WO2010137774A1 - 밀폐형 연료전지 시스템 - Google Patents

밀폐형 연료전지 시스템 Download PDF

Info

Publication number
WO2010137774A1
WO2010137774A1 PCT/KR2009/006064 KR2009006064W WO2010137774A1 WO 2010137774 A1 WO2010137774 A1 WO 2010137774A1 KR 2009006064 W KR2009006064 W KR 2009006064W WO 2010137774 A1 WO2010137774 A1 WO 2010137774A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
main fuel
oxygen
recirculation
water
Prior art date
Application number
PCT/KR2009/006064
Other languages
English (en)
French (fr)
Inventor
양철남
정용수
이창래
문성모
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Priority to US13/322,556 priority Critical patent/US9112198B2/en
Publication of WO2010137774A1 publication Critical patent/WO2010137774A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04552Voltage of the individual fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04828Humidity; Water content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a hermetic fuel cell system.
  • a fuel cell is a system that generates electricity through the reaction of fuel (LNG, LPG, hydrogen, methanol, etc.) and oxygen, and generates water and heat as a by-product.
  • fuel LNG, LPG, hydrogen, methanol, etc.
  • PEMFC polymer electrolyte membrane fuel cell
  • DMFC direct methanol fuel cell
  • PAFC phosphoric acid fuel cell
  • MCFC molten carbonate fuel cell
  • SOFC solid oxide fuel cell
  • the inside of the fuel cell is excessive in the production of the reactants in the operating environment in the high current region, the excess water droplets suppress the supply of gas to the catalyst layer and the diffusion of protons into the polymer membrane, thereby reducing the performance of the fuel cell appear.
  • the excessive moisture generated in the fuel cell that is, flooding
  • the fuel cell is an important factor that makes it difficult to stably operate the fuel cell as well as to decrease the reaction efficiency. Therefore, it is essential to discharge the excess water out of the fuel cell. .
  • Korean Patent Office Patent No. 0509818 discloses a "method and apparatus for performing internal purge in a fuel cell system.”
  • the purity of the fuel supplied to the fuel cell may not be 100%, even if the gas separated from the water is re-supplied to the fuel cell, impurities accumulate in the fuel cell and power generation efficiency is lowered.
  • An object of the present invention for solving the problems described above, the recycling means for recycling the hydrogen and oxygen discharged from the main fuel cell to the main fuel cell, the water generated during operation of the main fuel cell and the hydrogen and oxygen recycled It is an object of the present invention to provide a sealed fuel cell system having regeneration means for removing impurities contained therein.
  • Another object of the present invention is to provide a hermetically sealed fuel cell system in which one side of a recycling means and one side of a regenerating means are selectively communicated so that power generation of the main fuel cell and purification of water and impurities are simultaneously performed.
  • Still another object of the present invention is to provide a sealed fuel cell system in which the sacrificial fuel cell provided in the regeneration means is selectively replaced to prevent degradation of power generation efficiency of the main fuel cell, thereby preventing damage in advance.
  • An enclosed fuel cell system includes a main fuel cell for producing electricity by reacting fuel and oxygen, supply means for supplying a gas containing fuel and oxygen to the main fuel cell, and the main fuel Recirculation means for recirculating the gas containing hydrogen and oxygen discharged from the battery to the main fuel cell, sensing means for sensing a plurality of cell voltages constituting the main fuel cell, and one side of the main fuel cell And regeneration means connected to the main fuel cell to remove moisture and impurities in the main fuel cell, and control means for controlling the operation of the supply means, the recirculation means, the sensing means, and the regeneration means, wherein the regeneration means includes the recirculation means.
  • a regeneration tube for guiding the flow direction of the gas containing hydrogen and oxygen via the means, and a regeneration valve for selectively shielding the regeneration tube By reacting inside a gas containing hydrogen and oxygen supplied from the reproduction yonggwan it is configured including the sacrificial fuel cell to produce water, house reservoir for collecting the water generated in the fuel cell sacrifice.
  • the recirculation means includes a gas liquid separator for separating the water and the reaction gas generated in the main fuel cell into water and a gas, a recirculation tube for guiding the gas separated from the water in the gas liquid separator to the main fuel cell; And a recirculation pump for forcing a gas flow inside the recirculation tube.
  • the regeneration tube and the recycle tube are in communication.
  • the water collecting unit and the gas liquid separator are selectively in communication with the water storage tank for collecting water.
  • the sacrificial fuel cell is supplied with hydrogen and oxygen to generate power, and a pair of electrodes for guiding electric flow is selectively grounded.
  • the sacrificial fuel cell has a smaller power generation than the main fuel cell and is optionally replaced.
  • One side of the sacrificial fuel cell is provided with a short-circuit switch for selectively shorting a pair of electrodes, the short-circuit switch is grounded when opened for a predetermined time after the regeneration valve is shielded.
  • the supply means includes a fuel tank for storing and selectively supplying hydrogen, and an oxygen tank for storing and selectively supplying oxygen.
  • One side of the recirculation pipe is provided with a check valve for blocking the hydrogen discharged from the fuel tank does not flow into the recirculation pipe.
  • the control means may open the regeneration vessel when at least one of the voltages of the plurality of cells is lower than a preset voltage.
  • One side of the gas liquid separator is provided with a drain portion for controlling the water level by selectively draining the water stored in the gas liquid separator.
  • the main fuel cell, the supply means, the recirculation means, the sensing means, the regenerating means and the control means are located in an enclosed space.
  • a recycling means for recycling hydrogen and oxygen discharged from the main fuel cell to the main fuel cell, and a regeneration means for removing the water and impurities therein when the power generation efficiency of the main fuel cell is lowered.
  • the fuel efficiency is maximized when installed in a closed space such as a submarine, there is an advantage that can maximize the power generation efficiency of the main fuel cell by the action of the regeneration means.
  • the sacrificial fuel cell provided in the regeneration means can be selectively replaced.
  • the main fuel cell can be easily maintained and managed by selectively replacing the sacrificial fuel cell.
  • FIG. 1 is a block diagram showing the configuration of an embodiment of a sealed fuel cell system according to the present invention.
  • Figure 2 is a state diagram showing the fuel and hydrogen flow in the operation of the recirculation means of one embodiment of the sealed fuel cell system according to the present invention.
  • Figure 3 is a state diagram showing the fuel and hydrogen flow during operation of the regeneration means in one embodiment of the sealed fuel cell system according to the present invention.
  • FIG. 1 is a block diagram showing a configuration of an embodiment of a sealed fuel cell system according to the present invention.
  • the hermetically sealed fuel cell system 100 is supplied with hydrogen (H 2 ) and oxygen (O 2 ), which are fuels, and reacts to produce electricity.
  • the main fuel cell 110 and the main fuel cell 110 are produced.
  • Supply means 120 for supplying a gas containing fuel and oxygen to the) and the recycling means 130 for recycling the gas containing hydrogen and oxygen discharged from the main fuel cell 110 to the main fuel cell 110 ),
  • a sensing means 140 for sensing a plurality of cell voltages constituting the main fuel cell 110, and selectively communicating with one side of the main fuel cell 110, thereby causing the inside of the main fuel cell 110.
  • Regeneration means 150 for removing moisture and impurities of the control unit, and control means 160 for controlling the operation of the supply means 120, the recirculation means 130, the sensing means 140, and the regeneration means 150. It is configured by.
  • the hermetic fuel cell system 100 is a system 100 applicable to a device having an enclosed space such as a submersible, a submarine, and a spaceship according to an embodiment, and includes a main fuel cell 110, a supply means 120, and a recirculation.
  • the means 130, the sensing means 140, the regenerating means 150, and the control means 160 are arranged inside the closed space and have an operable structure.
  • the main fuel cell 110 can be selectively applied to a variety of fuel cells within the range to produce electricity by receiving air containing fuel and oxygen, hydrogen and oxygen from the supply means 120 It will be supplied with gas.
  • the supply means 120 is configured to supply a gas containing hydrogen and oxygen to the main fuel cell 110, in one embodiment of the present invention and the fuel tank 122 for storing and selectively supplying hydrogen and It is configured to include an oxygen tank 124 for storing and selectively supplying oxygen.
  • the fuel tank 122 and the oxygen tank 124 are in communication with the humidifier 170, the humidifier 170 is in communication with the inside of the main fuel cell (110). Therefore, hydrogen and oxygen in the fuel tank 122 and the oxygen tank 124 are humidified through the humidifier 170 and then supplied into the main fuel cell 110.
  • the humidifier 170 is configured to allow the fuel and the gas supplied to the inside of the main fuel cell 110 to react better, and thus the detailed description thereof will be omitted.
  • the sensing means 140 is provided above the main fuel cell 110.
  • the sensing means 140 is a component for sensing voltages of a plurality of cells constituting the main fuel cell 110.
  • the main fuel cell 110 is configured to generate a high voltage by stacking a plurality of cells, the plurality of cells are different voltage due to the change in the amount of moisture and current density generated in the cell with a long time use To generate a deviation between cells.
  • the sensing means 140 is provided to measure the amount of moisture and the change of current density in advance while operating the main fuel cell.
  • the recirculation means 130 is provided on the right side of the sensing means 140.
  • the recirculation means 130 is configured to maximize the utilization rate of the fuel by recycling the hydrogen and oxygen discharged without reacting in the main fuel cell 110 to the main fuel cell (110).
  • the recirculation means 130 is a gas liquid separator 131 for separating a gas that does not react with water generated by the reaction of hydrogen and oxygen in the main fuel cell 110, and the gas liquid separator 131 Recirculation pipe 133 for guiding the gas separated from the water to the main fuel cell 110 and a recirculation pump 137 for forcing a gas flow inside the recirculation pipe 133 is configured.
  • the recirculation means 130 is provided with one in the humidifier 170 in communication with the fuel tank 122 and the oxygen tank 124, respectively.
  • recirculation means 130 are connected to the upper right and lower right portions of the main fuel cell 110, respectively.
  • the recirculation means 130 connected to the upper right side of the main fuel cell 110 forwards hydrogen to the humidifier 170.
  • the recycle means 130 connected to the lower right side of the main fuel cell 110 recycles oxygen to the front end of the humidifier 170.
  • the gas (hydrogen or oxygen) separated from the water in the gas liquid separator 131 can be recycled through the recirculation tube 133.
  • the check valve 153 serves to block the hydrogen supplied from the fuel tank 122 from being introduced into the recirculation pipe 133, and the front end of the main fuel cell 110 by the recirculation pump 137.
  • the recycle gas (hydrogen and oxygen) supplied is forced to flow into the humidifier 170.
  • a drain unit 190 is provided below the gas liquid separator 131.
  • the drain unit 190 is configured to guide water to be discharged to the water storage tank 180 when the water discharged from the main fuel cell 110 has increased above the proper level in the gas liquid separator 131.
  • the drain portion 190 is a drain pipe 192 to communicate the interior of the gas liquid separator 131 and the water storage tank 180, and a drain valve for selectively shielding the inside of the drain pipe 192 194 is configured.
  • the water inside the gas liquid separator 131 flows into the water storage tank 180 through the drain pipe 192 according to the opening and closing of the drain valve 194, so that the water level inside the gas liquid separator 131 is increased. It can be kept constant.
  • the right side of the recirculation means 130 is provided with a regeneration means 150, which is a main component of the present invention.
  • the regeneration means 150 by-passes the gas introduced into the recirculation tube 133 when the voltage of the plurality of cells of the main fuel cell 110 sensed by the sensing means 140 is lower than the set voltage, the main fuel Impurities in the battery 110 can be discharged to the outside.
  • the regeneration means 150 is a regeneration pipe 152 for guiding the flow direction of the gas containing hydrogen and oxygen via the recirculation means 130, and the regeneration pipe for selectively shielding the regeneration pipe 152
  • a valve 154, a sacrificial fuel cell 156 for generating water by reacting a gas containing hydrogen and oxygen provided from the regeneration tube 152 therein and collecting water generated in the sacrificial fuel cell 156 It is configured to include a water collecting unit 158.
  • the regeneration tube 152 is branched from one side of the recirculation tube 133 to communicate with the sacrificial fuel cell 156, and guides the flow of gas by the operation of the regeneration valve 154.
  • the sacrificial fuel cell 156 can receive hydrogen and oxygen when the regenerative valve 154 is opened.
  • the sacrificial fuel cell 156 selectively operates when the main fuel cell 110 is deteriorated due to moisture inside or tries to discharge impurities, and generates less power than the main fuel cell 110. It is configured to be selectively replaceable.
  • the sacrificial fuel cell 156 is supplied with hydrogen and oxygen to generate power, and a short circuit switch 157 is selectively connected to one side of a pair of electrodes for guiding electric flow.
  • the gas discharged from the main fuel cell 110 is consumed in the sacrificial fuel cell 156 by the connection of the short-circuit switch 157 to become water, and other impurities are stored in the sacrificial fuel cell 156. Will accumulate.
  • the supplied unreacted gas is converted into water by electrical connection, and at the same time, impurities are adsorbed and collected. Therefore, the sacrificial fuel cell 156 collects trace impurities in the reaction gas and impurities in the sealed fuel cell system to increase durability of the main fuel cell 110.
  • the sacrificial fuel cell 156 may be periodically replaced in some cases because it is placed in severe environmental conditions.
  • the sensing means 140, the recirculation pump 137, the regeneration valve 154, the short-circuit switch 157 and the like is controlled by the control means 160.
  • control means 160 operates the regeneration means 150 when at least one of the voltages of each of the plurality of cells is lower than the preset voltage, and operates the recirculation means 130 when the voltage is normal. .
  • the recirculation pump 137 is operated, and the short circuit switch 157 operates the recirculation means 130 in a state of being turned off.
  • the recirculation pump 137 maintains a stop state
  • the regeneration valve 154 shields and reopens the regeneration pipe 152 for a predetermined time so that the short-circuit switch 157 is turned on,
  • the regeneration means 150 is operated.
  • control means 160 is configured to selectively open the drain valve 194 according to the water level inside the gas liquid separator 131 to adjust the water level.
  • the interior of the gas liquid separator 131 is selectively communicated with the water storage tank 180 by the drain pipe 192, by the drain passage 112 provided on one side of the main fuel cell 110.
  • the main fuel cell 110 and the water storage tank 180 is in communication.
  • the interior of the water collecting unit 158 is also in communication with the interior of the water storage tank 180. That is, the left side surface of the water collecting unit 158 is provided with a water level control pipe 182 and a control valve 184 for adjusting the water level in the water collecting unit 158.
  • the water level control pipe 182 is connected at both ends to communicate with each of the water collecting unit 158 and the water storage tank 180, the control valve 184 to selectively shield the inside of the water level control pipe 182. do.
  • the water inside the water collecting unit 158 is introduced into the water storage tank 180 and stored according to whether the control valve 184 is opened.
  • the water inside the main fuel cell 110, the water inside the gas liquid separator 131, and the water inside the collecting unit 158 are all introduced into and stored in the water storage tank 180 to be kept inside the sealed space. Installation is possible.
  • Figure 2 is a state diagram showing the fuel and hydrogen flow in the operation of the recirculation means 130, which is one configuration in one embodiment of the sealed fuel cell system according to the present invention.
  • the supply means 120 supplies hydrogen and oxygen to the humidifier 170. While passing through the humidifier 170, the main fuel cell 110 receives the humidified oxygen and hydrogen and generates electricity.
  • the recirculation tube 133 is opened and the recirculation tube 133 is capable of guiding the flow of gas, the discharged oxygen and hydrogen, which do not react in the main fuel cell 110, are separated from the gas liquid separator 131. It is separated from the water through and recycled to the front end of the humidifier 170.
  • the regeneration valve 154 shields the regeneration tube 152 to block the inflow of gas, and the sensing means 140 continuously measures the voltage of the plurality of cells constituting the main fuel cell 110. do.
  • the short circuit switch 157 is turned off.
  • the recycling rate of hydrogen and oxygen may be maximized by the operation of the recycling means 130 as described above.
  • FIG. 3 is a state diagram showing fuel and hydrogen flows during operation of the regeneration means 150, which is one component of the sealed fuel cell system according to the present invention.
  • the regeneration means 150 may operate to increase power generation efficiency and durability of the main fuel cell 110.
  • control means 160 shields the regenerative valve 154, and the short circuit switch 157 is turned on.
  • the recirculation pump 137 controls to stop the operation.
  • the shielded regenerative valve 154 is opened so that impurities inside the main fuel cell 110 are discharged momentarily such as hydrogen and oxygen.
  • the recirculation pump 137 stops operation, and the internal pressure of the recirculation pipe 133 (recirculation pipe 133 on the left side of the recirculation pump 137) is higher than the pressure inside the regeneration pipe 152, so that No inflow will occur.
  • the sacrificial fuel cell 156 generates power, and the generated electricity is grounded because the short-circuit switch 157 is turned on so that the sacrificial fuel cell 156 generates water therein.
  • the water generated inside the sacrificial fuel cell 156 flows into the water collecting unit 158 and is stored in the water collecting tank 158 so that the water can be introduced into the water storage tank 180 by the selective opening of the control valve 184.
  • water, impurities, etc. in the main fuel cell 110 are accumulated in the sacrificial fuel cell 156, thereby reducing impurities in the main fuel cell 110 and eventually increasing durability and regenerating them. Will be.
  • the internal configuration of the main fuel cell is not shown in detail, but it is obvious that the cooling water circuit may be further configured to lower the heat generation amount of the main fuel cell to increase power generation efficiency.

Abstract

본 발명은 밀폐형 연료전지 시스템에 관한 것이다. 본 발명의 실시예에 따른 밀폐형 연료전지 시스템은, 연료와 산소를 반응시켜 전기를 생산하는 메인연료전지와, 상기 메인연료전지에 연료와 산소를 포함하는 기체를 공급하는 공급수단과, 상기 메인연료전지에서 배출된 수소와 산소를 포함하는 기체를 메인연료전지로 재순환하는 재순환수단과, 상기 메인연료전지를 구성하는 복수의 셀(cell) 전압을 감지하는 감지수단과, 상기 메인연료전지 일측과 선택적으로 연통되어 메인연료전지 내부의 수분 및 불순물을 제거하는 재생수단과, 상기 공급수단, 재순환수단, 감지수단 및 재생수단의 동작을 제어하는 제어수단을 포함하여 구성되며, 상기 재생수단은, 상기 재순환수단을 경유한 수소와 산소를 포함하는 기체의 유동 방향을 안내하는 재생용관과, 상기 재생용관을 선택적으로 차폐하는 재생용밸브와, 상기 재생용관으로부터 제공된 수소와 산소를 포함하는 기체를 내부에서 반응시켜 물을 생성하는 희생연료전지와, 상기 희생연료전지에서 발생한 물을 집수하는 집수부를 포함하여 구성된다. 이와 같은 본 발명에 의하면, 수소 배출로 인한 폭발의 위험성이 해소되며, 수분 및 불순물이 제거되어 메인연료전지의 발전효율 및 내구성이 향상된다.

Description

밀폐형 연료전지 시스템
본 발명은 밀폐형 연료전지 시스템에 관한 것이다.
연료전지는 연료(LNG, LPG, 수소, 메탄올 등)와 산소의 반응을 통해 전기를 생산하고, 동시에 부산물로서 물과 열을 발생시키는 시스템으로서 발전효율이 높고 환경 유해요소가 제거된 발전장치이다.
그리고, 사용되는 전해질의 종류에 따라 폴리머 전해질막 연료전지(PEMFC), 직접 메탄올 연료전지(DMFC), 인산형 연료전지(PAFC), 용융탄산염 연료전지(MCFC), 고체 산화물 연료전지(SOFC) 등이 있다.
이러한 연료전지의 종류 중에서 PEMFC, PAFC, DMFC는 작동온도가 각각 80℃-120℃, 190℃-200℃, 25℃-90℃ 정도로 낮으며, 자동차 등의 수송용이나, 가정용 및 휴대용 전력원으로서 활용 가능성이 높다.
따라서, 이들 연료전지의 상용화를 앞당기고 확대하기 위해 전체 연료전지 시스템의 소형화, 경량화, 저렴화 등에 연구 관심이 집중되고 있다.
그러나, 연료전지 내부에는 고전류 영역에서의 운전 환경에서 반응물의 생성이 과다해지며, 과량의 수분인 물방울로 인하여 촉매층으로의 가스의 공급 및 고분자막으로의 프로톤의 확산이 억제되므로 연료전지의 성능 저하가 나타난다.
더욱 심각한 것은 연료전지 내에 존재하는 단위 셀(cell) 별로 균질하지 않은 물 분포로 인한 일부 셀의 성능 저하로 정상적인 운전이 어려워지는 문제점이 발생한다.
이와 같이, 연료전지에서 발생되는 과다한 수분 즉, 플러딩(flooding)은 반응 효율의 저하는 물론 연료전지의 안정적인 운전을 어렵게 하는 중요한 인자이므로, 상기 과량의 수분을 연료전지 밖으로 배출시키는 것이 필수적으로 요구된다.
이에 따라 대한민국 특허청 특허 제0509818호에는 "연료 전지 시스템에서 내부 퍼지를 수행하기 위한 방법 및 장치"가 게시되어 있다.
이러한 종래 기술을 간략히 살펴보면, 복수개 셀의 전압을 감지하고, 플러딩 발생시에 퍼지밸브와 재순환 펌프를 제어하여 압력차를 이용한 스택 내부의 수분 및 가스 혼합물을 스택 외부로 방출(purge)하며, 수분과 분리된 가스를 스택으로 재공급할 수 있도록 구성된다.
그러나, 이러한 종래 기술에는 다음과 같은 문제점이 있다.
즉, 연료전지에 공급되는 연료의 순도는 100%가 될 수 없으므로, 수분과 분리된 가스가 연료전지로 재공급되더라도 결국 연료전지 내부에 불순물이 쌓이게 되어 발전 효율이 저하된다.
그리고, 연료전지 내부에서 분리판 및 전극을 구성하고 있는 탄소와 연료전지를 구성하는 주변장치의 금속 이온 및 입자 등의 불순물이 쌓이게 되면 연료전지의 내구성에 점차적으로 영향을 줌은 물론 셀 내부의 전류 누설을 발생시켜 연료전지의 수명의 단축 또는 파손을 야기하게 되어 막대한 수리비가 발생하게 되는 듯 바람직하지 못하다.
또한, 종래 기술을 이용하여 연료전지 내부의 가스를 재순환시켜 연료전지에서 발생된 수분을 내부에서 제거하더라도 폐회로를 구성하고 있으므로, 결국 연료전지로 공급되는 가스에 의해 다시 연료전지 내부로 불순물이 유입되므로 연료전지의 성능 및 내구성을 저하시키게 된다.
상기한 바와 같은 문제점을 해결하기 위한 본 발명의 목적은, 메인연료전지에서 배출된 수소와 산소를 메인연료전지로 재순환하는 재순환수단과, 메인연료전지 운전 중에 발생되는 수분과 재순환되는 수소 및 산소 중에 포함된 불순물을 제거하기 위한 재생수단이 구비되는 밀폐형 연료전지 시스템을 제공하는 것에 있다.
본 발명의 다른 목적은, 재순환수단 일측과 재생수단 일측을 선택적으로 연통시켜 메인연료전지의 발전과, 수분 및 불순물의 정화가 동시에 이루어지도록 한 밀폐형 연료전지 시스템을 제공하는 것이다.
본 발명의 또 다른 목적은, 재생수단에 구비된 희생연료전지를 선택적으로 교체하여 메인연료전지의 발전효율 저하를 미연에 방지하여 미연에 파손이 방지되도록 한 밀폐형 연료전지 시스템을 제공하는 것이다.
본 발명의 실시예에 따른 밀폐형 연료전지 시스템은, 연료와 산소를 반응시켜 전기를 생산하는 메인연료전지와, 상기 메인연료전지에 연료와 산소를 포함하는 기체를 공급하는 공급수단과, 상기 메인연료전지에서 배출된 수소와 산소를 포함하는 기체를 메인연료전지로 재순환하는 재순환수단과, 상기 메인연료전지를 구성하는 복수의 셀(cell) 전압을 감지하는 감지수단과, 상기 메인연료전지 일측과 선택적으로 연통되어 메인연료전지 내부의 수분 및 불순물을 제거하는 재생수단과, 상기 공급수단, 재순환수단, 감지수단 및 재생수단의 동작을 제어하는 제어수단을 포함하여 구성되며, 상기 재생수단은, 상기 재순환수단을 경유한 수소와 산소를 포함하는 기체의 유동 방향을 안내하는 재생용관과, 상기 재생용관을 선택적으로 차폐하는 재생용밸브와, 상기 재생용관으로부터 제공된 수소와 산소를 포함하는 기체를 내부에서 반응시켜 물을 생성하는 희생연료전지와, 상기 희생연료전지에서 발생한 물을 집수하는 집수부를 포함하여 구성된다.
상기 재순환수단은, 상기 메인연료전지에서 생성된 물과 반응가스를 물과 기체로 분리하는 기체액체분리기와, 상기 기체액체분리기에서 물로부터 분리된 기체를 메인연료전지로 안내하는 재순환관과, 상기 재순환관 내부의 기체 흐름을 강제하는 재순환펌프를 포함하여 구성된다.
상기 재생용관과 재순환관은 연통된다.
상기 집수부와 기체액체분리기는, 물을 집수하는 물저장탱크 내부와 선택적으로 연통된다.
상기 희생연료전지는, 수소 및 산소를 공급받아 발전하며, 전기흐름을 안내하는 한 쌍의 전극은 선택적으로 접지된다.
상기 희생연료전지는 메인연료전지보다 작은 발전량을 가지며, 선택적으로 교체된다.
상기 희생연료전지 일측에는, 한 쌍의 전극을 선택적으로 단락하는 단락스위치가 구비되며, 상기 단락스위치는 재생용밸브가 차폐된 후 일정 시간 경과하여 개방시에 접지된다.
상기 공급수단은, 수소를 보관하고 선택적으로 공급하는 연료탱크와, 산소를 보관하고 선택적으로 공급하는 산소탱크를 포함하여 구성된다.
상기 재순환관 일측에는, 상기 연료탱크에서 토출된 수소가 재순환관으로 유입되지 않도록 차단하는 체크밸브가 구비된다.
상기 제어수단은, 상기 복수의 셀 각각의 전압 중 하나 이상이 미리 설정된 전압보다 낮은 경우 상기 재생용관을 개방하는 것을 특징으로 된다.
상기 기체액체분리기 일측에는, 상기 기체액체분리기 내부에 보관된 물을 선택적으로 배수하여 수위를 조절하기 위한 드레인부가 구비된다.
상기 메인연료전지와, 공급수단과, 재순환수단과, 감지수단과, 재생수단 및 제어수단은 밀폐된 공간에 위치한다.
본 발명에서는, 메인연료전지에서 배출된 수소와 산소를 메인연료전지로 재순환하는 재순환수단과, 메인연료전지의 발전효율이 낮아질 때 내부의 수분 및 불순물을 제거하기 위한 재생수단이 구비된다.
따라서, 잠수함과 같은 밀폐된 공간에 설치되는 경우 연료효율이 극대화되며, 재생수단의 작용에 의해 메인연료전지의 발전효율을 극대화할 수 있는 이점이 있다.
또한, 본 발명에서는 재생수단에 구비된 희생연료전지를 선택적으로 교체 가능하도록 구성하였다.
따라서, 메인연료전지의 발전효율이 저하될 때 선택적으로 재생하여 발전효율을 높일 수 있게 되므로, 메인연료전지의 내구성을 향상시킬 수 있는 이점이 있다.
뿐만 아니라, 희생연료전지를 선택적으로 교체 가능하도록 구성함으로써 메인연료전지의 유지 및 관리가 용이
도 1 은 본 발명에 의한 밀폐형 연료전지 시스템의 일 실시예의 구성을 보인 구성도.
도 2 는 본 발명에 의한 밀폐형 연료전지 시스템의 일 실시예에서 일 구성인 재순환수단 동작시의 연료 및 수소 흐름을 나타낸 사용 상태도.
도 3 은 본 발명에 의한 밀폐형 연료전지 시스템의 일 실시예에서 일 구성인 재생수단 동작시 연료 및 수소 흐름을 나타낸 사용 상태도.
* 도면의 주요 부분에 대한 부호의 설명 *
100. 밀폐형 연료전지 시스템 110. 메인연료전지
112. 배수로 120. 공급수단
122. 연료탱크 124. 산소탱크
130. 재순환수단 131. 기체액체분리기
133. 재순환관 137. 재순환펌프
140. 감지수단 150. 재생수단
152. 재생용관 153. 체크밸브
154. 재생용밸브 156. 희생연료전지
157. 단락스위치 158. 집수부
160. 제어수단 170. 가습기
180. 물저장탱크 182. 수위조절관
184. 조절밸브 190. 드레인부
192. 드레인관 194. 드레인밸브
이하에서는 첨부된 도면을 참조하여 본 발명에 의한 밀폐형 연료전지 시스템의 구성을 일 실시예를 들어 설명하기로 한다.
도 1에는 본 발명에 의한 밀폐형 연료전지 시스템의 일 실시예의 구성을 보인 구성도가 도시되어 있다.
도면과 같이, 밀폐형 연료전지 시스템(100)은 연료인 수소(H2)와 산소(O2)를 공급받아 반응시켜 전기를 생산하는 것으로, 메인연료전지(110)와, 상기 메인연료전지(110)에 연료와 산소를 포함하는 기체를 공급하는 공급수단(120)과, 상기 메인연료전지(110)에서 배출된 수소와 산소를 포함하는 기체를 메인연료전지(110)로 재순환하는 재순환수단(130)과, 상기 메인연료전지(110)를 구성하는 복수의 셀(cell) 전압을 감지하는 감지수단(140)과, 상기 메인연료전지(110) 일측과 선택적으로 연통되어 메인연료전지(110) 내부의 수분 및 불순물을 제거하는 재생수단(150)과, 상기 공급수단(120), 재순환수단(130), 감지수단(140) 및 재생수단(150)의 동작을 제어하는 제어수단(160)을 포함하여 구성된다.
상기 밀폐형 연료전지 시스템(100)은 일 실시예에 의해 잠수정, 잠수함, 우주선 등의 밀폐된 공간을 갖는 장치에 적용 가능한 시스템(100)으로서, 메인연료전지(110), 공급수단(120), 재순환수단(130), 감지수단(140), 재생수단(150) 및 제어수단(160)이 밀폐공간 내부에 배치되어 작동 가능한 구조를 갖는다.
보다 상세하게 살펴보면, 상기 메인연료전지(110)는 연료와 산소를 포함한 공기를 공급받아 전기를 생산할 수 있는 범위 내에서 다양한 연료전지가 선택적으로 적용 가능하며, 상기 공급수단(120)으로부터 수소와 산소를 포함한 기체를 공급받게 된다.
상기 공급수단(120)은, 메인연료전지(110)에 수소와 산소가 포함된 기체를 공급하기 위한 구성으로, 본 발명의 일 실시예에서는 수소를 보관하고 선택적으로 공급하는 연료탱크(122)와, 산소를 보관하고 선택적으로 공급하는 산소탱크(124)를 포함하여 구성된다.
상기 연료탱크(122)와 산소탱크(124)는 가습기(170)와 연통되며, 상기 가습기(170)는 메인연료전지(110) 내부와 연통된다. 따라서, 상기 연료탱크(122)와 산소탱크(124) 내부의 수소 및 산소는 가습기(170)를 경유하여 가습된 후 상기 메인연료전지(110) 내부로 공급된다.
상기 가습기(170)는 메인연료전지(110) 내부로 공급되는 연료 및 기체가 보다 잘 반응할 수 있도록 하는 구성으로 상세한 설명은 생략하기로 한다.
상기 메인연료전지(110) 상측에는 감지수단(140)이 구비된다. 상기 감지수단(140)은 메인연료전지(110)를 구성하는 복수의 셀(cell)의 전압을 감지하기 위한 구성이다.
즉, 상기 메인연료전지(110)는 복수개의 셀을 적층하여 높은 전압을 발생하도록 구성되는데, 이러한 복수의 셀은 장시간 사용함에 따라 셀 내에서 발생한 수분의 양 및 전류밀도의 변화에 의해 서로 다른 전압을 발생하게 되어 셀 간 편차가 발생하게 된다.
따라서, 상기 메인연료전지를 운전하면서도 수분의 양 및 전류밀도 변화를 측정하여 사전에 진단하기 위해 감지수단(140)이 구비된다.
상기 감지수단(140) 우측에는 재순환수단(130)이 구비된다. 상기 재순환수단(130)은 메인연료전지(110) 내부에서 반응하지 못하고 배출되는 수소 및 산소를 메인연료전지(110)로 재순환시켜 연료의 이용률을 극대화하기 위한 구성이다.
이를 위해 상기 재순환수단(130)은 상기 메인연료전지(110) 내부에서 수소와 산소가 반응하여 생성된 물과 반응하지 못한 기체를 분리하는 기체액체분리기(131)와, 상기 기체액체분리기(131)에서 물로부터 분리된 기체를 메인연료전지(110)로 안내하는 재순환관(133)과, 상기 재순환관(133) 내부의 기체 흐름을 강제하는 재순환펌프(137)를 포함하여 구성된다.
그리고, 상기 재순환수단(130)은 연료탱크(122)와 산소탱크(124)에 각각 연통하는 가습기(170)에 하나씩 구비된다.
즉, 상기 메인연료전지(110)의 우측 상부와 우측 하부에는 각각 재순환수단(130)이 연결되며, 상기 메인연료전지(110) 우측 상부에 연결된 재순환수단(130)은 수소를 가습기(170) 전단으로 재순환하게 되고, 상기 메인연료전지(110) 우측 하부에 연결된 재순환수단(130)은 산소를 가습기(170) 전단으로 재순환하게 된다.
따라서, 상기 기체액체분리기(131)에서 물로부터 분리된 기체(수소 또는 산소)는 재순환관(133)을 통해 재순환이 가능하게 된다.
상기 재순환관(133)의 일측에는 체크밸브(153)가 구비된다. 상기 체크밸브(153)는 연료탱크(122)에서 공급되는 수소가 재순환관(133)으로 유입되지 않도록 차단하는 역할을 수행하는 것으로, 상기 재순환펌프(137)에 의해 메인연료전지(110) 전단으로 공급되는 재순환 가스(수소 및 산소)가 가습기(170) 내부로 유입될 수 있도록 강제하게 된다.
그리고, 상기 기체액체분리기(131) 하측에는 드레인부(190)가 구비된다. 상기 드레인부(190)는 메인연료전지(110)로부터 토출된 물이 기체액체분리기(131) 내부에 적정 수위 이상으로 늘어났을 때 물저장탱크(180)로 물이 토출되도록 안내하는 구성이다.
이를 위해 상기 드레인부(190)는 기체액체분리기(131) 내부와 물저장탱크(180) 내부가 연통되도록 하는 드레인관(192)과, 상기 드레인관(192) 내부를 선택적으로 차폐하기 위한 드레인밸브(194)를 포함하여 구성된다.
따라서, 상기 드레인밸브(194)의 개폐에 따라 상기 기체액체분리기(131) 내부의 물은 드레인관(192)을 통해 물저장탱크(180)로 유입됨으로써 상기 기체액체분리기(131) 내부의 수위는 일정하게 유지 가능하게 된다.
상기 재순환수단(130) 우측에는 본 발명의 요부 구성인 재생수단(150)이 구비된다. 상기 재생수단(150)은 감지수단(140)에 의해 감지된 메인연료전지(110)의 복수개 셀의 전압이 설정 전압보다 낮은 경우, 재순환관(133)으로 유입된 기체를 순간적으로 우회함으로써 메인연료전지(110) 내부의 불순물이 외부로 배출될 수 있도록 하는 구성이다.
이를 위해 상기 재생수단(150)은 재순환수단(130)을 경유한 수소와 산소를 포함하는 기체의 유동 방향을 안내하는 재생용관(152)과, 상기 재생용관(152)을 선택적으로 차폐하는 재생용밸브(154)와, 상기 재생용관(152)으로부터 제공된 수소와 산소를 포함하는 기체를 내부에서 반응시켜 물을 생성하는 희생연료전지(156)와, 상기 희생연료전지(156)에서 발생한 물을 집수하는 집수부(158)를 포함하여 구성된다.
상기 재생용관(152)은 재순환관(133)의 일측에서 분지되어 희생연료전지(156) 내부와 연통된 것으로, 상기 재생용밸브(154)의 동작에 의해 기체의 유동을 안내하게 된다.
따라서, 상기 희생연료전지(156)는 재생용밸브(154) 개방시에 수소 및 산소의 공급을 받을 수 있게 된다.
상기 희생연료전지(156)는 구성의 명칭과 같이 메인연료전지(110)가 내부의 수분에 의해 성능이 저하되거나 불순물을 배출하고자 할 때 선택적으로 동작하는 것으로, 메인연료전지(110)보다 작은 발전량을 가지며, 선택적으로 교체 가능하도록 구성된다.
즉, 상기 희생연료전지(156)는 수소 및 산소를 공급받아 발전하며, 전기 흐름을 안내하는 한 쌍의 전극 일측에는 단락스위치(157)가 구비되어 선택적으로 접속된다. 그리고, 상기 메인연료전지(110) 내부에서 토출된 기체는 단락스위치(157)의 접속에 의해 희생연료전지(156) 내부에서 소모되어 물이 되며, 그외의 불순물은 희생연료전지(156) 내부에 쌓이게 된다.
그리고, 상기 희생연료전지(156) 내에서는 공급된 미반응 가스를 전기 접속에 의해 물로 변환시킴과 동시에 불순물을 흡착 및 포집하게 된다. 그러므로, 상기 희생연료전지(156)는 메인연료전지(110)의 내구성 증대를 위해 공급되는 반응가스 내의 미량의 불순물 및 밀폐형 연료전지 시스템 내의 불순물을 포집하는 기능을 수행한다.
이로써 상기 희생연료전지(156)는 메인연료전지(110)를 보호하고 내구성을 증대시키는 대신, 가혹한 환경 조건에 놓이게 되므로 경우에 따라 주기적으로 교체될 수 있다.
한편, 상기 감지수단(140), 재순환펌프(137), 재생용밸브(154), 단락스위치(157) 등은 제어수단(160)에 의해 동작이 제어된다.
즉, 상기 제어수단(160)은 복수의 셀 각각의 전압 중 하나 이상이 미리 설정된 전압보다 낮은 경우 상기 재생수단(150)을 동작시키며, 정상적인 전압인 경우에는 상기 재순환수단(130)을 동작시키게 된다.
보다 상세하게는 상기 재순환펌프(137)를 동작시키고, 상기 단락스위치(157)는 off 상태로 둔 상태에서 상기 재순환수단(130)을 동작시킨다.
반대인 경우, 상기 재순환펌프(137)는 정지상태를 유지하며, 상기 재생용밸브(154)는 재생용관(152)을 일정 시간 차폐한 후 개방하고 단락스위치(157)는 on 상태가 되도록 하여, 상기 재생수단(150)을 동작시킨다.
이외에도 상기 제어수단(160)은 기체액체분리기(131) 내부의 수위에 따라 드레인밸브(194)를 선택적으로 개방하여 수위를 조절하도록 구성된다.
전술한 바와 같이, 상기 기체액체분리기(131) 내부는 드레인관(192)에 의해 물저장탱크(180)와 선택적으로 연통되며, 상기 메인연료전지(110) 일측에 구비된 배수로(112)에 의해 상기 메인연료전지(110)와 물저장탱크(180) 내부는 연통된다.
또한, 상기 집수부(158) 내부도 물저장탱크(180) 내부와 연통된다. 즉, 상기 집수부(158)의 좌측면에는 집수부(158) 내부의 수위를 조절하기 위한 수위조절관(182) 및 조절밸브(184)가 구비된다.
상기 수위조절관(182)은 양단부가 상기 집수부(158)와 물저장탱크(180) 내부에 각각 연통하도록 연결되며, 상기 조절밸브(184)는 수위조절관(182) 내부를 선택적으로 차폐하게 된다.
따라서, 상기 조절밸브(184)의 개방 여부에 따라 상기 집수부(158) 내부의 물은 물저장탱크(180) 내부로 유입되어 보관된다.
이에 따라, 상기 메인연료전지(110) 내부의 물, 기체액체분리기(131) 내부의 물 및 집수부(158) 내부 물은 모두 물저장탱크(180) 내부로 유입되어 보관되어 밀폐된 공간 내부에 설치 가능하게 된다.
이하에서는 상기 밀폐형 연료전지 시스템(100)이 동작하여 전기를 생성하는 과정을 도 2의 화살표를 참조하여 설명한다.
도 2에는 본 발명에 의한 밀폐형 연료전지 시스템의 일 실시예에서 일 구성인 재순환수단(130) 동작시의 연료 및 수소 흐름을 나타낸 사용 상태도가 도시되어 있다.
도면과 같이, 상기 밀폐형 연료전지 시스템(100)이 발전하기 위해서는 상기 공급수단(120)은 수소와 산소를 가습기(170)로 공급하게 된다. 상기 가습기(170)를 통과하면서 가습된 산소와 수소를 메인연료전지(110)는 공급받아 발전하게 된다.
그리고, 상기 재순환관(133)은 개방되어 재순환관(133)은 기체의 유동을 안내 가능하므로, 상기 메인연료전지(110) 내부에서 반응하지 못하고 토출된 산소와 수소는 기체액체분리기(131)를 통해 물에서 분리되어 상기 가습기(170) 전단으로 재순환하게 된다.
이때 상기 재생용밸브(154)는 재생용관(152)을 차폐하여 기체의 유입이 차단되도록 하며, 상기 감지수단(140)은 메인연료전지(110)를 구성하는 복수 셀의 전압을 지속적으로 측정하게 된다. 또한, 상기 단락스위치(157)는 off 되어 있다.
따라서, 상기한 바와 같은 재순환수단(130)의 작용에 의해 수소와 산소의 재활용율은 극대화될 수 있다.
이하 상기 감지수단(140)에 의해 감지된 복수의 셀 각각의 전압 중 하나 이상이 미리 설정된 전압보다 낮아 상기 재생수단(150)을 동작하는 경우 기체의 흐름을 첨부된 도 3을 참조하여 설명한다.
도 3에는 본 발명에 의한 밀폐형 연료전지 시스템의 일 실시예에서 일 구성인 재생수단(150) 동작시 연료 및 수소 흐름을 나타낸 사용 상태도가 도시되어 있다.
도면과 같이, 상기 메인연료전지(110)의 발전효율이 낮아짐에 따라 상기 재생수단(150)은 동작하여 메인연료전지(110)의 발전효율 및 내구성을 높일 수 있게 된다.
이를 위해 상기 제어수단(160)은 재생용밸브(154)를 차폐하며, 상기 단락스위치(157)는 on 시키게 된다. 또한 상기 재순환펌프(137)는 동작을 멈추도록 제어한다.
그리고, 상기 연료탱크(122)와 산소탱크(124)로부터 수소와 산소가 공급되면 상기 재생용밸브(154)가 차폐된 상태를 유지함에 따라, 높은 압력이 발생하게 된다.
이후 일정 시간이 경과하게 되면, 차폐된 재생용밸브(154)를 개방하여 상기 메인연료전지(110) 내부의 불순물이 수소 및 산소와 같이 순간적으로 배출되도록 한다.
이때 상기 메인연료전지(110)로부터 배출된 불순물 및 기체는 기체액체분리기(131)를 통해 서로 분리되며, 기체는 상기 재생용관(152)으로 빠르게 이동하게 되며, 상기 희생연료전지(156) 내부로 유입된다.
즉, 상기 재순환펌프(137)는 동작을 멈추고 있고, 재순환관(133)(재순환펌프(137) 좌측의 재순환관(133))의 내부 압력은 재생용관(152) 내부의 압력보다 높으므로 기체의 유입이 발생되지 않게 된다.
따라서, 상기 희생연료전지(156)는 발전하게 되며, 발전된 전기는 상기 단락스위치(157)가 on 되어 있으므로 접지되어 상기 희생연료전지(156)는 내부에 물을 생성하게 된다.
상기 희생연료전지(156) 내부에서 생성된 물은 집수부(158)로 흘러들어 보관되며, 상기 조절밸브(184)의 선택적 개방에 의해 상기 물저장탱크(180)로 유입 가능하게 된다.
상기한 작용에 따라 상기 메인연료전지(110) 내부의 물, 불순물 등은 상기 희생연료전지(156) 내부에 적체됨으로써 메인연료전지(110) 내부에는 불순물이 감소되고 결국 내구성이 증대되어 재생될 수 있게 된다.
이러한 본 발명의 범위는 상기에서 예시한 실시예에 한정되지 않고, 상기와 같은 기술범위 안에서 당업계의 통상의 기술자에게 있어서는 본 발명을 기초로 하는 다른 많은 변형이 가능할 것이다.
예를 들어 본 발명의 실시예에서는, 메인연료전지 내부 구성을 상세히 도시하진 않았으나, 메인연료전지의 발열량을 낮추어 발전 효율을 높일 수 있도록 하기 위한 냉각수회로를 더 구성할 수도 있음은 자명하다.

Claims (12)

  1. 연료와 산소를 반응시켜 전기를 생산하는 메인연료전지와, 상기 메인연료전지에 연료와 산소를 포함하는 기체를 공급하는 공급수단과, 상기 메인연료전지에서 배출된 수소와 산소를 포함하는 기체를 메인연료전지로 재순환하는 재순환수단과, 상기 메인연료전지를 구성하는 복수의 셀(cell) 전압을 감지하는 감지수단과, 상기 메인연료전지 일측과 선택적으로 연통되어 메인연료전지 내부의 수분 및 불순물을 제거하는 재생수단과, 상기 공급수단, 재순환수단, 감지수단 및 재생수단의 동작을 제어하는 제어수단을 포함하여 구성되며,
    상기 재생수단은,
    상기 재순환수단을 경유한 수소와 산소를 포함하는 기체의 유동 방향을 안내하는 재생용관과,
    상기 재생용관을 선택적으로 차폐하는 재생용밸브와,
    상기 재생용관으로부터 제공된 수소와 산소를 포함하는 기체를 내부에서 반응시켜 물을 생성하는 희생연료전지와,
    상기 희생연료전지에서 발생한 물을 집수하는 집수부를 포함하여 구성됨을 특징으로 하는 밀폐형 연료전지 시스템.
  2. 제 1 항에 있어서, 상기 재순환수단은,
    상기 메인연료전지에서 생성된 물과 반응가스를 물과 기체로 분리하는 기체액체분리기와,
    상기 기체액체분리기에서 물로부터 분리된 기체를 메인연료전지로 안내하는 재순환관과,
    상기 재순환관 내부의 기체 흐름을 강제하는 재순환펌프를 포함하여 구성됨을 특징으로 하는 밀폐형 연료전지 시스템.
  3. 제 2 항에 있어서, 상기 재생용관과 재순환관은 연통되는 것을 특징으로 하는 밀폐형 연료전지 시스템.
  4. 제 2 항에 있어서, 상기 집수부와 기체액체분리기는,
    물을 집수하는 물저장탱크 내부와 선택적으로 연통되는 것을 특징으로 하는 밀폐형 연료전지 시스템.
  5. 제 1 항에 있어서, 상기 희생연료전지는,
    수소 및 산소를 공급받아 발전하며, 전기흐름을 안내하는 한 쌍의 전극은 선택적으로 접지됨을 특징으로 하는 밀폐형 연료전지 시스템.
  6. 제 5 항에 있어서, 상기 희생연료전지는 메인연료전지보다 작은 발전량을 가지며, 선택적으로 교체되는 것을 특징으로 하는 밀폐형 연료전지 시스템.
  7. 제 5 항에 있어서, 상기 희생연료전지 일측에는, 한 쌍의 전극을 선택적으로 단락하는 단락스위치가 구비되며, 상기 단락스위치는 재생용밸브가 차폐된 후 일정 시간 경과하여 개방시에 접지되는 것을 특징으로 하는 밀폐형 연료전지 시스템.
  8. 제 2 항에 있어서, 상기 공급수단은,
    수소를 보관하고 선택적으로 공급하는 연료탱크와,
    산소를 보관하고 선택적으로 공급하는 산소탱크를 포함하여 구성됨을 특징으로 하는 밀폐형 연료전지 시스템.
  9. 제 2 항에 있어서, 상기 재순환관 일측에는,
    상기 연료탱크에서 토출된 수소가 재순환관으로 유입되지 않도록 차단하는 체크밸브가 구비됨을 특징으로 하는 밀폐형 연료전지 시스템.
  10. 제 3 항에 있어서, 상기 제어수단은,
    상기 복수의 셀 각각의 전압 중 하나 이상이 미리 설정된 전압보다 낮은 경우 상기 재생용관을 개방하는 것을 특징으로 하는 밀폐형 연료전지 시스템.
  11. 제 2 항에 있어서, 상기 기체액체분리기 일측에는,
    상기 기체액체분리기 내부에 보관된 물을 선택적으로 배수하여 수위를 조절하기 위한 드레인부가 구비됨을 특징으로 하는 밀폐형 연료전지 시스템.
  12. 제 1 항 또는 제 9 항에 있어서, 상기 메인연료전지와, 공급수단과, 재순환수단과, 감지수단과, 재생수단 및 제어수단은 밀폐된 공간에 위치하는 것을 특징으로 하는 밀폐형 연료전지 시스템.
PCT/KR2009/006064 2009-05-27 2009-10-20 밀폐형 연료전지 시스템 WO2010137774A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/322,556 US9112198B2 (en) 2009-05-27 2009-10-20 Closed loop type fuel cell system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0046379 2009-05-27
KR1020090046379A KR100923448B1 (ko) 2009-05-27 2009-05-27 밀폐형 연료전지 시스템

Publications (1)

Publication Number Publication Date
WO2010137774A1 true WO2010137774A1 (ko) 2010-12-02

Family

ID=41562369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/006064 WO2010137774A1 (ko) 2009-05-27 2009-10-20 밀폐형 연료전지 시스템

Country Status (3)

Country Link
US (1) US9112198B2 (ko)
KR (1) KR100923448B1 (ko)
WO (1) WO2010137774A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130236804A1 (en) * 2012-03-12 2013-09-12 Nuevera Fuel Cells Cooling system and method for use with a fuel cell

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101044619B1 (ko) * 2010-05-27 2011-06-29 한국기계연구원 미반응 물질 제거 기능을 가지는 밀폐형 연료전지 시스템
KR101442977B1 (ko) 2013-05-28 2014-09-23 현대하이스코 주식회사 버퍼 탱크를 구비하는 연료전지 시스템
WO2014196673A1 (ko) * 2013-06-05 2014-12-11 지에스칼텍스(주) 제습장치를 포함하는 연료전지 시스템
US10038208B2 (en) * 2014-11-12 2018-07-31 Toyota Jidosha Kabushiki Kaisha Fuel cell system
KR101714399B1 (ko) * 2014-12-24 2017-03-22 한국에너지기술연구원 재생형 바이오 연료전지
KR101926915B1 (ko) * 2016-07-22 2018-12-07 현대자동차주식회사 연료극 가스 재순환 시스템
JP2021128921A (ja) * 2020-02-17 2021-09-02 国立研究開発法人宇宙航空研究開発機構 燃料電池装置の制御方法
CN112038667B (zh) * 2020-09-11 2021-04-30 湖南汽车工程职业学院 一种用于氢氧燃料电池测试的气体循环加湿方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0917438A (ja) * 1995-06-26 1997-01-17 Honda Motor Co Ltd 燃料電池を搭載した移動体における燃料電池システム
KR100509818B1 (ko) * 2003-04-07 2005-08-23 (주)퓨얼셀 파워 연료 전지 시스템에서 내부 퍼지를 수행하기 위한 방법 및장치
KR20060019251A (ko) * 2004-08-27 2006-03-03 삼성에스디아이 주식회사 연료 전지용 가습장치 및 이를 채용한 연료 전지 시스템
JP2008282737A (ja) * 2007-05-11 2008-11-20 Nippon Soken Inc 燃料電池システム及びその制御方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5441821A (en) * 1994-12-23 1995-08-15 Ballard Power Systems Inc. Electrochemical fuel cell system with a regulated vacuum ejector for recirculation of the fluid fuel stream
WO2004015796A2 (en) * 2002-04-17 2004-02-19 Aerovironment, Inc. Closed loop energy storage system
US20050003244A1 (en) * 2003-07-01 2005-01-06 Ai-Quoc Pham Direct hydrocarbon fuel cell system
US6984464B2 (en) * 2003-08-06 2006-01-10 Utc Fuel Cells, Llc Hydrogen passivation shut down system for a fuel cell power plant
JP5071843B2 (ja) * 2007-03-30 2012-11-14 株式会社日本製鋼所 水素・酸素回収機構を備えた燃料電池システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0917438A (ja) * 1995-06-26 1997-01-17 Honda Motor Co Ltd 燃料電池を搭載した移動体における燃料電池システム
KR100509818B1 (ko) * 2003-04-07 2005-08-23 (주)퓨얼셀 파워 연료 전지 시스템에서 내부 퍼지를 수행하기 위한 방법 및장치
KR20060019251A (ko) * 2004-08-27 2006-03-03 삼성에스디아이 주식회사 연료 전지용 가습장치 및 이를 채용한 연료 전지 시스템
JP2008282737A (ja) * 2007-05-11 2008-11-20 Nippon Soken Inc 燃料電池システム及びその制御方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130236804A1 (en) * 2012-03-12 2013-09-12 Nuevera Fuel Cells Cooling system and method for use with a fuel cell
US9780393B2 (en) * 2012-03-12 2017-10-03 Nuvera Fuel Cells, LLC Cooling system and method for use with a fuel cell
US10547066B2 (en) 2012-03-12 2020-01-28 Nuvera Fuel Cells, LLC Cooling system and method for use with a fuel cell

Also Published As

Publication number Publication date
US9112198B2 (en) 2015-08-18
KR100923448B1 (ko) 2009-10-27
US20120070751A1 (en) 2012-03-22

Similar Documents

Publication Publication Date Title
WO2010137774A1 (ko) 밀폐형 연료전지 시스템
WO2010137775A1 (ko) 개방형 연료전지 시스템
CN101542810B (zh) 高分子电解质型燃料电池及高分子电解质型燃料电池中的单电池的电压测量方法
WO2017200130A1 (ko) 알칼리 수전해 장치 및 이의 운전 방법
WO2020180169A1 (ko) 연료전지 막가습기 및 이를 포함하는 연료전지 시스템
WO2022240140A1 (ko) 진공호퍼 프리챠져용 히팅트레이
WO2018124483A1 (ko) 연료전지용 가습냉각 장치
WO2013085216A1 (ko) 연료 전지 시스템과 그 구동 방법
KR101044619B1 (ko) 미반응 물질 제거 기능을 가지는 밀폐형 연료전지 시스템
WO2019066371A1 (ko) 조립형 카트리지 블록 및 이를 포함하는 중공사막 모듈
KR101001589B1 (ko) 미반응 물질 제거 기능을 갖는 개방형 연료전지 시스템
WO2017003089A1 (ko) 외부열원에 의하여 가열되는 고체산화물 연료전지 시스템
WO2012091463A2 (ko) 연료 전지 시스템 및 스택
WO2020075899A1 (ko) 레독스 흐름전지
WO2016093604A1 (ko) 고분자 전해질형 연료전지, 연료전지 스택 및 엔드 플레이트
WO2018124607A1 (ko) 운전 중 개별 교체가 가능한 단위전지모듈을 포함하는 연료전지 및 고온 수전해용 스택 모듈
CN100361340C (zh) 一种集成式燃料电池堆的控制连接方法
WO2010093127A2 (ko) 연료 전지 시스템의 퍼지 방법
JP5411199B2 (ja) 未反応物質除去機能を有する開放型燃料電池システム
WO2010082745A2 (ko) 금속연료전지셀 및 이를 이용한 금속연료전지유닛
WO2023033343A1 (ko) 연료전지 막가습기
KR20060130958A (ko) 연료전지 차량의 재 순환 경로를 갖는 연료전지 스택
WO2017146359A1 (ko) 연료전지 분리판 및 이를 갖는 연료전지 스택
WO2023033344A1 (ko) 연료전지 막가습기
KR100836417B1 (ko) 연료전지스택의 막전극접합체 구조

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09845281

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13322556

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09845281

Country of ref document: EP

Kind code of ref document: A1