WO2010143418A1 - Engine for electrical recovery - Google Patents

Engine for electrical recovery Download PDF

Info

Publication number
WO2010143418A1
WO2010143418A1 PCT/JP2010/003816 JP2010003816W WO2010143418A1 WO 2010143418 A1 WO2010143418 A1 WO 2010143418A1 JP 2010003816 W JP2010003816 W JP 2010003816W WO 2010143418 A1 WO2010143418 A1 WO 2010143418A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
displacer
heat
heat exchanger
recovery engine
Prior art date
Application number
PCT/JP2010/003816
Other languages
French (fr)
Japanese (ja)
Inventor
赤澤輝行
中塚勉
星野健
吉原正一
Original Assignee
株式会社eスター
独立行政法人 宇宙航空研究開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社eスター, 独立行政法人 宇宙航空研究開発機構 filed Critical 株式会社eスター
Publication of WO2010143418A1 publication Critical patent/WO2010143418A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/0435Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines the engine being of the free piston type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2243/00Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes
    • F02G2243/02Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having pistons and displacers in the same cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2280/00Output delivery
    • F02G2280/10Linear generators

Definitions

  • the present invention relates to an electricity recovery engine using a Stirling engine.
  • the present inventor can increase the heating temperature in the heat exchanger, and by suppressing the heat loss due to the connection between the high temperature part in this heat exchanger and the low temperature part in the cooler, the heat efficiency is high.
  • An efficient Stirling engine has been proposed (Patent Document 1).
  • the present inventor has reduced the variation in dimensions, angles, flatness, etc.
  • Patent Document 2 a displacer piston, a power piston, and a leaf spring to reduce the cost of a Stirling engine
  • Patent Document 3 a cooler with high cooling efficiency
  • Patent Document 4 a highly reliable Scotch-Yoke mechanism with reduced sliding loss
  • Patent Document 5 Stirling Engine to which a small and high-performance actuator can be applied
  • Patent Document 5 Stirling Engine Have proposed high-efficiency heat exchangers (Patent Documents 6, 7, and 8) for increasing the efficiency of the heat exchanger.
  • the present invention is a low-temperature exhaust heat exchanger having sufficient heat transfer performance, which has a low ineffective volume and low passage resistance even from low-temperature exhaust heat in the 200 ° C region discharged from a flue of a factory or the like, and is efficient for electric energy.
  • An object of the present invention is to provide an electricity recovery engine that can be converted into
  • An electricity recovery engine includes a pair of Stirling engines in which a displacer piston and a power piston are coaxially arranged.
  • Each of the Stirling engines has a regenerator and a cooler, and the one Stirling engine is provided.
  • the displacer piston of the other Stirling engine and the displacer piston of the other Stirling engine are arranged to face each other, wherein the displacer piston has one gas passage communicating with the expansion space of the one displacer piston, and the other displacer.
  • One Stirling engine and the other Stirling engine are formed by a heat exchanger that forms the other gas passage communicating with the expansion space of the piston and the heat medium passage for heating the one gas passage and the other gas passage. And Characterized in that the phased.
  • the heat exchanger in the electricity recovery engine according to the first aspect of the invention, oil or molten salt is used as the heat medium flowing through the heat medium passage.
  • the heat exchanger in the electricity recovery engine according to the second aspect of the invention, includes an outer peripheral portion on the piston head side of the one displacer piston and an outer peripheral portion on the piston head side of the other displacer piston. And arranged in a ring shape.
  • an inlet for introducing the heat medium into the heat medium passage and an outlet for deriving the heat medium from the heat medium passage are provided in the heat recovery passage.
  • the heat medium circulates through the heat absorption heat exchanger provided in the exhaust heat gas duct, the heat absorption heat exchanger, and the heat exchanger.
  • a pipe is provided.
  • a sixth invention is the electricity recovery engine according to the first invention, wherein one gas passage is communicated with the regenerator of the other Stirling engine, and the other gas passage is connected to one Stirling engine. The regenerator is communicated with each other.
  • the gas passage is disposed between a pair of opposing displacer pistons, and the flow direction of the gas flowing through the heat medium passage is determined by the displacer. The direction is perpendicular to the axis of the piston.
  • the gas passage is constituted by a plurality of straight pipes, and the straight pipes are arranged in an arc shape.
  • the pair of Stirling engines are operated synchronously at a phase of 0 degrees.
  • a linear generator is attached to each of the power pistons, and a control motor is attached to each of the displacer pistons.
  • An eleventh invention is the electricity recovery engine according to the ninth invention, wherein one power generator and one displacer piston are attached to one linear generator, the other power piston and the other displacer piston. Is characterized in that the other linear generator is attached.
  • a twelfth invention is characterized in that, in the electricity recovery engine according to the ninth invention, a rotary generator is attached to each of the power pistons, and a control motor is attached to each of the displacer pistons. To do.
  • a thirteenth aspect of the invention is the electricity recovery engine according to the ninth aspect of the invention, wherein one rotary generator is attached to the one power piston and the one displacer piston, and the other power piston and the other displacer.
  • the piston is equipped with the other rotary generator.
  • the present invention by arranging a pair of Stirling engines to face each other, it is possible to provide an electric recovery engine that has a simpler and higher performance structure and can realize electric recovery from unused low-temperature exhaust heat.
  • the present invention can provide an electric recovery engine that can reduce the ineffective volume and passage resistance even when using low-temperature exhaust heat, and can therefore be efficiently converted into electric energy.
  • FIG. 1 is an external perspective view of an electricity recovery engine according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional perspective view of the main part of the electricity recovery engine.
  • FIG. 3 is a sectional view of the electricity recovery engine.
  • FIG. 4 is a cross-sectional view showing an endothermic heat exchanger of the electricity recovery engine.
  • FIG. 5 is a sectional view taken along line XX in FIG.
  • FIG. 6 is a cross-sectional view showing another heat absorption heat exchanger of the electricity recovery engine according to this embodiment.
  • FIG. 7 is a sectional view taken along line XX in FIG.
  • FIG. 8 is a conceptual configuration diagram of an electricity recovery engine according to another embodiment of the present invention.
  • FIG. 9 is a perspective view of an essential part of the electricity recovery engine.
  • FIG. 9 is a perspective view of an essential part of the electricity recovery engine.
  • FIG. 10 is a conceptual configuration diagram of an electricity recovery engine according to still another embodiment of the present invention.
  • FIG. 11 is a conceptual configuration diagram of an electricity recovery engine according to still another embodiment of the present invention.
  • FIG. 12 is a conceptual configuration diagram of an electricity recovery engine according to still another embodiment of the present invention.
  • the electricity recovery engine includes one gas passage communicating with the expansion space of one displacer piston, the other gas passage communicating with the expansion space of the other displacer piston, and one gas.
  • One Stirling engine and the other Stirling engine are connected and unitized by a heat exchanger that forms a passage and a heat medium passage for heating the other gas passage.
  • a pair of Stirling engines are opposed to each other, a heat exchanger necessary for each Stirling engine is configured by one heat exchanger, and the pair of Stirling engines are connected by this heat exchanger.
  • a simple configuration can be achieved.
  • the second embodiment of the present invention uses oil or molten salt as a heat medium flowing in the heat medium passage in the electricity recovery engine according to the first embodiment. According to the present embodiment, by using oil or molten salt as a heat medium, sufficient heat recovery can be performed even when the heat transfer area is small, particularly when using low-temperature exhaust heat, and the heat exchanger The dead space, that is, the ineffective volume can be reduced.
  • the pressure change can be increased, the illustrated power can be increased, and the power generation output can be increased.
  • the heat exchanger by configuring the heat exchanger with a material with good thermal conductivity (SiC, copper material, etc.) once the heat energy of the low-temperature exhaust heat is stored in the heat medium, the heat exchanger loss can be reduced, Since the heat exchanger loss using the medium can be covered, an efficient electricity recovery engine can be realized.
  • the heat exchanger is arranged on the piston head side outer peripheral portion of one displacer piston and on the piston head side of the other displacer piston. It is arranged in a ring shape on the outer periphery.
  • an inlet for introducing the heat medium into the heat medium passage and an outlet for deriving the heat medium from the heat medium passage are heated. It arrange
  • a small heat exchanger using oil or molten salt only on the outer periphery of the piston head, not between the piston heads the axial length of the displacer piston can be shortened.
  • the heat medium includes an endothermic heat exchanger provided in the exhaust heat gas duct, an endothermic heat exchanger, and the heat exchanger.
  • Circulating piping is provided.
  • the heat of the exhaust heat gas duct is conveyed to the Stirling engine using oil or molten salt as a heat medium, so that the exhaust heat can be utilized with high thermal efficiency.
  • the Stirling engine can be constructed without being affected by the arrangement of the exhaust heat gas duct, the workability is good. Therefore, it is possible to increase the degree of freedom in layout and cope with various exhaust heat sources even in high places and narrow places where it is difficult to install the exhaust gas duct.
  • one gas passage is communicated with a regenerator of the other Stirling engine, and the other gas passage is connected to one Stirling engine.
  • the regenerator In communication with the regenerator.
  • the gas derived from the expansion space of one Stirling engine is led to the regenerator of the opposite Stirling engine without returning the gas to the regenerator of the same Stirling engine, and the expansion of the other Stirling engine is performed.
  • the gas led out from the space is led to the regenerator of the opposite Stirling engine without returning it to the regenerator of the same Stirling engine, for example, it is not necessary to bend the gas passage into a U-shape and the gas has low flow resistance Since it can be a passage, pressure loss can be reduced and efficiency can be increased. Furthermore, compared with the case where there exists a bending part like a U-shaped part, reliability is improved, without thinning. Furthermore, even when thermal spraying (metal, ceramics) and coating are applied to the corrosive gas, since there is no bend, the adhesion strength between the corrosion-resistant film and the gas passage material is increased, Durability can be improved.
  • the gas passage is disposed between a pair of opposing displacer pistons, and the flow direction of the gas flowing through the heat medium passage is determined. The direction is perpendicular to the axis of the displacer piston. According to this Embodiment, when it constructs in a flue like an exhaust heat gas duct, the exhaust heat of the gas which flows through a flue can be collect
  • the gas passage is constituted by a plurality of straight pipes, and the respective straight pipes are arranged in an arc shape.
  • a pair of Stirling engines are operated synchronously with a phase of 0 degrees.
  • the vibration can be reduced by the synchronous operation of the pair of Stirling engines.
  • a linear generator is attached to each power piston, and a control motor is attached to each displacer piston. is there.
  • the present embodiment by using a linear generator, it is possible to perform highly efficient electricity recovery with less transmission loss compared to a rotary generator, and synchronization can be easily performed by each control motor.
  • one power generator and one displacer piston are attached with one linear generator, and the other power piston and the other displacer.
  • the other linear generator is attached to the piston.
  • by using a linear generator it is possible to perform highly efficient electricity recovery with less transmission loss compared to a rotary generator and to keep the load of each linear generator constant. Can be easily performed.
  • a rotary generator is attached to each power piston, and a control motor is attached to each displacer piston. It is. According to this embodiment, since the phases of the power piston and the displacer piston are fixed, synchronization can be easily performed.
  • one power generator and one displacer piston are attached with one rotary generator, the other power piston and the other power piston.
  • the displacer piston is provided with the other rotary generator. According to this embodiment, since the phases of the power piston and the displacer piston are fixed, synchronization can be easily performed.
  • FIG. 1 is an external perspective view of the electricity recovery engine according to the present embodiment
  • FIG. 2 is a cross-sectional perspective view of the main part of the electricity recovery engine
  • FIG. 3 is a sectional view of the electricity recovery engine
  • FIG. FIG. 5 is a sectional view showing the heat exchanger
  • FIG. 5 is a sectional view taken along line XX in FIG.
  • the sealed container 10 of the electricity recovery engine according to the present embodiment includes a cylindrical body 11 and container ends 12 ⁇ / b> A and 12 ⁇ / b> B disposed at both ends of the body 11.
  • the container end portions 12 ⁇ / b> A and 12 ⁇ / b> B are formed in a cylindrical shape having a larger diameter than the body portion 11.
  • a heat medium introduction port 13 for introducing the heat medium and a heat medium outlet port 14 for deriving the heat medium are attached to the outer peripheral surface of the central portion in the longitudinal direction of the body 11.
  • cooling water inlets 15A and 15B for introducing cooling water and cooling water outlets 16A and 16B for leading cooling water are attached to the outer peripheral surfaces of both ends of the body portion 11, respectively.
  • the respective container end portions 12A and 12B are provided with wiring connection portions 17A and 17B for taking out the wiring for the linear generator arranged inside the container end portions 12A and 12B.
  • a central portion in the longitudinal direction of the body portion 11 is divided by an end plate 18 (the end plate 18 is omitted in FIG. 2), and a pair of cylinder portions 19A and 19B are formed inside the body portion 11 with the end plate 18 interposed therebetween.
  • Displacer pistons 20A and 20B are disposed in the respective cylinder portions 19A and 19B.
  • the displacer piston 20A of one Stirling engine and the displacer piston 20B of the other Stirling engine are arranged to face each other.
  • Power pistons 21A and 21B are arranged coaxially in the axial direction of the displacer pistons 20A and 20B.
  • the power pistons 21A and 21B are disposed in the container end portions 12A and 12B.
  • Inner yokes 31A and 31B that reciprocate together with the power pistons 21A and 21B are fixed to the outer periphery of the power pistons 21A and 21B.
  • Inner yoke 31A, 31B is comprised by the cylindrical shape, and magnet 32A, 32B is fixed to the outer periphery.
  • Cylindrical outer yokes 33A and 33B are arranged on the outer periphery of the inner yokes 31A and 31B with a predetermined gap from the inner yokes 31A and 31B.
  • Coils 34A and 34B are fixed to the inner peripheral sides of the outer yokes 33A and 33B.
  • the coils 34A and 34B and the magnets 32A and 32B are arranged to face each other.
  • Linear generators 30A and 30B are configured by inner yokes 31A and 31B having magnets 32A and 32B and outer yokes 33A and 33B having coils 34A and 34B.
  • Regenerators 41A and 41B and coolers 42A and 42B are provided on the outer periphery of the displacer pistons 20A and 20B in the body portion 11.
  • the regenerators 41A and 41B and the coolers 42A and 42B are configured in a ring shape.
  • a cooling water inlet 15A and a cooling water outlet 16A are connected to the cooler 42A, and a cooling water inlet 15B and a cooling water outlet 16B are connected to the cooler 42B.
  • the expansion space 22A of the displacer piston 20A is formed by the cylinder portion 19A, the end plate 18, and the piston head of the displacer piston 20A.
  • the expansion space 22B of the displacer piston 20B is formed by the cylinder portion 19B, the end plate 18, and the piston head of the displacer piston 20B.
  • the end plate 18 can be omitted.
  • the expansion space 22A of one displacer piston 20A and the expansion space 22B of the other displacer piston 20B are a common expansion space.
  • the heat exchanger 50 is a ring-shaped central portion in the longitudinal direction of the body portion 11 and includes an outer peripheral portion on the piston head side of one displacer piston 20A and an outer peripheral portion on the piston head side of the other displacer piston 20B. Is arranged.
  • the coolers 42A and 42B are disposed at both ends of the trunk portion 11, and the regenerators 41A and 41B are disposed between the heat exchanger 50 and the coolers 42A and 42B.
  • the heat exchanger 50 includes one gas passage 51A that communicates with the expansion space 22A of one displacer piston 20A, the other gas passage 51B that communicates with the expansion space 22B of the other displacer piston 20B, one gas passage 51A, A heat medium passage 52 for heating the other gas passage 51B is formed.
  • the heat exchanger 50 is configured as a unit by connecting the one Stirling engine and the other Stirling engine by integrally configuring the one gas passage 51A and the other gas passage 51B. .
  • the heat exchanger 50 is arranged in a ring shape on the outer periphery of the one displacer piston 20A on the piston head side and on the outer periphery of the other displacer piston 20B on the piston head side, and the heat medium passage 52 is a pair of opposed ones.
  • the displacer pistons 20A and 20B are not arranged. Oil is used as the heat medium flowing through the heat medium passage 52. Further, when the exhaust heat temperature is high, a molten salt may be used as the heat medium.
  • One gas passage 51A communicates with one regenerator 41A, one regenerator 41A communicates with one cooler 42A, and one cooler 42A communicates with the compression space 23A of one displacer piston 20A.
  • the other gas passage 51B communicates with the other regenerator 41B, the other regenerator 41B communicates with the other cooler 42B, and the other cooler 42B communicates with the compression space 23B of the other displacer piston 20B.
  • One end of the rod is composed of large-diameter rods 24A and 24B, and the other end of the rod is composed of small-diameter rods 25A and 25B.
  • the large-diameter rods 24A and 24B are fixed to the displacer pistons 20A and 20B.
  • Container edge part 12A, 12B accommodates power piston 21A, 21B and linear generator 30A, 30B inside.
  • one Stirling engine is configured by the displacer piston 20A, the power piston 21A, the heat exchanger 50 as a heating unit, the regenerator 41A, and the cooler 42A, and the other Stirling engine is the displacer piston 20B, The power piston 21B, the heat exchanger 50 as a heating unit, a regenerator 41B, and a cooler 42B are included.
  • the enclosed gas expands by heating in the heat exchanger 50 and moves the displacer pistons 20A and 20B away from the end plate 18 (end portion direction).
  • the gas in the compression spaces 23A and 23B is compressed, and the power pistons 21A and 21B are moved in the end direction. Due to the movement of the power pistons 21A and 21B in the end direction, the gas passes from the expansion spaces 22A and 22B of the displacer pistons 20A and 20B through the heat exchanger 50, the regenerators 41A and 41B, and the coolers 42A and 42B.
  • the power pistons 21A and 21B move in the central direction when the compression spaces 23A and 23B become low pressure due to the movement of the displacer pistons 20A and 20B in the direction close to the end plate 18 (center direction). Due to the movement of the power pistons 21A and 21B toward the center, the gas in the compression spaces 23A and 23B passes through the coolers 42A and 42B, the regenerators 41A and 41B, and the heat exchanger 50, and enters the expansion spaces 22A and 22B. Moving.
  • the gas reciprocates between the expansion spaces 22A and 22B and the compression spaces 23A and 23B while performing expansion and contraction, thereby displacer piston 20A, While moving 20B, power piston 21A, 21B is moved. And electric power generation can be performed by movement of power piston 21A, 21B.
  • the pair of Stirling engines according to the present embodiment are preferably operated synchronously.
  • the heat absorption heat exchanger 60 is provided in the flue of the exhaust heat gas duct 71.
  • the heat-absorbing heat exchanger 60 is constituted by a double pipe shell, and a plurality of tubes 61 for flowing exhaust gas are provided in the double pipe shell.
  • the outer circumferential space 62 of the tube 61 serves as a heat medium passage, and the heat medium passage includes an inlet 63 and an outlet 64.
  • the outer diameter of the double pipe shell is larger than that of the exhaust heat gas duct 71, and the total cross sectional area of the tube 61 is larger than the cross sectional area of the exhaust heat gas duct 71. Is made smaller.
  • the introduction port 63 is arranged on the downstream side of the exhaust gas flow, and the outlet port 64 is arranged on the upstream side of the exhaust gas flow, so that the flow of the heat medium and the exhaust gas flow are opposed to each other.
  • the inlet 63 is connected to the heat medium outlet 14 shown in FIGS. 1 to 3 by piping, and the outlet 64 is connected to the heat medium inlet 13 shown in FIGS. 1 to 3 by piping. Is circulated through the heat-absorbing heat exchanger 60 and the heat exchanger 50.
  • FIGS. 6 is a cross-sectional view showing another heat absorption heat exchanger of the same electricity recovery engine
  • FIG. 7 is a cross-sectional view taken along line XX in FIG.
  • the heat absorption heat exchanger 80 is provided in the flue of the exhaust heat gas duct 71.
  • the heat-absorbing heat exchanger 80 is constituted by a double pipe shell, and an exhaust gas passage space is formed in the inner periphery of the double pipe shell, and fins 81 are provided in the exhaust gas passage space.
  • the fins 81 are constituted by a plurality of flat plates, and each flat plate is erected radially on the inner pipe with the pipe axis direction of the double pipe shell as the longitudinal direction.
  • a spiral heat medium passage 82 is formed on the outer periphery of the double tube shell. If the heat transfer area in the exhaust gas passage space is sufficient, the exhaust gas passage space may be formed by through holes without providing the fins 81.
  • the heat medium passage 82 includes an inlet 83 and an outlet 84.
  • the outer diameter of the double pipe shell is larger than that of the exhaust heat gas duct 71, and the total cross-sectional area of the exhaust gas flow path between the fins 81 is larger than the cross-sectional area of the exhaust heat gas duct 71, thereby passing through the heat absorption heat exchanger 80.
  • the flow resistance of exhaust gas is reduced.
  • the introduction port 83 is disposed on the downstream side of the exhaust gas flow, and the outlet port 84 is disposed on the upstream side of the exhaust gas flow, so that the flow of the heat medium and the exhaust gas flow are opposed to each other.
  • the inlet 83 is connected to the heat medium outlet 14 shown in FIGS. 1 to 3 through a pipe, and the outlet 84 is connected to the heat medium inlet 13 shown in FIGS. 1 to 3 through a pipe. Is circulated through the heat-absorbing heat exchanger 80 and the heat exchanger 50.
  • FIG. 8 is a conceptual configuration diagram of the electricity recovery engine according to the present embodiment
  • FIG. 9 is a perspective view of the main part of the electricity recovery engine.
  • the displacer piston 120A of one Stirling engine and the displacer piston 120B of the other Stirling engine are arranged to face each other, and in the axial direction of the displacer pistons 120A, 120B, a power piston 121A, 121B is arranged on the same axis.
  • Displacer pistons 120A and 120B are arranged in cylinder portions 119A and 119B.
  • Linear power generators 130A and 130B are attached to the power pistons 121A and 121B.
  • Regenerators 141A and 141B and coolers 142A and 142B are provided on the outer periphery of the displacer pistons 120A and 120B.
  • the regenerators 141A and 141B and the coolers 142A and 142B are configured in a ring shape.
  • Cooling water inlets 115A and 115B and cooling water outlets 116A and 116B are connected to the coolers 142A and 142B.
  • the expansion space 122A of the displacer piston 120A is formed by the cylinder portion 119A, the end plate 118A, and the piston head of the displacer piston 120A.
  • the expansion space 122B of the displacer piston 120B is formed by the cylinder portion 119B, the end plate 118B, and the piston head of the displacer piston 120B.
  • the heat exchanger 150 is disposed between the end plate 118A of one displacer piston 120A and the end plate 118B of the other displacer piston 120B.
  • the coolers 142A and 142B are disposed at the ends of the cylinder portions 119A and 119B, and the regenerators 141A and 141B are disposed between the heat exchanger 150 and the coolers 142A and 142B.
  • the heat exchanger 150 includes one gas passage 151A communicating with the expansion space 122A of one displacer piston 120A, the other gas passage 151B communicating with the expansion space 122B of the other displacer piston 120B, one gas passage 151A, and A heat medium passage 152 for heating the other gas passage 151B is formed.
  • the heat exchanger 150 is configured as a unit by connecting the one Stirling engine and the other Stirling engine by integrally configuring the one gas passage 151A and the other gas passage 151B.
  • the heat medium passage 152 may be installed in a factory, or may directly use an exhaust gas passage or a heat exhaust duct mounted on a vehicle.
  • the heat medium passage 152 has exhaust gas as a heat medium. Flowing.
  • the gas passages 151A and 151B are disposed between a pair of opposing displacer pistons 120A and 120B, and the flow direction of the gas flowing through the heat medium passage 152 is orthogonal to the axis of the displacer pistons 120A and 120B. The direction.
  • the gas passages 151 ⁇ / b> A and 151 ⁇ / b> B are disposed in the exhaust heat gas duct 171.
  • the gas passages 151A and 151B are constituted by a plurality of straight pipes, and the respective straight pipes are arranged in an arc shape.
  • one gas passage 151A communicates with the other regenerator 141B
  • the other regenerator 141B communicates with the other cooler 142B
  • the other cooler 142B is the other displacer piston. It communicates with the 120B compression space 123B.
  • control motors 180A and 180B are attached to the displacer pistons 120A and 120B, respectively, and the pair of Stirling engines are synchronously operated with a phase of 0 degrees by the control motors 180A and 180B.
  • the enclosed gas expands by heating in the heat exchanger 150 and moves the displacer pistons 120A and 120B away from the end plates 118A and 118B (end direction).
  • the gas in the compression space 123A is compressed, and the power piston 121A is moved in the end direction. Due to the movement of the power piston 121A toward the end, the gas in the expansion space 122B of the other displacer piston 120B passes through the heat exchanger 150, the regenerator 141A, and the cooler 142A, and the displacer piston 120A and the power piston 121A. It moves to the compression space 123A between.
  • the displacement of the compression space 123A by the movement of the displacer piston 120A in the direction (center direction) close to the end plate 118A causes the power piston 121A to move in the center direction.
  • the gas in one compression space 123A passes through the cooler 142A, the regenerator 141A, and the heat exchanger 150 and moves to the expansion space 122B of the other displacer piston 120B.
  • the gas in the compression space 123B is compressed by the movement of the other displacer piston 120B in the end direction, and the power piston 121B is moved in the end direction.
  • the gas in the expansion space 122A of one displacer piston 120A passes through the heat exchanger 150, the regenerator 141B, and the cooler 142B, and the displacer piston 120B and the power piston 121B. It moves to the compression space 123B between. Then, the displacement of the compression space 123B due to the movement of the displacer piston 120B in the center direction causes the power piston 121B to move in the center direction. By the movement of the power piston 121B toward the center, the gas in the other compression space 123B passes through the cooler 142B, the regenerator 141B, and the heat exchanger 150, and moves to the expansion space 122A of the one displacer piston 120A. .
  • the gas reciprocates between the expansion spaces 22A and 22B and the compression spaces 23A and 23B while performing expansion and contraction, thereby displacer piston 20A, While moving 20B, power piston 21A, 21B is moved. And electric power generation can be performed by movement of power piston 21A, 21B.
  • the gas led out from the expansion space 122A of one Stirling engine is led to the compression space 123B of the other Stirling engine facing the other Stirling engine without returning to the compression space 123A of the same Stirling engine.
  • the gas passage can have a low flow resistance, and the efficiency can be increased and the gas passages 151A and 151B can be configured by straight pipes. Therefore, the durability can be improved as compared with the case where there is a bent portion such as a U-shaped portion. Can be improved.
  • FIG. 10 to 12 are conceptual configuration diagrams of an electricity recovery engine according to different embodiments.
  • components having the same functions as those in FIG.
  • the reciprocating motion of the displacer pistons 120A and 120B is electrically generated from the power pistons 121A and 121B attached to the linear generators 130A and 130B.
  • the synchronous control part 190 which performs load control of the linear generators 130A and 130B is provided.
  • rotary generators 200A and 200B are provided via crank mechanisms 201A and 201B instead of the linear generators 130A and 130B in the embodiment shown in FIG.
  • displacer pistons 120A and 120B are connected to rotary generators 200A and 200B via crank mechanisms 201A and 201B instead of the control motors 180A and 180B in the embodiment shown in FIG.
  • a synchronous control unit 190 that performs load control of the rotary generators 200A and 200B is provided.
  • the electricity recovery engine according to the embodiment shown in FIG. 10 to FIG. 12 causes a pair of Stirling engines to operate synchronously at a phase of 0 degrees depending on the respective configurations.
  • the configuration for synchronous operation shown in FIGS. 8 and 9 and the configuration for synchronous operation shown in FIGS. 10 to 12 can be applied to the embodiments shown in FIGS. .
  • the electricity recovery engine communicates with one gas passage 51A, 151A communicating with the expansion spaces 22A, 122A of one displacer piston 20A, 120A and with expansion spaces 22B, 122B of the other displacer pistons 20B, 120B.
  • the heat exchangers 50 and 150 that form the other gas passages 51B and 151B, the one gas passages 51A and 151A, and the heat medium passages 52 and 152 that heat the other gas passages 51B and 151B are combined with one Stirling engine. Since the other Stirling engine is connected and unitized, a simple configuration can be obtained as compared with two separate Stirling engines.
  • the heat exchangers 50 and 150 can be arranged in the flue and the Stirling engine can be projected from the flue, so that the exhaust heat gas duct Good workability in flues.
  • the electricity recovery engine according to the present embodiment uses oil or molten salt as the heat medium flowing in the heat medium passage 52, so that sufficient heat recovery is possible even when the heat transfer area is small, particularly when using low-temperature exhaust heat. This can be done and the dead space of the heat exchanger can be reduced.
  • the heat exchanger 50 is arranged in a ring shape on the outer periphery of the one displacer piston 20A on the piston head side and on the outer periphery of the other displacer piston 20B on the piston head side.
  • the thermal efficiency can be increased.
  • the heat medium passage 52 is not disposed between the pair of opposing displacer pistons 20A and 20B, and the introduction port 13 for introducing the heat medium into the heat medium passage 52, and the heat medium passage.
  • the electricity recovery engine includes heat absorption heat exchangers 60 and 80 provided in the exhaust heat gas duct 71, and a pipe through which a heat medium circulates between the heat absorption heat exchangers 60 and 80 and the heat exchanger 50.
  • exhaust heat can be used with high thermal efficiency, and the Stirling engine can be constructed without being affected by the arrangement of the exhaust heat gas duct, so that the workability is good.
  • one gas passage 151A is communicated with the regenerator 141B of the other Stirling engine, and the other gas passage 151B is communicated with the regenerator 141A of one Stirling engine.
  • the gas passage 150 is disposed between a pair of opposing displacer pistons 120A and 120B, and the flow direction of the gas flowing through the heat medium passage 152 is orthogonal to the axis of the displacer pistons 120A and 120B.
  • the gas passages 151A and 151B are constituted by a plurality of straight pipes, and the respective straight pipes are arranged in a ring shape, so that the gas flow flowing through the flue such as the exhaust heat gas duct 171 can be prevented.
  • the pair of Stirling engines can be operated synchronously with a phase of 0 degrees, so that the vibration can be reduced by the synchronous operation of the pair of Stirling engines.
  • the electricity recovery engine according to the present embodiment is rotated by attaching linear generators 130A and 130B to the power pistons 120A and 120B, respectively, and attaching control motors 180A and 180B to the displacer pistons 120A and 120B, respectively.
  • the electric power generators 200A and 200B there is less transmission loss and highly efficient electricity recovery can be performed, and synchronization can be easily performed by the respective control motors.
  • one power generator 121A and one displacer piston 120A have one linear generator 130A attached, and the other power piston 121B and the other displacer piston 120B have the other linear generator 130B.
  • By attaching the linear generators 130A and 130B it is possible to perform highly efficient electricity recovery with less transmission loss compared to the rotary generators 200A and 200B, and keep the load of each linear generator constant. Thus, synchronization can be easily performed.
  • rotary power generators 200A and 200B are attached to the power pistons 121A and 121B, respectively, and control motors 180A and 180B are attached to the displacer pistons 120A and 120B, respectively.
  • one rotary generator 200A is attached to one power piston 121A and one displacer piston 120A
  • the other rotary power generator is attached to the other power piston 121B and the other displacer piston 120B.
  • the machine 200B is attached.
  • the phases of power pistons 121A and 121B and displacer pistons 120A and 120B are fixed, synchronization can be easily performed.
  • the electricity recovery engine of the present invention can be applied not only to factory exhaust heat but also to exhaust heat of engines such as automobiles and ships.

Abstract

Disclosed is an engine for electrical recovery characterized in that one Stirling engine and another Stirling engine are unitized by being coupled to each other, using a heat exchanger (50) comprised of one gas passage (51A) which communicates with an expansion space (22A) of one displacer piston (20A), another gas passage (51B) which communicates with an expansion space (22B) of the other displacer piston (20B), and a heat medium passage (52) which heats the gas passage (51A) and the gas passage (51B). In the engine for electrical recovery, even a low-temperature exhaust heat of around 200°C which has been exhausted from a flue of a factory can be efficiently converted into electric energy by a heat exchanger for a low-temperature exhaust heat having a sufficient heat-transfer performance.

Description

電気回収エンジンElectric recovery engine
 本発明は、スターリングエンジンを用いた電気回収エンジンに関する。 The present invention relates to an electricity recovery engine using a Stirling engine.
 現在、出力数kW~数十kWのスターリングエンジンの実用開発が欧州をはじめとした諸外国で活発に進められている。しかし、これらの装置は、高コストな熱交換器や低メンテナンス性などの問題により民生レベルで広く普及するには至っていない。
 また、国内においても、1980年代に国家プロジェクトとして『汎用スターリングエンジンの研究開発』が実施された。しかし、当時のスターリングエンジンは量産技術を活かしにくく、高コストな構造であったため、現在でもその研究成果が活用された製品は完成していないのが実情である。
 一方、スターリングエンジンは理論熱効率が高い外燃機関であり、省エネルギー技術の分野で有望視されている。
 既に、本発明者は、熱交換器での加熱温度を高くすることができ、この熱交換器における高温部と冷却器における低温部との連結による熱損失を抑えることで、熱効率に優れた高効率なスターリングエンジンを提案している(特許文献1)。
 また、本発明者は、ディスプレーサピストン、パワーピストン、板バネなどの部品の寸法や角度、平面度などのばらつきを緩和して低コストのスターリングエンジン(特許文献2)、冷却効率の高い冷却器(特許文献3)、摺動損失を低減し、信頼性の高いスコッチ・ヨーク機構を用いたスターリングエンジン(特許文献4)、小型で高性能なアクチュエータを適用できるスターリングエンジン(特許文献5)、スターリングエンジンの効率を上げるための高効率な熱交換器(特許文献6、7、8)を提案している。
Currently, practical development of Stirling engines with output of several kW to several tens of kW is being actively promoted in various countries including Europe. However, these devices have not been widely spread at the consumer level due to problems such as high-cost heat exchangers and low maintainability.
In Japan, “R & D of general-purpose Stirling engine” was implemented as a national project in the 1980s. However, since the Stirling engine at that time was difficult to make use of mass-production technology and was a high-cost structure, the actual situation is that a product utilizing the research results is not yet completed.
On the other hand, the Stirling engine is an external combustion engine with high theoretical thermal efficiency, and is considered promising in the field of energy saving technology.
Already, the present inventor can increase the heating temperature in the heat exchanger, and by suppressing the heat loss due to the connection between the high temperature part in this heat exchanger and the low temperature part in the cooler, the heat efficiency is high. An efficient Stirling engine has been proposed (Patent Document 1).
In addition, the present inventor has reduced the variation in dimensions, angles, flatness, etc. of parts such as a displacer piston, a power piston, and a leaf spring to reduce the cost of a Stirling engine (Patent Document 2), a cooler with high cooling efficiency ( Patent Document 3), Stirling Engine (Patent Document 4) using a highly reliable Scotch-Yoke mechanism with reduced sliding loss (Patent Document 4), Stirling Engine to which a small and high-performance actuator can be applied (Patent Document 5), Stirling Engine Have proposed high-efficiency heat exchangers (Patent Documents 6, 7, and 8) for increasing the efficiency of the heat exchanger.
特開2005-133653号公報JP 2005-133653 A 特開2005-147061号公報JP 2005-147061 A 特開2007-224855号公報JP 2007-224855 A 特開2008-101501号公報JP 2008-101501 A 特開2009-41426号公報JP 2009-41426 A 特開2006-283658号公報JP 2006-283658 A 特開2007-270789号公報JP 2007-270789 A 特開2008-14218号公報JP 2008-14218 A
 これまで大気中に捨てられてきた熱エネルギーを、電気エネルギーとして回収することは、省エネルギーに大きく貢献でき、利用価値も高い。特に、工場などの煙道から排出される熱は現在まで有効に利用できていない。
 しかし、工場から出る排熱の温度領域は、必ずしも高温ではなく、100℃から300℃程度の低温域であることも最も多い。
 低温排熱を用いるスターリングエンジンは、理論熱効率が低下し、高い発電出力を得ることは容易ではない。これは、理論熱効率が低くなるため、発電出力が低下する。そのため、低温排熱をエンジン内にできるだけ多くの熱エネルギーを取り込み、発電出力量を多くする必要がある。従って、低温排熱を用いるスターリングエンジンは、排熱と接する伝熱面積を、高温排熱を利用できる場合よりも非常に大きくとる必要がある。その結果、エンジン内の無効容積や流路抵抗が大きくなるために、出力低下となり、低温排熱からの電気回収を困難なものにしている。
Recovering thermal energy that has been discarded in the atmosphere as electrical energy can greatly contribute to energy saving and has high utility value. In particular, the heat exhausted from flues in factories and the like has not been effectively utilized until now.
However, the temperature range of exhaust heat from the factory is not necessarily high, but is most often a low temperature range of about 100 ° C to 300 ° C.
A Stirling engine using low-temperature exhaust heat has low theoretical thermal efficiency, and it is not easy to obtain a high power generation output. This is because the theoretical thermal efficiency is lowered, and the power generation output is reduced. Therefore, it is necessary to take in as much heat energy as possible from the low-temperature exhaust heat into the engine to increase the power generation output. Therefore, a Stirling engine using low-temperature exhaust heat needs to take a much larger heat transfer area in contact with the exhaust heat than when high-temperature exhaust heat can be used. As a result, the ineffective volume in the engine and the flow path resistance increase, resulting in a decrease in output, making it difficult to recover electricity from low-temperature exhaust heat.
 そこで本発明は、十分な伝熱性能を有する低温排熱用熱交換器により、工場などの煙道から排出される200℃域の低温排熱からでも無効容積や通路抵抗が小さく効率よく電気エネルギーに変換できる電気回収エンジンを提供することを目的とする。 Therefore, the present invention is a low-temperature exhaust heat exchanger having sufficient heat transfer performance, which has a low ineffective volume and low passage resistance even from low-temperature exhaust heat in the 200 ° C region discharged from a flue of a factory or the like, and is efficient for electric energy. An object of the present invention is to provide an electricity recovery engine that can be converted into
 第1の発明による電気回収エンジンは、ディスプレーサピストンとパワーピストンとを同軸上に配置した一対のスターリングエンジンを備え、前記スターリングエンジンはそれぞれが再生器と冷却器とを有し、一方の前記スターリングエンジンの前記ディスプレーサピストンと、他方の前記スターリングエンジンの前記ディスプレーサピストンとを対向させて配置した電気回収エンジンであって、一方の前記ディスプレーサピストンの膨張空間と連通する一方のガス通路と、他方の前記ディスプレーサピストンの膨張空間と連通する他方のガス通路と、一方の前記ガス通路及び他方の前記ガス通路を加熱する熱媒体通路とを形成する熱交換器によって、一方の前記スターリングエンジンと他方の前記スターリングエンジンとを連結してユニット化したことを特徴とする。
 第2の発明は、第1の発明に記載の電気回収エンジンにおいて、前記熱媒体通路を流れる熱媒体としてオイル又は溶融塩を用いたことを特徴とする。
 第3の発明は、第2の発明に記載の電気回収エンジンにおいて、前記熱交換器を、一方の前記ディスプレーサピストンのピストンヘッド側の外周部と、他方の前記ディスプレーサピストンのピストンヘッド側の外周部とに、リング状に配置したことを特徴とする。
 第4の発明は、第3の発明に記載の電気回収エンジンにおいて、前記熱媒体通路に前記熱媒体を導入する導入口と、前記熱媒体通路から前記熱媒体を導出する導出口とを前記熱交換器の外周面に配置し、前記熱媒体通路を、対向する一対の前記ディスプレーサピストンの間には配置しないことを特徴とする。
 第5の発明は、第2の発明に記載の電気回収エンジンにおいて、排熱ガスダクトに設けた吸熱用熱交換器と、前記吸熱用熱交換器と前記熱交換器とを前記熱媒体が循環する配管とを設けたことを特徴とする。
 第6の発明は、第1の発明に記載の電気回収エンジンにおいて、一方の前記ガス通路を、他方の前記スターリングエンジンの前記再生器と連通させ、他方の前記ガス通路を、一方の前記スターリングエンジンの前記再生器と連通させたことを特徴とする。
 第7の発明は、第6の発明に記載の電気回収エンジンにおいて、前記ガス通路を、対向する一対の前記ディスプレーサピストンの間に配置し、前記熱媒体通路を流れるガスの流れ方向を、前記ディスプレーサピストンの軸に直交する方向としたことを特徴とする。
 第8の発明は、第6の発明に記載の電気回収エンジンにおいて、前記ガス通路を、複数の直管で構成し、それぞれの前記直管を円弧状に配置したことを特徴とする。
 第9の発明は、第1の発明に記載の電気回収エンジンにおいて、一対の前記スターリングエンジンを0度の位相で同期運転させることを特徴とする。
 第10の発明は、第9の発明に記載の電気回収エンジンにおいて、それぞれの前記パワーピストンにはそれぞれリニア発電機を取り付け、それぞれの前記ディスプレーサピストンにはそれぞれ制御モータを取り付けたことを特徴とする。
 第11の発明は、第9の発明に記載の電気回収エンジンにおいて、一方の前記パワーピストン及び一方の前記ディスプレーサピストンには一方のリニア発電機を取り付け、他方の前記パワーピストン及び他方の前記ディスプレーサピストンには他方のリニア発電機を取り付けたことを特徴とする。
 第12の発明は、第9の発明に記載の電気回収エンジンにおいて、それぞれの前記パワーピストンにはそれぞれ回転式発電機を取り付け、それぞれの前記ディスプレーサピストンにはそれぞれ制御モータを取り付けたことを特徴とする。
 第13の発明は、第9の発明に記載の電気回収エンジンにおいて、一方の前記パワーピストン及び一方の前記ディスプレーサピストンには一方の回転式発電機を取り付け、他方の前記パワーピストン及び他方の前記ディスプレーサピストンには他方の回転式発電機を取り付けたことを特徴とする。
An electricity recovery engine according to a first aspect of the present invention includes a pair of Stirling engines in which a displacer piston and a power piston are coaxially arranged. Each of the Stirling engines has a regenerator and a cooler, and the one Stirling engine is provided. The displacer piston of the other Stirling engine and the displacer piston of the other Stirling engine are arranged to face each other, wherein the displacer piston has one gas passage communicating with the expansion space of the one displacer piston, and the other displacer. One Stirling engine and the other Stirling engine are formed by a heat exchanger that forms the other gas passage communicating with the expansion space of the piston and the heat medium passage for heating the one gas passage and the other gas passage. And Characterized in that the phased.
According to a second aspect of the invention, in the electricity recovery engine according to the first aspect of the invention, oil or molten salt is used as the heat medium flowing through the heat medium passage.
According to a third aspect of the present invention, in the electricity recovery engine according to the second aspect of the invention, the heat exchanger includes an outer peripheral portion on the piston head side of the one displacer piston and an outer peripheral portion on the piston head side of the other displacer piston. And arranged in a ring shape.
According to a fourth aspect of the present invention, in the electricity recovery engine according to the third aspect of the present invention, an inlet for introducing the heat medium into the heat medium passage and an outlet for deriving the heat medium from the heat medium passage are provided in the heat recovery passage. It arrange | positions on the outer peripheral surface of an exchanger, The said heat-medium channel | path is not arrange | positioned between a pair of said displacer pistons which oppose, It is characterized by the above-mentioned.
According to a fifth aspect of the present invention, in the electricity recovery engine according to the second aspect, the heat medium circulates through the heat absorption heat exchanger provided in the exhaust heat gas duct, the heat absorption heat exchanger, and the heat exchanger. A pipe is provided.
A sixth invention is the electricity recovery engine according to the first invention, wherein one gas passage is communicated with the regenerator of the other Stirling engine, and the other gas passage is connected to one Stirling engine. The regenerator is communicated with each other.
According to a seventh aspect of the present invention, in the electricity recovery engine according to the sixth aspect of the invention, the gas passage is disposed between a pair of opposing displacer pistons, and the flow direction of the gas flowing through the heat medium passage is determined by the displacer. The direction is perpendicular to the axis of the piston.
According to an eighth aspect of the present invention, in the electricity recovery engine according to the sixth aspect, the gas passage is constituted by a plurality of straight pipes, and the straight pipes are arranged in an arc shape.
According to a ninth invention, in the electricity recovery engine according to the first invention, the pair of Stirling engines are operated synchronously at a phase of 0 degrees.
According to a tenth aspect of the present invention, in the electricity recovery engine according to the ninth aspect, a linear generator is attached to each of the power pistons, and a control motor is attached to each of the displacer pistons. .
An eleventh invention is the electricity recovery engine according to the ninth invention, wherein one power generator and one displacer piston are attached to one linear generator, the other power piston and the other displacer piston. Is characterized in that the other linear generator is attached.
A twelfth invention is characterized in that, in the electricity recovery engine according to the ninth invention, a rotary generator is attached to each of the power pistons, and a control motor is attached to each of the displacer pistons. To do.
A thirteenth aspect of the invention is the electricity recovery engine according to the ninth aspect of the invention, wherein one rotary generator is attached to the one power piston and the one displacer piston, and the other power piston and the other displacer. The piston is equipped with the other rotary generator.
 本発明は、一対のスターリングエンジンを対向配置することで、一層シンプルで高性能な構造となり、未利用な低温排熱からの電気回収を実現できる電気回収エンジンを提供することができる。
 また、本発明は、低温排熱を利用する場合でも、無効容積や通路抵抗を小さくでき、そのため、効率よく電気エネルギーに変換できる電気回収エンジンを提供することができる。
According to the present invention, by arranging a pair of Stirling engines to face each other, it is possible to provide an electric recovery engine that has a simpler and higher performance structure and can realize electric recovery from unused low-temperature exhaust heat.
In addition, the present invention can provide an electric recovery engine that can reduce the ineffective volume and passage resistance even when using low-temperature exhaust heat, and can therefore be efficiently converted into electric energy.
図1は本発明の一実施例による電気回収エンジンの外観斜視図である。FIG. 1 is an external perspective view of an electricity recovery engine according to an embodiment of the present invention. 図2は同電気回収エンジンの要部断面斜視図である。FIG. 2 is a cross-sectional perspective view of the main part of the electricity recovery engine. 図3は同電気回収エンジンの断面図である。FIG. 3 is a sectional view of the electricity recovery engine. 図4は同電気回収エンジンの吸熱用熱交換器を示す断面図である。FIG. 4 is a cross-sectional view showing an endothermic heat exchanger of the electricity recovery engine. 図5は図4におけるX-X線による断面図である。FIG. 5 is a sectional view taken along line XX in FIG. 図6は本実施例による電気回収エンジンの他の吸熱用熱交換器を示す断面図である。FIG. 6 is a cross-sectional view showing another heat absorption heat exchanger of the electricity recovery engine according to this embodiment. 図7は図6におけるX-X線による断面図である。FIG. 7 is a sectional view taken along line XX in FIG. 図8は本発明の他の実施例による電気回収エンジンの概念構成図である。FIG. 8 is a conceptual configuration diagram of an electricity recovery engine according to another embodiment of the present invention. 図9は同電気回収エンジンの外観要部斜視図である。FIG. 9 is a perspective view of an essential part of the electricity recovery engine. 図10は本発明の更に他の実施例による電気回収エンジンの概念構成図である。FIG. 10 is a conceptual configuration diagram of an electricity recovery engine according to still another embodiment of the present invention. 図11は本発明の更に他の実施例による電気回収エンジンの概念構成図である。FIG. 11 is a conceptual configuration diagram of an electricity recovery engine according to still another embodiment of the present invention. 図12は本発明の更に他の実施例による電気回収エンジンの概念構成図である。FIG. 12 is a conceptual configuration diagram of an electricity recovery engine according to still another embodiment of the present invention.
  20A、20B ディスプレーサピストン
  21A、21B パワーピストン
  22A、22B 膨脹空間
  30A、30B リニア発電機
  41A、41B 再生器
  42A、42B 冷却器
  50 熱交換器
 120A、120B ディスプレーサピストン
 121A、121B パワーピストン
 122A、122B 膨脹空間
 130A、130B リニア発電機
 141A、141B 再生器
 142A、142B 冷却器
 150 熱交換器
 180A、180B 制御モータ
 190 同期制御部
 200A、200B 回転式発電機
20A, 20B Displacer piston 21A, 21B Power piston 22A, 22B Expansion space 30A, 30B Linear generator 41A, 41B Regenerator 42A, 42B Cooler 50 Heat exchanger 120A, 120B Displacer piston 121A, 121B Power piston 122A, 122B Expansion space 130A, 130B linear generator 141A, 141B regenerator 142A, 142B cooler 150 heat exchanger 180A, 180B control motor 190 synchronous control unit 200A, 200B rotary generator
 本発明の第1の実施の形態による電気回収エンジンは、一方のディスプレーサピストンの膨張空間と連通する一方のガス通路と、他方のディスプレーサピストンの膨張空間と連通する他方のガス通路と、一方のガス通路及び他方のガス通路を加熱する熱媒体通路とを形成する熱交換器によって、一方のスターリングエンジンと他方のスターリングエンジンとを連結してユニット化したものである。本実施の形態によれば、一対のスターリングエンジンを対向させ、それぞれのスターリングエンジンに必要な熱交換器を一つの熱交換器で構成し、この熱交換器によって一対のスターリングエンジンを連結することで、2つの別々のスターリングエンジンと比較してシンプルな構成とすることができる。また、熱交換器の両側にスターリングエンジンが配置されるため、例えば、熱交換器を煙道中に配置してスターリングエンジンを煙道から突出させて施工できるため、排熱ガスダクトなどの煙道への施工性が良い。
 本発明の第2の実施の形態は、第1の実施の形態による電気回収エンジンにおいて、熱媒体通路に流れる熱媒体としてオイル又は溶融塩を用いたものである。本実施の形態によれば、オイル又は溶融塩を熱媒体として用いることで、特に低温排熱を利用する場合に、伝熱面積が小さくても十分な熱回収を行うことができ、熱交換器のデッドスペース、すなわち無効容積を少なくすることができる。そのため、圧力変化を高めることができ、図示動力を高め、発電出力を高めることができる。また、低温排熱の熱エネルギーを一旦、熱媒体に蓄熱するロスを熱伝導性のよい材料(SiCや銅材料等)で熱交換器を構成することで、熱交換器損失を小さくでき、熱媒体を使った熱交換器損失をカバーすることができるため、効率のよい電気回収エンジンを実現できる。
本発明の第3の実施の形態は、第2の実施の形態による電気回収エンジンにおいて、熱交換器を、一方のディスプレーサピストンのピストンヘッド側の外周部と、他方のディスプレーサピストンのピストンヘッド側の外周部とに、リング状に配置したものである。本実施の形態によれば、ディスプレーサピストンの膨張空間外周を加熱できるので熱効率を高めることができる。
 本発明の第4の実施の形態は、第3の実施の形態による電気回収エンジンにおいて、熱媒体通路に熱媒体を導入する導入口と、熱媒体通路から熱媒体を導出する導出口とを熱交換器の外周面に配置し、熱媒体通路を、対向する一対のディスプレーサピストンの間には配置しないものである。本実施の形態によれば、オイル又は溶融塩を用いた小型の熱交換器をピストンヘッド間ではなくピストンヘッド外周だけに配置することで、ディスプレーサピストンの軸方向の長さを短くできる。
 本発明の第5の実施の形態は、第2の実施の形態による電気回収エンジンにおいて、排熱ガスダクトに設けた吸熱用熱交換器と、吸熱用熱交換器と熱交換器とを熱媒体が循環する配管とを設けたものである。本実施の形態によれば、オイル又は溶融塩を熱媒体として排熱ガスダクトの熱をスターリングエンジンに搬送するため、高い熱効率で排熱を利用することができる。また、スターリングエンジンを排熱ガスダクトの配置に影響されずに施工できるために、施工性が良い。したがって、排気ガスダクトをエンジン設置が困難な高所や狭所の場所でも、レイアウトの自由度を高め、様々な排熱源に対応することができる。
 本発明の第6の実施の形態は、第1の実施の形態による電気回収エンジンにおいて、一方のガス通路を、他方のスターリングエンジンの再生器と連通させ、他方のガス通路を、一方のスターリングエンジンの再生器と連通させたものである。本実施の形態によれば、一方のスターリングエンジンの膨張空間から導出させたガスを同じスターリングエンジンの再生器に戻すことなく、対向する他方のスターリングエンジンの再生器に導き、他方のスターリングエンジンの膨張空間から導出させたガスを同じスターリングエンジンの再生器に戻すことなく、対向する一方のスターリングエンジンの再生器に導くため、例えばガス通路をU字状に曲げる必要が無く、流路抵抗の少ないガス通路とすることができるため、圧力損失を低減し、効率を高めることができる。さらに、U字部のような曲げ部分がある場合と比較して、減肉することもなく、信頼性を高める。さらに、腐食性のガスに対して、溶射(金属、セラミックス)並びにコーティングをガス通路材料に施した場合でも、曲げ部がないことから、耐腐食性膜とガス通路材料との密着強度を高め、耐久性を向上させることができる。
 本発明の第7の実施の形態は、第6の実施の形態による電気回収エンジンにおいて、ガス通路を、対向する一対のディスプレーサピストンの間に配置し、熱媒体通路を流れるガスの流れ方向を、ディスプレーサピストンの軸に直交する方向としたものである。本実施の形態によれば、排熱ガスダクトのような煙道に施工した場合に、煙道を流れるガスの排熱を効率よく回収することができる。
 本発明の第8の実施の形態は、第6の実施の形態による電気回収エンジンにおいてガス通路を、複数の直管で構成し、それぞれの直管を円弧状に配置したものである。本実施の形態によれば、排熱ガスダクトのような煙道を流れるガス流に対する抵抗を小さくでき、効率よく熱回収を行うことができる。
 本発明の第9の実施の形態は、第1の実施の形態による電気回収エンジンにおいて、一対のスターリングエンジンを0度の位相で同期運転させるものである。本実施の形態によれば、一対のスターリングエンジンの同期運転によって低振動化を図ることができる。
 本発明の第10の実施の形態は、第9の実施の形態による電気回収エンジンにおいて、それぞれのパワーピストンにはそれぞれリニア発電機を取り付け、それぞれのディスプレーサピストンにはそれぞれ制御モータを取り付けたものである。本実施の形態によれば、リニア発電機を用いることで回転式発電機と比較して伝達ロスが少なく高効率な電気回収が行えるとともに、それぞれの制御モータによって同期を容易に行うことができる。
 本発明の第11の実施の形態は、第9の実施の形態による電気回収エンジンにおいて、一方のパワーピストン及び一方のディスプレーサピストンには一方のリニア発電機を取り付け、他方のパワーピストン及び他方のディスプレーサピストンには他方のリニア発電機を取り付けたものである。本実施の形態によれば、リニア発電機を用いることで回転式発電機と比較して伝達ロスが少なく高効率な電気回収が行えるとともに、それぞれのリニア発電機の負荷を一定に保つことで同期を容易に行うことができる。
 本発明の第12の実施の形態は、第9の実施の形態による電気回収エンジンにおいて、それぞれのパワーピストンにはそれぞれ回転式発電機を取り付け、それぞれのディスプレーサピストンにはそれぞれ制御モータを取り付けたものである。本実施の形態によれば、パワーピストンとディスプレーサピストンとの位相が固定されているので同期を容易に行うことができる。
 本発明の第13の実施の形態は、第9の実施の形態による電気回収エンジンにおいて、一方のパワーピストン及び一方のディスプレーサピストンには一方の回転式発電機を取り付け、他方のパワーピストン及び他方のディスプレーサピストンには他方の回転式発電機を取り付けたものである。本実施の形態によれば、パワーピストンとディスプレーサピストンとの位相が固定されているので同期を容易に行うことができる。
The electricity recovery engine according to the first embodiment of the present invention includes one gas passage communicating with the expansion space of one displacer piston, the other gas passage communicating with the expansion space of the other displacer piston, and one gas. One Stirling engine and the other Stirling engine are connected and unitized by a heat exchanger that forms a passage and a heat medium passage for heating the other gas passage. According to the present embodiment, a pair of Stirling engines are opposed to each other, a heat exchanger necessary for each Stirling engine is configured by one heat exchanger, and the pair of Stirling engines are connected by this heat exchanger. Compared to two separate Stirling engines, a simple configuration can be achieved. In addition, since the Stirling engine is arranged on both sides of the heat exchanger, for example, the heat exchanger can be placed in the flue and the Stirling engine can be projected from the flue so that it can be connected to the flue such as the exhaust heat gas duct. Good workability.
The second embodiment of the present invention uses oil or molten salt as a heat medium flowing in the heat medium passage in the electricity recovery engine according to the first embodiment. According to the present embodiment, by using oil or molten salt as a heat medium, sufficient heat recovery can be performed even when the heat transfer area is small, particularly when using low-temperature exhaust heat, and the heat exchanger The dead space, that is, the ineffective volume can be reduced. Therefore, the pressure change can be increased, the illustrated power can be increased, and the power generation output can be increased. In addition, by configuring the heat exchanger with a material with good thermal conductivity (SiC, copper material, etc.) once the heat energy of the low-temperature exhaust heat is stored in the heat medium, the heat exchanger loss can be reduced, Since the heat exchanger loss using the medium can be covered, an efficient electricity recovery engine can be realized.
According to a third embodiment of the present invention, in the electricity recovery engine according to the second embodiment, the heat exchanger is arranged on the piston head side outer peripheral portion of one displacer piston and on the piston head side of the other displacer piston. It is arranged in a ring shape on the outer periphery. According to the present embodiment, since the outer periphery of the expansion space of the displacer piston can be heated, the thermal efficiency can be increased.
According to a fourth embodiment of the present invention, in the electricity recovery engine according to the third embodiment, an inlet for introducing the heat medium into the heat medium passage and an outlet for deriving the heat medium from the heat medium passage are heated. It arrange | positions at the outer peripheral surface of an exchanger, and does not arrange | position a heat-medium channel | path between a pair of displacer pistons which oppose. According to the present embodiment, by disposing a small heat exchanger using oil or molten salt only on the outer periphery of the piston head, not between the piston heads, the axial length of the displacer piston can be shortened.
According to a fifth embodiment of the present invention, in the electricity recovery engine according to the second embodiment, the heat medium includes an endothermic heat exchanger provided in the exhaust heat gas duct, an endothermic heat exchanger, and the heat exchanger. Circulating piping is provided. According to the present embodiment, the heat of the exhaust heat gas duct is conveyed to the Stirling engine using oil or molten salt as a heat medium, so that the exhaust heat can be utilized with high thermal efficiency. Further, since the Stirling engine can be constructed without being affected by the arrangement of the exhaust heat gas duct, the workability is good. Therefore, it is possible to increase the degree of freedom in layout and cope with various exhaust heat sources even in high places and narrow places where it is difficult to install the exhaust gas duct.
According to a sixth embodiment of the present invention, in the electricity recovery engine according to the first embodiment, one gas passage is communicated with a regenerator of the other Stirling engine, and the other gas passage is connected to one Stirling engine. In communication with the regenerator. According to the present embodiment, the gas derived from the expansion space of one Stirling engine is led to the regenerator of the opposite Stirling engine without returning the gas to the regenerator of the same Stirling engine, and the expansion of the other Stirling engine is performed. Since the gas led out from the space is led to the regenerator of the opposite Stirling engine without returning it to the regenerator of the same Stirling engine, for example, it is not necessary to bend the gas passage into a U-shape and the gas has low flow resistance Since it can be a passage, pressure loss can be reduced and efficiency can be increased. Furthermore, compared with the case where there exists a bending part like a U-shaped part, reliability is improved, without thinning. Furthermore, even when thermal spraying (metal, ceramics) and coating are applied to the corrosive gas, since there is no bend, the adhesion strength between the corrosion-resistant film and the gas passage material is increased, Durability can be improved.
According to a seventh embodiment of the present invention, in the electricity recovery engine according to the sixth embodiment, the gas passage is disposed between a pair of opposing displacer pistons, and the flow direction of the gas flowing through the heat medium passage is determined. The direction is perpendicular to the axis of the displacer piston. According to this Embodiment, when it constructs in a flue like an exhaust heat gas duct, the exhaust heat of the gas which flows through a flue can be collect | recovered efficiently.
In the eighth embodiment of the present invention, in the electricity recovery engine according to the sixth embodiment, the gas passage is constituted by a plurality of straight pipes, and the respective straight pipes are arranged in an arc shape. According to the present embodiment, resistance to a gas flow flowing through a flue such as an exhaust heat gas duct can be reduced, and heat can be recovered efficiently.
In the ninth embodiment of the present invention, in the electricity recovery engine according to the first embodiment, a pair of Stirling engines are operated synchronously with a phase of 0 degrees. According to the present embodiment, the vibration can be reduced by the synchronous operation of the pair of Stirling engines.
According to a tenth embodiment of the present invention, in the electricity recovery engine according to the ninth embodiment, a linear generator is attached to each power piston, and a control motor is attached to each displacer piston. is there. According to the present embodiment, by using a linear generator, it is possible to perform highly efficient electricity recovery with less transmission loss compared to a rotary generator, and synchronization can be easily performed by each control motor.
According to an eleventh embodiment of the present invention, in the electricity recovery engine according to the ninth embodiment, one power generator and one displacer piston are attached with one linear generator, and the other power piston and the other displacer. The other linear generator is attached to the piston. According to the present embodiment, by using a linear generator, it is possible to perform highly efficient electricity recovery with less transmission loss compared to a rotary generator and to keep the load of each linear generator constant. Can be easily performed.
In the twelfth embodiment of the present invention, in the electricity recovery engine according to the ninth embodiment, a rotary generator is attached to each power piston, and a control motor is attached to each displacer piston. It is. According to this embodiment, since the phases of the power piston and the displacer piston are fixed, synchronization can be easily performed.
In a thirteenth embodiment of the present invention, in the electricity recovery engine according to the ninth embodiment, one power generator and one displacer piston are attached with one rotary generator, the other power piston and the other power piston. The displacer piston is provided with the other rotary generator. According to this embodiment, since the phases of the power piston and the displacer piston are fixed, synchronization can be easily performed.
 以下本発明の一実施例による電気回収エンジンについて図面とともに説明する。
 図1は本実施例による電気回収エンジンの外観斜視図、図2は同電気回収エンジンの要部断面斜視図、図3は同電気回収エンジンの断面図、図4は同電気回収エンジンの吸熱用熱交換器を示す断面図、図5は図4におけるX-X線による断面図である。
 図1に示すように、本実施例による電気回収エンジンの密閉容器10は、円筒形状の胴部11と、胴部11の両端に配置された容器端部12A、12Bとで構成されている。ここで容器端部12A、12Bは、胴部11よりも大きな径の円筒形状で構成されている。
 胴部11の長手方向の中央部外周面には、熱媒体を導入する熱媒体導入口13と、熱媒体を導出する熱媒体導出口14とが取り付けられている。
 また、胴部11の両端部外周面には、それぞれ冷却水を導入する冷却水導入口15A、15Bと、冷却水を導出する冷却水導出口16A、16Bが取り付けられている。
 それぞれの容器端部12A、12Bには、容器端部12A、12B内部に配置されるリニア発電機用配線を取り出す配線接続部17A、17Bを設けている。
Hereinafter, an electricity recovery engine according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is an external perspective view of the electricity recovery engine according to the present embodiment, FIG. 2 is a cross-sectional perspective view of the main part of the electricity recovery engine, FIG. 3 is a sectional view of the electricity recovery engine, and FIG. FIG. 5 is a sectional view showing the heat exchanger, and FIG. 5 is a sectional view taken along line XX in FIG.
As shown in FIG. 1, the sealed container 10 of the electricity recovery engine according to the present embodiment includes a cylindrical body 11 and container ends 12 </ b> A and 12 </ b> B disposed at both ends of the body 11. Here, the container end portions 12 </ b> A and 12 </ b> B are formed in a cylindrical shape having a larger diameter than the body portion 11.
A heat medium introduction port 13 for introducing the heat medium and a heat medium outlet port 14 for deriving the heat medium are attached to the outer peripheral surface of the central portion in the longitudinal direction of the body 11.
Further, cooling water inlets 15A and 15B for introducing cooling water and cooling water outlets 16A and 16B for leading cooling water are attached to the outer peripheral surfaces of both ends of the body portion 11, respectively.
The respective container end portions 12A and 12B are provided with wiring connection portions 17A and 17B for taking out the wiring for the linear generator arranged inside the container end portions 12A and 12B.
 次に、本実施例による電気回収エンジンの内部構成について、図2及び図3を用いて説明する。
 胴部11の長手方向の中央部は端板18で区切られ(図2では端板18は省略)、胴部11内部には、この端板18を挟んで一対のシリンダ部19A、19Bが形成されている。
 それぞれのシリンダ部19A、19B内には、ディスプレーサピストン20A、20Bが配置されている。
 本実施例による電気回収エンジンは、一方のスターリングエンジンのディスプレーサピストン20Aと、他方のスターリングエンジンのディスプレーサピストン20Bとを対向させて配置している。
 ディスプレーサピストン20A、20Bの軸方向にはパワーピストン21A、21Bが同軸上に配置されている。パワーピストン21A、21Bは容器端部12A、12B内に配置されている。
 パワーピストン21A、21Bの外周には、パワーピストン21A、21Bとともに往復動作するインナーヨーク31A、31Bが固定されている。インナーヨーク31A、31Bは、円筒状に構成され、その外周には磁石32A、32Bが固定される。
 インナーヨーク31A、31Bの外周部には、円筒状のアウターヨーク33A、33Bがインナーヨーク31A、31Bと所定のギャップを持って配置される。アウターヨーク33A、33Bの内周側にはコイル34A、34Bが固定されている。コイル34A、34Bと磁石32A、32Bとは対向して配置されている。磁石32A、32Bを有するインナーヨーク31A、31Bと、コイル34A、34Bを有するアウターヨーク33A、33Bによってリニア発電機30A、30Bが構成される。
 胴部11内の、ディスプレーサピストン20A、20Bの外周部には、再生器41A、41B及び冷却器42A、42Bを備えている。再生器41A、41B及び冷却器42A、42Bは、リング状に構成されている。冷却器42Aには、冷却水導入口15Aと冷却水導出口16Aが接続され、冷却器42Bには、冷却水導入口15Bと冷却水導出口16Bが接続されている。
 ディスプレーサピストン20Aの膨脹空間22Aは、シリンダ部19A、端板18、及びディスプレーサピストン20Aのピストンヘッドによって形成している。また、ディスプレーサピストン20Bの膨脹空間22Bは、シリンダ部19B、端板18、及びディスプレーサピストン20Bのピストンヘッドによって形成している。
 なお、一対のスターリングエンジンを同期運転させる場合には、端板18を設けずに構成することもできる。この場合には、一方のディスプレーサピストン20Aの膨脹空間22Aと、他方のディスプレーサピストン20Bの膨脹空間22Bとは共通の膨張空間となる。
Next, the internal configuration of the electricity recovery engine according to this embodiment will be described with reference to FIGS.
A central portion in the longitudinal direction of the body portion 11 is divided by an end plate 18 (the end plate 18 is omitted in FIG. 2), and a pair of cylinder portions 19A and 19B are formed inside the body portion 11 with the end plate 18 interposed therebetween. Has been.
Displacer pistons 20A and 20B are disposed in the respective cylinder portions 19A and 19B.
In the electricity recovery engine according to the present embodiment, the displacer piston 20A of one Stirling engine and the displacer piston 20B of the other Stirling engine are arranged to face each other.
Power pistons 21A and 21B are arranged coaxially in the axial direction of the displacer pistons 20A and 20B. The power pistons 21A and 21B are disposed in the container end portions 12A and 12B.
Inner yokes 31A and 31B that reciprocate together with the power pistons 21A and 21B are fixed to the outer periphery of the power pistons 21A and 21B. Inner yoke 31A, 31B is comprised by the cylindrical shape, and magnet 32A, 32B is fixed to the outer periphery.
Cylindrical outer yokes 33A and 33B are arranged on the outer periphery of the inner yokes 31A and 31B with a predetermined gap from the inner yokes 31A and 31B. Coils 34A and 34B are fixed to the inner peripheral sides of the outer yokes 33A and 33B. The coils 34A and 34B and the magnets 32A and 32B are arranged to face each other. Linear generators 30A and 30B are configured by inner yokes 31A and 31B having magnets 32A and 32B and outer yokes 33A and 33B having coils 34A and 34B.
Regenerators 41A and 41B and coolers 42A and 42B are provided on the outer periphery of the displacer pistons 20A and 20B in the body portion 11. The regenerators 41A and 41B and the coolers 42A and 42B are configured in a ring shape. A cooling water inlet 15A and a cooling water outlet 16A are connected to the cooler 42A, and a cooling water inlet 15B and a cooling water outlet 16B are connected to the cooler 42B.
The expansion space 22A of the displacer piston 20A is formed by the cylinder portion 19A, the end plate 18, and the piston head of the displacer piston 20A. The expansion space 22B of the displacer piston 20B is formed by the cylinder portion 19B, the end plate 18, and the piston head of the displacer piston 20B.
When the pair of Stirling engines are operated synchronously, the end plate 18 can be omitted. In this case, the expansion space 22A of one displacer piston 20A and the expansion space 22B of the other displacer piston 20B are a common expansion space.
 熱交換器50は、胴部11の長手方向の中央部であって、一方のディスプレーサピストン20Aのピストンヘッド側の外周部と、他方のディスプレーサピストン20Bのピストンヘッド側の外周部とに、リング状に配置している。冷却器42A、42Bは、胴部11の両端に配置し、再生器41A、41Bは熱交換器50と冷却器42A、42Bとの間に配置している。
 熱交換器50は、一方のディスプレーサピストン20Aの膨張空間22Aと連通する一方のガス通路51Aと、他方のディスプレーサピストン20Bの膨張空間22Bと連通する他方のガス通路51Bと、一方のガス通路51A及び他方のガス通路51Bを加熱する熱媒体通路52とを形成している。このように熱交換器50は、一方のガス通路51Aと他方のガス通路51Bとを一体に構成することで、一方のスターリングエンジンと他方のスターリングエンジンとを連結しており、ユニット化されている。
 熱交換器50は、一方のディスプレーサピストン20Aのピストンヘッド側の外周部と、他方のディスプレーサピストン20Bのピストンヘッド側の外周部とに、リング状に配置し、熱媒体通路52は、対向する一対のディスプレーサピストン20A、20Bの間には配置していない。熱媒体通路52を流れる熱媒体にはオイルを用いている。また、排熱温度が高い場合は熱媒体に溶融塩を使用してもよい。
The heat exchanger 50 is a ring-shaped central portion in the longitudinal direction of the body portion 11 and includes an outer peripheral portion on the piston head side of one displacer piston 20A and an outer peripheral portion on the piston head side of the other displacer piston 20B. Is arranged. The coolers 42A and 42B are disposed at both ends of the trunk portion 11, and the regenerators 41A and 41B are disposed between the heat exchanger 50 and the coolers 42A and 42B.
The heat exchanger 50 includes one gas passage 51A that communicates with the expansion space 22A of one displacer piston 20A, the other gas passage 51B that communicates with the expansion space 22B of the other displacer piston 20B, one gas passage 51A, A heat medium passage 52 for heating the other gas passage 51B is formed. As described above, the heat exchanger 50 is configured as a unit by connecting the one Stirling engine and the other Stirling engine by integrally configuring the one gas passage 51A and the other gas passage 51B. .
The heat exchanger 50 is arranged in a ring shape on the outer periphery of the one displacer piston 20A on the piston head side and on the outer periphery of the other displacer piston 20B on the piston head side, and the heat medium passage 52 is a pair of opposed ones. The displacer pistons 20A and 20B are not arranged. Oil is used as the heat medium flowing through the heat medium passage 52. Further, when the exhaust heat temperature is high, a molten salt may be used as the heat medium.
 一方のガス通路51Aは一方の再生器41Aと連通し、一方の再生器41Aは一方の冷却器42Aと連通し、一方の冷却器42Aは一方のディスプレーサピストン20Aの圧縮空間23Aと連通している。
 また、他方のガス通路51Bは他方の再生器41Bと連通し、他方の再生器41Bは他方の冷却器42Bと連通し、他方の冷却器42Bは他方のディスプレーサピストン20Bの圧縮空間23Bと連通している。
 ロッドの一端側は大径ロッド24A、24B、ロッドの他端側は小径ロッド25A、25Bで構成され、大径ロッド24A、24Bはディスプレーサピストン20A、20Bに固定され、小径ロッド25A、25Bは板バネ26A、26Bに連結されている。
 容器端部12A、12Bは、パワーピストン21A、21B、リニア発電機30A、30Bを内部に収容する。
 以上のように、一方のスターリングエンジンは、ディスプレーサピストン20A、パワーピストン21A、加熱部である熱交換器50、再生器41A、及び冷却器42Aによって構成され、他方のスターリングエンジンは、ディスプレーサピストン20B、パワーピストン21B、加熱部である熱交換器50、再生器41B、及び冷却器42Bによって構成されている。
One gas passage 51A communicates with one regenerator 41A, one regenerator 41A communicates with one cooler 42A, and one cooler 42A communicates with the compression space 23A of one displacer piston 20A. .
The other gas passage 51B communicates with the other regenerator 41B, the other regenerator 41B communicates with the other cooler 42B, and the other cooler 42B communicates with the compression space 23B of the other displacer piston 20B. ing.
One end of the rod is composed of large- diameter rods 24A and 24B, and the other end of the rod is composed of small- diameter rods 25A and 25B. The large- diameter rods 24A and 24B are fixed to the displacer pistons 20A and 20B. The springs 26A and 26B are connected.
Container edge part 12A, 12B accommodates power piston 21A, 21B and linear generator 30A, 30B inside.
As described above, one Stirling engine is configured by the displacer piston 20A, the power piston 21A, the heat exchanger 50 as a heating unit, the regenerator 41A, and the cooler 42A, and the other Stirling engine is the displacer piston 20B, The power piston 21B, the heat exchanger 50 as a heating unit, a regenerator 41B, and a cooler 42B are included.
 上記構成において、熱交換器50での加熱によって、封入されている気体が膨張してディスプレーサピストン20A、20Bを端板18から離間する方向(端部方向)へ移動させる。ディスプレーサピストン20A、20Bの端部方向への移動によって、圧縮空間23A、23Bにあるガスが圧縮されてパワーピストン21A、21Bを端部方向へ移動させる。パワーピストン21A、21Bの端部方向への移動によって、気体はディスプレーサピストン20A、20Bの膨張空間22A、22Bから、熱交換器50、再生器41A、41B、及び冷却器42A、42Bを通過してディスプレーサピストン20A、20Bとパワーピストン21A、21Bとの間の圧縮空間23A、23Bに移動する。そしてディスプレーサピストン20A、20Bの端板18に近接する方向(中心方向)への移動によって圧縮空間23A、23Bが低圧になることで、パワーピストン21A、21Bは中心方向へ移動する。パワーピストン21A、21Bの中心方向への移動によって、圧縮空間23A、23Bの気体は、冷却器42A、42B、再生器41A、41B、及び熱交換器50を通過して、膨張空間22A、22Bに移動する。
 このように、熱交換器50での加熱と冷却器42A、42Bでの冷却によって、気体は膨張収縮を行いながら膨張空間22A、22Bと圧縮空間23A、23Bを往復することで、ディスプレーサピストン20A、20Bを移動させるとともに、パワーピストン21A、21Bを移動させる。そして、パワーピストン21A、21Bの移動によって発電を行うことができる。
 なお、本実施例による一対のスターリングエンジンは、同期運転させることが好ましい。
In the above-described configuration, the enclosed gas expands by heating in the heat exchanger 50 and moves the displacer pistons 20A and 20B away from the end plate 18 (end portion direction). By the movement of the displacer pistons 20A and 20B in the end direction, the gas in the compression spaces 23A and 23B is compressed, and the power pistons 21A and 21B are moved in the end direction. Due to the movement of the power pistons 21A and 21B in the end direction, the gas passes from the expansion spaces 22A and 22B of the displacer pistons 20A and 20B through the heat exchanger 50, the regenerators 41A and 41B, and the coolers 42A and 42B. It moves to the compression spaces 23A and 23B between the displacer pistons 20A and 20B and the power pistons 21A and 21B. The power pistons 21A and 21B move in the central direction when the compression spaces 23A and 23B become low pressure due to the movement of the displacer pistons 20A and 20B in the direction close to the end plate 18 (center direction). Due to the movement of the power pistons 21A and 21B toward the center, the gas in the compression spaces 23A and 23B passes through the coolers 42A and 42B, the regenerators 41A and 41B, and the heat exchanger 50, and enters the expansion spaces 22A and 22B. Moving.
As described above, by heating in the heat exchanger 50 and cooling in the coolers 42A and 42B, the gas reciprocates between the expansion spaces 22A and 22B and the compression spaces 23A and 23B while performing expansion and contraction, thereby displacer piston 20A, While moving 20B, power piston 21A, 21B is moved. And electric power generation can be performed by movement of power piston 21A, 21B.
The pair of Stirling engines according to the present embodiment are preferably operated synchronously.
 次に、本実施例による電気回収エンジンの吸熱用熱交換器について、図4及び図5を用いて説明する。
 吸熱用熱交換器60は排熱ガスダクト71の煙道中に設けられる。吸熱用熱交換器60は二重管シェルで構成され、二重管シェル内には排ガスを流す複数のチューブ61が設けられている。チューブ61の外周空間62が熱媒体の通路となり、この熱媒体の通路は、導入口63と導出口64を備えている。二重管シェルの外径は排熱ガスダクト71よりも大きく、チューブ61の総断面積を排熱ガスダクト71の断面積よりも大きくすることで、吸熱用熱交換器60を通過する排ガスの流通抵抗を小さくしている。また、導入口63を排ガス流れの下流側に、導出口64を排ガス流れの上流側に配置することで、熱媒体の流れと排ガス流れが対向流となるように構成されている。
 なお、導入口63は図1から図3に示す熱媒体導出口14と配管で接続され、導出口64は図1から図3に示す熱媒体導入口13と配管で接続されており、熱媒体であるオイルは、吸熱用熱交換器60と熱交換器50とを循環する。
Next, the heat exchanger for heat absorption of the electricity recovery engine according to the present embodiment will be described with reference to FIGS.
The heat absorption heat exchanger 60 is provided in the flue of the exhaust heat gas duct 71. The heat-absorbing heat exchanger 60 is constituted by a double pipe shell, and a plurality of tubes 61 for flowing exhaust gas are provided in the double pipe shell. The outer circumferential space 62 of the tube 61 serves as a heat medium passage, and the heat medium passage includes an inlet 63 and an outlet 64. The outer diameter of the double pipe shell is larger than that of the exhaust heat gas duct 71, and the total cross sectional area of the tube 61 is larger than the cross sectional area of the exhaust heat gas duct 71. Is made smaller. Further, the introduction port 63 is arranged on the downstream side of the exhaust gas flow, and the outlet port 64 is arranged on the upstream side of the exhaust gas flow, so that the flow of the heat medium and the exhaust gas flow are opposed to each other.
The inlet 63 is connected to the heat medium outlet 14 shown in FIGS. 1 to 3 by piping, and the outlet 64 is connected to the heat medium inlet 13 shown in FIGS. 1 to 3 by piping. Is circulated through the heat-absorbing heat exchanger 60 and the heat exchanger 50.
 次に、本実施例による電気回収エンジンの他の吸熱用熱交換器について、図6及び図7を用いて説明する。
 図6は同電気回収エンジンの他の吸熱用熱交換器を示す断面図、図7は図6におけるX-X線による断面図である。
 吸熱用熱交換器80は排熱ガスダクト71の煙道中に設けられる。吸熱用熱交換器80は二重管シェルで構成され、二重管シェル内の内周部には排ガスの流路空間が形成され、この排ガスの流路空間にフィン81が設けられている。フィン81は、複数の平板で構成され、それぞれの平板は、二重管シェルの管軸方向を長手方向として、内管に放射状に立設されている。二重管シェル内の外周部には、螺旋状の熱媒体通路82が形成されている。排ガスの流路空間における伝熱面積が十分である場合は、フィン81を設けることなく、排ガスの流路空間を貫通穴で構成してもよい。熱媒体通路82は、導入口83と導出口84を備えている。二重管シェルの外径は排熱ガスダクト71よりも大きく、フィン81間の排ガス流路の総断面積を排熱ガスダクト71の断面積よりも大きくすることで、吸熱用熱交換器80を通過する排ガスの流通抵抗を小さくしている。また、導入口83を排ガス流れの下流側に、導出口84を排ガス流れの上流側に配置することで、熱媒体の流れと排ガス流れが対向流となるように構成されている。
 なお、導入口83は図1から図3に示す熱媒体導出口14と配管で接続され、導出口84は図1から図3に示す熱媒体導入口13と配管で接続されており、熱媒体であるオイルは、吸熱用熱交換器80と熱交換器50とを循環する。
Next, another heat absorption heat exchanger according to the present embodiment will be described with reference to FIGS.
6 is a cross-sectional view showing another heat absorption heat exchanger of the same electricity recovery engine, and FIG. 7 is a cross-sectional view taken along line XX in FIG.
The heat absorption heat exchanger 80 is provided in the flue of the exhaust heat gas duct 71. The heat-absorbing heat exchanger 80 is constituted by a double pipe shell, and an exhaust gas passage space is formed in the inner periphery of the double pipe shell, and fins 81 are provided in the exhaust gas passage space. The fins 81 are constituted by a plurality of flat plates, and each flat plate is erected radially on the inner pipe with the pipe axis direction of the double pipe shell as the longitudinal direction. A spiral heat medium passage 82 is formed on the outer periphery of the double tube shell. If the heat transfer area in the exhaust gas passage space is sufficient, the exhaust gas passage space may be formed by through holes without providing the fins 81. The heat medium passage 82 includes an inlet 83 and an outlet 84. The outer diameter of the double pipe shell is larger than that of the exhaust heat gas duct 71, and the total cross-sectional area of the exhaust gas flow path between the fins 81 is larger than the cross-sectional area of the exhaust heat gas duct 71, thereby passing through the heat absorption heat exchanger 80. The flow resistance of exhaust gas is reduced. Further, the introduction port 83 is disposed on the downstream side of the exhaust gas flow, and the outlet port 84 is disposed on the upstream side of the exhaust gas flow, so that the flow of the heat medium and the exhaust gas flow are opposed to each other.
The inlet 83 is connected to the heat medium outlet 14 shown in FIGS. 1 to 3 through a pipe, and the outlet 84 is connected to the heat medium inlet 13 shown in FIGS. 1 to 3 through a pipe. Is circulated through the heat-absorbing heat exchanger 80 and the heat exchanger 50.
 以下本発明の他の実施例による電気回収エンジンについて図面とともに詳細に説明する。
 図8は本実施例による電気回収エンジンの概念構成図、図9は同電気回収エンジンの外観要部斜視図である。
 本実施例による電気回収エンジンについても、一方のスターリングエンジンのディスプレーサピストン120Aと、他方のスターリングエンジンのディスプレーサピストン120Bとを対向させて配置し、ディスプレーサピストン120A、120Bの軸方向にはパワーピストン121A、121Bが同軸上に配置されている。
 ディスプレーサピストン120A、120Bは、シリンダ部119A、119B内に配置されている。
 パワーピストン121A、121Bには、リニア発電機130A、130Bを取り付けている。
 ディスプレーサピストン120A、120Bの外周部には、再生器141A、141B及び冷却器142A、142Bを備えている。再生器141A、141B及び冷却器142A、142Bは、リング状に構成されている。冷却器142A、142Bには、冷却水導入口115A、115Bと冷却水導出口116A、116Bが接続されている。
 ディスプレーサピストン120Aの膨脹空間122Aは、シリンダ部119A、端板118A、及びディスプレーサピストン120Aのピストンヘッドによって形成している。また、ディスプレーサピストン120Bの膨脹空間122Bは、シリンダ部119B、端板118B、及びディスプレーサピストン120Bのピストンヘッドによって形成している。
Hereinafter, an electricity recovery engine according to another embodiment of the present invention will be described in detail with reference to the drawings.
FIG. 8 is a conceptual configuration diagram of the electricity recovery engine according to the present embodiment, and FIG. 9 is a perspective view of the main part of the electricity recovery engine.
Also in the electricity recovery engine according to the present embodiment, the displacer piston 120A of one Stirling engine and the displacer piston 120B of the other Stirling engine are arranged to face each other, and in the axial direction of the displacer pistons 120A, 120B, a power piston 121A, 121B is arranged on the same axis.
Displacer pistons 120A and 120B are arranged in cylinder portions 119A and 119B.
Linear power generators 130A and 130B are attached to the power pistons 121A and 121B.
Regenerators 141A and 141B and coolers 142A and 142B are provided on the outer periphery of the displacer pistons 120A and 120B. The regenerators 141A and 141B and the coolers 142A and 142B are configured in a ring shape. Cooling water inlets 115A and 115B and cooling water outlets 116A and 116B are connected to the coolers 142A and 142B.
The expansion space 122A of the displacer piston 120A is formed by the cylinder portion 119A, the end plate 118A, and the piston head of the displacer piston 120A. The expansion space 122B of the displacer piston 120B is formed by the cylinder portion 119B, the end plate 118B, and the piston head of the displacer piston 120B.
 熱交換器150は、一方のディスプレーサピストン120Aの端板118Aと、他方のディスプレーサピストン120Bの端板118Bとの間に配置している。冷却器142A、142Bは、シリンダ部119A、119Bの端部に配置し、再生器141A、141Bは熱交換器150と冷却器142A、142Bとの間に配置している。
 熱交換器150は、一方のディスプレーサピストン120Aの膨張空間122Aと連通する一方のガス通路151Aと、他方のディスプレーサピストン120Bの膨張空間122Bと連通する他方のガス通路151Bと、一方のガス通路151A及び他方のガス通路151Bを加熱する熱媒体通路152とを形成している。このように熱交換器150は、一方のガス通路151Aと他方のガス通路151Bとを一体に構成することで、一方のスターリングエンジンと他方のスターリングエンジンとを連結しており、ユニット化されている。なお、熱媒体通路152は、工場に設置され、又は車輌が搭載している排気ガス通路や排熱ダクトを直接利用するものであってもよく、熱媒体通路152には排気ガスが熱媒体として流れる。
 熱交換器150は、ガス通路151A、151Bを、対向する一対のディスプレーサピストン120A、120Bの間に配置し、熱媒体通路152を流れるガスの流れ方向を、ディスプレーサピストン120A、120Bの軸に直交する方向としている。
 本実施例では、ガス通路151A、151Bを排熱ガスダクト171内に配置している。ガス通路151A、151Bは、複数の直管で構成し、それぞれの直管を円弧状に配置している。
 本実施例による熱交換器150は、一方のガス通路151Aは他方の再生器141Bと連通し、他方の再生器141Bは他方の冷却器142Bと連通し、他方の冷却器142Bは他方のディスプレーサピストン120Bの圧縮空間123Bと連通している。
 また、他方のガス通路151Bは一方の再生器141Aと連通し、一方の再生器141Aは一方の冷却器142Aと連通し、一方の冷却器142Aは一方のディスプレーサピストン120Aの圧縮空間123Aと連通している。
 本実施例による電気回収エンジンは、それぞれのディスプレーサピストン120A、120Bにはそれぞれ制御モータ180A、180Bを取り付け、それぞれの制御モータ180A、180Bによって、一対のスターリングエンジンを0度の位相で同期運転させる。
The heat exchanger 150 is disposed between the end plate 118A of one displacer piston 120A and the end plate 118B of the other displacer piston 120B. The coolers 142A and 142B are disposed at the ends of the cylinder portions 119A and 119B, and the regenerators 141A and 141B are disposed between the heat exchanger 150 and the coolers 142A and 142B.
The heat exchanger 150 includes one gas passage 151A communicating with the expansion space 122A of one displacer piston 120A, the other gas passage 151B communicating with the expansion space 122B of the other displacer piston 120B, one gas passage 151A, and A heat medium passage 152 for heating the other gas passage 151B is formed. As described above, the heat exchanger 150 is configured as a unit by connecting the one Stirling engine and the other Stirling engine by integrally configuring the one gas passage 151A and the other gas passage 151B. . The heat medium passage 152 may be installed in a factory, or may directly use an exhaust gas passage or a heat exhaust duct mounted on a vehicle. The heat medium passage 152 has exhaust gas as a heat medium. Flowing.
In the heat exchanger 150, the gas passages 151A and 151B are disposed between a pair of opposing displacer pistons 120A and 120B, and the flow direction of the gas flowing through the heat medium passage 152 is orthogonal to the axis of the displacer pistons 120A and 120B. The direction.
In the present embodiment, the gas passages 151 </ b> A and 151 </ b> B are disposed in the exhaust heat gas duct 171. The gas passages 151A and 151B are constituted by a plurality of straight pipes, and the respective straight pipes are arranged in an arc shape.
In the heat exchanger 150 according to the present embodiment, one gas passage 151A communicates with the other regenerator 141B, the other regenerator 141B communicates with the other cooler 142B, and the other cooler 142B is the other displacer piston. It communicates with the 120B compression space 123B.
The other gas passage 151B communicates with one regenerator 141A, one regenerator 141A communicates with one cooler 142A, and one cooler 142A communicates with the compression space 123A of one displacer piston 120A. ing.
In the electricity recovery engine according to the present embodiment, control motors 180A and 180B are attached to the displacer pistons 120A and 120B, respectively, and the pair of Stirling engines are synchronously operated with a phase of 0 degrees by the control motors 180A and 180B.
 上記構成において、熱交換器150での加熱によって、封入されている気体が膨張してディスプレーサピストン120A、120Bを端板118A、118Bから離間する方向(端部方向)へ移動させる。
 ここで、一方のディスプレーサピストン120Aの端部方向への移動によって、圧縮空間123Aにあるガスが圧縮されてパワーピストン121Aを端部方向へ移動させる。パワーピストン121Aの端部方向への移動によって、他方のディスプレーサピストン120Bの膨張空間122Bにある気体が、熱交換器150、再生器141A、及び冷却器142Aを通過してディスプレーサピストン120Aとパワーピストン121Aとの間の圧縮空間123Aに移動する。そしてディスプレーサピストン120Aの端板118Aに近接する方向(中心方向)への移動によって圧縮空間123Aが低圧になることで、パワーピストン121Aは中心方向へ移動する。パワーピストン121Aの中心方向への移動によって、一方の圧縮空間123Aの気体は、冷却器142A、再生器141A、及び熱交換器150を通過して、他方のディスプレーサピストン120Bの膨張空間122Bに移動する。
 また、他方のディスプレーサピストン120Bの端部方向への移動によって、圧縮空間123Bにあるガスが圧縮されてパワーピストン121Bを端部方向へ移動させる。パワーピストン121Bの端部方向への移動によって、一方のディスプレーサピストン120Aの膨張空間122Aにある気体は、熱交換器150、再生器141B、及び冷却器142Bを通過してディスプレーサピストン120Bとパワーピストン121Bとの間の圧縮空間123Bに移動する。そしてディスプレーサピストン120Bの中心方向への移動によって圧縮空間123Bが低圧になることで、パワーピストン121Bは中心方向へ移動する。パワーピストン121Bの中心方向への移動によって、他方の圧縮空間123Bの気体は、冷却器142B、再生器141B、及び熱交換器150を通過して、一方のディスプレーサピストン120Aの膨張空間122Aに移動する。
In the above-described configuration, the enclosed gas expands by heating in the heat exchanger 150 and moves the displacer pistons 120A and 120B away from the end plates 118A and 118B (end direction).
Here, by the movement of one displacer piston 120A in the end direction, the gas in the compression space 123A is compressed, and the power piston 121A is moved in the end direction. Due to the movement of the power piston 121A toward the end, the gas in the expansion space 122B of the other displacer piston 120B passes through the heat exchanger 150, the regenerator 141A, and the cooler 142A, and the displacer piston 120A and the power piston 121A. It moves to the compression space 123A between. Then, the displacement of the compression space 123A by the movement of the displacer piston 120A in the direction (center direction) close to the end plate 118A causes the power piston 121A to move in the center direction. By the movement of the power piston 121A toward the center, the gas in one compression space 123A passes through the cooler 142A, the regenerator 141A, and the heat exchanger 150 and moves to the expansion space 122B of the other displacer piston 120B. .
Further, the gas in the compression space 123B is compressed by the movement of the other displacer piston 120B in the end direction, and the power piston 121B is moved in the end direction. Due to the movement of the power piston 121B in the end direction, the gas in the expansion space 122A of one displacer piston 120A passes through the heat exchanger 150, the regenerator 141B, and the cooler 142B, and the displacer piston 120B and the power piston 121B. It moves to the compression space 123B between. Then, the displacement of the compression space 123B due to the movement of the displacer piston 120B in the center direction causes the power piston 121B to move in the center direction. By the movement of the power piston 121B toward the center, the gas in the other compression space 123B passes through the cooler 142B, the regenerator 141B, and the heat exchanger 150, and moves to the expansion space 122A of the one displacer piston 120A. .
 このように、熱交換器50での加熱と冷却器42A、42Bでの冷却によって、気体は膨張収縮を行いながら膨張空間22A、22Bと圧縮空間23A、23Bを往復することで、ディスプレーサピストン20A、20Bを移動させるとともに、パワーピストン21A、21Bを移動させる。そして、パワーピストン21A、21Bの移動によって発電を行うことができる。
 特に、本実施例では、一方のスターリングエンジンの膨張空間122Aから導出させたガスを同じスターリングエンジンの圧縮空間123Aに戻すことなく、対向する他方のスターリングエンジンの圧縮空間123Bに導き、他方のスターリングエンジンの膨張空間122Bから導出させたガスを同じスターリングエンジンの圧縮空間123Bに戻すことなく、対向する一方のスターリングエンジンの圧縮空間123Aに導くため、ガス通路151A、151BをU字状に曲げる必要が無く、流路抵抗の少ないガス通路とすることができ、効率が高まるとともに、ガス通路151A、151Bを直管で構成できるため、U字部のような曲げ部分がある場合と比較して耐久性を向上させることができる。
As described above, by heating in the heat exchanger 50 and cooling in the coolers 42A and 42B, the gas reciprocates between the expansion spaces 22A and 22B and the compression spaces 23A and 23B while performing expansion and contraction, thereby displacer piston 20A, While moving 20B, power piston 21A, 21B is moved. And electric power generation can be performed by movement of power piston 21A, 21B.
In particular, in this embodiment, the gas led out from the expansion space 122A of one Stirling engine is led to the compression space 123B of the other Stirling engine facing the other Stirling engine without returning to the compression space 123A of the same Stirling engine. Since the gas led out from the expansion space 122B is guided to the compression space 123A of the opposite Stirling engine without returning to the compression space 123B of the same Stirling engine, there is no need to bend the gas passages 151A and 151B in a U-shape. The gas passage can have a low flow resistance, and the efficiency can be increased and the gas passages 151A and 151B can be configured by straight pipes. Therefore, the durability can be improved as compared with the case where there is a bent portion such as a U-shaped portion. Can be improved.
 以下本発明の更に他の実施例による電気回収エンジンについて図面とともに説明する。
 図10から図12は、それぞれ異なる実施例による電気回収エンジンの概念構成図である。下記の説明においては、図8と同一機能を有する構成には同一符号を付して説明を省略する。
 図10に示す実施例は、図8に示す実施例における制御モータ180A、180Bの代わりに、ディスプレーサピストン120A、120Bの往復運動をリニア発電機130A、130Bに取り付けたパワーピストン121A、121Bから電気的に制御するものであり、リニア発電機130A、130Bの負荷制御を行う同期制御部190を設けている。
 図11に示す実施例は、図8に示す実施例におけるリニア発電機130A、130Bの代わりに、クランク機構201A、201Bを介して回転式発電機200A、200Bを設けたものである。
 図12に示す実施例は、図11に示す実施例における制御モータ180A、180Bの代わりに、クランク機構201A、201Bを介してディスプレーサピストン120A、120Bを回転式発電機200A、200Bに接続し、更に、回転式発電機200A、200Bの負荷制御を行う同期制御部190を設けたものである。
 図10から図12に示す実施例による電気回収エンジンは、それぞれの構成によって一対のスターリングエンジンを0度の位相で同期運転させる。
 なお、図8及び図9に示した同期運転のための構成、及び図10から図12に示した同期運転のための構成は、図1から図3に示した実施例に適用することができる。
Hereinafter, an electricity recovery engine according to still another embodiment of the present invention will be described with reference to the drawings.
10 to 12 are conceptual configuration diagrams of an electricity recovery engine according to different embodiments. In the following description, components having the same functions as those in FIG.
In the embodiment shown in FIG. 10, instead of the control motors 180A and 180B in the embodiment shown in FIG. 8, the reciprocating motion of the displacer pistons 120A and 120B is electrically generated from the power pistons 121A and 121B attached to the linear generators 130A and 130B. The synchronous control part 190 which performs load control of the linear generators 130A and 130B is provided.
In the embodiment shown in FIG. 11, rotary generators 200A and 200B are provided via crank mechanisms 201A and 201B instead of the linear generators 130A and 130B in the embodiment shown in FIG.
In the embodiment shown in FIG. 12, displacer pistons 120A and 120B are connected to rotary generators 200A and 200B via crank mechanisms 201A and 201B instead of the control motors 180A and 180B in the embodiment shown in FIG. A synchronous control unit 190 that performs load control of the rotary generators 200A and 200B is provided.
The electricity recovery engine according to the embodiment shown in FIG. 10 to FIG. 12 causes a pair of Stirling engines to operate synchronously at a phase of 0 degrees depending on the respective configurations.
The configuration for synchronous operation shown in FIGS. 8 and 9 and the configuration for synchronous operation shown in FIGS. 10 to 12 can be applied to the embodiments shown in FIGS. .
 本実施例による電気回収エンジンは、一方のディスプレーサピストン20A、120Aの膨張空間22A、122Aと連通する一方のガス通路51A、151Aと、他方のディスプレーサピストン20B、120Bの膨張空間22B、122Bと連通する他方のガス通路51B、151Bと、一方のガス通路51A、151A及び他方のガス通路51B、151Bを加熱する熱媒体通路52、152とを形成する熱交換器50、150によって、一方のスターリングエンジンと他方のスターリングエンジンとを連結してユニット化したことで、2つの別々のスターリングエンジンと比較してシンプルな構成とすることができる。また、熱交換器50、150の両側にスターリングエンジンが配置されるため、例えば、熱交換器50、150を煙道中に配置してスターリングエンジンを煙道から突出させて施工できるため、排熱ガスダクトなどの煙道への施工性が良い。
 本実施例による電気回収エンジンは、熱媒体通路52に流れる熱媒体としてオイル又は溶融塩を用いたことで、特に低温排熱を利用する場合に、伝熱面積が小さくても十分な熱回収を行うことができ、熱交換器のデッドスペースを少なくすることができる。
 本実施例による電気回収エンジンは、熱交換器50を、一方のディスプレーサピストン20Aのピストンヘッド側の外周部と、他方のディスプレーサピストン20Bのピストンヘッド側の外周部とに、リング状に配置したことで、ディスプレーサピストン20A、20Bの膨張空間23A、23Bの外周を加熱できるので熱効率を高めることができる。
 本実施例による電気回収エンジンは、熱媒体通路52を、対向する一対のディスプレーサピストン20A、20Bの間には配置せず、熱媒体通路52に熱媒体を導入する導入口13と、熱媒体通路52から熱媒体を導出する導出口14とを熱交換器50の外周面に配置したことで、ディスプレーサピストン20A、20Bの軸方向の長さを短くできる。
 本実施例による電気回収エンジンは、排熱ガスダクト71に設けた吸熱用熱交換器60、80と、吸熱用熱交換器60、80と熱交換器50とを熱媒体が循環する配管とを設けたことで、高い熱効率で排熱を利用することができるとともに、スターリングエンジンを排熱ガスダクトの配置に影響されずに施工できるために、施工性が良い。
 本実施例による電気回収エンジンは、一方のガス通路151Aを、他方のスターリングエンジンの再生器141Bと連通させ、他方のガス通路151Bを、一方のスターリングエンジンの再生器141Aと連通させたことで、ガス通路151A、151BをU字状に曲げる必要が無く、流路抵抗の少ないガス通路151A、151Bとすることができ、効率が高まるとともに、U字部のような曲げ部分がある場合と比較して耐久性を向上させることができる。
 本実施例による電気回収エンジンは、ガス通路150を、対向する一対のディスプレーサピストン120A、120Bの間に配置し、熱媒体通路152を流れるガスの流れ方向を、ディスプレーサピストン120A、120Bの軸に直交する方向としたことで、排熱ガスダクト171のような煙道に施工した場合に、煙道を流れるガスの排熱を効率よく回収することができる。
 本実施例による電気回収エンジンは、ガス通路151A、151Bを複数の直管で構成し、それぞれの直管をリング状に配置したことで、排熱ガスダクト171のような煙道を流れるガス流に対する抵抗を小さくでき、効率よく熱回収を行うことができる。
 本実施例による電気回収エンジンは、一対のスターリングエンジンを0度の位相で同期運転させることで、一対のスターリングエンジンの同期運転によって低振動化を図ることができる。
 本実施例による電気回収エンジンは、それぞれのパワーピストン120A、120Bにはそれぞれリニア発電機130A、130Bを取り付け、それぞれのディスプレーサピストン120A、120Bにはそれぞれ制御モータ180A、180Bを取り付けたことで、回転式発電機200A、200Bと比較して伝達ロスが少なく高効率な電気回収が行えるとともに、それぞれの制御モータによって同期を容易に行うことができる。
 本実施による電気回収エンジンは、一方のパワーピストン121A及び一方のディスプレーサピストン120Aには一方のリニア発電機130Aを取り付け、他方のパワーピストン121B及び他方のディスプレーサピストン120Bには他方のリニア発電機130Bを取り付けたことで、リニア発電機130A、130Bを用いることで回転式発電機200A、200Bと比較して伝達ロスが少なく高効率な電気回収が行えるとともに、それぞれのリニア発電機の負荷を一定に保つことで同期を容易に行うことができる。
 本実施による電気回収エンジンは、それぞれのパワーピストン121A、121Bにはそれぞれ回転式発電機200A、200Bを取り付け、それぞれのディスプレーサピストン120A、120Bにはそれぞれ制御モータ180A、180Bを取り付けたことで、パワーピストン121A、121Bとディスプレーサピストン120A、120Bとの位相が固定されているので同期を容易に行うことができる。
 本実施例による電気回収エンジンは、一方のパワーピストン121A及び一方のディスプレーサピストン120Aには一方の回転式発電機200Aを取り付け、他方のパワーピストン121B及び他方のディスプレーサピストン120Bには他方の回転式発電機200Bを取り付けたものである。本実施の形態によれば、パワーピストン121A、121Bとディスプレーサピストン120A、120Bとの位相が固定されているので同期を容易に行うことができる。
The electricity recovery engine according to the present embodiment communicates with one gas passage 51A, 151A communicating with the expansion spaces 22A, 122A of one displacer piston 20A, 120A and with expansion spaces 22B, 122B of the other displacer pistons 20B, 120B. The heat exchangers 50 and 150 that form the other gas passages 51B and 151B, the one gas passages 51A and 151A, and the heat medium passages 52 and 152 that heat the other gas passages 51B and 151B are combined with one Stirling engine. Since the other Stirling engine is connected and unitized, a simple configuration can be obtained as compared with two separate Stirling engines. Further, since the Stirling engines are arranged on both sides of the heat exchangers 50 and 150, for example, the heat exchangers 50 and 150 can be arranged in the flue and the Stirling engine can be projected from the flue, so that the exhaust heat gas duct Good workability in flues.
The electricity recovery engine according to the present embodiment uses oil or molten salt as the heat medium flowing in the heat medium passage 52, so that sufficient heat recovery is possible even when the heat transfer area is small, particularly when using low-temperature exhaust heat. This can be done and the dead space of the heat exchanger can be reduced.
In the electricity recovery engine according to the present embodiment, the heat exchanger 50 is arranged in a ring shape on the outer periphery of the one displacer piston 20A on the piston head side and on the outer periphery of the other displacer piston 20B on the piston head side. Thus, since the outer circumferences of the expansion spaces 23A and 23B of the displacer pistons 20A and 20B can be heated, the thermal efficiency can be increased.
In the electricity recovery engine according to the present embodiment, the heat medium passage 52 is not disposed between the pair of opposing displacer pistons 20A and 20B, and the introduction port 13 for introducing the heat medium into the heat medium passage 52, and the heat medium passage. By disposing the outlet 14 through which the heat medium is led out from 52 on the outer peripheral surface of the heat exchanger 50, the axial length of the displacer pistons 20A and 20B can be shortened.
The electricity recovery engine according to the present embodiment includes heat absorption heat exchangers 60 and 80 provided in the exhaust heat gas duct 71, and a pipe through which a heat medium circulates between the heat absorption heat exchangers 60 and 80 and the heat exchanger 50. As a result, exhaust heat can be used with high thermal efficiency, and the Stirling engine can be constructed without being affected by the arrangement of the exhaust heat gas duct, so that the workability is good.
In the electricity recovery engine according to the present embodiment, one gas passage 151A is communicated with the regenerator 141B of the other Stirling engine, and the other gas passage 151B is communicated with the regenerator 141A of one Stirling engine. There is no need to bend gas passages 151A and 151B in a U shape, and gas passages 151A and 151B with low flow resistance can be obtained, which increases efficiency and is compared to the case where there is a bent portion such as a U portion. And durability can be improved.
In the electricity recovery engine according to the present embodiment, the gas passage 150 is disposed between a pair of opposing displacer pistons 120A and 120B, and the flow direction of the gas flowing through the heat medium passage 152 is orthogonal to the axis of the displacer pistons 120A and 120B. By adopting the direction, the exhaust heat of the gas flowing through the flue can be efficiently recovered when it is constructed in a flue such as the exhaust heat gas duct 171.
In the electricity recovery engine according to the present embodiment, the gas passages 151A and 151B are constituted by a plurality of straight pipes, and the respective straight pipes are arranged in a ring shape, so that the gas flow flowing through the flue such as the exhaust heat gas duct 171 can be prevented. Resistance can be reduced and heat recovery can be performed efficiently.
In the electricity recovery engine according to the present embodiment, the pair of Stirling engines can be operated synchronously with a phase of 0 degrees, so that the vibration can be reduced by the synchronous operation of the pair of Stirling engines.
The electricity recovery engine according to the present embodiment is rotated by attaching linear generators 130A and 130B to the power pistons 120A and 120B, respectively, and attaching control motors 180A and 180B to the displacer pistons 120A and 120B, respectively. Compared with the electric power generators 200A and 200B, there is less transmission loss and highly efficient electricity recovery can be performed, and synchronization can be easily performed by the respective control motors.
In the electricity recovery engine according to the present embodiment, one power generator 121A and one displacer piston 120A have one linear generator 130A attached, and the other power piston 121B and the other displacer piston 120B have the other linear generator 130B. By attaching the linear generators 130A and 130B, it is possible to perform highly efficient electricity recovery with less transmission loss compared to the rotary generators 200A and 200B, and keep the load of each linear generator constant. Thus, synchronization can be easily performed.
In the electricity recovery engine according to this embodiment, rotary power generators 200A and 200B are attached to the power pistons 121A and 121B, respectively, and control motors 180A and 180B are attached to the displacer pistons 120A and 120B, respectively. Since the phases of the pistons 121A and 121B and the displacer pistons 120A and 120B are fixed, synchronization can be easily performed.
In the electricity recovery engine according to the present embodiment, one rotary generator 200A is attached to one power piston 121A and one displacer piston 120A, and the other rotary power generator is attached to the other power piston 121B and the other displacer piston 120B. The machine 200B is attached. According to the present embodiment, since the phases of power pistons 121A and 121B and displacer pistons 120A and 120B are fixed, synchronization can be easily performed.
 本発明の電気回収エンジンは、工場排熱のみならず、自動車や船舶等のエンジンの排熱にも適用できる。 The electricity recovery engine of the present invention can be applied not only to factory exhaust heat but also to exhaust heat of engines such as automobiles and ships.

Claims (13)

  1.  ディスプレーサピストンとパワーピストンとを同軸上に配置した一対のスターリングエンジンを備え、前記スターリングエンジンはそれぞれが再生器と冷却器とを有し、
    一方の前記スターリングエンジンの前記ディスプレーサピストンと、他方の前記スターリングエンジンの前記ディスプレーサピストンとを対向させて配置した電気回収エンジンであって、
    一方の前記ディスプレーサピストンの膨張空間と連通する一方のガス通路と、他方の前記ディスプレーサピストンの膨張空間と連通する他方のガス通路と、一方の前記ガス通路及び他方の前記ガス通路を加熱する熱媒体通路とを形成する熱交換器によって、一方の前記スターリングエンジンと他方の前記スターリングエンジンとを連結してユニット化したことを特徴とする電気回収エンジン。
    It includes a pair of Stirling engines in which a displacer piston and a power piston are coaxially arranged, each of the Stirling engines having a regenerator and a cooler,
    An electric recovery engine in which the displacer piston of one of the Stirling engines and the displacer piston of the other Stirling engine are arranged to face each other,
    One gas passage communicating with the expansion space of the one displacer piston, the other gas passage communicating with the expansion space of the other displacer piston, and the heat medium for heating the one gas passage and the other gas passage. An electric recovery engine characterized in that one Stirling engine and the other Stirling engine are connected and unitized by a heat exchanger that forms a passage.
  2.  前記熱媒体通路を流れる熱媒体としてオイル又は溶融塩を用いたことを特徴とする請求項1に記載の電気回収エンジン。 The oil recovery engine according to claim 1, wherein oil or molten salt is used as a heat medium flowing through the heat medium passage.
  3.  前記熱交換器を、一方の前記ディスプレーサピストンのピストンヘッド側の外周部と、他方の前記ディスプレーサピストンのピストンヘッド側の外周部とに、リング状に配置したことを特徴とする請求項2に記載の電気回収エンジン。 The said heat exchanger is arrange | positioned at the outer peripheral part by the side of the piston head of one said displacer piston, and the outer peripheral part by the side of the piston head of the said other displacer piston. Electricity recovery engine.
  4.  前記熱媒体通路に前記熱媒体を導入する導入口と、前記熱媒体通路から前記熱媒体を導出する導出口とを前記熱交換器の外周面に配置し、前記熱媒体通路を、対向する一対の前記ディスプレーサピストンの間には配置しないことを特徴とする請求項3に記載の電気回収エンジン。 An inlet for introducing the heat medium into the heat medium passage and an outlet for deriving the heat medium from the heat medium passage are arranged on the outer peripheral surface of the heat exchanger, and the heat medium passage is opposed to a pair The electric recovery engine according to claim 3, wherein the electric recovery engine is not disposed between the displacer pistons.
  5.  排熱ガスダクトに設けた吸熱用熱交換器と、前記吸熱用熱交換器と前記熱交換器とを前記熱媒体が循環する配管とを設けたことを特徴とする請求項2に記載の電気回収エンジン。 The heat recovery according to claim 2, further comprising: a heat exchanger for heat absorption provided in an exhaust heat gas duct; and a pipe through which the heat medium circulates through the heat exchanger for heat absorption and the heat exchanger. engine.
  6.  一方の前記ガス通路を、他方の前記スターリングエンジンの前記再生器と連通させ、他方の前記ガス通路を、一方の前記スターリングエンジンの前記再生器と連通させたことを特徴とする請求項1に記載の電気回収エンジン。 The one gas passage is communicated with the regenerator of the other Stirling engine, and the other gas passage is communicated with the regenerator of one Stirling engine. Electricity recovery engine.
  7.  前記ガス通路を、対向する一対の前記ディスプレーサピストンの間に配置し、前記熱媒体通路を流れるガスの流れ方向を、前記ディスプレーサピストンの軸に直交する方向としたことを特徴とする請求項6に記載の電気回収エンジン。 The gas passage is disposed between a pair of the displacer pistons facing each other, and a flow direction of the gas flowing through the heat medium passage is set to a direction orthogonal to an axis of the displacer piston. The described electricity recovery engine.
  8.  前記ガス通路を、複数の直管で構成し、それぞれの前記直管を円弧状に配置したことを特徴とする請求項6に記載の電気回収エンジン。 The electric recovery engine according to claim 6, wherein the gas passage is constituted by a plurality of straight pipes, and each of the straight pipes is arranged in an arc shape.
  9.  一対の前記スターリングエンジンを0度の位相で同期運転させることを特徴とする請求項1に記載の電気回収エンジン。 The electric recovery engine according to claim 1, wherein the pair of Stirling engines are operated synchronously with a phase of 0 degrees.
  10.  それぞれの前記パワーピストンにはそれぞれリニア発電機を取り付け、それぞれの前記ディスプレーサピストンにはそれぞれ制御モータを取り付けたことを特徴とする請求項9に記載の電気回収エンジン。 10. The electric recovery engine according to claim 9, wherein a linear generator is attached to each of the power pistons, and a control motor is attached to each of the displacer pistons.
  11.  一方の前記パワーピストン及び一方の前記ディスプレーサピストンには一方のリニア発電機を取り付け、他方の前記パワーピストン及び他方の前記ディスプレーサピストンには他方のリニア発電機を取り付けたことを特徴とする請求項9に記載の電気回収エンジン。 10. One linear generator is attached to one power piston and one displacer piston, and the other linear generator is attached to the other power piston and the other displacer piston. The electricity recovery engine described in 1.
  12.  それぞれの前記パワーピストンにはそれぞれ回転式発電機を取り付け、それぞれの前記ディスプレーサピストンにはそれぞれ制御モータを取り付けたことを特徴とする請求項9に記載の電気回収エンジン。 10. The electric recovery engine according to claim 9, wherein a rotary generator is attached to each of the power pistons, and a control motor is attached to each of the displacer pistons.
  13.  一方の前記パワーピストン及び一方の前記ディスプレーサピストンには一方の回転式発電機を取り付け、他方の前記パワーピストン及び他方の前記ディスプレーサピストンには他方の回転式発電機を取り付けたことを特徴とする請求項9に記載の電気回収エンジン。 One rotary generator is attached to one power piston and one displacer piston, and the other rotary generator is attached to the other power piston and the other displacer piston. Item 10. The electricity recovery engine according to Item 9.
PCT/JP2010/003816 2009-06-08 2010-06-08 Engine for electrical recovery WO2010143418A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-136783 2009-06-08
JP2009136783A JP5365352B2 (en) 2009-06-08 2009-06-08 Electric recovery engine

Publications (1)

Publication Number Publication Date
WO2010143418A1 true WO2010143418A1 (en) 2010-12-16

Family

ID=43308681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003816 WO2010143418A1 (en) 2009-06-08 2010-06-08 Engine for electrical recovery

Country Status (2)

Country Link
JP (1) JP5365352B2 (en)
WO (1) WO2010143418A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3188818U (en) * 2013-09-12 2014-02-13 志村 征男 Stirling engine
CN114320656A (en) * 2021-12-10 2022-04-12 兰州空间技术物理研究所 Heater assembly applied to Stirling generator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014031726A (en) * 2012-08-01 2014-02-20 Hidemi Kurita Drive control method for stirling engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61261647A (en) * 1985-05-15 1986-11-19 Kawasaki Heavy Ind Ltd Free piston type stirling engine
JP2001207909A (en) * 2000-01-24 2001-08-03 Sakushiyon Gas Kikan Seisakusho:Kk Sterling cycle and heat exchanger
JP2004138064A (en) * 2002-10-15 2004-05-13 Enerlyt Potsdam Gmbh Two-cycle stirling engine having two movable members
JP2007270789A (en) * 2006-03-31 2007-10-18 Estir:Kk Stirling engine
JP2009047152A (en) * 2007-08-21 2009-03-05 Thermo Giken Kk Free piston type stirling cycle engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61261647A (en) * 1985-05-15 1986-11-19 Kawasaki Heavy Ind Ltd Free piston type stirling engine
JP2001207909A (en) * 2000-01-24 2001-08-03 Sakushiyon Gas Kikan Seisakusho:Kk Sterling cycle and heat exchanger
JP2004138064A (en) * 2002-10-15 2004-05-13 Enerlyt Potsdam Gmbh Two-cycle stirling engine having two movable members
JP2007270789A (en) * 2006-03-31 2007-10-18 Estir:Kk Stirling engine
JP2009047152A (en) * 2007-08-21 2009-03-05 Thermo Giken Kk Free piston type stirling cycle engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3188818U (en) * 2013-09-12 2014-02-13 志村 征男 Stirling engine
CN114320656A (en) * 2021-12-10 2022-04-12 兰州空间技术物理研究所 Heater assembly applied to Stirling generator

Also Published As

Publication number Publication date
JP2010281294A (en) 2010-12-16
JP5365352B2 (en) 2013-12-11

Similar Documents

Publication Publication Date Title
US7891184B2 (en) 4-cycle stirling machine with two double-piston units
JP4580247B2 (en) Engine system
WO2012130169A1 (en) Two functional thermal driving traveling-wave thermo-acoustic refrigeration system
JP2012198014A (en) Heat exchanger using stirling engine and method related thereto
JP5365352B2 (en) Electric recovery engine
US20070101717A1 (en) Energy recuperation machine system for power plant and the like
JP2009236456A (en) Pulse tube-type heat storage engine
US20120198834A1 (en) Thermodynamic machine with stirling cycle
US10087883B2 (en) Stirling engine with regenerator internal to the displacer piston and integral geometry for heat transfer and fluid flow
US20110252780A1 (en) Heat engine
US20200149494A1 (en) Double-acting stirling engines with optimal parameters and waveforms
US7607299B2 (en) Thermal cycle engine with augmented thermal energy input area
CN110878722B (en) Opposed free piston Stirling generator system adopting annular combustor to provide heat
US8096118B2 (en) Engine for utilizing thermal energy to generate electricity
CN112012846A (en) Free piston Stirling engine
JP2017503969A (en) Variable volume transfer shuttle capsule and valve mechanism
JP2009198084A (en) Pulse pipe type heat storage engine
JP4342566B2 (en) Heat engine
CN210564803U (en) Thermal hysteresis type free piston Stirling generator
CN103758715B (en) Thermoacoustic engine system
CN113137779A (en) Combined cooling heating and power system without moving parts
CN102562357A (en) Stirling engine with center shaft elliptical rotor
CN110971143A (en) Thermomagnetic generating set
WO2012047124A1 (en) A pistonless rotary stirling engine
CN110206657B (en) Thermal hysteresis type free piston Stirling generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10785950

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10785950

Country of ref document: EP

Kind code of ref document: A1