality of sprags arranged in a circumferential direction between the outer peripheral surface of the inner ring and the inner peripheral surface of the outer ring, each of which has an engagement surface in contact with the inner peripheral surface of the outer ring and the outer peripheral surface of the inner ring;
    A cage that holds the sprag so as to be tiltable in a circumferential direction of the outer peripheral surface of the inner ring and the inner peripheral surface of the outer ring;
    A biasing member that applies a biasing force to the sprag and tilts the sprag in the circumferential self-locking direction so that the engagement surface of the sprag is in contact with the outer peripheral surface of the inner ring and the inner peripheral surface of the outer ring; ,
    A load is applied to the sprag through the retainer against the urging force of the urging member to tilt the sprag in a direction opposite to the self-locking direction and in the circumferential anti-locking direction. A vehicle control device for use in a vehicle including a load applying device,
    A rotational speed acquisition means for acquiring the rotational speed of the input shaft;
    Upshift request determining means for determining whether the vehicle has a shift request to a high speed stage;
    When it is determined by the upshift request determination means that the vehicle has a request for shifting to a high speed, the rotation speed acquired by the rotation speed acquisition means is the first gear disposed in the gear pair after the shift. High-speed rotation speed determination means for determining whether the rotation speed of the inner ring and the outer ring of one clutch is equal to or less than a synchronous rotation speed that is equal;
    When the high-speed stage rotational speed determination means determines that the rotational speed is equal to or lower than the synchronous rotational speed after shifting, the predetermined load applying device is deactivated, and the high-speed stage rotational speed determination means is disposed on the high-speed stage gear pair. A vehicle control device comprising: a load releasing means for releasing a load applied to the sprag of the first clutch.
  2.  前記荷重解除手段は、前記高速段回転数判断手段により前記回転数が変速後の前記同期回転数より所定回転数低い目標回転数以上かつ前記同期回転数以下であると判断される場合に、所定の前記荷重付与装置を非作動として、高速段の前記歯車対に配設された前記第1クラッチの前記スプラグに付与した荷重を解除することを特徴とする請求項1記載の車両用制御装置。 The load release means is predetermined when the high-speed stage rotation speed determination means determines that the rotation speed is equal to or higher than a target rotation speed that is lower than the synchronous rotation speed after shifting by a predetermined rotation speed and equal to or less than the synchronous rotation speed. 2. The vehicle control device according to claim 1, wherein the load applying device is deactivated and the load applied to the sprags of the first clutch disposed in the gear pair at a high speed is released.
  3.  前記アップシフト要求判断手段により前記車両に高速段への変速要求があると判断される場合に、前記回転数取得手段により取得された回転数が変速後の動力源の最小許容回転数未満にあるかを判断する最小許容回転数判断手段と、
     その最小許容回転数判断手段により前記回転数が変速後の動力源の最小許容回転数未満であると判断される場合に、前記荷重付与装置の現在の作動または非作動の状態を維持する第1維持手段とを備えていることを特徴とする請求項1又は2に記載の車両用制御装置。
    When it is determined by the upshift request determination means that the vehicle has a shift request to a high speed stage, the rotation speed acquired by the rotation speed acquisition means is less than the minimum allowable rotation speed of the power source after the shift. A minimum allowable rotational speed determination means for determining whether or not
    When the minimum allowable rotational speed determination means determines that the rotational speed is less than the minimum allowable rotational speed of the power source after the shift, the first operation of maintaining the current operation or non-operation state of the load applying device is performed. The vehicle control device according to claim 1, further comprising a maintenance unit.
  4.  低速段への変速要求が前記車両にあるかを判断するダウンシフト要求判断手段と、
     そのダウンシフト要求判断手段により前記車両に低速段への変速要求があると判断される場合に、前記回転数取得手段により取得された回転数が変速後の前記歯車対に配設された前記第1クラッチの前記内輪と前記外輪との回転数が等しくなる同期回転数以下であるかを判断する低速段回転数判断手段と、
     その低速段回転数判断手段により前記回転数が変速後の同期回転数以下であると判断される場合に、所定の前記荷重付与装置を作動して、現在の変速段の前記歯車対に配設された前記第1クラッチの前記スプラグに荷重を付与する荷重付与手段とを備えていることを特徴とする請求項1から3のいずれかに記載の車両用制御装置。
    Downshift request determining means for determining whether the vehicle has a request for shifting to a low speed stage;
    When it is determined by the downshift request determining means that the vehicle has a request for shifting to a low speed, the rotation speed acquired by the rotation speed acquiring means is provided in the gear pair after the shift. Low-speed rotational speed determination means for determining whether the rotational speed of the inner ring and the outer ring of one clutch is equal to or less than the synchronous rotational speed that is equal;
    When the low-speed speed determination means determines that the rotational speed is equal to or lower than the synchronous rotational speed after the shift, the predetermined load applying device is operated to be disposed on the gear pair at the current shift speed. 4. The vehicle control device according to claim 1, further comprising: a load applying unit that applies a load to the sprag of the first clutch that is provided. 5.
  5.  前記ダウンシフト要求判断手段により前記車両に低速段への変速要求があると判断される場合に、前記回転数取得手段により取得された回転数が変速後の動力源の最大許容回転数より大きいかを判断する最大許容回転数判断手段と、
     その最大許容回転数判断手段により前記回転数が変速後の動力源の最大許容回転数より大きいと判断される場合に、前記荷重付与装置の現在の作動または非作動の状態を維持する第2維持手段とを備えていることを特徴とする請求項4記載の車両用制御装置。
    If the downshift request determination means determines that the vehicle has a request for shifting to a low speed, does the rotation speed acquired by the rotation speed acquisition means be greater than the maximum allowable rotation speed of the power source after the shift? A maximum allowable rotational speed determining means for determining
    A second maintenance for maintaining the current operating or non-operating state of the load applying device when the maximum allowable rotational speed determination means determines that the rotational speed is greater than the maximum allowable rotational speed of the power source after the shift. The vehicle control device according to claim 4, further comprising: means.
  6.  前記車両は、
     前記入力軸にエンジンからの動力を伝達する第1伝達軸と、
     その第1伝達軸とジェネレータモータとの間の動力の伝達を行う第2伝達軸とを備え、
     前記アップシフト要求判断手段により前記車両に高速段への変速要求があると判断される場合に、前記第1伝達軸に入力される前記入力軸の動力を前記第2伝達軸に伝達し前記ジェネレータモータに入力するモータ入力手段を備えていることを特徴とする請求項1から5のいずれかに記載の車両用制御装置。
    The vehicle is
    A first transmission shaft for transmitting power from the engine to the input shaft;
    A second transmission shaft for transmitting power between the first transmission shaft and the generator motor;
    When the upshift request determining means determines that the vehicle has a request for shifting to a high speed, the power of the input shaft input to the first transmission shaft is transmitted to the second transmission shaft and the generator 6. The vehicle control device according to claim 1, further comprising motor input means for inputting to the motor.
  7.  前記車両は、
     前記入力軸にエンジンからの動力を伝達する第1伝達軸と、
     その第1伝達軸とジェネレータモータとの間の動力の伝達を行う第2伝達軸とを備え、
     前記ダウンシフト要求判断手段により前記車両に低速段への変速要求があると判断される場合に、前記第2伝達軸に入力される前記ジェネレータモータの動力を前記第1伝達軸に伝達し前記入力軸に入力するアシスト手段を備えていることを特徴とする請求項4から6のいずれかに記載の車両用制御装置。
    The vehicle is
    A first transmission shaft for transmitting power from the engine to the input shaft;
    A second transmission shaft for transmitting power between the first transmission shaft and the generator motor;
    When the downshift request determining means determines that the vehicle has a request for shifting to a low speed, the power of the generator motor input to the second transmission shaft is transmitted to the first transmission shaft and the input The vehicle control device according to any one of claims 4 to 6, further comprising assist means for inputting to the shaft.
  8.  前記車両は、
     前記第1伝達軸から入力される動力を前記第2伝達軸に遮断可能に伝達する一方、前記第2伝達軸から前記第1伝達軸への動力の伝達を遮断する第2クラッチと、
     前記第2伝達軸から入力される動力を前記第1伝達軸に伝達する一方、前記第1伝達軸から前記第2伝達軸への動力の伝達を遮断する第3クラッチとを備えていることを特徴とする請求項6又は7に記載の車両用制御装置。
    The vehicle is
    A second clutch for transmitting the power input from the first transmission shaft to the second transmission shaft in such a manner that the power can be cut off, while blocking transmission of power from the second transmission shaft to the first transmission shaft;
    And a third clutch that transmits power input from the second transmission shaft to the first transmission shaft, and interrupts transmission of power from the first transmission shaft to the second transmission shaft. 8. The vehicle control device according to claim 6 or 7, characterized in that:
PCT/JP2010/060062 2009-06-12 2010-06-14 Vehicle control device WO2010143739A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011518597A JP5490115B2 (en) 2009-06-12 2010-06-14 Vehicle control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009141477 2009-06-12
JP2009-141477 2009-06-12

Publications (1)

Publication Number Publication Date
WO2010143739A1 true WO2010143739A1 (en) 2010-12-16

Family

ID=43308989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060062 WO2010143739A1 (en) 2009-06-12 2010-06-14 Vehicle control device

Country Status (2)

Country Link
JP (1) JP5490115B2 (en)
WO (1) WO2010143739A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013125692A1 (en) * 2012-02-24 2013-08-29 アイシン・エィ・ダブリュ株式会社 Control device
CN108071754A (en) * 2016-11-10 2018-05-25 现代自动车株式会社 Transmission for vehicle structure
CN114215888A (en) * 2021-11-30 2022-03-22 周旭亮 Rotary power transmission device and vehicle power assembly system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0642627A (en) * 1993-04-26 1994-02-18 Aisin Aw Co Ltd Power transmission gear controller for vehicle
JPH07301321A (en) * 1994-05-02 1995-11-14 Aisin Aw Co Ltd Control device for vehicle use transmission
JP2001263375A (en) * 2000-03-21 2001-09-26 Ntn Corp Power interrupting device
JP2004150450A (en) * 2002-10-28 2004-05-27 Mitsubishi Fuso Truck & Bus Corp Gear shifting control device for hybrid electric vehicle
JP2005121219A (en) * 2003-09-26 2005-05-12 Ntn Corp Transmission for vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0642627A (en) * 1993-04-26 1994-02-18 Aisin Aw Co Ltd Power transmission gear controller for vehicle
JPH07301321A (en) * 1994-05-02 1995-11-14 Aisin Aw Co Ltd Control device for vehicle use transmission
JP2001263375A (en) * 2000-03-21 2001-09-26 Ntn Corp Power interrupting device
JP2004150450A (en) * 2002-10-28 2004-05-27 Mitsubishi Fuso Truck & Bus Corp Gear shifting control device for hybrid electric vehicle
JP2005121219A (en) * 2003-09-26 2005-05-12 Ntn Corp Transmission for vehicle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013125692A1 (en) * 2012-02-24 2013-08-29 アイシン・エィ・ダブリュ株式会社 Control device
US9303758B2 (en) 2012-02-24 2016-04-05 Aisin Aw Co., Ltd. Control device
CN108071754A (en) * 2016-11-10 2018-05-25 现代自动车株式会社 Transmission for vehicle structure
CN108071754B (en) * 2016-11-10 2022-06-24 现代自动车株式会社 Transmission structure for vehicle
CN114215888A (en) * 2021-11-30 2022-03-22 周旭亮 Rotary power transmission device and vehicle power assembly system

Also Published As

Publication number Publication date
JPWO2010143739A1 (en) 2012-11-29
JP5490115B2 (en) 2014-05-14

Similar Documents

Publication Publication Date Title
WO2011093425A1 (en) Power transmission device
EP2897827B1 (en) Hybrid vehicle including a control device
JP4981993B2 (en) Power transmission device
JP6384464B2 (en) Power transmission control device
JP5876410B2 (en) Power transmission device
JP3823960B2 (en) Vehicle transmission
JP5490115B2 (en) Vehicle control device
JP5812181B2 (en) Control device for hybrid vehicle
JP4862104B2 (en) Power transmission device
JP5624540B2 (en) Vehicle control device
JP4834797B2 (en) Power transmission device
JP2006044348A (en) Motor overspeed preventing device for hybrid transmission
JP5949324B2 (en) Vehicle travel control device
JP2010006152A (en) Drive device for hybrid vehicle
JP2001342933A (en) Parallel hybrid vehicle
JP6586357B2 (en) Vehicle control device
JP2014054952A (en) Hybrid vehicle control device
JP2014094596A (en) Gear shift controller for hybrid vehicle
WO2022118896A1 (en) Drive device for vehicle
WO2022071445A1 (en) Vehicular drive device
JP4496764B2 (en) Control device for automatic transmission
JP2019143788A (en) Power transmission device for vehicle
JP2006132674A (en) Start friction element control device for vehicle
JP2021132469A (en) Four-wheel-drive vehicle
JP2013216152A (en) Control device of hybrid vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10786267

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011518597

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10786267

Country of ref document: EP

Kind code of ref document: A1