WO2010142165A1 - 地震传感器阵列装置及其数据采集方法 - Google Patents

地震传感器阵列装置及其数据采集方法 Download PDF

Info

Publication number
WO2010142165A1
WO2010142165A1 PCT/CN2010/071751 CN2010071751W WO2010142165A1 WO 2010142165 A1 WO2010142165 A1 WO 2010142165A1 CN 2010071751 W CN2010071751 W CN 2010071751W WO 2010142165 A1 WO2010142165 A1 WO 2010142165A1
Authority
WO
WIPO (PCT)
Prior art keywords
seismic
seismic sensor
track
sensor array
signal
Prior art date
Application number
PCT/CN2010/071751
Other languages
English (en)
French (fr)
Inventor
廖毅
Original Assignee
Liao Yi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liao Yi filed Critical Liao Yi
Publication of WO2010142165A1 publication Critical patent/WO2010142165A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/16Receiving elements for seismic signals; Arrangements or adaptations of receiving elements
    • G01V1/20Arrangements of receiving elements, e.g. geophone pattern
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/16Receiving elements for seismic signals; Arrangements or adaptations of receiving elements

Definitions

  • the invention relates to a seismic sensor array device and a data acquisition method thereof, in particular to a continuous motion land seismic sensor array (Continuous) Land Streamer) A device for real-time data acquisition and a data acquisition method for the device.
  • Seismic exploration and acoustic nondestructive testing are geophysical methods in which elastic waves are used as test signals.
  • the test signals can be elastic waves (seismic waves) emitted by artificially excited or naturally excited sources (sources).
  • the signals pass through the underground medium and pass through the reflection.
  • the propagation mode such as refraction reaches the receiving sensor array, and the elastic wave carrying the target information is converted into an electrical signal by the sensor (detector) and recorded by the seismic instrument or the digital signal collector, and then determined by signal data processing and analysis. Detect the geometry and physical characteristics of the target.
  • the traditional land seismic data acquisition method is a method of manually inserting a detector, which is inefficient. Finding an efficient and fast land geophone receiver array has always been a hot topic in seismic exploration.
  • NSF National Science Foundation
  • DOE Department of Energy
  • DOD Department of Defense
  • the present invention is directed to the above deficiencies of the prior art, and an object of the present invention is to provide a seismic sensor array device capable of performing rapid measurement over a large area of test range, and also capable of achieving continuous motion measurement and capable of tightly coupling with the ground.
  • Seismic sensor array devices including seismic sensors, acquisition cards, and computers, are characterized in that the array devices are scrolled forward through a track, the seismic sensors being arranged on a track to form a continuous seismic sensor array that is scrollable.
  • the corresponding seismic sensor array on the contact portion of the track and the detecting surface receives the elastic wave signal of the contact surface, converts the vibration signal into an electrical signal, and transmits the signal to the computer or the seismic record through the collecting card and the sliding connector.
  • the instrument records, or wirelessly transmits, a signal to the computer or seismic recorder record.
  • the front end of the seismic sensor protrudes from the outer circumference of the track, and a grounding shoe is disposed thereon.
  • the seismic sensor is a single component sensor, a two component sensor, a three component sensor or a multi-component sensor; the collected elastic waves are longitudinal waves, transverse waves and surface waves.
  • the grounding shoe has a cylindrical shape, a conical shape, a triangular pyramid shape, a polygonal pyramid shape, a convex table shape or a convex spherical shape.
  • the track is a continuous loop of rubber tracks, metal tracks or other materials.
  • the track is an elliptical track, a triangular track or a polygonal track motion system.
  • the sliding connector is coupled to the seismic sensor when the signal is wired, the sliding connector is composed of a moving conductor and a fixed conductor, and the moving conductor is fixed on the inner side of the crawler belt, and the fixed conductor is fixed on the crawler frame as the crawler belt moves.
  • the two conductors are in sliding contact to realize electrical signal connection.
  • the acquisition card is provided with a wireless signal transmitter
  • the computer or the seismic recorder is provided with a wireless signal receiver
  • a wireless signal receiver is disposed on the track frame and then sent to the computer or the earthquake through the signal transmission line.
  • the position of the sensor relative to the detection surface is determined by the current coordinates of the reference point of the array device.
  • the array device is towed by a power source, which is a mechanical power source, an electric power source, or an artificial power source.
  • Another object of the present invention is to provide a method for data acquisition using the above seismic sensor array device, comprising:
  • the seismic sensor is tightly coupled to the detecting surface by the grounding shoe and the track pressing force;
  • the seismic sensor array rolls forward and alternately touches the detection surface to achieve measurement of the entire line;
  • the current coordinates are provided by the GPS to determine the coordinate position of the seismic sensor relative to the detection surface;
  • the detected elastic wave signal is generated by an artificially excited or naturally excited source; the artificially excited source may also be moving to achieve continuous motion measurement.
  • the seismic sensor array can be connected in series to form a larger sensor array to realize large-array vertical line measurement.
  • the seismic sensor array can realize an area array by parallel connection or parallel plus serial combination connection, thereby realizing three-dimensional seismic data acquisition.
  • the detection surface refers to the detection surface of the ground, the lunar surface, the building base surface or other solid objects.
  • the invention has the beneficial effects that the seismic sensor is arranged on the crawler belt, and the arrangement of the seismic sensor array is realized as the crawler belt rolls.
  • the seismic sensor array rolls and travels alternately to the detection surface for fast measurements.
  • the sensor is more closely coupled with the detecting surface to ensure the accuracy of data collection.
  • the front drive wheel presses the sensor vertebra into the soil, plus the pressure of the track, so that the sensor and the ground are tightly coupled.
  • the track is not moving, its sensor is coupled to the ground as a sensor effect of compaction interpolation.
  • Extremely fast seismic data acquisition is possible during track motion measurements. Combined with a continuously movable source, the seismic system that constitutes continuous motion measurement can achieve high-speed scanning of the survey target, greatly improving the detection efficiency;
  • the device can realize long-array measurement through serial connection; through parallel connection or parallel plus serial combination connection, an area combination array can be realized to complete 3D seismic measurement.
  • the device can be used to detect complex ground, shallow water transfer areas and harsh conditions, as well as for the detection of lunar surfaces, building foundations or other solid objects.
  • the basic fields of application of the present invention are seismic exploration and acoustic (ultrasonic) non-destructive testing, ranging from superficial engineering inspections, medium to shallow resource exploration to deep oil and gas field exploration.
  • the invention can also be applied to the study of the vibration of the moon, the detection of lunar soil, lunar rock structure, the positioning of military vehicles and group moving targets, the non-destructive detection of engineering components, the detection of microseismic and natural vibration sources, and the scanning of human skeleton sound waves.
  • Figure 1 is a schematic view of the overall structure of the present invention
  • FIG. 2 is a schematic view showing the arrangement of the sensor array on the crawler belt
  • Figure 3 is a schematic view of the assembly of the sensor on the track
  • Figure 4 is a schematic view showing the structure of the two-wheel, three-wheel and multi-wheel support tracks
  • Figure 5 is a schematic view showing the arrangement of the sliding coupling
  • Figure 6 is a block diagram of a wired signal transmission structure connection
  • Figure 7 is a block diagram of a wireless signal transmission structure connection
  • Figure 8 is a schematic view showing the coupling of a tapered grounding shoe, a boss-shaped grounding shoe, a convex spherical grounding shoe and a detecting surface;
  • Figure 9 is a schematic view of the vehicle towing and combination mode
  • Figure 10 is a schematic diagram of the current coordinate determination method of the sensor position.
  • the present invention is a seismic sensor array device comprising a seismic sensor 2, a capture card 4 and a seismic recorder or computer 16, which is scrolled forward by the track 1.
  • the seismic sensors 2 are arranged and fixed on the crawler belt 1 to form a seismic sensor array.
  • the front end of the seismic sensor 2 protrudes from the outer circumference of the crawler belt 1, and a grounding shoe 9 is provided thereon, as shown in FIG.
  • the shape of the grounding shoe 9 may be cylindrical, conical, triangular, polygonal, convex or convex.
  • the seismic sensor 2 is a single component sensor, a two component sensor, a three component sensor or a multi-component sensor; the seismic waves collected are longitudinal waves, transverse waves and surface waves.
  • Track 1 is an elliptical, triangular or polygonal track system consisting of a continuous band of rubber tracks, metal tracks or other materials.
  • the seismic sensor 2 array device is moved on the detecting surface 11 by a power source such as a mechanical power source, an electric power source or an artificial power source, and the detecting surface 11 refers to a detecting surface of the ground, the moon surface, the building base surface or other solid objects.
  • the slide connector 3 When the signal is wired, the slide connector 3 is coupled to the seismic sensor 2.
  • the slide connector 3 is composed of a moving conductor fixed to the inside of the crawler belt 1 and a fixed conductor which moves with the crawler belt 1.
  • the fixed conductor is fixed to the crawler bracket 8. The two are in sliding contact to achieve electrical signal connection.
  • the wireless signal transmitter When the signal is wirelessly transmitted, the wireless signal transmitter is disposed in the capture card 4, the wireless signal receiver is installed in the computer or the seismic recorder 16, or the signal is sent to the wireless signal receiver mounted on the bracket 8, and the signal is passed through the signal.
  • the transmission line is sent to a computer or seismic recorder 16.
  • the seismic sensor 2 is pressed by the grounding shoe 9 and the crawler belt 1 to be tightly coupled with the detecting surface 11;
  • the seismic sensor array 17 rolls forward and alternately contacts the detecting surface 11 to achieve seismic measurement of the entire line;
  • the current coordinates are provided by the GPS system 26 and thereby determine the coordinate position of the seismic sensor 18;
  • the corresponding electrical signal is transmitted to the recorder through the sliding connector 3 or wireless connection and recorded;
  • Seismic sensor arrays can be connected in series to form a larger sensor array, enabling large-array vertical line measurement on the detection area or by parallel connection or parallel plus serial combination to realize area array, thus realizing 3D seismic data acquisition. Where the position of the seismic sensor relative to the detection surface is determined by the current coordinates of the reference point of the array device.
  • the seismic wave signal passes through the ground, and transmits the abnormal signal of the underground target body 14 to the ground through the functions of transmission, reflection, refraction, scattering, etc., by the crawler 1 and detecting
  • the grounding sensor 18 in the grounding seismic sensor array 17 on the contact portion of the surface 11 receives the seismic wave signal of the contact surface, converts the vibration signal into an electrical signal, and transmits the signal to the computer through the capture card and the sliding connector.
  • the seismic recorder 16 records or wirelessly transmits signals to the computer or seismic recorder 16 for recording via a wireless communication device.
  • Figure 2 shows the three types of sensors placed on the track wheel:
  • Figure 2-1 shows a single-row tensioner and a double-row sensor arrangement;
  • Figure 2-2 shows a double-row tensioner and a single-row sensor arrangement.
  • the double support wheel can more effectively push the seismic sensor cone into the ground;
  • Figure 2-3 three rows of tensioner and double row sensor arrangement, the arrangement of the two sides of the sensor tensioner can effectively use the sensor cone Press into the ground.
  • Figures 3-1 and 3-2 show the assembly of the sensor on the track.
  • the sensor core 20 is packaged on the track 1.
  • the sensor core 20 is provided with a sensor cover 22 and a sensor cover 23.
  • the sensor wire 5 is led out from the inside of the crawler belt 1, and the sensor wire 5 is provided with a sensor wire seal 21.
  • the seismic sensor 5 assembled in Fig. 3-1 protrudes from the grounding shoe 9 provided on the outer portion of the crawler belt.
  • Figure 4-1, 4-2, 4-3 shows the structure of the two-wheel, three-wheel and multi-wheel tracked track.
  • the two-wheel track system touch-up sensor has a relatively long arrangement length, three-wheel and multi-wheel track system axis.
  • the core position 28 is relatively high, and can directly replace the military vehicle round wheel, and is suitable for a seismic sensor for positioning a moving vehicle, or a moon-shock sensor installed on a cruising lunar rover to realize a cruise moonquake detection.
  • Figures 5-1 and 5-2 are schematic diagrams showing two technical solutions for the sliding connector.
  • Figure 5-1 shows a moving conductor disposed on the crawler belt 1, which is composed of a sliding rod 32 and a brush conductor 31.
  • the conductor piece 30 Fixed on the bracket 8, the brush conductor 31 is slidably connected to the conductor piece 30, and the sensor signal on the corresponding track 1 is transmitted to realize the wired connection between the sensor 2 and the instrument 16.
  • the structure shown in Fig. 5-2 is exactly the opposite.
  • the conductor piece 30 acts as a moving conductor and is fixed to the crawler belt 1 to move with the crawler belt 1.
  • the slide bar 32 and the slider conductor 31 are fixed to the bracket 8, and the slider conductor 31 is slidably coupled to the conductor piece 30 to realize a wired connection of the sensor 2 to the seismic recorder or the computer 16.
  • Figure 6-1, 6-2, and 6-3 show the block diagram of the wired signal transmission structure.
  • Figure 6-1 shows the traditional seismograph connection block diagram: the electrical signal received by the seismic sensor 18 is connected to the detector line and the connector 3 to The instrument has a large line 15 and is connected to the seismograph 16 by the instrument line 15;
  • Figure 6-2 is a networked instrument connection block diagram: the electrical signal received by the seismic sensor 18 is converted into a digital signal by a capture card disposed on the track.
  • Figure 6-3 is a networked instrument connection block diagram: the electrical signal received by the seismic sensor 18, through the detector line and The connector 3 is connected to a capture card 4 disposed on the track stand, and is converted into a digital signal by the capture card.
  • the data signal is communicated by the digital communication network of the instrument, and communicated with the digital seismic recorder or computer 16 for digital recording.
  • Figure 7-1, 7-2, and 7-3 show the block diagram of the wireless signal transmission structure.
  • Figure 7-1 shows the wireless sensor connection block diagram: the electrical signal received by the seismic sensor 18 is connected to the instrument through the wireless signal transmitter and receiver. Line 15 is connected to the seismograph 16 by the instrument line 15;
  • Figure 7-2 is a wireless network instrument connection block diagram: the electrical signal received by the seismic sensor 18 is converted into a digital signal by the acquisition card 4 disposed on the track 1 The data signal is transmitted to the wireless receiver on the track stand via the wireless link, and then communicated with the digital seismic recorder or computer via the communication network cable for digital recording;
  • Figure 7-3 is a block diagram of the connection of the large network instrument: the above-mentioned track earthquake
  • the signals collected by the sensor system communicate with the digital seismic recorder or computer through a communication network, and are digitally recorded by a bicycle seismic recorder or computer, or transmitted to a higher-level seismograph record by a relay computer.
  • the large network instrument connection usually consists of three levels of communication.
  • the first level communication transmits the sensor signal on the track to the network connection on the track stand, and the communication distance is within ten meters.
  • the second level communication transmits the signal of the track seismic sensor system to
  • the bicycle seismograph or computer set on the trailer can reach a communication distance of several hundred meters;
  • the third-level communication is wireless communication between the bicycle computer or the relay station seismograph and the network seismograph or computer, and the communication distance can reach up to kilometers.
  • the first and second levels of communication can be wireless or wired communication.
  • the four-shape grounding shoe is coupled with the detecting surface
  • Figure 8-1 is a tapered grounding shoe
  • Figure 8-2 is a cylindrical grounding shoe
  • Figure 8-3 is a convex-shaped grounding shoe
  • Figure 8-4 is a convex spherical grounding shoe
  • the tapered grounding shoe is suitable for the loose detecting surface, and different lengths of the cone can be selected for different looseness detecting surfaces
  • the convex or convex spherical sensor shoes can be used for the hard detecting surface.
  • the protruding length and sharpness of the sensor shoe can be determined by the hardness of the detecting surface; for a hard detecting surface, such as a cement surface, a cylindrical or low-column sensor shoe can be selected.
  • Single-track single-track seismic sensor array device Figure 9-1 can be driven by human, electric or small-sized power vehicles, generally used for engineering structure detection, shallow-layer two-dimensional seismic exploration; bicycle multi-track seismic sensor array device parallel Figure 9-3 available manpower , electric or small power car drive, for engineering structure, shallow engineering 3D seismic exploration; bicycle multi-track seismic sensor array device series Figure 9-2 can be used for two-dimensional seismic exploration of medium and shallow geological, engineering and mineral resources; bicycle Multi-track seismic sensor array device series and parallel connection Figure 9-4 can be used for 3D seismic exploration of medium and shallow geological, engineering and mineral resources; multi-vehicle serial longitudinal line system Figure 9-5, where each bicycle tow multiple tracks in series or Multi-track series and parallel connection, used to complete medium and deep geology, mineral resources and oil and gas field 2D longitudinal line or broadband longitudinal line seismic exploration; multi-vehicle
  • the current coordinate determination mode of the sensor position is shown.
  • the current coordinate value of the track reference point 27 is calculated by the GPS positioning system, and the coordinate position of the sensor is determined by the corresponding ID number 29 and the sliding time of the ground contact sensor; on the other hand, the distance between two adjacent seismic sensors is the track pitch
  • the position of the sensor relative to the measuring point can be determined by the corresponding ID number 29 of the track seismic sensor and the number of revolutions of the track 1 .

Description

地震传感器阵列装置及其数据采集方法 技术领域
本发明涉及地震传感器阵列装置及其数据采集方法,具体涉及利用可连续运动陆用地震传感器阵列(Continuous Land Streamer)进行实时数据采集的装置以及该装置的数据采集方法。
背景技术
地震勘探和声波无损检测是以弹性波为测试信号的地球物理方法,测试信号可以是人工激发或者自然激发的信号源(震源)所发出的弹性波(地震波),信号透过地下介质,通过反射、折射等传播方式到达接收传感器阵列,由传感器(检波器)把携带有目标信息的弹性波转换成电信号并由地震仪器或数字信号采集器记录下来,再通过信号数据处理和分析,确定出检测目标的几何形状和物理特征。
传统的陆用地震数据采集方法是采用人工插置检波器的方法,其效率很低。寻找一种高效快速的陆用地震检波器接收阵列,一直是地震勘探所热衷的课题。近十几年,美国国家科学基金(NSF),能源部(DOE)基金,国防部(DOD)基金,更是在相关课题上给予大力资助。其中由美国蒙大拿科技和PFM制造公司(Montana Tech and PFM Manufacturing)承担的美国国家科学基金会资助的小公司技术转化项目(SBTT 2003-2005),沿用了海洋地震勘探彩色浮标带的陆用传感器阵列(Land Streamer),实现了四排陆用传感器阵列(Land Streamer)并联组合的面积阵列。由于该方法采用大动力拖车,直接拖动传感器托带,因此对地面条件要求很高,一般只适用于平滑的地面,而且所能拖曳的传感器面积阵列非常有限。而美国堪萨斯大学近10年研究的3D小面积检波器阵列AutoJuggie装置及美国专利US6532190B2的地震传感器阵列,主要是采用人力或液压机械装置插植检波器阵列,但由于检波器置于刚性支架上,不仅要求地面平坦,刚性支架也会产生钢管波干扰,影响测量精度,探测面积同样极为有限。除此之外,瑞士的ETH,丹麦的COWI,美国堪萨斯地质测量,瑞典的Ramboll等公司都发展了基于拖带或拖缆的陆用传感器阵列(land Streamers)。
鉴于地表条件的复杂性,尽管各国在相关的课题上每年都在加大开发力度,但目前尚没有可以在大面积的测试范围上进行连续移动测试的接触式弹性波接收系统。
发明内容
本发明针对以上现有技术的不足,其目的在于提供一种能够在大面积的测试范围上进行快速测量,也可实现连续移动测量,且能够与地面实现紧密耦合的地震传感器阵列装置。
本发明是通过以下技术方案实现的:
地震传感器阵列装置,包括地震传感器、采集卡和计算机,其特征在于该阵列装置通过履带滚动前行,所述地震传感器排列设置在履带上,构成可滚动行进的连续地震传感器阵列。
所述履带与探测面接触部分上的相应地震传感器阵列,接收接触面弹性波信号,并将振动信号转换成电信号,再通过采集卡和滑动连接器将信号有线传送到所述计算机或地震记录仪记录,或通过无线通信装置,将信号无线传送到所述计算机或地震记录仪记录。
所述地震传感器的前端凸出于履带外周,其上设触地鞋。
所述地震传感器为单分量传感器、二分量传感器、三分量传感器或多分量传感器;所采集的弹性波为纵波、横波和面波。
所述触地鞋形状为柱形、圆锥形、三角锥形、多角锥形、凸台形或凸球形。
所述履带为橡胶履带、金属履带或其他材料组成的连续环带。
所述履带为椭圆形履带、三角形履带或多角形履带运动系统。
当信号有线传输时,所述滑动连接器与所述地震传感器对应联接,所述滑动连接器由运动导体和固定导体组成,运动导体固定在履带内侧,随履带运动,固定导体固定在履带架上,两导体滑动接触,实现电信号连接。
当信号无线传输时,所述采集卡内设无线信号发射器,所述计算机或地震记录仪内设无线信号接收器,或在履带架上设无线信号接收器再通过信号传输线送到计算机或地震记录仪。
所述的传感器相对于探测面位置由阵列装置参考点的当前坐标确定。
所述阵列装置由动力源拖曳,所述动力源为机械动力源、电动力源或人工动力源。
本发明的另一目的是提供利用上述地震传感器阵列装置进行数据采集的方法,包括:
a、地震传感器通过其触地鞋及履带压紧作用,使之与探测面紧密耦合;
b、随着履带的滚动,地震传感器阵列滚动前行,交替接触探测面,实现整条测线的测量;
c、依次接收探测面的弹性波信号,并将弹性波信号转换成相应的电信号;
d、由GPS提供当前坐标,确定地震传感器相对于探测面的坐标位置;
e、通过滑动连接器或无线连接将相应的电信号传到记录仪并记录下来;
f、所探测的弹性波信号是由人工激发或自然激发的震源所产生的;人工激发震源也可以是运动的,以实现连续运动测量。
所述地震传感器阵列可通过串行连接,组成更大的传感器阵列,实现大排列纵测线测量。
所述地震传感器阵列可通过并行连接或并行加串行组合连接,实现面积阵列,从而实现三维地震数据采集。
所述探测面是指地面、月球表面、建筑物基础面或其他固体物的探测表面。
本发明的有益效果:将地震传感器设置于履带上,随着履带的滚动,实现地震传感器阵列的排布。地震传感器阵列滚动行进,交替接触探测面,实现快速测量。通过传感器触地鞋的设置,使传感器与探测面更加紧密地耦合,确保采集数据的准确性。对于锥形传感器触地鞋,在履带运动中,前驱动轮将传感器椎压入土中,加上履带的压力,从而实现传感器与地面的紧密耦合。在履带不动时,其传感器与地面耦合如同压实插值的传感器效果。在履带运动测量时,可以实现极快速地震数据采集。与可连续移动震源结合使用,组成连续运动测量的地震系统,可实现对勘测目标的高速扫描,极大地提高了探测效率;
该装置通过串行连接,可以实现较长排列测量;通过并行连接或并行加串行组合连接,可实现面积组合阵列,以完成三维地震测量。该装置可适应复杂地面、浅水交接区域和恶劣条件地区探测,也可适用于月球表面、建筑物基础面或其他固体物的探测。
本发明的基本应用领域是地震勘探和声波(超声波)无损检测,其范围从浅表层的工程检测、中浅层的资源勘探到深层的油气田勘探。本发明也可扩展应用到月球的震动研究,月壤、月岩构造探测,军事车辆和集团运动目标定位,工程构件无损探测,微震及自然振动源检测,人体骨骼声波扫描等领域。
附图说明
以下结合附图和具体实施方式对本发明进一步详细说明。
图1为本发明整体结构示意图;
图2为传感器阵列在履带上的布置方式示意图;
图3为传感器在履带上装配示意图;
图4为两轮、三轮和多轮支起履带结构示意图;
图5为滑动联接器设置示意图;
图6为有线信号传输结构联接框图;
图7为无线信号传输结构联接框图;
图8为锥形触地鞋、凸台形触地鞋、凸球形触地鞋与探测面耦合示意图;
图9为车拖曳及组合方式示意图;
图10为传感器位置当前坐标确定方式示意图。
图中:1、履带;2、地震传感器;3、滑动连接器;4、采集卡;5、传感器连线;6、履带支撑轮;7、拖曳杆;8、支架;9、触地鞋;10、震源;11、探测面;12、震源拖动;13、地震射线;14、探测目标;15、仪器连接大线;16、地震记录仪或计算机;17、触地传感器排列;18、触地传感器;19、履带支撑轮导轨;20、传感器芯体;21、传感器连线密封件;22、传感器外套;23、传感器封盖;24、拖曳架;25、拖车;26、GPS接收系统;27、履带坐标参考点;28、轴芯位置;29、地震传感器ID编号;30、导体片;31、滑刷导体;32、滑动杆 ;33、固定支架
具体实施方式
以下结合附图对本发明作进一步详细说明。
本发明为地震传感器阵列装置,包括地震传感器2、采集卡4和地震记录仪或计算机16,该阵列装置通过履带1滚动前行。地震传感器2排列并固定在履带1上,构成地震传感器阵列。地震传感器2的前端凸出于履带1外周,其上设触地鞋9,如图1所示。触地鞋9的形状可为柱形、圆锥形、三角锥形、多角锥形、凸台形或凸球形。
地震传感器2为单分量传感器、二分量传感器、三分量传感器或多分量传感器;其所采集的地震波为纵波、横波和面波。履带1为橡胶履带、金属履带或其他材料组成的连续环带所组成的椭圆形、三角形或多角形履带运动系统。地震传感器2阵列装置通过机械动力源、电动力源或人工动力源等动力源拖曳在探测面11上移动,探测面11是指地面、月球表面、建筑物基础面或其他固体物的探测表面。
当信号有线传输时,滑动连接器3与地震传感器2对应联接。滑动连接器3由运动导体和固定导体组成,运动导体固定在履带1内侧,其随履带1运动。固定导体固定在履带支架8上。两者滑动接触,实现电信号连接。当信号无线传输时,采集卡4内设无线信号发射器,计算机或地震记录仪16内设无线信号接收器,或将信号发至安装在支架8上的无线信号接收器,再将信号通过信号传输线送到计算机或地震记录仪16。
本发明进行数据采集的方法:
a、地震传感器2通过其触地鞋9及履带1压紧作用,使之与探测面11紧密耦合;
b、随着履带1的滚动,地震传感器阵列17滚动前行,交替接触探测面11,实现整条测线的地震测量;
c、由GPS系统26提供当前坐标,并由此确定地震传感器18坐标位置;
d、依次接收探测面11的地震波信号,并将地震波信号转换成相应的电信号;
e、通过滑动连接器3或无线连接将相应的电信号传到记录仪并记录下来;
地震传感器阵列可通过串行连接,组成更大的传感器阵列,实现在探测区域上的大排列纵测线测量或者通过并行连接或并行加串行组合连接,实现面积阵列,从而实现三维地震数据采集,其中地震传感器相对于探测面位置由阵列装置参考点的当前坐标确定。
如图1所示,当移动震源10冲击探测面11产生地震波,地震波信号穿过地下,经透射、反射、折射、散射等作用,携带地下目标体14的异常信号返回地面,由履带1与探测面11接触部分上的触地地震传感器排列17中的触地传感器18,接收接触面的地震波信号,并将振动信号转换成电信号,再通过采集卡和滑动连接器将信号有线传送到计算机或地震记录仪16记录,或通过无线通信装置,将信号无线传送到所述计算机或地震记录仪16记录。
图2为传感器在履带轮上布置的三种形式:图2-1为单排张紧轮、双排传感器排列;图2-2为双排张紧轮、单排传感器排列,此种排列在轮带运动时,双支撑轮可以更有效地将地震传感器锥压入地面;图2-3三排张紧轮、双排传感器排列,此种排列传感器两侧张紧轮可以有效地将传感器锥压入地面。
图3-1、3-2为传感器在履带上装配示意图,传感器芯体20封装在履带1上,传感器芯体20外围设传感器外套22、传感器封盖23。传感器线5由履带1内侧引出,传感器线5上设传感器连线密封件21。图3-1装配的地震传感器5凸出在履带外侧部分上设置有触地鞋9。
图4-1、4-2、4-3所示为两轮、三轮和多轮支起履带结构示意图,两轮履带系统触地传感器排列长度相对较长,三轮和多轮履带系统轴芯位置28较高,可以直接替换军用车辆圆轮,适于运动车辆定位用地震传感器,或安装在巡游月球车上,实现巡游月震探测的月震传感器。
图5-1、5-2为滑动连接器设置两种技术方案示意图,其中图5-1所示为设置在履带1上的运动导体,由滑动杆32和滑刷导体31构成,导体片30固定在支架8上,滑刷导体31与导体片30滑动连接,将相应履带1上的传感器信号传出,实现传感器2与仪器16的有线连接。图5-2所示的结构正好相反,导体片30作为运动导体,固定在履带1上,随履带1运动。滑动杆32和滑刷导体31固定在支架8上,滑刷导体31与导体片30滑动连接,实现传感器2与地震记录仪或计算机16的有线连接。
图6-1、6-2、6-3所示为有线信号传输结构框图,其中图6-1为传统地震仪连接框图:地震传感器18接收的电信号通过检波器线和连接器3连接到仪器大线15,并由仪器大线15连接到地震仪16记录;图6-2为网络化仪器连接框图:地震传感器18接收的电信号,由设置在履带上的采集卡转化成数字信号,数据信号经过连接器3和仪器数字通信网线,与数字地震记录仪或计算机16通讯并进行数字记录;图6-3为网络化仪器连接框图:地震传感器18接收的电信号,通过检波器线和连接器3连接到设置在履带支架上的采集卡4,由采集卡转化成数字信号,数据信号由仪器数字通信网线,与数字地震记录仪或计算机16通讯并进行数字记录。
图7-1、7-2、7-3所示为无线信号传输结构框图,其中图7-1为无线传感器连接框图:地震传感器18接收的电信号通过无线信号发射和接收器连接到仪器大线15,并由仪器大线15连接到地震仪16记录;图7-2为无线网络仪器连接框图:地震传感器18接收的电信号,由设置在履带1上的采集卡4转化成数字信号,数据信号经过无线链路传到履带支架上的无线接收器,再经通信网线,与数字地震记录仪或计算机通讯并进行数字记录;图7-3为大网络仪器连接框图:由上述的履带地震传感器系统采集的信号通过通信网络与数字地震记录仪或计算机通讯,并由单车地震记录仪或计算机进行数字记录,或通过中继计算机传到上一级地震仪记录。大网络仪器连接通常由三级通信组成,第一级通信将履带上的传感器信号传到履带支架上的网络连线,通讯距离十米以内;第二级通信将履带地震传感器系统的信号传到设置在拖车上的单车地震仪或计算机,通讯距离可达数百米;第三级通信由单车计算机或中继站地震仪与网络地震仪或计算机之间的无线通信,通讯距离可达千米。第一、二级通信可为无线或有线通讯。单车计算机单独存储地震数据,可省去野外仪器车之间地震采集数据传输。在履带地震传感器系统上设置地震数据存储器,也可省去履带传感器系统第二级地震数据采集信号的传输。
如图8所示四种形状触地鞋与探测面耦合情况,其中图8-1为锥形触地鞋,图8-2为柱形触地鞋,图8-3为凸台形触地鞋,图8-4为凸球形触地鞋;锥形触地鞋适用于松散探测面,对于不同松散程度的探测面可选择不同长度的锥;凸台形或凸球形传感器鞋可用在较硬探测面,传感器鞋的凸出长度和尖度可由探测面软硬度确定;对于坚硬探测面,例如水泥面,可选用柱形或低台柱传感器鞋。
如图9所示的车拖曳方式;由纵测线排列可以完成二维地震测量,面积排列可以完成三维地震测量。单车单履带地震传感器阵列装置图9-1可用人力、电动或小型动力车驱动,一般用于工程结构检测、浅层工程二维地震勘探;单车多履带地震传感器阵列装置并联图9-3可用人力、电动或小型动力车驱动,用于工程结构、浅层工程三维地震勘探;单车多履带地震传感器阵列装置串联图9-2可用于中、浅层地质、工程和矿产资源二维地震勘探;单车多履带地震传感器阵列装置串联加并联图9-4可用于中、浅层地质、工程和矿产资源三维地震勘探;多车串联纵测线系统图9-5,其中每辆单车拖曳多履带串联或多履带串联加并联,用于完成中、深层地质、矿产资源和油气田二维纵测线或宽带纵测线地震勘探;多车并联面积阵列系统图9-6和多车并联加串联面积阵列图9-7,用于完成中、深层地质、矿产资源和油气田三维地震勘探;
如图10所示传感器位置当前坐标确定方式示意图。由GPS定位系统计算履带参考点27的当前坐标值,再由触地传感器相应的ID编号29及滑动时间确定传感器的坐标位置;另一方面,两个相邻地震传感器之间的距离为道间距,由履带地震传感器相应的ID编号29及履带1转动圈数即可确定传感器相对起测点的位置。

Claims (14)

  1. 地震传感器阵列装置,包括地震传感器、采集卡和计算机,其特征在于该阵列装置通过履带滚动前行,所述地震传感器排列设置在履带上,构成地震传感器阵列。
  2. 根据权利要求1所述的地震传感器阵列装置,其特征在于所述履带与探测面接触部分上的相应地震传感器阵列,接收接触面弹性波信号,并将振动信号转换成电信号,再通过采集卡和滑动连接器将信号有线传送到所述计算机或地震记录仪记录,或通过无线通信装置,将信号无线传送到所述计算机或地震记录仪记录。
  3. 根据权利要求1所述的地震传感器阵列装置,其特征在于所述地震传感器的前端凸出于履带外周,其上设触地鞋。
  4. 根据权利要求1所述地震传感器阵列装置,其特征在于所述地震传感器为单分量传感器、二分量传感器、三分量传感器或多分量传感器;所采集的弹性波为纵波、横波和面波。
  5. 根据权利要求3所述的地震传感器阵列装置,其特征在于所述触地鞋形状为柱形、圆锥形、三角锥形、多角锥形、凸台形或凸球形。
  6. 根据权利要求1所述的地震传感器阵列装置,其特征在于所述履带为橡胶履带、金属履带或其他材料组成的连续环带。
  7. 根据权利要求6所述的地震传感器阵列装置,其特征在于所述履带为椭圆形履带、三角形履带或多角形履带运动系统。
  8. 根据权利要求2所述的地震传感器阵列装置,其特征在于当信号有线传输时,所述滑动连接器与所述地震传感器对应联接,所述滑动连接器由运动导体和固定导体组成,运动导体固定在履带内侧,随履带运动,固定导体固定在履带架上,两导体滑动接触,实现电信号连接。
  9. 根据权利要求2所述的地震传感器阵列装置,其特征在于当信号无线传输时,所述采集卡内设无线信号发射器,所述计算机或地震记录仪内设无线信号接收器,或在履带架上设无线信号接收器再通过信号传输线送到计算机或地震记录仪。
  10. 根据权利要求1-9所述的任一项地震传感器阵列装置,其特征在于该阵列装置由动力源拖曳,所述动力源为机械动力源、电动力源或人工动力源。
  11. 采集权利要求1所述的地震传感器阵列装置的数据方法,其特征在于:
    a、地震传感器通过其触地鞋及履带压紧作用,使之与探测面紧密耦合;
    b、随着履带的滚动,地震传感器阵列滚动前行,交替接触探测面,实现整条测线的测量;
    c、依次接收探测面的弹性波信号,并将弹性波信号转换成相应的电信号;
    d、由GPS提供当前坐标,确定地震传感器相对于探测面的坐标位置;
    e、通过滑动连接器或无线连接将相应的电信号传到记录仪并记录下来。
  12. 根据权利要求11所述的数据采集方法,其特征在于所述地震传感器阵列可通过串行连接,组成更大的传感器阵列,实现大排列纵测线测量。
  13. 根据权利要求11所述的数据采集方法,其特征在于所述地震传感器阵列可通过并行连接或并行加串行组合连接,实现面积阵列,从而实现三维地震数据采集。
  14. 根据权利要求11所述的数据采集方法,其特征在于所述探测面是指地面、月球表面、建筑物基础面或其他固体物的探测表面。
PCT/CN2010/071751 2009-06-11 2010-04-14 地震传感器阵列装置及其数据采集方法 WO2010142165A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910117047.5 2009-06-11
CN2009101170475A CN101581790B (zh) 2009-06-11 2009-06-11 地震传感器阵列装置及其数据采集方法

Publications (1)

Publication Number Publication Date
WO2010142165A1 true WO2010142165A1 (zh) 2010-12-16

Family

ID=41364023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/071751 WO2010142165A1 (zh) 2009-06-11 2010-04-14 地震传感器阵列装置及其数据采集方法

Country Status (2)

Country Link
CN (1) CN101581790B (zh)
WO (1) WO2010142165A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107436448A (zh) * 2017-09-11 2017-12-05 上海申丰地质新技术应用研究所有限公司 一种工程地震探测系统及数据读取系统

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101581790B (zh) * 2009-06-11 2011-09-21 廖毅 地震传感器阵列装置及其数据采集方法
CN102944898B (zh) * 2012-11-14 2014-05-14 中国石油天然气集团公司 一种三维接收阵列式声系
CN102981181A (zh) * 2012-12-04 2013-03-20 朱德兵 一种滚动式运动纵波传感器装置及其使用方法
CN103278844B (zh) * 2013-05-17 2015-09-30 安徽吉思勘仪器科技有限公司 一种用于拖曳式履带车的地震检波器
CN104536034B (zh) * 2015-01-08 2017-02-22 吉林大学 多震源并行激发采集与混合地震记录分离方法
CN104648502B (zh) * 2015-02-03 2017-11-14 安徽吉思勘仪器科技有限公司 一种适用于拖曳式地震数据采集阵列的履带车
CN109001797B (zh) * 2018-05-03 2020-10-23 中国科学院武汉岩土力学研究所 一种面波勘探高效采集系统
CN108415090A (zh) * 2018-05-14 2018-08-17 招商局重庆交通科研设计院有限公司 一种适用于路面无损检测的电阻率检波器
CN109361358A (zh) * 2018-09-03 2019-02-19 昆山睿力得软件技术有限公司 一种自动化功能测试设备
CN110006332A (zh) * 2019-04-19 2019-07-12 中国矿业大学(北京) 一种地震前兆形变gnss监测网的三角形形变监测方法
CN113639790A (zh) * 2021-07-27 2021-11-12 爱德森(厦门)电子有限公司 一种真空胶囊式集成管束检测装置及其检测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1385971A (en) * 1971-05-03 1975-03-05 Western Geophysical Co Seismic detector conveyances
CN85104985A (zh) * 1985-07-01 1986-12-31 埃尔夫·阿查坦国营公司 在探井中作地球物理测量的一种设备
WO2001042815A1 (en) * 1999-12-10 2001-06-14 Board Of Trustees Operating Michigan State University Seismic sensor array
US20070069733A1 (en) * 2005-08-13 2007-03-29 Institut Fuer Geowissenschaftliche Gemeinschaftsaufgaben Method and device for geoelectrical mapping
CN101581790A (zh) * 2009-06-11 2009-11-18 廖毅 地震传感器阵列装置及其数据采集方法
CN201489120U (zh) * 2009-06-11 2010-05-26 廖毅 地震传感器阵列装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1385971A (en) * 1971-05-03 1975-03-05 Western Geophysical Co Seismic detector conveyances
CN85104985A (zh) * 1985-07-01 1986-12-31 埃尔夫·阿查坦国营公司 在探井中作地球物理测量的一种设备
WO2001042815A1 (en) * 1999-12-10 2001-06-14 Board Of Trustees Operating Michigan State University Seismic sensor array
US20070069733A1 (en) * 2005-08-13 2007-03-29 Institut Fuer Geowissenschaftliche Gemeinschaftsaufgaben Method and device for geoelectrical mapping
CN101581790A (zh) * 2009-06-11 2009-11-18 廖毅 地震传感器阵列装置及其数据采集方法
CN201489120U (zh) * 2009-06-11 2010-05-26 廖毅 地震传感器阵列装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107436448A (zh) * 2017-09-11 2017-12-05 上海申丰地质新技术应用研究所有限公司 一种工程地震探测系统及数据读取系统
CN107436448B (zh) * 2017-09-11 2023-03-21 上海申丰地质新技术应用研究所有限公司 一种工程地震探测系统及数据读取系统

Also Published As

Publication number Publication date
CN101581790A (zh) 2009-11-18
CN101581790B (zh) 2011-09-21

Similar Documents

Publication Publication Date Title
WO2010142165A1 (zh) 地震传感器阵列装置及其数据采集方法
CN102426384B (zh) 一种探测地下采空区和岩溶分布的方法
Barberan et al. Multi-offset seismic acquisition using optical fiber behind tubing
CN104007176A (zh) 一种复杂岩土工程介质的全波场检测系统及方法
CN107642114B (zh) 桩基浇注前桩底隐患探查方法及其探查装置
CN103499843A (zh) 车载式瞬变电磁快速勘探装置及测量方法
CN103777247A (zh) 一种瞬变电磁雷达探测系统及探测方法
CN108797662B (zh) 立柱下桩基长度无损检测方法及装置
CN106959466A (zh) 海洋地震数据采集系统和方法
CN102073061B (zh) 使用数字地听仪的地听信息高密度记录系统
Castongia et al. An experimental investigation of distributed acoustic sensing (DAS) on lake ice
CN103245968A (zh) 一种滚动式运动传感器装置及其使用方法
KR20120076952A (ko) 굴절법 해양탄성파 탐사를 위한 obc 타입 스트리머 장치
CN114384593A (zh) 一种分布式三维激电数据采集处理装置及方法
US8400879B2 (en) Seismic sensor array devices and methods of data collection
CN106950599A (zh) 一种隧道基底密实性检测系统、检测方法及存储介质
CN105155504A (zh) 铁路路基侧向地震波透射无损检测系统及检测方法
CN114217354A (zh) 基于光纤电磁传感器的电磁数据采集系统及采集方法
CN201489120U (zh) 地震传感器阵列装置
CN206696442U (zh) 海洋地震数据采集系统
CN104020488A (zh) 无线分布式弹性波反射体探测装置、系统和方法
CN202204937U (zh) 一种地震勘探仪的检测传输模块
CN202649476U (zh) 面向地下空间开发的地下管线层析成像系统
CN205046539U (zh) 铁路路基侧向地震波透射无损检测系统
CN106706182A (zh) 一种高应力区隧道围岩区域应力场的二次测试方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10785678

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10785678

Country of ref document: EP

Kind code of ref document: A1