WO2010143687A1 - Porous resin sheet for piezoelectric/pyroelectric element, and process for production thereof - Google Patents

Porous resin sheet for piezoelectric/pyroelectric element, and process for production thereof Download PDF

Info

Publication number
WO2010143687A1
WO2010143687A1 PCT/JP2010/059843 JP2010059843W WO2010143687A1 WO 2010143687 A1 WO2010143687 A1 WO 2010143687A1 JP 2010059843 W JP2010059843 W JP 2010059843W WO 2010143687 A1 WO2010143687 A1 WO 2010143687A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin sheet
piezoelectric
porous resin
porous
chord length
Prior art date
Application number
PCT/JP2010/059843
Other languages
French (fr)
Japanese (ja)
Inventor
奈都子 山崎
恵子 落合
尚 津田
佳郎 田實
Original Assignee
日東電工株式会社
学校法人 関西大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社, 学校法人 関西大学 filed Critical 日東電工株式会社
Publication of WO2010143687A1 publication Critical patent/WO2010143687A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N15/00Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using the Nernst-Ettingshausen effect
    • H10N15/10Thermoelectric devices using thermal change of the dielectric constant, e.g. working above and below the Curie point
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/098Forming organic materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/857Macromolecular compositions

Definitions

  • the present invention is applied to a touch panel, an ultrasonic diagnostic device, an ultrasonic generator, a power generation device, an exploration device, a microphone, an acoustic transformer, a measuring device, a piezoelectric vibrator, a mechanical filter, a piezoelectric transformer, a delay device, a temperature sensor, and the like.
  • the present invention relates to a porous resin sheet for a piezoelectric element or pyroelectric element to be provided and a method for manufacturing the same.
  • PVdF Polyvinylidene fluoride
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • E-PP porous polypropylene
  • Patent Document 1 when a crystalline polar polymer sheet made of polyvinylidene fluoride resin (PVdF) is stretched, a polarization voltage is applied and the crystalline polar polymer sheet is subjected to a polarization treatment to thereby polymerize the polymer piezoelectric material.
  • PVdF polyvinylidene fluoride resin
  • Patent Document 2 after adding a flat or scaly filler to a thermoplastic resin such as polyvinylidene fluoride and forming it into a film or sheet, the film or sheet may be subjected to a stretching treatment in some cases, and then a direct current high voltage There has been proposed a method of manufacturing a piezoelectric element material by performing a charging process by applying a voltage.
  • a thermoplastic resin such as polyvinylidene fluoride
  • Tetrafluoroethylene-hexafluoropropylene copolymer is a nonpolar polymer, and it is known that a charge is trapped on the polymer surface to become a piezoelectric / pyroelectric element.
  • a piezoelectric / pyroelectric element is manufactured by trapping electric charges in a non-porous sheet of FEP by corona discharge or the like.
  • the piezoelectric / pyroelectric element made of PVdF and FEP has a problem that the piezoelectricity is lower than that of the piezoelectric / pyroelectric element made of an inorganic material.
  • EMFI Electro Mechanical FIlm
  • Patent Document 3 proposes a dielectric film including a foamed polypropylene film layer having a porous structure having flatly polarized cells having a height of about 0.25 ⁇ m, a length of 80 ⁇ m, and a width of 50 ⁇ m by tension. ing.
  • a porous polypropylene film has a characteristic that a large number of pores constitute a huge dipole, and when pressure is applied to the film surface, the pores are easily compressed, so the value of the dipole changes greatly. .
  • the charge induced in the electrodes on both sides of the film also changes greatly. Therefore, a piezoelectric / pyroelectric element made of a porous polypropylene film has a high piezoelectricity.
  • the porous polypropylene film is superior to PVdF and FEP in terms of piezoelectricity, but has problems such as limited use environment due to poor heat resistance. Moreover, since the porous polypropylene film has an open-cell structure, it has a problem that it has a smaller compressive stress than the nonporous film and is easily crushed. In addition, once crushed, the thickness of the film did not return completely, and there was a problem that the piezoelectric performance changed when repeatedly used.
  • An object of the present invention is to provide a porous resin sheet for a piezoelectric / pyroelectric element having a high piezoelectric rate and a high compressive stress and having excellent heat resistance and strain recovery, and a method for producing the same.
  • the present invention has bubbles having an average maximum vertical chord length of 1 to 40 ⁇ m and an average aspect ratio (average maximum horizontal chord length / average maximum vertical chord length) of 0.7 to 4.0, and volume porosity.
  • the present invention relates to a porous resin sheet for piezoelectric / pyroelectric elements having a ratio of 20 to 75%.
  • the inventors of the present invention have increased the amount of change in the dipole by increasing the bubbles forming the dipole, and reduced the aspect ratio to increase the elastic modulus in the thickness direction. It has been found that the object of the present invention can be solved by appropriately adjusting.
  • the average maximum vertical chord length is less than 1 ⁇ m, the elastic modulus becomes too large and the porous resin sheet is difficult to be deformed, so that the piezoelectric rate cannot be increased.
  • the average maximum vertical chord length exceeds 40 ⁇ m, the voltage density applied to the bubbles during the charging process is low, and spark discharge is difficult to occur.
  • the average aspect ratio when the average aspect ratio is less than 0.7, the amount of change in the dipole becomes small, so that the piezoelectric rate cannot be increased.
  • the average aspect ratio exceeds 4.0, the flatness of the bubbles increases and the strain recovery rate decreases. Therefore, the reproducibility of the piezoelectric performance when the same pressure is applied several times in a short time is achieved. Deteriorate.
  • volume porosity when the volume porosity is less than 20%, the volume that can be trapped decreases, so the amount of charge that can be trapped decreases, and the piezoelectricity cannot be increased.
  • volume porosity exceeds 75%, the strain recovery rate becomes small, so that the reproducibility of the piezoelectric performance when the same pressure is applied a plurality of times in a short time is deteriorated.
  • the elastic modulus of the porous resin sheet is preferably 0.1 to 1.5 GPa.
  • the elastic modulus is less than 0.1 GPa, the strain recovery rate becomes small, and the reproducibility of the piezoelectric performance tends to deteriorate when the same pressure is applied a plurality of times in a short time.
  • the elastic modulus exceeds 1.5 GPa, the bubbles are less likely to be deformed when pressure is applied, and the piezoelectric performance tends to decrease.
  • the present invention also provides a resin sheet having a microphase separation structure by applying a resin composition containing a resin component and a phase separation agent that phase-separates with a cured product of the resin component onto a substrate and curing the resin composition.
  • the present invention relates to a method for producing a porous resin sheet for piezoelectric / pyroelectric elements.
  • thermosetting resin engineering plastic, or super engineering plastic
  • thermosetting resin engineering plastic
  • super engineering plastic a thermosetting resin, engineering plastic, or super engineering plastic
  • a solvent extraction method is preferably employed as a method for removing the phase separation agent from the resin sheet, and liquefied carbon dioxide or supercritical carbon dioxide is preferably used as the solvent.
  • the present invention relates to a porous resin sheet for piezoelectric / pyroelectric elements produced by the above method.
  • the porous resin sheet for piezoelectric / pyroelectric elements has a large number of bubbles having a large bubble diameter and a small aspect ratio, and the bubbles constitute a huge dipole.
  • the porous resin sheet for piezoelectric / pyroelectric elements of the present invention has a high piezoelectric rate and a high compressive stress.
  • FIG. 2 is a micrograph of a cross section in the vertical direction of a porous resin sheet produced in Example 1.
  • FIG. 2 is a micrograph of a cross section in the vertical direction of a porous resin sheet produced in Example 2.
  • FIG. 4 is a micrograph of a cross section in the vertical direction of a porous resin sheet produced in Example 3.
  • FIG. 2 is a photomicrograph of a cross section in the vertical direction of a porous resin sheet produced in Comparative Example 1.
  • 4 is a photomicrograph of a cross section in the vertical direction of a porous resin sheet produced in Comparative Example 2.
  • FIG. 6 is a micrograph of a cross section in the vertical direction of a porous resin sheet produced in Comparative Example 3.
  • FIG. 4 is a micrograph of a cross section in the vertical direction of a porous resin sheet produced in Example 4.
  • FIG. 6 is a micrograph of a cross section in the vertical direction of a porous resin sheet produced in Example 5.
  • FIG. 5 is a micrograph
  • the porous resin sheet for piezoelectric / pyroelectric elements of the present invention has an average maximum vertical chord length of 1 to 40 ⁇ m and an average aspect ratio (average maximum horizontal chord length / average maximum vertical chord length) of 0.7 to 4.0.
  • the volume porosity is 20 to 75%.
  • the porous resin sheet for piezoelectric / pyroelectric elements is obtained by, for example, applying a resin composition containing a resin component and a phase separation agent that phase-separates with a cured product of the resin component onto a substrate and curing the resin composition.
  • a resin sheet having a phase separation structure is produced, the phase separation agent is removed from the resin sheet to produce a porous resin sheet, and the porous resin sheet is subjected to electron beam irradiation treatment or corona discharge treatment to produce bubbles. It can be manufactured by charging the inside.
  • the resin component is not particularly limited as long as it has a 5% weight loss temperature of 250 ° C. or higher, preferably 280 ° C. or higher.
  • general-purpose materials such as polystyrene, (meth) acrylic resin, ABS resin, and AS resin are used.
  • Plastics such as polyamide, polycarbonate, polyacetal, polybutylene terephthalate, polyethylene terephthalate, and cyclic polyolefin; such as polyphenylene sulfide, polysulfone, polyethersulfone, polyetheretherketone, polyamideimide, thermoplastic polyimide, and polyetherimide
  • super engineering plastics epoxy resin, phenol resin, melamine resin, urea resin (urea resin), alkyd resin, unsaturated polyester resin, poly Urethane, thermosetting polyimide, silicone resin, and thermosetting resins such as diallyl phthalate resin and the like. These may be used alone or in combination of two or more. Further, these monomers and oligomers may be used. Among these, it is preferable to use low polar polymers such as polystyrene, cyclic polyolefin, and polyetherimide.
  • the phase separation agent used in the present invention is a compound that is compatible with the resin component and phase-separates with the cured product of the resin component. However, even if it is a compound which phase-separates with a resin component, what becomes a uniform state (uniform solution) by adding an organic solvent can be used.
  • phase separation agent examples include polyalkylene glycols such as polyethylene glycol and polypropylene glycol; one end or both end methyl blockade of polyalkylene glycol; one end or both end (meth) acrylate blockage of polyalkylene glycol; Urethane prepolymers; phenoxy polyethylene glycol (meth) acrylate, ⁇ -caprolactone (meth) acrylate, trimethylolpropane tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, urethane (meth) acrylate, epoxy (meth) acrylate, And (meth) acrylate compounds such as oligoester (meth) acrylate.
  • polyalkylene glycols such as polyethylene glycol and polypropylene glycol
  • one end or both end methyl blockade of polyalkylene glycol one end or both end (meth) acrylate blockage of polyalkylene glycol
  • the weight average molecular weight is preferably 100 to 10,000, more preferably 100 to 3000.
  • the weight average molecular weight is less than 100, it is difficult to phase separate from the cured resin component.
  • the weight average molecular weight exceeds 10,000, the microphase separation structure becomes too large or removed from the resin sheet. It becomes difficult.
  • the cell diameter, volume porosity, pore size distribution, etc. of the porous resin sheet include the resin component to be used, the type and blending ratio of raw materials such as a phase separation agent, and the heating temperature and heating time during reaction-induced phase separation. Since it varies depending on the reaction conditions, it is preferable to create a phase diagram of the system and select the optimum conditions in order to obtain the target cell diameter, volume porosity, and pore size distribution.
  • It has bubbles with an average maximum vertical chord length of 1 to 40 ⁇ m and an average aspect ratio (average maximum horizontal chord length / average maximum vertical chord length) of 0.7 to 4.0, and a volume porosity of 20 to 75%.
  • it is preferable to use 25 to 300 parts by weight of the phase separation agent with respect to 100 parts by weight of the resin component, and more preferably 60 to 200 parts by weight.
  • a resin composition containing the resin component and a phase separation agent is applied on a substrate.
  • aromatic hydrocarbons such as toluene and xylene
  • alcohols such as methanol, ethanol and isopropyl alcohol
  • ketones such as methyl ethyl ketone and acetone
  • Organic solvents such as amides such as dimethylacetamide and dimethylformamide may be used.
  • the amount of the organic solvent used is usually 100 to 500 parts by weight, preferably 300 to 500 parts by weight, based on 100 parts by weight of the resin component.
  • the substrate is not particularly limited as long as it has a smooth surface, and examples thereof include plastic films such as PET, PE, and PP; glass plates; metal foils such as stainless steel, copper, and aluminum.
  • plastic films such as PET, PE, and PP
  • glass plates such as glass plates
  • metal foils such as stainless steel, copper, and aluminum.
  • the method for applying the resin composition onto the substrate is not particularly limited, and examples of the method for continuous application include wire bar, kiss coat, and gravure. Examples of the method for applying in batch include: Applicators, wire bars, knife coaters and the like can be mentioned.
  • the microphase separation structure usually has a sea-island structure in which the resin component is the sea and the phase separation agent is the island.
  • the coating film is subjected to a curing process such as a thermosetting process to cure the resin component in the coating film and insolubilize the phase separation agent.
  • a porous resin sheet is produced by removing the phase separation agent that has undergone microphase separation from the resin sheet.
  • the method for removing the phase separation agent from the resin sheet is not particularly limited, but a method of extracting with a solvent is preferable. It is necessary to use a solvent that is a good solvent for the phase separation agent and does not dissolve the cured product of the resin component.
  • a solvent that is a good solvent for the phase separation agent and does not dissolve the cured product of the resin component.
  • organic solvents such as toluene, ethanol, ethyl acetate, and heptane, liquefied carbon dioxide And supercritical carbon dioxide. Since liquefied carbon dioxide and supercritical carbon dioxide easily penetrate into the resin sheet, the phase separation agent can be efficiently removed.
  • a pressure vessel When using liquefied carbon dioxide or supercritical carbon dioxide as a solvent, a pressure vessel is usually used.
  • the pressure vessel for example, a batch type pressure vessel, a pressure vessel having a pressure-resistant sheet feeding and winding device, or the like can be used.
  • the pressure vessel is usually provided with carbon dioxide supply means composed of a pump, piping, valves and the like.
  • the temperature and pressure at the time of extracting the phase separation agent with liquefied carbon dioxide or supercritical carbon dioxide may be higher than the critical point of carbon dioxide, and are usually 32 to 230 ° C. and 7.3 to 100 MPa, preferably Is 40 to 200 ° C. and 10 to 50 MPa.
  • Extraction may be performed by continuously supplying and discharging liquefied carbon dioxide or supercritical carbon dioxide into a pressure vessel containing a resin sheet, and the pressure vessel is closed (the charged resin sheet, liquefied carbon dioxide or The supercritical carbon dioxide may not be moved out of the container.
  • supercritical carbon dioxide swelling of the resin sheet is promoted, and the phase separation agent is efficiently removed from the resin sheet by improving the diffusion coefficient of the insolubilized phase separation agent.
  • liquefied carbon dioxide is used, the diffusion coefficient is reduced, but the permeability into the resin sheet is improved, so that the phase separation agent is efficiently removed from the resin sheet.
  • the extraction time needs to be appropriately adjusted depending on the temperature and pressure at the time of extraction, the blending amount of the phase separation agent, the thickness of the resin sheet, and the like. is there.
  • the phase separation agent when extracting using an organic solvent as the solvent, the phase separation agent can be removed under atmospheric pressure, so the deformation of the porous resin sheet is less than when extracting using liquefied carbon dioxide or supercritical carbon dioxide. Can be suppressed. In addition, the extraction time can be shortened. Furthermore, by sequentially passing the resin sheet through the organic solvent, the phase separation agent can be extracted continuously.
  • Examples of the extraction method using an organic solvent include a method of immersing a resin sheet in an organic solvent, a method of spraying an organic solvent on the resin sheet, and the like.
  • the immersion method is preferable from the viewpoint of the removal efficiency of the phase separation agent.
  • the phase separation agent can be efficiently removed by exchanging the organic solvent several times or performing extraction while stirring.
  • the porous resin sheet After removing the phase separation agent, the porous resin sheet may be dried.
  • the thickness of the porous resin sheet varies depending on the use, but is usually 1 to 500 ⁇ m, preferably 10 to 150 ⁇ m, and more preferably 30 to 150 ⁇ m.
  • the porous resin sheet obtained by the production method of the present invention has an average maximum vertical chord length of 1 to 40 ⁇ m and an average aspect ratio (average maximum horizontal chord length / average maximum vertical chord length) of 0.7 to 4.0. It preferably has bubbles and has a volume porosity of 20 to 75%.
  • the average maximum vertical chord length is more preferably 1 to 25 ⁇ m, the average aspect ratio is more preferably 1.0 to 2.0, and the volume porosity is more preferably 35 to 75%.
  • the elastic modulus of the porous resin sheet is preferably 0.1 to 1.5 GPa, more preferably 0.2 to 1.2 GPa.
  • the thermal deformation temperature of the porous resin sheet is preferably 100 ° C. or higher, more preferably 150 ° C. or higher.
  • the porous resin sheet may be deformed or the piezoelectric performance may be deteriorated when the porous resin sheet is used in contact with a device that generates heat, such as an electric device. May occur.
  • the porous resin sheet is subjected to electron beam irradiation treatment or corona discharge treatment to charge the inside of the bubbles to produce a porous resin sheet for piezoelectric / pyroelectric elements.
  • the method for the charging process is not particularly limited, and a conventionally known method can be adopted.
  • a porous resin sheet is fixed to an earthed metal plate with an adhesive tape, and the tip of the needle is placed at a position about 5 to 15 mm above the center of the porous resin sheet.
  • a DC high voltage of about 5 to 15 kV is applied to the tip of the needle in an environment of normal temperature and 20% humidity.
  • the application time is usually about 0.5 to 3 minutes.
  • the porous resin sheet for piezoelectric / pyroelectric elements of the present invention has an unprecedented cell structure and has a high piezoelectricity and compressive stress, and is suitably used as a material for piezoelectric elements or pyroelectric elements. It is done.
  • the porous resin sheet was cooled with liquid nitrogen, and cut with a blade to be perpendicular to the sheet surface to prepare Sample A.
  • the cut surface of Sample A was subjected to Au deposition treatment, and the cut surface was observed with SEM.
  • the image was binarized with image processing software (Mitani Corporation, WinROOF), separated into a bubble portion and a resin portion, and the maximum vertical chord length of the bubbles was measured.
  • a sample B was cut horizontally with respect to the sheet surface, and the maximum horizontal chord length of bubbles was measured.
  • the maximum vertical chord length is the maximum length of each bubble when the bubbles are cut perpendicular to the sheet surface, and the maximum horizontal chord length is when the bubbles are cut horizontally to the sheet surface.
  • the maximum vertical chord length and the maximum horizontal chord length for each of the 50 bubbles were measured, and the average values were taken as the average maximum vertical chord length and the average maximum horizontal chord length.
  • volume porosity (Measurement of volume porosity) A 24 mm ⁇ sample was cut out from the porous resin sheet, and the area s, thickness l, and weight m were measured.
  • a piezoelectric performance measuring device Using a piezoelectric performance measuring device, a sample is placed under a weight, and constant AC acceleration ⁇ (frequency: 90-300 Hz, size: 2-10 m) in the thickness direction of the sample at room temperature and humidity of 20% / S 2 ), the response charge at that time was measured, and the piezoelectric constant d 33 was determined.
  • Example 1 100 parts by weight of polyetherimide resin (manufactured by GE, trade name: ULTEM (UC6846 grade 1000 color # 1000)), 400 parts by weight of N-methyl-2-pyrrolidone as a solvent, and tripropylene glycol monomethyl ether as a phase separation agent 100 parts by weight were mixed to prepare a transparent and uniform resin composition. Using an applicator having a clearance of 500 ⁇ m, the resin composition was applied on the silicone-treated surface of a PET film (manufactured by Mitsubishi Polyester, DIAFOIL # MRF38, thickness 38 ⁇ m) so that the film thickness after drying was 100 ⁇ m. Then, it dried for 25 minutes in a 90 degreeC thermostat dryer, and NMP was removed by evaporation and the resin sheet was produced.
  • polyetherimide resin manufactured by GE, trade name: ULTEM (UC6846 grade 1000 color # 1000)
  • N-methyl-2-pyrrolidone as a solvent
  • tripropylene glycol monomethyl ether as
  • the resin sheet was peeled from the PET film, and the resin sheet was cut into strips of 100 mm ⁇ 150 mm.
  • the cut resin sheet is put in a 500 cc pressure vessel, heated to 25 ° C. and pressurized to 25 MPa, and then injected with carbon dioxide at a flow rate of 7.4 (l / min) while maintaining the pressure and discharged. Then, an operation for extracting tripropylene glycol monomethyl ether was performed for 2 hours to prepare a porous resin sheet.
  • the porous resin sheet was cut into a size of 3 cm ⁇ 3 cm and fixed with an adhesive tape on a metal plate connected to the ground. Applying a DC high voltage (-7 kV) for 1 minute to the tip of a needle placed 8 mm above the porous resin sheet at room temperature and 20% humidity to charge the inside of the bubbles in the porous resin sheet Thus, a porous resin sheet for piezoelectric / pyroelectric elements was prepared.
  • the produced porous resin sheet was embedded in a resin and cut perpendicularly to the surface to obtain a sample.
  • the cross section of the sample was observed at an acceleration voltage of 10 kV using a scanning electron microscope (Hitachi, S-570). A micrograph of the cross section of the sample is shown in FIG.
  • Example 2 A transparent and uniform resin composition was prepared by mixing 100 parts by weight of a polystyrene resin (manufactured by WAKO), 233 parts by weight of toluene as a solvent, and 100 parts by weight of diethylene glycol monomethyl ether as a phase separation agent. Using an applicator having a clearance of 500 ⁇ m, the resin composition was applied on the silicone-treated surface of a PET film (manufactured by Mitsubishi Polyester, DIAFOIL # MRF38, thickness 38 ⁇ m) so that the film thickness after drying was 100 ⁇ m. Then, it dried for 5 minutes within a 45 degreeC thermostat dryer, and toluene was removed by evaporation, and the resin sheet was produced. Thereafter, a porous resin sheet for piezoelectric / pyroelectric elements was produced in the same manner as in Example 1. Further, the cross section of the porous resin sheet was observed in the same manner as in Example 1. The micrograph is shown in FIG.
  • Example 3 A transparent and uniform resin composition comprising 100 parts by weight of a cycloolefin copolymer (trade name: Arton, manufactured by JSR Corporation), 400 parts by weight of toluene as a solvent, and 75 parts by weight of tripropylene glycol as a phase separation agent. was prepared. Using an applicator with a clearance of 500 ⁇ m, the resin composition was applied on a PET film (Mitsubishi Polyester, thickness 50 ⁇ m) so that the film thickness after drying was 100 ⁇ m, and then allowed to stand at room temperature for 30 minutes. Then, toluene was removed by evaporation to prepare a resin sheet.
  • a cycloolefin copolymer trade name: Arton, manufactured by JSR Corporation
  • tripropylene glycol tripropylene glycol
  • the resin sheet was peeled from the PET film, and the resin sheet was cut into strips of 100 mm ⁇ 150 mm.
  • the cut resin sheet was put into a container containing ethanol, and an operation of extracting tripropylene glycol was performed for 1 hour, followed by drying at room temperature to prepare a porous resin sheet. Thereafter, a porous resin sheet for piezoelectric / pyroelectric elements was produced in the same manner as in Example 1. Further, the cross section of the porous resin sheet was observed in the same manner as in Example 1 except that the acceleration voltage was 3 kV.
  • the micrograph is shown in FIG.
  • Comparative Example 1 A porous resin sheet for a piezoelectric / pyroelectric element was prepared in the same manner as in Example 1 except that a polypropylene foam sheet (manufactured by Nitto Denko Corporation, average pore diameter 50 ⁇ m, thickness 200 ⁇ m) was used as the porous resin sheet. The produced porous resin sheet was etched with an ion beam to obtain a sample. The cross section of the sample was observed using a scanning electron microscope (Hitachi, S-570) at an acceleration voltage of 5 kV. A micrograph of the cross section of the sample is shown in FIG.
  • a polypropylene foam sheet manufactured by Nitto Denko Corporation, average pore diameter 50 ⁇ m, thickness 200 ⁇ m
  • Comparative Example 2 A porous resin sheet for piezoelectric / pyroelectric elements was prepared in the same manner as in Example 1 except that a PP electret piezoelectric sheet (Emfit, thickness 70 ⁇ m) was used as the porous resin sheet. The produced porous resin sheet was etched with an ion beam to obtain a sample. The cross section of the sample was observed using a scanning electron microscope (Hitachi, S-570) at an acceleration voltage of 5 kV. A micrograph of the cross section of the sample is shown in FIG.
  • Comparative Example 3 Porous resin for piezoelectric / pyroelectric elements in the same manner as in Example 1 except that a crosslinked polyethylene foam sheet (manufactured by Sekisui Chemical Co., Ltd., trade name: Bollara (XL-H), thickness 100 ⁇ m) was used as the porous resin sheet. A sheet was produced. The produced porous resin sheet was etched with an ion beam to obtain a sample. The cross section of the sample was observed using a scanning electron microscope (Hitachi, S-570) at an acceleration voltage of 5 kV. A micrograph of the cross section of the sample is shown in FIG.
  • a crosslinked polyethylene foam sheet manufactured by Sekisui Chemical Co., Ltd., trade name: Bollara (XL-H), thickness 100 ⁇ m
  • Example 4 A transparent and uniform resin composition comprising 100 parts by weight of a cycloolefin copolymer (trade name: Arton, manufactured by JSR Corporation), 400 parts by weight of toluene as a solvent, and 75 parts by weight of tripropylene glycol as a phase separation agent. was prepared. Using an applicator having a clearance of 500 ⁇ m, the resin composition was applied onto a PET film (Mitsubishi Polyester, thickness 50 ⁇ m) so that the film thickness after drying was 100 ⁇ m, and then dried at 60 ° C. for 2 minutes. Then, toluene was removed by evaporation to prepare a resin sheet.
  • a cycloolefin copolymer trade name: Arton, manufactured by JSR Corporation
  • tripropylene glycol tripropylene glycol
  • the resin sheet was peeled from the PET film, and the resin sheet was cut into strips of 100 mm ⁇ 150 mm.
  • the cut resin sheet is put into a 500 cc pressure vessel, heated to 25 ° C. and pressurized to 25 MPa, and then carbon dioxide is injected at a flow rate of 7.4 (l / min) while keeping the pressure, and discharged. Then, the operation of extracting tripropylene glycol was performed for 2 hours to produce a porous resin sheet. Thereafter, a porous resin sheet for piezoelectric / pyroelectric elements was produced in the same manner as in Example 1. Further, the cross section of the porous resin sheet was observed in the same manner as in Example 1. The micrograph is shown in FIG.
  • Example 5 100 parts by weight of a cycloolefin copolymer (trade name: Topas, manufactured by Polyplastics), 400 parts by weight of a cyclohexane-toluene mixed solvent (weight ratio 1: 1) as a solvent, and dipropylene glycol monomethyl ether 100 as a phase separation agent Part by weight was mixed to prepare a transparent and uniform resin composition. Using an applicator having a clearance of 500 ⁇ m, the resin composition was applied onto a PET film (Mitsubishi Polyester, thickness 50 ⁇ m) so that the film thickness after drying was 100 ⁇ m, and then dried at 60 ° C. for 2 minutes. Then, cyclohexane-toluene was removed by evaporation to prepare a resin sheet.
  • a cycloolefin copolymer trade name: Topas, manufactured by Polyplastics
  • a cyclohexane-toluene mixed solvent weight ratio 1: 1
  • the resin sheet was peeled from the PET film, and the resin sheet was cut into strips of 100 mm ⁇ 150 mm.
  • the cut resin sheet is put into a 500 cc pressure vessel, heated to 25 ° C. and pressurized to 25 MPa, and then carbon dioxide is injected at a flow rate of 7.4 (l / min) while keeping the pressure, and discharged.
  • an operation of extracting dipropylene glycol monomethyl ether was performed for 2 hours to prepare a porous resin sheet.
  • a porous resin sheet for piezoelectric / pyroelectric elements was produced in the same manner as in Example 1. Further, the cross section of the porous resin sheet was observed in the same manner as in Example 1.
  • the micrograph is shown in FIG.
  • the porous resin sheet for piezoelectric / pyroelectric elements of the present invention can be used as a material for flexible piezoelectric elements or pyroelectric elements.
  • Examples of the device provided with such a piezoelectric element or pyroelectric element include electronic devices such as a computer, a computer, and a mobile phone.
  • the present invention can also be used for control circuits for machines such as automobiles and airplanes that require a control device to be mounted in a narrow space.
  • the porous resin sheet for piezoelectric / pyroelectric elements of the present invention is excellent in strain recovery, the installation location is derived from people such as the ground, floor, soles and soles, soles, bedding, etc. It can be used as a sensor that is used in places where pressure is applied intermittently.

Abstract

Disclosed is a porous resin sheet for a piezoelectric/pyroelectric element, which has a high piezoelectric modulus and a high compressive stress and also has excellent heat resistance. Also disclosed is a process for producing the porous resin sheet. The porous resin sheet for a piezoelectric/pyroelectric element contains air bubbles having an average maximum vertical chord length of 1 to 40 μm and an average aspect ratio [an (average maximum horizontal chord length)/(average maximum vertical chord length) ratio] of 0.7 to 4.0 and has a volume porosity of 20 to 75%.

Description

圧電・焦電素子用多孔質樹脂シート及びその製造方法Porous resin sheet for piezoelectric / pyroelectric element and method for producing the same
 本発明は、タッチパネル、超音波診断装置、超音波発生装置、発電装置、探査装置、マイク、音響変成器、計測機器、圧電振動子、機械的フィルター、圧電トランス、遅延装置、及び温度センサーなどに設けられる圧電素子又は焦電素子用の多孔質樹脂シート及びその製造方法に関する。 The present invention is applied to a touch panel, an ultrasonic diagnostic device, an ultrasonic generator, a power generation device, an exploration device, a microphone, an acoustic transformer, a measuring device, a piezoelectric vibrator, a mechanical filter, a piezoelectric transformer, a delay device, a temperature sensor, and the like. The present invention relates to a porous resin sheet for a piezoelectric element or pyroelectric element to be provided and a method for manufacturing the same.
 圧電・焦電素子を作製するための高分子材料としては、ポリフッ化ビニリデン(PVdF)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、多孔質ポリプロピレン(E-PP)などが用いられており、例えば、PVdFを圧電素子に用いた場合、その圧電定数d33は20pC/N程度を示すことが知られている。これら高分子材料で作製された圧電・焦電素子は、無機材料で作製された圧電・焦電素子にはない可とう性、柔軟性、耐摩耗性を有しているため広く用いられている。 Polyvinylidene fluoride (PVdF), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), porous polypropylene (E-PP), etc. are used as polymer materials for producing piezoelectric / pyroelectric elements. For example, when PVdF is used for a piezoelectric element, it is known that its piezoelectric constant d 33 is about 20 pC / N. Piezoelectric and pyroelectric elements made of these polymer materials are widely used because they have flexibility, flexibility, and wear resistance not found in piezoelectric and pyroelectric elements made of inorganic materials. .
 例えば、特許文献1では、ポリフッ化ビニリデン系樹脂(PVdF)からなる結晶性極性高分子シートを延伸する際に分極電圧を印加して、結晶性極性高分子シートを分極処理することにより高分子圧電体フィルムを製造する方法が提案されている。 For example, in Patent Document 1, when a crystalline polar polymer sheet made of polyvinylidene fluoride resin (PVdF) is stretched, a polarization voltage is applied and the crystalline polar polymer sheet is subjected to a polarization treatment to thereby polymerize the polymer piezoelectric material. A method of manufacturing a body film has been proposed.
 特許文献2では、ポリフッ化ビニリデン等の熱可塑性樹脂に扁平状あるいは鱗片状充填剤を添加し、フィルムあるいはシートに成形加工した後に、場合によりフィルムあるいはシートを延伸処理を行った後に、直流高電圧を印加することで帯電処理を行って圧電素子材料を製造する方法が提案されている。 In Patent Document 2, after adding a flat or scaly filler to a thermoplastic resin such as polyvinylidene fluoride and forming it into a film or sheet, the film or sheet may be subjected to a stretching treatment in some cases, and then a direct current high voltage There has been proposed a method of manufacturing a piezoelectric element material by performing a charging process by applying a voltage.
 また、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)は、無極性のポリマーであるが、ポリマー表面に電荷がトラップされることによって圧電・焦電素子になることが知られており、具体的には、FEPの無孔質シートにコロナ放電等によって電荷をトラップさせることによって圧電・焦電素子を作製している。 Tetrafluoroethylene-hexafluoropropylene copolymer (FEP) is a nonpolar polymer, and it is known that a charge is trapped on the polymer surface to become a piezoelectric / pyroelectric element. Specifically, a piezoelectric / pyroelectric element is manufactured by trapping electric charges in a non-porous sheet of FEP by corona discharge or the like.
 しかしながら、PVdF及びFEPからなる圧電・焦電素子は、無機材料からなる圧電・焦電素子に比べて圧電率が低いという問題があった。一方、圧電率を向上させるために、多孔質ポリプロピレン(EMFI:Electro Mechanical FIlm)からなる圧電・焦電素子が開発されている。 However, the piezoelectric / pyroelectric element made of PVdF and FEP has a problem that the piezoelectricity is lower than that of the piezoelectric / pyroelectric element made of an inorganic material. On the other hand, in order to improve the piezoelectric rate, a piezoelectric / pyroelectric element made of porous polypropylene (EMFI: Electro Mechanical FIlm) has been developed.
 例えば、特許文献3では、引張りにより約0.25μmの高さ、80μmの長さ、および50μmの幅の平偏化された気泡を有する多孔構造の発泡ポリプロピレンフィルム層を含む誘電性フィルムが提案されている。 For example, Patent Document 3 proposes a dielectric film including a foamed polypropylene film layer having a porous structure having flatly polarized cells having a height of about 0.25 μm, a length of 80 μm, and a width of 50 μm by tension. ing.
 多孔質ポリプロピレンフィルムは、多数の空孔が巨大な双極子を構成し、フィルム面に圧力が加わると空孔が容易に圧縮されるため双極子の値が大きく変化するという特性を有している。双極子の値が大きく変化すると、フィルムの両面の電極に誘導される電荷も大きく変化するため、多孔質ポリプロピレンフィルムからなる圧電・焦電素子は、高い圧電率を有している。 A porous polypropylene film has a characteristic that a large number of pores constitute a huge dipole, and when pressure is applied to the film surface, the pores are easily compressed, so the value of the dipole changes greatly. . When the value of the dipole changes greatly, the charge induced in the electrodes on both sides of the film also changes greatly. Therefore, a piezoelectric / pyroelectric element made of a porous polypropylene film has a high piezoelectricity.
 しかしながら、多孔質ポリプロピレンフィルムは、圧電率ではPVdF及びFEPより優れているが、耐熱性に劣るため使用環境が限定される等の問題を有している。また、多孔質ポリプロピレンフィルムは、連続気泡構造であるため、無孔質フィルムに比べて圧縮応力が小さく、潰れやすいという問題も有している。また、一度潰れるとフィルムの厚みが完全に元に戻らず、繰り返し使用した時に圧電性能が変化するという問題もあった。 However, the porous polypropylene film is superior to PVdF and FEP in terms of piezoelectricity, but has problems such as limited use environment due to poor heat resistance. Moreover, since the porous polypropylene film has an open-cell structure, it has a problem that it has a smaller compressive stress than the nonporous film and is easily crushed. In addition, once crushed, the thickness of the film did not return completely, and there was a problem that the piezoelectric performance changed when repeatedly used.
特開2008-171935号公報JP 2008-171935 A 特開2006-111837号公報JP 2006-1111837 A 特公平5-41104号公報Japanese Examined Patent Publication No. 5-41104
 本発明の目的は、高い圧電率及び高い圧縮応力を有し、かつ耐熱性及び歪み回復性に優れた圧電・焦電素子用多孔質樹脂シート、及びその製造方法を提供することにある。 An object of the present invention is to provide a porous resin sheet for a piezoelectric / pyroelectric element having a high piezoelectric rate and a high compressive stress and having excellent heat resistance and strain recovery, and a method for producing the same.
 即ち本発明は、平均最大垂直弦長が1~40μm、かつ平均アスペクト比(平均最大水平弦長/平均最大垂直弦長)が0.7~4.0の気泡を有し、体積空孔率が20~75%である圧電・焦電素子用多孔質樹脂シート、に関する。 That is, the present invention has bubbles having an average maximum vertical chord length of 1 to 40 μm and an average aspect ratio (average maximum horizontal chord length / average maximum vertical chord length) of 0.7 to 4.0, and volume porosity. The present invention relates to a porous resin sheet for piezoelectric / pyroelectric elements having a ratio of 20 to 75%.
 本発明者らは、高い圧電率及び高い圧縮応力を得るためには、双極子を形成する気泡を大きくして双極子の変化量を増やし、かつアスペクト比を小さくして厚み方向の弾性率を適切に調整することにより本発明の目的を解決できることを見出した。 In order to obtain a high piezoelectricity and a high compressive stress, the inventors of the present invention have increased the amount of change in the dipole by increasing the bubbles forming the dipole, and reduced the aspect ratio to increase the elastic modulus in the thickness direction. It has been found that the object of the present invention can be solved by appropriately adjusting.
 平均最大垂直弦長が1μm未満の場合には、弾性率が大きくなりすぎ、多孔質樹脂シートが変形し難くなるため圧電率を高くすることができない。一方、平均最大垂直弦長が40μmを超える場合には、帯電処理の際に気泡にかかる電圧密度が低くなり、火花放電が起き難くなる。 When the average maximum vertical chord length is less than 1 μm, the elastic modulus becomes too large and the porous resin sheet is difficult to be deformed, so that the piezoelectric rate cannot be increased. On the other hand, when the average maximum vertical chord length exceeds 40 μm, the voltage density applied to the bubbles during the charging process is low, and spark discharge is difficult to occur.
 また、平均アスペクト比が0.7未満の場合には、双極子の変化量が小さくなるため圧電率を高くすることができない。一方、平均アスペクト比が4.0を超える場合には、気泡の扁平率が大きくなり、歪み回復率が小さくなるため、短時間で同じ圧力が複数回加えられたときの圧電性能の再現性が悪くなる。 In addition, when the average aspect ratio is less than 0.7, the amount of change in the dipole becomes small, so that the piezoelectric rate cannot be increased. On the other hand, when the average aspect ratio exceeds 4.0, the flatness of the bubbles increases and the strain recovery rate decreases. Therefore, the reproducibility of the piezoelectric performance when the same pressure is applied several times in a short time is achieved. Deteriorate.
 また、体積空孔率が20%未満の場合には、トラップできる体積が少なくなるため、トラップできる電荷量も少なくなり、圧電率を高くすることができない。一方、体積空孔率が75%を超える場合には、歪み回復率が小さくなるため、短時間で同じ圧力が複数回加えられたときの圧電性能の再現性が悪くなる。 Also, when the volume porosity is less than 20%, the volume that can be trapped decreases, so the amount of charge that can be trapped decreases, and the piezoelectricity cannot be increased. On the other hand, when the volume porosity exceeds 75%, the strain recovery rate becomes small, so that the reproducibility of the piezoelectric performance when the same pressure is applied a plurality of times in a short time is deteriorated.
 多孔質樹脂シートの弾性率は、0.1~1.5GPaであることが好ましい。弾性率が0.1GPa未満の場合には、歪み回復率が小さくなり、短時間で同じ圧力が複数回加えられた時の圧電性能の再現性が悪くなる傾向にある。一方、弾性率が1.5GPaを超える場合には、圧力が加えられた時に気泡が変形し難くなるため圧電性能が低下する傾向にある。 The elastic modulus of the porous resin sheet is preferably 0.1 to 1.5 GPa. When the elastic modulus is less than 0.1 GPa, the strain recovery rate becomes small, and the reproducibility of the piezoelectric performance tends to deteriorate when the same pressure is applied a plurality of times in a short time. On the other hand, when the elastic modulus exceeds 1.5 GPa, the bubbles are less likely to be deformed when pressure is applied, and the piezoelectric performance tends to decrease.
 また、本発明は、樹脂成分と、該樹脂成分の硬化体と相分離する相分離化剤とを含む樹脂組成物を基板上に塗布し、硬化させてミクロ相分離構造を有する樹脂シートを作製する工程、樹脂シートから前記相分離化剤を除去して多孔質樹脂シートを作製する工程、及び多孔質樹脂シートに電子線照射処理又はコロナ放電処理を施すことにより気泡内部を帯電させる工程を含む圧電・焦電素子用多孔質樹脂シートの製造方法、に関する。 The present invention also provides a resin sheet having a microphase separation structure by applying a resin composition containing a resin component and a phase separation agent that phase-separates with a cured product of the resin component onto a substrate and curing the resin composition. A step of removing the phase separation agent from the resin sheet to produce a porous resin sheet, and a step of charging the inside of the bubble by subjecting the porous resin sheet to electron beam irradiation treatment or corona discharge treatment. The present invention relates to a method for producing a porous resin sheet for piezoelectric / pyroelectric elements.
 本発明の製造方法によると、従来の延伸方法では得られない、気泡径が大きく、かつアスペクト比が小さい気泡を有する圧電・焦電素子用多孔質樹脂シートを容易に製造することができる。 According to the production method of the present invention, it is possible to easily produce a porous resin sheet for piezoelectric / pyroelectric elements having bubbles having a large bubble diameter and a small aspect ratio, which cannot be obtained by a conventional stretching method.
 本発明においては、樹脂成分として、熱硬化性樹脂、エンジニアリングプラスチック、又はスーパーエンジニアリングプラスチックを用いることが好ましい。これら樹脂を用いることにより耐熱性及び歪み回復性に優れた圧電・焦電素子用多孔質樹脂シートを製造することができる。 In the present invention, it is preferable to use a thermosetting resin, engineering plastic, or super engineering plastic as the resin component. By using these resins, it is possible to produce a porous resin sheet for piezoelectric / pyroelectric elements having excellent heat resistance and strain recovery.
 本発明においては、樹脂シートから相分離化剤を除去する方法として、溶剤抽出法を採用することが好ましく、溶剤としては、液化二酸化炭素又は超臨界二酸化炭素を用いることが好ましい。 In the present invention, a solvent extraction method is preferably employed as a method for removing the phase separation agent from the resin sheet, and liquefied carbon dioxide or supercritical carbon dioxide is preferably used as the solvent.
 さらに、本発明は、前記方法によって製造される圧電・焦電素子用多孔質樹脂シート、に関する。当該圧電・焦電素子用多孔質樹脂シートは、気泡径が大きく、かつアスペクト比が小さい気泡を多数有しており、該気泡は巨大な双極子を構成している。それにより、本発明の圧電・焦電素子用多孔質樹脂シートは、高い圧電率及び高い圧縮応力を有している。 Furthermore, the present invention relates to a porous resin sheet for piezoelectric / pyroelectric elements produced by the above method. The porous resin sheet for piezoelectric / pyroelectric elements has a large number of bubbles having a large bubble diameter and a small aspect ratio, and the bubbles constitute a huge dipole. Thereby, the porous resin sheet for piezoelectric / pyroelectric elements of the present invention has a high piezoelectric rate and a high compressive stress.
実施例1で作製した多孔質樹脂シートの垂直方向における断面の顕微鏡写真である。2 is a micrograph of a cross section in the vertical direction of a porous resin sheet produced in Example 1. FIG. 実施例2で作製した多孔質樹脂シートの垂直方向における断面の顕微鏡写真である。2 is a micrograph of a cross section in the vertical direction of a porous resin sheet produced in Example 2. FIG. 実施例3で作製した多孔質樹脂シートの垂直方向における断面の顕微鏡写真である。4 is a micrograph of a cross section in the vertical direction of a porous resin sheet produced in Example 3. FIG. 比較例1で作製した多孔質樹脂シートの垂直方向における断面の顕微鏡写真である。2 is a photomicrograph of a cross section in the vertical direction of a porous resin sheet produced in Comparative Example 1. 比較例2で作製した多孔質樹脂シートの垂直方向における断面の顕微鏡写真である。4 is a photomicrograph of a cross section in the vertical direction of a porous resin sheet produced in Comparative Example 2. FIG. 比較例3で作製した多孔質樹脂シートの垂直方向における断面の顕微鏡写真である。6 is a micrograph of a cross section in the vertical direction of a porous resin sheet produced in Comparative Example 3. FIG. 実施例4で作製した多孔質樹脂シートの垂直方向における断面の顕微鏡写真である。4 is a micrograph of a cross section in the vertical direction of a porous resin sheet produced in Example 4. FIG. 実施例5で作製した多孔質樹脂シートの垂直方向における断面の顕微鏡写真である。6 is a micrograph of a cross section in the vertical direction of a porous resin sheet produced in Example 5. FIG.
 以下、本発明の実施の形態について説明する。本発明の圧電・焦電素子用多孔質樹脂シートは、平均最大垂直弦長が1~40μm、かつ平均アスペクト比(平均最大水平弦長/平均最大垂直弦長)が0.7~4.0の気泡を有し、体積空孔率が20~75%である。 Hereinafter, embodiments of the present invention will be described. The porous resin sheet for piezoelectric / pyroelectric elements of the present invention has an average maximum vertical chord length of 1 to 40 μm and an average aspect ratio (average maximum horizontal chord length / average maximum vertical chord length) of 0.7 to 4.0. The volume porosity is 20 to 75%.
 前記圧電・焦電素子用多孔質樹脂シートは、例えば、樹脂成分と、該樹脂成分の硬化体と相分離する相分離化剤とを含む樹脂組成物を基板上に塗布し、硬化させてミクロ相分離構造を有する樹脂シートを作製し、該樹脂シートから前記相分離化剤を除去して多孔質樹脂シートを作製し、該多孔質樹脂シートに電子線照射処理又はコロナ放電処理を施して気泡内部を帯電させることにより製造することができる。 The porous resin sheet for piezoelectric / pyroelectric elements is obtained by, for example, applying a resin composition containing a resin component and a phase separation agent that phase-separates with a cured product of the resin component onto a substrate and curing the resin composition. A resin sheet having a phase separation structure is produced, the phase separation agent is removed from the resin sheet to produce a porous resin sheet, and the porous resin sheet is subjected to electron beam irradiation treatment or corona discharge treatment to produce bubbles. It can be manufactured by charging the inside.
 樹脂成分としては、5%重量減少温度が250℃以上、好ましくは280℃以上である樹脂であれば特に制限されず、例えば、ポリスチレン、(メタ)アクリル樹脂、ABS樹脂、及びAS樹脂などの汎用プラスチック;ポリアミド、ポリカーボネート、ポリアセタール、ポリブチレンテレフタレート、ポリエチレンテレフタレート、及び環状ポリオレフィンなどのエンジニアリングプラスチック;ポリフェニレンサルファイド、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリアミドイミド、熱可塑性ポリイミド、及びポリエーテルイミドなどのスーパーエンジニアリングプラスチック;エポキシ樹脂、フェノール樹脂、メラミン樹脂、尿素樹脂(ユリア樹脂)、アルキド樹脂、不飽和ポリエステル樹脂、ポリウレタン、熱硬化性ポリイミド、シリコーン樹脂、及びジアリルフタレート樹脂などの熱硬化性樹脂が挙げられる。これらは1種単独で用いてもよく、2種以上を併用してもよい。また、これらのモノマー、オリゴマーを用いてもよい。これらのうち、ポリスチレン、環状ポリオレフィン、及びポリエーテルイミドなどの低極性ポリマーを用いることが好ましい。 The resin component is not particularly limited as long as it has a 5% weight loss temperature of 250 ° C. or higher, preferably 280 ° C. or higher. For example, general-purpose materials such as polystyrene, (meth) acrylic resin, ABS resin, and AS resin are used. Plastics; engineering plastics such as polyamide, polycarbonate, polyacetal, polybutylene terephthalate, polyethylene terephthalate, and cyclic polyolefin; such as polyphenylene sulfide, polysulfone, polyethersulfone, polyetheretherketone, polyamideimide, thermoplastic polyimide, and polyetherimide Super engineering plastics: epoxy resin, phenol resin, melamine resin, urea resin (urea resin), alkyd resin, unsaturated polyester resin, poly Urethane, thermosetting polyimide, silicone resin, and thermosetting resins such as diallyl phthalate resin and the like. These may be used alone or in combination of two or more. Further, these monomers and oligomers may be used. Among these, it is preferable to use low polar polymers such as polystyrene, cyclic polyolefin, and polyetherimide.
 本発明で用いる相分離化剤とは、樹脂成分に対して相溶性であり、かつ該樹脂成分の硬化体と相分離する化合物である。ただし、樹脂成分と相分離する化合物であっても、有機溶剤を加えることで均一状態(均一溶液)となるものは使用可能である。相分離化剤としては、例えば、ポリエチレングリコール、及びポリプロピレングリコールなどのポリアルキレングリコール;ポリアルキレングリコールの片末端又は両末端メチル封鎖物;ポリアルキレングリコールの片末端又は両末端(メタ)アクリレート封鎖物;ウレタンプレポリマー;フェノキシポリエチレングリコール(メタ)アクリレート、ε-カプロラクトン(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート、及びオリゴエステル(メタ)アクリレートなどの(メタ)アクリレート系化合物などが挙げられる。これらは1種単独で用いてもよく、2種以上を併用してもよい。オリゴマーの場合、重量平均分子量は100~10000であることが好ましく、より好ましくは100~3000である。重量平均分子量が100未満の場合には、樹脂成分の硬化体と相分離し難くなり、一方、重量平均分子量が10000を超えると、ミクロ相分離構造が大きくなりすぎたり、樹脂シート中から除去し難くなる。 The phase separation agent used in the present invention is a compound that is compatible with the resin component and phase-separates with the cured product of the resin component. However, even if it is a compound which phase-separates with a resin component, what becomes a uniform state (uniform solution) by adding an organic solvent can be used. Examples of the phase separation agent include polyalkylene glycols such as polyethylene glycol and polypropylene glycol; one end or both end methyl blockade of polyalkylene glycol; one end or both end (meth) acrylate blockage of polyalkylene glycol; Urethane prepolymers; phenoxy polyethylene glycol (meth) acrylate, ε-caprolactone (meth) acrylate, trimethylolpropane tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, urethane (meth) acrylate, epoxy (meth) acrylate, And (meth) acrylate compounds such as oligoester (meth) acrylate. These may be used alone or in combination of two or more. In the case of an oligomer, the weight average molecular weight is preferably 100 to 10,000, more preferably 100 to 3000. When the weight average molecular weight is less than 100, it is difficult to phase separate from the cured resin component. On the other hand, when the weight average molecular weight exceeds 10,000, the microphase separation structure becomes too large or removed from the resin sheet. It becomes difficult.
 多孔質樹脂シートの気泡径、体積空孔率、孔径分布などは、使用する樹脂成分、相分離化剤などの原料の種類や配合比率、及び反応誘起相分離時における加熱温度や加熱時間などの反応条件により変化するため、目的とする気泡径、体積空孔率、孔径分布を得るために系の相図を作成して最適な条件を選択することが好ましい。 The cell diameter, volume porosity, pore size distribution, etc. of the porous resin sheet include the resin component to be used, the type and blending ratio of raw materials such as a phase separation agent, and the heating temperature and heating time during reaction-induced phase separation. Since it varies depending on the reaction conditions, it is preferable to create a phase diagram of the system and select the optimum conditions in order to obtain the target cell diameter, volume porosity, and pore size distribution.
 平均最大垂直弦長が1~40μm、かつ平均アスペクト比(平均最大水平弦長/平均最大垂直弦長)が0.7~4.0の気泡を有し、体積空孔率が20~75%である多孔質樹脂シートを作製するためには、樹脂成分100重量部に対して相分離化剤を25~300重量部用いることが好ましく、より好ましくは60~200重量部である。 It has bubbles with an average maximum vertical chord length of 1 to 40 μm and an average aspect ratio (average maximum horizontal chord length / average maximum vertical chord length) of 0.7 to 4.0, and a volume porosity of 20 to 75%. In order to produce the porous resin sheet, it is preferable to use 25 to 300 parts by weight of the phase separation agent with respect to 100 parts by weight of the resin component, and more preferably 60 to 200 parts by weight.
 以下、本発明の圧電・焦電素子用多孔質樹脂シートの製造方法について詳しく説明する。 Hereinafter, the manufacturing method of the porous resin sheet for piezoelectric / pyroelectric elements of the present invention will be described in detail.
 まず、前記樹脂成分と相分離化剤とを含む樹脂組成物を基板上に塗布する。 First, a resin composition containing the resin component and a phase separation agent is applied on a substrate.
 均一な樹脂組成物を調製するために、トルエン、及びキシレンなどの芳香族炭化水素;メタノール、エタノール、及びイソプロピルアルコールなどのアルコール類;メチルエチルケトン、及びアセトンなどのケトン類;N-メチル-2-ピロリドン、ジメチルアセトアミド、及びジメチルホルムアミドなどのアミド類などの有機溶媒を使用してもよい。有機溶媒の使用量は、樹脂成分100重量部に対して通常100~500重量部であり、好ましくは300~500重量部である。 In order to prepare a uniform resin composition, aromatic hydrocarbons such as toluene and xylene; alcohols such as methanol, ethanol and isopropyl alcohol; ketones such as methyl ethyl ketone and acetone; N-methyl-2-pyrrolidone Organic solvents such as amides such as dimethylacetamide and dimethylformamide may be used. The amount of the organic solvent used is usually 100 to 500 parts by weight, preferably 300 to 500 parts by weight, based on 100 parts by weight of the resin component.
 基材としては、平滑な表面を有するものであれば特に制限されず、例えば、PET、PE、及びPPなどのプラスチックフィルム;ガラス板;ステンレス、銅、及びアルミニウムなどの金属箔が挙げられる。連続して樹脂シートを製造するために、ベルト状の基材を用いてもよい。 The substrate is not particularly limited as long as it has a smooth surface, and examples thereof include plastic films such as PET, PE, and PP; glass plates; metal foils such as stainless steel, copper, and aluminum. In order to manufacture a resin sheet continuously, you may use a belt-shaped base material.
 樹脂組成物を基材上に塗布する方法は特に制限されず、連続的に塗布する方法としては、例えば、ワイヤーバー、キスコート、及びグラビアなどが挙げられ、バッチで塗布する方法としては、例えば、アプリケーター、ワイヤーバー、及びナイフコーターなどが挙げられる。 The method for applying the resin composition onto the substrate is not particularly limited, and examples of the method for continuous application include wire bar, kiss coat, and gravure. Examples of the method for applying in batch include: Applicators, wire bars, knife coaters and the like can be mentioned.
 次に、基板上に塗布した樹脂組成物を硬化させて、相分離化剤がミクロ相分離した樹脂シートを作製する。ミクロ相分離構造は、通常、樹脂成分を海、相分離化剤を島とする海島構造となる。 Next, the resin composition applied on the substrate is cured to produce a resin sheet in which the phase separation agent is microphase-separated. The microphase separation structure usually has a sea-island structure in which the resin component is the sea and the phase separation agent is the island.
樹脂組成物が溶媒を含まない場合には、塗布膜に熱硬化処理などの硬化処理を施し、塗布膜中の樹脂成分を硬化させて相分離化剤を不溶化する。 When the resin composition does not contain a solvent, the coating film is subjected to a curing process such as a thermosetting process to cure the resin component in the coating film and insolubilize the phase separation agent.
 樹脂組成物が溶媒を含む場合には、塗布膜中の溶媒を蒸発(乾燥)させてミクロ相分離構造を形成した後に樹脂成分を硬化させてもよく、樹脂成分を硬化させた後に溶媒を蒸発(乾燥)させてミクロ相分離構造を形成してもよい。溶媒を蒸発(乾燥)させる際の温度は特に制限されず、用いた溶媒の種類により適宜調整すればよいが、通常10~250℃であり、好ましくは10~200℃である。 When the resin composition contains a solvent, the resin component may be cured after the solvent in the coating film is evaporated (dried) to form a microphase separation structure, or the solvent is evaporated after the resin component is cured. It may be (dried) to form a microphase separation structure. The temperature at which the solvent is evaporated (dried) is not particularly limited and may be appropriately adjusted depending on the type of solvent used, but is usually 10 to 250 ° C., preferably 10 to 200 ° C.
 次に、樹脂シートからミクロ相分離した相分離化剤を除去して多孔質樹脂シートを作製する。なお、相分離化剤を除去する前に樹脂シートを基材から剥離しておいてもよい。 Next, a porous resin sheet is produced by removing the phase separation agent that has undergone microphase separation from the resin sheet. In addition, you may peel the resin sheet from a base material before removing a phase-separation agent.
 樹脂シートから相分離化剤を除去する方法は特に制限されないが、溶剤で抽出する方法が好ましい。溶剤は、相分離化剤に対して良溶媒であり、かつ樹脂成分の硬化体を溶解しないものを用いる必要があり、例えば、トルエン、エタノール、酢酸エチル、及びヘプタンなどの有機溶剤、液化二酸化炭素、超臨界二酸化炭素などが挙げられる。液化二酸化炭素、及び超臨界二酸化炭素は、樹脂シート内に浸透しやすいため相分離化剤を効率よく除去することができる。 The method for removing the phase separation agent from the resin sheet is not particularly limited, but a method of extracting with a solvent is preferable. It is necessary to use a solvent that is a good solvent for the phase separation agent and does not dissolve the cured product of the resin component. For example, organic solvents such as toluene, ethanol, ethyl acetate, and heptane, liquefied carbon dioxide And supercritical carbon dioxide. Since liquefied carbon dioxide and supercritical carbon dioxide easily penetrate into the resin sheet, the phase separation agent can be efficiently removed.
 溶剤として液化二酸化炭素または超臨界二酸化炭素を用いる場合には、通常、圧力容器を用いる。圧力容器としては、例えば、バッチ式の圧力容器、耐圧性のシート繰り出し・巻き取り装置を有する圧力容器などを用いることができる。圧力容器には、通常、ポンプ、配管、及びバルブなどにより構成される二酸化炭素供給手段が設けられている。 When using liquefied carbon dioxide or supercritical carbon dioxide as a solvent, a pressure vessel is usually used. As the pressure vessel, for example, a batch type pressure vessel, a pressure vessel having a pressure-resistant sheet feeding and winding device, or the like can be used. The pressure vessel is usually provided with carbon dioxide supply means composed of a pump, piping, valves and the like.
 液化二酸化炭素または超臨界二酸化炭素で相分離化剤を抽出する際の温度及び圧力は、二酸化炭素の臨界点以上であればよく、通常、32~230℃、7.3~100MPaであり、好ましくは40~200℃、10~50MPaである。 The temperature and pressure at the time of extracting the phase separation agent with liquefied carbon dioxide or supercritical carbon dioxide may be higher than the critical point of carbon dioxide, and are usually 32 to 230 ° C. and 7.3 to 100 MPa, preferably Is 40 to 200 ° C. and 10 to 50 MPa.
 抽出は、樹脂シートを入れた圧力容器内に、液化二酸化炭素または超臨界二酸化炭素を連続的に供給・排出して行ってもよく、圧力容器を閉鎖系(投入した樹脂シート、液化二酸化炭素または超臨界二酸化炭素が容器外に移動しない状態)にして行ってもよい。超臨界二酸化炭素を用いた場合には、樹脂シートの膨潤が促進され、かつ不溶化した相分離化剤の拡散係数の向上によって効率的に樹脂シートから相分離化剤が除去される。液化二酸化炭素を用いた場合には、前記拡散係数は低下するが、樹脂シート内への浸透性が向上するため効率的に樹脂シートから相分離化剤が除去される。 Extraction may be performed by continuously supplying and discharging liquefied carbon dioxide or supercritical carbon dioxide into a pressure vessel containing a resin sheet, and the pressure vessel is closed (the charged resin sheet, liquefied carbon dioxide or The supercritical carbon dioxide may not be moved out of the container. When supercritical carbon dioxide is used, swelling of the resin sheet is promoted, and the phase separation agent is efficiently removed from the resin sheet by improving the diffusion coefficient of the insolubilized phase separation agent. When liquefied carbon dioxide is used, the diffusion coefficient is reduced, but the permeability into the resin sheet is improved, so that the phase separation agent is efficiently removed from the resin sheet.
 抽出時間は、抽出時の温度、圧力、相分離化剤の配合量、及び樹脂シートの厚みなどにより適宜調整する必要があるが、通常、1~10時間であり、好ましくは2~10時間である。 The extraction time needs to be appropriately adjusted depending on the temperature and pressure at the time of extraction, the blending amount of the phase separation agent, the thickness of the resin sheet, and the like. is there.
 一方、溶剤として有機溶剤を用いて抽出する場合、大気圧下で相分離化剤を除去できるため、液化二酸化炭素または超臨界二酸化炭素を用いて抽出する場合に比べて多孔質樹脂シートの変形を抑制できる。また、抽出時間を短縮することもできる。さらに、有機溶剤中に順次樹脂シートを通すことにより、連続的に相分離化剤の抽出処理を行うことができる。 On the other hand, when extracting using an organic solvent as the solvent, the phase separation agent can be removed under atmospheric pressure, so the deformation of the porous resin sheet is less than when extracting using liquefied carbon dioxide or supercritical carbon dioxide. Can be suppressed. In addition, the extraction time can be shortened. Furthermore, by sequentially passing the resin sheet through the organic solvent, the phase separation agent can be extracted continuously.
 有機溶剤を用いた抽出方法としては、例えば、有機溶剤中に樹脂シートを浸漬する方法、樹脂シートに有機溶剤を吹き付ける方法などが挙げられる。相分離化剤の除去効率の観点から浸漬法が好ましい。また、数回に亘って有機溶剤を交換したり、撹拌しながら抽出することで効率的に相分離化剤を除去することができる。 Examples of the extraction method using an organic solvent include a method of immersing a resin sheet in an organic solvent, a method of spraying an organic solvent on the resin sheet, and the like. The immersion method is preferable from the viewpoint of the removal efficiency of the phase separation agent. Further, the phase separation agent can be efficiently removed by exchanging the organic solvent several times or performing extraction while stirring.
 相分離化剤を除去した後に多孔質樹脂シートを乾燥処理等してもよい。 After removing the phase separation agent, the porous resin sheet may be dried.
 多孔質樹脂シートの厚さは用途により異なるが、通常1~500μmであり、好ましくは10~150μmであり、より好ましくは30~150μmである。 The thickness of the porous resin sheet varies depending on the use, but is usually 1 to 500 μm, preferably 10 to 150 μm, and more preferably 30 to 150 μm.
 本発明の製造方法により得られる多孔質樹脂シートは、平均最大垂直弦長が1~40μm、かつ平均アスペクト比(平均最大水平弦長/平均最大垂直弦長)が0.7~4.0の気泡を有し、体積空孔率が20~75%であることが好ましい。平均最大垂直弦長は1~25μmであることがより好ましく、平均アスペクト比は1.0~2.0であることがより好ましく、体積空孔率は35~75%であることがより好ましい。 The porous resin sheet obtained by the production method of the present invention has an average maximum vertical chord length of 1 to 40 μm and an average aspect ratio (average maximum horizontal chord length / average maximum vertical chord length) of 0.7 to 4.0. It preferably has bubbles and has a volume porosity of 20 to 75%. The average maximum vertical chord length is more preferably 1 to 25 μm, the average aspect ratio is more preferably 1.0 to 2.0, and the volume porosity is more preferably 35 to 75%.
 また、多孔質樹脂シートの弾性率は、0.1~1.5GPaであることが好ましく、より好ましくは0.2~1.2GPaである。 The elastic modulus of the porous resin sheet is preferably 0.1 to 1.5 GPa, more preferably 0.2 to 1.2 GPa.
 また、多孔質樹脂シートの熱変形温度は、100℃以上であることが好ましく、より好ましくは150℃以上である。熱変形温度が100℃未満の場合には、多孔質樹脂シートを電気機器などの発熱する装置と接触させて使用する時に、多孔質樹脂シートが変形したり、圧電性能が低下するなどの問題が生じるおそれがある。 Further, the thermal deformation temperature of the porous resin sheet is preferably 100 ° C. or higher, more preferably 150 ° C. or higher. When the heat distortion temperature is less than 100 ° C., the porous resin sheet may be deformed or the piezoelectric performance may be deteriorated when the porous resin sheet is used in contact with a device that generates heat, such as an electric device. May occur.
 その後、多孔質樹脂シートに電子線照射処理又はコロナ放電処理を施すことにより気泡内部を帯電させることにより圧電・焦電素子用多孔質樹脂シートを作製する。帯電処理の方法は特に制限されず、従来公知の方法を採用することができる。例えば、アースをつないだ金属板上に多孔質樹脂シートを粘着テープで固定し、該多孔質樹脂シートの中心部の上空5~15mm程度の位置に針の先端を設置する。そして、常温、湿度20%の環境下で、5~15kV程度の直流高電圧を針の先端に印加する。印加時間は通常0.5~3分程度である。 Thereafter, the porous resin sheet is subjected to electron beam irradiation treatment or corona discharge treatment to charge the inside of the bubbles to produce a porous resin sheet for piezoelectric / pyroelectric elements. The method for the charging process is not particularly limited, and a conventionally known method can be adopted. For example, a porous resin sheet is fixed to an earthed metal plate with an adhesive tape, and the tip of the needle is placed at a position about 5 to 15 mm above the center of the porous resin sheet. Then, a DC high voltage of about 5 to 15 kV is applied to the tip of the needle in an environment of normal temperature and 20% humidity. The application time is usually about 0.5 to 3 minutes.
 本発明の圧電・焦電素子用多孔質樹脂シートは、従来にない気泡構造を有しており、圧電率及び圧縮応力が高いという特性を持ち、圧電素子または焦電素子の材料として好適に用いられる。 The porous resin sheet for piezoelectric / pyroelectric elements of the present invention has an unprecedented cell structure and has a high piezoelectricity and compressive stress, and is suitably used as a material for piezoelectric elements or pyroelectric elements. It is done.
 以下に実施例をあげて本発明を説明するが、本発明はこれら実施例によりなんら限定されるものではない。 Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples.
 〔測定及び評価方法〕
 (5%重量減少温度の測定)
 示差熱熱重量同時測定装置(セイコーインスツルメンツ社製、TG/DTA300)を用い、大気中で昇温速度10℃/minの条件にて、多孔質樹脂シートの重量が5%減少した時の温度を測定した。
[Measurement and evaluation method]
(Measurement of 5% weight loss temperature)
Using a differential thermothermal gravimetric simultaneous measurement device (Seiko Instruments, TG / DTA300), the temperature when the weight of the porous resin sheet is reduced by 5% under the condition of a temperature rising rate of 10 ° C./min in the atmosphere. It was measured.
 (平均最大垂直弦長、平均最大水平弦長、及び平均アスペクト比の測定)
 多孔質樹脂シートを液体窒素で冷却し、刃物を用いてシート面に対して垂直に切断してサンプルAを作製した。サンプルAの切断面にAu蒸着処理を施し、該切断面をSEMで観察した。その画像を画像処理ソフト(三谷商事(株)製、WinROOF)で二値化処理し、気泡部と樹脂部とに分離して気泡の最大垂直弦長を測定した。同様の方法で、シート面に対して水平に切断してサンプルBを作製し、気泡の最大水平弦長を測定した。なお、最大垂直弦長とは、気泡をシート面に対して垂直に切断した時の各気泡の最大長さであり、最大水平弦長とは、気泡をシート面に対して水平に切断した時の各気泡の最大長さである。50個の気泡について最大垂直弦長及び最大水平弦長をそれぞれ測定し、その平均値を平均最大垂直弦長及び平均最大水平弦長とした。また、下記式により平均アスペクト比を算出した。 
 平均アスペクト比=平均最大水平弦長/平均最大垂直弦長
(Measurement of average maximum vertical chord length, average maximum horizontal chord length, and average aspect ratio)
The porous resin sheet was cooled with liquid nitrogen, and cut with a blade to be perpendicular to the sheet surface to prepare Sample A. The cut surface of Sample A was subjected to Au deposition treatment, and the cut surface was observed with SEM. The image was binarized with image processing software (Mitani Corporation, WinROOF), separated into a bubble portion and a resin portion, and the maximum vertical chord length of the bubbles was measured. In the same manner, a sample B was cut horizontally with respect to the sheet surface, and the maximum horizontal chord length of bubbles was measured. The maximum vertical chord length is the maximum length of each bubble when the bubbles are cut perpendicular to the sheet surface, and the maximum horizontal chord length is when the bubbles are cut horizontally to the sheet surface. The maximum length of each bubble. The maximum vertical chord length and the maximum horizontal chord length for each of the 50 bubbles were measured, and the average values were taken as the average maximum vertical chord length and the average maximum horizontal chord length. Moreover, the average aspect ratio was calculated by the following formula.
Average aspect ratio = average maximum horizontal chord length / average maximum vertical chord length
 (体積空孔率の測定)
 多孔質樹脂シートから24mmφのサンプルを切り出し、その面積s、厚みl、及び重量mを測定した。また、多孔質樹脂シートの樹脂成分の比重σをJIS Z8807-1976に準拠して測定した。具体的には、樹脂成分を4cm×8.5cmの短冊状(厚み:任意)に切り出したものを比重測定用試料とし、温度23℃±2℃、湿度50%±5%の環境で16時間静置した。その後、比重計(ザルトリウス社製)を用いて比重σを測定した。そして、下記式により体積空孔率を算出した。 
 体積空孔率(%)={100-(m/(s×l×σ))}×100
(Measurement of volume porosity)
A 24 mmφ sample was cut out from the porous resin sheet, and the area s, thickness l, and weight m were measured. The specific gravity σ of the resin component of the porous resin sheet was measured according to JIS Z8807-1976. Specifically, a resin component cut into a 4 cm × 8.5 cm strip (thickness: arbitrary) is used as a specific gravity measurement sample, and the temperature is 23 ° C. ± 2 ° C. and the humidity is 50% ± 5% for 16 hours. Left to stand. Thereafter, the specific gravity σ was measured using a hydrometer (manufactured by Sartorius). And the volume porosity was computed by the following formula.
Volume porosity (%) = {100− (m / (s × l × σ))} × 100
 (弾性率の測定)
 表面界面物性解析装置(ダイプラウィンテス社製、SAICAS)、サイズ6mm×4mmの長方形平面圧子を用いて、押し込み速度0.2μm/sec及び押し込み深さ20μmの条件で、多孔質樹脂シート(試料)の弾性率を測定した。弾性率は、下記数式により求められる。
Figure JPOXMLDOC01-appb-M000001
(Measurement of elastic modulus)
Porous resin sheet (sample) under conditions of an indentation speed of 0.2 μm / sec and an indentation depth of 20 μm using a surface interface property analyzer (Daipura Wintes SAICAS), a rectangular flat indenter of size 6 mm × 4 mm The elastic modulus of was measured. The elastic modulus is obtained by the following mathematical formula.
Figure JPOXMLDOC01-appb-M000001
 (圧電性能の評価)
 多孔質樹脂シート(3cm×3cm)の両面にアルミ箔からなる矩形電極(三菱アルミ社製、FOIL、厚み11μm)を設けてサンプルを得た。圧電性能測定装置を用い、サンプルをおもりの下に設置し、室温雰囲気下、湿度20%の条件で、サンプルの厚み方向に一定の交流加速度α(周波数:90-300Hz、大きさ:2-10m/s)を与え、そのときの応答電荷を測定し、圧電定数d33を求めた。
(Evaluation of piezoelectric performance)
A rectangular electrode made of aluminum foil (manufactured by Mitsubishi Aluminum Corporation, FOIL, thickness 11 μm) was provided on both surfaces of a porous resin sheet (3 cm × 3 cm) to obtain a sample. Using a piezoelectric performance measuring device, a sample is placed under a weight, and constant AC acceleration α (frequency: 90-300 Hz, size: 2-10 m) in the thickness direction of the sample at room temperature and humidity of 20% / S 2 ), the response charge at that time was measured, and the piezoelectric constant d 33 was determined.
 (歪み回復性の評価)
 多孔質樹脂シート(3cm×3cm)をサンプルとし、その厚さを測定した。また、小型真空加熱プレス(井元製作所社製、IMC-11FD)を用いて1MPaの圧力を1分間加えた後のサンプルの厚さを測定した。歪み回復性は下記式にて求められる歪み回復率により評価した。 
 歪み回復率(%)=(加圧後のサンプルの厚さ/加圧前のサンプルの厚さ)×100
(Evaluation of strain recovery)
A porous resin sheet (3 cm × 3 cm) was used as a sample, and the thickness thereof was measured. In addition, the thickness of the sample after applying a pressure of 1 MPa for 1 minute using a small vacuum heating press (IMC-11FD, manufactured by Imoto Seisakusho) was measured. The strain recovery property was evaluated by the strain recovery rate obtained by the following formula.
Strain recovery rate (%) = (thickness of sample after pressing / thickness of sample before pressing) × 100
 実施例1
 ポリエーテルイミド樹脂(GE社製、商品名:ULTEM(UC6846グレード1000カラー#1000))100重量部、溶媒としてN-メチル-2-ピロリドン400重量部、及び相分離化剤としてトリプロピレングリコールモノメチルエーテル100重量部を混合して、透明で均一な樹脂組成物を調製した。500μmのクリアランスを持つアプリケーターを用いて、該樹脂組成物をPETフィルム(三菱ポリエステル社製、DIAFOIL # MRF38、厚み38μm)のシリコーン処理面上に乾燥後の膜厚が100μmになるように塗布し、その後、90℃の恒温乾燥機内で25分間乾燥してNMPを蒸発除去して樹脂シートを作製した。
Example 1
100 parts by weight of polyetherimide resin (manufactured by GE, trade name: ULTEM (UC6846 grade 1000 color # 1000)), 400 parts by weight of N-methyl-2-pyrrolidone as a solvent, and tripropylene glycol monomethyl ether as a phase separation agent 100 parts by weight were mixed to prepare a transparent and uniform resin composition. Using an applicator having a clearance of 500 μm, the resin composition was applied on the silicone-treated surface of a PET film (manufactured by Mitsubishi Polyester, DIAFOIL # MRF38, thickness 38 μm) so that the film thickness after drying was 100 μm. Then, it dried for 25 minutes in a 90 degreeC thermostat dryer, and NMP was removed by evaporation and the resin sheet was produced.
 樹脂シートをPETフィルムから剥離し、該樹脂シートを100mm×150mmの短冊状に切断した。切断した樹脂シートを500ccの耐圧容器に入れ、25℃に加熱、及び25MPaに加圧した後、該圧力を保ったまま7.4(l/min)の流量で二酸化炭素を注入し、排出してトリプロピレングリコールモノメチルエーテルを抽出する操作を2時間行って多孔質樹脂シートを作製した。 The resin sheet was peeled from the PET film, and the resin sheet was cut into strips of 100 mm × 150 mm. The cut resin sheet is put in a 500 cc pressure vessel, heated to 25 ° C. and pressurized to 25 MPa, and then injected with carbon dioxide at a flow rate of 7.4 (l / min) while maintaining the pressure and discharged. Then, an operation for extracting tripropylene glycol monomethyl ether was performed for 2 hours to prepare a porous resin sheet.
 多孔質樹脂シートを3cm×3cmの大きさに切断し、アースにつないだ金属板上に粘着テープで固定した。多孔質樹脂シート上8mmの位置に設置した針の先端に、室温および湿度20%の環境下で、直流高電圧(-7kV)を1分間印加して多孔質樹脂シートの気泡内部を帯電させることにより圧電・焦電素子用多孔質樹脂シートを作製した。 The porous resin sheet was cut into a size of 3 cm × 3 cm and fixed with an adhesive tape on a metal plate connected to the ground. Applying a DC high voltage (-7 kV) for 1 minute to the tip of a needle placed 8 mm above the porous resin sheet at room temperature and 20% humidity to charge the inside of the bubbles in the porous resin sheet Thus, a porous resin sheet for piezoelectric / pyroelectric elements was prepared.
 作製した多孔質樹脂シートを樹脂に包埋させ、面に対して垂直に切断してサンプルを得た。該サンプルの断面を走査型電子顕微鏡(日立社製、S-570)を用いて、加速電圧10kVにて観察した。該サンプルの断面の顕微鏡写真を図1に示す。 The produced porous resin sheet was embedded in a resin and cut perpendicularly to the surface to obtain a sample. The cross section of the sample was observed at an acceleration voltage of 10 kV using a scanning electron microscope (Hitachi, S-570). A micrograph of the cross section of the sample is shown in FIG.
 実施例2
 ポリスチレン樹脂(WAKO社製)100重量部、溶媒としてトルエン233重量部、及び相分離化剤としてジエチレングリコールモノメチルエーテル100重量部を混合して、透明で均一な樹脂組成物を調製した。500μmのクリアランスを持つアプリケーターを用いて、該樹脂組成物をPETフィルム(三菱ポリエステル社製、DIAFOIL # MRF38、厚み38μm)のシリコーン処理面上に乾燥後の膜厚が100μmになるように塗布し、その後、45℃の恒温乾燥機内で5分間乾燥してトルエンを蒸発除去して樹脂シートを作製した。その後、実施例1と同様の方法で圧電・焦電素子用多孔質樹脂シートを作製した。また、実施例1と同様の方法で多孔質樹脂シートの断面を観察した。その顕微鏡写真を図2に示す。
Example 2
A transparent and uniform resin composition was prepared by mixing 100 parts by weight of a polystyrene resin (manufactured by WAKO), 233 parts by weight of toluene as a solvent, and 100 parts by weight of diethylene glycol monomethyl ether as a phase separation agent. Using an applicator having a clearance of 500 μm, the resin composition was applied on the silicone-treated surface of a PET film (manufactured by Mitsubishi Polyester, DIAFOIL # MRF38, thickness 38 μm) so that the film thickness after drying was 100 μm. Then, it dried for 5 minutes within a 45 degreeC thermostat dryer, and toluene was removed by evaporation, and the resin sheet was produced. Thereafter, a porous resin sheet for piezoelectric / pyroelectric elements was produced in the same manner as in Example 1. Further, the cross section of the porous resin sheet was observed in the same manner as in Example 1. The micrograph is shown in FIG.
 実施例3
 シクロオレフィン共重合体(JSR社製、商品名:アートン)100重量部、溶媒としてトルエン400重量部、及び相分離化剤としてトリプロピレングリコール75重量部を混合して、透明で均一な樹脂組成物を調製した。500μmのクリアランスを持つアプリケーターを用いて、該樹脂組成物をPETフィルム(三菱ポリエステル社製、厚み50μm)上に乾燥後の膜厚が100μmになるように塗布し、その後、室温で30分間放置してトルエンを蒸発除去して樹脂シートを作製した。
Example 3
A transparent and uniform resin composition comprising 100 parts by weight of a cycloolefin copolymer (trade name: Arton, manufactured by JSR Corporation), 400 parts by weight of toluene as a solvent, and 75 parts by weight of tripropylene glycol as a phase separation agent. Was prepared. Using an applicator with a clearance of 500 μm, the resin composition was applied on a PET film (Mitsubishi Polyester, thickness 50 μm) so that the film thickness after drying was 100 μm, and then allowed to stand at room temperature for 30 minutes. Then, toluene was removed by evaporation to prepare a resin sheet.
 樹脂シートをPETフィルムから剥離し、該樹脂シートを100mm×150mmの短冊状に切断した。切断した樹脂シートをエタノールの入った容器に投入し、トリプロピレングリコールを抽出する操作を1時間行い、その後室温で乾燥させて多孔質樹脂シートを作製した。その後、実施例1と同様の方法で圧電・焦電素子用多孔質樹脂シートを作製した。また、加速電圧を3kVにした以外は実施例1と同様の方法で多孔質樹脂シートの断面を観察した。その顕微鏡写真を図3に示す。 The resin sheet was peeled from the PET film, and the resin sheet was cut into strips of 100 mm × 150 mm. The cut resin sheet was put into a container containing ethanol, and an operation of extracting tripropylene glycol was performed for 1 hour, followed by drying at room temperature to prepare a porous resin sheet. Thereafter, a porous resin sheet for piezoelectric / pyroelectric elements was produced in the same manner as in Example 1. Further, the cross section of the porous resin sheet was observed in the same manner as in Example 1 except that the acceleration voltage was 3 kV. The micrograph is shown in FIG.
 比較例1
 多孔質樹脂シートとしてポリプロピレン発泡シート(日東電工社製、平均孔径50μm、厚み200μm)を用いた以外は実施例1と同様の方法で圧電・焦電素子用多孔質樹脂シートを作製した。作製した多孔質樹脂シートをイオンビームでエッチングしてサンプルを得た。該サンプルの断面を走査型電子顕微鏡(日立社製、S-570)を用いて、加速電圧5kVにて観察した。該サンプルの断面の顕微鏡写真を図4に示す。
Comparative Example 1
A porous resin sheet for a piezoelectric / pyroelectric element was prepared in the same manner as in Example 1 except that a polypropylene foam sheet (manufactured by Nitto Denko Corporation, average pore diameter 50 μm, thickness 200 μm) was used as the porous resin sheet. The produced porous resin sheet was etched with an ion beam to obtain a sample. The cross section of the sample was observed using a scanning electron microscope (Hitachi, S-570) at an acceleration voltage of 5 kV. A micrograph of the cross section of the sample is shown in FIG.
 比較例2
 多孔質樹脂シートとしてPPエレクトレット圧電シート(Emfit社製、厚み70μm)を用いた以外は実施例1と同様の方法で圧電・焦電素子用多孔質樹脂シートを作製した。作製した多孔質樹脂シートをイオンビームでエッチングしてサンプルを得た。該サンプルの断面を走査型電子顕微鏡(日立社製、S-570)を用いて、加速電圧5kVにて観察した。該サンプルの断面の顕微鏡写真を図5に示す。
Comparative Example 2
A porous resin sheet for piezoelectric / pyroelectric elements was prepared in the same manner as in Example 1 except that a PP electret piezoelectric sheet (Emfit, thickness 70 μm) was used as the porous resin sheet. The produced porous resin sheet was etched with an ion beam to obtain a sample. The cross section of the sample was observed using a scanning electron microscope (Hitachi, S-570) at an acceleration voltage of 5 kV. A micrograph of the cross section of the sample is shown in FIG.
 比較例3
 多孔質樹脂シートとして架橋ポリエチレン発泡シート(積水化学社製、商品名:ボラーラ(XL-H)、厚み100μm)を用いた以外は実施例1と同様の方法で圧電・焦電素子用多孔質樹脂シートを作製した。作製した多孔質樹脂シートをイオンビームでエッチングしてサンプルを得た。該サンプルの断面を走査型電子顕微鏡(日立社製、S-570)を用いて、加速電圧5kVにて観察した。該サンプルの断面の顕微鏡写真を図6に示す。
Comparative Example 3
Porous resin for piezoelectric / pyroelectric elements in the same manner as in Example 1 except that a crosslinked polyethylene foam sheet (manufactured by Sekisui Chemical Co., Ltd., trade name: Bollara (XL-H), thickness 100 μm) was used as the porous resin sheet. A sheet was produced. The produced porous resin sheet was etched with an ion beam to obtain a sample. The cross section of the sample was observed using a scanning electron microscope (Hitachi, S-570) at an acceleration voltage of 5 kV. A micrograph of the cross section of the sample is shown in FIG.
 実施例4
 シクロオレフィン共重合体(JSR社製、商品名:アートン)100重量部、溶媒としてトルエン400重量部、及び相分離化剤としてトリプロピレングリコール75重量部を混合して、透明で均一な樹脂組成物を調製した。500μmのクリアランスを持つアプリケーターを用いて、該樹脂組成物をPETフィルム(三菱ポリエステル社製、厚み50μm)上に乾燥後の膜厚が100μmになるように塗布し、その後、60℃で2分間乾燥させてトルエンを蒸発除去して樹脂シートを作製した。
Example 4
A transparent and uniform resin composition comprising 100 parts by weight of a cycloolefin copolymer (trade name: Arton, manufactured by JSR Corporation), 400 parts by weight of toluene as a solvent, and 75 parts by weight of tripropylene glycol as a phase separation agent. Was prepared. Using an applicator having a clearance of 500 μm, the resin composition was applied onto a PET film (Mitsubishi Polyester, thickness 50 μm) so that the film thickness after drying was 100 μm, and then dried at 60 ° C. for 2 minutes. Then, toluene was removed by evaporation to prepare a resin sheet.
 樹脂シートをPETフィルムから剥離し、該樹脂シートを100mm×150mmの短冊状に切断した。切断した樹脂シートを500ccの耐圧容器に入れ、25℃に加熱し、25MPaに加圧した後、該圧力を保ったまま7.4(l/min)の流量で二酸化炭素を注入し、排出してトリプロピレングリコールを抽出する操作を2時間行って多孔質樹脂シートを作製した。その後、実施例1と同様の方法で圧電・焦電素子用多孔質樹脂シートを作製した。また、実施例1と同様の方法で多孔質樹脂シートの断面を観察した。その顕微鏡写真を図7に示す。 The resin sheet was peeled from the PET film, and the resin sheet was cut into strips of 100 mm × 150 mm. The cut resin sheet is put into a 500 cc pressure vessel, heated to 25 ° C. and pressurized to 25 MPa, and then carbon dioxide is injected at a flow rate of 7.4 (l / min) while keeping the pressure, and discharged. Then, the operation of extracting tripropylene glycol was performed for 2 hours to produce a porous resin sheet. Thereafter, a porous resin sheet for piezoelectric / pyroelectric elements was produced in the same manner as in Example 1. Further, the cross section of the porous resin sheet was observed in the same manner as in Example 1. The micrograph is shown in FIG.
 実施例5
 シクロオレフィン共重合体(ポリプラスチック社製、商品名:トパス)100重量部、溶媒としてシクロヘキサン-トルエン混合溶媒(重量比1:1)400重量部、及び相分離化剤としてジプロピレングリコールモノメチルエーテル100重量部を混合して、透明で均一な樹脂組成物を調製した。500μmのクリアランスを持つアプリケーターを用いて、該樹脂組成物をPETフィルム(三菱ポリエステル社製、厚み50μm)上に乾燥後の膜厚が100μmになるように塗布し、その後、60℃で2分間乾燥させてシクロヘキサン-トルエンを蒸発除去して樹脂シートを作製した。
Example 5
100 parts by weight of a cycloolefin copolymer (trade name: Topas, manufactured by Polyplastics), 400 parts by weight of a cyclohexane-toluene mixed solvent (weight ratio 1: 1) as a solvent, and dipropylene glycol monomethyl ether 100 as a phase separation agent Part by weight was mixed to prepare a transparent and uniform resin composition. Using an applicator having a clearance of 500 μm, the resin composition was applied onto a PET film (Mitsubishi Polyester, thickness 50 μm) so that the film thickness after drying was 100 μm, and then dried at 60 ° C. for 2 minutes. Then, cyclohexane-toluene was removed by evaporation to prepare a resin sheet.
 樹脂シートをPETフィルムから剥離し、該樹脂シートを100mm×150mmの短冊状に切断した。切断した樹脂シートを500ccの耐圧容器に入れ、25℃に加熱し、25MPaに加圧した後、該圧力を保ったまま7.4(l/min)の流量で二酸化炭素を注入し、排出してジプロピレングリコールモノメチルエーテルを抽出する操作を2時間行って多孔質樹脂シートを作製した。その後、実施例1と同様の方法で圧電・焦電素子用多孔質樹脂シートを作製した。また、実施例1と同様の方法で多孔質樹脂シートの断面を観察した。その顕微鏡写真を図8に示す。 The resin sheet was peeled from the PET film, and the resin sheet was cut into strips of 100 mm × 150 mm. The cut resin sheet is put into a 500 cc pressure vessel, heated to 25 ° C. and pressurized to 25 MPa, and then carbon dioxide is injected at a flow rate of 7.4 (l / min) while keeping the pressure, and discharged. Then, an operation of extracting dipropylene glycol monomethyl ether was performed for 2 hours to prepare a porous resin sheet. Thereafter, a porous resin sheet for piezoelectric / pyroelectric elements was produced in the same manner as in Example 1. Further, the cross section of the porous resin sheet was observed in the same manner as in Example 1. The micrograph is shown in FIG.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明の圧電・焦電素子用多孔質樹脂シートは、可とう性を有する圧電素子または焦電素子の材料として利用可能である。このような圧電素子または焦電素子を備えた機器としては、例えば、計算機、コンピュータ、及び携帯電話などの電子機器が挙げられる。さらに、制御機器を狭小部に搭載する必要のある自動車及び飛行機等の機械の制御回路にも利用可能である。また、本発明の圧電・焦電素子用多孔質樹脂シートは、歪み回復性に優れるため、設置場所が地面、床、足の裏と靴底の間、靴底の裏、寝具など人に由来する圧力が断続的に加わる場所で使用されるセンサーとして利用可能である。 The porous resin sheet for piezoelectric / pyroelectric elements of the present invention can be used as a material for flexible piezoelectric elements or pyroelectric elements. Examples of the device provided with such a piezoelectric element or pyroelectric element include electronic devices such as a computer, a computer, and a mobile phone. Furthermore, the present invention can also be used for control circuits for machines such as automobiles and airplanes that require a control device to be mounted in a narrow space. In addition, since the porous resin sheet for piezoelectric / pyroelectric elements of the present invention is excellent in strain recovery, the installation location is derived from people such as the ground, floor, soles and soles, soles, bedding, etc. It can be used as a sensor that is used in places where pressure is applied intermittently.

Claims (7)

  1. 平均最大垂直弦長が1~40μm、かつ平均アスペクト比(平均最大水平弦長/平均最大垂直弦長)が0.7~4.0の気泡を有し、体積空孔率が20~75%である圧電・焦電素子用多孔質樹脂シート。 It has bubbles with an average maximum vertical chord length of 1 to 40 μm and an average aspect ratio (average maximum horizontal chord length / average maximum vertical chord length) of 0.7 to 4.0, and a volume porosity of 20 to 75%. A porous resin sheet for piezoelectric and pyroelectric elements.
  2. 弾性率が0.1~1.5GPaである請求項1記載の圧電・焦電素子用多孔質樹脂シート。 The porous resin sheet for piezoelectric / pyroelectric elements according to claim 1, having an elastic modulus of 0.1 to 1.5 GPa.
  3. 樹脂成分と、該樹脂成分の硬化体と相分離する相分離化剤とを含む樹脂組成物を基板上に塗布し、硬化させてミクロ相分離構造を有する樹脂シートを作製する工程、樹脂シートから前記相分離化剤を除去して多孔質樹脂シートを作製する工程、及び多孔質樹脂シートに電子線照射処理又はコロナ放電処理を施すことにより気泡内部を帯電させる工程を含む圧電・焦電素子用多孔質樹脂シートの製造方法。 From the resin sheet, a step of applying a resin composition including a resin component and a phase separation agent that phase-separates with a cured product of the resin component on a substrate, and curing the resin composition to have a microphase separation structure For a piezoelectric / pyroelectric device including a step of removing the phase separation agent to produce a porous resin sheet, and a step of charging the inside of the bubble by subjecting the porous resin sheet to electron beam irradiation treatment or corona discharge treatment A method for producing a porous resin sheet.
  4. 樹脂成分が、熱硬化性樹脂、エンジニアリングプラスチック、又はスーパーエンジニアリングプラスチックである請求項3記載の圧電・焦電素子用多孔質樹脂シートの製造方法。 The method for producing a porous resin sheet for a piezoelectric / pyroelectric element according to claim 3, wherein the resin component is a thermosetting resin, an engineering plastic, or a super engineering plastic.
  5. 前記相分離化剤を溶剤抽出により除去する請求項3又は4記載の圧電・焦電素子用多孔質樹脂シートの製造方法。 The method for producing a porous resin sheet for piezoelectric / pyroelectric elements according to claim 3 or 4, wherein the phase separation agent is removed by solvent extraction.
  6. 溶剤が液化二酸化炭素又は超臨界二酸化炭素である請求項5記載の圧電・焦電素子用多孔質樹脂シートの製造方法。 The method for producing a porous resin sheet for piezoelectric / pyroelectric elements according to claim 5, wherein the solvent is liquefied carbon dioxide or supercritical carbon dioxide.
  7. 請求項3記載の方法によって製造される圧電・焦電素子用多孔質樹脂シート。
     
    A porous resin sheet for a piezoelectric / pyroelectric element produced by the method according to claim 3.
PCT/JP2010/059843 2009-06-11 2010-06-10 Porous resin sheet for piezoelectric/pyroelectric element, and process for production thereof WO2010143687A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-140424 2009-06-11
JP2009140424 2009-06-11
JP2010-131337 2010-06-08
JP2010131337A JP2011018897A (en) 2009-06-11 2010-06-08 Porous resin sheet for piezoelectric/pyroelectric element, and process for production thereof

Publications (1)

Publication Number Publication Date
WO2010143687A1 true WO2010143687A1 (en) 2010-12-16

Family

ID=43308942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/059843 WO2010143687A1 (en) 2009-06-11 2010-06-10 Porous resin sheet for piezoelectric/pyroelectric element, and process for production thereof

Country Status (2)

Country Link
JP (1) JP2011018897A (en)
WO (1) WO2010143687A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013183088A (en) * 2012-03-02 2013-09-12 Kyushu Univ Thermoelectric conversion material using substrate having nanostructure and method for producing the same
JP2014165465A (en) * 2013-02-27 2014-09-08 Lintec Corp Thermoelectric conversion material and method for manufacturing the same, and thermoelectric conversion module
EP2787513A1 (en) * 2012-03-29 2014-10-08 Nitto Denko Corporation Electrically insulating resin sheet
US20150015120A1 (en) * 2012-02-07 2015-01-15 Sumitomo Electric Industries, Ltd. Piezoelectric element including fluororesin film
CN108604500A (en) * 2016-02-04 2018-09-28 积水化学工业株式会社 Electret sheet
US11515810B2 (en) * 2017-02-01 2022-11-29 Yupo Corporation Energy conversion film and energy conversion element using same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012182116A (en) * 2011-02-03 2012-09-20 Nitto Denko Corp Electric insulating resin sheet for motor, and method of manufacturing the same
JP2013162051A (en) * 2012-02-07 2013-08-19 Sumitomo Electric Ind Ltd Piezoelectric element made of fluororesin film and manufacturing method therefor
JP6959013B2 (en) * 2016-02-04 2021-11-02 積水化学工業株式会社 Electret sheet
JP6616206B2 (en) * 2016-02-23 2019-12-04 東京応化工業株式会社 Piezoelectric element, sensor, actuator, and method for manufacturing piezoelectric element
JP2018159708A (en) * 2017-03-23 2018-10-11 積水化学工業株式会社 Load detector
JP7305328B2 (en) * 2018-10-01 2023-07-10 日東電工株式会社 Method for manufacturing porous body
JP7203979B2 (en) * 2019-07-31 2023-01-13 株式会社ユポ・コーポレーション Energy conversion film, energy conversion element, and method for producing energy conversion film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007231077A (en) * 2006-02-28 2007-09-13 Junkosha Co Ltd Piezoelectric/pyroelectric element of polymeric substance
JP2007248857A (en) * 2006-03-16 2007-09-27 Nakajima Kogyo:Kk Vibration reducing member

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007231077A (en) * 2006-02-28 2007-09-13 Junkosha Co Ltd Piezoelectric/pyroelectric element of polymeric substance
JP2007248857A (en) * 2006-03-16 2007-09-27 Nakajima Kogyo:Kk Vibration reducing member

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150015120A1 (en) * 2012-02-07 2015-01-15 Sumitomo Electric Industries, Ltd. Piezoelectric element including fluororesin film
US9343653B2 (en) * 2012-02-07 2016-05-17 Sumitomo Electric Industries, Ltd. Piezoelectric element including fluororesin film
JP2013183088A (en) * 2012-03-02 2013-09-12 Kyushu Univ Thermoelectric conversion material using substrate having nanostructure and method for producing the same
EP2787513A1 (en) * 2012-03-29 2014-10-08 Nitto Denko Corporation Electrically insulating resin sheet
EP2787513A4 (en) * 2012-03-29 2014-11-19 Nitto Denko Corp Electrically insulating resin sheet
JP2014165465A (en) * 2013-02-27 2014-09-08 Lintec Corp Thermoelectric conversion material and method for manufacturing the same, and thermoelectric conversion module
CN108604500A (en) * 2016-02-04 2018-09-28 积水化学工业株式会社 Electret sheet
EP3413324A4 (en) * 2016-02-04 2019-10-09 Sekisui Chemical Co., Ltd. Electret sheet
US11024463B2 (en) 2016-02-04 2021-06-01 Sekisui Chemical Co., Ltd. Electret sheet
CN108604500B (en) * 2016-02-04 2021-10-08 积水化学工业株式会社 Electret sheet
US11688563B2 (en) 2016-02-04 2023-06-27 Sekisui Chemical Co., Ltd. Electret sheet
US11515810B2 (en) * 2017-02-01 2022-11-29 Yupo Corporation Energy conversion film and energy conversion element using same

Also Published As

Publication number Publication date
JP2011018897A (en) 2011-01-27

Similar Documents

Publication Publication Date Title
WO2010143687A1 (en) Porous resin sheet for piezoelectric/pyroelectric element, and process for production thereof
JP2011210865A (en) Porous resin sheet for piezoelectric element and pyroelectric detector, and method of manufacturing the same
JP6788013B2 (en) Multi-layer composite with adhesive and one or more nanofiber sheets
JP2011216661A (en) Porous resin sheet for pyezoelectric/pyroelectric element, and method of manufacturing the same
EP2672614A1 (en) Electrically insulating resin sheet for motors and process for production thereof
US20130026411A1 (en) Piezoelectric polymer film element, in particular polymer foil, and process for the production thereof
WO2020238260A1 (en) Vertical graphene-high molecular polymer composite material and preparation method therefor
KR20050070033A (en) Heat-resistant film and composite ion-exchange membrane
JP5458137B2 (en) Electrical insulating resin sheet
TW201129112A (en) Electret diaphragm and speaker using the same
JP2012124434A (en) Porous resin sheet for piezoelectric, pyroelectric element and method for manufacturing the same
Elyashevich et al. Composite membranes with conducting polymer microtubules as new electroactive and transport systems
CN108648853B (en) Graphene adhesion enhanced composite conductive structure and preparation method thereof
JP2012209498A (en) Porous resin sheet for piezoelectric/pyroelectric element and piezoelectric/pyroelectric element
RU2012122790A (en) DEVICE FOR PROTECTING COMPOSITE MATERIALS FROM ELECTROMAGNETIC EXPOSURE
CN106427145B (en) A kind of super soft basilar memebrane and preparation method thereof as graphene film carrier
Lee et al. An approach to durable poly (vinylidene fluoride) thin film loudspeaker
JP7411022B2 (en) electret sheet
JP2012122041A (en) Porous resin sheet for piezoelectric-pyroelectric element, and method for producing the same
KR101136070B1 (en) Organic solvent basded silicone release liquid and polyester release film using the same
EP4093050A1 (en) Polymer composite piezoelectric film
CN116113599A (en) Sheet structure comprising graphite material and method of making
KR102141734B1 (en) Flexible piezoelectric transducer having a chitin film
KR101209513B1 (en) Organic solvent basded silicone release liquid and polyester release film using the same
Elyashevich et al. Electroconducting polypyrrole coatings as an electrode contact material on porous poly (vinylidene fluoride) piezofilm

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10786218

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10786218

Country of ref document: EP

Kind code of ref document: A1