WO2010140453A1 - Optical module and optical component for the optical module - Google Patents
Optical module and optical component for the optical module Download PDFInfo
- Publication number
- WO2010140453A1 WO2010140453A1 PCT/JP2010/058157 JP2010058157W WO2010140453A1 WO 2010140453 A1 WO2010140453 A1 WO 2010140453A1 JP 2010058157 W JP2010058157 W JP 2010058157W WO 2010140453 A1 WO2010140453 A1 WO 2010140453A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical
- glass
- light
- component
- optical module
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4219—Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
- G02B6/4228—Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements
- G02B6/423—Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements using guiding surfaces for the alignment
- G02B6/4231—Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements using guiding surfaces for the alignment with intermediate elements, e.g. rods and balls, between the elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4204—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
- G02B6/4206—Optical features
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4292—Coupling light guides with opto-electronic elements the light guide being disconnectable from the opto-electronic element, e.g. mutually self aligning arrangements
Definitions
- the present invention relates to an optical module used in the fields of optical communication, optical measurement, CATV system, and the like, and an optical component for the optical module, and more specifically, an optical module having a function of attenuating light on the optical path, and The present invention relates to an optical component for the optical module.
- an optical module used in the fields of optical communication, optical measurement, CATV system, and the like transmits light between an optical element that emits or receives light and an optical fiber continuous on the network side. It is a device that transmits information contained in light by performing propagation.
- an optical component including one or a plurality of glass components for example, a lens
- a lens is incorporated on the optical path between the optical element and the optical fiber.
- this type of optical module is required to increase long-distance transmission and communication capacity in optical communication applications. Along with this, higher output of light used as a transmission medium is being promoted. Similarly, in an optical module used for other purposes, the actual situation is that high output of light is promoted for various reasons.
- the former method separates the optical fiber into two in the middle, and separates the separated optical fibers into separate ferrules.
- the end faces of the ferrules are aligned with the optical axes of the optical fibers, they are brought into contact with each other through a resin filter (light attenuation film) deposited with a metal film, A filter is interposed between them.
- an optical fiber containing a dopant is held in the inner hole of the ferrule, and both ends of the optical fiber are held in the inner hole of another ferrule.
- the end of the optical fiber and the optical axis are matched to each other, and an optical fiber having an attenuation function is interposed in the middle of the optical fiber.
- An object of the present invention is to provide an optical module capable of reliably attenuating light without increasing the number of parts.
- the present invention provides an optical element that performs at least one of light emission and light reception, and an end face of the optical fiber that is inserted and fixed in the optical fiber holding member and is closest to the optical element.
- the optical part for an optical module provided with one or a plurality of glass parts on the optical path at least one of the one or the plurality of glass parts is characterized by being provided with a light attenuation function.
- the glass component having the light attenuating function contains a dopant that attenuates light.
- the glass part is provided with a dopant and has a function of attenuating light, the light attenuation characteristic is hardly changed by heat. For this reason, when the glass component attenuates light, even if the glass component generates heat due to absorption of light, the light attenuation characteristic hardly changes. Therefore, it is possible to provide an optical module with high reliability by manufacturing the optical module by incorporating the optical component for the optical module.
- the amount of light attenuation can be easily adjusted by adjusting the unit optical path length (sphere diameter, length, thickness) of the glass component containing the dopant.
- the dopant is preferably at least one ion selected from Co, Mn, Ni, Cr, V, Fe, and Cu.
- the dopant is an ion means that the dopant in the glass component is contained in an ionized state.
- the dopant is oxidized. Doping in the state of an object or the like is also allowed.
- an appropriate attenuation characteristic can be obtained at a desired wavelength by the absorption characteristic specific to the dopant. That is, for example, when Co ions are used as the dopant, the wavelength dependence of the light attenuation characteristic is reduced in the wavelength band of 1300 to 1600 nm, so that the wavelength band mainly used in the field of long-distance optical communication ( 1310 nm to 1550 nm), it becomes possible to attenuate light at a constant level.
- two or more glass parts containing the dopant may be disposed on an optical path between the optical element and an end face of the optical fiber closest to the optical element.
- the total amount of light attenuation can be easily adjusted by combining the glass parts.
- the light attenuation function is given to two or more glass parts to achieve the predetermined light attenuation, compared to the case where the same attenuation is realized by giving the light attenuation function to one glass part.
- the amount of light absorbed by each glass component can be reduced. Therefore, there also exists an advantage that the heat_generation
- the glass component having the light attenuation function may be a lens that collects light passing on an optical path between the optical element and an end face of the optical fiber closest to the optical element. Good. Further, in the case where a glass stub having a convex spherical surface that comes into contact with the end face closest to the optical element of the optical fiber holding member is provided, even if the glass component having the light attenuation function is the glass stub Good.
- the glass component having the light attenuation function is directly fixed to the holding member for holding the glass component on the optical path by heat treatment, or indirectly fixed to the low melting point glass. Is preferred.
- the fixing portion of the glass component is formed of glass, so Since it is difficult for the fixing force to decrease, it is very advantageous in practice.
- the ferrule and the optical fiber are usually bonded by a resin adhesive.
- the adhesive that bonds the optical fiber gradually deteriorates and the fixing force may be reduced. Therefore, the optical fiber inserted through the ferrule is likely to be misaligned, and there is a possibility that the light coupling efficiency may be greatly reduced, which is a problem.
- a cylindrical member that holds the optical fiber holding member in the inner hole may be provided.
- the optical fiber holding member can be easily positioned, the accuracy of adjusting the optical axis of light can be improved and the light coupling efficiency can be increased.
- the optical fiber holding member is provided with a plate glass that is in contact with the end face closest to the optical element and hermetically seals the opening of the cylindrical member on the optical element side
- the glass part provided with the light attenuation function may be the plate glass.
- an optical module by incorporating optical components for an optical module having the above-described configuration as appropriate.
- the function of attenuating light is given to the existing glass parts arranged on the optical path, the number of parts does not increase excessively to attenuate the light. . Therefore, it is possible to provide an optical module that can reliably attenuate light while preventing an increase in the number of components.
- FIG. 1 is a schematic longitudinal sectional view showing a main part of an optical module according to a first embodiment of the present invention.
- the schematic longitudinal cross-sectional view which shows the principal part of the optical module which concerns on the 2nd Embodiment of this invention.
- the schematic longitudinal cross-sectional view which shows the principal part of the optical module which concerns on the 3rd Embodiment of this invention.
- the schematic longitudinal cross-sectional view which shows the principal part of the optical module which concerns on the 4th Embodiment of this invention.
- the schematic longitudinal cross-sectional view which shows the principal part of the optical module which concerns on the 5th Embodiment of this invention.
- FIG. 1 is a diagram showing an optical module according to the first embodiment of the present invention.
- the optical module includes an optical module optical component 1 as a main configuration.
- the range in which the optical path of light is formed is indicated by a chain line.
- the optical component 1 for an optical module is housed in a cylindrical sleeve folder 2 having a flange portion 2a on one end side (on the optical element 10 side disposed when incorporated in an optical module), and an inner hole of the sleeve folder 2. And a glass stub 4 fixed to the inner surface of one end of the guide sleeve 3.
- the ferrule 6 with the optical fiber 5 inserted and fixed is inserted into the inner hole of the guide sleeve 3 from the other end side (network side).
- the end surfaces of the ferrule 6 and the glass stub 4 are abutted with each other.
- the butted portions of the glass stub 4 and the ferrule 6 are each processed into a convex spherical surface in order to suppress a decrease in light coupling efficiency.
- the end surface of the glass stub 4 on the side opposite to the convex spherical surface may be a plane parallel to a plane orthogonal to the optical axis.
- the inclined surface is inclined with respect to a plane orthogonal to the optical axis.
- the ferrule 6 serves as an optical fiber holding member, and no other optical fiber exists on the optical path on the optical element 10 side than the end of the ferrule 6 on the optical element 10 side. Yes.
- the glass stub 4 is manufactured by heat-treating a glass rod disposed on one end side of the inner hole of the guide sleeve 3. More specifically, first, the glass rod is softened by heat treatment so that both end surfaces of the glass rod are convex spherical surfaces by surface tension, and the periphery of the guide sleeve 3 is thermally fixed to the inner surface of the guide sleeve 3. Thereafter, the above-described glass stub 4 is manufactured by processing the convex spherical surface on one side of the glass rod on the optical element 10 side into an inclined surface that is inclined with respect to a plane orthogonal to the optical axis. Therefore, the glass stub 4 is a product composed of a single type of glass component in which no other member such as an optical fiber exists.
- the optical component 1 for an optical module further includes a cylindrical stem folder 7 fixed to the end face of the flange 2a of the sleeve folder 2, and a lens folder 8 fitted and fixed in the inner hole of the stem folder 7.
- the lens holder 8 is provided with a spherical lens 9 fixed with a low melting point glass G.
- the shape of the lens is not limited to the spherical lens 9, and the shape may be other than a spherical shape as long as the lens has a light condensing function.
- the stem 11 in which the optical element 10 is arranged is fixed to the lens folder 8, and the optical element 10 is connected to the lens folder 8 and the stem 11. It is accommodated in the enclosed space.
- the optical element 10 has at least one of a function of emitting light and a function of receiving light.
- a light emitting element such as a semiconductor laser or a light receiving element such as a photodiode is used depending on the use of the optical module. Elements are used.
- the optical element 10 is composed of a light receiving element, and receives the light transmitted from the network side while being condensed by the ball lens 9.
- the optical component 1 for the optical module includes the sleeve folder 2, the guide sleeve 3, the glass stub 4, the stem folder 7, the lens folder 8, and the ball lens 9. That is, the optical module optical component 1 is a portion excluding the ferrule 6 that holds the optical fiber 5 continuous on the network side and the stem 11 on which the optical element 10 is mounted from the configuration of the optical module.
- the glass stub 4 which is a glass part has a function of attenuating light.
- the function of attenuating light is imparted to the glass stub 4 by containing a dopant that attenuates light.
- a dopant metal ions such as Co, Mn, Ni, Cr, V, Fe, and Cu are used.
- the dopant can be contained in the glass stub 4 if the dopant is preliminarily contained in the glass rod before the heat treatment that is the base material of the glass stub 4. .
- content of a dopant is suitably adjusted according to a light attenuation amount.
- the glass stub 4 can attenuate the light to a predetermined level. Therefore, it is possible to reliably prevent the optical element 10 from being damaged by receiving light of a light amount that is greater than or equal to the light receivable level by the optical element 10.
- the glass stub 4 is directly fixed to the inner surface of the guide sleeve 3 by heat treatment, the glass stub 4 is fixed to the guide sleeve 3 with glass. Therefore, when the glass stub 4 attenuates light, even if the glass stub 4 generates heat due to absorption of light, the fixing portion of the glass stub 4 has high heat resistance derived from the glass, so that the fixing portion deteriorates due to heat. As a result, it is possible to reliably prevent a situation in which the fixing force is reduced. As a result, even when high-power light is used, the positional deviation of the glass stub 4 does not occur due to heat, so that light can be stably attenuated.
- the glass composition system that can be used for the glass stub 4 described above, it is preferably made of borosilicate glass.
- the glass stub 4 is SiO 2 65 to 85%, B 2 O 3 8 to 25%, LiO 2 + Na 2 O + K 2 O 1.5 to 10%, Al 2 O 3 0 to 10% by mass%. It is preferably made of borosilicate glass containing MgO + CaO + SrO + BaO + ZnO 0-5% and CoO 0.1-10%. This is because the weather resistance is excellent and the refractive index difference from the core portion of the optical fiber 5 can be reduced.
- CoO is a component that functions as a dopant that attenuates light.
- FIG. 2 is a diagram showing an optical module according to the second embodiment of the present invention.
- the optical module according to the second embodiment is different from the optical module according to the first embodiment described above at the end of the guide sleeve 3 included in the optical component 1 for optical module on the optical element 10 side.
- a fiber stub 13 in which the optical fiber 12 is inserted and fixed is arranged.
- the fiber stub 13 is inserted into the inner hole of the guide sleeve 3 and is abutted with the ferrule 6 inside the guide sleeve 3.
- the butted portion of the fiber stub 13 is a convex spherical surface, and the end surface opposite to the butted portion, that is, the end surface on the optical element 10 side is with respect to a plane orthogonal to the optical axis.
- the surface is inclined.
- the optical fiber holding member is composed of the ferrule 6 and the fiber stub 13, and other optical fibers are disposed on the optical path on the optical element 10 side than the end surface on the optical element 10 side of the fiber stub 13. Is in a state that does not exist.
- the spherical lens 9 is provided with the above-described dopant, thereby providing a light attenuation function.
- various glass compositions such as borosilicate glass and B 2 O 3 —La 2 O 3 —ZnO—Ta 2 O 5 glass are used depending on the refractive index. be able to.
- the spherical lens 9 is in mass%, SiO 2 0 to 10%, Al 2 O 3 0 to 15%, B 2 O 3 5 to 25%, Li 2 O + Na 2 O + K 2 O 0-10%, MgO 0-10%, CaO 0-7%, SrO 0-5%, BaO 0-12%, ZnO 10-30%, La 2 O 3 15 B 2 containing ⁇ 35%, Ta 2 O 5 15.5-25%, ZrO 2 0-10%, Gd 2 O 3 0-20%, WO 3 0-10%, CoO 0.1-10% It is preferably made of O 3 —La 2 O 3 —ZnO—Ta 2 O 5 glass. Of the above composition, CoO is a component that functions as a dopant.
- FIG. 3 is a diagram showing an optical module according to the third embodiment of the present invention.
- the optical module according to the third embodiment is largely different from the optical modules according to the first and second embodiments in two ways.
- the guide sleeve 3 is omitted, and the ferrule 6 is directly held in the inner hole of the sleeve folder 2.
- the opening on the optical element 10 side of the sleeve folder 2 included in the optical component 1 for an optical module is hermetically sealed with a plate glass 14 in order to prevent entry of foreign matters such as dust from the outside,
- the end face of the ferrule 6 on the optical element 10 side is abutted against and brought into contact with the plate glass 14.
- the plate glass 14 is indirectly fixed to the inner surface of the sleeve folder 2 with a low melting point glass or fixed with an adhesive.
- the plate glass 14 is fixed in a state of being in contact with the stopper 2b extending to the inner diameter side at the end of the sleeve folder 2 on the optical element 10 side.
- the light attenuation function is imparted by containing the above-mentioned dopant in the plate glass 14.
- the plate glass 14 As a glass composition that can be used for the plate glass 14, various glass compositions such as soda lime glass and borosilicate glass can be used. When it is necessary to reduce the influence of the reflected light on the optical fiber 5 and the plate glass 14, the plate glass 14 is 50% by mass, SiO 2 50-80%, Al 2 O 3 0-20%, B 2 O 3. 5-20%, MgO 0-10%, CaO 0-10%, SrO 0-10%, BaO 0-10%, Na 2 O 0-10%, K 2 O 0-10%, ZnO 0-10% , TiO 2 0 to 10%, ZrO 2 0 to 10%, and CoO 0.1 to 10%. In the above composition, CoO is a component that functions as a dopant.
- this plate glass 14 is also abutted against the ferrule 6, it is preferable that it is the glass composition similar to the glass stub 4 demonstrated in said 1st Embodiment. Moreover, you may make it incline the end surface by the side of the optical element 10 of the plate glass 14 with respect to the plane orthogonal to an optical axis.
- FIG. 4 is a diagram showing an optical module according to the fourth embodiment of the present invention.
- the optical module according to the fourth embodiment is different from the optical module according to the third embodiment in that the plate glass 14 is omitted and the tip of the ferrule 6 is directly abutted against the stopper 2b of the sleeve folder 2. At the point where it was positioned.
- the glass component on the optical path between the optical element 10 and the end surface of the ferrule 6 on the optical element 10 side is only the spherical lens 9
- the light attenuation function is imparted.
- FIG. 5 shows an optical module according to the fifth embodiment of the present invention.
- the optical module according to the fifth embodiment is different from the optical modules according to the first to fourth embodiments in that a receptacle in which a ferrule 6 that holds an optical fiber 5 that propagates light is detachably held is held.
- the fiber pigtail 15 in which the optical fiber 5 is inserted and fixed is not a type, but is a pigtail type optical module fixed to the stem folder 7 via the pigtail support 16.
- the end face of the fiber pigtail 15 on the optical element 10 side may be a plane parallel to a plane orthogonal to the optical axis.
- the end surface on the plane orthogonal to the optical axis is used. It has an inclined surface.
- the optical fiber holding member becomes the fiber pigtail 15 and there is no other optical fiber on the optical path on the optical element 10 side than the end face on the optical element 10 side of the fiber pigtail 15. It has become.
- the lens 9 since the glass component on the optical path between the optical element 10 and the end face on the optical element 10 side of the fiber pigtail 16 is only the spherical lens 9, the lens 9 has a light attenuation function by containing the above-mentioned dopant.
- the optical modules according to the first to fifth embodiments of the present invention light is attenuated to the existing glass parts (glass stub 4, spherical lens 9, plate glass 14) arranged on the optical path. Therefore, the number of parts does not increase excessively in order to attenuate light. Therefore, it is possible to provide an optical module that can reliably attenuate light while preventing an increase in the number of components. Moreover, since the function which attenuates light is provided by making a glass component contain a metal ion as a dopant, the advantage that an attenuation characteristic cannot change easily with heat can also be enjoyed.
- the glass component is directly fixed to the holding member (the guide sleeve 3 or the lens folder 8) or indirectly fixed by the low melting point glass, the glass component is not lighted when the light is attenuated. Even if a part of the heat is absorbed and heat is generated, it is difficult to cause a situation in which the fixed portion is deteriorated by heat. Therefore, it is possible to prevent the positional deviation of the glass parts as much as possible.
- the plate glass 14 even if the plate glass 14 is fixed to the opening of the guide sleeve 3 with an adhesive, the plate glass 14 is placed in the opening of the guide sleeve 3 when the ferrule 6 is abutted against the plate glass 14. Since it is pressed against the provided stopper 2b, it is possible to prevent displacement of the plate glass 14. Moreover, even if a positional deviation occurs in the plate glass 14, the plate glass 14 does not have a function of condensing light and only allows light to pass therethrough.
- this invention is not limited to said embodiment, It can implement with a various form.
- the glass components glass stub 4, ball lens 9, plate glass 14
- the glass stub 4 and the spherical lens 9 may be provided with an optical attenuation function.
- a light attenuation function may be imparted to both the plate glass 14 and the spherical lens 9.
- the amount of light attenuation can be easily and reliably increased as compared with the case where only one of the glass parts is provided with the light attenuation function.
- the amount of light attenuation as a whole can be easily adjusted by combining these glass components.
- when realizing a predetermined amount of light attenuation it is only necessary to absorb light step by step with each glass component, so that the amount of light absorption with one glass component can be kept small. it can. Therefore, the calorific value of the individual glass parts is relaxed, and the heat resistance can be further improved. Therefore, there is an advantage that it is possible to suitably cope with a request for further increasing the output of light.
- the light attenuation function may be given only to the spherical lens 9.
- the spherical lens 9 is often desired to have a high refractive index in order to improve the light coupling efficiency and shorten the focal length to make the device compact.
- the spherical lens 9 contains a metal ion dopant, it is often possible to improve the refractive index as well as the light attenuation function. Therefore, it can be said that providing the light attenuation function to the spherical lens 9 as described above is preferable in that a high refractive index can be achieved simultaneously with the provision of the attenuation function.
- the optical attenuation function is imparted to the glass component by containing the dopant.
- the glass module is formed by, for example, vapor deposition or sputtering.
- a light attenuation function may be imparted to the glass component by forming a metal film such as Cu on the surface of the component.
- the attenuation factor of light was confirmed when the glass stub 4 containing the glass composition shown in Table 1 below was used.
- Example 1 As can be seen from Table 1 above, it can be confirmed that the light is reliably attenuated when any of the glass stubs 4 of Examples 1 to 3 is used. Specifically, in Example 1, an attenuation factor of 3.0 dB or more is realized for each of light of 1310 nm and 1550 nm. Similarly, the attenuation rate of 5.7 dB or more is achieved in Example 2 and the attenuation rate of 15.0 dB or more is achieved in Example 3 with respect to both lights of these two wavelengths.
- the light attenuation rate was confirmed when the spherical lens 9 containing the glass composition shown in Table 2 below was used.
- the light is reliably attenuated even when any of the spherical lenses 9 of Examples 4 to 6 is used. Specifically, with respect to each of light of 1310 nm and 1550 nm, the attenuation rate of 2.9 dB or more in Example 4, 5.7 dB or more in Example 5, and 15.0 dB or more in Example 6 The rate is realized.
- the attenuation factor of light was confirmed when the plate glass 14 containing the glass composition shown in Table 3 below was used.
- the light is reliably attenuated when any of the glass plates 14 of Examples 7 to 9 is used. Specifically, with respect to each of light at 1310 nm and 1550 nm, the attenuation rate of 1.5 dB or more in Example 7, the attenuation rate of 2.9 dB or more in Example 8, and the attenuation of 7.5 dB or more in Example 9 The rate is realized.
- the wavelength dependency of the attenuation factor is in the wavelength band of 1310 to 1550 nm. It can be recognized that there are few. Since this wavelength band is a band used in long-distance optical communication, if these optical modules are used for the application, highly reliable communication can be realized.
- the light attenuation factor can be adjusted by appropriately combining the glass stub 4, the spherical lens 9, and the plate glass 14 according to these embodiments.
- the glass stub 4 of Example 1 and the spherical lens 9 of Example 5 are incorporated, light in the wavelength band of 1310 to 1550 nm
- an attenuation factor of about 9.0 dB can be realized.
- an attenuation factor of about 12.0 dB with respect to light having a wavelength band of 1310 to 1550 nm. can be realized.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Couplings Of Light Guides (AREA)
- Semiconductor Lasers (AREA)
- Light Receiving Elements (AREA)
Abstract
Provided is an optical module in which light can be certainly attenuated without increasing the number of the components. An optical component (1) for an optical module, comprising a spherical lens (9), a guide sleeve (3) for holding a ferrule (6) in which an optical fiber (5) is inserted and secured, in a bore, and a glass stub (4) which is arranged in the bore of the guide sleeve (3) and which has a spherically convex surface which is in contact with an end surface of the ferrule (6) on the optical element (10) side is fabricated. When the optical component is fabricated, a dopant is contained in the glass stub (4) to provide a light attenuating function. An optical module assembled from the optical component (1) is fabricated.
Description
本発明は、光通信、光計測、CATVシステム等の分野で用いられる光モジュール及びその光モジュール用光学部品に関するものであって、詳しくは、その光路上で光を減衰する機能を有する光モジュール及びその光モジュール用光学部品に関する。
The present invention relates to an optical module used in the fields of optical communication, optical measurement, CATV system, and the like, and an optical component for the optical module, and more specifically, an optical module having a function of attenuating light on the optical path, and The present invention relates to an optical component for the optical module.
周知のように、光通信、光計測、CATVシステム等の分野に用いられる光モジュールは、光の発光又は受光の少なくとも一方を行う光素子と、ネットワーク側に連続する光ファイバとの間で光の伝搬を行うことで、光に含まれる情報を伝達する装置である。この光モジュールには、光素子と光ファイバとの間の光路上に、1又は複数のガラス部品(例えば、レンズなど)を備えた光学部品が組み込まれている。
As is well known, an optical module used in the fields of optical communication, optical measurement, CATV system, and the like transmits light between an optical element that emits or receives light and an optical fiber continuous on the network side. It is a device that transmits information contained in light by performing propagation. In this optical module, an optical component including one or a plurality of glass components (for example, a lens) is incorporated on the optical path between the optical element and the optical fiber.
ところで、この種の光モジュールには、光通信用途において、長距離伝送や通信容量の増加が要請されている。これに伴って、伝送媒体として利用する光の高出力化が推進されている。同様に、他用途に用いられる光モジュールにおいても、種々の理由から光の高出力化が推進されているのが実情である。
By the way, this type of optical module is required to increase long-distance transmission and communication capacity in optical communication applications. Along with this, higher output of light used as a transmission medium is being promoted. Similarly, in an optical module used for other purposes, the actual situation is that high output of light is promoted for various reasons.
しかしながら、このように高出力の光を近距離の通信で利用する場合、何ら対策を講じなければ、受光機能を有する光素子で受光可能なレベル以上の光が受光され、光素子が損傷を来たしてしまう。そのため、予め光路上で光を所定レベルまで減衰させる対策が講じられるのが通例とされており、具体的な対策としては、樹脂製のフィルタを介在させて2つの光ファイバを接続する方法や、光ファイバ中に光を減衰させる機能を有するドーパントを含有させる方法が公知となっている。
However, when high-power light is used in short-distance communication in this way, unless measures are taken, light exceeding the level that can be received by an optical element having a light-receiving function is received and the optical element is damaged. End up. Therefore, it is customary to take measures to attenuate light to a predetermined level on the optical path in advance, and as a specific measure, a method of connecting two optical fibers through a resin filter, A method of adding a dopant having a function of attenuating light in an optical fiber is known.
これら公知の方法について詳述すると、前者の方法は、特許文献1に開示されているように、光ファイバをその中途部で2つに分離するとともに、その分離したそれぞれの光ファイバを別々のフェルールの内孔に保持し、各フェルールの一端面同士を光ファイバの光軸を合わせた状態で、金属膜を蒸着した樹脂製のフィルタ(光減衰膜)を介して接触させ、分離した光ファイバの間にフィルタを別途介在させるというものである。
When these known methods are described in detail, as disclosed in Patent Document 1, the former method separates the optical fiber into two in the middle, and separates the separated optical fibers into separate ferrules. In the state where the end faces of the ferrules are aligned with the optical axes of the optical fibers, they are brought into contact with each other through a resin filter (light attenuation film) deposited with a metal film, A filter is interposed between them.
また、後者の方法は、特許文献2に開示されているように、フェルールの内孔にドーパントが含有された光ファイバを保持し、その光ファイバの両端部を別のフェルールの内孔に保持された光ファイバの端部と光軸を合わせた状態で突き合わせて、光ファイバの途中に減衰機能を有する光ファイバを別途介在させるというものである。
In the latter method, as disclosed in Patent Document 2, an optical fiber containing a dopant is held in the inner hole of the ferrule, and both ends of the optical fiber are held in the inner hole of another ferrule. The end of the optical fiber and the optical axis are matched to each other, and an optical fiber having an attenuation function is interposed in the middle of the optical fiber.
しかしながら、特許文献1及び2のいずれに開示の方法も、樹脂製のフィルタや、ドーパントが含有された光ファイバを光路上に介在させるために、本来光路上に存在しないフェルール等を、光を減衰させるためだけに別途配置する必要が生じることから、部品点数の増加が避けられない。このように部品点数が多くなれば、組み立て作業に余分な工数が強いられるとともに、製造コストが高騰するという問題が生じる。
However, both of the methods disclosed in Patent Documents 1 and 2 attenuate the light by using a ferrule or the like that does not originally exist in the optical path in order to interpose an optical fiber containing a resin filter or a dopant in the optical path. Therefore, an increase in the number of parts is inevitable. If the number of parts increases in this way, an extra man-hour is imposed on the assembling work, and the manufacturing cost increases.
特に、光ファイバを途中で分離して樹脂製のフィルタやドーパントが含有された光ファイバを介在させようとすると、その接続に多大な労力が強いられるとともに、余分な接続点の増加により接続不良が生じ易く、光の結合効率が大幅に低下する要因ともなり得る。
In particular, when an optical fiber is separated in the middle and an optical fiber containing a resin filter or a dopant is interposed, a great deal of labor is imposed on the connection, and connection failure is caused by an increase in extra connection points. This is likely to occur and may cause a significant reduction in light coupling efficiency.
本発明の課題は、部品点数の増加を招くことなく、光を確実に減衰可能な光モジュールを提供することを技術的課題とする。
An object of the present invention is to provide an optical module capable of reliably attenuating light without increasing the number of parts.
上記課題を解決するために創案された本発明は、光の発光又は受光の少なくとも一方を行う光素子と、光ファイバ保持部材に挿通固定された光ファイバの前記光素子に最も近い端面との間の光路上に、1又は複数のガラス部品を備えた光モジュール用光学部品において、前記1又は複数のガラス部品の少なくとも1つに光減衰機能を付与したことに特徴づけられる。
In order to solve the above problems, the present invention provides an optical element that performs at least one of light emission and light reception, and an end face of the optical fiber that is inserted and fixed in the optical fiber holding member and is closest to the optical element. In the optical part for an optical module provided with one or a plurality of glass parts on the optical path, at least one of the one or the plurality of glass parts is characterized by being provided with a light attenuation function.
このような構成によれば、予め光路上に配置されたガラス部品に光を減衰させる機能が付与されるので、光を減衰させるためだけに光路上に新たな部材を別途配置する必要がない。そのため、当該光モジュール用光学部品を組み込んで光モジュールを製作すれば、光を減衰させるために、部品点数が増加することがないので、組み立て工数が増えることがなく、製造コストの低廉化にも寄与し得る。
According to such a configuration, since a function of attenuating light is imparted to the glass parts previously arranged on the optical path, it is not necessary to separately arrange a new member on the optical path only for attenuating the light. Therefore, if an optical module is manufactured by incorporating the optical component for the optical module, the number of parts does not increase in order to attenuate the light, so that the number of assembly steps does not increase and the manufacturing cost is reduced. Can contribute.
上記の構成において、前記光減衰機能を付与したガラス部品が、光を減衰させるドーパントを含有してなることが好ましい。
In the above configuration, it is preferable that the glass component having the light attenuating function contains a dopant that attenuates light.
このようにすれば、ガラス部品に簡単に光を減衰させる機能を付与することができる。しかも、ガラス部品にドーパントを含有させて光を減衰させる機能を付与した場合には、熱によって光の減衰特性が変化し難い。そのため、ガラス部品で光を減衰させる際に、光の吸収によってガラス部品が発熱しても、光の減衰特性に変化が生じ難い。したがって、当該光モジュール用光学部品を組み込んで光モジュールを製作することで、信頼性の高い光モジュールを提供することが可能となる。
In this way, it is possible to easily give the glass part a function of attenuating light. In addition, when the glass part is provided with a dopant and has a function of attenuating light, the light attenuation characteristic is hardly changed by heat. For this reason, when the glass component attenuates light, even if the glass component generates heat due to absorption of light, the light attenuation characteristic hardly changes. Therefore, it is possible to provide an optical module with high reliability by manufacturing the optical module by incorporating the optical component for the optical module.
これに対し、従来のように樹脂製のフィルタを用いる減衰方法では、フィルタに強い光が入射すると、フィルタで減衰(吸収)された光による発熱によりフィルタが劣化を来たし、フィルタの減衰特性が大きく変化するおそれがあるため、信頼性の高い光モジュールを提供することが実質的に不可能となる。
On the other hand, in the conventional attenuation method using a resin filter, when strong light is incident on the filter, the filter is deteriorated due to heat generated by the light attenuated (absorbed) by the filter, and the attenuation characteristic of the filter is large. Since there is a risk of change, it is practically impossible to provide a highly reliable optical module.
なお、前記ドーパントが含有された前記ガラス部品の単位光路長(球径、長さ、厚み)を調整することで、容易に光の減衰量を調整することが可能となる。
It should be noted that the amount of light attenuation can be easily adjusted by adjusting the unit optical path length (sphere diameter, length, thickness) of the glass component containing the dopant.
上記の構成において、前記ドーパントが、Co,Mn,Ni,Cr,V,Fe,Cuの中から選ばれた少なくとも1つのイオンであることが好ましい。なお、ドーパントがイオンであるとは、ガラス部品中のドーパントがイオン化された状態で含有されていることを意味するものであって、製造段階でドーピングする際には、例えば、上記のドーパントを酸化物等の状態でドーピングすることも許容するものである。
In the above configuration, the dopant is preferably at least one ion selected from Co, Mn, Ni, Cr, V, Fe, and Cu. Note that the dopant is an ion means that the dopant in the glass component is contained in an ionized state. When doping in the manufacturing stage, for example, the dopant is oxidized. Doping in the state of an object or the like is also allowed.
このように適切なドーパントを選択することにより、そのドーパント固有の吸収特性によって、所望の波長において適切な減衰特性が得られる。すなわち、例えばドーパントとしてCoのイオンを用いた場合には、1300~1600nmの波長帯域において、光の減衰特性の波長依存性が少なくなるので、長距離光通信などの分野で主として用いられる波長帯域(1310nm~1550nm)において、一定レベルで光を減衰させることが可能となる。
By selecting an appropriate dopant as described above, an appropriate attenuation characteristic can be obtained at a desired wavelength by the absorption characteristic specific to the dopant. That is, for example, when Co ions are used as the dopant, the wavelength dependence of the light attenuation characteristic is reduced in the wavelength band of 1300 to 1600 nm, so that the wavelength band mainly used in the field of long-distance optical communication ( 1310 nm to 1550 nm), it becomes possible to attenuate light at a constant level.
上記の構成において、前記ドーパントを含有したガラス部品が、前記光素子と前記光ファイバの前記光素子に最も近い端面との間の光路上に2つ以上配置されていてもよい。
In the above configuration, two or more glass parts containing the dopant may be disposed on an optical path between the optical element and an end face of the optical fiber closest to the optical element.
このようにすれば、2つ以上のガラス部品に光を減衰させるドーパントが含有されることになるため、そのガラス部品の組み合わせにより、全体としての光の減衰量を簡単に調整することが可能となる。また、2つ以上のガラス部品に光減衰機能を付与して、所定の光の減衰量を実現する方が、1つのガラス部品に光減衰機能を付与して同じ減衰量を実現する場合に比べて、個々のガラス部品での光の吸収量を少なくすることができる。そのため、ガラス部品毎の発熱を抑えることできるという利点もある。
In this way, since a dopant that attenuates light is contained in two or more glass parts, the total amount of light attenuation can be easily adjusted by combining the glass parts. Become. Also, the light attenuation function is given to two or more glass parts to achieve the predetermined light attenuation, compared to the case where the same attenuation is realized by giving the light attenuation function to one glass part. Thus, the amount of light absorbed by each glass component can be reduced. Therefore, there also exists an advantage that the heat_generation | fever for every glass component can be suppressed.
上記の構成において、前記光減衰機能を付与したガラス部品が、前記光素子と前記光ファイバの前記光素子に最も近い端面との間の光路上を通過する光を集光するレンズであってもよい。また、前記光ファイバ保持部材の前記光素子に最も近い端面と接触する凸球面を有するガラススタブを備えている場合には、前記光減衰機能を付与したガラス部品が、該ガラススタブであってもよい。
In the above configuration, the glass component having the light attenuation function may be a lens that collects light passing on an optical path between the optical element and an end face of the optical fiber closest to the optical element. Good. Further, in the case where a glass stub having a convex spherical surface that comes into contact with the end face closest to the optical element of the optical fiber holding member is provided, even if the glass component having the light attenuation function is the glass stub Good.
上記の構成において、前記光減衰機能を付与したガラス部品が、該ガラス部品を前記光路上に保持する保持部材に熱処理によって直接固着されているか、又は低融点ガラスにより間接的に固着されていることが好ましい。
In the above configuration, the glass component having the light attenuation function is directly fixed to the holding member for holding the glass component on the optical path by heat treatment, or indirectly fixed to the low melting point glass. Is preferred.
このようにすれば、光を減衰させる機能を有するガラス部品で光を減衰させる際に、ガラス部品が光の吸収により発熱したとしても、ガラス部品の固着部分はガラスにより形成されているので熱による固着力の低下が生じ難いので、実用上も非常に有利となる。
In this way, even when the glass component having the function of attenuating light attenuates the light, even if the glass component generates heat due to the absorption of light, the fixing portion of the glass component is formed of glass, so Since it is difficult for the fixing force to decrease, it is very advantageous in practice.
これに対し、従来のようにドーパントを含有させた光ファイバを用いる減衰方法では、フェルールと光ファイバが樹脂製の接着剤によって接着されているのが通例であることから、この場合には光の吸収により光ファイバが発熱すると、光ファイバを接着する接着剤が次第に劣化して固定力が低下するおそれがある。そのため、フェルールに挿通された光ファイバに位置ズレが生じやすくなり、光の結合効率が大幅に低下する可能性があるので問題となる。
On the other hand, in the conventional attenuation method using an optical fiber containing a dopant, the ferrule and the optical fiber are usually bonded by a resin adhesive. When the optical fiber generates heat due to absorption, the adhesive that bonds the optical fiber gradually deteriorates and the fixing force may be reduced. Therefore, the optical fiber inserted through the ferrule is likely to be misaligned, and there is a possibility that the light coupling efficiency may be greatly reduced, which is a problem.
上記の構成において、前記光ファイバ保持部材を内孔に保持する筒状部材を備えていてもよい。
In the above configuration, a cylindrical member that holds the optical fiber holding member in the inner hole may be provided.
このようにすれば、光ファイバ保持部材の位置決めを容易に行うことが可能となるため、光の光軸調整の精度を向上させて光の結合効率を高めることができる。
In this way, since the optical fiber holding member can be easily positioned, the accuracy of adjusting the optical axis of light can be improved and the light coupling efficiency can be increased.
上記の構成において、前記光ファイバ保持部材の前記光素子に最も近い端面と接触し、且つ、前記筒状部材の前記光素子側の開口部を気密封止する板ガラスを備えている場合には、前記光減衰機能を付与したガラス部品が、該板ガラスであってもよい。
In the above configuration, in the case where the optical fiber holding member is provided with a plate glass that is in contact with the end face closest to the optical element and hermetically seals the opening of the cylindrical member on the optical element side, The glass part provided with the light attenuation function may be the plate glass.
そして、以上のような構成を適宜備えた光モジュール用光学部品を組み込んで、光モジュールを製作することが好ましい。
It is preferable to manufacture an optical module by incorporating optical components for an optical module having the above-described configuration as appropriate.
このようにすれば、既に述べた対応する構成の作用効果を同様に享受し得る。
In this way, the operational effects of the corresponding configuration already described can be enjoyed in the same manner.
以上のように本発明によれば、光路上に配置されている既存のガラス部品に光を減衰さ
せる機能を付与しているので、光を減衰させるために部品点数が余分に増加することがない。したがって、部品点数の増加を防止しつつ、光を確実に減衰可能な光モジュールを提供することができる。 As described above, according to the present invention, since the function of attenuating light is given to the existing glass parts arranged on the optical path, the number of parts does not increase excessively to attenuate the light. . Therefore, it is possible to provide an optical module that can reliably attenuate light while preventing an increase in the number of components.
せる機能を付与しているので、光を減衰させるために部品点数が余分に増加することがない。したがって、部品点数の増加を防止しつつ、光を確実に減衰可能な光モジュールを提供することができる。 As described above, according to the present invention, since the function of attenuating light is given to the existing glass parts arranged on the optical path, the number of parts does not increase excessively to attenuate the light. . Therefore, it is possible to provide an optical module that can reliably attenuate light while preventing an increase in the number of components.
以下、本発明の実施形態を図面に基づいて説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図1は、本発明の第1の実施形態に係る光モジュールを示す図である。この光モジュールは、光モジュール用光学部品1を主たる構成として備えている。なお、図中において、光の光路が形成される範囲は鎖線で示している。
FIG. 1 is a diagram showing an optical module according to the first embodiment of the present invention. The optical module includes an optical module optical component 1 as a main configuration. In the figure, the range in which the optical path of light is formed is indicated by a chain line.
この光モジュール用光学部品1は、一端側(光モジュールに組み込んだ場合に配置される光素子10側)に鍔部2aを有する円筒状のスリーブフォルダ2と、このスリーブフォルダ2の内孔に収納された円筒状のガイドスリーブ3と、このガイドスリーブ3の一端側内表面に固定されたガラススタブ4とを備えている。
The optical component 1 for an optical module is housed in a cylindrical sleeve folder 2 having a flange portion 2a on one end side (on the optical element 10 side disposed when incorporated in an optical module), and an inner hole of the sleeve folder 2. And a glass stub 4 fixed to the inner surface of one end of the guide sleeve 3.
図示のように、光モジュール用光学部品1を光モジュールに組み込んだ状態では、光ファイバ5が挿通固定されたフェルール6が、ガイドスリーブ3の内孔に他端側(ネットワーク側)から嵌挿され、フェルール6とガラススタブ4の端面同士が互いに突き合わされる。このガラススタブ4とフェルール6との突き合わせ部は、光の結合効率の低下を抑制するために、それぞれ凸球面に加工されている。一方、ガラススタブ4の凸球面とされた側と反対側(後述する光素子10側)の端面は、光軸と直交する平面と平行な平面でもよいが、この実施形態では反射光の影響を低減するために、光軸と直交する平面に対して傾斜した傾斜面となっている。なお、この実施形態では、フェルール6が光ファイバ保持部材となるとともに、フェルール6の光素子10側の端部よりも光素子10側の光路上には他の光ファイバが存在しない状態となっている。
As shown in the drawing, in a state in which the optical module optical component 1 is incorporated in the optical module, the ferrule 6 with the optical fiber 5 inserted and fixed is inserted into the inner hole of the guide sleeve 3 from the other end side (network side). The end surfaces of the ferrule 6 and the glass stub 4 are abutted with each other. The butted portions of the glass stub 4 and the ferrule 6 are each processed into a convex spherical surface in order to suppress a decrease in light coupling efficiency. On the other hand, the end surface of the glass stub 4 on the side opposite to the convex spherical surface (the optical element 10 side to be described later) may be a plane parallel to a plane orthogonal to the optical axis. In order to reduce, the inclined surface is inclined with respect to a plane orthogonal to the optical axis. In this embodiment, the ferrule 6 serves as an optical fiber holding member, and no other optical fiber exists on the optical path on the optical element 10 side than the end of the ferrule 6 on the optical element 10 side. Yes.
ガラススタブ4は、図示しないが、ガイドスリーブ3の内孔の一端側にガラスロッドを配置した状態で、これらを加熱処理することで製作される。詳述すると、まず、加熱処理によってガラスロッドを軟化させて、ガラスロッドの両端面を表面張力により凸球面とするとともに、ガイドスリーブ3の周囲をガイドスリーブ3の内表面に熱的に固着させる。その後、光素子10側となるガラスロッドの一方側の凸球面を研磨により、光軸に直交する平面に対して傾斜する傾斜面に加工することで、上述のガラススタブ4が製作される。そのため、このガラススタブ4は、内部に光ファイバ等の他部材が存在しない単一種のガラス部品からなる製品となる。
Although not shown, the glass stub 4 is manufactured by heat-treating a glass rod disposed on one end side of the inner hole of the guide sleeve 3. More specifically, first, the glass rod is softened by heat treatment so that both end surfaces of the glass rod are convex spherical surfaces by surface tension, and the periphery of the guide sleeve 3 is thermally fixed to the inner surface of the guide sleeve 3. Thereafter, the above-described glass stub 4 is manufactured by processing the convex spherical surface on one side of the glass rod on the optical element 10 side into an inclined surface that is inclined with respect to a plane orthogonal to the optical axis. Therefore, the glass stub 4 is a product composed of a single type of glass component in which no other member such as an optical fiber exists.
また、光モジュール用光学部品1は、更に、スリーブフォルダ2の鍔部2aの端面に固定された円筒状のステムフォルダ7と、このステムフォルダ7の内孔に嵌挿固定されたレンズフォルダ8と、このレンズフォルダ8に低融点ガラスGで固着された球レンズ9とを備えている。ここで、レンズは、球レンズ9に限らず、光の集光機能があるレンズであればその形状は球状以外であってもよい。
The optical component 1 for an optical module further includes a cylindrical stem folder 7 fixed to the end face of the flange 2a of the sleeve folder 2, and a lens folder 8 fitted and fixed in the inner hole of the stem folder 7. The lens holder 8 is provided with a spherical lens 9 fixed with a low melting point glass G. Here, the shape of the lens is not limited to the spherical lens 9, and the shape may be other than a spherical shape as long as the lens has a light condensing function.
そして、図示のように、光モジュール用光学部品1を光モジュールに組み込んだ状態で
は、光素子10を配置したステム11がレンズフォルダ8に固定され、光素子10がレンズフォルダ8とステム11とで囲繞される空間内に収容される。この光素子10は、光を発光する機能又は光を受光する機能の少なくとも一方の機能を有するもので、光モジュールの用途に応じて、例えば、半導体レーザなどの発光素子や、フォトダイオードなどの受光素子などが利用される。この実施形態では、光素子10は、受光素子で構成されており、ネットワーク側から送信されてきた光を球レンズ9によって集光しながら受光するようになっている。 As shown in the figure, in a state where theoptical component 1 for an optical module is incorporated in the optical module, the stem 11 in which the optical element 10 is arranged is fixed to the lens folder 8, and the optical element 10 is connected to the lens folder 8 and the stem 11. It is accommodated in the enclosed space. The optical element 10 has at least one of a function of emitting light and a function of receiving light. For example, a light emitting element such as a semiconductor laser or a light receiving element such as a photodiode is used depending on the use of the optical module. Elements are used. In this embodiment, the optical element 10 is composed of a light receiving element, and receives the light transmitted from the network side while being condensed by the ball lens 9.
は、光素子10を配置したステム11がレンズフォルダ8に固定され、光素子10がレンズフォルダ8とステム11とで囲繞される空間内に収容される。この光素子10は、光を発光する機能又は光を受光する機能の少なくとも一方の機能を有するもので、光モジュールの用途に応じて、例えば、半導体レーザなどの発光素子や、フォトダイオードなどの受光素子などが利用される。この実施形態では、光素子10は、受光素子で構成されており、ネットワーク側から送信されてきた光を球レンズ9によって集光しながら受光するようになっている。 As shown in the figure, in a state where the
なお、以上の構成では、光モジュール用光学部品1は、スリーブフォルダ2と、ガイドスリーブ3と、ガラススタブ4と、ステムフォルダ7と、レンズフォルダ8と、球レンズ9とから構成されている。すなわち、光モジュールの構成からネットワーク側に連続する光ファイバ5を保持したフェルール6と、光素子10が搭載されたステム11とを除外した部分が、光モジュール用光学部品1となる。
In the above configuration, the optical component 1 for the optical module includes the sleeve folder 2, the guide sleeve 3, the glass stub 4, the stem folder 7, the lens folder 8, and the ball lens 9. That is, the optical module optical component 1 is a portion excluding the ferrule 6 that holds the optical fiber 5 continuous on the network side and the stem 11 on which the optical element 10 is mounted from the configuration of the optical module.
そして、本実施形態の特徴的な構成として、ガラス部品であるガラススタブ4には、光を減衰させる機能が付与されている。この光を減衰させる機能は、ガラススタブ4に光を減衰させるドーパントを含有することで付与されている。このドーパントとしては、Co,Mn,Ni,Cr,V,Fe,Cuなどの金属のイオンが利用される。ガラススタブ4を上述のようして製作する場合には、ガラススタブ4の元材となる加熱処理前のガラスロッドにドーパントを予め含有させておけば、ガラススタブ4にドーパントを含有させることができる。なお、ドーパントの含有量は、光減衰量に応じて適宜調整される。
And as a characteristic configuration of the present embodiment, the glass stub 4 which is a glass part has a function of attenuating light. The function of attenuating light is imparted to the glass stub 4 by containing a dopant that attenuates light. As the dopant, metal ions such as Co, Mn, Ni, Cr, V, Fe, and Cu are used. When the glass stub 4 is manufactured as described above, the dopant can be contained in the glass stub 4 if the dopant is preliminarily contained in the glass rod before the heat treatment that is the base material of the glass stub 4. . In addition, content of a dopant is suitably adjusted according to a light attenuation amount.
このようにすれば、光モジュールで使用する光が高出力なものであっても、ガラススタブ4により光を所定レベルまで減衰することができる。したがって、受光可能レベル以上の光量の光を光素子10で受光して、光素子10が損傷するという事態を確実に防止することができる。
In this way, even if the light used in the optical module has a high output, the glass stub 4 can attenuate the light to a predetermined level. Therefore, it is possible to reliably prevent the optical element 10 from being damaged by receiving light of a light amount that is greater than or equal to the light receivable level by the optical element 10.
また、予め光路上に配置されたガラススタブ4に光を減衰させる機能を付与しているので、光を減衰させるために、別途光路上に新たな部材を配置する必要がない。したがって、光を減衰させるために、部品点数が余分に増加することがないので、組み立て工数が増えることがなく、製造コストの低廉化を図ることが可能となる。
In addition, since the function of attenuating light is given to the glass stub 4 previously arranged on the optical path, it is not necessary to separately arrange a new member on the optical path in order to attenuate the light. Therefore, since the number of parts does not increase excessively in order to attenuate the light, the number of assembling steps does not increase, and the manufacturing cost can be reduced.
更に、ガラススタブ4は、ガイドスリーブ3の内表面に、熱処理により直接固着しているので、ガラススタブ4はガイドスリーブ3にガラスによって固着されている。したがって、ガラススタブ4で光を減衰させる際に、ガラススタブ4が光の吸収によって発熱したとしても、ガラススタブ4の固着部分がガラスに由来する高い耐熱性を有するため、熱によって固着部分が劣化して固着力が低下するという事態を確実に防止することができる。その結果、高出力の光を使用した場合でも、熱によってガラススタブ4の位置ズレが生じることがないので、光を安定して減衰させることが可能となる。
Furthermore, since the glass stub 4 is directly fixed to the inner surface of the guide sleeve 3 by heat treatment, the glass stub 4 is fixed to the guide sleeve 3 with glass. Therefore, when the glass stub 4 attenuates light, even if the glass stub 4 generates heat due to absorption of light, the fixing portion of the glass stub 4 has high heat resistance derived from the glass, so that the fixing portion deteriorates due to heat. As a result, it is possible to reliably prevent a situation in which the fixing force is reduced. As a result, even when high-power light is used, the positional deviation of the glass stub 4 does not occur due to heat, so that light can be stably attenuated.
上記のガラススタブ4に使用できるガラスの組成系としては、様々な組成系を使用することができるが、ホウケイ酸ガラスからなることが好ましい。特に、ガラススタブ4は、質量%で、SiO2 65~85%,B2O3 8~25%,LiO2+Na2O+K2O 1.5~10%,Al2O3 0~10%,MgO+CaO+SrO+BaO+ZnO 0~5%,CoO 0.1~10%を含有するホウケイ酸ガラスからなることが好ましい。その理由は、耐候性に優れ、しかも光ファイバ5のコア部との屈折率差も小さくすることが可能となるためである。なお、上記の組成のうち、CoOが光を減衰させるドーパントとして機能する成分である。
Although various composition systems can be used as the glass composition system that can be used for the glass stub 4 described above, it is preferably made of borosilicate glass. In particular, the glass stub 4 is SiO 2 65 to 85%, B 2 O 3 8 to 25%, LiO 2 + Na 2 O + K 2 O 1.5 to 10%, Al 2 O 3 0 to 10% by mass%. It is preferably made of borosilicate glass containing MgO + CaO + SrO + BaO + ZnO 0-5% and CoO 0.1-10%. This is because the weather resistance is excellent and the refractive index difference from the core portion of the optical fiber 5 can be reduced. In the above composition, CoO is a component that functions as a dopant that attenuates light.
図2は、本発明の第2の実施形態に係る光モジュールを示す図である。この第2の実施形態に係る光モジュールが、上述の第1の実施形態に係る光モジュールと相違するところは、光モジュール用光学部品1に含まれるガイドスリーブ3の光素子10側の端部に、ガラススタブ4に代えて、光ファイバ12が挿通固定されたファイバスタブ13を配置した点にある。このファイバスタブ13は、ガイドスリーブ3の内孔に嵌挿されるとともに、ガイドスリーブ3の内部でフェルール6と突き合わされている。そして、上述のガラススタブ4と同様に、ファイバスタブ13の突き合わせ部は凸球面とされ、突き合わせ部と反対側の端面、すなわち、光素子10側の端面は、光軸と直交する平面に対して傾斜した傾斜面とされている。なお、この実施形態では、光ファイバ保持部材がフェルール6とファイバスタブ13とから構成されており、ファイバスタブ13の光素子10側の端面よりも光素子10側の光路上には他の光ファイバが存在しない状態となっている。
FIG. 2 is a diagram showing an optical module according to the second embodiment of the present invention. The optical module according to the second embodiment is different from the optical module according to the first embodiment described above at the end of the guide sleeve 3 included in the optical component 1 for optical module on the optical element 10 side. Instead of the glass stub 4, a fiber stub 13 in which the optical fiber 12 is inserted and fixed is arranged. The fiber stub 13 is inserted into the inner hole of the guide sleeve 3 and is abutted with the ferrule 6 inside the guide sleeve 3. Then, similarly to the glass stub 4 described above, the butted portion of the fiber stub 13 is a convex spherical surface, and the end surface opposite to the butted portion, that is, the end surface on the optical element 10 side is with respect to a plane orthogonal to the optical axis. The surface is inclined. In this embodiment, the optical fiber holding member is composed of the ferrule 6 and the fiber stub 13, and other optical fibers are disposed on the optical path on the optical element 10 side than the end surface on the optical element 10 side of the fiber stub 13. Is in a state that does not exist.
そして、この第2の実施形態に係る光モジュールでは、球レンズ9に上述のドーパントを含有することにより、光減衰機能を付与している。
In the optical module according to the second embodiment, the spherical lens 9 is provided with the above-described dopant, thereby providing a light attenuation function.
球レンズ9に使用できるガラス組成系としては、屈折率に応じて、ホウケイ酸ガラス、B2O3‐La2O3‐ZnO‐Ta2O5系ガラス等、様々な組成系のガラスを用いることができる。光の焦点距離を短くするために屈折率を高める必要がある場合は、球レンズ9は、質量%で、SiO2 0~10%,Al2O3 0~15%,B2O3 5~25%,Li2O+Na2O+K2O 0~10%,MgO 0~10%,CaO 0~7%,SrO 0~5%,BaO 0~12%,ZnO 10~30%,La2O3 15~35%,Ta2O5 15.5~25%,ZrO2 0~10%,Gd2O3 0~20%,WO3 0~10%,CoO 0.1~10%を含有するB2O3‐La2O3‐ZnO‐Ta2O5系ガラスからなることが好ましい。なお、上記の組成のうち、CoOがドーパントとして機能する成分である。
As a glass composition system that can be used for the spherical lens 9, various glass compositions such as borosilicate glass and B 2 O 3 —La 2 O 3 —ZnO—Ta 2 O 5 glass are used depending on the refractive index. be able to. When it is necessary to increase the refractive index in order to shorten the focal length of light, the spherical lens 9 is in mass%, SiO 2 0 to 10%, Al 2 O 3 0 to 15%, B 2 O 3 5 to 25%, Li 2 O + Na 2 O + K 2 O 0-10%, MgO 0-10%, CaO 0-7%, SrO 0-5%, BaO 0-12%, ZnO 10-30%, La 2 O 3 15 B 2 containing ~ 35%, Ta 2 O 5 15.5-25%, ZrO 2 0-10%, Gd 2 O 3 0-20%, WO 3 0-10%, CoO 0.1-10% It is preferably made of O 3 —La 2 O 3 —ZnO—Ta 2 O 5 glass. Of the above composition, CoO is a component that functions as a dopant.
図3は、本発明の第3の実施形態に係る光モジュールを示す図である。この第3の実施形態に係る光モジュールが、第1~2の実施形態に係る光モジュールと相違するところは、大きく分けて2つある。第一には、ガイドスリーブ3を省略して、スリーブフォルダ2の内孔にフェルール6を直接保持した点である。第二には、光モジュール用光学部品1に含まれるスリーブフォルダ2の光素子10側の開口部を、外部からの塵埃等の異物の侵入を防止するために板ガラス14で気密封止するとともに、その板ガラス14にフェルール6の光素子10側の端面を突き合わせて接触させた点である。この板ガラス14は、スリーブフォルダ2の内表面に、低融点ガラスにより間接的に固着されるか、又は接着剤で固定される。なお、この実施形態では、板ガラス14は、スリーブフォルダ2の光素子10側の端部において内径側に延出したストッパー2bに当接した状態で固定されている。
FIG. 3 is a diagram showing an optical module according to the third embodiment of the present invention. The optical module according to the third embodiment is largely different from the optical modules according to the first and second embodiments in two ways. First, the guide sleeve 3 is omitted, and the ferrule 6 is directly held in the inner hole of the sleeve folder 2. Secondly, the opening on the optical element 10 side of the sleeve folder 2 included in the optical component 1 for an optical module is hermetically sealed with a plate glass 14 in order to prevent entry of foreign matters such as dust from the outside, The end face of the ferrule 6 on the optical element 10 side is abutted against and brought into contact with the plate glass 14. The plate glass 14 is indirectly fixed to the inner surface of the sleeve folder 2 with a low melting point glass or fixed with an adhesive. In this embodiment, the plate glass 14 is fixed in a state of being in contact with the stopper 2b extending to the inner diameter side at the end of the sleeve folder 2 on the optical element 10 side.
そして、この第3の実施形態に係る光モジュールでは、板ガラス14に上述のドーパントを含有することにより、光減衰機能を付与している。
In the optical module according to the third embodiment, the light attenuation function is imparted by containing the above-mentioned dopant in the plate glass 14.
板ガラス14に使用できるガラス組成としては、ソーダ石灰ガラス、ホウケイ酸ガラス等、様々な組成系のガラスを用いることができる。光ファイバ5と板ガラス14での反射光の影響を低減する必要がある場合には、板ガラス14は、質量%で、SiO2 50~80%,Al2O3 0~20%,B2O3 5~20%,MgO 0~10%,CaO 0~10%,SrO 0~10%,BaO 0~10%,Na2O 0~10%,K2O 0~10%,ZnO 0~10%,TiO2 0~10%,ZrO2 0~10%,CoO 0.1~10%を含有するホウケイ酸ガラスからなることが好ましい。なお、上記組成のうち、CoOがドーパントとして機能する成分である。
As a glass composition that can be used for the plate glass 14, various glass compositions such as soda lime glass and borosilicate glass can be used. When it is necessary to reduce the influence of the reflected light on the optical fiber 5 and the plate glass 14, the plate glass 14 is 50% by mass, SiO 2 50-80%, Al 2 O 3 0-20%, B 2 O 3. 5-20%, MgO 0-10%, CaO 0-10%, SrO 0-10%, BaO 0-10%, Na 2 O 0-10%, K 2 O 0-10%, ZnO 0-10% , TiO 2 0 to 10%, ZrO 2 0 to 10%, and CoO 0.1 to 10%. In the above composition, CoO is a component that functions as a dopant.
なお、この板ガラス14も、フェルール6に突き当てられるので、上記の第1の実施形態で説明したガラススタブ4と同様のガラス組成であることが好ましい。また、板ガラス14の光素子10側の端面を、光軸と直交する平面に対して傾斜するようにしてもよい。
In addition, since this plate glass 14 is also abutted against the ferrule 6, it is preferable that it is the glass composition similar to the glass stub 4 demonstrated in said 1st Embodiment. Moreover, you may make it incline the end surface by the side of the optical element 10 of the plate glass 14 with respect to the plane orthogonal to an optical axis.
図4は、本発明の第4の実施形態に係る光モジュールを示す図である。この第4の実施形態に係る光モジュールが、第3の実施形態に係る光モジュールと相違するところは、板ガラス14を省略して、フェルール6の先端をスリーブフォルダ2のストッパー2bに直接突き当てて位置決めした点にある。
FIG. 4 is a diagram showing an optical module according to the fourth embodiment of the present invention. The optical module according to the fourth embodiment is different from the optical module according to the third embodiment in that the plate glass 14 is omitted and the tip of the ferrule 6 is directly abutted against the stopper 2b of the sleeve folder 2. At the point where it was positioned.
そして、この第4の実施形態に係る光モジュールでは、光素子10とフェルール6の光素子10側の端面との間の光路上のガラス部品は、球レンズ9のみであるので、当該レンズ9に、上述のドーパントを含有することにより、光減衰機能を付与している。
In the optical module according to the fourth embodiment, since the glass component on the optical path between the optical element 10 and the end surface of the ferrule 6 on the optical element 10 side is only the spherical lens 9, By containing the above-mentioned dopant, the light attenuation function is imparted.
図5は、本発明の第5の実施形態に係る光モジュールを示す図である。この第5の実施形態に係る光モジュールが、第1~4の実施形態に係る光モジュールと相違するところは、光を伝搬させる光ファイバ5を保持するフェルール6が挿脱可能に保持されるレセプタクルタイプではなく、光ファイバ5が挿通固定されたファイバピグテイル15がピグテイルサポート16を介してステムフォルダ7に固定されるピグテイルタイプの光モジュールである点にある。
FIG. 5 shows an optical module according to the fifth embodiment of the present invention. The optical module according to the fifth embodiment is different from the optical modules according to the first to fourth embodiments in that a receptacle in which a ferrule 6 that holds an optical fiber 5 that propagates light is detachably held is held. The fiber pigtail 15 in which the optical fiber 5 is inserted and fixed is not a type, but is a pigtail type optical module fixed to the stem folder 7 via the pigtail support 16.
ファイバピグテイル15の光素子10側の端面は、光軸と直交する平面と平行な平面でもよいが、この実施形態では反射光の影響を低減するために、光軸と直交する平面に対して傾斜した傾斜面となっている。なお、この実施形態では、光ファイバ保持部材がファイバピグテイル15となるとともに、ファイバピグテイル15の光素子10側の端面よりも光素子10側の光路上には他の光ファイバが存在しない状態となっている。
The end face of the fiber pigtail 15 on the optical element 10 side may be a plane parallel to a plane orthogonal to the optical axis. In this embodiment, in order to reduce the influence of reflected light, the end surface on the plane orthogonal to the optical axis is used. It has an inclined surface. In this embodiment, the optical fiber holding member becomes the fiber pigtail 15 and there is no other optical fiber on the optical path on the optical element 10 side than the end face on the optical element 10 side of the fiber pigtail 15. It has become.
そして、この第5の実施形態に係る光モジュールでは、光素子10とファイバピグテイル16の光素子10側の端面との間の光路上のガラス部品は、球レンズ9のみであるので、当該レンズ9に、上述のドーパントを含有することにより光減衰機能を付与している。
In the optical module according to the fifth embodiment, since the glass component on the optical path between the optical element 10 and the end face on the optical element 10 side of the fiber pigtail 16 is only the spherical lens 9, the lens 9 has a light attenuation function by containing the above-mentioned dopant.
以上のように、本発明の第1~5の実施形態に係る光モジュールによれば、光路上に配置されている既存のガラス部品(ガラススタブ4,球レンズ9,板ガラス14)に光を減衰させる機能を付与しているので、光を減衰させるために部品点数が余分に増加することがない。したがって、部品点数の増加を防止しつつ、光を確実に減衰可能な光モジュールを提供することができる。また、ガラス部品にドーパントとして金属イオンを含有させることで、光を減衰させる機能を付与しているので、熱によって減衰特性が変化し難いという利点も享受できる。さらに、このガラス部品は、その保持部材(ガイドスリーブ3や、レンズフォルダ8など)に直接固着されているか、或いは低融点ガラスによって間接的に固着されているので、光の減衰時にガラス部品が光の一部を吸収して発熱しても、固着部分が熱によって劣化するという事態が生じ難い。そのため、ガラス部品の位置ズレを可及的に防止することができる。
As described above, according to the optical modules according to the first to fifth embodiments of the present invention, light is attenuated to the existing glass parts (glass stub 4, spherical lens 9, plate glass 14) arranged on the optical path. Therefore, the number of parts does not increase excessively in order to attenuate light. Therefore, it is possible to provide an optical module that can reliably attenuate light while preventing an increase in the number of components. Moreover, since the function which attenuates light is provided by making a glass component contain a metal ion as a dopant, the advantage that an attenuation characteristic cannot change easily with heat can also be enjoyed. Further, since the glass component is directly fixed to the holding member (the guide sleeve 3 or the lens folder 8) or indirectly fixed by the low melting point glass, the glass component is not lighted when the light is attenuated. Even if a part of the heat is absorbed and heat is generated, it is difficult to cause a situation in which the fixed portion is deteriorated by heat. Therefore, it is possible to prevent the positional deviation of the glass parts as much as possible.
ここで、第3の実施形態では、ガイドスリーブ3の開口部に板ガラス14を接着剤で固定しても、板ガラス14にフェルール6を突き当てた段階で、板ガラス14がガイドスリーブ3の開口部に設けられたストッパー2bに押し当てられるので、板ガラス14の位置ズレを防止することができる。しかも、仮に板ガラス14に位置ズレが生じたとしても、板ガラス14は、光を集光させる機能は有さず、光を単に透過させるのみであるため、熱によって劣化するという事態が生じ難い。
Here, in the third embodiment, even if the plate glass 14 is fixed to the opening of the guide sleeve 3 with an adhesive, the plate glass 14 is placed in the opening of the guide sleeve 3 when the ferrule 6 is abutted against the plate glass 14. Since it is pressed against the provided stopper 2b, it is possible to prevent displacement of the plate glass 14. Moreover, even if a positional deviation occurs in the plate glass 14, the plate glass 14 does not have a function of condensing light and only allows light to pass therethrough.
なお、本発明は、上記の実施形態に限定されるものではなく、種々の形態で実施することができる。例えば、上記の実施形態では、光素子10と、光ファイバ5(12)の光素子10側の端部との間の光路上に配置されたガラス部品(ガラススタブ4,球レンズ9,板ガラス14)のうち、1つだけに光減衰機能を付与する場合を説明したが、前記区間の光路上に複数のガラス部品が配置されている場合にはその2つ以上のガラス部品に光減衰機能を付与するようにしてもよい。具体的には、第1の実施形態に係る光モジュールにおいては、ガラススタブ4と、球レンズ9の双方に光減衰機能を付与してもよく、第3の実施形態に係る光モジュールにおいては、板ガラス14と、球レンズ9の双方に光減衰機能を付与してもよい。このようにすれば、いずれか一方のガラス部品のみに、光減衰機能を付与した場合よりも、簡単且つ確実に光の減衰量を大きくすることができる。換言すれば、これらガラス部品の組み合わせにより、全体としての光の減衰量を簡単に調整することが可能となる。また、この場合には、所定の光の減衰量を実現する際に、個々のガラス部品で段階的に光を吸収すれば済むので、1つのガラス部品での光の吸収量を少なく抑えることができる。そのため、個々のガラス部品の発熱量が緩和され、耐熱性を一層向上させることが可能となる。したがって、光の更なる高出力化の要請に対しても好適に対処し得るという利点がある。
In addition, this invention is not limited to said embodiment, It can implement with a various form. For example, in the above embodiment, the glass components (glass stub 4, ball lens 9, plate glass 14) disposed on the optical path between the optical element 10 and the end of the optical fiber 5 (12) on the optical element 10 side. ), The case where a light attenuating function is given to only one is explained, but when a plurality of glass parts are arranged on the optical path of the section, the light attenuating function is provided to two or more glass parts. You may make it provide. Specifically, in the optical module according to the first embodiment, both the glass stub 4 and the spherical lens 9 may be provided with an optical attenuation function. In the optical module according to the third embodiment, A light attenuation function may be imparted to both the plate glass 14 and the spherical lens 9. In this way, the amount of light attenuation can be easily and reliably increased as compared with the case where only one of the glass parts is provided with the light attenuation function. In other words, the amount of light attenuation as a whole can be easily adjusted by combining these glass components. Also, in this case, when realizing a predetermined amount of light attenuation, it is only necessary to absorb light step by step with each glass component, so that the amount of light absorption with one glass component can be kept small. it can. Therefore, the calorific value of the individual glass parts is relaxed, and the heat resistance can be further improved. Therefore, there is an advantage that it is possible to suitably cope with a request for further increasing the output of light.
また、第1の実施形態及び第3の実施形態に係る光モジュールにおいても、第2の実施形態に係る光モジュールと同様に、球レンズ9にだけ光減衰機能を付与するようにしてもよい。球レンズ9は、光の結合効率を向上させるとともに、焦点距離を短縮化して装置のコンパクト化を図るために、高屈折率のものが望まれる場合が多い。そして、球レンズ9に金属イオンのドーパントを含有させた場合には、光減衰機能とともに屈折率の向上も図ることができる場合が多い。そのため、上記のように球レンズ9に光減衰機能を付与することは、当該減衰機能の付与と同時に、高屈折率化を達成できる点で好ましいと言える。
Also, in the optical modules according to the first embodiment and the third embodiment, as in the optical module according to the second embodiment, the light attenuation function may be given only to the spherical lens 9. The spherical lens 9 is often desired to have a high refractive index in order to improve the light coupling efficiency and shorten the focal length to make the device compact. When the spherical lens 9 contains a metal ion dopant, it is often possible to improve the refractive index as well as the light attenuation function. Therefore, it can be said that providing the light attenuation function to the spherical lens 9 as described above is preferable in that a high refractive index can be achieved simultaneously with the provision of the attenuation function.
また、上記の第1~5の実施形態に係る光モジュールでは、ドーパントを含有させることでガラス部品に光減衰機能を付与したが、ドーパントを含有させる代わりに、例えば蒸着法やスパッタ法等によりガラス部品表面にCu等の金属膜を形成することによりガラス部品に光減衰機能を付与してもよい。
In addition, in the optical modules according to the first to fifth embodiments described above, the optical attenuation function is imparted to the glass component by containing the dopant. Instead of containing the dopant, the glass module is formed by, for example, vapor deposition or sputtering. A light attenuation function may be imparted to the glass component by forming a metal film such as Cu on the surface of the component.
本発明の有用性を実証するために確認試験を行った。その結果を以下に述べる。
A confirmation test was conducted to demonstrate the usefulness of the present invention. The results are described below.
まず、第1の実施形態に係る光モジュールにおいて、以下の表1に示すガラス組成を含有するガラススタブ4を用いた場合における光の減衰率を確認した。
First, in the optical module according to the first embodiment, the attenuation factor of light was confirmed when the glass stub 4 containing the glass composition shown in Table 1 below was used.
上記の表1からも分かるように、実施例1~3のいずれのガラススタブ4を用いた場合でも、光が確実に減衰されていることが確認できる。具体的には、実施例1では、1310nm及び1550nmの光のそれぞれに対して3.0dB以上の減衰率を実現している。また同様に、この2つの波長の光の双方に対して、実施例2では5.7dB以上の減衰率、実施例3では15.0dB以上の減衰率を実現している。
As can be seen from Table 1 above, it can be confirmed that the light is reliably attenuated when any of the glass stubs 4 of Examples 1 to 3 is used. Specifically, in Example 1, an attenuation factor of 3.0 dB or more is realized for each of light of 1310 nm and 1550 nm. Similarly, the attenuation rate of 5.7 dB or more is achieved in Example 2 and the attenuation rate of 15.0 dB or more is achieved in Example 3 with respect to both lights of these two wavelengths.
次に、第2の実施形態に係る光モジュールにおいて、以下の表2に示すガラス組成を含有する球レンズ9を用いた場合における光の減衰率を確認した。
Next, in the optical module according to the second embodiment, the light attenuation rate was confirmed when the spherical lens 9 containing the glass composition shown in Table 2 below was used.
上記の表2からも分かるように、実施例4~6のいずれの球レンズ9を用いた場合でも、光が確実に減衰されていることが確認できる。具体的には、1310nm及び1550nmの光のそれぞれに対して、実施例4では2.9dB以上の減衰率、実施例5では5.7dB以上の減衰率、実施例6では15.0dB以上の減衰率を実現している。
As can be seen from Table 2 above, it can be confirmed that the light is reliably attenuated even when any of the spherical lenses 9 of Examples 4 to 6 is used. Specifically, with respect to each of light of 1310 nm and 1550 nm, the attenuation rate of 2.9 dB or more in Example 4, 5.7 dB or more in Example 5, and 15.0 dB or more in Example 6 The rate is realized.
また、第3の実施形態に係る光モジュールにおいて、以下の表3に示すガラス組成を含有する板ガラス14を用いた場合における光の減衰率を確認した。
Further, in the optical module according to the third embodiment, the attenuation factor of light was confirmed when the plate glass 14 containing the glass composition shown in Table 3 below was used.
上記の表3からも分かるように、実施例7~9のいずれの板ガラス14を用いた場合でも、光が確実に減衰されていることが確認できる。具体的には、1310nm及び1550nmの光のそれぞれに対して、実施例7では1.5dB以上の減衰率、実施例8では2.9dB以上の減衰率、実施例9では7.5dB以上の減衰率を実現している。
As can be seen from Table 3 above, it can be confirmed that the light is reliably attenuated when any of the glass plates 14 of Examples 7 to 9 is used. Specifically, with respect to each of light at 1310 nm and 1550 nm, the attenuation rate of 1.5 dB or more in Example 7, the attenuation rate of 2.9 dB or more in Example 8, and the attenuation of 7.5 dB or more in Example 9 The rate is realized.
なお、上記の実施例1~9のいずれにおいても、1310nmと1550nmの光のそれぞれに対して、同等の減衰率を示すことからも、1310~1550nmの波長帯域において、減衰率の波長依存性が少ないことが認識できる。この波長帯域は、長距離光通信で用いられる帯域であるので、これらの光モジュールを当該用途に用いれば、信頼性の高い通信を実現することが可能となる。
In any of the above Examples 1 to 9, since the same attenuation factor is shown for each of the light of 1310 nm and 1550 nm, the wavelength dependency of the attenuation factor is in the wavelength band of 1310 to 1550 nm. It can be recognized that there are few. Since this wavelength band is a band used in long-distance optical communication, if these optical modules are used for the application, highly reliable communication can be realized.
また、これらの実施例に係るガラススタブ4、球レンズ9、及び板ガラス14を適宜組み合わせることで、光の減衰率を調整することができる。具体的には、例えば、第1の実施形態に係る光モジュールにおいて、実施例1のガラススタブ4と、実施例5の球レンズ9とを組み込んだ場合には、1310~1550nmの波長帯域の光に対して、約9.0dBの減衰率を実現できる。また、この光モジュールに、実施例2のガラススタブ4と、実施例5の球レンズ9とを組み込んだ場合には、1310~1550nmの波長帯域の光に対して、約12.0dBの減衰率を実現できる。
Further, the light attenuation factor can be adjusted by appropriately combining the glass stub 4, the spherical lens 9, and the plate glass 14 according to these embodiments. Specifically, for example, in the optical module according to the first embodiment, when the glass stub 4 of Example 1 and the spherical lens 9 of Example 5 are incorporated, light in the wavelength band of 1310 to 1550 nm On the other hand, an attenuation factor of about 9.0 dB can be realized. Further, when the glass stub 4 of Example 2 and the spherical lens 9 of Example 5 are incorporated in this optical module, an attenuation factor of about 12.0 dB with respect to light having a wavelength band of 1310 to 1550 nm. Can be realized.
1 光モジュール用光学部品
2 スリーブフォルダ
3 ガイドスリーブ
4 ガラススタブ
5 光ファイバ
6 フェルール
7 ステムフォルダ
8 レンズフォルダ
9 球レンズ
10 光素子
11 ステム
12 光ファイバ
13 ファイバスタブ
14 板ガラス
15 ファイバピグテイル
16 ピグテイルサポート
G 低融点ガラス DESCRIPTION OFSYMBOLS 1 Optical component for optical modules 2 Sleeve folder 3 Guide sleeve 4 Glass stub 5 Optical fiber 6 Ferrule 7 Stem folder 8 Lens folder 9 Ball lens 10 Optical element 11 Stem 12 Optical fiber 13 Fiber stub 14 Plate glass 15 Fiber pigtail 16 Pigtail support G Low melting point glass
2 スリーブフォルダ
3 ガイドスリーブ
4 ガラススタブ
5 光ファイバ
6 フェルール
7 ステムフォルダ
8 レンズフォルダ
9 球レンズ
10 光素子
11 ステム
12 光ファイバ
13 ファイバスタブ
14 板ガラス
15 ファイバピグテイル
16 ピグテイルサポート
G 低融点ガラス DESCRIPTION OF
Claims (10)
- 光の発光又は受光の少なくとも一方を行う光素子と、光ファイバ保持部材に挿通固定された光ファイバの前記光素子に最も近い端面との間の光路上に、1又は複数のガラス部品を備えた光モジュール用光学部品において、
前記1又は複数のガラス部品の少なくとも1つに光減衰機能を付与したことを特徴とする光モジュール用光学部品。 One or more glass parts are provided on an optical path between an optical element that emits and / or receives light and an end face closest to the optical element of an optical fiber that is inserted and fixed in an optical fiber holding member. In optical components for optical modules,
An optical component for an optical module, wherein an optical attenuation function is provided to at least one of the one or more glass components. - 前記光減衰機能を付与したガラス部品が、光を減衰させるドーパントを含有してなることを特徴とする請求項1に記載の光モジュール用光学部品。 2. The optical component for an optical module according to claim 1, wherein the glass component having the light attenuation function contains a dopant that attenuates light.
- 前記ドーパントが、Co,Mn,Ni,Cr,V,Fe,Cuの中から選ばれた少なくとも1つのイオンであることを特徴とする請求項2に記載の光モジュール用光学部品。 3. The optical component for an optical module according to claim 2, wherein the dopant is at least one ion selected from Co, Mn, Ni, Cr, V, Fe, and Cu.
- 前記ドーパントを含有したガラス部品が、前記光素子と前記光ファイバの前記光素子に最も近い端面との間の光路上に2つ以上配置されていることを特徴とする請求項2又は3に記載の光モジュール用光学部品。 The glass component containing the said dopant is arrange | positioned two or more on the optical path between the said optical element and the end surface nearest to the said optical element of the said optical fiber, The Claim 2 or 3 characterized by the above-mentioned. Optical parts for optical modules.
- 前記光減衰機能を付与したガラス部品が、前記光素子と前記光ファイバの前記光素子に最も近い端面との間の光路上を通過する光を集光するレンズであることを特徴とする請求項1~4のいずれか1項に記載の光モジュール用光学部品。 The glass component having the light attenuation function is a lens that collects light passing through an optical path between the optical element and an end face of the optical fiber closest to the optical element. 5. The optical component for an optical module according to any one of 1 to 4.
- 前記光減衰機能を付与したガラス部品が、前記光ファイバ保持部材の前記光素子に最も近い端面と接触する凸球面を有するガラススタブであることを特徴とする請求項1~5のいずれか1項に記載の光モジュール用光学部品。 6. The glass stub according to claim 1, wherein the glass component having the light attenuating function is a glass stub having a convex spherical surface that comes into contact with an end surface of the optical fiber holding member closest to the optical element. An optical component for an optical module as described in 1.
- 前記光減衰機能を付与したガラス部品が、該ガラス部品を前記光素子と前記光ファイバの前記光素子に最も近い端面との間の光路上に保持する保持部材に熱処理によって直接固着されているか、又は低融点ガラスにより間接的に固着されていることを特徴とする請求項1~6のいずれか1項に記載の光モジュール用光学部品。 Whether the glass component imparted with the light attenuation function is directly fixed to the holding member that holds the glass component on the optical path between the optical element and the end face closest to the optical element of the optical fiber by heat treatment, The optical component for an optical module according to any one of claims 1 to 6, wherein the optical component is fixed indirectly by low-melting glass.
- 前記光ファイバ保持部材を内孔に保持する筒状部材を備えていることを特徴とする請求項1~7のいずれか1項に記載の光モジュール用光学部品。 The optical component for an optical module according to any one of claims 1 to 7, further comprising a cylindrical member that holds the optical fiber holding member in an inner hole.
- 前記光減衰機能を付与したガラス部品が、前記光ファイバ保持部材の前記光素子に最も近い端面と接触し、且つ、前記筒状部材の前記光素子側の開口部を気密封止する板ガラスであることを特徴とする請求項8に記載の光モジュール用光学部品。 The glass component imparted with the light attenuation function is a plate glass that comes into contact with an end surface of the optical fiber holding member closest to the optical element and hermetically seals the opening of the cylindrical member on the optical element side. The optical component for an optical module according to claim 8.
- 請求項1~9のいずれか1項に記載の光モジュール用光学部品が組み込まれてなることを特徴とする光モジュール。 10. An optical module comprising the optical module for an optical module according to claim 1 incorporated therein.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009135383 | 2009-06-04 | ||
JP2009-135383 | 2009-06-04 | ||
JP2010-106534 | 2010-05-06 | ||
JP2010106534A JP2011013665A (en) | 2009-06-04 | 2010-05-06 | Optical module and optical component for the optical module |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010140453A1 true WO2010140453A1 (en) | 2010-12-09 |
Family
ID=43297590
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/058157 WO2010140453A1 (en) | 2009-06-04 | 2010-05-14 | Optical module and optical component for the optical module |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2011013665A (en) |
TW (1) | TW201106030A (en) |
WO (1) | WO2010140453A1 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5851793B2 (en) * | 2011-10-18 | 2016-02-03 | 三菱鉛筆株式会社 | Optical coupling member, optical connector using the same, and optical coupling member holding member |
JP6143390B2 (en) * | 2012-02-29 | 2017-06-07 | 富士フイルム株式会社 | Photoacoustic measuring device |
JP6018437B2 (en) * | 2012-06-29 | 2016-11-02 | オムロン株式会社 | Optical fiber type photoelectric switch head |
TWI596392B (en) * | 2015-12-15 | 2017-08-21 | 波若威科技股份有限公司 | Variable optical attenuator |
JP6612287B2 (en) * | 2017-05-15 | 2019-11-27 | 富士フイルム株式会社 | Acoustic wave detection probe and photoacoustic measurement device |
WO2020024283A1 (en) * | 2018-08-03 | 2020-02-06 | Source Photonics Taiwan, Inc. | Optical module and assembly method thereof |
CN115104052A (en) * | 2020-02-14 | 2022-09-23 | 3M创新有限公司 | Beam expanding optical ferrule |
CN112925071A (en) * | 2021-02-03 | 2021-06-08 | 长飞光纤光缆股份有限公司 | TO pipe cap for photoelectric device and manufacturing method thereof |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0491320U (en) * | 1990-12-21 | 1992-08-10 | ||
JPH0520013U (en) * | 1991-08-23 | 1993-03-12 | アルプス電気株式会社 | Optical coupling device |
JPH05203844A (en) * | 1991-09-18 | 1993-08-13 | Internatl Business Mach Corp <Ibm> | Data transmission by optical fiber |
JPH0763948A (en) * | 1993-08-25 | 1995-03-10 | Rohm Co Ltd | Optical fiber receptacle and its production |
JPH0843632A (en) * | 1994-07-13 | 1996-02-16 | At & T Corp | Preparation of passive optical attemuator and optical signaltransmission system |
JPH08136736A (en) * | 1994-11-11 | 1996-05-31 | Showa Electric Wire & Cable Co Ltd | Light attenuator and its production |
JPH11194241A (en) * | 1998-01-05 | 1999-07-21 | Mitsubishi Electric Corp | Semiconductor laser module |
JP2005338408A (en) * | 2004-05-26 | 2005-12-08 | Kyocera Corp | Optical receptacle and optical module using same |
JP2007525722A (en) * | 2004-03-03 | 2007-09-06 | フィニサー コーポレイション | Optical component for transmitter and receiver having optical limiting element |
JP2009288531A (en) * | 2008-05-29 | 2009-12-10 | Sumitomo Electric Ind Ltd | Optical transmission module |
-
2010
- 2010-05-06 JP JP2010106534A patent/JP2011013665A/en active Pending
- 2010-05-14 WO PCT/JP2010/058157 patent/WO2010140453A1/en active Application Filing
- 2010-06-02 TW TW99117746A patent/TW201106030A/en unknown
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0491320U (en) * | 1990-12-21 | 1992-08-10 | ||
JPH0520013U (en) * | 1991-08-23 | 1993-03-12 | アルプス電気株式会社 | Optical coupling device |
JPH05203844A (en) * | 1991-09-18 | 1993-08-13 | Internatl Business Mach Corp <Ibm> | Data transmission by optical fiber |
JPH0763948A (en) * | 1993-08-25 | 1995-03-10 | Rohm Co Ltd | Optical fiber receptacle and its production |
JPH0843632A (en) * | 1994-07-13 | 1996-02-16 | At & T Corp | Preparation of passive optical attemuator and optical signaltransmission system |
JPH08136736A (en) * | 1994-11-11 | 1996-05-31 | Showa Electric Wire & Cable Co Ltd | Light attenuator and its production |
JPH11194241A (en) * | 1998-01-05 | 1999-07-21 | Mitsubishi Electric Corp | Semiconductor laser module |
JP2007525722A (en) * | 2004-03-03 | 2007-09-06 | フィニサー コーポレイション | Optical component for transmitter and receiver having optical limiting element |
JP2005338408A (en) * | 2004-05-26 | 2005-12-08 | Kyocera Corp | Optical receptacle and optical module using same |
JP2009288531A (en) * | 2008-05-29 | 2009-12-10 | Sumitomo Electric Ind Ltd | Optical transmission module |
Also Published As
Publication number | Publication date |
---|---|
TW201106030A (en) | 2011-02-16 |
JP2011013665A (en) | 2011-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010140453A1 (en) | Optical module and optical component for the optical module | |
JP4817013B2 (en) | Optical device and lens assembly | |
US6847770B2 (en) | Lens function-including optical fiber and method of producing the same | |
US20050220401A1 (en) | Fiber collimating lenses and method | |
JP5125467B2 (en) | Optical device | |
US8873909B1 (en) | Micro-optic filtering devices and method of making the same | |
EP1233291A2 (en) | Optical fiber coupling system using collimating lenses | |
US6535655B1 (en) | Fiberoptic polarizer and method of making the same | |
JP2008107760A (en) | Optical filter with optical isolator function and optical transmission/reception module with the same | |
JP2008209520A (en) | Optical filter module | |
KR101227182B1 (en) | Optical module using lenz having coated concave plane | |
CN206020718U (en) | Four port hybrid type of low-loss, two wave-length division is multiplexed optical passive component | |
JP2008151825A (en) | Optical multiplexer/demultiplexer | |
JP2008299029A (en) | Ferrule and manufacturing method therefor, and optical device, fiber stub and light receptacle using the same | |
JP4319067B2 (en) | Optical multiplexer / demultiplexer | |
US6807337B2 (en) | Optical device | |
JP4853648B2 (en) | Optical device | |
JP2006154868A (en) | Optical fiber with lens function and method for manufacturing the same | |
JPWO2007043558A1 (en) | Optical receptacle, optical module, and method for reducing variation in coupling efficiency in optical receptacle | |
JP2002311283A (en) | Optical communication component holding tube and optical communication component assembly | |
JP2004279708A (en) | Optical module | |
JP2006011119A (en) | Optical component, wavelength multiplexer/demultiplexer, and method of manufacturing optical component | |
CN115657215A (en) | Polarization-dependent isolation device and manufacturing method thereof | |
JP3093000U (en) | Stability add / drop optics | |
JP2008242450A (en) | Optical multiplexer/demultiplexer and optical transmitter-receiver using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10783237 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10783237 Country of ref document: EP Kind code of ref document: A1 |