WO2010140464A1 - Method for induction of cell differentiation - Google Patents

Method for induction of cell differentiation Download PDF

Info

Publication number
WO2010140464A1
WO2010140464A1 PCT/JP2010/058284 JP2010058284W WO2010140464A1 WO 2010140464 A1 WO2010140464 A1 WO 2010140464A1 JP 2010058284 W JP2010058284 W JP 2010058284W WO 2010140464 A1 WO2010140464 A1 WO 2010140464A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
cell
differentiation
basement membrane
ips
Prior art date
Application number
PCT/JP2010/058284
Other languages
French (fr)
Japanese (ja)
Inventor
昭苑 粂
伸明 白木
裕一朗 樋口
香穂子 梅田
和彦 粂
恵太郎 山根
克身 持立
Original Assignee
国立大学法人 熊本大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 熊本大学 filed Critical 国立大学法人 熊本大学
Publication of WO2010140464A1 publication Critical patent/WO2010140464A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/067Hepatocytes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0676Pancreatic cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • G01N33/5073Stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/02Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from embryonic cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/45Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from artificially induced pluripotent stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/90Substrates of biological origin, e.g. extracellular matrix, decellularised tissue

Definitions

  • the present invention relates to a method for inducing differentiation of ES cells and iPS cells. More specifically, the present invention relates to a method for inducing differentiation of ES cells or iPS cells into endoderm using a biosynthetic basement membrane culture substrate without using supporting cells.
  • Embryonic stem (ES) cells are pluripotent stem cells derived from the inner cell mass of blastocysts.
  • ES Embryonic stem
  • in vitro methods embryoid bodies are formed to mimic the inducible microenvironment necessary for liver regeneration (Non-Patent Documents 1 and 2), or treatment with specific growth factors and cytokines essential for hepatocyte differentiation is performed. (Non-Patent Document 3). It has been shown that when ES cells are cultured together with embryonic mesenchymal cells, ES cells go to the liver lineage (Non-Patent Documents 4 to 6). Production of ES cell-derived hepatocytes in vitro has been reported using BMP4 (Non-patent Document 7).
  • the present inventors have developed a method using feeder cells, and established a high-efficiency differentiation induction technique from ES cells to embryonic endoderm respiratory and digestive organs by planar culture (Patent Documents 1 and 2, and Non-patent document 8).
  • ES cells are transformed into mesendoderm, definitive endoderm, and final region-specific definitive endoderm-derived organs in vitro in a manner similar to early embryonic induction in vivo. They are guided in order (Non-Patent Document 9).
  • the M15 feeder is also a useful tool for creating strain-specific cell types derived from ES cells belonging to three germ layers (ie, neuroectodermal, mesoderm, and definitive endoderm) (Non-patent Document 10).
  • Differentiated ES cells undergo FGF stimulation of the ERK signaling cascade and switch from self-renewal to lineage restriction.
  • Activin and / or p38pMAPK then induce branching into the mesendoderm lineage. Later, activin induces mesendoderm branching into the definitive endoderm.
  • region specification to hepatocytes or pancreatic cells can be manipulated by modifying the culture conditions.
  • Non-patent Document 9 It has also been shown in culture transfilter assays that only this final stage of differentiation into region-specific definitive endoderm requires direct contact with M15 cells (Non-patent Document 9). Even the M15 cell layer fixed with aldehyde has been shown to retain the ability to induce pancreatic differentiation (Non-Patent Document 9), so the role of the extracellular matrix (basement membrane component) deposited around the M15 cell layer was thought to play a role in guiding the differentiation of definitive endoderm into region-specific strains.
  • these methods are methods using living support cells, and it is desirable to develop a method using a cell-free system in consideration of future application to humans.
  • sBM substratum synthesized basement Membrane substratum
  • BMP-4 is required for hepatic specification of mouse embryonic stem cell-derived definitive endoderm. Nat Biotechnol. 2006; 24: 1402-1411 Shiraki N, Umeda K, Sakashita N, et al. Differentiation of mouse and human embryonic stem cells into hepatic lineages. Genes Cells. 2008; 13: 731-746 Shiraki N, Yoshida T, Araki K, et al. Guided differentiation of embryonic stem cells into Pdx1-expressing regional-specific definitive endoderm. Stem Cells. 2008; 26: 874-885 Shiraki N, Higuchi Y, Harada S, et al. Differentiation and characterization of embryonic stem cells into three germ layers.
  • the present invention solves the problem of providing a novel ES cell or iPS cell differentiation induction method that enables differentiation induction of ES cells or iPS cells into an endoderm system without using feeder cells. It was a problem to be solved.
  • the present inventors have cultured ES cells or iPS cells on a biosynthetic basement membrane culture substrate to differentiate into an endoderm system without using supporting cells. I found that it can be guided. That is, in the present invention, the ES cells are induced to differentiate efficiently and selectively into the liver system or pancreatic system by modifying the medium using a biosynthetic basement membrane culture substrate (sBM (culture) substrate). I was able to. Similarly, iPS cells could also be induced into pancreatic cells using the same plutocol as ES cells by culturing on sBM substrate. The present invention has been completed based on these findings.
  • sBM biosynthetic basement membrane culture substrate
  • the following inventions are provided.
  • (1) Inducing differentiation from ES cells or iPS cells into pancreatic or liver cells, including culturing mammalian-derived ES cells or iPS cells in the presence of growth factors on a biosynthetic basement membrane culture substrate Method.
  • (2) The method according to (1), wherein the biosynthetic basement membrane culture substrate is a biosynthetic basement membrane culture substrate prepared by culturing cells having a basement membrane-forming ability on a support.
  • (3) The biosynthetic basement membrane culture substrate is a biosynthetic basement membrane culture substrate prepared by culturing cells having the ability to form a basement membrane on a support provided with a sugar chain (1) or (2 ) Method.
  • the biosynthetic basement membrane culture substrate comprises a human laminin-511 isoform basement membrane dense layer structure (lamina densa).
  • lamina densa basement membrane dense layer structure
  • a mouse-derived ES cell or iPS cell is cultured on a biosynthetic basement membrane culture substrate in the presence of ITS (insulin, transferrin, and sodium selenite), fetal bovine albumin, activin A, and bFGF.
  • ITS insulin, transferrin, and sodium selenite
  • fetal bovine albumin activin A
  • bFGF fetal bovine albumin
  • differentiation is induced into hepatic cells by culturing in the presence of ITS (insulin, transferrin, and sodium selenite), HGF (hepatocyte growth factor), dexamethasone, and oncostatin M.
  • ITS insulin, transferrin, and sodium selenite
  • HGF hepatocyte growth factor
  • dexamethasone dexamethasone
  • ES cells or iPS cells on biosynthetic basement membrane culture substrates ITS (insulin, transferrin, and sodium selenite), fetal bovine albumin, activin A and bFGF (basic fibroblast growth factor / basic fibroblasts) Cultured in the presence of cell growth factor), then in the presence of retinoic acid, and then in the presence of ITS (insulin, transferrin and sodium selenite), nicotinamide, glucagon-like peptide-1 (GLP1)
  • ITS insulin, transferrin and sodium selenite
  • GLP1 glucagon-like peptide-1
  • ES cells or iPS cells are performed in the presence of a test substance.
  • the degree of differentiation induction into pancreatic or liver cells and when the ES cells or iPS cells are cultured in the presence of the test substance A method for screening a substance that promotes or inhibits differentiation induction from ES cells or iPS cells into pancreatic or liver cells, comprising comparing the degree of differentiation induction into pancreatic or liver cells.
  • the degree of differentiation induction into pancreatic or liver cells is measured using the expression level of a marker expressed in pancreatic or liver cells as an index.
  • ES cells and iPS cells are characterized in that they can proliferate indefinitely and have pluripotency capable of differentiating into any cell tissue.
  • the development of differentiation from ES cells into hepatocytes and pancreatic cells has been developed worldwide, no cell that has sufficient function and can be recognized as a mature hepatic pancreatic cell has yet to be obtained.
  • a technique for controlling differentiation induction into liver cells and pancreatic cells was successfully established by a method not using feeder cells (supporting cells).
  • the method of the present invention is useful for the creation of model cells that can be applied to basic research of drug discovery such as safety evaluation of new drugs, and the creation of transplanted cell sources for regenerative medicine, and in particular, ES cells and iPS cells by the method of the present invention.
  • the method of inducing differentiation into mature hepatocytes and mature pancreatic cells is useful in the fields of drug discovery and regenerative medicine.
  • FIG. 1 is a schematic diagram of differentiation of ES cells into liver or pancreatic lineages on the M15 feeder cell layer.
  • M15 cells have the ability to differentiate ES cells into both pancreas and liver depending on the culture conditions.
  • FIG. 2 shows that ES cells cultured with human laminin-511 (hLN-511) isoform-sBM substrate can differentiate into definitive endoderm cells without a feeder.
  • Definitive endoderm cells (E-cadherin + / Cxcr4 +) expressing the differentiation markers E-cadherin and Cxcr4 were 27% in the culture on the sBM substrate, 50.9% in the culture on the ESM15 feeder cell layer, ES Appeared on day 8 of cell culture.
  • FIG. 3 shows that Afp and Alb1 expression is induced in 24 day ES cells cultured on sBM substrate.
  • ES cells grown in sBM were differentiated under culture conditions for liver differentiation, and expression of Afp and Alb1 was measured by real-time RT-PCR. Gene expression was normalized using ⁇ -actin.
  • ES cells cultured on SBM substrate had higher Afp expression but lower Alb1 expression than ES cells grown on the M15 feeder cell layer.
  • FIG. 4 shows the differentiation of khES-1 and khES-3 cells into liver lineages on sBM substrate.
  • FIG. 5 shows SK7 ES cells differentiated into Pdx1 / GFP expressing cells on the sBM substrate. SK7 ES cell line was seeded directly on sBM substrate. Pdx1 / GFP expression became detectable on day 10 and then gradually increased and reached a maximum on day 15.
  • FIG. 6 shows the expression of a mature pancreatic marker gene in differentiating ES cells that form cell clusters (having clusters).
  • d28 Total ES cells differentiated on day 28.
  • sBM ES cells differentiated on sBM substrate
  • d10, d15 and d28 total ES cells in the indicated number of days during differentiation culture.
  • the amount of cDNA was normalized using the expression level of ⁇ -actin.
  • Results showed that insulin 1 transcripts were detected on day 28 in ES cells cultured on sBM but not on ES cells on M15 feeder.
  • Pdx Pancreatic duodenum homeodomein 1; Ins1, insulin1; Gcg, glucagon; Sst, somatostatin; Ptf1a, pancreas specific transcription factor 1a; Amy, amylase.B)
  • Pdx1 Pancreatic duodenum homeodomein 1
  • Ins1, insulin1; Gcg glucagon
  • Sst somatostatin
  • Ptf1a pancreas specific transcription factor 1a
  • Amy amylase.B
  • FIG. 8 shows the progression of in vivo differentiation of mouse iPS cells differentiated on sBM substrate.
  • Mouse iPS cells were passaged twice on sBM substrate for 25 days to induce differentiation into the pancreatic lineage, and then collected and transplanted into the kidney capsule of SCID mice. After in vivo differentiation in transplanted tissues, transplants collected from iPS cell-derived cells cultured on sBM were analyzed. Frozen sections of the implants were stained with antibodies against mature pancreatic markers (magenta) and counterstained with DAPI (blue).
  • FIG. 9 shows the differentiation of human iPS cells using sBM substrate. Using sBM, human iPS cells cultured for 8 days (d8), 20 days (d20) and 30 days (d30) were subjected to gene expression analysis by RT-PCR.
  • FIG. 10 shows differentiation induction of human ES cells into hepatocytes on the sBM substrate. The khES3 strain was seeded on sBM, and the endoderm differentiation was started by switching to the differentiation medium from the next day.
  • differentiation of embryonic endoderm, albumin-positive hepatocytes, Pdx1-positive pancreatic progenitor cells, or insulin-positive pancreatic ⁇ cells can be induced from ES cells or iPS cells. It can.
  • differentiation from ES cells to the liver or pancreas has been induced by a method using M15 cells, which are feeder cells.
  • M15 cells which are feeder cells.
  • differentiation can be induced without using feeder cells (support cells). It became possible.
  • the method of the present invention was useful for maturation of pancreatic progenitor cells.
  • the cells When cells are cultured on a collagen matrix, the cells secrete “extracellular matrix” extracellularly.
  • the secreted extracellular matrix varies depending on the cell type, and various growth growth factors are captured by these extracellular matrixes, creating a solid phase environment that is very suitable for cell differentiation.
  • the biosynthetic basement membrane culture substrate is obtained by treating cells with a surfactant and an alkaline solution, and then excluding cell debris and exposing the basement membrane.
  • the present invention is a method for inducing differentiation of ES cells or iPS cells into pancreatic or liver cells, wherein the mammal-derived ES cells or iPS cells are cultured on a biosynthetic basement membrane culture substrate in the presence of a growth factor. It is a method characterized by culturing.
  • the differentiation induction method of the present invention it is possible to induce differentiation of digestive organ cells derived from endoderm such as liver or pancreas from ES cells or iPS cells on a biosynthetic basement membrane culture substrate without using supporting cells. . Inducing differentiation of hepatocytes or pancreatic cells without using feeder cells has never been reported so far and has been achieved for the first time by the present invention.
  • ES cells or iPS cells are easily induced to differentiate by being cultured on a biosynthetic basement membrane culture substrate. Therefore, when a specific growth growth factor is added, differentiation induction is further promoted. Therefore, the method of the present invention can also be used as a screening for unknown differentiation-inducing factors.
  • the ES sputum cell used in the present invention is not particularly limited as long as it is a mammal-derived ES cell, and for example, mouse, monkey or human-derived ES cells can be used.
  • a cell having a reporter gene introduced in the vicinity of the Pdx1 gene can be used in order to facilitate confirmation of the degree of differentiation.
  • a 129 / Sv-derived ES cell line R1, J1 incorporating the lacZ gene at the Pdx1 locus, or an ES cell SK7 line having a GFP reporter transgene under the control of the Pdx1 promoter can be used.
  • an ES cell PH3 strain having an mRFP1 reporter transgene under the control of a Hnf3 ⁇ endoderm-specific enhancer fragment and a GFP reporter transgene under the control of a Pdx1 promoter can also be used.
  • Mammal-derived ES cells can be cultured by conventional methods. For example, in the presence of mitomycin C-treated mouse embryo fibroblasts (MEF) as feeder cells, leukemia inhibitory factor (LIF, ESGRO 1000 Dulbecco's modified Eagle's medium (DMEM, Sigma) supplemented with differentiation medium (10% fetal bovine serum (FBS), 0.1 mM 2-mercaptoethanol, 100 ⁇ M non-essential amino acids, 2 mM L-glutamine, unit / ml, Chemicon) ))
  • LIF leukemia inhibitory factor
  • FBS fetal bovine serum
  • 2-mercaptoethanol 100 ⁇ M non-essential amino acids
  • 2 mM L-glutamine unit / ml, Chemicon
  • IPS cells induced pluripotent stem cells
  • Artificial pluripotent stem cells are pluripotent cells obtained by reprogramming somatic cells. Artificial pluripotent stem cells are produced by a group of Professor Shinya Yamanaka at Kyoto University, a group of RudolfudoJaenisch et al. At Massachusetts Institute of Technology, a group of James Thomson et al. At University of Wisconsin, Harvard University Several groups have been successful, including the group by Konrad Hochedlinger et al. Artificial pluripotent stem cells are highly expected as ideal pluripotent cells without rejection and ethical problems. For example, International Publication No.
  • WO2007 / 069666 discloses somatic cell nuclear reprogramming factors including Oct family gene, Klf family gene, and Myc family gene gene product, as well as Oct family gene, Klf family gene, Sox family gene and A somatic cell nuclear reprogramming factor containing a gene product of a Myc family gene is described, and further, a pluripotent stem cell induced by somatic cell nuclear reprogramming, comprising a step of contacting the nuclear reprogramming factor with the somatic cell. A method of manufacturing is described.
  • IPS cells used in the present invention can be produced by reprogramming somatic cells.
  • the type of somatic cell used here is not particularly limited, and any somatic cell can be used. That is, the somatic cell referred to in the present invention includes all cells other than the internal germ cells of the cells constituting the living body, and may be a differentiated somatic cell or an undifferentiated stem cell.
  • the origin of the somatic cell may be any of mammals, birds, fishes, reptiles and amphibians, but is not particularly limited, but is preferably a mammal (for example, a rodent such as a mouse or a primate such as a human). A mouse or a human is preferable.
  • human somatic cells any fetal, neonatal or adult somatic cells may be used.
  • the iPS cells referred to in the present invention have a self-replicating ability over a long period of time under predetermined culture conditions (for example, conditions under which ES cells are cultured), and are also ectoderm, mesoderm and endoderm under predetermined differentiation-inducing conditions.
  • the induced pluripotent stem cell in the present invention may be a stem cell capable of forming a teratoma when transplanted to a test animal such as a mouse.
  • the reprogramming gene is a gene encoding a reprogramming factor that has the action of reprogramming somatic cells into iPS cells.
  • Specific examples of the combination of reprogramming genes include the following combinations, but are not limited thereto.
  • (I) Oct gene, Klf gene, Sox gene, Myc gene ii) Oct gene, Sox gene, NANOG gene, LIN28 gene (iii) Oct gene, Klf gene, Sox gene, Myc gene, hTERT gene, SV40 large T gene
  • Iv Oct gene, Klf gene, Sox gene
  • ES cells or iPS cells are cultured on a biosynthetic basement membrane (sBM) substrate.
  • the biosynthetic basement membrane (sBM) substrate used in the present invention is not particularly limited as long as it can induce differentiation of ES cells or iPS cells into endoderm cells.
  • biosynthetic basement membrane (sBM) substrates Patent No. 37553532 (basement membrane preparation method), Patent No. 3829193 (basement membrane preparation or artificial tissue), Patent No. 4023597 (basement membrane preparation) And remanufactured artificial tissue used and its production method), and those produced by the method described in JP-A-2003-093053 (method for producing a basement membrane preparation). All the contents described in the above patent publications are incorporated herein by reference.
  • Japanese Patent No. 3785532 discloses a ⁇ -D-glucopyranose non-reducing end or a ⁇ -D-glucopyranose non-reducing end capable of localizing a receptor having an action of accumulating basement membrane components on the basal plane of a cell having basement membrane-forming ability.
  • a method for preparing a basement membrane comprising culturing cells having a basement membrane-forming ability on a support having a sugar chain having a 2-acetamido-2-deoxy- ⁇ -D-glucopyranose non-reducing end
  • the basement membrane described and produced by the preparation method can be used in the present invention.
  • the method of culturing mammalian-derived ES cells or iPS cells on a biosynthetic basement membrane (sBM) substrate is not particularly limited.
  • undifferentiated ES cells or iPS cells are dissociated with trypsin, seeded on a biosynthetic basement membrane (sBM) substrate, and grown in a differentiation medium.
  • sBM biosynthetic basement membrane
  • differentiation can be induced into endoderm cells such as liver cells and pancreatic cells.
  • ITS insulin, transferrin, and sodium selenite
  • cochlear fetal albumin activin A and bFGF
  • ITS insulin, transferrin, and Differentiation into hepatic cells can be induced by culturing in the presence of sodium selenite
  • HGF dexamethasone
  • Oncostatin M Oncostatin M.
  • human-derived ES cells or iPS cells are cultured in a medium containing activin A, LY294002, sodium butyrate, HGF, dexamethasone, sputum, and oncostatin M, and then cultured in a medium excluding the above-mentioned reagents. Differentiation into cells can be performed.
  • ES cells or iPS cells were cultured in the presence of ITS (insulin, transferrin, and sodium selenite), fetal bovine albumin, activin A and bFGF, then in the presence of retinoic acid, By incubating in the presence of ITS (insulin, transferrin, and sodium selenite), cochlear fetal albumin, nicotinamide, and glucagon-like peptide-1 (GLP1), differentiation into pancreatic cells can be induced.
  • ITS insulin, transferrin, and sodium selenite
  • GLP1 glucagon-like peptide-1
  • ES cells or iPS cells on a biosynthetic basement membrane (sBM) substrate according to the present invention, from ES cells or iPS cells, progenitor cells of undifferentiated endoderm, immature endoderm-derived organs. Differentiation can be induced into cells or mature cells of endoderm-derived organs. Examples of endoderm-derived organs include, but are not limited to, pancreas and liver.
  • the differentiation from ES cells to endoderm cells can be confirmed by measuring the expression level of a marker specific to endoderm.
  • the presence of a test substance is induced when differentiation is induced from ES cells or iPS cells to endoderm cells by culturing ES cells derived from mammals on a biosynthetic basement membrane (sBM) substrate.
  • ES cells or iPS cells were cultured under the condition, and when ES cells or iPS cells were cultured in the absence of the test substance, the degree of differentiation induction into endoderm cells and the ES cells were cultured in the presence of the test substance
  • a method of screening a substance that promotes or inhibits differentiation induction from ES cells or iPS cells to endoderm cells, comprising comparing the degree of differentiation induction into endoderm cells in some cases is provided.
  • a growth factor or a low molecular weight compound can be used. At this time, it is possible to measure the degree of differentiation induction into endoderm cells using the expression level of the marker expressed in the endoderm as an index.
  • Example 1 (experimental method) (1) ES cell line A mouse ES cell line SK7 having a Pdx1 promoter-inducible GFP reporter transgene was established by culturing blastocysts obtained from transgenic mice homozygous for the Pdx1 / GFP gene (Shiraki N, Yoshida T, Araki K, et al. Guided differentiation of embryonic stem cells into Pdx1-expressing regional-specific definitive endoderm. Stem Cells. 2008; 26: 874-885).
  • SK7 ES cell line is 1000 units / ml leukemia inhibitory factor (LIF; Chemicon), 15% knockout serum replacement (KSR; Gibco), 1% fetal bovine serum (FBS; Hyclone), 100 ⁇ M non-essential amino acids (NEAA; Invitrogen) , 2 mM L-glutamine (L-Gln; Invitrogen), 1 mM sodium pyruvate (Invitrogen), 50 units / ml penicillin and 50 ⁇ g / ml streptomycin (PS; Invitrogen) and 100 ⁇ M ⁇ -mercaptoethanol ( ⁇ -ME; Sigma ) Supplemented in Glasgow minimal essential medium (Invitrogen) on mouse embryo fibroblast (MEF) feeders.
  • LIF leukemia inhibitory factor
  • KSR knockout serum replacement
  • FBS Hyclone
  • NEAA non-essential amino acids
  • L-Gln L-glutamine
  • PS 50 ⁇ g / m
  • Human ES cells (KhES-1 and KhES-3) (Suemori H, Yasuchika K, Hasegawa K, et al. Efficient establishment of human embryonic stem cell lines and long-term maintenance with stable karyotype by clinical bulk passage.Biochem Biophys Res Commun 2006; 345: 926-932) was provided by Dr. N. Nakatsuji and Dr. H. Suemori (Kyoto University) and used according to the Japanese government's guidelines for human ES cells. Undifferentiated human ES cells were maintained under 3% CO 2 on the MEF feeder layer in DMEM / F12 (Sigma) supplemented with 20% KSR, L-Gln, NEAA and ⁇ -ME.
  • feeder cells were treated by treating human ES cell colonies with 0.25% trypsin and 0.1 mg / ml collagenase IV in PBS containing 20% KSR and 1 mM CaCl 2 for 5 minutes at 37 ° C.
  • the ES cell mass was dissociated into small pieces (5-20 cells) by detaching from the layers, adding medium and gently pipetting several times.
  • Recombinant human activin-A (R & D Systems), 20 ng / ml; Recombinant human bFGF (Peprotech), 50 ng / ml; Recombinant human hepatocyte growth factor (HGF, Peprotech), 10 ng / ml; Dexamethasone (Dex, Sigma), 1 ⁇ M; Recombinant human oncostatin M (OsM, Sigma), 10 ng / ml; Sodium butyrate (Na-Bu, Sigma-Aldrich), 1 mM; Y-27632 (Rock inhibitor, Wako), 10 ⁇ M; Nicotinamide (NA, Sigma-Aldrich), 10 mM; Glucagon-like peptide 1 (GLP-1, Sigma-Aldrich), 10 nM.
  • Recombinant human activin-A (R & D Systems), 20 ng / ml; Recombinant human bFGF (Peprotech), 50 ng /
  • sBM Biosynthetic Basement Membrane Culture Substrate
  • the sBM substrate was prepared on a 6-well culture insert having a PET porous membrane having a pore diameter of 3 ⁇ m (BD, # 3091).
  • Fibrous collagen matrix designated “fib” (a stiff matrix of type I collagen fibers) was first prepared on a porous membrane (Hosokawa T, Betsuyaku T, Nishimura M, et al. Differentiation of tracheal basal cells to ciliated). cells and tissue reconstruction on the synthesized basement membrane substratum in vitro. Connect Tissue Res. 2007; 48: 9-18).
  • the fibrous collagen matrix (fib) is then treated with oligo-N-acetylglucosamine (oligo-GlcNAc) ligand covalently linked to styrene-maleic anhydride hydrophobic copolymer (MAST) in DMEM medium for at least 1 day. It was applied at a concentration of 10-20 ⁇ g / ml (Mochitate, K .: Method of preparing basement membrane, method of constructing basement membrane specimen, reconstituted artificial tissue using the basement membrane specimen and process for producing the same. US Patent No. 7,399,634).
  • MAST-GlcNAc excess MAST-GlcNAc ligand (molecules temporarily adsorbed to collagen fibers or still free) was rinsed with fresh DMEM for several hours.
  • rLN-10 cells were seeded on a collagen fiber matrix (fib) coated with MAST-GlcNAc at a cell volume of 9.6 ⁇ 10 6 cells per 6-well type fib, and 1% FBS and 0.2 mM ascorbic acid- The cells were cultured in DMEM containing 2-phosphate for 2 weeks.
  • the rLN-10 cell layer was removed by treatment with D-PBS (-) solution containing 50 mM NH 4 OH, 0.1% Triton X-100, and protease inhibitor cocktail (Hosokawa T, Betsuyaku T, Nishimura M, et al. Differentiation of tracheal basal cells to ciliated cells and tissue reconstruction on the synthesized basement membrane substratum in vitro. Connect Tissue Res. 2007; 48: 9-18), reconstituted dense layer structure of human laminin-511 isoform ( lamina densa) was exposed without hurting.
  • the de novo synthesized basement membrane (sBM) culture substrate was stored frozen at ⁇ 75 ° C. until use in a state of being immersed in a storage solution.
  • ES cells were seeded in advance with M15 cells.
  • a 24-well or 6-well culture plate (Nunc) was seeded at a count of 5,000 or 20,000 cells per well, and the cells consisted of activin A (20 ng / ml) and bFGF (50 ng / ml), 10% FBS and The cells were cultured in a differentiation medium supplemented with 4,500 mg / L glucose.
  • activin A and bFGF were removed from ES cells, and HGF (10 ng / ml), Dex was removed from day 4 to day 24.
  • ES cells were treated with Activin A (20 ng / ml by day 13).
  • bFGF 50 ng / ml supplemented with medium containing 10% FBS, then cut into ITS medium, 1,000 mg / L glucose, 10 mM NA, and 10 nM GLP-1. It was replaced.
  • KhES-1 or KhES-3 cells are seeded at a cell number of 20,000 or 80,000 per well in a 24-well or 6-well culture plate previously seeded with M15 cells to form a cell layer.
  • ES cells were cultured in differentiation medium (10% KSR, 4,500 mg / L glucose, NEAA, L-Gln, penicillin and DMEM supplemented with streptomycin and 2-ME) until day 20.
  • Activin A (20 ng / ml) and LY294002 (10 ⁇ M) ⁇ were added from day 0 to day 10 of differentiation.
  • Na-Bu (1 mM), HGF (10 ng / ml), Dex (1 ⁇ M) and OsM (1 ⁇ M) were added from day 0 to day 10. The medium was changed every 2 days with fresh differentiation medium supplemented with growth factors.
  • ES cells grown on MEF were dissociated and seeded at a cell volume of 10,000 per sBM substrate.
  • ES cells were treated with ITS, fetal bovine albumin (Albumax II, 2.5 mg / ml), activin A (20 ng / ml) and bFGF (50 ng / ml) and 4,500 mg / L glucose.
  • ES cells Culture from 0 to 8 days in differentiation medium supplemented with ITS, HGF (10 ng / ml), Dex (1 ⁇ M), OsM (10 ng / ml), 10% KSR and 2,000 The medium was switched to a medium supplemented with mg / L glucose and cultured until day 24.
  • KhES-1 or KhES-3 cells were pretreated with Y-27632 (a powerful Rock inhibitor) for 12 hours. Thereafter, ES cells were dissociated using 0.25% trypsin-EDTA and seeded at a cell volume of 100,000 per sBM substrate.
  • ES cells were cultured in differentiation medium (DMEM supplemented with 10% KSR, 4,500 mg / L glucose, NEAA, L-Gln, penicillin and streptomycin and 2-ME) until day 40.
  • differentiation medium DMEM supplemented with 10% KSR, 4,500 mg / L glucose, NEAA, L-Gln, penicillin and streptomycin and 2-ME
  • Activin A (20 ng / ml) and LY294002 (10 ⁇ M) were added from day 0 to day 10 of differentiation.
  • HGF (10 ng / ml)
  • Dex (1 ⁇ M) and OsM (1 ⁇ M) were added from day 0 to day 10.
  • the medium was changed every 2 days with fresh differentiation medium supplemented with growth factors.
  • ES cells were treated with ITS, fetal bovine albumin, activin A (20 ng / ml) from day 0 to day 10.
  • bFGF 50 ng / ml
  • 1 ⁇ M retinoic acid was added from day 10 to day 13, and from day 13 to day 28, ITS,
  • the medium was switched to a medium supplemented with 10 mM NA, 10 nM GLP1, and 1,000 mg / L glucose.
  • differentiation-inducing cells on the sBM substrate up to day 15 were dissociated with 0.25% trypsin, and two-thirds of the dissociated cells were replated on fresh sBM substrate. After the subculture, the same medium as that from day 13 to day 28 was used. Ten days after passage (that is, day 25), the cultured cells were collected with 0.25% trypsin and used for analysis of differentiation.
  • Biotin-conjugated anti-E-cadherin monoclonal antibody (mAb) ECCD2 (Shirayoshi Y, Nose A, Iwasaki K, et al. N-linked oligosaccharides are not involved in the function of a cell-cell binding glycoprotein E-cadherin. Cell Struct Funct. 1986; 11: 245-252) or phycoerythrin (PE) -conjugated anti-Cxcr4 monoclonal antibody (mAb) 2B11 (BD Biosciences Pharmingen). Stained cells were analyzed with FACS Canto (BD) or collected with FACS Aria (BD). Data was recorded with the BD FACS Diva Software program (BD) and analyzed using the Flowjo program (Tree Star).
  • PCR conditions for each cycle Denaturation at 96 ° C. for 30 seconds; annealing at 60 ° C. for 2 seconds; and extension at 72 ° C. for 45 seconds;
  • RT-PCR products were separated by 5% native polyacrylamide gel electrophoresis, stained with SYBR Green I (Molecular Probes), and visualized with Gel Logic 200 I Imaging System (Kodak).
  • Real-time PCR conditions are as follows. Denaturation at 95 ° C. for 15 seconds, 60 ° C. for 60 seconds annealing and extension up to 40 cycles. The amount of each target mRNA displayed in arbitrary units was measured by the standard curve method.
  • Kidney capsule transplantation On the 25th day, the differentiated cells on the sBM substrate were lysed with 0.25% trypsin, and the collected cells were further cultured in an MPC-coated 24-well plate (Nunc) for another day. The cell concentration was 5 ⁇ 10 5 cells / well. The next day, floating cells were collected by centrifugation and suspended in a 2.1 mg / ml collagen solution at a concentration of 5 ⁇ 10 5 cells / 10 ⁇ l.
  • the collagen solution was prepared from Cellmatrix (registered trademark) Type IA collagen kit (Nitta Gelatin, Japan) according to the protocol.
  • mice 5 ⁇ 10 5 cells suspended in 10 ⁇ l of gel were injected under the kidney capsule of CB-17 / Icr-scid / scid Jcl mice (CLEA-Japan, Japan) using an insulin syringe (29G, BD). .
  • the transplanted mice were killed. Transplants were collected from kidneys, fixed with 4% PFA, and subjected to immunohistochemical analysis.
  • ES cells grown on rLN10-sBM substrate were suitable for definitive endoderm differentiation.
  • the present inventors established a co-culture method that induces mouse and human ES cells to the liver lineage using the mesoderm-derived cell line M15.
  • FIG. 1 is a schematic diagram showing that ES cells cultured on the M15 feeder cell layer can be directed to the liver and pancreas lineage depending on the culture conditions, as already reported (Non-Patent Documents 8 and 9).
  • FIG. 2A shows a schematic diagram of the experimental design.
  • the substrate was placed in a 6-well culture plate, and ES cells were seeded on the substrate.
  • M15 cells were also seeded on another culture plate and ES cells were seeded directly on M15 monolayers as previously reported.
  • activin A and bFGF were also added to ES cell cultures on rLN10-sBM substrate. Differentiation of ES cells into E-cadherin + / Cxcr4 + definitive endoderm cells was quantified by flow cytometry. When assayed on day 8, 27.6% of all ES cell cultures grown on sBM substrate were E-cadherin + / Cxcr4 + definitive endoderm cells. On the other hand, 50.9% of all ES cell cultures grown on the M15 feeder layer were definitive endoderm cells (FIG. 2B).
  • FIG. 4A The effect of the addition of sodium butyrate (FIGS. 4A, B) (FIGS. 4A, B) was tested on human ES cell lines khES-1 and khES-3 cultured on M15.
  • the expression of Alb1 transcripts detected by real-time PCR was increased by adding sodium butyrate to khES-1 and khES-3 cells (FIG. 4A).
  • the ability of sodium butyrate to differentiate into the liver was similarly detected when cultured on an rLN10-sBM substrate, and increases in the expression levels of Afp and Alb1 were confirmed by RT-PCR (FIG. 4B).
  • the ability of the sBM substrate to differentiate ES cells into the liver lineage suggests that it plays a role as a solid environment of extracellular matrix structure suitable for differentiation into definitive endoderm lineage.
  • Pdx1 / GFP expressing cells After 15 days of induction, Pdx1 / GFP expressing cells began to aggregate as a three-dimensional cell mass. On day 28, Pdx1 / GFP expression was still observed in the cell mass of differentiated cells. Pdx1 / GFP positive cells were analyzed by flow cytometry. The cell ratio was 8.12% of all ES cells on day 15 (FIG. 7). Expression of the mature pancreatic marker gene was analyzed using RT-PCR cultures (FIG. 6A). Ins1 (insulin 1) transcript expression became detectable on day 28 in ES cells cultured on sBM substrate, but not in cells grown on M15 feeders (FIG. 6A).
  • the rLN10-sBM substrate was found to help ES cells differentiate into the endocrine lineage of the pancreas containing insulin-expressing ⁇ cells. Differentiated ES cells still expressed some markers of immature endocrine pancreas.
  • Mouse iPS cells grown on the sBM culture substrate were also able to differentiate into pancreas.
  • Mouse iPS cells into which four factors (Klf4, Sox2, Oct3 / 4 and c-myc) have been introduced (Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature. 2007; 448: 313-317 ) was also tested to see if the sBM substrate was effective in inducing cells into the pancreatic lineage (FIG. 6C).
  • Pdx1-expressing cells could be derived from mouse iPS cells cultured on sBM substrate by day 16 and insulin-expressing cells could be induced by day 28.
  • the similar phenomenon of appearance of cells expressing Pdx1 and Ins1 from differentiating iPS cells suggests that the properties of mouse iPS cells and SK7ES cells on rLN10-sBM substrate are similar.
  • Differentiated ES cells grown for 15 days on rLN10-sBM substrate were dissociated with 0.25% trypsin, seeded again on fresh sBM substrate, and cultured until day 25.
  • the percentage of Pdx1 / GFP expressing cells increased from 8.12% on the 15th day to 13.5% on the 25th day.
  • the sBM substrate has been found to be useful for amplifying the proportion of Pdx1-expressing cells derived from mouse ES cells and iPS cells.
  • Mouse iPS cell-derived definitive endoderm cells grown on the sBM substrate were able to advance differentiation into the pancreatic lineage under the mouse kidney capsule.
  • transplantation of SCID mice under the renal capsule induces maturation of immature pancreatic primitive cells (FIG. 8).
  • FIG. 8 In order to confirm whether iPS cells differentiated on the sBM substrate were capable of differentiating into pancreatic lineages, further transplantation experiments were performed on the cells in vivo.
  • mouse iPS cells differentiated on sBM substrate for 15 days were collected, seeded again on fresh sBM substrate, and cultured for another 10 days.
  • FIG. 8 shows that insulin (Ins)-or somatostatin (SS) -positive endocrine cells, or DBA-positive duct cells are frequently found. Although amylase (Amy) positive cells were also observed, the frequency was low.
  • the sBM substrate used in the present invention is an excess of human laminin-511 secreted by recombinant human laminin-511 (laminin ⁇ 5, ⁇ 1 and ⁇ 1) in HEK293 cells and other major basement membrane components on fib coated with MAST-GlcNAc. It is constructed by accumulating in In this example, rLN10 cells were used. Using this rLN10-sBM, ES cells or iPS could be induced in the liver and pancreas strains. The efficiency of differentiation was high, and the obtained differentiated cells could be further differentiated into mature cells (endocrine, exocrine and ductal cells of the pancreas).
  • the primers are as follows.
  • hGAPDH-U CGAGATCCCTCCAAAATCAA;
  • SEQ ID NO: 45 hGAPDH-D, CATGAGTCCTTCCACGATACCAA;
  • SEQ ID NO: 46 hOct3 / 4-U, AGGTGTGGGGGATTCCCCCAT;
  • SEQ ID NO: 47 hOct3 / 4-D, GCGATGTGGCTGATCTGCTGC;
  • SEQ ID NO: 48 hFoxa2-U, GCAGATACCTCCTACTACCA;
  • SEQ ID NO: 49 hFoxa2-D, GAAGCAGGAGTCTACACAGT;
  • SEQ ID NO: 50 hPdx1-U, GGATGAAGTCTACCAAAGCTCACGC;
  • SEQ ID NO: 51 hPdx1-D, CCAGATCTTGATGTGTCTCTCGGTC;
  • SEQ ID NO: 52
  • Example 3 Induction of differentiation of human ES cells into hepatocytes on sBM The khES3 strain was seeded on sBM, and the endoderm differentiation was started by switching to the differentiation medium from the next day. The results are shown in FIG. Differentiation of Sox17-positive endoderm cells was induced by culturing in RPMI1640 medium containing Activin 100ng / ml and B27 for 10 days. From the 10th day of culture, the cells were cultured in a serum-free medium containing Dex, HGF, DMSO, and OsM, and the medium was changed every other day.
  • AFP1-positive immature hepatocytes were induced to differentiate, and on day 30, ALBUMIN-positive hepatocytes were induced. Furthermore, in an indocyanine green uptake experiment to evaluate liver function, hepatocytes that took up ICG were confirmed after 30 minutes of treatment. Moreover, the induction effect of the drug metabolizing enzyme CYP3A4 was confirmed by adding rifampicin for 2 days.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • General Engineering & Computer Science (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Toxicology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Disclosed is a novel method for inducing the differentiation of an ES cell or an iPS cell, which can induce the differentiation of an ES cell or an iPS cell into an endoderm system without requiring the use of any supporting cell. Specifically disclosed is a method for inducing the differentiation of an ES cell or an iPS cell into a pancreatic or hepatic cell, which comprises culturing a mammal-derived ES cell or iPS cell on a biosynthetic basal membrane culture substrate in the presence of a growth factor.

Description

細胞の分化誘導方法Cell differentiation induction method
 本発明は、ES細胞及びiPS細胞の分化誘導方法に関する。より詳細には、本発明は、支持細胞を使用することなく生合成基底膜培養基質を用いてES細胞又はiPS細胞を内胚葉へと分化誘導する方法に関する。 The present invention relates to a method for inducing differentiation of ES cells and iPS cells. More specifically, the present invention relates to a method for inducing differentiation of ES cells or iPS cells into endoderm using a biosynthetic basement membrane culture substrate without using supporting cells.
 胚性幹(ES)細胞は、胚盤胞の内部細胞塊に由来する多能性幹細胞である。インビトロ手法では、胚様体を形成して、肝臓再生に必要な誘導性微小環境を模倣するか(非特許文献1及び2)、肝細胞分化に必須な特異的増殖因子及びサイトカインでの処理を行っている(非特許文献3)。ES細胞を胚性間葉系細胞と一緒に培養すると、ES細胞は肝系統に向かうことが示されている(非特許文献4から6)。ES細胞由来肝細胞のインビトロでの作成は、BMP4を用いて報告されている(非特許文献7)。 Embryonic stem (ES) cells are pluripotent stem cells derived from the inner cell mass of blastocysts. In in vitro methods, embryoid bodies are formed to mimic the inducible microenvironment necessary for liver regeneration (Non-Patent Documents 1 and 2), or treatment with specific growth factors and cytokines essential for hepatocyte differentiation is performed. (Non-Patent Document 3). It has been shown that when ES cells are cultured together with embryonic mesenchymal cells, ES cells go to the liver lineage (Non-Patent Documents 4 to 6). Production of ES cell-derived hepatocytes in vitro has been reported using BMP4 (Non-patent Document 7).
 本発明者らは、支持細胞を用いる方法を開発し、平面培養によりES細胞から胚性内胚葉性の呼吸器・消化器官への高効率分化誘導技術を確立した(特許文献1及び2、並びに非特許文献8)。M15細胞のプロトコールを用いることによって、ES細胞は、インビボでの初期胚誘導現象に類似した態様で、インビトロで中内胚葉、胚体内胚葉、及び最終の領域特異的な胚体内胚葉由来の器官に順番に誘導される(非特許文献9)。M15フィーダーも、3つの胚葉(即ち、神経外胚葉、中胚葉、及び胚体内胚葉)に属するES細胞由来の系統特異的な細胞種を作成すための有用な道具である(非特許文献10)。分化したES細胞は、ERKシグナル伝達カスケードのFGF刺激を受け、自己再生から系統への拘束へと転換する。その後、アクチビン及び/又はp38 MAPKが、分岐を中内胚葉系列に誘導する。後で、アクチビンは、中内胚葉の分岐を胚体内胚葉に誘導する。胚体内胚葉の樹立後、肝細胞又は膵細胞への領域特異化が、培養条件を修正することによって操作することができる。 The present inventors have developed a method using feeder cells, and established a high-efficiency differentiation induction technique from ES cells to embryonic endoderm respiratory and digestive organs by planar culture ( Patent Documents 1 and 2, and Non-patent document 8). By using the M15 cell protocol, ES cells are transformed into mesendoderm, definitive endoderm, and final region-specific definitive endoderm-derived organs in vitro in a manner similar to early embryonic induction in vivo. They are guided in order (Non-Patent Document 9). The M15 feeder is also a useful tool for creating strain-specific cell types derived from ES cells belonging to three germ layers (ie, neuroectodermal, mesoderm, and definitive endoderm) (Non-patent Document 10). . Differentiated ES cells undergo FGF stimulation of the ERK signaling cascade and switch from self-renewal to lineage restriction. Activin and / or p38pMAPK then induce branching into the mesendoderm lineage. Later, activin induces mesendoderm branching into the definitive endoderm. After establishment of definitive endoderm, region specification to hepatocytes or pancreatic cells can be manipulated by modifying the culture conditions.
 領域特異的な胚体内胚葉へのこの最終段階の分化のみが、M15細胞との直接の接触を必要とすることも、培養におけるトランスフィルターアッセイで示された(非特許文献9)。アルデヒドで固定したM15細胞層であっても、膵分化の誘導能を保持することが示されたため(非特許文献9)、M15細胞層周囲に沈着した細胞外マトリックス(基底膜構成成分)の役割は、胚体内胚葉の領域特異的系統への分化を案内する上で役割を担っているものと考えられた。しかしながら、これらの方法は、生きた支持細胞を利用する方法であり、将来ヒトへの応用を考える上では無細胞の系による方法を開発することが望ましい。 It has also been shown in culture transfilter assays that only this final stage of differentiation into region-specific definitive endoderm requires direct contact with M15 cells (Non-patent Document 9). Even the M15 cell layer fixed with aldehyde has been shown to retain the ability to induce pancreatic differentiation (Non-Patent Document 9), so the role of the extracellular matrix (basement membrane component) deposited around the M15 cell layer Was thought to play a role in guiding the differentiation of definitive endoderm into region-specific strains. However, these methods are methods using living support cells, and it is desirable to develop a method using a cell-free system in consideration of future application to humans.
 一方、フィーダー細胞を使用しない代替の培養モデルを確立することは、肝分化の分子解析のために非常に有用である。以前に、本発明者らは、不死化した2型肺胞上皮(SV40-T2)細胞をMatrigelと一緒にインビトロで共培養することによって細胞直下に基底膜構造体を形成する方法(非特許文献11)、及び、その後界面活性剤とアルカリ溶液による穏和な処理でSV40-T2細胞のみを除き、細胞直下に形成された基底膜構造体に損傷を与えること無く露出させることで、新奇な基底膜培養基質(sBM substratum:synthesized Basement Membrane substratum)を調製する方法、更には、この基底膜培養基質上で気管上皮基底細胞を培養すると線毛細胞に最終分化することを報告している(非特許文献12)。 On the other hand, establishing an alternative culture model that does not use feeder cells is very useful for molecular analysis of liver differentiation. Previously, the present inventors have formed a basement membrane structure directly under a cell by co-culturing immortalized type 2 alveolar epithelial (SV40-T2) cells together with Matrigel in vitro (Non-Patent Document). 11) And after that, only the SV40-T2 cells are removed by mild treatment with a surfactant and an alkaline solution, and the basement membrane structure formed immediately under the cells is exposed without damaging it. A method for preparing a culture substrate (sBM substratum: synthesized Basement Membrane substratum) has been reported, and further, when tracheal epithelial basal cells are cultured on this basement membrane culture substrate, terminal differentiation into ciliated cells has been reported (non-patent literature). 12).
WO2006/126574号公報、WO2006 / 126574, WO2008/149807号公報WO2008 / 149807
 本発明は、支持細胞を使用することなくES細胞又はiPS細胞を内胚葉系へと分化誘導することを可能とするような新奇なES細胞又はiPS細胞の分化誘導方法を提供することを解決すべき課題とした。 The present invention solves the problem of providing a novel ES cell or iPS cell differentiation induction method that enables differentiation induction of ES cells or iPS cells into an endoderm system without using feeder cells. It was a problem to be solved.
 本発明者らは上記課題を解決するために鋭意検討した結果、ES細胞又はiPS細胞を生合成基底膜培養基質上で培養することによって、支持細胞を使用することなく、内胚葉系へと分化誘導できることを見出した。即ち、本発明では、生合成基底膜培養基質(sBM(培養)基質)を用いて、培地を改変することで、ES細胞は、肝臓系又は膵臓系に効率的かつ選択的に分化誘導することができた。同様に、iPS細胞も、sBM基質上で培養することにより、ES細胞と同じプルトコールを用いて膵細胞に誘導することができた。本発明は、これらの知見に基づいて完成したものである。 As a result of intensive studies to solve the above problems, the present inventors have cultured ES cells or iPS cells on a biosynthetic basement membrane culture substrate to differentiate into an endoderm system without using supporting cells. I found that it can be guided. That is, in the present invention, the ES cells are induced to differentiate efficiently and selectively into the liver system or pancreatic system by modifying the medium using a biosynthetic basement membrane culture substrate (sBM (culture) substrate). I was able to. Similarly, iPS cells could also be induced into pancreatic cells using the same plutocol as ES cells by culturing on sBM substrate. The present invention has been completed based on these findings.
 即ち、本発明によれば、以下の発明が提供される。
(1) 生合成基底膜培養基質上で哺乳動物由来のES細胞又はiPS細胞を増殖因子の存在下で培養することを含む、ES細胞又はiPS細胞から膵臓系又は肝臓系細胞へと分化誘導する方法。
(2) 生合成基底膜培養基質が、支持体上で基底膜形成能を有する細胞を培養することにより調製された生合成基底膜培養基質である、(1)に記載の方法。
(3) 生合成基底膜培養基質が、糖鎖を備えた支持体上で基底膜形成能を有する細胞を培養することにより調製された生合成基底膜培養基質である、(1)又は(2)に記載の方法。
(4) 糖鎖がβ-D-グルコピラノース非還元末端又は2-アセトアミド-2-デオキシ-β-D-グルコピラノース非還元末端をもつ糖鎖である、(1)から(3)の何れかに記載の方法。
That is, according to the present invention, the following inventions are provided.
(1) Inducing differentiation from ES cells or iPS cells into pancreatic or liver cells, including culturing mammalian-derived ES cells or iPS cells in the presence of growth factors on a biosynthetic basement membrane culture substrate Method.
(2) The method according to (1), wherein the biosynthetic basement membrane culture substrate is a biosynthetic basement membrane culture substrate prepared by culturing cells having a basement membrane-forming ability on a support.
(3) The biosynthetic basement membrane culture substrate is a biosynthetic basement membrane culture substrate prepared by culturing cells having the ability to form a basement membrane on a support provided with a sugar chain (1) or (2 ) Method.
(4) Any one of (1) to (3), wherein the sugar chain is a sugar chain having a β-D-glucopyranose non-reducing end or a 2-acetamido-2-deoxy-β-D-glucopyranose non-reducing end The method described in 1.
(5) 生合成基底膜培養基質が、ヒトラミニン-511アイソフォームの基底膜緻密層構造体(lamina densa)からなるものである、(1)から(4)の何れかに記載の方法。
(6) コラーゲン支持体に、疎水性コポリマーに共有結合した糖鎖を塗布し、次いで、基底膜形成能を有する細胞を播種して培養することにより生合成される基底膜を生合成基底膜培養基質として使用する、(1)から(5)の何れかに記載の方法。
(7) 基底膜形成能を有する細胞が、組み換えラミニン-511(ラミニンα5, β1 及びγ1)を過剰発現する細胞である、(2)から(6)の何れかに記載の方法。
(8) 哺乳動物由来のES細胞又はiPS細胞が、マウス又はヒト由来のES細胞又はiPS細胞である、(1)から(7)の何れかに記載の方法。
(5) The method according to any one of (1) to (4), wherein the biosynthetic basement membrane culture substrate comprises a human laminin-511 isoform basement membrane dense layer structure (lamina densa).
(6) Applying a sugar chain covalently bonded to a hydrophobic copolymer to a collagen support, and then seeding and culturing cells having the ability to form a basement membrane to culture a basement membrane that is biosynthesized The method according to any one of (1) to (5), wherein the method is used as a quality.
(7) The method according to any one of (2) to (6), wherein the cell having the ability to form a basement membrane is a cell overexpressing recombinant laminin-511 (laminin α5, β1 and γ1).
(8) The method according to any one of (1) to (7), wherein the mammal-derived ES cell or iPS cell is a mouse or human-derived ES cell or iPS cell.
(9) 生合成基底膜培養基質上でマウス由来のES細胞を又はiPS細胞を、ITS(インスリン、トランスフェリン、及び亜セレン酸ナトリウム), ウシ胎仔アルブミン、アクチビンA及びbFGFの存在下で培養し、次いで、ITS(インスリン、トランスフェリン、及び亜セレン酸ナトリウム), HGF(hepatocyte growth factor/肝細胞増殖因子), デキサメタゾン, 及びオンコスタチンM の存在下で培養することにより肝臓系細胞へと分化誘導を行う、(1)から(8)の何れかに記載の方法。
(10) 生合成基底膜培養基質上でヒト由来のES細胞を又はiPS細胞を、アクチビンA、LY294002(ホスファチジルイノシトール3キナーゼ(PI 3-kinase)阻害剤)、酪酸ナトリウム、HGF、デキサメタゾン, 及びオンコスタチンMを含む培地で培養した後に、上記試薬を除いた培地で培養することにより肝臓系細胞への分化誘導を行う、(1)から(9)の何れかに記載の方法。
(9) A mouse-derived ES cell or iPS cell is cultured on a biosynthetic basement membrane culture substrate in the presence of ITS (insulin, transferrin, and sodium selenite), fetal bovine albumin, activin A, and bFGF. Next, differentiation is induced into hepatic cells by culturing in the presence of ITS (insulin, transferrin, and sodium selenite), HGF (hepatocyte growth factor), dexamethasone, and oncostatin M. The method according to any one of (1) to (8).
(10) Human-derived ES cells or iPS cells on a biosynthetic basement membrane culture substrate, activin A, LY294002 (phosphatidylinositol 3 kinase (PI 3-kinase) inhibitor), sodium butyrate, HGF, dexamethasone, and onco The method according to any one of (1) to (9), wherein the differentiation induction into liver cells is performed by culturing in a medium containing statin M and then culturing in a medium excluding the reagent.
(11) 生合成基底膜培養基質上でES細胞を又はiPS細胞を、ITS(インスリン、トランスフェリン、及び亜セレン酸ナトリウム), ウシ胎仔アルブミン、アクチビンA及びbFGF(basic fibroblast growth factor/塩基性線維芽細胞増殖因子)の存在下で培養し、次いでレチノイン酸の存在下で培養し、その後、ITS(インスリン、トランスフェリン、及び亜セレン酸ナトリウム),ニコチンアミド, グルカゴン様ペプチド-1(GLP1)の存在下で培養することにより、膵臓系細胞への分化誘導を行う、(1)から(10)の何れかに記載の方法。
(12) ES細胞又はiPS細胞から、膵臓系又は肝臓系の未分化な前駆細胞、膵臓系又は肝臓系の未熟な細胞、又は膵臓系又は肝臓系の成熟細胞の何れかへと分化誘導する、(1)から(11)の何れかに記載の方法。
(11) ES cells or iPS cells on biosynthetic basement membrane culture substrates, ITS (insulin, transferrin, and sodium selenite), fetal bovine albumin, activin A and bFGF (basic fibroblast growth factor / basic fibroblasts) Cultured in the presence of cell growth factor), then in the presence of retinoic acid, and then in the presence of ITS (insulin, transferrin and sodium selenite), nicotinamide, glucagon-like peptide-1 (GLP1) The method according to any one of (1) to (10), wherein differentiation induction into pancreatic cells is performed by culturing the cells.
(12) Inducing differentiation from an ES cell or iPS cell into an undifferentiated progenitor cell of the pancreas or liver system, an immature cell of the pancreas or liver system, or a mature cell of the pancreas or liver system, The method according to any one of (1) to (11).
(13) (1)から(12)の何れかに記載の方法により得られる、ES細胞又はiPS細胞から分化誘導された膵臓系又は肝臓系細胞。
(14) (1)から(12)の何れかに記載の方法によってES細胞又はiPS細胞から膵臓系又は肝臓系細胞へと分化誘導する際に、被験物質の存在下でES細胞又はiPS細胞を培養し、被験物質の非存在下でES細胞又はiPS細胞を培養した場合における膵臓系又は肝臓系細胞への分化誘導の程度と、被験物質の存在下でES細胞又はiPS細胞を培養した場合における膵臓系又は肝臓系細胞への分化誘導の程度とを比較することを含む、ES細胞又はiPS細胞から膵臓系又は肝臓系細胞へと分化誘導を促進又は阻害する物質をスクリーニングする方法。
(15) 被験物質が成長因子又は低分子化合物である、(14)に記載のスクリーニング方法。
(16) 膵臓系又は肝臓系細胞で発現するマーカーの発現量を指標として、膵臓系又は肝臓系細胞へと分化誘導の程度を測定する、(14)又は(15)に記載のスクリーニング方法。
(13) A pancreatic or liver cell obtained by differentiation from ES cells or iPS cells, obtained by the method according to any one of (1) to (12).
(14) When differentiation induction from ES cells or iPS cells into pancreatic or liver cells by the method according to any one of (1) to (12), ES cells or iPS cells are performed in the presence of a test substance. When the ES cells or iPS cells are cultured in the absence of the test substance, the degree of differentiation induction into pancreatic or liver cells and when the ES cells or iPS cells are cultured in the presence of the test substance A method for screening a substance that promotes or inhibits differentiation induction from ES cells or iPS cells into pancreatic or liver cells, comprising comparing the degree of differentiation induction into pancreatic or liver cells.
(15) The screening method according to (14), wherein the test substance is a growth factor or a low molecular compound.
(16) The screening method according to (14) or (15), wherein the degree of differentiation induction into pancreatic or liver cells is measured using the expression level of a marker expressed in pancreatic or liver cells as an index.
 ES細胞及びiPS細胞は無限に増殖できるとともに、あらゆる細胞組織に分化できる多能性を有することに特徴がある。世界的にES細胞から肝細胞および膵細胞への分化を開発しているが、機能を十分にもち成熟した肝膵細胞として認知できる細胞はいまだに得られていない。本発明では、フィーダー細胞(支持細胞)を用いない方法により、肝臓細胞及び膵臓細胞への分化誘導を制御する技術を確立することに成功した。本発明の方法は、新薬の安全性評価といった創薬の基盤研究に応用できるモデル細胞の創製、並びに再生医療の移植細胞源の創製に有用であり、特に本発明の方法によるES細胞やiPS細胞からの成熟肝細胞及び成熟膵細胞への分化誘方法は創薬・再生医療の分野において有用である。 ES cells and iPS cells are characterized in that they can proliferate indefinitely and have pluripotency capable of differentiating into any cell tissue. Although the development of differentiation from ES cells into hepatocytes and pancreatic cells has been developed worldwide, no cell that has sufficient function and can be recognized as a mature hepatic pancreatic cell has yet to be obtained. In the present invention, a technique for controlling differentiation induction into liver cells and pancreatic cells was successfully established by a method not using feeder cells (supporting cells). The method of the present invention is useful for the creation of model cells that can be applied to basic research of drug discovery such as safety evaluation of new drugs, and the creation of transplanted cell sources for regenerative medicine, and in particular, ES cells and iPS cells by the method of the present invention. The method of inducing differentiation into mature hepatocytes and mature pancreatic cells is useful in the fields of drug discovery and regenerative medicine.
図1は、M15フィーダー細胞層上におけるES細胞の肝臓又は膵臓系統への分化についての模式図である。M15細胞は、培養条件に応じてES細胞を膵臓及び肝臓の両方に分化させる能力を有している。FIG. 1 is a schematic diagram of differentiation of ES cells into liver or pancreatic lineages on the M15 feeder cell layer. M15 cells have the ability to differentiate ES cells into both pancreas and liver depending on the culture conditions. 図2は、ヒトラミニン-511(hLN-511)アイソフォーム-sBM基質で培養したES細胞が、フィーダー無しで胚体内胚葉細胞に分化できることを示す。A) 分化実験の模式図。B) sBM基質又はM15フィーダー層で分化したES細胞をフローサイトメトリーで分析した。分化マーカーのE-カドヘリン及びCxcr4 を発現した胚体内胚葉細胞(E-カドヘリン+/Cxcr4+)が、sBM 基質上の培養では27%、 M15フィーダー細胞層上での培養では50.9%で、ES細胞の培養8日目に現れた。C)リアルタイムPCR分析により、Foxa2(胚体内胚葉マーカー)の発現が、sBM基質及びM15フィーダー層で生育したES細胞に誘導されることを確認した。sBM基質で14日間分化させたES細胞は、M15上で8日間生育させた細胞とほぼ同じFoxa2の発現量を示した。Foxa2の発現は、βアクチンを用いて標準化した。ES細胞は、実験方法に記載した膵臓分化のための培養条件で分化させた。FIG. 2 shows that ES cells cultured with human laminin-511 (hLN-511) isoform-sBM substrate can differentiate into definitive endoderm cells without a feeder. A) Schematic diagram of differentiation experiment. B) ES cells differentiated with sBM substrate or M15 feeder layer were analyzed by flow cytometry. Definitive endoderm cells (E-cadherin + / Cxcr4 +) expressing the differentiation markers E-cadherin and Cxcr4 were 27% in the culture on the sBM substrate, 50.9% in the culture on the ESM15 feeder cell layer, ES Appeared on day 8 of cell culture. C) Real-time PCR analysis confirmed that Foxa2 (definitive endoderm marker) expression was induced in ES cells grown on the sBM substrate and M15 feeder layer. ES cells differentiated with sBM substrate for 14 days showed almost the same expression level of Foxa2 as cells grown on M15 for 8 days. Foxa2 expression was normalized using β-actin. ES cells were differentiated under the culture conditions for pancreatic differentiation described in the experimental method. 図3は、Afp及びAlb1の発現は、sBM基質上で培養した24日目のES細胞に誘導されることを示す。sBMで生育させたES細胞を、肝臓分化のための培養条件で分化させ、リアルタイムRT-PCRによりAfp及びAlb1の発現を測定した。遺伝子発現は、βアクチンを用いて標準化した。SBM基質上で培養したES細胞は、M15フィーダー細胞層で生育したES細胞と比較して、Afpの発現は高かったが、Alb1の発現は低かった。FIG. 3 shows that Afp and Alb1 expression is induced in 24 day ES cells cultured on sBM substrate. ES cells grown in sBM were differentiated under culture conditions for liver differentiation, and expression of Afp and Alb1 was measured by real-time RT-PCR. Gene expression was normalized using β-actin. ES cells cultured on SBM substrate had higher Afp expression but lower Alb1 expression than ES cells grown on the M15 feeder cell layer. 図4は、sBM 基質上におけるkhES-1及びkhES-3細胞の肝臓系統への分化を示す。A) M15細胞層におけるkhES-1及びkhES-3細胞の肝臓系統への分化は、酪酸ナトリウムで促進された。酪酸ナトリウムの添加により、Alb1転写物の発現量は20日目に増大した。B) sBM上での分化も酪酸ナトリウムにより同様に促進された。酪酸ナトリウムの添加により、Afp及びAlb1転写物の発現量は40日目に増大した。FIG. 4 shows the differentiation of khES-1 and khES-3 cells into liver lineages on sBM substrate. A) Differentiation of khES-1 and khES-3 cells into the liver lineage in the M15 cell layer was promoted with sodium butyrate. The addition of sodium butyrate increased the expression level of the Alb1 transcript on the 20th day. B) Differentiation on sBM was similarly promoted by sodium butyrate. With the addition of sodium butyrate, the expression level of Afp and Alb1 transcripts increased on the 40th day. 図5は、sBM基質上でPdx1/GFP発現細胞に分化したSK7 ES cellsを示す。SK7 ES細胞株は、sBM基質上に直接播種した。Pdx1/GFP発現は10日目に検出できるようになり、その後徐々に増加し、15日目に最大になった。15日目以降、Pdx1/GFP発現細胞は、密集した大きなクラスターを3次元的に形成し始めた。28日目に、強いPdx1/GFP発現が分化した細胞塊(クラスター)で観察された。FIG. 5 shows SK7 ES cells differentiated into Pdx1 / GFP expressing cells on the sBM substrate. SK7 ES cell line was seeded directly on sBM substrate. Pdx1 / GFP expression became detectable on day 10 and then gradually increased and reached a maximum on day 15. From day 15 onwards, Pdx1 / GFP-expressing cells started to form densely clustered three-dimensionally. On day 28, strong Pdx1 / GFP expression was observed in the differentiated cell mass (cluster). 図6は、細胞塊を形成する(クラスターを有する)分化中のES細胞における成熟膵マーカー遺伝子の発現を示す。A) 成熟膵内分泌及び外分泌マーカーの発現。レーン:E13.5胎児胎盤組織から抽出したRNAを陽性コントロールとした。M15: M15フィーダー上で分化したES細胞。DE d8: 8日目におけるE-カドヘリン/CXCR4を発現する胚体内胚葉細胞。d28: 28日目における分化の全ES細胞。sBM: sBM基質上で分化したES細胞; d10, d15及びd28: 分化培養中の示した日数における全ES細胞。cDNAの量は、βアクチンの発現量を用いて標準化した。インスリン1転写物は、sBM上で培養したES細胞において28日目に検出されるようになるが、M15フィーダー上のES細胞では検出されないという結果が示された。Pdx1, Pancreatic duodenum homeodomein 1; Ins1, インスリン1; Gcg, グルカゴン; Sst, ソマトスタチン; Ptf1a, pancreas specific transcription factor 1a; Amy, アミラーゼ. B) 未成熟(NeuroD1, Nkx2-2, Nkx6-1, Pax4, Pax6)及び成熟(Isl1, Glut2, IAPP)β細胞マーカーの発現。NeuroD1, neurogenic differentiation 1; Nkx2-2, NK2 transcription factor related locus 2; Nkx6-1, NK6 ホメオボックス1; Pax4, paired box gene 4; Pax6, paired box gene 6; Isl1, ISL1転写因子; Glut2, グルコーストランスポーター2型; IAPP, isletアミロイドポリペプチド.C) Pdx1 and インスリン1転写物の発現をRT-PCRで解析した。Un iPS, 未分化のiPS細胞; d16, d20 及びd28, sBM基質上の分化の培養期間。FIG. 6 shows the expression of a mature pancreatic marker gene in differentiating ES cells that form cell clusters (having clusters). A) Expression of mature pancreatic endocrine and exocrine markers. Lane: RNA extracted from E13.5 fetal placental tissue was used as a positive control. M15: ES cells differentiated on the M15 feeder. DE d8: Definitive endoderm cells expressing E-cadherin / CXCR4 on day 8 d28: Total ES cells differentiated on day 28. sBM: ES cells differentiated on sBM substrate; d10, d15 and d28: total ES cells in the indicated number of days during differentiation culture. The amount of cDNA was normalized using the expression level of β-actin. Results showed that insulin 1 transcripts were detected on day 28 in ES cells cultured on sBM but not on ES cells on M15 feeder. Pdx1, Pancreatic duodenum homeodomein 1; Ins1, insulin1; Gcg, glucagon; Sst, somatostatin; Ptf1a, pancreas specific transcription factor 1a; Amy, amylase.B) ) And expression of mature (Isl1, Glut2, IAPP) β cell markers. NeuroD1, neurogenic differentiation 1; Nkx2-2, NK2 transcription factor related locus 2; Nkx6-1, NK6 homeobox 1; Pax4, paired box gene 4; Pax6, paired box gene 6; Isl1, ISL1 Porter type 2; IAPP, islet amyloid polypeptide.C) The expression of Pdx1 and insulin 1 transcripts was analyzed by RT-PCR. Un iPS, undifferentiated iPS cells; 培養 d16, d20 and d28, 培養 sBM substrate differentiation period. 図7は、Pdx1を発現する膵原始細胞の増大を示す。A)継代前後におけるPdx1/GFP発現細胞の画像を示す。B)継代前後におけるPdx1/GFP発現細胞の細胞割合を示す。各培養における4つの別個のサンプルからの分化細胞の細胞割合をフローサイトメトリーで測定した。FIG. 7 shows an increase in pancreatic primitive cells expressing Pdx1. A) Images of Pdx1 / GFP expressing cells before and after passage are shown. B) The cell ratio of Pdx1 / GFP expressing cells before and after passage is shown. The percentage of differentiated cells from 4 separate samples in each culture was measured by flow cytometry. 図8は、sBM基質上で分化したマウスiPS細胞のインビボ分化の進行を示す。マウスiPS細胞を、sBM基質上で25日間、2回継代して、膵臓系統に分化誘導した後、回収し、SCIDマウス腎被膜に移植した。移植組織におけるインビボ分化後、sBM上で培養したiPS細胞由来細胞から回収した移植物を分析した。移植物の凍結切片を、成熟膵マーカーに対する抗体で染色し(マジェンダ)、DAPIで対比染色した(青)。Ins, 抗インスリン染色; SS, 抗ソマトスタチン; Amy, 抗アミラーゼ染色, DBA, フジマメ(Dolichos) biflorusアグルチニン。FIG. 8 shows the progression of in vivo differentiation of mouse iPS cells differentiated on sBM substrate. Mouse iPS cells were passaged twice on sBM substrate for 25 days to induce differentiation into the pancreatic lineage, and then collected and transplanted into the kidney capsule of SCID mice. After in vivo differentiation in transplanted tissues, transplants collected from iPS cell-derived cells cultured on sBM were analyzed. Frozen sections of the implants were stained with antibodies against mature pancreatic markers (magenta) and counterstained with DAPI (blue). Ins, anti-insulin staining; SS, anti-somatostatin; Amy, anti-amylase staining, DBA, Dolichos biflorus agglutinin. 図9は、sBM基質を用いたヒトiPS細胞の分化を示す。sBMを用いて、ヒトiPS細胞を8日間(d8)、20日間(d20)および30日間(d30)培養したものについてRT-PCRによる遺伝子発現解析を行った。FIG. 9 shows the differentiation of human iPS cells using sBM substrate. Using sBM, human iPS cells cultured for 8 days (d8), 20 days (d20) and 30 days (d30) were subjected to gene expression analysis by RT-PCR. 図10は、sBM基質上でのヒトES細胞の肝細胞への分化誘導を示す。khES3株をsBM上に播種して、翌日から分化培地に切り替えて内胚葉分化を開始した。FIG. 10 shows differentiation induction of human ES cells into hepatocytes on the sBM substrate. The khES3 strain was seeded on sBM, and the endoderm differentiation was started by switching to the differentiation medium from the next day.
 以下、本発明の実施の形態についてさらに詳細に説明する。
 本発明においては、生合成基底膜培養基質を用いる方法により、ES細胞又はiPS細胞から、胚性内胚葉、アルブミン陽性肝細胞、Pdx1陽性膵臓前駆細胞、インスリン陽性膵β細胞を分化誘導することができる。従来の方法では支持細胞であるM15細胞を用いる方法により、ES細胞から肝臓又は膵臓への分化誘導を行ってきたが、本発明によれば、フィーダー細胞(支持細胞)を用いることなく分化誘導が可能になった。さらに、本発明の方法は、膵前駆細胞の成熟化に有用であった。細胞をコラーゲン基質の上で培養すると、細胞が細胞外に「細胞外基質」を分泌する。この分泌した細胞外基質は細胞の種類によって異なり、またこれらの細胞外基質には種々の成長増殖因子も捕捉され、細胞の分化などに大変適した固相環境を作り上げていく。このような環境を作成したあと、細胞を表面活性剤とアルカリ溶液などで処理したのち、細胞の残骸をのぞき、基底膜を露出させたものが生合成基底膜培養基質である。
Hereinafter, embodiments of the present invention will be described in more detail.
In the present invention, by using a biosynthetic basement membrane culture substrate, differentiation of embryonic endoderm, albumin-positive hepatocytes, Pdx1-positive pancreatic progenitor cells, or insulin-positive pancreatic β cells can be induced from ES cells or iPS cells. it can. In the conventional method, differentiation from ES cells to the liver or pancreas has been induced by a method using M15 cells, which are feeder cells. However, according to the present invention, differentiation can be induced without using feeder cells (support cells). It became possible. Furthermore, the method of the present invention was useful for maturation of pancreatic progenitor cells. When cells are cultured on a collagen matrix, the cells secrete “extracellular matrix” extracellularly. The secreted extracellular matrix varies depending on the cell type, and various growth growth factors are captured by these extracellular matrixes, creating a solid phase environment that is very suitable for cell differentiation. After creating such an environment, the biosynthetic basement membrane culture substrate is obtained by treating cells with a surfactant and an alkaline solution, and then excluding cell debris and exposing the basement membrane.
 本発明は、ES細胞又はiPS細胞から膵臓系又は肝臓系細胞へと分化誘導する方法であって、生合成基底膜培養基質上で哺乳動物由来のES細胞又はiPS細胞を増殖因子の存在下で培養することを特徴とする方法である。 The present invention is a method for inducing differentiation of ES cells or iPS cells into pancreatic or liver cells, wherein the mammal-derived ES cells or iPS cells are cultured on a biosynthetic basement membrane culture substrate in the presence of a growth factor. It is a method characterized by culturing.
 本発明の分化誘導方法では、支持細胞を用いることなく生合成基底膜培養基質上においてES細胞又はiPS細胞から肝臓又は膵臓などの内胚葉に由来のする消化器の細胞を分化誘導することができる。支持細胞を用いることなく、肝細胞又は膵臓細胞を分化誘導することはこれまで報告がなく、本発明により初めて達成された。本発明では、生合成基底膜培養基質上において培養することによって、ES細胞又はiPS細胞は分化誘導しやすい状態にある。そのため、特定の成長増殖因子を添加すると、さらに分化誘導が促進される。従って、本発明の方法は、未知の分化誘導因子のスクリーニングとしても利用できる。 In the differentiation induction method of the present invention, it is possible to induce differentiation of digestive organ cells derived from endoderm such as liver or pancreas from ES cells or iPS cells on a biosynthetic basement membrane culture substrate without using supporting cells. . Inducing differentiation of hepatocytes or pancreatic cells without using feeder cells has never been reported so far and has been achieved for the first time by the present invention. In the present invention, ES cells or iPS cells are easily induced to differentiate by being cultured on a biosynthetic basement membrane culture substrate. Therefore, when a specific growth growth factor is added, differentiation induction is further promoted. Therefore, the method of the present invention can also be used as a screening for unknown differentiation-inducing factors.
 本発明で用いるES 細胞は、哺乳動物由来のES細胞であればよく、その種類などは特に限定されず、例えば、マウス、サル又はヒト由来のES細胞などを使用することができる。ES細胞としては、例えば、その分化の程度の確認を容易とするために、Pdx1遺伝子付近にレポーター遺伝子を導入した細胞を用いることができる。例えば、Pdx1座位にlacZ遺伝子を組み込んだ129/Sv由来ES細胞株R1、J1又は、Pdx1プロモーター制御下のGFPレポータートランスジーンをもつES細胞SK7株などを使用することができる。あるいは、Hnf3β内胚葉特異的エンハンサー断片制御下のmRFP1レポータートランスジーン及びPdx1プロモーター制御下のGFPレポータートランスジーンを有するES細胞PH3株を使用することもできる。 The ES sputum cell used in the present invention is not particularly limited as long as it is a mammal-derived ES cell, and for example, mouse, monkey or human-derived ES cells can be used. As the ES cell, for example, a cell having a reporter gene introduced in the vicinity of the Pdx1 gene can be used in order to facilitate confirmation of the degree of differentiation. For example, a 129 / Sv-derived ES cell line R1, J1 incorporating the lacZ gene at the Pdx1 locus, or an ES cell SK7 line having a GFP reporter transgene under the control of the Pdx1 promoter can be used. Alternatively, an ES cell PH3 strain having an mRFP1 reporter transgene under the control of a Hnf3β endoderm-specific enhancer fragment and a GFP reporter transgene under the control of a Pdx1 promoter can also be used.
 哺乳動物由来のES細胞の培養方法は常法により行うことができ、例えば、所望によりフィーダー細胞としてのマイトマイシンC処理マウス胚線維芽細胞(MEF)の存在下において、白血病阻害因子(LIF,ESGRO 1000単位/ml、Chemicon製)を添加した分化培地(10%ウシ胎児血清(FBS)、0.1mM 2-メルカプトエタノール、100μM非必須アミノ酸、2mM L-グルタミンを補充したダルベッコ改変イーグル培地(DMEM、シグマ製))で維持することができる。 Mammal-derived ES cells can be cultured by conventional methods. For example, in the presence of mitomycin C-treated mouse embryo fibroblasts (MEF) as feeder cells, leukemia inhibitory factor (LIF, ESGRO 1000 Dulbecco's modified Eagle's medium (DMEM, Sigma) supplemented with differentiation medium (10% fetal bovine serum (FBS), 0.1 mM 2-mercaptoethanol, 100 μM non-essential amino acids, 2 mM L-glutamine, unit / ml, Chemicon) )) Can be maintained.
 iPS細胞(人工多能性幹細胞:induced pluripotent stem cell)とは、体細胞を初期化することによって得られる多能性を有する細胞である。人工多能性幹細胞の作製は、京都大学の山中伸弥教授らのグループ、マサチューセッツ工科大学のルドルフ・ヤニッシュ(Rudolf Jaenisch)らのグループ、ウイスコンシン大学のジェームス・トムソン(James Thomson)らのグループ、ハーバード大学のコンラッド・ホッケドリンガー(Konrad Hochedlinger)らのグループなどを含む複数のグループが成功している。人工多能性幹細胞は、拒絶反応や倫理的問題のない理想的な多能性細胞として大きな期待を集めている。例えば、国際公開WO2007/069666号公報には、Octファミリー遺伝子、Klfファミリー遺伝子、及びMycファミリー遺伝子の遺伝子産物を含む体細胞の核初期化因子、並びにOctファミリー遺伝子、Klfファミリー遺伝子、Soxファミリー遺伝子及びMycファミリー遺伝子の遺伝子産物を含む体細胞の核初期化因子が記載されており、さらに体細胞に上記核初期化因子を接触させる工程を含む、体細胞の核初期化により誘導多能性幹細胞を製造する方法が記載されている。 IPS cells (induced pluripotent stem cells) are pluripotent cells obtained by reprogramming somatic cells. Artificial pluripotent stem cells are produced by a group of Professor Shinya Yamanaka at Kyoto University, a group of RudolfudoJaenisch et al. At Massachusetts Institute of Technology, a group of James Thomson et al. At University of Wisconsin, Harvard University Several groups have been successful, including the group by Konrad Hochedlinger et al. Artificial pluripotent stem cells are highly expected as ideal pluripotent cells without rejection and ethical problems. For example, International Publication No. WO2007 / 069666 discloses somatic cell nuclear reprogramming factors including Oct family gene, Klf family gene, and Myc family gene gene product, as well as Oct family gene, Klf family gene, Sox family gene and A somatic cell nuclear reprogramming factor containing a gene product of a Myc family gene is described, and further, a pluripotent stem cell induced by somatic cell nuclear reprogramming, comprising a step of contacting the nuclear reprogramming factor with the somatic cell. A method of manufacturing is described.
 本発明で用いるiPS細胞は、体細胞を初期化することにより製造することができる。ここで用いる体細胞の種類は特に限定されず、任意の体細胞を用いることができる。即ち、本発明で言う体細胞とは、生体を構成する細胞の内生殖細胞以外の全ての細胞を包含し、分化した体細胞でもよいし、未分化の幹細胞でもよい。体細胞の由来は、哺乳動物、鳥類、魚類、爬虫類、両生類の何れでもよく特に限定されないが、好ましくは哺乳動物(例えば、マウスなどのげっ歯類、またはヒトなどの霊長類)であり、特に好ましくはマウス又はヒトである。また、ヒトの体細胞を用いる場合、胎児、新生児又は成人の何れの体細胞を用いてもよい。 IPS cells used in the present invention can be produced by reprogramming somatic cells. The type of somatic cell used here is not particularly limited, and any somatic cell can be used. That is, the somatic cell referred to in the present invention includes all cells other than the internal germ cells of the cells constituting the living body, and may be a differentiated somatic cell or an undifferentiated stem cell. The origin of the somatic cell may be any of mammals, birds, fishes, reptiles and amphibians, but is not particularly limited, but is preferably a mammal (for example, a rodent such as a mouse or a primate such as a human). A mouse or a human is preferable. In addition, when human somatic cells are used, any fetal, neonatal or adult somatic cells may be used.
 本発明で言うiPS細胞は、所定の培養条件下(例えば、ES細胞を培養する条件下)において長期にわたって自己複製能を有し、また所定の分化誘導条件下において外胚葉、中胚葉及び内胚葉への多分化能を有する幹細胞のことを言う。また、本発明における人工多能性幹細胞はマウスなどの試験動物に移植した場合にテラトーマを形成する能力を有する幹細胞でもよい。 The iPS cells referred to in the present invention have a self-replicating ability over a long period of time under predetermined culture conditions (for example, conditions under which ES cells are cultured), and are also ectoderm, mesoderm and endoderm under predetermined differentiation-inducing conditions. This refers to stem cells that have pluripotency. The induced pluripotent stem cell in the present invention may be a stem cell capable of forming a teratoma when transplanted to a test animal such as a mouse.
 体細胞からiPS細胞を製造するためには、まず、少なくとも1種類以上の初期化遺伝子を体細胞に導入する。初期化遺伝子とは、体細胞を初期化してiPS細胞とする作用を有する初期化因子をコードする遺伝子である。初期化遺伝子の組み合わせの具体例としては、以下の組み合わせをあげることができるが、これらに限定されるものではない。
(i)Oct遺伝子、Klf遺伝子、Sox遺伝子、Myc遺伝子
(ii)Oct遺伝子、Sox遺伝子、NANOG遺伝子、LIN28遺伝子
(iii)Oct遺伝子、Klf遺伝子、Sox遺伝子、Myc遺伝子、hTERT遺伝子、SV40 large T遺伝子
(iv)Oct遺伝子、Klf遺伝子、Sox遺伝子
In order to produce iPS cells from somatic cells, first, at least one reprogramming gene is introduced into the somatic cells. The reprogramming gene is a gene encoding a reprogramming factor that has the action of reprogramming somatic cells into iPS cells. Specific examples of the combination of reprogramming genes include the following combinations, but are not limited thereto.
(I) Oct gene, Klf gene, Sox gene, Myc gene (ii) Oct gene, Sox gene, NANOG gene, LIN28 gene (iii) Oct gene, Klf gene, Sox gene, Myc gene, hTERT gene, SV40 large T gene (Iv) Oct gene, Klf gene, Sox gene
 本発明では、ES細胞又はiPS細胞を生合成基底膜(sBM)基質上で培養する。本発明で用いる生合成基底膜(sBM)基質としては、ES細胞又はiPS細胞を内胚葉系細胞へと分化誘導できるものであれば、特に限定されない。生合成基底膜(sBM)基質の具体例としては、特許第3785532号(基底膜の調製方法)、特許第3829193号(基底膜標品又は人工組織)、特許第4023597号(基底膜標品を用いた再構築人工組織及びその製造方法)、及び特開2003-093053号公報(基底膜標品の作製方法)などに記載の方法により製造されるものを挙げることができる。上記の特許公報に記載の内容は全て引用により本明細書に取り込まれるものとする。 In the present invention, ES cells or iPS cells are cultured on a biosynthetic basement membrane (sBM) substrate. The biosynthetic basement membrane (sBM) substrate used in the present invention is not particularly limited as long as it can induce differentiation of ES cells or iPS cells into endoderm cells. As specific examples of biosynthetic basement membrane (sBM) substrates, Patent No. 37553532 (basement membrane preparation method), Patent No. 3829193 (basement membrane preparation or artificial tissue), Patent No. 4023597 (basement membrane preparation) And remanufactured artificial tissue used and its production method), and those produced by the method described in JP-A-2003-093053 (method for producing a basement membrane preparation). All the contents described in the above patent publications are incorporated herein by reference.
 例えば、特許第3785532号には、基底膜形成能を有する細胞の基底面に、基底膜構成成分の集積作用を有するレセプターを局在化させることができる、β-D-グルコピラノース非還元末端又は2-アセトアミド-2-デオキシ-β-D-グルコピラノース非還元末端をもつ糖鎖を備えた支持体上で、基底膜形成能を有する細胞を培養することを特徴とする基底膜の調製方法が記載されており、当該調製方法で製造される基底膜を本発明で使用することができる。 For example, Japanese Patent No. 3785532 discloses a β-D-glucopyranose non-reducing end or a β-D-glucopyranose non-reducing end capable of localizing a receptor having an action of accumulating basement membrane components on the basal plane of a cell having basement membrane-forming ability. A method for preparing a basement membrane comprising culturing cells having a basement membrane-forming ability on a support having a sugar chain having a 2-acetamido-2-deoxy-β-D-glucopyranose non-reducing end The basement membrane described and produced by the preparation method can be used in the present invention.
 生合成基底膜(sBM)基質上で哺乳動物由来のES細胞又はiPS細胞を培養する方法は特に限定されない。例えば、未分化のES細胞又はiPS細胞をトリプシンで解離させ、生合成基底膜(sBM)基質上に播種し、分化培地中で生育させる。以下、数日間培養することにより、肝臓細胞及び膵臓細胞などの内胚葉系細胞へと分化誘導を行うことができる。 The method of culturing mammalian-derived ES cells or iPS cells on a biosynthetic basement membrane (sBM) substrate is not particularly limited. For example, undifferentiated ES cells or iPS cells are dissociated with trypsin, seeded on a biosynthetic basement membrane (sBM) substrate, and grown in a differentiation medium. Hereinafter, by culturing for several days, differentiation can be induced into endoderm cells such as liver cells and pancreatic cells.
 本発明の分化誘導方法においては、生合成基底膜(sBM)基質上においてES細胞又はiPS細胞を培養する際に、増殖因子を添加して、培養する。例えば、マウス由来のES細胞を又はiPS細胞を、ITS(インスリン、トランスフェリン、及び亜セレン酸ナトリウム), ウシ胎仔アルブミン、 アクチビンA及びbFGFの存在下で培養し、次いで、ITS(インスリン、トランスフェリン、及び亜セレン酸ナトリウム), HGF, デキサメタゾン, 及びオンコスタチンM の存在下で培養することにより肝臓系細胞へと分化誘導を行うことができる。あるいは、ヒト由来のES細胞を又はiPS細胞を、アクチビンA、LY294002、酪酸ナトリウム、HGF、デキサメタゾン, 及びオンコスタチンMを含む培地で培養した後に、上記試薬を除いた培地で培養することにより肝臓系細胞への分化誘導を行うことができる。また、ES細胞を又はiPS細胞を、ITS(インスリン、トランスフェリン、及び亜セレン酸ナトリウム),ウシ胎仔アルブミン、アクチビンA及びbFGFの存在下で培養し、次いでレチノイン酸の存在下で培養し、その後、ITS(インスリン、トランスフェリン、及び亜セレン酸ナトリウム), ウシ胎仔アルブミン、ニコチンアミド, グルカゴン様ペプチド-1(GLP1)の存在下で培養することにより、膵臓系細胞への分化誘導を行うことができる。 In the differentiation induction method of the present invention, when culturing ES cells or iPS cells on a biosynthetic basement membrane (sBM) substrate, growth factors are added and cultured. For example, mouse-derived ES cells or iPS cells are cultured in the presence of ITS (insulin, transferrin, and sodium selenite), cochlear fetal albumin, activin A and bFGF, and then ITS (insulin, transferrin, and Differentiation into hepatic cells can be induced by culturing in the presence of sodium selenite), HGF, dexamethasone,, and Oncostatin M. Alternatively, human-derived ES cells or iPS cells are cultured in a medium containing activin A, LY294002, sodium butyrate, HGF, dexamethasone, sputum, and oncostatin M, and then cultured in a medium excluding the above-mentioned reagents. Differentiation into cells can be performed. Also, ES cells or iPS cells were cultured in the presence of ITS (insulin, transferrin, and sodium selenite), fetal bovine albumin, activin A and bFGF, then in the presence of retinoic acid, By incubating in the presence of ITS (insulin, transferrin, and sodium selenite), cochlear fetal albumin, nicotinamide, and glucagon-like peptide-1 (GLP1), differentiation into pancreatic cells can be induced.
 本発明による生合成基底膜(sBM)基質上でのES細胞又はiPS細胞の分化誘導方法によれば、ES細胞又はiPS細胞から、未分化な内胚葉の前駆細胞、内胚葉由来器官の未熟な細胞、又は内胚葉由来器官の成熟細胞の何れかへと分化誘導することができる。内胚葉由来器官としては、膵臓、肝臓などが挙げられるが、これらに限定されるものではない。なお、ES細胞から内胚葉系細胞への分化は、内胚葉に特異的なマーカーの発現量を測定することにより確認することができる。 According to the method for inducing differentiation of ES cells or iPS cells on a biosynthetic basement membrane (sBM) substrate according to the present invention, from ES cells or iPS cells, progenitor cells of undifferentiated endoderm, immature endoderm-derived organs. Differentiation can be induced into cells or mature cells of endoderm-derived organs. Examples of endoderm-derived organs include, but are not limited to, pancreas and liver. The differentiation from ES cells to endoderm cells can be confirmed by measuring the expression level of a marker specific to endoderm.
 さらに本発明によれば、生合成基底膜(sBM)基質上において哺乳動物由来のES細胞を培養することによってES細胞又はiPS細胞から内胚葉系細胞へと分化誘導する際に、被験物質の存在下でES細胞又はiPS細胞を培養し、被験物質の非存在下でES細胞又はiPS細胞を培養した場合における内胚葉系細胞への分化誘導の程度と被験物質の存在下でES細胞を培養した場合における内胚葉系細胞への分化誘導の程度とを比較することを含む、ES細胞又はiPS細胞から内胚葉系細胞へと分化誘導を促進又は阻害する物質をスクリーニングする方法が提供される。被験物質としては、成長因子又は低分子化合物などを使用することができる。この際、内胚葉で発現するマーカーの発現量を指標として、内胚葉系細胞へと分化誘導の程度を測定することが可能である。 Furthermore, according to the present invention, the presence of a test substance is induced when differentiation is induced from ES cells or iPS cells to endoderm cells by culturing ES cells derived from mammals on a biosynthetic basement membrane (sBM) substrate. ES cells or iPS cells were cultured under the condition, and when ES cells or iPS cells were cultured in the absence of the test substance, the degree of differentiation induction into endoderm cells and the ES cells were cultured in the presence of the test substance A method of screening a substance that promotes or inhibits differentiation induction from ES cells or iPS cells to endoderm cells, comprising comparing the degree of differentiation induction into endoderm cells in some cases is provided. As a test substance, a growth factor or a low molecular weight compound can be used. At this time, it is possible to measure the degree of differentiation induction into endoderm cells using the expression level of the marker expressed in the endoderm as an index.
 以下の実施例により本発明をさらに具体的に説明するが、本発明は実施例によって限定されるものではない。 The following examples further illustrate the present invention, but the present invention is not limited to the examples.
実施例1
(実験方法)
(1)ES細胞株
 Pdx1/GFP遺伝子についてホモ接合のトランスジェニックマウスから得た胚盤胞を培養することによって、Pdx1 プロモーター誘導GFPレポーター導入遺伝子を有するマウスES細胞株SK7を樹立した(Shiraki N, Yoshida T, Araki K, et al. Guided differentiation of embryonic stem cells into Pdx1-expressing regional-specific definitive endoderm. Stem Cells. 2008;26:874-885)。SK7 ES細胞株は、1000 units/ml白血病阻害因子(LIF; Chemicon), 15% ノックアウト血清リプレースメント(KSR; Gibco), 1%胎児ウシ血清(FBS; Hyclone), 100μM 非必須アミノ酸(NEAA; Invitrogen), 2 mM L-グルタミン(L-Gln; Invitrogen), 1 mM ピルビン酸ナトリウム(Invitrogen), 50 units/mlペニシリン及び50μg/mlストレプトマイシン(PS; Invitrogen)及び100μM β-メルカプトエタノール(β-ME; Sigma)を補充したGlasgow最小必須培地(Invitrogen)中で、マウス胎児線維芽細胞(MEF)フィーダー上で維持した。
Example 1
(experimental method)
(1) ES cell line A mouse ES cell line SK7 having a Pdx1 promoter-inducible GFP reporter transgene was established by culturing blastocysts obtained from transgenic mice homozygous for the Pdx1 / GFP gene (Shiraki N, Yoshida T, Araki K, et al. Guided differentiation of embryonic stem cells into Pdx1-expressing regional-specific definitive endoderm. Stem Cells. 2008; 26: 874-885). SK7 ES cell line is 1000 units / ml leukemia inhibitory factor (LIF; Chemicon), 15% knockout serum replacement (KSR; Gibco), 1% fetal bovine serum (FBS; Hyclone), 100 μM non-essential amino acids (NEAA; Invitrogen) , 2 mM L-glutamine (L-Gln; Invitrogen), 1 mM sodium pyruvate (Invitrogen), 50 units / ml penicillin and 50 μg / ml streptomycin (PS; Invitrogen) and 100 μM β-mercaptoethanol (β-ME; Sigma ) Supplemented in Glasgow minimal essential medium (Invitrogen) on mouse embryo fibroblast (MEF) feeders.
 ヒトES細胞(KhES-1及びKhES-3)(Suemori H, Yasuchika K, Hasegawa K, et al. Efficient establishment of human embryonic stem cell lines and long-term maintenance with stable karyotype by enzymatic bulk passage. Biochem Biophys Res Commun. 2006;345:926-932)は、Dr. N. Nakatsuji及びDr. H. Suemori (京都大学)から供与してもらい、日本政府のヒトES細胞ガイドラインに従って使用した。未分化のヒトES細胞は、20% KSR, L-Gln, NEAA及びβ-MEを補充したDMEM/F12 (Sigma)中でMEFのフィーダー層上で3% CO2下で維持した。ヒトES細胞を継代するために、ヒトES細胞コロニーを、20% KSR 及び1 mM CaCl2を含むPBS中の0.25%トリプシン及び0.1 mg/ml コラゲナーゼIVで37℃5分間処理することによって、フィーダー層から剥離し、培地を添加し、数回穏やかにピペッティングすることによりES細胞の塊を小片(5-20細胞)に解離させた。 Human ES cells (KhES-1 and KhES-3) (Suemori H, Yasuchika K, Hasegawa K, et al. Efficient establishment of human embryonic stem cell lines and long-term maintenance with stable karyotype by clinical bulk passage.Biochem Biophys Res Commun 2006; 345: 926-932) was provided by Dr. N. Nakatsuji and Dr. H. Suemori (Kyoto University) and used according to the Japanese government's guidelines for human ES cells. Undifferentiated human ES cells were maintained under 3% CO 2 on the MEF feeder layer in DMEM / F12 (Sigma) supplemented with 20% KSR, L-Gln, NEAA and β-ME. To pass human ES cells, feeder cells were treated by treating human ES cell colonies with 0.25% trypsin and 0.1 mg / ml collagenase IV in PBS containing 20% KSR and 1 mM CaCl 2 for 5 minutes at 37 ° C. The ES cell mass was dissociated into small pieces (5-20 cells) by detaching from the layers, adding medium and gently pipetting several times.
 293細胞由来の組み換えヒトラミニン-511 (rLN-10) は、Karolinska Institute(スウエーデン)のMasayuki Doi 及びKarl Tryggvason から供与された (Doi M, Thyboll J, Kortesmaa J, et al. Recombinant human laminin-10 (α5β1γ1): Production, purification, and migration-promoting activity on vascular endothelial cells. J. Biol. Chem. 2002; 277: 12741-12748)。 293 cell-derived recombinant human laminin-511 (rLN-10) was provided by Masayuki Doi and Karl Tryggvason of Karolinska Institute (Sweden) (Doi M, Thyboll J, Kortesmaa J, et al. Recombinant 1α ): Production, purification, ificationand migration-promoting activity on vascular endothelial cells. J. Biol. Chem. 2002; 277: 12741-12748).
(2)支持細胞
 中腎細胞株M15 (Larsson SH, Charlieu JP, Miyagawa K, et al. Subnuclear localization of WT1 in splicing or transcription factor domains is regulated by alternative splicing. Cell. 1995;81:391-401)は、Dr. T. Nose (三菱化学生命科学研究所、東京、日本) 及びDr. M.Rassoulzadegan (University of Nice-Sophia Antipolis, Antipolis, France)から供与され、使用前に、10μg/mlのマイトマイシンCで2.5時間培養処理した(非特許文献8から10)。M15は、ゼラチン塗布した6ウエル又は24ウエルプレートに、ウエル当たり8 x 10細胞又は2 x 10細胞の濃度で播種した。
(2) Supporting cells Midrenal cell line M15 (Larsson SH, Charlieu JP, Miyagawa K, et al. Subnuclear localization of WT1 in splicing or transcription factor domains is regulated by alternative splicing. Cell. 1995; 81: 391-401) , Dr. T. Nose (Mitsubishi Chemical Life Science Institute, Tokyo, Japan) and Dr. M. Rassoulzadegan (University of Nice-Sophia Antipolis, Antipolis, France), and 10 μg / ml mitomycin C before use. And cultured for 2.5 hours (Non-Patent Documents 8 to 10). M15 was seeded in gelatin-coated 6-well or 24-well plates at a concentration of 8 × 10 5 cells or 2 × 10 5 cells per well.
(3)増殖因子及び阻害剤
 試薬は購入し、以下の濃度で使用した。
組み換えヒトアクチビン-A (R&D Systems), 20 ng/ml;
組み換えヒトbFGF (Peprotech), 50 ng/ml; 
組み換えヒト肝細胞増殖因子(HGF, Peprotech), 10 ng/ml;
デキサメタゾン(Dex, Sigma), 1 μM; 
組み換えヒトオンコスタチンM (OsM, Sigma), 10 ng/ml;
酪酸ナトリウム(Na-Bu, Sigma-Aldrich), 1 mM;
Y-27632 (Rock inhibitor, Wako), 10μM; 
ニコチンアミド(NA, Sigma-Aldrich), 10mM; 
グルカゴン様ペプチド1 (GLP-1, Sigma-Aldrich), 10 nM.
(3) Growth factors and inhibitors Reagents were purchased and used at the following concentrations.
Recombinant human activin-A (R & D Systems), 20 ng / ml;
Recombinant human bFGF (Peprotech), 50 ng / ml;
Recombinant human hepatocyte growth factor (HGF, Peprotech), 10 ng / ml;
Dexamethasone (Dex, Sigma), 1 μM;
Recombinant human oncostatin M (OsM, Sigma), 10 ng / ml;
Sodium butyrate (Na-Bu, Sigma-Aldrich), 1 mM;
Y-27632 (Rock inhibitor, Wako), 10μM;
Nicotinamide (NA, Sigma-Aldrich), 10 mM;
Glucagon-like peptide 1 (GLP-1, Sigma-Aldrich), 10 nM.
(4)生合成基底膜(sBM)培養基質の調製
 sBM基質は、直径3μmの孔径を有するPET多孔膜を有する6ウエル培養インサート上で作製した(BD, # 3091)。線維性コラーゲン基質(“fib”と表記する)(I型コラーゲン線維の堅いマトリックス)を、多孔膜上で先ず調製した (Hosokawa T, Betsuyaku T, Nishimura M, et al. Differentiation of tracheal basal cells to ciliated cells and tissue reconstruction on the synthesized basement membrane substratum in vitro. Connect Tissue Res. 2007;48:9-18)。次に、線維性コラーゲン基質(fib)を、スチレン-無水マレイン酸疎水性共重合体(MAST)に共有結合したオリゴ-N-アセチルグルコサミン (oligo-GlcNAc) リガンドで、少なくとも1日間DMEM培地中で10-20μg/mlの濃度で塗布した(Mochitate,K.:Method of preparing basement membrane, method of constructing basement membrane specimen, reconstituted artificial tissue using the basement membrane specimen and process for producing the same.  USPatent No. 7,399,634)。fibにMAST-GlcNAcを塗布した後、過剰のMAST-GlcNAcリガンド(コラーゲン線維に一時的に吸着しているか、又は依然として遊離している分子)を、新しいDMEMで数時間リンスした。次いで、MAST-GlcNAc を塗布したコラーゲン線維基質(fib)上に、rLN-10細胞を、6-wellタイプのfib当たり9.6x106個の細胞量で播種し、1% FBS及び0.2 mM アスコルビン酸-2-リン酸を含むDMEM中で2週間培養した。培養後、rLN-10細胞層を、50 mM NH4OH, 0.1% Triton X-100, 及びプロテアーゼインヒビターカクテルを含むD-PBS(-)溶液処理で除去し(Hosokawa T, Betsuyaku T, Nishimura M, et al. Differentiation of tracheal basal cells to ciliated cells and tissue reconstruction on the synthesized basement membrane substratum in vitro. Connect Tissue Res. 2007;48:9-18)、ヒトラミニン-511アイソフォームの再構成した緻密層構造体(lamina densa)を傷つけること無く露出させた。de novo 合成した基底膜 (sBM)培養基質は、保存溶液に浸した状態で、使用するまで-75℃で凍結保存した。
(4) Preparation of Biosynthetic Basement Membrane (sBM) Culture Substrate The sBM substrate was prepared on a 6-well culture insert having a PET porous membrane having a pore diameter of 3 μm (BD, # 3091). Fibrous collagen matrix (designated “fib”) (a stiff matrix of type I collagen fibers) was first prepared on a porous membrane (Hosokawa T, Betsuyaku T, Nishimura M, et al. Differentiation of tracheal basal cells to ciliated). cells and tissue reconstruction on the synthesized basement membrane substratum in vitro. Connect Tissue Res. 2007; 48: 9-18). The fibrous collagen matrix (fib) is then treated with oligo-N-acetylglucosamine (oligo-GlcNAc) ligand covalently linked to styrene-maleic anhydride hydrophobic copolymer (MAST) in DMEM medium for at least 1 day. It was applied at a concentration of 10-20 μg / ml (Mochitate, K .: Method of preparing basement membrane, method of constructing basement membrane specimen, reconstituted artificial tissue using the basement membrane specimen and process for producing the same. US Patent No. 7,399,634). After applying MAST-GlcNAc to the fib, excess MAST-GlcNAc ligand (molecules temporarily adsorbed to collagen fibers or still free) was rinsed with fresh DMEM for several hours. Next, rLN-10 cells were seeded on a collagen fiber matrix (fib) coated with MAST-GlcNAc at a cell volume of 9.6 × 10 6 cells per 6-well type fib, and 1% FBS and 0.2 mM ascorbic acid- The cells were cultured in DMEM containing 2-phosphate for 2 weeks. After culturing, the rLN-10 cell layer was removed by treatment with D-PBS (-) solution containing 50 mM NH 4 OH, 0.1% Triton X-100, and protease inhibitor cocktail (Hosokawa T, Betsuyaku T, Nishimura M, et al. Differentiation of tracheal basal cells to ciliated cells and tissue reconstruction on the synthesized basement membrane substratum in vitro. Connect Tissue Res. 2007; 48: 9-18), reconstituted dense layer structure of human laminin-511 isoform ( lamina densa) was exposed without hurting. The de novo synthesized basement membrane (sBM) culture substrate was stored frozen at −75 ° C. until use in a state of being immersed in a storage solution.
(5)M15上でのES細胞の分化
 M15上での肝臓又は膵臓系統への分化実験は、既報の通り行った(非特許文献8及び9。即ち、ES細胞を、M15細胞を予め播種した24ウエル又は6ウエルの培養プレート(Nunc)に、ウエル当たり5,000 又は20,000個の細胞数で播種した。細胞は、アクチビンA (20 ng/ml)及びbFGF (50 ng/ml), 10%FBS及び4,500 mg/L グルコースを補充した分化培地で培養した。肝臓への分化のためには、ES細胞からアクチビンA及びbFGFを取り除き、4日目から24日目にHGF (10 ng/ml), Dex (1μM), OsM (10 ng/ml), 10% KSR 及び2,000 mg/L グルコースに切り替えた。膵臓への分化のためには、ES細胞を、13日目まで、Activin A (20 ng/ml)及びbFGF (50 ng/ml)を補充した10% FBSを含む培地で培養し、その後、ITS培地, 1,000 mg/Lグルコース, 10 mM NA、及び10 nM GLP-1に切り替えた。
(5) Differentiation of ES cells on M15 Differentiation experiments into liver or pancreatic lineages on M15 were performed as previously reported (Non-Patent Documents 8 and 9. That is, ES cells were seeded in advance with M15 cells. A 24-well or 6-well culture plate (Nunc) was seeded at a count of 5,000 or 20,000 cells per well, and the cells consisted of activin A (20 ng / ml) and bFGF (50 ng / ml), 10% FBS and The cells were cultured in a differentiation medium supplemented with 4,500 mg / L glucose.For differentiation into liver, activin A and bFGF were removed from ES cells, and HGF (10 ng / ml), Dex was removed from day 4 to day 24. (1 μM), OsM (10 ng / ml), 10% KSR and 2,000 mg / L glucose were switched in. For differentiation into pancreas, ES cells were treated with Activin A (20 ng / ml by day 13). ) And bFGF (50 ng / ml) supplemented with medium containing 10% FBS, then cut into ITS medium, 1,000 mg / L glucose, 10 mM NA, and 10 nM GLP-1. It was replaced.
 ヒトES細胞の場合は、KhES-1又はKhES-3 細胞を、前以てM15細胞で播種し細胞層を形成した24ウエル又は6ウエルの培養プレートに、ウエル当たり20,000 又は80,000の細胞数で播種した。ES細胞は、20日目まで分化培地 (10% KSR, 4,500 mg/L グルコース, NEAA, L-Gln, ペニシリン及びストレプトマイシン及び2-MEを補充したDMEM) で培養した。アクチビンA (20 ng/ml) 及びLY294002 (10μM) を、分化の0日目から10日目まで添加した。Na-Bu (1mM), HGF (10 ng/ml), Dex (1μM) 及びOsM (1μM)を0日目から10日目まで添加した。培地は、増殖因子を補充した新しい分化培地に2日毎に交換した。 In the case of human ES cells, KhES-1 or KhES-3 cells are seeded at a cell number of 20,000 or 80,000 per well in a 24-well or 6-well culture plate previously seeded with M15 cells to form a cell layer. did. ES cells were cultured in differentiation medium (10% KSR, 4,500 mg / L glucose, NEAA, L-Gln, penicillin and DMEM supplemented with streptomycin and 2-ME) until day 20. Activin A (20 ng / ml) and LY294002 (10 μM) μ were added from day 0 to day 10 of differentiation. Na-Bu (1 mM), HGF (10 ng / ml), Dex (1 μM) and OsM (1 μM) were added from day 0 to day 10. The medium was changed every 2 days with fresh differentiation medium supplemented with growth factors.
(6)sBM培養基質上におけるES細胞の肝臓系統への分化
 -75℃で保存したsBM基質を、使用の前日に冷蔵庫でゆっくり解凍した。MEF上で生育させたES細胞を解離し、sBM基質1枚につき10,000の細胞量で播種した。肝臓への分化のために、ES細胞は、ITS, ウシ胎仔アルブミン(アルブマックスII, 2.5mg/ml)、アクチビンA (20 ng/ml)及びbFGF (50 ng/ml)及び4,500 mg/L グルコースを補充した分化培地で0日目から8日目まで培養し、8日目に、ITS, HGF (10 ng/ml), Dex (1μM), OsM (10 ng/ml), 10% KSR 及び2,000 mg/L グルコースを補充した培地に切り替え、24日目まで培養した。ヒトES細胞の場合は、KhES-1又はKhES-3 細胞を、Y-27632(強力なRock阻害剤)で12時間前処理した。その後、ES細胞を、0.25% トリプシン-EDTAを用いて解離し、sBM基質1枚当たり100,000の細胞量で播種した。ES細胞は、40日目まで分化培地 (10% KSR, 4,500 mg/L グルコース, NEAA, L-Gln, ペニシリン及びストレプトマイシン及び2-MEを補充したDMEM) で培養した。アクチビンA (20 ng/ml) 及びLY294002 (10 μM) を、分化の0日目から10日目まで添加した。Na-Bu (1mM), HGF (10 ng/ml), Dex (1μM) 及びOsM (1μM)を0日目から10日目まで添加した。培地は、増殖因子を補充した新しい分化培地に2日毎に交換した。
(6) Differentiation of ES cells into liver lineage on sBM culture substrate The sBM substrate stored at -75 ° C was slowly thawed in the refrigerator the day before use. ES cells grown on MEF were dissociated and seeded at a cell volume of 10,000 per sBM substrate. For hepatic differentiation, ES cells were treated with ITS, fetal bovine albumin (Albumax II, 2.5 mg / ml), activin A (20 ng / ml) and bFGF (50 ng / ml) and 4,500 mg / L glucose. Culture from 0 to 8 days in differentiation medium supplemented with ITS, HGF (10 ng / ml), Dex (1 μM), OsM (10 ng / ml), 10% KSR and 2,000 The medium was switched to a medium supplemented with mg / L glucose and cultured until day 24. In the case of human ES cells, KhES-1 or KhES-3 cells were pretreated with Y-27632 (a powerful Rock inhibitor) for 12 hours. Thereafter, ES cells were dissociated using 0.25% trypsin-EDTA and seeded at a cell volume of 100,000 per sBM substrate. ES cells were cultured in differentiation medium (DMEM supplemented with 10% KSR, 4,500 mg / L glucose, NEAA, L-Gln, penicillin and streptomycin and 2-ME) until day 40. Activin A (20 ng / ml) and LY294002 (10 μM) were added from day 0 to day 10 of differentiation. Na-Bu (1 mM), HGF (10 ng / ml), Dex (1 μM) and OsM (1 μM) were added from day 0 to day 10. The medium was changed every 2 days with fresh differentiation medium supplemented with growth factors.
(7)sBM培養基質上におけるES細胞の膵臓系統への分化
 膵臓分化のために、ES細胞は、0日目から10日目までは、ITS, ウシ胎仔アルブミン,アクチビンA(20 ng/ml) 及びbFGF (50 ng/ml) 及び4,500 mg/L グルコースを補充した分化培地で培養し、10日目から13日目に、1μMレチノイン酸を添加し、13日目から28日目は、ITS, 10mM NA, 10 nM GLP1及び1,000 mg/L グルコースを補充した培地に切り替えた。継代培養では、15日目までのsBM基質上の分化誘導細胞を、0.25%トリプシンで解離し、解離した細胞の3分の2を新しいsBM基質上に再播種した。継代後、上記した13日目から28日目までの培地と同じ培地を使用した。継代の10日後(即ち、25日目)、培養細胞を0.25%トリプシンで回収し、分化の解析に用いた。
(7) Differentiation of ES cells into pancreatic lineages on sBM culture substrate For pancreatic differentiation, ES cells were treated with ITS, fetal bovine albumin, activin A (20 ng / ml) from day 0 to day 10. And bFGF (50 ng / ml) and 4,500 mg / L glucose supplemented culture medium, and 1 μM retinoic acid was added from day 10 to day 13, and from day 13 to day 28, ITS, The medium was switched to a medium supplemented with 10 mM NA, 10 nM GLP1, and 1,000 mg / L glucose. In subculture, differentiation-inducing cells on the sBM substrate up to day 15 were dissociated with 0.25% trypsin, and two-thirds of the dissociated cells were replated on fresh sBM substrate. After the subculture, the same medium as that from day 13 to day 28 was used. Ten days after passage (that is, day 25), the cultured cells were collected with 0.25% trypsin and used for analysis of differentiation.
(8)フローサイトメトリー分析
 以下の抗体の何れかを使用した。ビオチン結合抗E-カドヘリンモノクローナル抗体 (mAb) ECCD2(Shirayoshi Y, Nose A, Iwasaki K, et al. N-linked oligosaccharides are not involved in the function of a cell-cell binding glycoprotein E-cadherin. Cell Struct Funct. 1986;11:245-252) 又はフィコエリトリン(PE)結合抗Cxcr4モノクローナル抗体(mAb)2B11 (BD Biosciences Pharmingen)。染色した細胞をFACS Canto (BD)で分析するか、FACS Aria (BD)で回収した。データは、BD FACS Diva Software program (BD) で記録し、Flowjo program (Tree Star)を用いて解析した。
(8) Flow cytometry analysis Any of the following antibodies was used. Biotin-conjugated anti-E-cadherin monoclonal antibody (mAb) ECCD2 (Shirayoshi Y, Nose A, Iwasaki K, et al. N-linked oligosaccharides are not involved in the function of a cell-cell binding glycoprotein E-cadherin. Cell Struct Funct. 1986; 11: 245-252) or phycoerythrin (PE) -conjugated anti-Cxcr4 monoclonal antibody (mAb) 2B11 (BD Biosciences Pharmingen). Stained cells were analyzed with FACS Canto (BD) or collected with FACS Aria (BD). Data was recorded with the BD FACS Diva Software program (BD) and analyzed using the Flowjo program (Tree Star).
(9)RT-PCR分析
 RNA抽出、逆転写反応、PCR分析、及びリアルタイムPCR分析は、既報の通り行った(非特許文献8から10)。各プライマーセットのプライマー配列は、以下に示す。
プライマー配列:
Mouse Foxa2-F: TGGTCACTGGGGACAAGGGAA (配列番号1)
Mouse Foxa2-R: GCAACAACAGCAATAGAGAAC (配列番号2)
Mouse Afp-F: TCGTATTCCAACAGGAGG (配列番号3)
Mouse Afp-R: AGGCTTTTGCTTCACCAG (配列番号4)
Mouse Alb1-F: CTTAAACCGATGGGCGATCTCACT (配列番号5)
Mouse Alb1-R: CCCCACTAGCCTCTGGCAAAAT (配列番号6)
Human beta-actin-F: GTGATGGTGGGAATGGGTCA (配列番号7)
Human beta-actin-R: TTTGATGTCACGCACGATTTCC (配列番号8)
Human Afp-F: TGCCAACTCAGTGAGGACAA (配列番号9)
Human Afp-R: TCCAACAGGCCTGAGAAATC (配列番号10)
Human Alb1-F: GATGTCTTCCTGGGCATGTT (配列番号11)
Human Alb1-R: ACATTTGCTGCCCACTTTTC (配列番号12)
Human Gapdh-F: CGAGATCCCTCCAAAATCAA (配列番号13)
Human Gapdh-R: CATGAGTCCTTCCACGATACCAA (配列番号14)
Mouse Pdx1-F: CCAAAACCGTCGCATGAAGTG (配列番号15)
Mouse Pdx1-R: CTCTCGTGCCCTCAAGAATTTTC (配列番号16)
Mouse Ins1-F:CAGCCCTTAGTGACCAGCTA (配列番号17)
Mouse Ins1-R:ATGCTGGTGCAGCACTGATC (配列番号18)
Mouse Gcg-F: ACTCACAGGGCACATTCACC (配列番号19)
Mouse Gcg-R: CCAGTTGATGAAGTCCCTGG (配列番号20)
Mouse Sst-F: CCGTCAGTTTCTGCAGAAGT (配列番号21)
Mouse Sst-R: CAGGGTCAAGTTGAGCATCG (配列番号22)
Mouse Ptf1a-F:TGCAGTCCATCAACGACGC (配列番号23)
Mouse Ptf1a-R:GGACAGAGTTCTTCCAGTTC (配列番号24)
Mouse Amy-F:CAGGCAATCCTGCAGGAACAA (配列番号25)
Mouse Amy-R: CACTTGCGGATAACTGTGCCA (配列番号26)
Mouse NeuroD1-F: GGAGTAGGGATGCACCGGGAA (配列番号27)
Mouse NeuroD1-R: CTTGGCCAAGAACTACATCTGG (配列番号28)
Mouse Nkx2-2-F: AACCGTGCCACGCGCTCAAA (配列番号29)
Mouse Nkx2-2-R: AGGGCCTAAGGCCTCCAGTCT (配列番号30)
Mouse Nkx6-1-F: TACTTGGCAGGACCAGAGAG (配列番号31)
Mouse Nkx6-1-R: CGCTGGATTTGTGCTTTTTC (配列番号32)
Mouse Pax4-F: AACAGAAGAGCCAAATGGCG (配列番号33)
Mouse Pax4-R: TGAGCAATGGGTTGATGGCA (配列番号34)
Mouse Pax6-F: CAGTCACAGCGGAGTGAATC (配列番号35)
Mouse Pax6-R: CGCTTCAGCTGAAGTCGCAT (配列番号36)
Mouse Isl1-F: GACTGAGAGGGTCTCCAGCTC (配列番号37)
Mouse Isl1-R: AGCAAGAACGACTTCGTGATG (配列番号38)
Mouse Glut2-F: ACAGAGCTACAATGCAACGTGG (配列番号39)
Mouse Glut2-R: CAACCAGAATGCCAATGACGAT (配列番号40)
Mouse IAPP-F: GATTCCCTATTTGGATCCCC (配列番号41)
Mouse IAPP-R: CTCTCTGTGGCACTGAACCA (配列番号42)
Mouse b-actin-F: GTGATGGTGGGAATGGGTCA (配列番号43)
Mouse b-actin-R: TTTGATGTCACGCACGATTTCC (配列番号44)
(9) RT-PCR analysis RNA extraction, reverse transcription reaction, PCR analysis, and real-time PCR analysis were performed as previously reported (Non-Patent Documents 8 to 10). The primer sequences of each primer set are shown below.
Primer sequence:
Mouse Foxa2-F: TGGTCACTGGGGACAAGGGAA (SEQ ID NO: 1)
Mouse Foxa2-R: GCAACAACAGCAATAGAGAAC (SEQ ID NO: 2)
Mouse Afp-F: TCGTATTCCAACAGGAGG (SEQ ID NO: 3)
Mouse Afp-R: AGGCTTTTGCTTCACCAG (SEQ ID NO: 4)
Mouse Alb1-F: CTTAAACCGATGGGCGATCTCACT (SEQ ID NO: 5)
Mouse Alb1-R: CCCCACTAGCCTCTGGCAAAAT (SEQ ID NO: 6)
Human beta-actin-F: GTGATGGTGGGAATGGGTCA (SEQ ID NO: 7)
Human beta-actin-R: TTTGATGTCACGCACGATTTCC (SEQ ID NO: 8)
Human Afp-F: TGCCAACTCAGTGAGGACAA (SEQ ID NO: 9)
Human Afp-R: TCCAACAGGCCTGAGAAATC (SEQ ID NO: 10)
Human Alb1-F: GATGTCTTCCTGGGCATGTT (SEQ ID NO: 11)
Human Alb1-R: ACATTTGCTGCCCACTTTTC (SEQ ID NO: 12)
Human Gapdh-F: CGAGATCCCTCCAAAATCAA (SEQ ID NO: 13)
Human Gapdh-R: CATGAGTCCTTCCACGATACCAA (SEQ ID NO: 14)
Mouse Pdx1-F: CCAAAACCGTCGCATGAAGTG (SEQ ID NO: 15)
Mouse Pdx1-R: CTCTCGTGCCCTCAAGAATTTTC (SEQ ID NO: 16)
Mouse Ins1-F: CAGCCCTTAGTGACCAGCTA (SEQ ID NO: 17)
Mouse Ins1-R: ATGCTGGTGCAGCACTGATC (SEQ ID NO: 18)
Mouse Gcg-F: ACTCACAGGGCACATTCACC (SEQ ID NO: 19)
Mouse Gcg-R: CCAGTTGATGAAGTCCCTGG (SEQ ID NO: 20)
Mouse Sst-F: CCGTCAGTTTCTGCAGAAGT (SEQ ID NO: 21)
Mouse Sst-R: CAGGGTCAAGTTGAGCATCG (SEQ ID NO: 22)
Mouse Ptf1a-F: TGCAGTCCATCAACGACGC (SEQ ID NO: 23)
Mouse Ptf1a-R: GGACAGAGTTCTTCCAGTTC (SEQ ID NO: 24)
Mouse Amy-F: CAGGCAATCCTGCAGGAACAA (SEQ ID NO: 25)
Mouse Amy-R: CACTTGCGGATAACTGTGCCA (SEQ ID NO: 26)
Mouse NeuroD1-F: GGAGTAGGGATGCACCGGGAA (SEQ ID NO: 27)
Mouse NeuroD1-R: CTTGGCCAAGAACTACATCTGG (SEQ ID NO: 28)
Mouse Nkx2-2-F: AACCGTGCCACGCGCTCAAA (SEQ ID NO: 29)
Mouse Nkx2-2-R: AGGGCCTAAGGCCTCCAGTCT (SEQ ID NO: 30)
Mouse Nkx6-1-F: TACTTGGCAGGACCAGAGAG (SEQ ID NO: 31)
Mouse Nkx6-1-R: CGCTGGATTTGTGCTTTTTC (SEQ ID NO: 32)
Mouse Pax4-F: AACAGAAGAGCCAAATGGCG (SEQ ID NO: 33)
Mouse Pax4-R: TGAGCAATGGGTTGATGGCA (SEQ ID NO: 34)
Mouse Pax6-F: CAGTCACAGCGGAGTGAATC (SEQ ID NO: 35)
Mouse Pax6-R: CGCTTCAGCTGAAGTCGCAT (SEQ ID NO: 36)
Mouse Isl1-F: GACTGAGAGGGTCTCCAGCTC (SEQ ID NO: 37)
Mouse Isl1-R: AGCAAGAACGACTTCGTGATG (SEQ ID NO: 38)
Mouse Glut2-F: ACAGAGCTACAATGCAACGTGG (SEQ ID NO: 39)
Mouse Glut2-R: CAACCAGAATGCCAATGACGAT (SEQ ID NO: 40)
Mouse IAPP-F: GATTCCCTATTTGGATCCCC (SEQ ID NO: 41)
Mouse IAPP-R: CTCTCTGTGGCACTGAACCA (SEQ ID NO: 42)
Mouse b-actin-F: GTGATGGTGGGAATGGGTCA (SEQ ID NO: 43)
Mouse b-actin-R: TTTGATGTCACGCACGATTTCC (SEQ ID NO: 44)
各サイクルのPCR条件:
96℃で30秒間の変性;60℃で2秒間のアニーリング;及び72℃で45秒間の伸長;
PCR conditions for each cycle:
Denaturation at 96 ° C. for 30 seconds; annealing at 60 ° C. for 2 seconds; and extension at 72 ° C. for 45 seconds;
 RT-PCR産物は、5%未変性ポリアクリルアミドゲル電気泳動により分離し、SYBR Green I (Molecular Probes)で染色し、Gel Logic 200 Imaging System (Kodak)により可視化した。リアルタイムPCR条件は以下の通りである。95℃で15秒間の変性、60℃で60秒間のアニーリング及び伸長を40サイクルまで。任意単位で表示した各標的mRNA量を、標準曲線法で測定した。 RT-PCR products were separated by 5% native polyacrylamide gel electrophoresis, stained with SYBR Green I (Molecular Probes), and visualized with Gel Logic 200 I Imaging System (Kodak). Real-time PCR conditions are as follows. Denaturation at 95 ° C. for 15 seconds, 60 ° C. for 60 seconds annealing and extension up to 40 cycles. The amount of each target mRNA displayed in arbitrary units was measured by the standard curve method.
(10)腎臓被膜移植
 25日目に、sBM基質上の分化細胞を0.25%トリプシンで溶解し、回収した細胞をMPC塗布24ウエルプレート(Nunc)で更に1日間培養した。細胞濃度は5x105細胞/ウエルとした。翌日、浮遊細胞を遠心により回収し、5x105細胞/10μlの濃度で2.1 mg/mlコラーゲン溶液に懸濁した。コラーゲン溶液は、Cellmatrix(登録商標)Type I-A collagen kit (Nitta Gelatin, Japan)からプロトコールに従って調製した。次いで、10μlのゲルに懸濁した5x10細胞を、インスリン注射器(29G, BD)を用いて、C.B-17/Icr-scid/scid Jclマウス(CLEA-Japan, Japan)の腎臓被膜下に注入した。注入の4週後に、移植マウスを殺した。移植物を腎臓から回収し、4% PFAで固定し、免疫組織化学分析に供した。
(10) Kidney capsule transplantation On the 25th day, the differentiated cells on the sBM substrate were lysed with 0.25% trypsin, and the collected cells were further cultured in an MPC-coated 24-well plate (Nunc) for another day. The cell concentration was 5 × 10 5 cells / well. The next day, floating cells were collected by centrifugation and suspended in a 2.1 mg / ml collagen solution at a concentration of 5 × 10 5 cells / 10 μl. The collagen solution was prepared from Cellmatrix (registered trademark) Type IA collagen kit (Nitta Gelatin, Japan) according to the protocol. Next, 5 × 10 5 cells suspended in 10 μl of gel were injected under the kidney capsule of CB-17 / Icr-scid / scid Jcl mice (CLEA-Japan, Japan) using an insulin syringe (29G, BD). . Four weeks after injection, the transplanted mice were killed. Transplants were collected from kidneys, fixed with 4% PFA, and subjected to immunohistochemical analysis.
(11)免疫組織化学
 以下の抗体を購入した。ヤギ抗アミラーゼ(Santa Cruz Biotechnology; SCB)、ビオチン結合Dolichos biflorus agglutinin (DBA)レクチン(Sigma)、マウス抗インスリン(Sigma)、ヤギ抗ソマトスタチン(SCB)。二次抗体としては、Alexa 568-結合抗体(Molecular Probes)を使用した。細胞はDAPI (Roche)で対比染色した。
(11) Immunohistochemistry The following antibodies were purchased. Goat anti-amylase (Santa Cruz Biotechnology; SCB), biotin-conjugated Dolichos biflorus agglutinin (DBA) lectin (Sigma), mouse anti-insulin (Sigma), goat anti-somatostatin (SCB). As a secondary antibody, Alexa 568-conjugated antibody (Molecular Probes) was used. Cells were counterstained with DAPI (Roche).
(結果)
(1)rLN10-sBM基質で生育したES 細胞は、胚体内胚葉細胞の分化に向かった。
 本発明者らは、中胚葉由来細胞株M15を用いてマウス及びヒトES細胞から肝臓系統への誘導する共培養法を確立した。
(result)
(1) ES cells grown on rLN10-sBM substrate were suitable for definitive endoderm differentiation.
The present inventors established a co-culture method that induces mouse and human ES cells to the liver lineage using the mesoderm-derived cell line M15.
 図1は、既報の通り(非特許文献8及び9)、M15フィーダー細胞層上で培養したES細胞を培養条件に依存して肝臓及び膵臓系統に向けることができることを示す模式図である。 FIG. 1 is a schematic diagram showing that ES cells cultured on the M15 feeder cell layer can be directed to the liver and pancreas lineage depending on the culture conditions, as already reported (Non-Patent Documents 8 and 9).
 以前、本発明者らは、線維性コラーゲンマトリックス(fib)上でSV40-T2細胞をMatrigel(登録商標)と共培養することで、Matrigelに由来するマウスラミニン-111アイソフォームを有する基底膜緻密層が露出した新奇の培養基質(「生合成基底膜培養基質(sBM)」と命名)の使用を報告した(Furuyama A and Mochitate K. Assembly of the exogenous extracellular matrix during basement membrane formation by alveolar epithelial cells in vitro. J. Cell Sci.       2000; 113: 859-868;及びHosokawa T, Betsuyaku T, Nishimura M, et al. Differentiation of tracheal basal cells to ciliated cells and tissue reconstruction on the synthesized basement membrane substratum in vitro. Connect Tissue Res. 2007;48:9-18)。本実施例では、rLN-10細胞により構成したlaminin-511アイソフォームのヒトsBM基質(rLN10-sBM)を用いて、ES細胞の胚体内胚葉(DE)への分化を開始する能力について試験した。 Previously, we have co-cultured SV40-T2 cells with Matrigel® on a fibrillar collagen matrix (fib) to provide a basement membrane dense layer with a mouse laminin-111 isoform derived from Matrigel. Reported the use of a novel culture substrate (named “Biosynthetic Basement Membrane Culture Substrate (sBM)”) (Furuyama A and Mochitate K. Assembly of the exogenous extracellular matrix during basement membrane formation by alveolar epithelial cells in vitro . J. Cell Sci. 2000; 113: 859-868; and Hosokawa T, Betsuyaku T, Nishimura M, et al. Differentiation of tracheal basal cells to ciliated cells and tissue reconstruction tro . 2007; 48: 9-18). In this example, the ability of initiating differentiation of ES cells into definitive endoderm (DE) was tested using a laminin-511 isoform human sBM substrate (rLN10-sBM) composed of rLN-10 cells.
 図2Aは、実験計画の模式図を示す。基質は、6ウエル培養プレートに設置し、ES細胞を基質上に播種した。平行して、M15細胞も別の培養プレートに播種し、ES細胞を既報の通りM15単層上に直接播種した。 FIG. 2A shows a schematic diagram of the experimental design. The substrate was placed in a 6-well culture plate, and ES cells were seeded on the substrate. In parallel, M15 cells were also seeded on another culture plate and ES cells were seeded directly on M15 monolayers as previously reported.
 アクチビンA及びbFGFの添加により胚体内胚葉分化が促進されることが報告されている。従って、アクチビンA及びbFGFを、rLN10-sBM基質上でのES細胞培養にも添加した。ES細胞のE-カドヘリン+/Cxcr4+ 胚体内胚葉細胞への分化は、フローサイトメトリーで定量した。8日目にアッセイした際、sBM基質上で生育した全ES細胞培養の27.6%が、E-カドヘリン+/Cxcr4+ 胚体内胚葉細胞であった。一方、M15フィーダー層で生育した全ES細胞培養の50.9%が胚体内胚葉細胞であった(図2B)。リアルタイムPCR分析により、sBM基質又はM15フィーダー層で分化したES細胞における、Foxa2(胚体内胚葉マーカー)の発現を確認した。sBM基質上で内胚葉への分化を8日間誘導したES細胞におけるFoxa2の発現量は、M15フィーダー層上で生育したES細胞における最大発現量の約1/5であった。しかし、発現は徐々に増加し、最終的に14日目にはM15上で生育した場合と同様の発現量に達した(図2C)。M15細胞を使用しなくてよいという意味からも、rLN10-sBM基質は、ES細胞を胚体内胚葉に分化させるためのより良い基質であることが示された。 It has been reported that the addition of activin A and bFGF promotes definitive endoderm differentiation. Therefore, activin A and bFGF were also added to ES cell cultures on rLN10-sBM substrate. Differentiation of ES cells into E-cadherin + / Cxcr4 + definitive endoderm cells was quantified by flow cytometry. When assayed on day 8, 27.6% of all ES cell cultures grown on sBM substrate were E-cadherin + / Cxcr4 + definitive endoderm cells. On the other hand, 50.9% of all ES cell cultures grown on the M15 feeder layer were definitive endoderm cells (FIG. 2B). Real-time PCR analysis confirmed the expression of Foxa2 (definitive endoderm marker) in ES cells differentiated with sBM substrate or M15 feeder layer. The expression level of Foxa2 in ES cells induced to differentiate into endoderm for 8 days on the sBM substrate was about 1/5 of the maximum expression level in ES cells grown on the M15 feeder layer. However, the expression gradually increased and finally reached the same expression level as that grown on M15 on day 14 (FIG. 2C). The rLN10-sBM substrate was also shown to be a better substrate for differentiating ES cells into definitive endoderm in the sense that it was not necessary to use M15 cells.
(2)hLN-511 アイソフォーム-sBM基質上で生育したES細胞は、肝臓に分化できた。
  Afp (α-feto-蛋白質)及びAlb1 (アルブミン1) の発現を、リアルタイムRT-PCRによって24日目にrLN10-sBM上で培養したES細胞において検出した(図3)。基質上で培養した細胞は、M15細胞上で生育した細胞と比較して、約2倍の量のAfpを発現し、約1/3の量のAlb1を発現していた。これらの結果は、ES細胞は、sBM上で肝臓系統に分化したが、成熟の程度は、M15細胞で生育した細胞よりも低いことを示している。
(2) ES cells grown on hLN-511 isoform-sBM substrate were able to differentiate into liver.
Expression of Afp (α-feto-protein) and Alb1 (albumin 1) was detected in ES cells cultured on rLN10-sBM on day 24 by real-time RT-PCR (FIG. 3). Cells cultured on the substrate expressed about twice as much Afp and about one-third of Alb1 compared to cells grown on M15 cells. These results indicate that ES cells differentiated into liver lineages on sBM, but the degree of maturation is lower than cells grown on M15 cells.
 高度の成熟を達成するために、操作の更なる最適化を図った。酪酸ナトリウム(図4A、B)の添加の効果(図4A、B)について、M15上で培養したヒトES細胞株khES-1及びkhES-3について試験した。リアルタイムPCRで検出したAlb1転写物の発現は、khES-1及びkhES-3細胞に酪酸ナトリウムを添加することによって増大した(図4A)。酪酸ナトリウムによる肝臓への分化能は、rLN10-sBM基質上で培養した場合も同様に検出され、Afp 及びAlb1の発現量の上昇がRT-PCRで確認された(図4B)。ES細胞を肝臓系統に分化させるというsBM基質の能力は、それが胚体内胚葉系統への分化に適した細胞外マトリックス構造の固体環境としての役割を担っていることを示唆している。 In order to achieve a high degree of maturity, the operation was further optimized. The effect of the addition of sodium butyrate (FIGS. 4A, B) (FIGS. 4A, B) was tested on human ES cell lines khES-1 and khES-3 cultured on M15. The expression of Alb1 transcripts detected by real-time PCR was increased by adding sodium butyrate to khES-1 and khES-3 cells (FIG. 4A). The ability of sodium butyrate to differentiate into the liver was similarly detected when cultured on an rLN10-sBM substrate, and increases in the expression levels of Afp and Alb1 were confirmed by RT-PCR (FIG. 4B). The ability of the sBM substrate to differentiate ES cells into the liver lineage suggests that it plays a role as a solid environment of extracellular matrix structure suitable for differentiation into definitive endoderm lineage.
(3)sBM 培養基質上で生育したマウスES細胞は膵臓に分化できた。
 胚体内胚葉からの膵臓系統への分化も調べた。GFP発現がPdx1プロモーター下で誘導されるSK7 ES 細胞株を、rLN10-sBM基質上に直接播種し、他の分化条件下で培養した(Shiraki N, Yoshida T, Araki K, et al. Guided differentiation of embryonic stem cells into Pdx1-expressing regional-specific definitive endoderm. Stem Cells. 2008;26:874-885)。Pdx1/GFP発現は、10日目までにSK 7 ES細胞で検出されるようになり、15日目に最大に達した (図5)。15日の誘導後、Pdx1/GFP発現細胞は、立体的細胞塊として凝集し始めた。28日目に、Pdx1/GFP発現は依然として分化細胞の細胞塊中に観察された。Pdx1/GFP陽性細胞はフローサイトメトリーで分析した。細胞比率は、15日目に全ES細胞の8.12%であった(図7)。成熟膵臓マーカー遺伝子の発現をRT-PCRによって培養物を用いて分析した(図6A)。Ins1(インスリン1)転写物の発現は、sBM基質上で培養したES細胞において28日目に検出されるようになったが、M15フィーダー上で生育した細胞では検出されなかった(図6A)。一方、他の内分泌マーカー(Gcg: グルカゴン, Sst: ソマトスタチン)及び外分泌マーカー(Amy:アミラーゼ, 膵臓特異的転写因子1a(Pancreas specific transcription factor 1a): Ptf1a) は、sBM基質及びM15フィーダー上で分化したES細胞で検出された(図6A)。未成熟(Neurod1, Nkx2-2, Nkx6-1, Pax6)及び成熟(Isl1, Glut2, IAPP) β細胞マーカーも、両条件で分化させたES細胞で発現していた。しかし、成熟マーカーの発現量は、胎児膵臓よりも低かった(図6B)。rLN10-sBM 基質は、ES細胞が、インスリン発現β細胞を含む膵臓の内分泌系統に分化するのを助けていることが分かった。分化したES細胞は、未成熟内分泌膵臓の幾つかのマーカーを依然として発現していた。
(3) Mouse ES cells grown on the sBM culture substrate were able to differentiate into pancreas.
The differentiation from definitive endoderm to pancreatic lineage was also examined. SK7 ES cell line, in which GFP expression is induced under the Pdx1 promoter, was seeded directly on rLN10-sBM substrate and cultured under other differentiation conditions (Shiraki N, Yoshida T, Araki K, et al. Guided differentiation of embryonic stem cells into Pdx1-expressing regional-specific definitive endoderm. Stem Cells. 2008; 26: 874-885). Pdx1 / GFP expression became detectable in SK 7 ES cells by day 10 and reached a maximum on day 15 (FIG. 5). After 15 days of induction, Pdx1 / GFP expressing cells began to aggregate as a three-dimensional cell mass. On day 28, Pdx1 / GFP expression was still observed in the cell mass of differentiated cells. Pdx1 / GFP positive cells were analyzed by flow cytometry. The cell ratio was 8.12% of all ES cells on day 15 (FIG. 7). Expression of the mature pancreatic marker gene was analyzed using RT-PCR cultures (FIG. 6A). Ins1 (insulin 1) transcript expression became detectable on day 28 in ES cells cultured on sBM substrate, but not in cells grown on M15 feeders (FIG. 6A). On the other hand, other endocrine markers (Gcg: glucagon, Sst: somatostatin) and exocrine markers (Amy: amylase, pancreas specific transcription factor 1a: Ptf1a) differentiated on sBM substrate and M15 feeder It was detected in ES cells (FIG. 6A). Immature (Neurod1, Nkx2-2, Nkx6-1, Pax6) and mature (Isl1, Glut2, IAPP) β cell markers were also expressed in ES cells differentiated under both conditions. However, the expression level of the maturation marker was lower than that of the fetal pancreas (FIG. 6B). The rLN10-sBM substrate was found to help ES cells differentiate into the endocrine lineage of the pancreas containing insulin-expressing β cells. Differentiated ES cells still expressed some markers of immature endocrine pancreas.
(4)sBM培養基質で生育したマウスiPS細胞も、膵臓に分化できた。
 4因子(Klf4, Sox2, Oct3/4 及びc-myc)を導入したマウスiPS 細胞(Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature. 2007;448:313-317)についても、sBM基質が細胞を膵臓系統に誘導するのに有効かどうかについて試験した(図6C)。Pdx1発現細胞は16日目までにsBM基質上で培養したマウスiPS細胞から誘導でき、インスリン発現細胞は、28日目までに誘導できた。分化中のiPS細胞からPdx1及びIns1を発現する細胞の出現という同様の現象から、rLN10-sBM基質上でのマウスiPS細胞及びSK7ES細胞の性質が類似していることが示唆される。
(4) Mouse iPS cells grown on the sBM culture substrate were also able to differentiate into pancreas.
Mouse iPS cells into which four factors (Klf4, Sox2, Oct3 / 4 and c-myc) have been introduced (Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature. 2007; 448: 313-317 ) Was also tested to see if the sBM substrate was effective in inducing cells into the pancreatic lineage (FIG. 6C). Pdx1-expressing cells could be derived from mouse iPS cells cultured on sBM substrate by day 16 and insulin-expressing cells could be induced by day 28. The similar phenomenon of appearance of cells expressing Pdx1 and Ins1 from differentiating iPS cells suggests that the properties of mouse iPS cells and SK7ES cells on rLN10-sBM substrate are similar.
 rLN10-sBM基質上で15日間生育させた分化したES細胞を、0.25%トリプシンで解離し、新しいsBM基質上に再度播種し、25日目まで培養した。Pdx1/GFP発現細胞の割合は、15日目の8.12%から、25日目には13.5 %まで増大した。sBM 基質は、マウスES細胞及びiPS細胞に由来するPdx1発現細胞の割合を増幅するのに有用であることが分かった。 Differentiated ES cells grown for 15 days on rLN10-sBM substrate were dissociated with 0.25% trypsin, seeded again on fresh sBM substrate, and cultured until day 25. The percentage of Pdx1 / GFP expressing cells increased from 8.12% on the 15th day to 13.5% on the 25th day. The sBM substrate has been found to be useful for amplifying the proportion of Pdx1-expressing cells derived from mouse ES cells and iPS cells.
(5)sBM基質上で生育したマウスiPS細胞由来の胚体内胚葉細胞は、マウス腎被膜下で膵臓系統への分化を進めることができた。
 以前、本発明者らは、SCIDマウスの腎被膜下での移植により、未成熟な膵臓原始細胞の成熟が誘導されることを報告している(図8)。sBM基質上で分化したiPS細胞が、膵臓系統に分化する能力があるかどうかを確認するために、更にインビボで細胞について移植実験を行った。膵臓原始細胞を増やすために、sBM基質上で15日間分化させたマウスiPS細胞を回収し、新しいsBM基質上に再度播種し、更に10日間培養した。25日目に、分化したiPS細胞を回収し、SCIDマウスの腎被膜の下に移植した。移植の4週間後、移植物を回収し、膵臓の内分泌、外分泌及び導管細胞として陽性の細胞について分析した。図8は、インスリン (Ins)- 又はソマトスタチン(SS)-陽性内分泌細胞、又はDBA陽性導管細胞が高頻度に見られることを示す。アミラーゼ(Amy)陽性細胞も見られたが、低頻度であった。これらの結果は、rLN10-sBM基質上で分化したiPS細胞由来の胚体内胚葉細胞が、膵臓系統に分化できることを示している。
(5) Mouse iPS cell-derived definitive endoderm cells grown on the sBM substrate were able to advance differentiation into the pancreatic lineage under the mouse kidney capsule.
Previously, the present inventors have reported that transplantation of SCID mice under the renal capsule induces maturation of immature pancreatic primitive cells (FIG. 8). In order to confirm whether iPS cells differentiated on the sBM substrate were capable of differentiating into pancreatic lineages, further transplantation experiments were performed on the cells in vivo. In order to increase pancreatic primitive cells, mouse iPS cells differentiated on sBM substrate for 15 days were collected, seeded again on fresh sBM substrate, and cultured for another 10 days. On day 25, differentiated iPS cells were collected and transplanted under the kidney capsule of SCID mice. Four weeks after transplantation, the transplants were collected and analyzed for pancreatic endocrine, exocrine, and positive cells as ductal cells. FIG. 8 shows that insulin (Ins)-or somatostatin (SS) -positive endocrine cells, or DBA-positive duct cells are frequently found. Although amylase (Amy) positive cells were also observed, the frequency was low. These results indicate that iPS cell-derived definitive endoderm cells differentiated on rLN10-sBM substrate can differentiate into pancreatic lineages.
(実施例のまとめ)
 本発明で用いたsBM基質は、HEK293細胞におけるヒトラミニン-511(ラミニンα5, β1 及びγ1)組み換え体が分泌する過剰のヒトラミニン-511及び他の主要基底膜構成成分がMAST-GlcNAcを塗布したfib上に集積することにより構築されたものである。本実施例では、rLN10細胞を使用した。このrLN10-sBMを用いて、ES細胞又はiPSを肝臓系統及び膵臓系統に誘導できた。分化の効率は高く、得られた分化細胞は、成熟型の細胞(膵臓の内分泌、外分泌及び導管細胞)にさらに分化できた。
(Summary of Examples)
The sBM substrate used in the present invention is an excess of human laminin-511 secreted by recombinant human laminin-511 (laminin α5, β1 and γ1) in HEK293 cells and other major basement membrane components on fib coated with MAST-GlcNAc. It is constructed by accumulating in In this example, rLN10 cells were used. Using this rLN10-sBM, ES cells or iPS could be induced in the liver and pancreas strains. The efficiency of differentiation was high, and the obtained differentiated cells could be further differentiated into mature cells (endocrine, exocrine and ductal cells of the pancreas).
実施例2:sBM上でのヒトiPS細胞を膵前駆細胞への分化誘導
(方法)
 培養8日目、20日目、30日目のサンプルよりそれぞれRNAをRNeasyMicro/Mini Kit(Qiagen)のプロトコルに従って抽出し、Oligo dT primers(Toyobo)及びReverTra Ace(Toyobo)を用いて20μlの系でcDNAを合成した。得られたcDNAを10倍希釈後、その1μlをPCR反応の鋳型として使用した。プライマーは下記のとおりである。
hGAPDH-U, CGAGATCCCTCCAAAATCAA;(配列番号45)
hGAPDH-D, CATGAGTCCTTCCACGATACCAA;(配列番号46)
hOct3/4-U, AGGTGTGGGGGATTCCCCCAT;(配列番号47)
hOct3/4-D, GCGATGTGGCTGATCTGCTGC; (配列番号48)
hFoxa2-U, GCAGATACCTCCTACTACCA; (配列番号49)
hFoxa2-D, GAAGCAGGAGTCTACACAGT; (配列番号50)
hPdx1-U, GGATGAAGTCTACCAAAGCTCACGC; (配列番号51)
hPdx1-D, CCAGATCTTGATGTGTCTCTCGGTC; (配列番号52)
Example 2: Induction of differentiation of human iPS cells into pancreatic progenitor cells on sBM (method)
RNA was extracted from the samples on the 8th, 20th, and 30th days according to the protocol of RNeasy R Micro / Mini Kit (Qiagen), and 20 μl using Oligo dT primers (Toyobo) and ReverTra Ace (Toyobo). CDNA was synthesized in the system. The obtained cDNA was diluted 10 times, and 1 μl thereof was used as a template for PCR reaction. The primers are as follows.
hGAPDH-U, CGAGATCCCTCCAAAATCAA; (SEQ ID NO: 45)
hGAPDH-D, CATGAGTCCTTCCACGATACCAA; (SEQ ID NO: 46)
hOct3 / 4-U, AGGTGTGGGGGATTCCCCCAT; (SEQ ID NO: 47)
hOct3 / 4-D, GCGATGTGGCTGATCTGCTGC; (SEQ ID NO: 48)
hFoxa2-U, GCAGATACCTCCTACTACCA; (SEQ ID NO: 49)
hFoxa2-D, GAAGCAGGAGTCTACACAGT; (SEQ ID NO: 50)
hPdx1-U, GGATGAAGTCTACCAAAGCTCACGC; (SEQ ID NO: 51)
hPdx1-D, CCAGATCTTGATGTGTCTCTCGGTC; (SEQ ID NO: 52)
(結果)
 sBMを用いて、ヒトiPS細胞(京大再生研より分与された201B7株)を8日間(d8)、20日間(d20)および30日間(d30)培養したものについてRT-PCRによる遺伝子発現解析を行った。未分化ヒトES細胞(khES-3)(ネガティブコントロール)、ヒト成体膵のcDNA(Clontech Human pancreas total RNAより逆転写したもの)(ポジティブコントロール)。結果を図9に示す。未分化細胞マーカーであるOct3/4の発現は培養が進むにつれて減少し、内胚葉マーカーであるFoxa2の発現はd8より観察され、d20-30にかけて減少する。d20よりPdx1(膵前駆細胞のマーカー遺伝子)の発現が上昇する。Adult panc.を除いた各サンプルのcDNA量はGAPDH発現量で補正している。
(result)
Gene expression analysis by RT-PCR of human iPS cells (201B7 strain distributed by Kyoto University Research Institute) cultured for 8 days (d8), 20 days (d20) and 30 days (d30) using sBM Went. Undifferentiated human ES cells (khES-3) (negative control), human adult pancreas cDNA (reversely transcribed from Clontech Human pancreas total RNA) (positive control). The results are shown in FIG. The expression of Oct3 / 4, an undifferentiated cell marker, decreases as the culture progresses, and the expression of Foxa2, an endoderm marker, is observed from d8 and decreases toward d20-30. Expression of Pdx1 (a marker gene for pancreatic progenitor cells) is increased from d20. The amount of cDNA in each sample excluding Adult panc. Is corrected by the amount of GAPDH expression.
実施例3:sBM上でのヒトES細胞の肝細胞への分化誘導
 khES3株をsBM上に播種して、翌日から分化培地に切り替えて内胚葉分化を開始した。結果を図10に示す。Activin 100ng/mlおよびB27を含むRPMI1640培地で10日間培養することでSox17陽性の内胚葉細胞が分化誘導された。培養10日目から、Dex, HGF, DMSO, OsMを含む無血清培地で培養し、培地は一日おきに交換した。培養20日目にAFP1陽性の未熟な肝細胞が分化誘導され、30日目にはALBUMIN陽性の肝細胞が誘導された。更に肝臓の機能を評価するために、インドシアニングリーンの取り込み実験を行うと、30分の処理でICGを取り込む肝細胞が確認できた。また、リファンピシン2日間添加により、薬物代謝酵素CYP3A4の誘導効果を確認できた。
Example 3: Induction of differentiation of human ES cells into hepatocytes on sBM The khES3 strain was seeded on sBM, and the endoderm differentiation was started by switching to the differentiation medium from the next day. The results are shown in FIG. Differentiation of Sox17-positive endoderm cells was induced by culturing in RPMI1640 medium containing Activin 100ng / ml and B27 for 10 days. From the 10th day of culture, the cells were cultured in a serum-free medium containing Dex, HGF, DMSO, and OsM, and the medium was changed every other day. On day 20 of culture, AFP1-positive immature hepatocytes were induced to differentiate, and on day 30, ALBUMIN-positive hepatocytes were induced. Furthermore, in an indocyanine green uptake experiment to evaluate liver function, hepatocytes that took up ICG were confirmed after 30 minutes of treatment. Moreover, the induction effect of the drug metabolizing enzyme CYP3A4 was confirmed by adding rifampicin for 2 days.

Claims (16)

  1. 生合成基底膜培養基質上で哺乳動物由来のES細胞又はiPS細胞を増殖因子の存在下で培養することを含む、ES細胞又はiPS細胞から膵臓系又は肝臓系細胞へと分化誘導する方法。 A method for inducing differentiation of an ES cell or iPS cell from a ES cell or iPS cell into a pancreatic or liver cell, comprising culturing a mammal-derived ES cell or iPS cell in the presence of a growth factor on a biosynthetic basement membrane culture substrate.
  2. 生合成基底膜培養基質が、支持体上で基底膜形成能を有する細胞を培養することにより調製された生合成基底膜培養基質である、請求項1に記載の方法。 The method according to claim 1, wherein the biosynthetic basement membrane culture substrate is a biosynthetic basement membrane culture substrate prepared by culturing cells having the ability to form a basement membrane on a support.
  3. 生合成基底膜培養基質が、糖鎖を備えた支持体上で基底膜形成能を有する細胞を培養することにより調製された生合成基底膜培養基質である、請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein the biosynthetic basement membrane culture substrate is a biosynthetic basement membrane culture substrate prepared by culturing cells having the ability to form a basement membrane on a support provided with a sugar chain. .
  4. 糖鎖がβ-D-グルコピラノース非還元末端又は2-アセトアミド-2-デオキシ-β-D-グルコピラノース非還元末端をもつ糖鎖である、請求項1から3の何れかに記載の方法。 The method according to any one of claims 1 to 3, wherein the sugar chain is a sugar chain having a β-D-glucopyranose non-reducing end or a 2-acetamido-2-deoxy-β-D-glucopyranose non-reducing end.
  5. 生合成基底膜培養基質が、ヒトラミニン-511アイソフォームの基底膜緻密層構造体(lamina densa)からなるものである、請求項1から4の何れかに記載の方法。 The method according to any one of claims 1 to 4, wherein the biosynthetic basement membrane culture substrate comprises a basement membrane dense layer structure (laminalamdensa) of human laminin-511 isoform.
  6. コラーゲン支持体を、疎水性コポリマーに共有結合した糖鎖で塗布し、次いで、基底膜形成能を有する細胞を播種して培養することにより合成される基底膜を生合成基底膜培養基質として使用する、請求項1から5の何れかに記載の方法。 A basement membrane synthesized by applying a collagen support with a sugar chain covalently bonded to a hydrophobic copolymer and then seeding and culturing cells having the ability to form a basement membrane is used as a biosynthetic basement membrane culture substrate. The method according to claim 1.
  7. 基底膜形成能を有する細胞が、組み換えラミニン-511(ラミニンα5, β1 及びγ1)を過剰発現する細胞である、請求項2から6の何れかに記載の方法。 The method according to any one of claims 2 to 6, wherein the cell having the ability to form a basement membrane is a cell overexpressing recombinant laminin-511 (laminin α5, β1 and γ1).
  8. 哺乳動物由来のES細胞又はiPS細胞が、マウス又はヒト由来のES細胞又はiPS細胞である、請求項1から7の何れかに記載の方法。 The method according to any one of claims 1 to 7, wherein the mammal-derived ES cell or iPS cell is a mouse or human-derived ES cell or iPS cell.
  9. 生合成基底膜培養基質上でマウス由来のES細胞を又はiPS細胞を、ITS(インスリン、トランスフェリン、及び亜セレン酸ナトリウム), アクチビンA及びbFGFの存在下で培養し、次いで、ITS(インスリン、トランスフェリン、及び亜セレン酸ナトリウム), HGF, デキサメタゾン, 及びオンコスタチンM の存在下で培養することにより肝臓系細胞へと分化誘導を行う、請求項1から8の何れかに記載の方法。 Mouse-derived ES cells or iPS cells are cultured in the presence of ITS (insulin, transferrin and sodium selenite), activin A and bFGF on a biosynthetic basement membrane culture substrate, and then ITS (insulin, transferrin) , And sodium selenite), 肝 臓 HGF, dexamethasone, and oncostatin M are cultured in the presence of differentiation to induce differentiation into hepatic cells.
  10. 生合成基底膜培養基質上でヒト由来のES細胞を又はiPS細胞を、アクチビンA、LY294002、酪酸ナトリウム、HGF、デキサメタゾン, 及びオンコスタチンMを含む培地で培養した後に、上記試薬を除いた培地で培養することにより肝臓系細胞への分化誘導を行う、請求項1から9の何れかに記載の方法。 After culturing human-derived ES cells or iPS cells on a biosynthetic basement membrane culture substrate in a medium containing activin A, LY294002, sodium butyrate, HGF, dexamethasone, sputum and oncostatin M, in a medium excluding the above reagents The method according to any one of claims 1 to 9, wherein differentiation induction into liver cells is performed by culturing.
  11. 生合成基底膜培養基質上でES細胞を又はiPS細胞を、ITS(インスリン、トランスフェリン、及び亜セレン酸ナトリウム), ウシ胎仔アルブミン,アクチビンA及びbFGFの存在下で培養し、次いでレチノイン酸の存在下で培養し、その後、ITS(インスリン、トランスフェリン、及び亜セレン酸ナトリウム), ウシ胎仔アルブミン,ニコチンアミド, グルカゴン様ペプチド-1(GLP1)の存在下で培養することにより、膵臓系細胞への分化誘導を行う、請求項1から10の何れかに記載の方法。 ES cells or iPS cells are cultured on biosynthetic basement membrane substrate in the presence of ITS (insulin, transferrin and sodium selenite), cochlear fetal albumin, activin A and bFGF, then in the presence of retinoic acid And then in the presence of ITS (insulin, transferrin, and sodium selenite), cochlear fetal albumin, nicotinamide, and glucagon-like peptide-1 (GLP1), induction of differentiation into pancreatic cells The method according to claim 1, wherein:
  12. ES細胞又はiPS細胞から、膵臓系又は肝臓系の未分化な前駆細胞、膵臓系又は肝臓系の未熟な細胞、又は膵臓系又は肝臓系の成熟細胞の何れかへと分化誘導する、請求項1から11の何れかに記載の方法。 2. Differentiation induction from ES cells or iPS cells into any of undifferentiated progenitor cells of the pancreatic system or liver system, immature cells of the pancreatic system or liver system, or mature cells of the pancreatic system or liver system. To 11. The method according to any one of 11 to 11.
  13. 請求項1から12の何れかに記載の方法により得られる、ES細胞又はiPS細胞から分化誘導された膵臓系又は肝臓系細胞。 A pancreatic or liver cell obtained by the method according to any one of claims 1 to 12 and induced to differentiate from an ES cell or an iPS cell.
  14. 請求項1から12の何れかに記載の方法によってES細胞又はiPS細胞から膵臓系又は肝臓系細胞へと分化誘導する際に、被験物質の存在下でES細胞又はiPS細胞を培養し、被験物質の非存在下でES細胞又はiPS細胞を培養した場合における膵臓系又は肝臓系細胞への分化誘導の程度と、被験物質の存在下でES細胞又はiPS細胞を培養した場合における膵臓系又は肝臓系細胞への分化誘導の程度とを比較することを含む、ES細胞又はiPS細胞から膵臓系又は肝臓系細胞へと分化誘導を促進又は阻害する物質をスクリーニングする方法。 13. Inducing differentiation from ES cells or iPS cells into pancreatic or liver cells by the method according to any one of claims 1 to 12, the ES cells or iPS cells are cultured in the presence of the test substance, and the test substance Degree of differentiation induction into pancreatic or hepatic cells when ES cells or iPS cells are cultured in the absence, and pancreatic or liver systems when ES cells or iPS cells are cultured in the presence of the test substance A method for screening a substance that promotes or inhibits differentiation induction from ES cells or iPS cells into pancreatic or liver cells, comprising comparing the degree of differentiation induction into cells.
  15. 被験物質が成長因子又は低分子化合物である、請求項14に記載のスクリーニング方法。 The screening method according to claim 14, wherein the test substance is a growth factor or a low molecular weight compound.
  16. 膵臓系又は肝臓系細胞で発現するマーカーの発現量を指標として、膵臓系又は肝臓系細胞へと分化誘導の程度を測定する、請求項14又は15に記載のスクリーニング方法。 The screening method according to claim 14 or 15, wherein the degree of differentiation induction into pancreatic or liver cells is measured using the expression level of a marker expressed in pancreatic or liver cells as an index.
PCT/JP2010/058284 2009-06-05 2010-05-17 Method for induction of cell differentiation WO2010140464A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-136520 2009-06-05
JP2009136520 2009-06-05

Publications (1)

Publication Number Publication Date
WO2010140464A1 true WO2010140464A1 (en) 2010-12-09

Family

ID=43297601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/058284 WO2010140464A1 (en) 2009-06-05 2010-05-17 Method for induction of cell differentiation

Country Status (2)

Country Link
JP (1) JP2011010653A (en)
WO (1) WO2010140464A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012105505A1 (en) * 2011-01-31 2012-08-09 独立行政法人国立国際医療研究センター Highly functional liver cells derived from pluripotent stem cells, method for producing same, and method for testing metabolism/toxicity of drug
WO2015080297A1 (en) 2013-11-27 2015-06-04 Kyoto Prefectural Public University Corporation Application of laminin to corneal endothelial cell culture
US9617517B2 (en) 2011-05-02 2017-04-11 National University Corporation Kumamoto University Small chemical compound which promotes induction of differentiation of stem cells into insulin-producing cells and method for inducing differentiation of stem cells into insulin-producing cells using said small chemical compound
EP3147354A4 (en) * 2014-05-23 2017-11-22 The University of Tokyo Method for producing mesothelial cell, and cell sheet for concrescence prevention
US11959103B2 (en) 2016-11-11 2024-04-16 Osaka University Method for inducing pluripotent stem cells to differentiate into somatic cells

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9404086B2 (en) * 2014-03-26 2016-08-02 Ge Healthcare Uk Limited Method for cell differentiation
HUE041518T2 (en) * 2015-02-20 2019-05-28 Inst Nat Sante Rech Med Use of a laminin for differentiating pluripotent cells into hepatocyte lineage cells

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002064748A2 (en) * 2001-02-14 2002-08-22 Furcht Leo T Multipotent adult stem cells, sources thereof, methods of obtaining and maintaining same, methods of differentiation thereof, methods of use thereof and cells derived thereof
JP2003093050A (en) * 2001-09-25 2003-04-02 Japan Science & Technology Corp Method for preparing basement membrane
WO2006020919A2 (en) * 2004-08-13 2006-02-23 University Of Georgia Research Foundation, Inc. Compositions and methods for self-renewal and differentiation in human embryonic stem cells
WO2006108361A1 (en) * 2005-04-15 2006-10-19 Peking University Method of inducing embryonic stem cells into pancreatic cells
WO2006126574A1 (en) * 2005-05-24 2006-11-30 Kumamoto University Method for induction of es cell differentiation
WO2007103282A2 (en) * 2006-03-02 2007-09-13 Cythera, Inc. Endocrine precursor cells, pancreatic hormone-expressing cells and methods of production

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002064748A2 (en) * 2001-02-14 2002-08-22 Furcht Leo T Multipotent adult stem cells, sources thereof, methods of obtaining and maintaining same, methods of differentiation thereof, methods of use thereof and cells derived thereof
JP2003093050A (en) * 2001-09-25 2003-04-02 Japan Science & Technology Corp Method for preparing basement membrane
WO2006020919A2 (en) * 2004-08-13 2006-02-23 University Of Georgia Research Foundation, Inc. Compositions and methods for self-renewal and differentiation in human embryonic stem cells
WO2006108361A1 (en) * 2005-04-15 2006-10-19 Peking University Method of inducing embryonic stem cells into pancreatic cells
WO2006126574A1 (en) * 2005-05-24 2006-11-30 Kumamoto University Method for induction of es cell differentiation
WO2007103282A2 (en) * 2006-03-02 2007-09-13 Cythera, Inc. Endocrine precursor cells, pancreatic hormone-expressing cells and methods of production

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
EIHACHIRO KAWASE ET AL.: "Heisei 20 Nendo Chukan Nenpo Model Saibo o Mochiita Idenshi Kino To Kaiseki Gijutsu Kaihatsu (Kenkyu-yo Model Saibo no Sosei Gijutsu Kaihatsu) Kenkyu-yo Model Saibo no Sosei Gijutsu Kaihatsu", NEW ENERGY AND INDUSTRIAL TECHNOLOGY DEVELOPMENT ORGANIZATION (NEDO), KANAGAWA-KEN KAWASAKI-SHI, JAPAN, 15 May 2009 (2009-05-15), pages 6 - 8, Retrieved from the Internet <URL:https://app5.infoc.nedo.go.jp/disclosure/Search> [retrieved on 20100720] *
KATSUMI MOCHITATE: "Heisei 20 Nendo Chukan Nenpo Model Saibo o Mochiita Idenshi Kino To Kaiseki Gijutsu Kaihatsu (Kenkyu-yo Model Saibo no Sosei Gijutsu Kaihatsu) Giji Kiteimaku o Riyo shita ES Saibo no Bunka Yudo Seigyo Gijutsu no Kaihatsu", NEDO SEIKA HOKOKUSHO DATABASE. NEW ENERGY AND INDUSTRIAL TECHNOLOGY DEVELOPMENT ORGANIZATION (NEDO), 15 May 2009 (2009-05-15), pages 1, Retrieved from the Internet <URL:https://app5.infoc.nedo.go.jp/disclosure/Search> [retrieved on 20100720] *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012105505A1 (en) * 2011-01-31 2012-08-09 独立行政法人国立国際医療研究センター Highly functional liver cells derived from pluripotent stem cells, method for producing same, and method for testing metabolism/toxicity of drug
US9617517B2 (en) 2011-05-02 2017-04-11 National University Corporation Kumamoto University Small chemical compound which promotes induction of differentiation of stem cells into insulin-producing cells and method for inducing differentiation of stem cells into insulin-producing cells using said small chemical compound
WO2015080297A1 (en) 2013-11-27 2015-06-04 Kyoto Prefectural Public University Corporation Application of laminin to corneal endothelial cell culture
EP3147354A4 (en) * 2014-05-23 2017-11-22 The University of Tokyo Method for producing mesothelial cell, and cell sheet for concrescence prevention
US11959103B2 (en) 2016-11-11 2024-04-16 Osaka University Method for inducing pluripotent stem cells to differentiate into somatic cells

Also Published As

Publication number Publication date
JP2011010653A (en) 2011-01-20

Similar Documents

Publication Publication Date Title
AU2014248167B2 (en) Methods and compositions for culturing endoderm progenitor cells in suspension
Higuchi et al. Synthesized basement membranes direct the differentiation of mouse embryonic stem cells into pancreatic lineages
Bajpai et al. Functional vascular smooth muscle cells derived from human induced pluripotent stem cells via mesenchymal stem cell intermediates
JP5938726B2 (en) Method and medium for improving differentiation induction efficiency of pluripotent stem cells
WO2010140464A1 (en) Method for induction of cell differentiation
JP2018198620A (en) METHOD AND COMPOSITION FOR CREATING PANCREATIC PROGENITOR CELLS AND FUNCTIONAL β-CELLS FROM hPSC
EP3239294A1 (en) Primitive gut endoderm cells and method for producing same
US20230227788A1 (en) Isolation of bona fide pancreatic progenitor cells
KR20170031254A (en) Method for proliferation of pancreatic progenitor cells
WO2011009294A1 (en) Methods for obtaining hepatic cells, hepatic endoderm cells and hepatic precursor cells by inducing the differentiation
US9796962B2 (en) Method for generating pancreatic hormone-producing cells
CN111394298A (en) Method for differentiating human embryonic stem cells into pancreatic endocrine cells using HB9 regulator
JP2008514214A (en) Method for generating hepatocyte-like cells from human blastocyst-derived stem cells (hBS)
EP2737057B1 (en) Novel markers for dopaminergic neuron progenitor cells
JPWO2008149807A1 (en) ES cell differentiation induction method
AU2017205801A1 (en) Method for producing hepatic stem/precursor cells from mature hepatic cells using low-molecular-weight compound
WO2019227198A1 (en) Methods and compositions comprising tankyrase inhibitors for generating insulin producing cells
JP2011115161A (en) Method for inducing differentiation of cell
JP2020115771A (en) Method for producing cartilage tissue from pluripotent stem cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10783248

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10783248

Country of ref document: EP

Kind code of ref document: A1