Verfahren zur Herstellung eines Kolbens einer Brennkraftmaschine mittels induktiver Energiezufuhr und Laserbestrahlung
Beschreibung
Die Erfindung betrifft ein Verfahren zur Herstellung eines Kolbens einer Brennkraftmaschine mittels induktiver Energiezufuhr und Laserbestrahlung gemäß den Merkmalen des Oberbegriffes des Patentsanspruches 1.
Aus der DE 10 2007 044 696.0 ist es bekannt, zur Herstellung eines Kolbens, der eine Brennraummulde mit einem Brennraummuldenrand aufweist, den Brennraum- muldenrand dadurch zu härten, dass er in einem ersten Schritt mittels induktiver Energiezufuhr und in einem weiteren Schritt mittels eines Laserstrahls umgeschmolzen wird. Dieses Umschmelzen des Randes der Brennraummulde führt zu einer widerstandsfähigeren Gefügestruktur, so dass die Lebensdauer des Kolbens, und insbesondere des Brennraumuldenrandes, den extremen Anforderungen an heutige Bre.n.nkraftmaschinen in Bezug auf Verbrennungsdrücke und Verbrennungstempera- turen besser genügt, als Brennraummuldenränder, die durch einfaches Gießen des Kolbens erzeugt werden.
Auf Grund steigender Festigkeitsanforderungen und Anforderungen an erhöhte Lebensdauer der Kolben ist dieses schon angewandte Verfahren noch nicht zufriedenstellend genug, da der Laserstrahl während seines radialen Umlaufes nur einen in der Größe durch die Form des Laserstrahls begrenzten Bereich aufschmilzt und härtet, wohingegen weitere Bereiche, d.h. tiefer gehende Bereiche des Brennraummul- denrandes, nicht aufgeschmolzen werden und die Gefügestruktur behalten, die sich beim Gießen des Kolbens, genauer des Kolbenrohlings, eingestellt hat.
Der Erfindung liegt daher die Aufgabe zu Grunde, ein Verfahren zur Herstellung eines Kolbens einer Brennkraftmaschine, bei dem der Brennraummuldenrand induktiv erwärmt und mittels eines Laserstrahles aufgeschmolzen wird, weiter zu verbessern.
Diese Aufgabe ist durch die Merkmale des Patentsanspruches 1 gelöst.
Erfindungsgemäß ist vorgesehen, dass der Laserstrahl während einer rotatorischen relativen Fortbewegung in Bezug auf den Kolben ausgelenkt wird.
Hier ist zunächst festzuhalten, dass entweder der Kolben ruht und der Laserstrahl einer rotatorischen, relativen Fortbewegung in Bezug auf den Kolben ausführt, d.h., dass der Lasterstrahl selber radial entlang des Brennraummuldenrandes bewegt wird. Eine Alternative hierzu ist es, den Laserstrahl auf einen Punkt zu richten und gleichzeitig den Kolben rotatorisch relativ in Bezug auf den Laserstrahl zu bewegen. Bei diesen beiden Varianten ist es denkbar, dass der Laserstrahl aus einer Laserstrahlquelle oder auch mehreren Laserstrahlquellen direkt auf den Brennraummuldenrand gerichtet wird oder die Zufuhr des zumindest einen Laserstrahls indirekt, beispielsweise mittels eines Spiegelsystems (auch als -Scanner bezeichnet), auf- den Brennraummuldenrand zu richten.
Bei der Ausführung des erfindungsgemäßen Verfahrens wird nun der Laserstrahl, entweder feststehend und bei rotierendem Kolben oder umgekehrt, derart auf den Brennraummuldenrand gerichtet, dass der Laserstrahl aus einer Laserstrahlquelle oder aus mehreren Laserstrahlquellen während der rotatorischen relativen Fortbewegung in Bezug auf den Kolben ausgelenkt wird. Diese Auslenkung erfolgt beispielsweise, bezogen auf eine Kolbenhubachse, auf einen Bereich oberhalb und unterhalb des Scheitelpunktes des Brennraummuldenrandes, bezogen auf dessen Querschnitt. Dadurch ist es möglich, mit dem erfindungsgemäßen Verfahren nicht
nur eine größere Oberfläche, sondern auch eine größere Tiefe des Brennraummul- denrandes aufzuschmelzen und somit durch Veränderung der Gefügestruktur eine Härtung zu erreichen, die wesentlich verbessert ist gegenüber dem bekannten Verfahren. Das bedeutet, dass durch die Ausführung des erfindungsgemäßen Verfahrens eine Umschmelzspur erzielt wird, die breiter und tiefer ist als die Umschmelz- spur, die mit dem bekannten Härtungsverfahren erzielt wird.
In Weiterbildung der Erfindung ist vorgesehen, dass der Laserstrahl unterbrochen punktförmig währen der rotatorischen Bewegung auf den umzuschmelzenden Bereich des Brennraummuldenrandes gerichtet wird. Um den Umschmelzprozess (Auf- schmelzprozess) zu optimieren und einen größeren Bereich (Breite und Tiefe) der Brennraummulde bzw. deren Brennraummuldenrandes umzuschmelzen, wird der Laserstrahl in mehrere so genannte Laserpunkte oder Laserspots aufgeteilt. Dies kann z.B. dadurch erfolgen, dass der Laserstrahl durch eine entsprechende Steuerung kurzzeitig ein- und ausgeschaltet wird oder die Erzeugung der Laserspots durch eine entsprechend Optik erzielt werden, indem der Laserstrahl einmal auf den Brenn- raummuldenrand und ein anderes Mal von diesem wegweisend gerichtet wird. Diese unterbrochene punktförmige Bestrahlung des Brennraummuldenrandes mit dem Laserstrahl kann in jsiner Ausführungsform während der rotatorischen Bewegung entweder des Kolbens oder der Laserstrahlquelle kontinuierlich erfolgen.
In einer weiteren Ausgestaltung der Erfindung ist vorgesehen, dass zunächst ein Teilbereich des Brennraummuldenrandes umgeschmolzen wird, dann der Kolben relativ zu dem Laserstrahl rotatorisch weiter bewegt wird (oder umgekehrt, indem der Laserstrahl rotatorisch weiter bewegt wird und der Kolben ruht), wobei dann der nächste Teilbereich umgeschmolzen wird, wobei die rotatorische Weiterbewegung so oft ausgeführt wird, bis der gesamte Brennraummuldenrand in seinem radialen Umfang aufgeschmolzen worden ist. Dadurch wird der Brennraummuldenrand zur Optimierung des Umschmelzprozesses und zur Verbesserung seiner Widerstandsfähig-
keit teilbereichsweise umgeschmolzen, wobei durch die Auslenkung des Laserstrahls und insbesondere in Zusammenhang mit der punktförmigen Bestrahlung die gewünschte Breite und Tiefe für den Umschmelzprozess eingestellt werden kann.
In Weiterbildung der Erfindung ist vorgesehen, dass die Intensität des Laserstrahls im Verlauf der Bestrahlung, insbesondere der punktförmigen Bestrahlung, entweder gleich bleibt oder verändert wird. Das bedeutet, dass während der Auslenkung des Laserstrahls, d.h., während seines Überstreichens über den Brennraummuldenrand, die Intensität und damit die Energiezufuhr gleich bleiben kann, was zu einem gleichmäßigen Umschmelzprozess im Radialverlauf des Brennraummuldenrandes führt. Für den Fall, dass lokal, d.h. teilbereichsweise, unterschiedliche Härtegrade gewünscht sind, kann die Intensität des Laserstrahls während seiner Auslenkung und auch in Bezug auf die rotatorische Bewegung verändert werden. In Folge dessen lassen sich Teilbereiche des Brennraummuldenrandes mit unterschiedlichen Härtegraden erzielen.
Zur Erzielung unterschiedlicher Härtegrade des Brennraummuldenrandes in seinem radialen Verlauf kann daran gedacht werden, dass die Veränderung der Intensität und damit der Energieeintragung durch .die Verweildauer des Laserstrahles auf den umzuschmelzenden Bereich und/oder durch die Energieabgabe der Laserquelle eingestellt wird.
Insgesamt bietet die Erfindung somit den Vorteil, dass zum einen der umgeschmolzene Bereich (insbesondere die Breite und die Tiefe) des Brennraummuldenrandes deutlich erhöht wird und außerdem, falls gewünscht, unterschiedliche Härtegrade des Brennraummuldenrandes in seinem radialen Verlauf einstellbar sind. Darüber hinaus bietet die Auslenkung des Laserstrahles über den umzuschmelzenden Bereich des Brennraummuldenrandes und insbesondere die unterbrochen punktförmige Bestrahlung des Brennraummuldenrandes den wesentlichen Vorteil, dass genügend
Energie zum Umschmelzen des Brennraummuldenrandes zur Verfügung steht, um die gewünschte Tiefe und Breite umzuschmelzen, wobei jedoch gleichzeitig damit verhindert wird, dass der bestrahlte Bereich wegschmilzt und somit der Brennraum- muldenrand in seiner geometrischen Gestaltung nach seiner Herstellung durch einen Gießprozess (oder einen Schmiedeprozess) verändert wird.
Die vorliegende Erfindung bietet somit den Vorteil, dass entweder durch den Scanner, die Strahlteilung oder durch die Verwendung mehrerer Laser bei gleichbleibender Prozesszeit (beispielsweise eine Umdrehung für die Bearbeitung des Kolbens) ein deutlich größeres Umschmelsvolumen erzeugt werden kann.
In den Figuren sind Beispiele gezeigt, wie auf unterschiedliche Art und Weise der Brennraummuldenrand während der Auslenkung des Laserstrahls unterbrochen punktförmig bestrahlt werden kann.
Dabei ist in Figur 1 , bezogen auf eine Vorschubrichtung V entweder des Kolbens oder des Laserstrahls während des rotatorischen Vorschubs, gezeigt, dass zunächst, bezogen auf den Brennraummuldenrand oberhalb und unterhalb in Bezug auf eine Kqlbenhubachse überstreichend, mehrere Laserspots- durch Ein- und Aussehalten der Laserquelle oder durch eine geeignete Optik mit dem Laserstrahl bestrahlt werden, dann ein Vorschub erfolgt, die Bestrahlung wiederholt wird, danach wieder eine Fortbewegung in Vorschubrichtung erfolgt und wieder mit dem Laserstrahl bestrahlt wird, und zwar solange, bis der Brennraummuldenrand einmal in seinem radialen Umfang abgefahren worden ist.
Das gleiche Verfahren ist in den Figuren 2 und 3 gezeigt, wobei hier auf Grund der unterschiedlichen Anzahl der Laserspots unterschiedliche Energien zum Umschmelzen des Brennraummuldenrandes zugeführt werden.
Figur 4 schließlich zeigt eine weitere Variante, bei der der Laserstrahl während der rotatorischen Vorschubbewegung den Bereich des Brennraummuldenrandes überstreicht, wobei dieses Überstreichen nicht zwangsweise punktförmig, sondern auch kontinuierlich ausgeführt werden kann.
Während in den Figuren 1 bis 4 gezeigt ist, dass auf Grund eines jeweiligen Laserspots immer die gleiche Umschmelzenergie zugeführt wird, kann auch daran gedacht werden, für einen oder mehrere Laserspots unterschiedliche Energien und/oder unterschiedliche Verweildauern während der Bestrahlung einzusetzen.