WO2010137489A1 - Glucose dehydrogenase having altered properties - Google Patents

Glucose dehydrogenase having altered properties Download PDF

Info

Publication number
WO2010137489A1
WO2010137489A1 PCT/JP2010/058332 JP2010058332W WO2010137489A1 WO 2010137489 A1 WO2010137489 A1 WO 2010137489A1 JP 2010058332 W JP2010058332 W JP 2010058332W WO 2010137489 A1 WO2010137489 A1 WO 2010137489A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
gdh
glucose dehydrogenase
serine
seq
Prior art date
Application number
PCT/JP2010/058332
Other languages
French (fr)
Japanese (ja)
Inventor
洋志 相場
雅夫 北林
芳昭 西矢
Original Assignee
東洋紡績株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡績株式会社 filed Critical 東洋紡績株式会社
Priority to JP2011515985A priority Critical patent/JP5846908B2/en
Publication of WO2010137489A1 publication Critical patent/WO2010137489A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)

Definitions

  • the present invention relates to a glucose dehydrogenase that can be used in a reagent for measuring a glucose concentration and a glucose sensor. Moreover, it is related with the manufacturing method of this enzyme, the composition for glucose determination using this enzyme, and a glucose sensor.
  • NAD -dependent glucose dehydrogenase
  • GDH GDH
  • NAD -dependent glucose dehydrogenase
  • NAD -dependent glucose dehydrogenase
  • NAD -dependent glucose dehydrogenase
  • P -dependent glucose dehydrogenase
  • Glucose oxidase is another known enzyme for quantifying blood glucose.
  • this enzyme can use molecular oxygen as an electron acceptor, the effect of dissolved oxygen concentration on the measurement of glucose concentration. The problem of receiving is pointed out. Since glucose dehydrogenase is not affected by such dissolved oxygen, it has become a mainstream enzyme for glucose sensors in recent years.
  • GDH includes a pyrroloquinoline quinone (PQQ) -dependent type and a flavin-dependent type in addition to the NAD (P) -dependent type.
  • PQQ-dependent GDH typified by those derived from Acinetobacter baumannii, has a problem in substrate specificity, such as having reactivity equivalent to glucose with respect to maltose.
  • flavin-dependent GDH for example, those derived from Aspergillus terreus are known, and the substrate specificity is more strict than PQQ-dependent GDH, however, the ratio of glucose to xylose is about 9%. Therefore, the substrate specificity is not necessarily sufficient. Further, the temperature stability is limited to about 50 ° C., which is not sufficient.
  • NAD (P) -GDH is well known from bacteria belonging to the genus Bacillus, for example, Bacillus subtilis, Bacillus megaterium, Bacillus cereus, etc. Have been reported as GDH producing bacteria. These bacteria-derived NAD (P) -GDH still have problems such as having activity against xylose and the like, or poor thermal stability.
  • Patent Document 1 describes four types of B.I. The properties of megaterium-derived GDH isozymes are described, and their reactivity with respect to 100 mM xylose is converted to glucose ratio (%) by 12 for GDH (I), 3.5 for GDH (II), and GDH (III), respectively. Is 1.8 and GDH (IV) is 7.1. GDH (III), which has the lowest reactivity to xylose, loses its activity completely by heating at 40 ° C. for 20 minutes in the absence of NaCl, and has poor thermal stability. Although this GDH (III) improves thermal stability under the limited condition that a very high concentration NaCl of 2M exists, even in that case, the activity is completely lost by heat treatment at 70 ° C. for 20 minutes. , Not necessarily enough.
  • Patent Document 2 describes B.I. Although it is described that the thermal stability has been improved by substituting a specific amino acid residue of Megathelium-derived GDH, it is necessary to add a very high concentration of inorganic salt in order to exhibit sufficient thermal stability, Even GDH, which shows the highest thermal stability, loses its activity completely by heat treatment at about 75 ° C. for 20 minutes in the absence of sodium chloride. Since it is known that the presence of salts such as sodium chloride and sodium maleate accelerates the decomposition of NAD, it is practical to add a high concentration of sodium chloride to stabilize GDH. Preference is given to GDH, which has sufficient thermal stability in the absence of sodium chloride.
  • Patent Document 3 describes B.I.
  • NAD (P) -GDH with improved thermal stability in the absence of sodium chloride has been described by producing chimeras of multiple types of GDH including megathelium-derived GDH, it solves the problem of substrate specificity There is no intention, and the chimeric GDH has another problem that it is excellent in alkali resistance, but is not sufficiently stable in the neutral and acidic pH regions below pH 7.5.
  • NAD (P) which is an oxidized coenzyme, is known to be extremely unstable in the alkaline region. In order to ensure the stability of these oxidized coenzymes, the pH is usually near neutral or lower. Considering the production of a glucose quantitative composition, it is extremely disadvantageous in practice.
  • Non-patent Document 3 Sulforobus solfataricus
  • Acidophilum-derived GDH exhibits activity against galactose when NADP is used as a coenzyme, and the ratio to glucose is as high as 70%.
  • T.W. Tenax-derived GDH also shows high reactivity with xylose. In measuring the blood glucose concentration, the fact that the substrate specificity of GDH used is low and that it reacts with substances other than glucose results in a loss of the accuracy of blood glucose level measurement, which is extremely inconvenient.
  • the glucose sensor is used in a temperature range of 10 ° C. to 40 ° C. for quantitative determination of glucose.
  • a chemical reaction via an enzyme catalyzed by an enzyme shows a behavior in which the reaction rate increases as the temperature increases, and the reaction rate rapidly decreases as the enzyme is deactivated at a temperature exceeding a certain temperature.
  • Such a temperature-dependent change in enzyme activity can be a factor that causes the quantitative value of glucose to change depending on the outside temperature at the time of measurement.
  • a glucose sensor is provided with a thermometer, and a measure for correcting the measured value from the temperature at the time of measurement is made.
  • Non-Patent Document 4 it is pointed out in Non-Patent Document 4 that such a temperature correction function cannot sufficiently eliminate the influence of the environmental temperature on the quantitative value. Therefore, in order to reduce the influence of the environmental temperature on the quantitative value of glucose, it is more desirable that the enzyme activity has a small fluctuation in the temperature range of 10 ° C. to 40 ° C. as a characteristic of the enzyme itself.
  • JP-A-4-258289 Japanese Patent No. 3220471 JP2003-310274
  • the thermal stability of wild-type GDH (GDH consisting of the same amino acid sequence as SEQ ID NO: 2) and mutant GDH of R202S + W334G, D58V + R202S + Y328D, and R202S + W334R is shown.
  • the vertical axis represents the activity remaining rate (relative activity after 30 minutes of heating treatment under each temperature condition, where the GDH activity before the heating treatment is 100;%), and the horizontal axis represents the temperature during the heating treatment. .
  • the pH stability of R202S + W334G mutant type GDH is shown.
  • the vertical axis represents the activity remaining rate (relative activity after heating at 25 ° C.
  • pH 3.6 to 6.0 is 50 mM acetate buffer
  • pH 6.1 to 8.0 is 50 mM potassium phosphate buffer
  • pH 7.0 to 8.9 is 50 mM Tris-HCl buffer
  • pH 9.0 to 10. 7 is data using 50 mM glycine-NaOH buffer.
  • the pH stability of D58V + R202S + Y328D mutant GDH is shown.
  • the vertical axis represents the activity remaining rate (relative activity after heating at 25 ° C.
  • pH 3.6 to 6.0 is 50 mM acetate buffer
  • pH 6.1 to 8.0 is 50 mM potassium phosphate buffer
  • pH 7.0 to 8.9 is 50 mM Tris-HCl buffer
  • pH 9.0 to 10. 7 is data using 50 mM glycine-NaOH buffer.
  • the pH stability of R202S + W334R mutant GDH is shown.
  • the vertical axis represents the activity remaining rate (relative activity after heating at 25 ° C. for 16 hours under each pH condition, where the GDH activity before the heating treatment is 100;%)
  • the horizontal axis represents the pH of the reaction solution.
  • pH 3.5 to 6.0 is 50 mM acetate buffer
  • pH 6.1 to 8.0 is 50 mM potassium phosphate buffer
  • pH 7.0 to 9.0 is 50 mM Tris-HCl buffer
  • pH 9.0 to 10. 7 is data using 50 mM glycine-NaOH buffer.
  • the pH dependence of R202S + W334G mutant GDH activity is shown.
  • the vertical axis represents relative activity (relative activity under each pH condition when the activity under the condition that maximizes the activity value is 100), and the horizontal axis represents the reaction pH.
  • pH 3.6 to 6.0 is 50 mM acetate buffer
  • pH 5.9 to 7.8 is 50 mM potassium phosphate buffer
  • pH 8.0 to 8.9 is 50 mM Tris-HCl buffer
  • pH 8.8 to 10. 4 is data using 50 mM glycine-NaOH buffer.
  • the pH dependency of D58V + R202S + Y328D mutant GDH activity is shown.
  • the vertical axis represents relative activity (relative activity under each pH condition when the activity under the condition that maximizes the activity value is 100), and the horizontal axis represents the reaction pH.
  • pH 3.6 to 6.1 is 50 mM acetate buffer
  • pH 5.9 to 7.8 is 50 mM potassium phosphate buffer
  • pH 8.0 to 8.9 is 50 mM Tris-HCl buffer
  • pH 8.8 to 10. 4 is data using 50 mM glycine-NaOH buffer.
  • the pH dependency of R202S + W334R mutant GDH activity is shown.
  • the vertical axis represents relative activity (relative activity under each pH condition when the activity under the condition that maximizes the activity value is 100), and the horizontal axis represents the reaction pH.
  • pH 3.6 to 6.1 is 50 mM acetate buffer
  • pH 5.9 to 7.8 is 50 mM potassium phosphate buffer
  • pH 8.0 to 8.9 is 50 mM Tris-HCl buffer
  • pH 8.8 to 10. 4 is data using 50 mM glycine-NaOH buffer.
  • the temperature-dependent variation of the activity of wild-type GDH (GDH consisting of the same amino acid sequence as SEQ ID NO: 2) and R202S + W334R mutant GDH from 10 ° C. to 37 ° C. is shown.
  • the vertical axis represents relative activity (relative activity under each temperature condition when the activity at a reaction temperature of 37 ° C. is 100), and the horizontal axis represents the reaction temperature.
  • An object of the present invention is to provide GDH having high heat stability and high affinity for glucose as a substrate.
  • an object of the present invention is to provide GDH having high thermal stability and high affinity for NAD.
  • an object of the present invention is to provide GDH having high thermal stability and high specific activity in a temperature range of 37 ° C. or lower.
  • an object of the present invention is to provide a GDH having high thermal stability and further reduced temperature-dependent activity fluctuation.
  • Another object of the present invention is GDH having high thermostability and substrate specificity, high specific activity in a temperature range of 37 ° C. or lower, and affinity for NAD as a coenzyme and glucose as a substrate. It is to provide a GDH that is higher and has reduced temperature-dependent activity fluctuations.
  • Thermoproteus sp. GDH1 which is a hyperthermophilic archaeon.
  • Strain Thermoproteus sp. GDH1.
  • the NAD (P) -dependent GDH obtained from this strain shows substantial activity against saccharides other than glucose, that is, xylose, galactose, maltose, lactose, sorbitol, sucrose, and mannose when NAD is used as a coenzyme. It was superior to the known hyperthermophilic archaeon-derived enzyme in that it was not.
  • the enzyme can use both NAD and NADP as coenzymes, but its affinity for NADP is overwhelmingly high, and the Michaelis constant (Km) at a reaction temperature of 60 ° C. is 10. While it is 3 mM, it is 0.075 mM for NADP, and there is a difference of 100 times or more. From this, it is speculated that this enzyme originally uses NADP as a coenzyme in the metabolic system. However, considering industrial use, NADP is more expensive than NAD, and the use of NADP results in an increase in cost in the production of glucose sensors and glucose quantification reagents. In addition, since NADP is more unstable than NAD, it is more advantageous to use NAD as a coenzyme.
  • the Michaelis constant (Km) for glucose which is a substrate when NAD is used as a coenzyme
  • the normal value of blood glucose concentration is less than 110 mg / dl, that is, less than about 6 mM in terms of molar concentration, which is 1/10 or less of the Michaelis constant for glucose when the GDH uses NAD as a coenzyme. It is.
  • an enzyme having a high Michaelis constant for the substrate has a drawback that it takes a long time to completely oxidize glucose in the sample.
  • this enzyme has a problem that it has a low activity in a low temperature region of 37 ° C. or lower, like other hyperthermophile-derived enzymes.
  • the specific activity of the enzyme at 60 ° C. is 1670 U / mg when NAD is used as a coenzyme, but the specific activity decreases with a decrease in the reaction temperature, and the Vmax at 37 ° C. is approximately About 290 U / mg, and the specific activity at 37 ° C. calculated according to the activity measurement method and protein quantification method described later is 172 U / mg.
  • the temperature condition for quantifying glucose is usually 37 ° C. for a liquid glucose quantification reagent, and 10 to 40 ° C. for a simple colorimetric or electrochemical glucose sensor.
  • the present inventors next attempted to modify the GDH protein obtained from Thermoproteus sp. GDH1 strain, and substituted specific amino acid residues in the GDH protein to thereby obtain a specific activity at 37 ° C. or lower.
  • the present invention has been completed successfully.
  • the present inventors attempted to modify the GDH protein obtained from Thermoproteus sp. GDH1 strain, and substituted specific amino acid residues in the GDH protein, thereby allowing specific activity in a temperature range of 37 ° C. or lower.
  • the present inventors have succeeded in simultaneously modifying the properties of affinity for NAD and glucose, and temperature-dependent activity value fluctuations in the temperature range of 37 ° C. or lower, thereby completing the present invention.
  • the present invention has the following configuration.
  • Item 1-1 A mutant glucose dehydrogenase obtained by substituting the amino acid residue corresponding to the 202nd arginine in the amino acid sequence shown in SEQ ID NO: 2 with any of glycine, alanine, leucine, isoleucine, serine, threonine, asparagine, and lysine .
  • Item 1-2 Item 1. The mutant glucose dehydrogenase according to Item 1-1, wherein 1 to several amino acid residues other than the 202nd arginine are deleted, substituted, inserted and / or added.
  • Item 1-3 A mutant glucose dehydrogenase obtained by substituting the amino acid residue corresponding to the 202nd arginine in the amino acid sequence shown in SEQ ID NO: 2 with any of glycine, alanine, leucine, isoleucine, serine, threonine, asparagine, and lysine .
  • Item 1-2
  • Item 1 selected from the group consisting of 58th aspartic acid, 286th valine, 328th tyrosine, 334th tryptophan, 339th isoleucine, 340th lysine, 341th threonine and 345th leucine in the amino acid sequence set forth in SEQ ID NO: 2 Item 1.
  • the mutant glucose dehydrogenase according to Item 1-1 further comprising substitution of several amino acid residues with other residues. Item 1-4.
  • the amino acid residue corresponding to the 202nd arginine in the amino acid sequence shown in SEQ ID NO: 2 is substituted with serine, and (D58V + Y328D), V286A, Y328T, Y328E, W334G, W334R, W334H, W334A, W334K, I339P, K340R, Item 1.
  • the mutant glucose dehydrogenase according to Item 1-1 further comprising one or several amino acid substitutions selected from the group consisting of T341R, T341G, T341P, T341M, T341S, and L345Q. Item 2-1.
  • a mutant glucose dehydrogenase having high affinity for glucose wherein the amino acid residue corresponding to the 202nd arginine in the amino acid sequence described in SEQ ID NO: 2 is substituted with serine.
  • Item 2. The mutant glucose dehydrogenase according to Item 2-1, wherein one or several amino acid residues other than the 202nd arginine are deleted, substituted, inserted and / or added.
  • Item 2-3 The mutant glucose dehydrogenase according to Item 2-1, wherein one or several amino acid residues other than the 202nd arginine are deleted, substituted, inserted and / or added.
  • Item 2-4 In the amino acid sequence shown in SEQ ID NO: 2, A3V, I46V, K49R, D58V, G74D, V80A, L85H, T89K, A121T, S124L, S124P, K168E, A173T, S206N, K208R, L294W, E298G, H303R, E306G, L311P, A323T, Y328D, Y328S, Y328T, Y328V, Y328G, Y328E, Y328L, E330G, W334G, W334R, W334H, W334A, W334K, W334S, T335N, D338G, D338V, T341R, P345L, P345T, L345P Item 2.
  • the mutant glucose protein according to Item 2-1 which is further combined with one or several amino acid substitutions selected from Rogenaze. Item 2-5.
  • the amino acid residue corresponding to the 202nd arginine is substituted with serine, and A3V, (I46V + S124P), K49R, (D58V + Y328D), (G74D + E306G + A323T), V80A, L85H, T89K, A121T, S124L, (K168E + E330G), A173T, S206N, K208R, L294W, E298G, H303R, L311P, Y328S, Y328T, Y328V, Y328G, Y328E, Y328L, W334G, W334R, W334T, W334T, W334T, W334T, W334T, W334T, W334T, W334T, W334T (W334T (I3
  • Item 3-1 A mutant glucose dehydrogenase having an improved specific activity at 37 ° C. or lower, wherein the amino acid residue corresponding to the 202nd arginine in the amino acid sequence shown in SEQ ID NO: 2 is substituted with serine.
  • Item 3-2 Item 3.
  • Item 3-4 In the amino acid sequence shown in SEQ ID NO: 2, A3V, I46V, K49R, D58V, G74D, V80A, L85H, T89K, A121T, S124L, S124P, K168E, A173T, S206N, K208R, L294W, E298G, H303R, E306G, L311P, A323T, Y328D, Y328S, Y328T, Y328V, Y328G, Y328E, Y328L, E330G, W334G, W334R, W334H, W334A, W334K, W334S, T335N, D338G, D338V, T341R, P345L, P345T, L345P Item 3.
  • the mutant glucose protein according to Item 3-1 further combining one or several amino acid substitutions selected from Rogenaze.
  • Item 3-5 In the amino acid sequence shown in SEQ ID NO: 2, the amino acid residue corresponding to the 202nd arginine is substituted with serine, and A3V, (I46V + S124P), K49R, (D58V + Y328D), (G74D + E306G + A323T), V80A, L85H, T89K, A121T, S124L, (K168E + E330G), A173T, S206N, K208R, L294W, E298G, H303R, L311P, Y328S, Y328T, Y328V, Y328G, Y328E, Y328L, W334G, W334R, W334T, W334T, W334T, W334T, W334T, W334T, W334T, W334T, W3
  • Item 4-1 In the amino acid sequence shown in SEQ ID NO: 2, the 202nd arginine is substituted with serine, and the 46th isoleucine, 49th lysine, 58th aspartic acid, 74th glycine, 89th threonine, 168th lysine, 124th serine, 206 Serine, 208th lysine, 294th leucine, 303th histidine, 306th glutamic acid, 311th leucine, 323rd alanine, 328th tyrosine, 330th glutamic acid, 334th tryptophan, 335th threonine, 338th aspartic acid and 345th
  • a mutant glucose dehydrogenase obtained by substituting one or several amino acids selected from the group consisting of leucine with other amino acids.
  • Arginine at position 202 is substituted with serine in the amino acid sequence shown in SEQ ID NO: 2, and (I46V + S124P), K49R, (D58V + Y328D), (G74D + E306G + A323T), T89K, S124L, (K168E + E330G), S206N, K208R, L294W, H303R, L311P, Y328S, Y328T, Y328V, Y328G, Y328E, Y328L, W334G, W334R, W334H, W334A, W334K, (W334S + T335N), a combination of amino acids selected from the group consisting of a combination of D338V, D338G, L345Q and L345P.
  • Item 4 The mutant glucose dehydrogenase according to Item 4-1.
  • Arginine at position 202 is substituted with serine in the amino acid sequence shown in SEQ ID NO: 2, and (I46V + S124P), K49R, (D58V + Y328D), (G74D + E306G + A323T), T89K, S124L, (K168E + E330G), S206N, K208R, L294W, H303R, L311P, Y328S, Y328T, Y328V, Y328G, Y328E, Y328L, W334G, W334R, W334H, W334A, W334K, (W334S + T335N), a combination selected from the group consisting of D338V, D338G, L345Q and L345P.
  • Item 5-1 A mutant glucose dehydrogenase in which the 202nd arginine is substituted with serine and the 334th tryptophan is substituted with glycine in the amino acid sequence shown in SEQ ID NO: 2.
  • Item 5-2 A mutant glucose dehydrogenase in which the 202nd arginine is substituted with serine and the 334th tryptophan is substituted with arginine in the amino acid sequence shown in SEQ ID NO: 2.
  • Item 5-3 A mutant glucose dehydrogenase in which the 202nd arginine is substituted with serine and the 334th tryptophan is substituted with arginine in the amino acid sequence shown in SEQ ID NO: 2.
  • Item 6. Item 4. A gene encoding a mutant glucose dehydrogenase according to any one of Items 1-1 to 5-3.
  • Item 7. Item 7.
  • a vector comprising the gene according to item 6.
  • Item 8. A transformant transformed with the vector according to Item 7.
  • Item 9. A method for producing a mutant glucose dehydrogenase, comprising culturing the transformant according to Item 8.
  • a glucose assay kit comprising the mutant glucose dehydrogenase according to any one of Items 1-1 to 5-3.
  • Item 11 A glucose sensor comprising the mutant glucose dehydrogenase according to any one of Items 1-1 to 5-3.
  • Item 4. A glucose measurement method comprising the mutant glucose dehydrogenase according to any one of Items 1-1 to 5-3.
  • the GDH is useful as a raw material for glucose sensors and glucose determination reagents.
  • GDH having excellent thermal stability and enhanced affinity for NAD can be obtained. Moreover, the amount of NAD used can be reduced when producing a glucose sensor and a glucose quantitative reagent using the GDH.
  • GDH excellent in thermal stability and having improved specific activity at 37 ° C. or lower can be obtained.
  • the GDH is useful as a raw material for glucose sensors and glucose determination reagents.
  • the present invention it is possible to obtain GDH having excellent thermal stability and reduced temperature-dependent activity value fluctuation in a temperature range of 37 ° C. or lower. Moreover, the amount of NAD used can be reduced when producing a glucose sensor and a glucose quantitative reagent using the GDH.
  • the present invention has excellent thermal stability and substrate specificity, has high specific activity in a temperature range of 37 ° C. or lower, has high affinity for NAD and glucose, and is temperature-dependent in a temperature range of 37 ° C. or lower. GDH with reduced variation in activity value can be obtained. Moreover, the amount of NAD used can be reduced when producing a glucose sensor and a glucose quantitative reagent using the GDH. At the same time, the influence of the environmental temperature on the quantitative value of glucose can be reduced.
  • Mutant glucose dehydrogenase of the present invention [1-1] One embodiment of the present invention is a mutant glucose dehydrogenase having high thermostability and high affinity for glucose.
  • the 202th arginine residue in the amino acid sequence shown in SEQ ID NO: 2 is replaced with one amino acid residue selected from the group consisting of glycine, alanine, leucine, isoleucine, serine, methionine, asparagine, and lysine.
  • examples thereof include glucose dehydrogenase substituted with a group.
  • SEQ ID NO: 2 is an amino acid sequence of glucose dehydrogenase obtained by the present inventors from Thermoproteus sp. GDH1 strain (Thermoproteus sp. GDH1). The acquisition method is described in Japanese Patent Application No. 2008-60032, which will be described later in Examples.
  • a GDH serving as a base for introducing a mutation
  • a GDH comprising a polypeptide having the amino acid sequence shown in SEQ ID NO: 2 is a preferred example, but at least 50% or more compared to the amino acid sequence shown in SEQ ID NO: It is estimated that GDH having a homology of 60% or more, more preferably 70% or more, and most preferably 80% or more is also available.
  • GDH preferably includes NAD (P) -GDH derived from a hyperthermophilic archaeon, preferably GDH derived from Thermoproteus. This explanation is similarly applied to the mutant glucose dehydrogenase of the present invention described in [1-2], [1-3] and [1-4] described later.
  • the present invention provides 58th aspartic acid, 74th glycine, 80th valine, 85th leucine, 89th threonine.
  • the substitution residue to be introduced into each site may be any one that improves the specific activity of the glucose dehydrogenase at 37 ° C. as an effect after amino acid substitution.
  • Valine, 46th valine, 49th arginine, 58th valine, 74th aspartic acid, 80th alanine, 85th histidine, 89th lysine, 121th threonine, 124th leucine, 168 Is glutamic acid, 173 is threonine, 206 is asparagine, 208 is arginine, 294 is tryptophan, 298 is glycine, 303 is arginine, 306 is glycine, 311 is proline, 323 is threonine, 328 The second is serine and threonine One of valine, glycine, glutamic acid and leucine, 330th is glycine, 334th is glycine, arginine, histidine, alanine
  • amino acid substitution to be introduced in addition to substitution of the amino acid residue corresponding to the 202nd arginine with serine, A3V, (I46V + S124P), K49R, (D58V + Y328D), (G74D + E306G + A323T), V80A, L85H, T89K , A121T, S124L, (K168E + E330G), A173T, S206N, K208R, L294W, E298G, H303R, L311P, Y328S, Y328T, Y328V, Y328G, Y328E, Y328L, W334G, W334W, T334W, T334W, T334W, T334W, D338V, (I339P + T341G), (I339P + T341R), (I339P + T341L), (I339 + T341K), T34
  • One of the embodiments of the present invention is a mutant glucose dehydrogenase having high thermostability and high affinity for NAD. More preferably, it is a mutant glucose dehydrogenase having excellent substrate specificity in addition to the above properties.
  • the 202th arginine residue in the amino acid sequence shown in SEQ ID NO: 2 is replaced with one amino acid residue selected from the group consisting of glycine, alanine, leucine, isoleucine, serine, threonine, asparagine, and lysine. Examples thereof include glucose dehydrogenase substituted with a group.
  • the present invention relates to the substitution of arginine residue present at position 202 or equivalent thereto in SEQ ID NO: 2 with any of glycine, alanine, leucine, isoleucine, serine, threonine, asparagine, and lysine.
  • the substitution residue introduced into each site may be any residue that reduces the Michaelis constant for NAD of glucose dehydrogenase as an effect after amino acid substitution.
  • substitution residues include, for example, the 58th asparagine.
  • Acid is valine
  • 286th valine is alanine
  • 328th tyrosine is aspartic acid
  • 334th tryptophan is glycine or arginine
  • 340th arginine is lysine
  • 341th threonine is arginine
  • the 345th leucine is preferably substituted with glutamine.
  • the substitution of the 58th aspartic acid and the substitution of the 328th tyrosine are preferably introduced as a set.
  • the mutant GDH of R202S is added to (D58V + Y328D), V286A, Y328T, Y328E, W334G, W334R, W334H, W334A, W334K, I339P, K340R, T341R, T341T, P341M,
  • a double or triple mutant enzyme to which any one of the amino acid substitutions of T341S and L345Q is further added is preferable.
  • One embodiment of the present invention is a mutant glucose dehydrogenase having high thermostability and high specific activity at a temperature of 37 ° C. or lower. Also preferred is glucose dehydrogenase which is further excellent in substrate specificity.
  • glucose dehydrogenase formed by substituting serine for the arginine residue present at position 202 in the amino acid sequence shown in SEQ ID NO: 2 can be exemplified.
  • the present invention provides the third alanine, 46th isoleucine, 49th lysine, 58th aspartic acid, 74th glycine.
  • 80th valine 85th leucine, 89th threonine, 121st alanine, 124th serine, 168th lysine, 173th alanine, 206th serine, 208th lysine, 294th leucine, 298th glutamic acid, 303th histidine, 306 1st selected from the group consisting of glutamic acid, 311th leucine, 323rd alanine, 328th tyrosine, 334th tryptophan, 338th aspartic acid, 341th threonine, 343th leucine and 345th leucine
  • a mutant glucose dehydrogenase comprising further combining substitution of other residues of the amino acid residues of the stone several places.
  • the substitution residue to be introduced into each site may be any one that improves the specific activity of the glucose dehydrogenase at 37 ° C. as an effect after amino acid substitution.
  • Valine, 46th valine, 49th arginine, 58th valine, 74th aspartic acid, 80th alanine, 85th histidine, 89th lysine, 121th threonine, 124th leucine, 168 Is glutamic acid, 173 is threonine, 206 is asparagine, 208 is arginine, 294 is tryptophan, 298 is glycine, 303 is arginine, 306 is glycine, 311 is proline, 323 is threonine, 328 The second is serine and threonine One of valine, glycine, glutamic acid and leucine, 330th is glycine, 334th is glycine, arginine, histidine, alanine
  • amino acid substitution to be introduced in addition to substitution of the amino acid residue corresponding to the 202nd arginine with serine, A3V, (I46V + S124P), K49R, (D58V + Y328D), (G74D + E306G + A323T), V80A, L85H, T89K , A121T, S124L, (K168E + E330G), A173T, S206N, K208R, L294W, E298G, H303R, L311P, Y328S, Y328T, Y328V, Y328G, Y328E, Y328L, W334G, W334W, T334W, T334W, T334W, T334W, D338V, (I339P + T341G), (I339P + T341R), (I339P + T341L), (I339 + T341K), T34
  • One embodiment of the present invention is a mutant glucose dehydrogenase having high thermostability and reduced temperature-dependent activity value fluctuation in a temperature range of 37 ° C. or lower. More preferably, it is a mutant glucose dehydrogenase having excellent substrate specificity in addition to the above properties. Even more preferably, the glucose dehydrogenase is stable in the pH range near neutrality in addition to the above properties.
  • the arginine residue present at the 202nd position in the amino acid sequence shown in SEQ ID NO: 2 is substituted with serine, and 1 to several amino acid residues other than the 202nd serine are substituted with other amino acid residues. Is a mutant glucose dehydrogenase.
  • the position at which amino acid substitution is introduced in addition to substitution of serine at 202nd arginine is preferably 46th isoleucine, 49th lysine, 58th aspartic acid, 74th glycine, 89th threonine, 168th lysine, 124th serine.
  • the 345th leucine is mentioned.
  • the substituted residue introduced into each site may be any residue that reduces temperature-dependent activity fluctuation in a temperature range of 37 ° C. or lower as an effect after amino acid substitution.
  • 46th isoleucine is valine
  • 49th lysine is arginine
  • 58th aspartate valine is arginine
  • 74th glycine aspartate is 89th threonine is lysine
  • 124th serine is proline or Lysine
  • 208th lysine arginine
  • 294th leucine tryptophan
  • 306th glutamic acid glycine 311th leucine proline, 323th alanine threonine, 328th tyrosine Is aspartic acid, serine, threonine, valine, glycine, glutamic acid and leucine
  • Preferred examples of the combination of two or more substitutions among the above amino acid residues include 46th isoleucine and 124th serine, 58th aspartic acid and 328th tyrosine, 74th glycine, 306th glutamic acid and 323rd alanine. Examples include, but are not limited to, combinations of amino acid substitutions of the 168th lysine, 330th glutamic acid, 334th tryptophan, and 335th threonine residues.
  • the mutant GDH of R202S includes (I46V + S124P), K49R, (D58V + Y328D), (G74D + E306G + A323T), T89K, S124L, (K168E + E330G), S206N, K208R, R294L, H Y328S, Y328T, Y328V, Y328G, Y328E, Y328L, W334G, W334R, W334H, W334A, W334K, (W334S + T335N), D338V, D338G, L345Q, and L345P. Double to quadruple mutant enzymes are preferred.
  • One embodiment of the present invention is a mutant glucose dehydrogenase having high thermostability and increased specific activity in a temperature range of 37 ° C. or lower. Furthermore, it is a mutant glucose dehydrogenase having an increased affinity for NAD as a coenzyme and at the same time an increased affinity for glucose as a substrate when NAD is used as a coenzyme. Furthermore, in addition to the above characteristics, it is a mutant glucose dehydrogenase that has reduced temperature-dependent activity value fluctuations in a temperature range of 37 ° C. or lower. And in addition to the said characteristic, it is a mutant
  • it is a mutant glucose dehydrogenase in which the 202th arginine residue in the amino acid sequence shown in SEQ ID NO: 2 is substituted with serine, and the 334th tryptophan residue is substituted with glycine. .
  • it is a mutant glucose dehydrogenase in which the 202nd arginine residue in the amino acid sequence shown in SEQ ID NO: 2 is substituted with serine and the 334th tryptophan residue is substituted with arginine.
  • the 58th aspartic acid residue in the amino acid sequence shown in SEQ ID NO: 2 is substituted with valine, the 202th arginine residue is substituted with serine, and the 328th tyrosine residue is replaced with an aspartic acid residue. It is a mutant glucose dehydrogenase obtained by substitution.
  • a GDH serving as a base for introducing a mutation
  • a GDH comprising a polypeptide having the amino acid sequence shown in SEQ ID NO: 2 is a preferred example, but at least 50% or more compared to the amino acid sequence shown in SEQ ID NO: It is estimated that GDH having a homology of 60% or more, more preferably 70% or more, and most preferably 80% or more is also available.
  • GDH preferably includes NAD (P) -GDH derived from a hyperthermophilic archaeon, preferably GDH derived from Thermoproteus.
  • an aspartic acid residue considered to be present at the position equivalent to the 58th position in the amino acid sequence described in SEQ ID NO: 2 using the sequence analysis software such as GENETYX the 202nd position Can be identified as arginine residues considered to be present at positions equivalent to tyrosine, tyrosine residues considered to be present at positions equivalent to position 328, and tryptophan residues present at positions equivalent to position 334.
  • Mutant GDH obtained by substituting these with other amino acid residues is also included in the equivalent scope of the present invention.
  • notation of amino acid substitution is the original amino acid residue, the position from the N-terminal, the amino acid residue after substitution,
  • V286A means that the 286th valine in SEQ ID NO: 2 is substituted with alanine.
  • Alphabet notation is R for arginine, S for serine, V for valine, A for alanine, W for tryptophan, G for glycine, P for proline, T for threonine, M for methionine, Q for glutamine, K for lysine, D for Aspartic acid, L is leucine, I is isoleucine, and Y is tyrosine.
  • (D58V + Y328D) means having the amino acid substitution represented by D58V and Y328D at the same time, and the enzyme obtained by further adding (D58V + Y328D) amino acid substitution to the mutant GDH of R202S is represented by D58V + R202S + Y328D. It can be called triple mutant GDH.
  • the Michaelis constant (Km) for glucose described in the present invention is a value obtained by measurement and calculation according to a measurement example described later.
  • the Michaelis constant for glucose in the mutant GDH of the present invention is preferably 50 mM or less, more preferably 35 mM or less, still more preferably 20 mM or less, still more preferably 10 mM or less, and most preferably 5 mM. It is as follows. From another point of view, the Michaelis constant (Km) for glucose after introduction of mutation is preferably 78% or less, more preferably 55% or less, still more preferably 30% or less, still more preferably 16% relative to the wild type. Hereinafter, it is most preferably 8% or less.
  • the affinity for NAD is evaluated by the Michaelis constant (Km) for NAD.
  • the Michaelis constant (Km) for NAD described in the present invention is a value obtained by measurement and calculation according to the method described in “Example of calculation of Michaelis constant (Km) for nicotinamide adenine dinucleotide (NAD)” described later.
  • the Michaelis constant for NAD in the mutant GDH of the present invention is preferably 5 mM or less, more preferably 2 mM or less, still more preferably 1.25 mM or less, even more preferably 1 mM or less, and most preferably Is 0.5 mM or less.
  • the degree of reduction of the Michaelis constant (Km) relative to NAD due to the introduction of mutation is preferably 60% or less, more preferably 25% or less, still more preferably 15% or less, and still more preferably, compared to the wild type. 12% or less, most preferably 6% or less.
  • the GDH of the present invention preferably has the necessary thermal stability in addition to the above characteristics. Thermal stability is evaluated by the activity maintained even after 30 minutes of heating in a 0.1 M potassium phosphate buffer (pH 8.0) containing 5 U / ml GDH. Is done.
  • the necessary thermal stability means that the activity remaining rate when heated at 80 ° C. is preferably 50% or more, more preferably 80% or more, and most preferably 90% or more, compared to the pre-heating treatment. . From another point of view, the maximum limit value of the temperature condition where the activity remaining rate after the heating treatment for 30 minutes is 90% or more is preferably 70 ° C. or more and 90 ° C. or less, more preferably 75 ° C. or more and 85 ° C.
  • Glucose dehydrogenase which is:
  • the GDH of the present invention preferably has the necessary substrate specificity.
  • Substrate specificity is evaluated according to “Substrate specificity calculation example” described later.
  • the substrate specificity of glucose dehydrogenase described in the present invention is preferably 5% or less, more preferably 3% or less, and still more preferably 2% or less, as a function of maltose, galactose, and xylose as a glucose ratio. And most preferably less than 1%.
  • the specific activity described in the present invention is measured and calculated by the method described in “Examples of protein quantification and calculation of specific activity” described later.
  • the specific activity of the mutant GDH of the present invention is preferably 220 U / mg or more, more preferably 400 U / mg or more, still more preferably 500 U / mg or more, and most preferably 600 U / mg or more.
  • the degree of improvement in the specific activity of the mutant GDH according to the present invention is preferably 1.3 times or more, more preferably 2.3 times or more, still more preferably 2.9 times or more as a wild type ratio, Most preferably, it is 3.5 times or more.
  • the temperature-dependent activity variation is evaluated as a 25 ° C./37° C. activity temperature ratio, and the calculation method is described later in “25 ° C./37° C. activity”. It is a method described in “Example of calculating temperature ratio”. An increase in this value means that the temperature dependent variation of activity between 25 ° C. and 37 ° C. is reduced.
  • the enzyme activity at 25 ° C cannot be significantly higher or lower than the surrounding temperature region, and the relative activity at 25 ° C (the activity at 37 ° C is defined as 100).
  • the 25 ° C./37° C. active temperature ratio in the mutant GDH of the present invention is preferably 0.40 or more, more preferably 0.45 or more, and most preferably 0.5 or more.
  • the degree of increase in the 25 ° C / 37 ° C activity temperature ratio due to the introduction of mutation is preferably 1.2 times or more, more preferably 1.4 times or more, and most preferably 1.5 times the wild type ratio. It is more than double.
  • the GDH of the present invention is preferably stable in a wide pH range centering on a neutral range.
  • the pH stability described in the present invention is the activity remaining ratio after incubation with respect to GDH activity before incubation by incubating at 25 ° C. for 16 hours in a 50 mM buffer solution containing a GDH concentration of 10 U / ml. Evaluate as Under these conditions, the pH range showing an activity remaining rate of 80% or more is at least 5.5 to 9.5, more preferably 5.0 to 9.9, and still more preferably 5.0 to 10. 7.
  • a gene encoding the mutant glucose dehydrogenase of the present invention a vector containing the gene, a transformant transformed with the vector, and a mutant glucose dehydrogenase characterized by culturing the transformant Manufacturing method [3-1]
  • One embodiment of the present invention is a gene encoding a mutant glucose dehydrogenase having high thermostability and high affinity for NAD.
  • One of the embodiments of the present invention is a gene encoding a mutant glucose dehydrogenase having high thermal stability and high specific activity at a temperature of 37 ° C. or lower.
  • a vector containing the gene, a transformant transformed with the vector, and a method for producing a mutant glucose dehydrogenase characterized by culturing the transformant are also included as embodiments of the present invention.
  • a method for producing the GDH of the present invention a method of producing a polynucleotide encoding the amino acid sequence of the GDH and transforming it into a host cell and culturing it is preferable.
  • a method for producing a polynucleotide encoding GDH of the present invention and a plasmid capable of expressing a gene comprising the polynucleotide for example, a DNA encoding the amino acid sequence set forth in SEQ ID NO: 1 or a plasmid comprising the DNA
  • a method for introducing a desired mutation into this, and a method for artificially chemically synthesizing the entire polynucleotide having the base sequence encoding GDH of the present invention and inserting it into a plasmid by restriction enzyme treatment and ligation is not limited to these.
  • SEQ ID NO: 1 is a gene encoding the amino acid sequence of glucose dehydrogenase obtained by the present inventors from Thermoproteus sp. GDH1 strain (Thermoproteus sp. GDH1).
  • a method for obtaining DNA encoding the amino acid sequence described in SEQ ID NO: 2 (SEQ ID NO: 1) and a plasmid into which the DNA has been inserted is described in Japanese Patent Application No. 2008-60032, and will be described later in the Examples.
  • a method for introducing a mutation into DNA for producing GDH of the present invention for example, a sequence in which a portion corresponding to a codon encoding an amino acid residue to be substituted is replaced with a codon encoding an amino acid after substitution
  • a method for extending a DNA having a sequence into which a mutation has been introduced using a DNA encoding SEQ ID NO: 2 (typified by SEQ ID NO: 1) as a template using this primer and DNA polymerase used.
  • site-specific modification of such genes it is also possible to use various commercially available site direct mutagenesis kits such as Clontech's Transformer Mutagenesis Kit or Stratagene's QuickChange Site Direct Mutagenesis Kit. Although it is possible, it is not limited to these.
  • a DNA strand is chemically synthesized or a synthesized partially overlapping oligo DNA short chain is connected by using a PCR method. It is also possible to construct a DNA encoding the full length of the GDH of the present invention.
  • the advantage of constructing full-length DNA in combination with chemical synthesis or PCR is that the codons used can be designed over the entire length of the gene in accordance with the host into which the gene is introduced. A plurality of codons encoding the same amino acid are not used uniformly, and the frequency of use varies depending on the species.
  • codons contained in genes that are highly expressed in a given species contain many codons that are frequently used in that species, and conversely, the presence of codons that are used infrequently becomes a bottleneck for genes with low expression levels. There are many examples that prevent high expression.
  • heterologous genes many examples have been reported so far in which the expression level of the heterologous protein has been increased by replacing the gene sequence with a codon frequently used in the host organism. It is expected to be effective in increasing the expression level of heterologous genes.
  • the codon usage frequency of each host is defined by the ratio of each codon used in all genes existing on the genome sequence of the host organism, and is expressed, for example, by the number of times used per 1000 codons.
  • the codon usage frequency can be approximately calculated from a sequence of a plurality of representative genes in an organism whose whole genome sequence has not been elucidated.
  • codon usage in the host organism to be recombined for example, the genetic code usage database published on the website of Kazusa DNA Research Institute (http://www.kazusa.or.jp) is used. Or refer to the literature describing the codon usage in each organism, or determine the codon usage data of the host organism used. Refer to the obtained data and the gene sequence to be introduced, and replace the less frequently used codons in the host organism with the most frequently used codons that encode the same amino acid. Good.
  • a frequently used codon for example, when the host is E. coli K12, Gly is GGT or GGC, Glu is GAA, Asp is GAT, Val is GTG, and Ala is Gly. GCG and Arg are CGT or CGC, Ser is AGC, Lys is AAA, Ile is ATT or ATC, Thr is ACC, Leu is CTG, Gln is CAG, Pro is CCG, and the like.
  • the DNA encoding the GDH of the present invention is transformed in a state of being connected to a recombinant vector.
  • the recombinant vector of the present invention is not particularly limited as long as it can be replicated and maintained or autonomously propagated in various prokaryotic and / or eukaryotic host cells, and includes plasmid vectors and viral vectors.
  • the recombinant vector is simply a known cloning vector or expression vector available in the art, and the DNA encoding the above GDH is converted to an appropriate restriction enzyme and ligase, or, if necessary, a linker or adapter DNA. Can be prepared by ligation using
  • a gene fragment amplified using a DNA polymerase that adds a single base to the amplification end such as Taq polymerase, can be connected to a vector by TA cloning.
  • vectors include Escherichia coli-derived plasmids such as pBR322, pBR325, pUC18 and pUC19, yeast-derived plasmids such as pSH19 and pSH15, and Bacillus subtilis-derived plasmids such as pUB110, pTP5 and pC194.
  • bacteriophage such as ⁇ phage, papovirus such as SV40, bovine papilloma virus (BPV), retrovirus such as Moloney murine leukemia virus (MoMuLV), adenovirus (AdV), adeno-associated virus (AAV),
  • papovirus such as SV40, bovine papilloma virus (BPV)
  • retrovirus such as Moloney murine leukemia virus (MoMuLV), adenovirus (AdV), adeno-associated virus (AAV)
  • animal and insect viruses such as vaccinia virus, baculovirus.
  • the present invention provides a GDH expression vector in which DNA encoding GDH is placed under the control of a promoter functional in the intended host cell.
  • a promoter region that functions in various prokaryotic and / or eukaryotic host cells and can control transcription of a gene located downstream thereof (for example, trp promoter when the host is E. coli, When the host is Bacillus subtilis, such as lac promoter, lectA promoter, etc.
  • the host is a yeast, SPO1 promoter, SPO2 promoter, penP promoter, etc.
  • yeast PHO5 promoter, PGK promoter, GAP promoter, ADH promoter, etc.
  • the terminator region is not particularly limited as long as it is linked via a sequence containing at least one restriction enzyme recognition site, preferably a unique restriction site that cleaves the vector only at that site. It further contains a selection marker gene for selection of transformants (a gene that confers resistance to drugs such as tetracycline, ampicillin, kanamycin, hygromycin, phosphinothricin, a gene that complements auxotrophic mutations, etc.) It is preferable.
  • the DNA encoding GDH to be inserted does not contain a start codon and a stop codon
  • the start codon (ATG or GTG) and the stop codon (TAG, TGA, TAA) are respectively located downstream of the promoter region and the terminator region.
  • a vector contained upstream of is preferably used.
  • the expression vector generally needs to contain a replicable unit capable of autonomous replication in the host cell in addition to the promoter region and terminator region described above.
  • the promoter region includes an operator and a Shine-Dalgarno (SD) sequence in the vicinity of the promoter.
  • yeast, animal cells or insect cells are used as the host, the expression vector preferably further contains an enhancer sequence, 5 ′ and 3 ′ untranslated regions of GDH mRNA, a polyadenylation site, and the like.
  • the GDH of the present invention can be produced by culturing a transformant containing the GDH expression vector prepared as described above in a medium and recovering GDH from the resulting culture.
  • the medium to be used preferably contains a carbon source, an inorganic nitrogen source or an organic nitrogen source necessary for the growth of the host cell (transformant).
  • the carbon source include glucose, dextran, soluble starch, and sucrose.
  • the inorganic or organic nitrogen source include ammonium salts, nitrates, amino acids, corn steep liquor, peptone, casein, meat extract, large Examples include soybean cake and potato extract.
  • other nutrients for example, inorganic salts (for example, calcium chloride, sodium dihydrogen phosphate, magnesium chloride), vitamins, antibiotics (for example, tetracycline, neomycin, ampicillin, kanamycin, etc.)] may be included as desired. .
  • Culturing is performed by methods known in the art. Specific media and culture conditions used according to the host cells are exemplified below, but the culture conditions in the present invention are not limited to these.
  • the host is a bacterium, actinomycetes, yeast, filamentous fungus or the like, for example, a liquid medium containing the above nutrient source is suitable. A medium having a pH of 5 to 9 is preferred.
  • the host is Escherichia coli, LB medium and M9 medium [Miller. J. et al. , Exp. Mol. Genet, p. 431, Cold Spring Harbor Laboratory, New York (1972)].
  • Culturing can be performed usually at 14 to 43 ° C.
  • the host is Bacillus subtilis, it can be performed usually at 30 to 40 ° C. for about 16 to 96 hours with aeration and stirring as necessary.
  • yeast as a medium, for example, Burkholder minimal medium [Bostian. K. L. et al, Proc. Natl. Acad. Sci. USA, 77, 4505 (1980)]
  • the pH is preferably 5-8.
  • the culture is usually carried out at about 20 to 35 ° C. for about 14 to 144 hours, and if necessary, aeration or stirring can be performed.
  • the medium is, for example, minimal essential medium (MEM) containing about 5 to 20% fetal calf serum [Science, 122, 501 (1952)], Dulbecco's modified Eagle medium (DMEM) [Virology, 8 , 396 (1959)], RPMI 1640 medium [J. Am. Med. Assoc. , 199, 519 (1967)], 199 medium [Proc. Soc. Exp. Biol. Med. , 73, 1 (1950)] or the like.
  • the pH of the medium is preferably about 6 to 8, and the culture is usually carried out at about 30 to 40 ° C. for about 15 to 72 hours, and if necessary, aeration and stirring can be performed.
  • the host is an insect cell, for example, Grace's medium containing fetal calf serum [Proc. Natl. Acad. Sci. USA, 82, 8404 (1985)], etc., and the pH is preferably about 5-8. Cultivation is usually carried out at about 20 to 40 ° C. for 15 to 100 hours, and if necessary, aeration or stirring can be performed.
  • GDH present in the culture medium is obtained by centrifuging or filtering the culture to obtain a culture supernatant (filtrate), for example, salting out, solvent precipitation, dialysis, ultrafiltration, gel filtration.
  • a culture supernatant for example, salting out, solvent precipitation, dialysis, ultrafiltration, gel filtration.
  • a known separation method such as non-denaturing PAGE, SDS-PAGE, ion exchange chromatography, hydroxylapatite chromatography, affinity chromatography, reverse phase high performance liquid chromatography, isoelectric focusing, etc. Obtainable.
  • GDH present in the cytoplasm collects cells by centrifuging or filtering the culture and suspending it in an appropriate buffer, such as sonication, lysozyme treatment, freeze-thawing, osmotic shock, and / or triton. After crushing (dissolving) the cells and the organelle membrane by treatment with a surfactant such as -X100, the debris is removed by centrifugation or filtration to obtain a soluble fraction. It can be isolated and purified by treating with a method.
  • an amino acid sequence for example, a base such as histidine, arginine, lysine, etc.
  • a metal ion chelate at a portion (preferably N or C terminal) of the coding sequence of GDH.
  • a DNA sequence encoding a sequence consisting of a natural amino acid, preferably a sequence consisting of histidine (so-called “tag”), is added by genetic manipulation and expressed in a host cell, and from the GDH activity fraction of the culture of the cell, A method of separating and recovering GDH by affinity with a carrier on which a metal ion chelate is immobilized is preferably exemplified.
  • the DNA sequence encoding the amino acid sequence that can be adsorbed to the metal ion chelate is obtained by, for example, using a hybrid primer in which the DNA sequence is linked to the base sequence encoding the C-terminal amino acid sequence of GDH in the process of cloning the DNA encoding GDH.
  • the DNA can be introduced into the GDH coding sequence by performing PCR amplification or inserting the DNA encoding GDH in frame into an expression vector containing the DNA sequence before the stop codon.
  • the metal ion chelate adsorbent used for purification contains transition metals such as cobalt, copper, nickel, iron divalent ions, or iron, aluminum trivalent ions, etc., preferably cobalt or nickel divalent ions.
  • the solution is prepared by contacting a ligand, such as an iminodiacetic acid (IDA) group, a nitrilotriacetic acid (NTA) group, a tris (carboxymethyl) ethylenediamine (TED) group, etc., in contact with the ligand.
  • a ligand such as an iminodiacetic acid (IDA) group, a nitrilotriacetic acid (NTA) group, a tris (carboxymethyl) ethylenediamine (TED) group, etc.
  • IDA iminodiacetic acid
  • NTA nitrilotriacetic acid
  • TED tris (carboxymethyl) ethylenediamine
  • the matrix part of the chelate adsorbent is not particularly limited as long as it is a normal insoluble carrier.
  • affinity purification can be performed using glutathione-S-transferase (GST), maltose binding protein (MBP), HA, FLAG peptide or the
  • membrane concentration, reduced pressure concentration, activator and stabilizer addition may be performed as necessary.
  • the present GDH is excellent in heat resistance, a heating treatment within a range in which other host cell-derived contaminating proteins can be heat denatured and GDH activity can be maintained is effective in greatly improving GDH purity.
  • the solvent used in these steps is not particularly limited, but various buffer solutions represented by K-phosphate buffer solution, Tris-HCl buffer solution, GOOD buffer solution and the like having a buffer capacity in the range of about pH 6-9 are preferable. .
  • the free form can be converted into a salt by a method known per se or a method analogous thereto, and when the protein is obtained as a salt, a method known per se Alternatively, the salt can be converted to a free form or other salt by a method analogous thereto.
  • a stabilizer and / or activator for a solution or composition containing the GDH a protein such as bovine serum albumin or sericin, a surface activity such as Triton X-100, Tween 20, cholate or deoxycholate Agents, amino acids such as glycine, serine, glutamic acid, glutamine, aspartic acid, asparagine, glycylglycine, sugars and / or sugar alcohols such as trehalose, inositol, sorbitol, xylitol, glycerol, sucrose, sodium chloride, potassium chloride, etc. Inorganic salts may be added as appropriate.
  • amino acids such as glycine, serine, glutamic acid, glutamine, aspartic acid, asparagine, glycylglycine, sugars and / or sugar alcohols such as trehalose, inositol, sorbitol, xylitol, glycerol
  • the purified enzyme is liquid and can be used for industrial use, but can also be pulverized or further granulated.
  • the liquid enzyme is pulverized by lyophilization by a conventional method.
  • the GDH of the present invention can also be synthesized by in vitro translation using a cell-free protein translation system comprising rabbit reticulocyte lysate, wheat germ lysate, E. coli lysate, etc., using RNA corresponding to the DNA encoding it as a template. can do.
  • a cell-free protein translation system comprising rabbit reticulocyte lysate, wheat germ lysate, E. coli lysate, etc.
  • RNA corresponding to the DNA encoding it as a template can do.
  • the RNA encoding the GDH of the present invention is purified from the host cell expressing the RNA using the conventional method for the mRNA encoding the GDH of the present invention described above in the method for obtaining the cDNA encoding the GDH of the present invention.
  • it can be obtained by preparing cRNA using DNA encoding GDH as a template and using a cell-free transcription system containing RNA polymerase.
  • cell-free protein transcription / translation system As the cell-free protein transcription / translation system, a commercially available one can be used. M.M. et al. "Transscription and Translation", Hames B .; D. and Higgins S. J. et al. eds. , IRL Press, Oxford 179-209 (1984).
  • Commercially available cell lysates include those derived from E. coli. Examples include E. coli S30 extract system (Promega) and RTS 500 Rapid Translation System (Roche), and those derived from rabbit reticulocytes are those of Rabbit Reticulocyte Lysate System (Promega) PROTEIOSTM (made by TOYOBO) etc. are mentioned. Of these, those using wheat germ lysate are preferred.
  • the production of GDH by chemical synthesis is, for example, synthesized by using a peptide synthesizer based on the amino acid sequence obtained by introducing a desired mutation into SEQ ID NO: 1, that is, the amino acid sequence of GDH of the present invention.
  • the peptide synthesis method may be, for example, either a solid phase synthesis method or a liquid phase synthesis method.
  • the partial peptide or amino acid capable of constituting the GDH of the present invention is condensed with the remaining part, and the product contains a protecting group, the protecting group is eliminated, whereby the target protein can be produced.
  • the condensation and the removal of the protecting group are carried out according to a method known per se, for example, the method described in the following (1) and (2).
  • the GDH of the present invention thus obtained can be purified and isolated by a known purification method.
  • the purification method include solvent extraction, distillation, column chromatography, liquid chromatography, recrystallization, and combinations thereof.
  • the GDH obtained by the above method is a free form
  • the free form can be converted into an appropriate salt by a known method or a method according thereto, and conversely, when a protein is obtained as a salt.
  • the salt can be converted into a free form or other salt by a known method or a method analogous thereto.
  • the reagent for measuring glucose of the present invention typically comprises the GDH of the present invention, a coenzyme, a buffer, a glucose standard solution for preparing a calibration curve, and a usage guideline. Further, it preferably contains a reagent necessary for measurement such as a mediator.
  • a protein such as bovine serum albumin or sericin
  • a surfactant such as Triton X-100, Tween 20, cholate or deoxycholate
  • glycine Amino acids such as serine, glutamic acid, glutamine, aspartic acid, asparagine, glycylglycine
  • sugars such as trehalose, inositol, sorbitol, xylitol, glycerol, sucrose and / or sugar alcohols
  • inorganic salts such as sodium chloride and potassium chloride You may add suitably.
  • the glucose assay kit of the present invention typically comprises the GDH of the present invention, a coenzyme, a buffer, a mediator and other reagents necessary for measurement, a glucose standard solution for preparing a calibration curve, and Includes usage guidelines.
  • the kit of the invention can be provided, for example, as a lyophilized reagent or as a solution in a suitable storage solution.
  • a protein such as bovine serum albumin or sericin
  • a surfactant such as Triton X-100, Tween 20, cholate or deoxycholate
  • glycine Amino acids such as serine, glutamic acid, glutamine, aspartic acid, asparagine, glycylglycine
  • sugars such as trehalose, inositol, sorbitol, xylitol, glycerol, sucrose and / or sugar alcohols
  • inorganic salts such as sodium chloride and potassium chloride You may add suitably.
  • Glucose sensor In the glucose sensor of the present invention, a carbon electrode, a gold electrode, a platinum electrode, or the like is used as an electrode, and GDH is immobilized on the electrode.
  • immobilization methods there are a method using a crosslinking reagent, a method of encapsulating in a polymer matrix, a method of coating with a dialysis membrane, a method of using a photocrosslinkable polymer, a conductive polymer, a redox polymer, etc. NAD or NADP
  • a coenzyme or an electron mediator may be fixed in a polymer or adsorbed and fixed on an electrode, or a combination thereof may be used.
  • the GDH of the present invention is immobilized on the electrode in the form of coexisting with the coenzyme NAD or NADP, but may be immobilized in the absence of the coenzyme and supplied as a separate layer or in solution. Is possible.
  • the GDH of the present invention is immobilized on a carbon electrode using glutaraldehyde, and then treated with a reagent having an amine group to block glutaraldehyde.
  • the electron mediator to be used include those that receive electrons from NAD or NADP, which are GDH coenzymes, and can donate electrons to the color-developing substances and electrodes.
  • surfactants such as proteins such as bovine serum albumin and sericin, Triton X-100, Tween 20, cholate and deoxycholate are used as stabilizers and / or activators.
  • the glucose concentration can be measured as follows. A reaction solution containing a buffer solution, GDH, and NAD or NADP as a coenzyme is placed in a constant temperature cell and maintained at a constant temperature. A sample containing glucose is added thereto and reacted at a constant temperature for a fixed time. During this time, the absorbance at 340 nm is monitored. From the rate of increase in absorbance per hour for the rate method, and the absorbance increase up to the point when all glucose in the sample is oxidized for the endpoint method, a calibration curve prepared in advance with a standard concentration glucose solution is used. Originally, the glucose concentration in the sample can be calculated.
  • an appropriate mediator and coloring reagent may be added.
  • glucose can be quantified by adding 2,6-dichlorophenolindophenol (DCPIP) and monitoring the decrease in absorbance at 600 nm.
  • DCPIP 2,6-dichlorophenolindophenol
  • PMS phenazine method
  • NTB nitrotetrazorium blue
  • the mediator and coloring reagent used are not limited to these.
  • the glucose concentration can also be measured as follows. Put the buffer in the thermostat cell and add coenzyme and mediator as needed to maintain constant temperature.
  • As the mediator potassium ferricyanide, phenazine methosulfate, or the like can be used.
  • An electrode on which the GDH of the present invention is immobilized is used as a working electrode, and a counter electrode (for example, a platinum electrode) and a reference electrode (for example, an Ag / AgCl electrode) are used.
  • a counter electrode for example, a platinum electrode
  • a reference electrode for example, an Ag / AgCl electrode
  • GDH activity is carried out according to the following method unless otherwise specified. Place 2.9 mL of the reaction solution (0.1 mol / L Tris, 10 mmol / L ⁇ -NAD + , 150 mmol / L D-glucose, pH 8.0) in a quartz cell, and preheat at 37 ° C. for 5 minutes. And 0.1 mL of GDH solution is added and mixed, it is made to react at 37 degreeC for 5 minutes, 340 nm light absorbency is measured in the meantime. The degree of increase in absorbance per minute ( ⁇ OD TEST ) is calculated from the linear portion of the absorbance change.
  • the reaction solution 0.1 mol / L Tris, 10 mmol / L ⁇ -NAD + , 150 mmol / L D-glucose, pH 8.0
  • a buffer solution is added in place of the GDH solution and mixed, and similarly, incubated at 37 ° C. for 5 minutes, the absorbance at 340 nm is recorded, and the absorbance change per minute ( ⁇ OD BLANK ) is calculated.
  • the activity value (U / mL) is calculated by applying these values to the following equation.
  • the amount of enzyme that reduces 1 micromole of coenzyme per minute in the presence of a substrate is defined as 1 U.
  • GDH activity (U / mL) [( ⁇ OD TEST ⁇ OD BLANK ) ⁇ 3.0 ⁇ dilution ratio] / (6.22 ⁇ 1.0 ⁇ 0.1)
  • 3.0 Volume after mixing with GDH solution (mL)
  • 6.22 millimolar molecular extinction coefficient of NADH (cm 2 / micromolar)
  • 1.0 Optical path length (cm)
  • 0.1 Volume of GDH solution to be added (mL) It is.
  • the amount of protein described in the present invention is measured by measuring absorbance at 280 nm. That is, the enzyme solution was diluted with distilled water so that the absorbance at 280 nm was in the range of 0.1 to 1.0, and the absorbance (Abs) at 280 nm was measured using an absorptiometer corrected with zero point using distilled water. Measure.
  • the protein concentration described in the present invention approximates 1 Abs ⁇ 1 mg / ml, and is expressed by a value obtained by multiplying the absorbance measurement and the measured solution dilution rate.
  • the specific activity described in the present invention is the activity (U / mg) of GDH per mg as the amount of protein by this measurement method, and the GDH activity at this time is obtained by measuring according to the above activity measurement example. Value.
  • the method for calculating the Michaelis constant (Km) for NAD described in the present invention is performed by the following measurement method. That is, the concentration of ⁇ -NAD + in the reaction solution composition described in the above activity measurement example as a measurement solution is 20 mmol / L, 10 mmol / L, 5 mmol / L, 2.5 mmol / L, 1 mmol / L, 0.5 mmol / L.
  • the method for calculating the Michaelis constant (Km) for the substrate described in the present invention is performed by the following measurement method. That is, six types of D-glucose concentrations in the reaction liquid composition described in the above activity measurement examples as measurement solutions were 1000 mmol / L, 200 mmol / L, 100 mmol / L, 50 mmol / L, 20 mmol / L, 10 mmol / L. And using each measurement solution according to the method of the above activity measurement example, ⁇ OD ( ⁇ ODTEST) of the GDH solution (solution adjusted so that the activity value in the above activity measurement example is 0.8 U / ml) - ⁇ ODBLANK). Based on these measured values, the Michaelis constant (Km) is calculated according to the Lineweaver-Burk plot method (both reciprocal plot method).
  • the substrate specificity evaluation method described in the present invention is performed by the following measurement method. That is, reaction solutions containing 150 mmol / L of maltose, galactose, and xylose were prepared in place of D-glucose in the reaction solution composition described in the above-mentioned activity measurement example as a measurement solution, and these were used for activity according to the activity measurement example. Measure the value. A value obtained by dividing the activity value using these reaction solutions by the activity value when glucose is used as a substrate is calculated as the reactivity to each substrate (vs. glucose).
  • the calculation method of the 25 ° C./37° C. active temperature ratio described in the present invention is performed as follows. That is, the 25 ° C / 37 ° C activity temperature ratio is calculated by dividing the activity value obtained by carrying out the activity measurement by the above activity measurement example at the reaction temperature of 25 ° C by the activity value measured at 37 ° C. .
  • the gene (SEQ ID NO: 1) encoding the amino acid sequence (amino acid sequence described in SEQ ID NO: 2) of glucose dehydrogenase obtained by the present inventors from Thermoproteus sp. GDH1 strain (Thermoproteus sp. GDH1) and the gene Methods for obtaining the plasmid into which is inserted are shown in Test Examples 1 to 4 below. (This method is also described in Japanese Patent Application No. 2008-60032.)
  • Example 1 Culture of hyperthermophilic archaeon and purification of GDH The inventors isolated the hyperthermophilic archaeon from hot spring water in Kohojima, Kagoshima Prefecture. This strain was estimated to be a bacterium belonging to the genus Thermoproteus from the base sequence of 16S rRNA, and further had the following characteristics (A) to (G).
  • A) The base sequence shown in SEQ ID NO: 3 is included as the base sequence on the genomic DNA encoding 16S rRNA.
  • B It can grow at a temperature of 80 ° C. or higher, and the optimum growth temperature is about 90 ° C.
  • C The GC content of the genomic DNA is 58 to 62 mol%.
  • F It can grow at a NaCl concentration of 1% or less.
  • G The shape is a long koji mold having a length of 10 to 30 ⁇ m and a width of about 5 ⁇ m. This strain having the above characteristics was named Thermoproteus sp. GDH1 strain (Thermoproteus sp. GDH1).
  • the precipitate was removed by centrifugation, and ammonium sulfate was added and dissolved to a final concentration of 48%, followed by stirring at room temperature for 20 minutes to precipitate a fraction containing GDH.
  • the supernatant was removed by centrifugation, and the obtained GDH fraction was dissolved in 20 mL of 50 mM potassium phosphate buffer (pH 7.0). This liquid was applied to ResourceQ (manufactured by GE Healthcare) having a column volume of 6 mL to adsorb contaminating proteins on the column, and GDH was permeated.
  • Ammonium sulfate was dissolved in this permeate so as to have a final concentration of 22.8%, and applied to a resource ISO column (manufactured by GE Healthcare, volume 6 mL) as a hydrophobic column and adsorbed.
  • the adsorbed protein was eluted with a gradient of ammonium sulfate concentration of 22.8% to 0% to collect fractions having GDH activity.
  • gel filtration was performed using Superdex 200 as a separation column and a buffer solution of pH 7.0 containing 50 mM Tris and 0.15 mM sodium chloride as an elution buffer. The obtained GDH fraction was used as a purified solution.
  • ⁇ Test Example 2 Cloning of GDH gene
  • an equal volume of 2 ⁇ SDS sample buffer (10 mM Tris-HCl, 10% glycerol, 2% SDS, 0.1% bromophenol blue, 2% (v / v) 2-mercaptoethanol, pH 6.8) was added and boiled at 100 ° C. for 10 minutes. This was applied to a 12.5% acrylamide gel, and after electrophoresis at 40 mA, the gel was subjected to CBB staining using CBB Stain One (manufactured by Nacalai Tesque).
  • the main band of the sample was cut out from the stained gel, and the peptide sequence was analyzed with a mass spectrometer. Based on the obtained deduced amino acid sequence, a degenerate PCR primer containing a mixed base was prepared, and a PCR reaction was performed using genomic DNA as a template. This PCR reaction solution was applied to a 1% agarose gel, electrophoresed, stained with ethidium bromide, and then a band of an internal partial fragment of the GDH gene amplified under UV irradiation was cut out. Then, DNA was extracted and purified from the cut gel piece using Wizard SV Gel and PCR Clean-up System (Promega).
  • the obtained DNA fragment was ligated to the cloning vector pTA2 attached to this kit in the manner of TA cloning using Toyobo's TARGET Clone Plus.
  • the ligation product was added to E. coli JM109 strain competent cells (Toyobo Competent High JM109), transformed by heat shock, coated on LB agarose plate containing 100 ⁇ g / mL ampicillin, and cultured at 37 ° C. overnight. Transformant colonies were formed. Multiple colonies are inoculated into 5 mL of LB medium (containing 100 ⁇ g / mL of ampicillin) and cultured overnight, and the manual of this kit is used from the culture solution using Quantum Prep Miniprep Kit (BioRad).
  • the plasmid was extracted according to By analyzing the base sequence of the extracted plasmid insert, the partial base sequence of the target GDH gene was determined. Further, based on the determined sequence, a primer directed to the outside of the internal partial sequence was prepared, and using this primer and LA PCR in vitro Cloning Kit (manufactured by Takara Bio Inc.), the 5 ′ and 3 ′ end regions of the GDH gene The entire nucleotide sequence of the gene was determined by performing amplification and sequencing. The determined base sequence is shown in SEQ ID NO: 1, and the deduced amino acid sequence is shown in SEQ ID NO: 2.
  • This DpnI treatment solution was added to E. coli JM109 strain competent cells (Toyobo Competent High JM109), transformed by heat shock, coated on LB agarose plate containing 100 ⁇ g / mL ampicillin, and cultured at 37 ° C. overnight. Thus, a transformant colony was formed. A plurality of colonies were each inoculated into 5 mL of LB medium (containing 100 ⁇ g / mL ampicillin) and cultured overnight, and a plasmid was extracted from the culture solution using a Quantum Prep plasmid miniprep kit.
  • the base sequence of the obtained plasmid was analyzed, and the codon encoding the 113th isoleucine in the GDH amino acid sequence was converted from ATA to ATT, that is, the 339th A in the GDH gene base sequence was replaced with T. It was confirmed that the plasmid pTA2TGDH2 was sequence-corrected.
  • This pTA2TGDH2 was treated with restriction enzymes NdeI and BamHI, electrophoresed on a 1% agarose gel to cut out a gel piece containing the GDH gene (having NdeI and BamHI cleavage ends at 5 ′ and 3 ′ ends, respectively), Wizard DNA was extracted and purified using SV Gel and PCR Clean-up System.
  • This ligation solution is added to E. coli JM109 strain competent cells, transformed by heat shock, spread on LB agarose plates containing 100 ⁇ g / mL ampicillin, and cultured overnight at 37 ° C. to form transformant colonies. It was. Among the transformant colonies, colonies whose insertion was confirmed by colony direct PCR were inoculated into 5 mL of LB medium (containing 100 ⁇ g / mL ampicillin) and cultured overnight.
  • the plasmid was recovered using a plasmid extraction kit. By analyzing the sequence of the insert of this plasmid, it was confirmed that it had the correct gene sequence and used as an expression vector (pET21aTGDH2).
  • Example 4 Expression and purification of GDH gene pET21aTGDH2 obtained in Example 3 was introduced into Escherichia coli BL21 (DE3) competent cells (manufactured by Stratagene) according to the attached manual, and a transformant was obtained.
  • the transformed colony was suspended in 8 mL of LB medium (containing 100 ⁇ g / mL ampicillin) in a test tube and cultured with shaking at 37 ° C. overnight. 8 mL each of the obtained culture solution was inoculated into 4 800 mL LB medium (containing 100 ⁇ g / mL ampicillin) in a 2 L Sakaguchi flask. The flask was shaken at 37 ° C.
  • IPTG was added to a final concentration of 0.1 mM, and further shaken at 37 ° C. and 120 rpm for 4 hours.
  • the culture was continued.
  • the culture solution was centrifuged with a high-speed cooling centrifuge, the supernatant was removed by decantation, and the obtained bacterial cells were suspended in 70 mL of 50 mM Tris-hydrochloric acid buffer + 0.1 M NaCl (pH 8.0).
  • the suspension was treated for 20 minutes at an output of 4 and a driving rate of 40% using an ultrasonic crusher (UD-201, manufactured by Tommy Seiko Co., Ltd.) to crush the cells.
  • UD-201 ultrasonic crusher
  • the crushed liquid was centrifuged to remove the residue, and a GDH crude extract was obtained.
  • This crude extract was treated at 85 ° C. for 30 minutes to denature contaminating proteins, and the denatured proteins were removed by centrifugation.
  • the supernatant fraction was passed through a resourceQ column buffered with 50 mM Tris-HCl / 0.1 M NaCl (pH 8.0), and 21.3% ammonium sulfate was dissolved in the permeate.
  • This solution was adsorbed on a resource ISO column buffered with 50 mM Tris-HCl ⁇ 22.8% ammonium sulfate (pH 8.0), and gradient elution was performed up to an ammonium sulfate concentration of 0% to collect GDH fractions.
  • This fraction was further subjected to gel filtration using a superdex 200 column, and the obtained GDH fraction was used as a purified recombinant GDH solution.
  • This purified solution was confirmed to be a pure product showing a single band by CBB staining by SDS-PAGE.
  • PET21aTGDH2 obtained in the same manner as in Test Example 3 for site-directed mutagenesis of the residue corresponding to the 202nd arginine was digested with the restriction enzymes NdeI and BamHI, applied to a gel containing 1% agarose, electrophoresed, and ethidium bromide
  • a DNA fragment encoding wild-type GDH is obtained by excising a band of about 1 kb under ultraviolet irradiation and purifying and extracting the excised gel using Toyobo's nucleic acid purification kit (MagExtrantor-Gel & PCR Clean Up-).
  • This purified DNA is mixed with NdeI / BamHI restriction enzyme treatment expression vector pBluescriptKSN + (pBluescriptKS + ⁇ -galactosidase gene translation start codon position into which NdeI site is introduced by base substitution) and ligated for expression plasmid pBSTGDH2 was prepared.
  • pBluescriptKSN + pBluescriptKS + ⁇ -galactosidase gene translation start codon position into which NdeI site is introduced by base substitution
  • a mismatch primer was designed.
  • the primer sequences are R202X-F: 5'-CGTGGCCCAGNNSCCGCCGGAT-3 '(SEQ ID NO: 6), R202X-R: 5'-ATCCGGCGSNNCGTGGCCACCG-3' (SEQ ID NO: 7).
  • N in the sequence represents a mixed base containing A, T, G and C
  • S represents a mixed base containing G and C.
  • bacterial colonies 50 of the resulting transformed colonies were picked up with toothpicks, each inoculated into 5 ml of LB medium (containing 100 ⁇ g / ml ampicillin) in a test tube, and cultured with shaking at 37 ° C. for 24 hours. 1 ml of the culture solution was transferred to a 1.5 ml Eppendorf tube, centrifuged at 12,000 rpm for 5 minutes, and the supernatant was removed to obtain bacterial cells. The cells were suspended in 1 ml of 20 mM potassium phosphate buffer (pH 8.0), and the cells were disrupted by ultrasonic treatment.
  • LB medium containing 100 ⁇ g / ml ampicillin
  • GDH was eluted by passing the buffer through a gradient while changing the ammonium sulfate concentration from 15.2% to 0% and simultaneously the ethylene glycol concentration from 0% to 0.1%.
  • the Michaelis constant for the substrate is lower than that of the wild type. It was found.
  • Example 2 Site-directed mutagenesis to the 340th lysine and its vicinity
  • the expression plasmid of the mutant enzyme (R202S) obtained by substituting the 202nd arginine with serine obtained in Example 1 was used as a template, and further 339 in the same manner as in Example 1.
  • Examination of the introduction of amino acid substitutions to the 341 th to 341 th was carried out, selection of mutant enzymes presumed to be modified by special products, and confirmation of the introduced amino acid substitutions.
  • specific activity, Michaelis constant for NAD, and Michaelis constant for glucose were calculated according to the methods described above. Table 2 shows the introduced amino acid substitutions and the characteristics of each mutant enzyme.
  • the specific activity at 37 ° C. was further improved in the mutant GDH in which any mutation of T341R, T341G, and T341M was further introduced.
  • the Michaelis constant for NAD was further reduced.
  • the combination of K202R with R202K and R202N was also examined. As with the combination with R202S, the Michaelis constant for NAD was significantly reduced.
  • the mutant GDH in which any mutation of T341R, T341M, and T341G was further introduced in addition to R202S a significant decrease in the Michaelis constant for glucose was found.
  • R202S + I339P was obtained as a mutant enzyme having a reduced Michaelis constant for the coenzyme NAD, and its specific activity at 37 ° C. is 132 U / mg, which is rather lower than that of the wild type.
  • the effective combinations were R202S + I339P + T341G, R202S + I339P + T341R, R202S + I339P + T341L and R202S + I339P + T341K shown in Table 2.
  • R202S + I339P has a higher Michaelis constant for glucose than wild type, but is higher than R202S alone mutation.
  • R202S + I339P by further adding any mutation of T341G, T341R, T341L and T341K, a significant reduction in the Michaelis constant for glucose was observed.
  • Example 3 Modification by random mutagenesis
  • R202S mutant enzyme obtained by substituting serine for the 202nd arginine obtained in Example 1
  • the full length of the GDH gene and its upstream / downstream The region containing the part was amplified.
  • Error-prone PCR was performed using Diversify TM PCR Random Mutagenesis Kit manufactured by Clontech, according to the manual attached to this kit, and mutations were randomly introduced into the GDH gene.
  • the amplified DNA was treated with restriction enzymes NdeI and BamHI, mixed with an expression vector pBluescript KSN + solution treated with the same restriction enzyme, and ligated to prepare a random mutant GDH expression plasmid library.
  • This library solution was transformed into E. coli JM109 competent cells, and the resulting transformed colonies were inoculated into 400 ⁇ L of LB medium in a 96-well microplate and cultured with shaking at 37 ° C. for 24 hours using a microplate shaker. .
  • the obtained culture broth was crushed by repeatedly freezing with liquid nitrogen and thawing with a 60 ° C.
  • the ratio of 15 mM / 150 mM was calculated by dividing the activity value measured using, by the activity value measured using 150 mM glucose. Those whose values were increased compared to the R202S mutant enzyme produced by culturing and disrupting were selected. About 10,000 colonies were assayed, 25 strains were selected and the introduced mutation was identified by sequence analysis of the plasmid, and each mutant enzyme was cultured and expressed and purified according to the procedure of Example 1, and various enzymes The characteristics were investigated. Furthermore, according to the method described in “Example of calculating the temperature ratio of 25 ° C./37° C.” above, the temperature dependency of each mutant enzyme was also evaluated.
  • Table 3 shows the introduced mutations and the characteristics of each mutant enzyme. Mutations were observed with the modified effective from the viewpoint of specific activity increase, A3V + R202S, I46V + S124P + R202S, K49R + R202S, D58V + R202S + Y328D, G74D + R202S + E306G + A323T, V80A + R202S, L85H + R202S, T89K + R202S, A121T + R202S, S124L + R202S, K168E + R202S + E330G, A173T + R202S, R202S + S206N, R202S + K208R, R202S + L294W, R202S + E298G, R202S + H303R, R202S + L311P , R202S + Y328S, R202S + W334G, R202S + D338V, R202S + D338G, R202S + L343P, R202S + L3
  • mutations that have been altered from the viewpoint of reducing the Michaelis constant for NAD include D58V + R202S + Y328D, R202S + V286A, R202S + W334G, R202S + H336P, and R202S + L345Q.
  • mutations having a modification effect from the viewpoint of reducing the Michaelis constant for the substrate glucose include I46V + S124P + R202S, D58V + R202S + Y. 328D, G74D + R202S + E306G + A323T, T89K + R202S, A121T + R202S, S124L + R202S, R202S + V286A, R202S + L294W, R202S + W334G, R202S + D338V, R202S + L345Q, and R202S + L345.
  • mutations that have been altered only from the viewpoint of reducing the temperature-dependent activity fluctuation range that is, increasing the temperature ratio of 25 ° C./37° C. include I46V + S124P + R202S, K49R + R202S, D58V + R202S + Y328D, G74D + R202S + E306G + A323T, T89K + R202S + S202S + S202S + S202S + S202S + R202S + K208R, R202S + L294W, R202S + E298G, R202S + H303R, R202S + L311P, R202S + Y328S, R202S + W334G, R202S + D338V, R202S + D338G, R202S + L345Q, R202S + L345.
  • D58V + R202S + Y328D and R202S + W334G 2 There are types.
  • Example 4 Examination of introduced residues at sites with high alteration effect by amino acid substitution Details of alteration effects due to differences in amino acids substituted for 328th tyrosine and 334th tryptophan presumed to be sites with high alteration effect from the results of Example 3 investigated.
  • mismatch primers of a sequence in which a mixed base was introduced so that an arbitrary amino acid residue was introduced into a codon site encoding each site were prepared, and an R202S mutant GDH expression plasmid was used as a template.
  • Site-directed mutagenesis was performed.
  • a mutant GDH expression library in which an arbitrary codon substitution was introduced at each site was subjected to the same screening as in Example 3.
  • the obtained modified GDH was cultured and expressed and purified according to the procedure of Example 1, and Example 3 was obtained. The characteristics of each enzyme were examined in the same manner. Moreover, the plasmid was extracted and purified from the culture solution for each, and the introduced amino acid residue was identified by analyzing the sequence.
  • mutations that contribute to the reduction of the Michaelis constant (Km) for NAD include Y328T, Y328E, and Y328R for the 328th tyrosine, and W334R, W334H, W334A, and W334K for the 334th tryptophan, respectively, with R202S. It was confirmed that the combination was effective.
  • each mutation of Y328T, Y328V, Y328G, Y328E, Y328L, W334R, W334H, W334A, W334K, W334S + T335N was confirmed that the combination of any of the above and R202S was effective.
  • Example 5 Scale-up production of mutant GDH
  • the D58V + R202S + Y328D mutant GDH expression plasmid obtained in Example 3, the R202S + W334G mutant GDH expression plasmid, and the R202S + W334R expression plasmid obtained in Example 4 were each transformed into competent high JM109.
  • Recombinant E. coli was obtained. Each recombinant Escherichia coli was placed in a 200 ml Sakaguchi flask in a 200 ml preculture medium (0.5% yeast extract, 0.25% peptone, 0.5% sodium chloride, 0.5% glucose, 100 ⁇ g / ml ampicillin sodium). , PH 7.4), and cultured with shaking at 30 ° C.
  • the obtained precultured solution was mixed with 6 L of GDH production medium (2.4% yeast extract, 2.4% peptone, 1.25% dihydrogen phosphate, 0.23% phosphate in 10 L jar fermenter. 2 hydrogen 1 potassium, 0.4% glycerol, 0.1% antifoaming agent, 100 ⁇ g / ml ampicillin sodium, pH 7.0), the whole amount was charged, aeration rate 2 L / min, stirring speed 310 rpm, tank pressure 0.02 MPa, The culture was aerated and stirred at a temperature of 37 ° C. for 24 hours.
  • the resulting culture is centrifuged to obtain bacterial cells, which are suspended in 1 L of 20 mM potassium phosphate buffer (pH 8.0), and the bacterial cells are removed at an average pressure of 80 MPa using a French press bacterial cell crusher. It was crushed. Further, 152 g of ammonium sulfate per liter was added to this crushed solution for dissolution, followed by heating at 60 ° C. for 1 hour, and further removing the precipitate by centrifugation. This solution was applied to Octyl-Sepharose resin (manufactured by GE Healthcare) buffered with 20 mM potassium phosphate buffer (pH 8.0) containing 15.2% ammonium sulfate to adsorb GDH to the resin.
  • Octyl-Sepharose resin manufactured by GE Healthcare
  • the resin was washed with 20 mM potassium phosphate buffer (pH 8.0) containing 6% ammonium sulfate. Then, the GDH was eluted by passing the buffer through a gradient while changing the ammonium sulfate concentration from 7.6% to 0% and simultaneously the ethylene glycol concentration from 0% to 0.2%. Next, G-25 buffered with 50 mM potassium phosphate buffer (pH 7.0). Desalting and buffer replacement were performed using Sepharose resin. Finally, the GDH solution was passed through DEAE-Sepharose buffered with 50 mM potassium phosphate buffer (pH 7.0) to adsorb the contaminating protein to the resin, and the permeate was used as purified GDH.
  • each mutant GDH thus obtained was confirmed to have a high purity that forms a single band by CBB staining.
  • the specific activity of each GDH in this state was 857 U / mg for R202S + W334G.
  • D58V + R202S + Y328D was 889 U / mg, and R202S + W334R was 923 U / mg.
  • Example 6 Thermal stability of mutant GDH
  • a GDH concentration of 5 U / ml was obtained using 50 mM potassium phosphate buffer (pH 8.0). After dilution, each solution was heated at 50 ° C., 60 ° C., 70 ° C., 80 ° C., and 90 ° C. for 30 minutes, and the ratio of the GDH activity after heating to the GDH activity before heating (activity) (Residual rate) was examined. The results are shown in FIG. In the treatment at 70 ° C. for 30 minutes, the activity of the wild type and the three mutant GDHs were not reduced. The activity remaining rate after 30 minutes of treatment at 80 ° C.
  • the other mutant GDH in the present invention is presumed to have the same stability, and the maximum limit point of the temperature condition in which 90% or more of the activity remains after each mutant GDH is heated for 30 minutes, It is thought that it exists in the range of 70 degreeC or more and 90 degrees C or less.
  • Example 7 PH stability of mutant GDH
  • a buffer was prepared in the range of pH 3.5 to 11.0.
  • the buffer species used were sodium acetate (pH 3.5-6.0), potassium phosphate (pH 6.0-8.0), Tris-HCl (pH 7.0-9.0), glycine NaOH (pH 9.0- 11.0) and all buffer concentrations are 50 mM.
  • Each buffer was diluted to a GDH concentration of 10 U / ml, the pH of each diluted solution was measured, and each solution was incubated at 25 ° C. for 16 hours.
  • the ratio of GDH activity after incubation to GDH activity before incubation was examined.
  • the pH stability of each mutant GDH activity of R202S + W334G, D58V + R202S + Y328D, and R202S + W334R is shown in FIG. 2, FIG. 3, and FIG. 4, respectively.
  • the pH range where the activity remaining rate is 80% or more is 5.0 to 10.7 for R202S + W334R, 5.0 to 9.9 for D58V + R202S + Y328D, and 5.0 to 10.7 for R202S + W334G, all of which have a wide pH range. It was confirmed to be stable in the region.
  • Example 8 PH Dependency of Mutant GDH Activity Value
  • various buffers were used in place of 0.1 mol / L Tris, and various pH measurement solutions were prepared in the pH range of 3.5 to 11.0.
  • the buffer species used were sodium acetate (pH 3.5-6.0), potassium phosphate (pH 6.0-8.0), Tris-HCl (pH 8.0-9.0), glycine NaOH (pH 9.0- 11.0), and the buffer concentration in the measurement solution is all 50 mM.
  • the GDH activity at each pH was measured according to the procedure of the activity measurement example described above.
  • the relative activity value at each pH was calculated with the activity value under the condition showing the highest activity as 100.
  • the pH dependence of each mutant GDH activity of R202S + W334G, D58V + R202S + Y328D, and R202S + W334R is shown in FIG. 5, FIG. 6, and FIG. 7, respectively.
  • the optimum reaction pH was about 9.0 in all cases, but the relative activities at pH 7.0 were 87 for R202S + W334R, 66 for D58V + R202S + Y328D, and 74 for R202S + W334G, all showing sufficient activity in the neutral region. confirmed.
  • Example 9 Detailed substrate specificity of mutant GDH
  • the substrate specificity of each GDH obtained in Example 5 was examined in more detail.
  • the method follows the above-mentioned evaluation example of substrate specificity, but in addition to maltose, galactose, and xylose as substrates to be used, 2-deoxyglucose, sorbose, mannose, fructose, lactose, sorbitol, mannitol, saccharose, inositol, maltitol
  • the reactivity vs. glucose
  • the results are shown in Table 5. Each GDH was confirmed to maintain good substrate specificity.
  • Example 10 Temperature-dependent activity variation of mutant GDH
  • the wild-type GDH obtained in Test Example 4 and the R202S + W334R mutant GDH obtained in Example 5 were reacted at 10 ° C., 20 ° C., 25 ° C., 30 ° C., and 37 ° C.
  • the activity was measured, and the relative activity at each temperature when the activity at 37 ° C. was taken as 100 was calculated.
  • the measurement was performed according to the above activity measurement example, and the activity was measured by setting the preheating and the temperature during the reaction to the temperature of each temperature condition. The results are shown in FIG.
  • the mutant GDH was shown to have little temperature-dependent activity fluctuation in a temperature range of at least 10 ° C. and 37 ° C.
  • mutant GDH having a higher temperature ratio of 25 ° C / 37 ° C compared to the wild type is presumed to have less temperature-dependent activity fluctuation than the wild type in the temperature range of at least 10 ° C and 37 ° C. Is done.
  • the glucose dehydrogenase produced according to the present invention can be supplied as a raw material for a reagent for measuring blood glucose level, a blood glucose sensor, and a glucose determination kit.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Disclosed is a glucose dehydrogenase (GDH) which has high thermal stability and high substrate specificity and can exhibit a high affinity for a substrate when nicotinamide adenine dinucleotide (NAD) is used as a coenzyme. A GDH having high thermal stability and strict substrate specificity can be obtained from hyperthermophilic archaea Thermoproteus sp. strain GDH1. Further, a modified GDH which can exhibit an improved affinity for glucose when NAD is used as a coenzyme can be successfully produced by substituting an amino acid residue located at a specific position in the aforementioned GDH by a different amino acid residue.

Description

特性の改変されたグルコースデヒドロゲナーゼGlucose dehydrogenase with modified properties
 本発明は、グルコース濃度を測定する試薬及びグルコースセンサに利用することのできるグルコースデヒドロゲナーゼに関する。また、該酵素の製造方法、並びに該酵素を用いたグルコース定量用組成物及びグルコースセンサに関する。 The present invention relates to a glucose dehydrogenase that can be used in a reagent for measuring a glucose concentration and a glucose sensor. Moreover, it is related with the manufacturing method of this enzyme, the composition for glucose determination using this enzyme, and a glucose sensor.
 ニコチンアミドアデニンジヌクレオチド(NAD)もしくはニコチンアミドアデニンジヌクレオチドリン酸(NADP)を補酵素として働くNAD(P)依存型グルコースデヒドロゲナーゼ(EC 1.1.1.47、以下グルコースデヒドロゲナーゼをGDH、またNAD(P)依存型グルコースデヒドロゲナーゼをNAD(P)-GDHとも記す)は、主に血中グルコース濃度測定に用いられる酵素であり、以下の反応を触媒する。
 
D-グルコース + NAD(P) → D-グルコノ-δ-ラクトン + NAD(P)H
 
NAD (P) -dependent glucose dehydrogenase (EC 1.1.1.47, hereinafter referred to as GDH, NAD) which acts as a coenzyme with nicotinamide adenine dinucleotide (NAD) or nicotinamide adenine dinucleotide phosphate (NADP) (P) -dependent glucose dehydrogenase (also referred to as NAD (P) -GDH) is an enzyme mainly used for blood glucose concentration measurement and catalyzes the following reaction.

D-glucose + NAD (P) → D-glucono-δ-lactone + NAD (P) H
 このような血中グルコース定量用酵素としては、他にグルコースオキシダーゼが知られているが、本酵素は分子状酸素を電子受容体としうるため、グルコース濃度を測定する際に溶存酸素濃度の影響を受けるという問題点が指摘されている。グルコースデヒドロゲナーゼは、このような溶存酸素の影響がないことから、近年のグルコースセンサ用酵素の主流となっている。GDHには、NAD(P)依存型のほかにピロロキノリンキノン(PQQ)依存型、フラビン依存型が存在する。アシネトバクター・バウマンニ由来のものに代表されるPQQ依存型GDHは、マルトースに対してもグルコースと同等の反応性を有しているなど、基質特異性に問題がある。また、フラビン依存型GDHとしては例えばアスペルギルス・テレウス由来のものが知られており、PQQ依存型GDHと比して基質特異性はより厳密であるが、しかしながらキシロースに対して対グルコース比約9%の反応性を有していて、必ずしも十分な基質特異性とはいえない。また、温度安定性としても50℃程度を限度としており、十分ではない。 Glucose oxidase is another known enzyme for quantifying blood glucose. However, since this enzyme can use molecular oxygen as an electron acceptor, the effect of dissolved oxygen concentration on the measurement of glucose concentration. The problem of receiving is pointed out. Since glucose dehydrogenase is not affected by such dissolved oxygen, it has become a mainstream enzyme for glucose sensors in recent years. GDH includes a pyrroloquinoline quinone (PQQ) -dependent type and a flavin-dependent type in addition to the NAD (P) -dependent type. PQQ-dependent GDH, typified by those derived from Acinetobacter baumannii, has a problem in substrate specificity, such as having reactivity equivalent to glucose with respect to maltose. Further, as flavin-dependent GDH, for example, those derived from Aspergillus terreus are known, and the substrate specificity is more strict than PQQ-dependent GDH, however, the ratio of glucose to xylose is about 9%. Therefore, the substrate specificity is not necessarily sufficient. Further, the temperature stability is limited to about 50 ° C., which is not sufficient.
 公知のNAD(P)-GDHとしては、バチルス(Bacillus)属バクテリア由来のものが良く知られ、例えばバチルス・スブチリス(Bacillus subtilis)、バチルス・メガテリウム(Bacillus megaterium)、バチルス・セレウス(Bacillus cereus)などがGDH産生菌として報告されている。これらのバクテリア由来NAD(P)-GDHについても、依然キシロース等に対する作用性を有する、あるいは熱安定性に乏しいといった問題を含んでいた。 Known NAD (P) -GDH is well known from bacteria belonging to the genus Bacillus, for example, Bacillus subtilis, Bacillus megaterium, Bacillus cereus, etc. Have been reported as GDH producing bacteria. These bacteria-derived NAD (P) -GDH still have problems such as having activity against xylose and the like, or poor thermal stability.
 特許文献1には、4種類のB.メガテリウム由来GDHアイソザイムの各特性が記載され、これらの100mMキシロースに対する反応性は対グルコース比(%)に換算してそれぞれGDH(I)が12、GDH(II)が3.5、GDH(III)が1.8、GDH(IV)が7.1である。最もキシロースに対する反応性の低いGDH(III)については、NaCl非存在下では40℃20分の加温処理で完全に活性を失い、熱安定性に乏しい。このGDH(III)は2Mという非常に高濃度のNaClが存在するという限定的な条件においては熱安定性が向上するものの、その場合においても70℃20分の熱処理で完全に活性が失われるなど、必ずしも十分ではない。 Patent Document 1 describes four types of B.I. The properties of megaterium-derived GDH isozymes are described, and their reactivity with respect to 100 mM xylose is converted to glucose ratio (%) by 12 for GDH (I), 3.5 for GDH (II), and GDH (III), respectively. Is 1.8 and GDH (IV) is 7.1. GDH (III), which has the lowest reactivity to xylose, loses its activity completely by heating at 40 ° C. for 20 minutes in the absence of NaCl, and has poor thermal stability. Although this GDH (III) improves thermal stability under the limited condition that a very high concentration NaCl of 2M exists, even in that case, the activity is completely lost by heat treatment at 70 ° C. for 20 minutes. , Not necessarily enough.
 安定性の問題に関しては、例えば特許文献2にはB.メガテリウム由来GDHの特定のアミノ酸残基を置換することにより熱安定性が向上した旨記載されるが、十分な熱安定性を発揮するには非常に高濃度の無機塩を添加する必要があり、最も高い熱安定性を示すGDHにおいても塩化ナトリウム非存在下では約75℃で20分間の熱処理により完全に活性を失う。塩化ナトリウムやマレイン酸ナトリウム等に代表される塩の存在がNADの分解を促進することが知られていることから、GDHの安定化を図るために高濃度の塩化ナトリウムを添加することは実用上好ましくなく、塩化ナトリウム非存在下において十分な熱安定性を有するGDHが有利である。 Regarding the stability problem, for example, Patent Document 2 describes B.I. Although it is described that the thermal stability has been improved by substituting a specific amino acid residue of Megathelium-derived GDH, it is necessary to add a very high concentration of inorganic salt in order to exhibit sufficient thermal stability, Even GDH, which shows the highest thermal stability, loses its activity completely by heat treatment at about 75 ° C. for 20 minutes in the absence of sodium chloride. Since it is known that the presence of salts such as sodium chloride and sodium maleate accelerates the decomposition of NAD, it is practical to add a high concentration of sodium chloride to stabilize GDH. Preference is given to GDH, which has sufficient thermal stability in the absence of sodium chloride.
 また特許文献3にはB.メガテリウム由来GDHを含む複数種類のGDHのキメラを作製することにより塩化ナトリウム非存在下での熱安定性の向上したNAD(P)-GDHについて記載されているものの、基質特異性の問題を解消する意図はなく、また該キメラGDHは耐アルカリ性に優れる一方でpH7.5を下回る中性及び酸性pH領域における安定性が十分でないという別の問題をかかえている。酸化型補酵素であるNAD(P)はアルカリ性領域において極めて不安定であることが知られており、これら酸化型補酵素の安定性を担保するために通常は中性付近もしくはそれ以下のpHでグルコース定量用組成物を作製することを考えれば実用上極めて不利である。 Also, Patent Document 3 describes B.I. Although NAD (P) -GDH with improved thermal stability in the absence of sodium chloride has been described by producing chimeras of multiple types of GDH including megathelium-derived GDH, it solves the problem of substrate specificity There is no intention, and the chimeric GDH has another problem that it is excellent in alkali resistance, but is not sufficiently stable in the neutral and acidic pH regions below pH 7.5. NAD (P), which is an oxidized coenzyme, is known to be extremely unstable in the alkaline region. In order to ensure the stability of these oxidized coenzymes, the pH is usually near neutral or lower. Considering the production of a glucose quantitative composition, it is extremely disadvantageous in practice.
 1986年にはスルフォロバス・ソルファタリカス(Sulforobus solfataricus)由来(非特許文献1)、1989年にはサーモプラズマ・アシドフィラム(Thermoplasma acidophilum)由来(非特許文献2)、また1997年にはサーモプロテウス・テナックス(Thermoproteus tenax)由来(非特許文献3)のGDHがそれぞれ報告されている。 In 1986, it was derived from Sulforobus solfataricus (Non-patent Document 1), in 1989, from Thermoplasma acidophilum (Non-patent document 2), and in 1997, Thermoproteus tenax. GDH derived from (Thermoproteus tenax) (Non-patent Document 3) has been reported.
 こうした超好熱菌由来GDHを利用するにあたっては、上記に例示するGDHのように耐熱性を高めるべく機能改変を実施する必要がない点において有利である。しかしながら、これら酵素は熱安定性に優れている一方で、バクテリア由来のものと比して基質特異性が劣るという問題点を含んでいる。S.ソルファタリカス由来のGDHについては、NADPを補酵素とした場合では基質特異性がブロードになり、基質濃度40mmol/Lにおいてグルコースよりもガラクトースやキシロースに対する活性のほうが高い。NADを補酵素とした場合ではグルコースに対する特異性が比較的高まるものの、依然キシロースに対する活性が対グルコース比26%程度と高い。またT.アシドフィラム由来GDHは、NADPを補酵素とした際にガラクトースに対して活性を示し、対グルコース比70%にも及ぶ。さらにT.テナックス由来GDHの場合もキシロースに対して高い反応性を示す。血中グルコース濃度を測定するにあたって、使用するGDHの基質特異性が低くグルコース以外の物質に反応するということはすなわち血糖値測定の正確性を損なう結果となり、極めて不都合である。 In using such a hyperthermophile-derived GDH, it is advantageous in that it is not necessary to carry out functional modification to increase heat resistance like the GDH exemplified above. However, while these enzymes are excellent in thermal stability, they have a problem that the substrate specificity is inferior to those derived from bacteria. S. For GDH derived from Solfataricus, when NADP is used as a coenzyme, the substrate specificity is broad, and the activity against galactose and xylose is higher than that at glucose at a substrate concentration of 40 mmol / L. When NAD is used as a coenzyme, the specificity for glucose is relatively high, but the activity for xylose is still as high as about 26% of glucose. T. Acidophilum-derived GDH exhibits activity against galactose when NADP is used as a coenzyme, and the ratio to glucose is as high as 70%. In addition, T.W. Tenax-derived GDH also shows high reactivity with xylose. In measuring the blood glucose concentration, the fact that the substrate specificity of GDH used is low and that it reacts with substances other than glucose results in a loss of the accuracy of blood glucose level measurement, which is extremely inconvenient.
 上記のように、公知のGDHは、熱安定性及び/または基質特異性において問題を有しており、熱安定性と基質特異性の両特性を同時に充足しうる実用的なGDHはこれまで報告例がなかった。 As described above, known GDH has problems in thermal stability and / or substrate specificity, and practical GDH that can simultaneously satisfy both characteristics of thermal stability and substrate specificity has been reported so far. There was no example.
 また、グルコースの定量に際しては、臨床検査用の液状試薬であれば37℃、簡易型グルコースセンサであれば通常10℃~40℃での測定が想定される。当然ながらグルコース定量に用いる酵素は、これら温度領域における比活性が高いほうがより好ましい。 In addition, when quantifying glucose, measurement at 37 ° C. is assumed for a liquid reagent for clinical tests, and measurement at 10 ° C. to 40 ° C. is generally assumed for a simple glucose sensor. Of course, it is more preferable that the enzyme used for glucose determination has a higher specific activity in these temperature ranges.
 また、NAD(P)依存型GDHを用いたグルコースの定量を行うにあたっては、GDHを含む定量用組成物にNADもしくはNADPを添加する必要があるが、NADPはNADに比して高価であるため、経済的な理由からよりNADに対して親和性の高いGDHであることが望ましい。 In addition, when quantifying glucose using NAD (P) -dependent GDH, it is necessary to add NAD or NADP to the composition for quantification containing GDH, but NADP is more expensive than NAD. For economic reasons, it is desirable that the GDH has a higher affinity for NAD.
 また、グルコースセンサにおいてグルコースの定量を行うにあたっては、10℃~40℃の温度範囲での使用が想定される。一般に酵素による触媒を介した化学反応は、温度の上昇に伴って反応速度も上昇し、そして一定の温度を超えた条件では酵素の失活に伴って反応速度も急激に低下するという挙動を示す。このような温度依存的な酵素活性の変動は、測定を行う際の外気温度に依存してグルコースの定量値が変動する要因となりうる。これを避けるために、例えばグルコースセンサに温度計を具備し、測定時の温度から計測値を補正する工夫がなされている。しかしながらこのような温度補正機能も、環境温度が定量値に与える影響を十分に解消しえないことが非特許文献4において指摘されている。よって環境温度がグルコースの定量値に与える影響を低減するためには、酵素自体の特性として特に10℃~40℃の温度範囲において酵素活性の変動が小さいことがより望ましい。 In addition, it is assumed that the glucose sensor is used in a temperature range of 10 ° C. to 40 ° C. for quantitative determination of glucose. In general, a chemical reaction via an enzyme catalyzed by an enzyme shows a behavior in which the reaction rate increases as the temperature increases, and the reaction rate rapidly decreases as the enzyme is deactivated at a temperature exceeding a certain temperature. . Such a temperature-dependent change in enzyme activity can be a factor that causes the quantitative value of glucose to change depending on the outside temperature at the time of measurement. In order to avoid this, for example, a glucose sensor is provided with a thermometer, and a measure for correcting the measured value from the temperature at the time of measurement is made. However, it is pointed out in Non-Patent Document 4 that such a temperature correction function cannot sufficiently eliminate the influence of the environmental temperature on the quantitative value. Therefore, in order to reduce the influence of the environmental temperature on the quantitative value of glucose, it is more desirable that the enzyme activity has a small fluctuation in the temperature range of 10 ° C. to 40 ° C. as a characteristic of the enzyme itself.
特開平4-258289JP-A-4-258289 特許第3220471号Japanese Patent No. 3220471 特開2003-310274JP2003-310274
野生型GDH(配列番号2と同一のアミノ酸配列からなるGDH)およびR202S+W334G、D58V+R202S+Y328D、R202S+W334Rの各変異型GDHの熱安定性を示す。縦軸は活性残存率(加温処理前のGDH活性を100としたときの、各温度条件で30分加温処理した後の相対活性;%)、横軸は加温処理時の温度を示す。The thermal stability of wild-type GDH (GDH consisting of the same amino acid sequence as SEQ ID NO: 2) and mutant GDH of R202S + W334G, D58V + R202S + Y328D, and R202S + W334R is shown. The vertical axis represents the activity remaining rate (relative activity after 30 minutes of heating treatment under each temperature condition, where the GDH activity before the heating treatment is 100;%), and the horizontal axis represents the temperature during the heating treatment. . R202S+W334G変異型GDHのpH安定性を示す。縦軸は活性残存率(加温処理前のGDH活性を100としたときの、各pH条件で25℃16時間加温した後の相対活性;%)、横軸は反応液のpHを示す。但しpH3.6~6.0は50mMの酢酸バッファー、pH6.1~8.0は50mMのリン酸カリウムバッファー、pH7.0~8.9は50mMのTris-HClバッファー、pH9.0~10.7は50mMのグリシン-NaOHバッファーを用いたデータである。The pH stability of R202S + W334G mutant type GDH is shown. The vertical axis represents the activity remaining rate (relative activity after heating at 25 ° C. for 16 hours under each pH condition, where the GDH activity before the heating treatment is 100;%), and the horizontal axis represents the pH of the reaction solution. However, pH 3.6 to 6.0 is 50 mM acetate buffer, pH 6.1 to 8.0 is 50 mM potassium phosphate buffer, pH 7.0 to 8.9 is 50 mM Tris-HCl buffer, pH 9.0 to 10. 7 is data using 50 mM glycine-NaOH buffer. D58V+R202S+Y328D変異型GDHのpH安定性を示す。縦軸は活性残存率(加温処理前のGDH活性を100としたときの、各pH条件で25℃16時間加温した後の相対活性;%)、横軸は反応液のpHを示す。但しpH3.6~6.0は50mMの酢酸バッファー、pH6.1~8.0は50mMのリン酸カリウムバッファー、pH7.0~8.9は50mMのTris-HClバッファー、pH9.0~10.7は50mMのグリシン-NaOHバッファーを用いたデータである。The pH stability of D58V + R202S + Y328D mutant GDH is shown. The vertical axis represents the activity remaining rate (relative activity after heating at 25 ° C. for 16 hours under each pH condition, where the GDH activity before the heating treatment is 100;%), and the horizontal axis represents the pH of the reaction solution. However, pH 3.6 to 6.0 is 50 mM acetate buffer, pH 6.1 to 8.0 is 50 mM potassium phosphate buffer, pH 7.0 to 8.9 is 50 mM Tris-HCl buffer, pH 9.0 to 10. 7 is data using 50 mM glycine-NaOH buffer. R202S+W334R変異型GDHのpH安定性を示す。縦軸は活性残存率(加温処理前のGDH活性を100としたときの、各pH条件で25℃16時間加温した後の相対活性;%)、横軸は反応液のpHを示す。但しpH3.5~6.0は50mMの酢酸バッファー、pH6.1~8.0は50mMのリン酸カリウムバッファー、pH7.0~9.0は50mMのTris-HClバッファー、pH9.0~10.7は50mMのグリシン-NaOHバッファーを用いたデータである。The pH stability of R202S + W334R mutant GDH is shown. The vertical axis represents the activity remaining rate (relative activity after heating at 25 ° C. for 16 hours under each pH condition, where the GDH activity before the heating treatment is 100;%), and the horizontal axis represents the pH of the reaction solution. However, pH 3.5 to 6.0 is 50 mM acetate buffer, pH 6.1 to 8.0 is 50 mM potassium phosphate buffer, pH 7.0 to 9.0 is 50 mM Tris-HCl buffer, pH 9.0 to 10. 7 is data using 50 mM glycine-NaOH buffer. R202S+W334G変異型GDH活性のpH依存性を示す。縦軸は相対活性(活性値最大となる条件の活性を100とした場合の、各pH条件での相対活性)、横軸は反応pHを示す。但しpH3.6~6.0は50mMの酢酸バッファー、pH5.9~7.8は50mMのリン酸カリウムバッファー、pH8.0~8.9は50mMのTris-HClバッファー、pH8.8~10.4は50mMのグリシン-NaOHバッファーを用いたデータである。The pH dependence of R202S + W334G mutant GDH activity is shown. The vertical axis represents relative activity (relative activity under each pH condition when the activity under the condition that maximizes the activity value is 100), and the horizontal axis represents the reaction pH. However, pH 3.6 to 6.0 is 50 mM acetate buffer, pH 5.9 to 7.8 is 50 mM potassium phosphate buffer, pH 8.0 to 8.9 is 50 mM Tris-HCl buffer, pH 8.8 to 10. 4 is data using 50 mM glycine-NaOH buffer. D58V+R202S+Y328D変異型GDH活性のpH依存性を示す。縦軸は相対活性(活性値最大となる条件の活性を100とした場合の、各pH条件での相対活性)、横軸は反応pHを示す。但しpH3.6~6.1は50mMの酢酸バッファー、pH5.9~7.8は50mMのリン酸カリウムバッファー、pH8.0~8.9は50mMのTris-HClバッファー、pH8.8~10.4は50mMのグリシン-NaOHバッファーを用いたデータである。The pH dependency of D58V + R202S + Y328D mutant GDH activity is shown. The vertical axis represents relative activity (relative activity under each pH condition when the activity under the condition that maximizes the activity value is 100), and the horizontal axis represents the reaction pH. However, pH 3.6 to 6.1 is 50 mM acetate buffer, pH 5.9 to 7.8 is 50 mM potassium phosphate buffer, pH 8.0 to 8.9 is 50 mM Tris-HCl buffer, pH 8.8 to 10. 4 is data using 50 mM glycine-NaOH buffer. R202S+W334R変異型GDH活性のpH依存性を示す。縦軸は相対活性(活性値最大となる条件の活性を100とした場合の、各pH条件での相対活性)、横軸は反応pHを示す。但しpH3.6~6.1は50mMの酢酸バッファー、pH5.9~7.8は50mMのリン酸カリウムバッファー、pH8.0~8.9は50mMのTris-HClバッファー、pH8.8~10.4は50mMのグリシン-NaOHバッファーを用いたデータである。The pH dependency of R202S + W334R mutant GDH activity is shown. The vertical axis represents relative activity (relative activity under each pH condition when the activity under the condition that maximizes the activity value is 100), and the horizontal axis represents the reaction pH. However, pH 3.6 to 6.1 is 50 mM acetate buffer, pH 5.9 to 7.8 is 50 mM potassium phosphate buffer, pH 8.0 to 8.9 is 50 mM Tris-HCl buffer, pH 8.8 to 10. 4 is data using 50 mM glycine-NaOH buffer. 野生型GDH(配列番号2と同一のアミノ酸配列からなるGDH)およびR202S+W334R変異GDHの10℃以上37℃以下における活性の温度依存的変動を示す。縦軸は相対活性(反応温度37℃における活性を100とした場合の、各温度条件での相対活性)、横軸は反応温度を示す。The temperature-dependent variation of the activity of wild-type GDH (GDH consisting of the same amino acid sequence as SEQ ID NO: 2) and R202S + W334R mutant GDH from 10 ° C. to 37 ° C. is shown. The vertical axis represents relative activity (relative activity under each temperature condition when the activity at a reaction temperature of 37 ° C. is 100), and the horizontal axis represents the reaction temperature.
 本発明の目的は、熱安定性の高いGDHであって、なおかつ基質であるグルコースに対する親和性の高いGDHを提供することである。 An object of the present invention is to provide GDH having high heat stability and high affinity for glucose as a substrate.
 また、本発明の目的は、熱安定性の高いGDHであって、なおかつNADに対する親和性の高いGDHを提供することである。 Also, an object of the present invention is to provide GDH having high thermal stability and high affinity for NAD.
 また、本発明の目的は、熱安定性の高いGDHであって、なおかつ37℃以下の温度領域における比活性の高いGDHを提供することである。 Also, an object of the present invention is to provide GDH having high thermal stability and high specific activity in a temperature range of 37 ° C. or lower.
 また、本発明の目的は、熱安定性の高いGDHであって、なおかつ温度依存的な活性の変動のより低減されたGDHを提供することである。 Also, an object of the present invention is to provide a GDH having high thermal stability and further reduced temperature-dependent activity fluctuation.
 また、本発明の目的は、熱安定性および基質特異性の高いGDHであって、かつ37℃以下の温度領域における比活性が高く、なおかつ補酵素としてのNADおよび基質としてのグルコースに対する親和性が高くなおかつ温度依存的な活性の変動のより低減されたGDHを提供することである。 Another object of the present invention is GDH having high thermostability and substrate specificity, high specific activity in a temperature range of 37 ° C. or lower, and affinity for NAD as a coenzyme and glucose as a substrate. It is to provide a GDH that is higher and has reduced temperature-dependent activity fluctuations.
 本発明者らは、上記目的を達成すべく鋭意研究を行った結果、これらに代わる熱安定性が高くかつNADに対する親和性の高いGDHを、超好熱性始原菌であるサーモプロテウス・エスピー・GDH1株(Thermoproteus sp. GDH1)より取得した。
 本菌株より取得したNAD(P)依存型GDHは、NADを補酵素とした場合にグルコース以外の糖類、すなわちキシロース、ガラクトース、マルトース、ラクトース、ソルビトール、スクロース、マンノースに対して実質的に活性を示さないという点で、公知の超好熱性始原菌由来酵素に比し優位であった。
As a result of diligent research to achieve the above object, the present inventors have succeeded in replacing GDH with high thermal stability and high affinity for NAD with Thermoproteus sp. GDH1 which is a hyperthermophilic archaeon. Strain (Thermoproteus sp. GDH1).
The NAD (P) -dependent GDH obtained from this strain shows substantial activity against saccharides other than glucose, that is, xylose, galactose, maltose, lactose, sorbitol, sucrose, and mannose when NAD is used as a coenzyme. It was superior to the known hyperthermophilic archaeon-derived enzyme in that it was not.
(1)
 ところが、該酵素は、NADおよびNADPどちらをも補酵素として利用可能であるが、NADPに対する親和性が圧倒的に高く、反応温度60℃におけるミカエリス定数(Km)は、NADに対しては10.3mMである一方、NADPに対しては0.075mMであり、100倍以上の乖離がある。このことから、本酵素は代謝系においては本来NADPを補酵素として利用していると推測される。
 しかしながら産業利用を考えた場合、NADPはNADよりも高価であり、NADPを用いることはすなわちグルコースセンサやグルコース定量用試薬製造におけるコストアップを招くこととなる。また、NADに比しNADPはより不安定であることからも、補酵素としてはNADを用いるのがより有利である。
 該GDHはNADを補酵素とすることも可能ではあるが、NADを補酵素とした場合の基質であるグルコースに対するミカエリス定数(Km)は約64mMと高い。例えば血中グルコース濃度の正常値は110mg/dl未満、すなわちモル濃度に換算すれば約6mM未満であって、これは該GDHがNADを補酵素とした場合のグルコースに対するミカエリス定数の1/10以下である。酵素の基質に対するミカエリス定数よりも基質濃度が低ければ低いほど酵素の活性は低くなる。これはすなわちGDHを利用したグルコースセンサにおいてグルコースを定量するためのシグナル強度が十分に得られないという不都合を生じる。
 またエンドポイント法によるグルコース定量を行う場合、基質に対するミカエリス定数の高い酵素では、サンプル中のグルコースを完全に酸化するのに要する時間が長くなるという欠点がある。本酵素をより実用に適したものとするためには、基質であるグルコースに対するミカエリス定数を低下させ、低濃度グルコースに対しても十分な活性を有するGDHに改変する必要があった。
 そこで本発明者らは、次に、サーモプロテウス・エスピー・GDH1株より取得した該GDHタンパク質の改変を試み、該GDHタンパク質中の特定のアミノ酸残基を置換することにより、NADを補酵素とした場合におけるグルコースに対する親和性をさらに高めることに成功し、本発明を完成するに至った。
(1)
However, the enzyme can use both NAD and NADP as coenzymes, but its affinity for NADP is overwhelmingly high, and the Michaelis constant (Km) at a reaction temperature of 60 ° C. is 10. While it is 3 mM, it is 0.075 mM for NADP, and there is a difference of 100 times or more. From this, it is speculated that this enzyme originally uses NADP as a coenzyme in the metabolic system.
However, considering industrial use, NADP is more expensive than NAD, and the use of NADP results in an increase in cost in the production of glucose sensors and glucose quantification reagents. In addition, since NADP is more unstable than NAD, it is more advantageous to use NAD as a coenzyme.
Although it is possible for GDH to use NAD as a coenzyme, the Michaelis constant (Km) for glucose, which is a substrate when NAD is used as a coenzyme, is as high as about 64 mM. For example, the normal value of blood glucose concentration is less than 110 mg / dl, that is, less than about 6 mM in terms of molar concentration, which is 1/10 or less of the Michaelis constant for glucose when the GDH uses NAD as a coenzyme. It is. The lower the substrate concentration than the Michaelis constant for the enzyme substrate, the lower the activity of the enzyme. This means that a signal intensity for quantifying glucose cannot be sufficiently obtained in a glucose sensor using GDH.
In addition, when performing glucose determination by the end point method, an enzyme having a high Michaelis constant for the substrate has a drawback that it takes a long time to completely oxidize glucose in the sample. In order to make this enzyme more suitable for practical use, it was necessary to reduce the Michaelis constant for the substrate glucose and to modify it to GDH having sufficient activity even for low-concentration glucose.
Therefore, the present inventors next tried to modify the GDH protein obtained from Thermoproteus sp. GDH1 strain, and replaced NAD as a coenzyme by substituting a specific amino acid residue in the GDH protein. In this case, the present inventors have succeeded in further increasing the affinity for glucose and completed the present invention.
(2)
 あるいはまた、該酵素は、上述したようにNADに対する親和性が低いことから、グルコースセンサ及びグルコース定量用試薬を作製する際において大量のNADを要し、その分コストも上乗せされてしまうという問題点を含んでいた。
 また、上述の非特許文献1ないし3に記載されている公知の超好熱性始原菌由来GDHも同様にNADPに対する親和性が高いことが報告されていた。
 そこで本発明者らは、次に、サーモプロテウス・エスピー・GDH1株より取得した該GDHタンパク質の改変を試み、該GDHタンパク質中の特定のアミノ酸残基を置換することにより、NADに対する親和性をさらに高めることに成功し、本発明を完成するに至った。
(2)
Alternatively, since the enzyme has a low affinity for NAD as described above, a large amount of NAD is required in producing a glucose sensor and a glucose quantification reagent, and the cost is increased accordingly. Was included.
Moreover, it was reported that the well-known hyperthermophilic archaeon-derived GDH described in Non-Patent Documents 1 to 3 described above also has a high affinity for NADP.
Therefore, the present inventors next attempted to modify the GDH protein obtained from Thermoproteus sp. GDH1 strain, and further substituted the specific amino acid residue in the GDH protein to further increase the affinity for NAD. It succeeded in raising and came to complete this invention.
(3)
 あるいはまた、本酵素は他の超好熱菌由来酵素と同様に37℃以下の低温領域における活性が低いという問題を含んでいた。該酵素の60℃における比活性は、NADを補酵素とした場合にはVmaxは1670U/mgであるが、反応温度の低下に伴う比活性の低下が顕著であり、37℃でのVmaxはおよそ290U/mg程度、また後述する活性測定方法並びにタンパク質定量方法に従って算出した37℃における比活性は172U/mgである。グルコースを定量する際の温度条件としては、液状のグルコース定量試薬であれば通常37℃であり、また比色式もしくは電気化学式の簡易型グルコースセンサであれば10~40℃の範囲での使用が想定されることから、37℃以下における活性がより高いほうが実用上有利である。
 そこで本発明者らは、次に、サーモプロテウス・エスピー・GDH1株より取得した該GDHタンパク質の改変を試み、該GDHタンパク質中の特定のアミノ酸残基を置換することにより、37℃以下における比活性を高めることに成功し、本発明を完成するに至った。
(3)
Alternatively, this enzyme has a problem that it has a low activity in a low temperature region of 37 ° C. or lower, like other hyperthermophile-derived enzymes. The specific activity of the enzyme at 60 ° C. is 1670 U / mg when NAD is used as a coenzyme, but the specific activity decreases with a decrease in the reaction temperature, and the Vmax at 37 ° C. is approximately About 290 U / mg, and the specific activity at 37 ° C. calculated according to the activity measurement method and protein quantification method described later is 172 U / mg. The temperature condition for quantifying glucose is usually 37 ° C. for a liquid glucose quantification reagent, and 10 to 40 ° C. for a simple colorimetric or electrochemical glucose sensor. As expected, higher activity at 37 ° C. or lower is advantageous in practice.
Therefore, the present inventors next attempted to modify the GDH protein obtained from Thermoproteus sp. GDH1 strain, and substituted specific amino acid residues in the GDH protein to thereby obtain a specific activity at 37 ° C. or lower. The present invention has been completed successfully.
(4)
 あるいはまた、該酵素は、37℃における活性を100とした場合の相対活性は、25℃のときに33、10℃の時に4と温度依存的な活性の変動が大きい。
 そこで本発明者らは、次に、サーモプロテウス・エスピー・GDH1株より取得した該GDHタンパク質の改変を試み、該GDHタンパク質中の特定のアミノ酸残基を置換することにより、37℃以下の温度領域における温度依存的な活性値の変動を低減することに成功し、本発明を完成するに至った。
(4)
Alternatively, when the activity at 37 ° C. is 100, the relative activity of the enzyme is 33 at 25 ° C. and 4 at 10 ° C., and the temperature-dependent activity fluctuation is large.
Then, the present inventors next tried to modify the GDH protein obtained from Thermoproteus sp. The present invention has been completed by successfully reducing temperature-dependent fluctuations in activity values.
(5)
 また本発明者らは、サーモプロテウス・エスピー・GDH1株より取得した該GDHタンパク質の改変を試み、該GDHタンパク質中の特定のアミノ酸残基を置換することにより、37℃以下の温度領域における比活性、NADおよびグルコースに対する親和性、並びに37℃以下の温度領域における温度依存的な活性値の変動の各特性を同時に改変することに成功し、本発明を完成するに至った。
(5)
In addition, the present inventors attempted to modify the GDH protein obtained from Thermoproteus sp. GDH1 strain, and substituted specific amino acid residues in the GDH protein, thereby allowing specific activity in a temperature range of 37 ° C. or lower. The present inventors have succeeded in simultaneously modifying the properties of affinity for NAD and glucose, and temperature-dependent activity value fluctuations in the temperature range of 37 ° C. or lower, thereby completing the present invention.
 すなわち、本発明は以下のような構成からなる。
項1-1.
 配列番号2に記載されるアミノ酸配列において202番目アルギニンに相当するアミノ酸残基を、グリシン、アラニン、ロイシン、イソロイシン、セリン、トレオニン、アスパラギン、およびリジンのいずれかに置換してなる、変異型グルコースデヒドロゲナーゼ。
項1-2.
 さらに、202番目アルギニン以外のアミノ酸残基の1ないし数個が欠失、置換、挿入及び/又は付加されてなる、項1-1に記載の変異型グルコースデヒドロゲナーゼ。
項1-3.
 配列番号2に記載されるアミノ酸配列において、58番目アスパラギン酸、286番目バリン、328番目チロシン、334番目トリプトファン、339番目イソロイシン、340番目リジン、341番目トレオニンおよび345番目ロイシンからなる群より選ばれる1ないし数箇所のアミノ酸残基の他の残基への置換をさらに組み合わせてなる、項1-1に記載の変異型グルコースデヒドロゲナーゼ。
項1-4.
 配列番号2に記載されるアミノ酸配列において(D58V+Y328D)、V286A、Y328T、Y328E、W334G、W334R、W334H、W334A、W334K、I339P、K340R、T341R、T341G、T341P、T341M、T341SおよびL345Qからなる群より選ばれる1ないし数種類のアミノ酸置換をさらに組み合わせてなる、項1-1に記載の変異型グルコースデヒドロゲナーゼ。
項1-5.
 配列番号2に記載されるアミノ酸配列において202番目アルギニンに相当するアミノ酸残基がセリンに置換され、かつ(D58V+Y328D)、V286A、Y328T、Y328E、W334G、W334R、W334H、W334A、W334K、I339P、K340R、T341R、T341G、T341P、T341M、T341SおよびL345Qからなる群より選ばれる1ないし数種類のアミノ酸置換をさらに組み合わせてなる、項1-1に記載の変異型グルコースデヒドロゲナーゼ。
項2-1.
 配列番号2に記載されるアミノ酸配列において202番目アルギニンに相当するアミノ酸残基をセリンに置換してなる、グルコースに対する親和性の高い変異型グルコースデヒドロゲナーゼ。
項2-2.
 さらに、202番目アルギニン以外のアミノ酸残基の1ないし数個が欠失、置換、挿入及び/又は付加されてなる、項2-1に記載の変異型グルコースデヒドロゲナーゼ。
項2-3.
 配列番号2に記載されるアミノ酸配列において、さらに3番目アラニン、46番目イソロイシン、49番目リジン、58番目アスパラギン酸、74番目グリシン、80番目バリン、85番目ロイシン、89番目トレオニン、121番目アラニン、124番目セリン、168番目リジン、173番目アラニン、206番目セリン、208番目リジン、294番目ロイシン、298番目グルタミン酸、303番目ヒスチジン、306番目グルタミン酸、311番目ロイシン、323番目アラニン、328番目チロシン、330番目グルタミン酸、334番目トリプトファン、335番目トレオニン、338番目アスパラギン酸、341番目トレオニン、343番目ロイシンおよび345番目ロイシンからなる群より選ばれる1ないし数個のアミノ酸残基の他のアミノ酸残基への置換をさらに組み合わせてなる、項2-1に記載の変異型グルコースデヒドロゲナーゼ。
項2-4.
 配列番号2に記載されるアミノ酸配列においてA3V、I46V、K49R、D58V、G74D、V80A、L85H、T89K、A121T、S124L、S124P、K168E、A173T、S206N、K208R、L294W、E298G、H303R、E306G、L311P、A323T、Y328D、Y328S、Y328T、Y328V、Y328G、Y328E、Y328L、E330G、W334G、W334R、W334H、W334A、W334K、W334S、T335N、D338G、D338V、T341R、T341G、T341M、L343P、L345QおよびL345Pからなる群より選ばれる1ないし数種類のアミノ酸置換をさらに組み合わせてなる、項2-1に記載の変異型グルコースデヒドロゲナーゼ。
項2-5.
 配列番号2に記載されるアミノ酸配列において202番目アルギニンに相当するアミノ酸残基がセリンに置換され、かつA3V、(I46V+S124P)、K49R、(D58V+Y328D)、(G74D+E306G+A323T)、V80A、L85H、T89K、A121T、S124L、(K168E+E330G)、A173T、S206N、K208R、L294W、E298G、H303R、L311P、Y328S、Y328T、Y328V、Y328G、Y328E、Y328L、W334G、W334R、W334H、W334A、W334K、(W334S+T335N)、D338G、D338V、(I339P+T341G)、(I339P+T341R)、(I339P+T341L)、(I339P+T341K)、T341R、T341G、T341M、L343P、L345QおよびL345Pからなる群より選ばれる1種類のアミノ酸置換をさらに組み合わせてなる、項2-1に記載の変異型グルコースデヒドロゲナーゼ。
項3-1.
 配列番号2に記載されるアミノ酸配列において202番目アルギニンに相当するアミノ酸残基をセリンに置換してなる、37℃以下における比活性の向上した変異型グルコースデヒドロゲナーゼ。
項3-2.
 さらに、202番目アルギニン以外のアミノ酸残基の1ないし数個が欠失、置換、挿入及び/又は付加されてなる、項3-1に記載の変異型グルコースデヒドロゲナーゼ。
項3-3.
 配列番号2に記載されるアミノ酸配列において、さらに3番目アラニン、46番目イソロイシン、49番目リジン、58番目アスパラギン酸、74番目グリシン、80番目バリン、85番目ロイシン、89番目トレオニン、121番目アラニン、124番目セリン、168番目リジン、173番目アラニン、206番目セリン、208番目リジン、294番目ロイシン、298番目グルタミン酸、303番目ヒスチジン、306番目グルタミン酸、311番目ロイシン、323番目アラニン、328番目チロシン、330番目グルタミン酸、334番目トリプトファン、335番目トレオニン、338番目アスパラギン酸、341番目トレオニン、343番目ロイシンおよび345番目ロイシンからなる群より選ばれる1ないし数個のアミノ酸残基の他のアミノ酸残基への置換をさらに組み合わせてなる、項3-1に記載の変異型グルコースデヒドロゲナーゼ。
項3-4.
 配列番号2に記載されるアミノ酸配列においてA3V、I46V、K49R、D58V、G74D、V80A、L85H、T89K、A121T、S124L、S124P、K168E、A173T、S206N、K208R、L294W、E298G、H303R、E306G、L311P、A323T、Y328D、Y328S、Y328T、Y328V、Y328G、Y328E、Y328L、E330G、W334G、W334R、W334H、W334A、W334K、W334S、T335N、D338G、D338V、T341R、T341G、T341M、L343P、L345QおよびL345Pからなる群より選ばれる1ないし数種類のアミノ酸置換をさらに組み合わせてなる、項3-1に記載の変異型グルコースデヒドロゲナーゼ。
項3-5.
 配列番号2に記載されるアミノ酸配列において202番目アルギニンに相当するアミノ酸残基がセリンに置換され、かつA3V、(I46V+S124P)、K49R、(D58V+Y328D)、(G74D+E306G+A323T)、V80A、L85H、T89K、A121T、S124L、(K168E+E330G)、A173T、S206N、K208R、L294W、E298G、H303R、L311P、Y328S、Y328T、Y328V、Y328G、Y328E、Y328L、W334G、W334R、W334H、W334A、W334K、(W334S+T335N)、D338G、D338V、(I339P+T341G)、(I339P+T341R)、(I339P+T341L)、(I339P+T341K)、T341R、T341G、T341M、L343P、L345QおよびL345Pからなる群より選ばれる1種類のアミノ酸置換をさらに組み合わせてなる、項3-1に記載の変異型グルコースデヒドロゲナーゼ。
項4-1.
 配列番号2に記載されるアミノ酸配列において202番目アルギニンがセリンへ置換され、かつ46番目イソロイシン、49番目リジン、58番目アスパラギン酸、74番目グリシン、89番目トレオニン、168番目リジン、124番目セリン、206番目セリン、208番目リジン、294番目ロイシン、303番目ヒスチジン、306番目グルタミン酸、311番目ロイシン、323番目アラニン、328番目チロシン、330番目グルタミン酸、334番目トリプトファン、335番目トレオニン、338番目アスパラギン酸および345番目ロイシンからなる群より選ばれる1ないし数個のアミノ酸を他のアミノ酸に置換してなる変異型グルコースデヒドロゲナーゼ。
項4-2.
 配列番号2に記載されるアミノ酸配列において202番目アルギニンがセリンへ置換され、かつ(I46V+S124P)、K49R、(D58V+Y328D)、(G74D+E306G+A323T)、T89K、S124L、(K168E+E330G)、S206N、K208R、L294W、H303R、L311P、Y328S、Y328T、Y328V、Y328G、Y328E、Y328L、W334G、W334R、W334H、W334A、W334K、(W334S+T335N)、D338V、D338G、L345QおよびL345Pからなる群より選ばれる1ないし数種類のアミノ酸置換をさらに組み合わせてなる項4-1に記載の変異型グルコースデヒドロゲナーゼ。
項4-3.
 配列番号2に記載されるアミノ酸配列において202番目アルギニンがセリンへ置換され、かつ(I46V+S124P)、K49R、(D58V+Y328D)、(G74D+E306G+A323T)、T89K、S124L、(K168E+E330G)、S206N、K208R、L294W、H303R、L311P、Y328S、Y328T、Y328V、Y328G、Y328E、Y328L、W334G、W334R、W334H、W334A、W334K、(W334S+T335N)、D338V、D338G、L345QおよびL345Pからなる群より選ばれる1種類のアミノ酸置換をさらに組み合わせてなる項4-1に記載の変異型グルコースデヒドロゲナーゼ。
項5-1.
 配列番号2に記載されるアミノ酸配列において202番目アルギニンがセリンへ置換され、かつ334番目トリプトファンがグリシンに置換されてなる変異型グルコースデヒドロゲナーゼ。
項5-2.
 配列番号2に記載されるアミノ酸配列において202番目アルギニンがセリンへ置換され、かつ334番目トリプトファンがアルギニンに置換されてなる変異型グルコースデヒドロゲナーゼ。
項5-3.
 配列番号2に記載されるアミノ酸配列において58番目アスパラギン酸がバリンに置換され、かつ202番目アルギニンがセリンへ置換され、かつ328番目チロシンがアスパラギン酸に置換されてなる変異型グルコースデヒドロゲナーゼ。
項6.
 項1-1~5-3のいずれかに記載の変異型グルコースデヒドロゲナーゼをコードする遺伝子。
項7.
 項6に記載の遺伝子を含むベクター。
項8.
 項7に記載のベクターで形質転換された形質転換体。
項9.
 項8に記載の形質転換体を培養することを特徴とする変異型グルコースデヒドロゲナーゼの製造方法。
項10.
 項1-1~5-3のいずれかに記載の変異型グルコースデヒドロゲナーゼを含むグルコースアッセイキット。
項11.
 項1-1~5-3のいずれかに記載の変異型グルコースデヒドロゲナーゼを含むグルコースセンサー。
項12.
 項1-1~5-3のいずれかに記載の変異型グルコースデヒドロゲナーゼを含むグルコース測定法。
That is, the present invention has the following configuration.
Item 1-1.
A mutant glucose dehydrogenase obtained by substituting the amino acid residue corresponding to the 202nd arginine in the amino acid sequence shown in SEQ ID NO: 2 with any of glycine, alanine, leucine, isoleucine, serine, threonine, asparagine, and lysine .
Item 1-2.
Item 1. The mutant glucose dehydrogenase according to Item 1-1, wherein 1 to several amino acid residues other than the 202nd arginine are deleted, substituted, inserted and / or added.
Item 1-3.
1 selected from the group consisting of 58th aspartic acid, 286th valine, 328th tyrosine, 334th tryptophan, 339th isoleucine, 340th lysine, 341th threonine and 345th leucine in the amino acid sequence set forth in SEQ ID NO: 2 Item 1. The mutant glucose dehydrogenase according to Item 1-1, further comprising substitution of several amino acid residues with other residues.
Item 1-4.
In the amino acid sequence described in SEQ ID NO: 2 (D58V + Y328D), selected from V286A, Y328T, Y328E, W334G, W334R, W334H, W334A, W334K, I339P, K340R, T341R, T341G, T341P, T341M, and T341Q Item 12. The mutant glucose dehydrogenase according to Item 1-1, further comprising one or several amino acid substitutions.
Item 1-5.
The amino acid residue corresponding to the 202nd arginine in the amino acid sequence shown in SEQ ID NO: 2 is substituted with serine, and (D58V + Y328D), V286A, Y328T, Y328E, W334G, W334R, W334H, W334A, W334K, I339P, K340R, Item 1. The mutant glucose dehydrogenase according to Item 1-1, further comprising one or several amino acid substitutions selected from the group consisting of T341R, T341G, T341P, T341M, T341S, and L345Q.
Item 2-1.
A mutant glucose dehydrogenase having high affinity for glucose, wherein the amino acid residue corresponding to the 202nd arginine in the amino acid sequence described in SEQ ID NO: 2 is substituted with serine.
Item 2-2.
Item 2. The mutant glucose dehydrogenase according to Item 2-1, wherein one or several amino acid residues other than the 202nd arginine are deleted, substituted, inserted and / or added.
Item 2-3.
In the amino acid sequence shown in SEQ ID NO: 2, the 3rd alanine, 46th isoleucine, 49th lysine, 58th aspartic acid, 74th glycine, 80th valine, 85th leucine, 89th threonine, 121st alanine, 124 Serine, 168th lysine, 173th alanine, 206th serine, 208th lysine, 294th leucine, 298th glutamic acid, 303th histidine, 306th glutamic acid, 311th leucine, 323rd alanine, 328th tyrosine, 330th glutamic acid 1 to several amino acids selected from the group consisting of 334th tryptophan, 335th threonine, 338th aspartic acid, 341th threonine, 343th leucine and 345th leucine Comprising further combined substitution of another amino acid residue of residue, mutant glucose dehydrogenase according to Item 2-1.
Item 2-4.
In the amino acid sequence shown in SEQ ID NO: 2, A3V, I46V, K49R, D58V, G74D, V80A, L85H, T89K, A121T, S124L, S124P, K168E, A173T, S206N, K208R, L294W, E298G, H303R, E306G, L311P, A323T, Y328D, Y328S, Y328T, Y328V, Y328G, Y328E, Y328L, E330G, W334G, W334R, W334H, W334A, W334K, W334S, T335N, D338G, D338V, T341R, P345L, P345T, L345P Item 2. The mutant glucose protein according to Item 2-1, which is further combined with one or several amino acid substitutions selected from Rogenaze.
Item 2-5.
In the amino acid sequence shown in SEQ ID NO: 2, the amino acid residue corresponding to the 202nd arginine is substituted with serine, and A3V, (I46V + S124P), K49R, (D58V + Y328D), (G74D + E306G + A323T), V80A, L85H, T89K, A121T, S124L, (K168E + E330G), A173T, S206N, K208R, L294W, E298G, H303R, L311P, Y328S, Y328T, Y328V, Y328G, Y328E, Y328L, W334G, W334R, W334T, W334T, W334T, W334T, W334T, W334T (I339P + T341G), (I339P + T341R), (I339P + T341L), (I339P + T 41K), T341R, T341G, T341M, L343P, comprising further combining one of the amino acid substitutions selected from the group consisting of L345Q and L345P, mutant glucose dehydrogenase according to Item 2-1.
Item 3-1.
A mutant glucose dehydrogenase having an improved specific activity at 37 ° C. or lower, wherein the amino acid residue corresponding to the 202nd arginine in the amino acid sequence shown in SEQ ID NO: 2 is substituted with serine.
Item 3-2.
Item 3. The mutant glucose dehydrogenase according to Item 3-1, wherein one or several amino acid residues other than the 202nd arginine are deleted, substituted, inserted and / or added.
Item 3-3.
In the amino acid sequence shown in SEQ ID NO: 2, the 3rd alanine, 46th isoleucine, 49th lysine, 58th aspartic acid, 74th glycine, 80th valine, 85th leucine, 89th threonine, 121st alanine, 124 Serine, 168th lysine, 173th alanine, 206th serine, 208th lysine, 294th leucine, 298th glutamic acid, 303th histidine, 306th glutamic acid, 311th leucine, 323rd alanine, 328th tyrosine, 330th glutamic acid 1 to several amino acids selected from the group consisting of 334th tryptophan, 335th threonine, 338th aspartic acid, 341th threonine, 343th leucine and 345th leucine Comprising further combined substitution of another amino acid residue of residue, mutant glucose dehydrogenase according to Item 3-1.
Item 3-4.
In the amino acid sequence shown in SEQ ID NO: 2, A3V, I46V, K49R, D58V, G74D, V80A, L85H, T89K, A121T, S124L, S124P, K168E, A173T, S206N, K208R, L294W, E298G, H303R, E306G, L311P, A323T, Y328D, Y328S, Y328T, Y328V, Y328G, Y328E, Y328L, E330G, W334G, W334R, W334H, W334A, W334K, W334S, T335N, D338G, D338V, T341R, P345L, P345T, L345P Item 3. The mutant glucose protein according to Item 3-1, further combining one or several amino acid substitutions selected from Rogenaze.
Item 3-5.
In the amino acid sequence shown in SEQ ID NO: 2, the amino acid residue corresponding to the 202nd arginine is substituted with serine, and A3V, (I46V + S124P), K49R, (D58V + Y328D), (G74D + E306G + A323T), V80A, L85H, T89K, A121T, S124L, (K168E + E330G), A173T, S206N, K208R, L294W, E298G, H303R, L311P, Y328S, Y328T, Y328V, Y328G, Y328E, Y328L, W334G, W334R, W334T, W334T, W334T, W334T, W334T, W334T (I339P + T341G), (I339P + T341R), (I339P + T341L), (I339P + T 41K), T341R, T341G, T341M, L343P, comprising further combining one of the amino acid substitutions selected from the group consisting of L345Q and L345P, mutant glucose dehydrogenase according to Item 3-1.
Item 4-1.
In the amino acid sequence shown in SEQ ID NO: 2, the 202nd arginine is substituted with serine, and the 46th isoleucine, 49th lysine, 58th aspartic acid, 74th glycine, 89th threonine, 168th lysine, 124th serine, 206 Serine, 208th lysine, 294th leucine, 303th histidine, 306th glutamic acid, 311th leucine, 323rd alanine, 328th tyrosine, 330th glutamic acid, 334th tryptophan, 335th threonine, 338th aspartic acid and 345th A mutant glucose dehydrogenase obtained by substituting one or several amino acids selected from the group consisting of leucine with other amino acids.
Item 4-2.
Arginine at position 202 is substituted with serine in the amino acid sequence shown in SEQ ID NO: 2, and (I46V + S124P), K49R, (D58V + Y328D), (G74D + E306G + A323T), T89K, S124L, (K168E + E330G), S206N, K208R, L294W, H303R, L311P, Y328S, Y328T, Y328V, Y328G, Y328E, Y328L, W334G, W334R, W334H, W334A, W334K, (W334S + T335N), a combination of amino acids selected from the group consisting of a combination of D338V, D338G, L345Q and L345P. Item 4. The mutant glucose dehydrogenase according to Item 4-1.
Item 4-3.
Arginine at position 202 is substituted with serine in the amino acid sequence shown in SEQ ID NO: 2, and (I46V + S124P), K49R, (D58V + Y328D), (G74D + E306G + A323T), T89K, S124L, (K168E + E330G), S206N, K208R, L294W, H303R, L311P, Y328S, Y328T, Y328V, Y328G, Y328E, Y328L, W334G, W334R, W334H, W334A, W334K, (W334S + T335N), a combination selected from the group consisting of D338V, D338G, L345Q and L345P. The mutant glucose dehydrogenase according to Item 4-1.
Item 5-1.
A mutant glucose dehydrogenase in which the 202nd arginine is substituted with serine and the 334th tryptophan is substituted with glycine in the amino acid sequence shown in SEQ ID NO: 2.
Item 5-2.
A mutant glucose dehydrogenase in which the 202nd arginine is substituted with serine and the 334th tryptophan is substituted with arginine in the amino acid sequence shown in SEQ ID NO: 2.
Item 5-3.
A mutant glucose dehydrogenase in which the 58th aspartic acid is substituted with valine, the 202nd arginine is substituted with serine, and the 328th tyrosine is substituted with aspartic acid in the amino acid sequence shown in SEQ ID NO: 2.
Item 6.
Item 4. A gene encoding a mutant glucose dehydrogenase according to any one of Items 1-1 to 5-3.
Item 7.
Item 7. A vector comprising the gene according to item 6.
Item 8.
Item 8. A transformant transformed with the vector according to Item 7.
Item 9.
A method for producing a mutant glucose dehydrogenase, comprising culturing the transformant according to Item 8.
Item 10.
A glucose assay kit comprising the mutant glucose dehydrogenase according to any one of Items 1-1 to 5-3.
Item 11.
A glucose sensor comprising the mutant glucose dehydrogenase according to any one of Items 1-1 to 5-3.
Item 12.
Item 4. A glucose measurement method comprising the mutant glucose dehydrogenase according to any one of Items 1-1 to 5-3.
 本発明により、熱安定性に優れたGDHであり、かつグルコースに対する親和性の高められたGDHを得ることができる。該GDHは、グルコースセンサ及びグルコース定量用試薬の原料として有用である。 According to the present invention, it is possible to obtain GDH having excellent thermal stability and enhanced affinity for glucose. The GDH is useful as a raw material for glucose sensors and glucose determination reagents.
 本発明により、熱安定性に優れており、かつNADに対する親和性の高められたGDHを得ることができる。また該GDHを用いてグルコースセンサ及びグルコース定量用試薬を作製する際にNADの使用量を低減できる。 According to the present invention, GDH having excellent thermal stability and enhanced affinity for NAD can be obtained. Moreover, the amount of NAD used can be reduced when producing a glucose sensor and a glucose quantitative reagent using the GDH.
 本発明により、熱安定性に優れたGDHであり、なおかつ37℃以下における比活性の向上したGDHを得ることができる。該GDHは、グルコースセンサ及びグルコース定量用試薬の原料として有用である。 According to the present invention, GDH excellent in thermal stability and having improved specific activity at 37 ° C. or lower can be obtained. The GDH is useful as a raw material for glucose sensors and glucose determination reagents.
 本発明により、熱安定性に優れており、かつ37℃以下の温度領域における温度依存的な活性値の変動を低減したGDHを得ることができる。また該GDHを用いてグルコースセンサ及びグルコース定量用試薬を作製する際にNADの使用量を低減できる。 According to the present invention, it is possible to obtain GDH having excellent thermal stability and reduced temperature-dependent activity value fluctuation in a temperature range of 37 ° C. or lower. Moreover, the amount of NAD used can be reduced when producing a glucose sensor and a glucose quantitative reagent using the GDH.
 本発明により、熱安定性および基質特異性に優れており、かつ37℃以下の温度領域における比活性が高く、かつNADおよびグルコースに対する親和性が高く、かつ37℃以下の温度領域における温度依存的な活性値の変動を低減したGDHを得ることができる。また該GDHを用いてグルコースセンサ及びグルコース定量用試薬を作製する際にNADの使用量を低減できる。同時にグルコース定量における環境温度の定量値に与える影響を低減することができる。 According to the present invention, it has excellent thermal stability and substrate specificity, has high specific activity in a temperature range of 37 ° C. or lower, has high affinity for NAD and glucose, and is temperature-dependent in a temperature range of 37 ° C. or lower. GDH with reduced variation in activity value can be obtained. Moreover, the amount of NAD used can be reduced when producing a glucose sensor and a glucose quantitative reagent using the GDH. At the same time, the influence of the environmental temperature on the quantitative value of glucose can be reduced.
[1]本発明の変異型グルコースデヒドロゲナーゼ
[1-1]
 本発明の実施形態の一つは、熱安定性が高くかつグルコースに対する親和性の高い変異型グルコースデヒドロゲナーゼである。
[1] Mutant glucose dehydrogenase of the present invention [1-1]
One embodiment of the present invention is a mutant glucose dehydrogenase having high thermostability and high affinity for glucose.
 具体的には、配列番号2に記載するアミノ酸配列における202番目に存在するアルギニン残基を、グリシン、アラニン、ロイシン、イソロイシン、セリン、メチオニン、アスパラギン、およびリジンからなる群より選ばれる1つのアミノ酸残基に置換してなるグルコースデヒドロゲナーゼが例示できる。
 ここで、配列番号2は、本発明者らがサーモプロテウス・エスピー・GDH1株(Thermoproteus sp. GDH1)より取得したグルコースデヒドロゲナーゼのアミノ酸配列である。その取得方法は特願2008-60032に記載されているが、実施例でも後述する。
Specifically, the 202th arginine residue in the amino acid sequence shown in SEQ ID NO: 2 is replaced with one amino acid residue selected from the group consisting of glycine, alanine, leucine, isoleucine, serine, methionine, asparagine, and lysine. Examples thereof include glucose dehydrogenase substituted with a group.
Here, SEQ ID NO: 2 is an amino acid sequence of glucose dehydrogenase obtained by the present inventors from Thermoproteus sp. GDH1 strain (Thermoproteus sp. GDH1). The acquisition method is described in Japanese Patent Application No. 2008-60032, which will be described later in Examples.
 変異を導入するベースとなるGDHとしては、配列番号2に示すアミノ酸配列を有するポリペプチドからなるGDHが好適な例として挙げられるが、配列番号2に示すアミノ酸配列と比して少なくとも50%以上、より好ましくは60%以上、さらに好ましくは70%以上、最も好ましくは80%以上の相同性を有するGDHも利用可能であると推定される。
このようなGDHとしては好適には超好熱性始原菌由来のNAD(P)-GDHが挙げられ、好ましくはサーモプロテウス属由来GDHである。
 この説明は、後述の[1-2]、[1-3]および[1-4]で説明する本発明の変異型グルコースデヒドロゲナーゼについても、同様に適用される。
As a GDH serving as a base for introducing a mutation, a GDH comprising a polypeptide having the amino acid sequence shown in SEQ ID NO: 2 is a preferred example, but at least 50% or more compared to the amino acid sequence shown in SEQ ID NO: It is estimated that GDH having a homology of 60% or more, more preferably 70% or more, and most preferably 80% or more is also available.
Such GDH preferably includes NAD (P) -GDH derived from a hyperthermophilic archaeon, preferably GDH derived from Thermoproteus.
This explanation is similarly applied to the mutant glucose dehydrogenase of the present invention described in [1-2], [1-3] and [1-4] described later.
 このようなGDHを変異導入のベースとした場合、GENETYXなどの配列解析ソフトを用いて、配列番号2に記載するアミノ酸配列における202番目と同等の位置に存在すると考えられるアルギニン残基を特定することができる。これを他のアミノ酸残基に置換して得られた変異型GDHも本願発明の均等範囲に包含される。
 この説明は、後述の[1-2]、[1-3]および[1-4]で説明する本発明の変異型グルコースデヒドロゲナーゼについても、同様に適用される。
When such a GDH is used as a base for mutagenesis, use a sequence analysis software such as GENETYX to identify an arginine residue that is considered to be present at the position equivalent to position 202 in the amino acid sequence described in SEQ ID NO: 2. Can do. Mutant GDH obtained by substituting this with other amino acid residues is also included in the equivalent scope of the present invention.
This explanation is similarly applied to the mutant glucose dehydrogenase of the present invention described in [1-2], [1-3] and [1-4] described later.
 さらに本発明は配列番号2における202番目またはそれと同等の位置に存在するアルギニン残基のセリンへの置換に加えて、58番目アスパラギン酸、74番目グリシン、80番目バリン、85番目ロイシン、89番目トレオニン、121番目アラニン、124番目セリン、168番目リジン、173番目アラニン、206番目セリン、208番目リジン、294番目ロイシン、298番目グルタミン酸、303番目ヒスチジン、306番目グルタミン酸、311番目ロイシン、323番目アラニン、328番目チロシン、334番目トリプトファン、338番目アスパラギン酸、341番目トレオニン、343番目ロイシンおよび345番目ロイシンからなる群より選ばれる1ないし数箇所のアミノ酸残基の他の残基への置換をさらに組み合わせてなる変異型グルコースデヒドロゲナーゼである。
 それぞれの部位へ導入する置換残基としては、アミノ酸置換後の効果として該グルコースデヒドロゲナーゼの37℃における比活性を向上させるものであればよく、そのような置換残基の例としては、たとえば3番目はバリン、46番目はバリン、49は番目アルギニン、58番目はバリン、74番目はアスパラギン酸、80番目はアラニン、85番目はヒスチジン、89番目はリジン、121番目はトレオニン、124番目はロイシン、168番目はグルタミン酸、173番目はトレオニン、206番目はアスパラギン、208番目はアルギニン、294番目はトリプトファン、298番目はグリシン、303番目はアルギニン、306番目はグリシン、311番目はプロリン、323番目はトレオニン、328番目はセリン、トレオニン、バリン、グリシン、グルタミン酸およびロイシンのいずれか、330番目はグリシン、334番目はグリシン、アルギニン、ヒスチジン、アラニン、リジンおよびセリンのいずれか、338番目はバリンまたはグリシン341番目はアルギニン、ロイシン、リジン、グリシン、メチオニンおよびプロリンのいずれか、343は番目プロリン、345番目はグルタミンまたはプロシンにそれぞれ置換するのが好ましい。
 また46番目イソロイシンと124番目セリンの置換、58番目アスパラギン酸と328番目チロシンの置換、74番目グリシンと306番目グルタミン酸と323番目アラニンの置換、168番目リジンと330番目グルタミン酸の置換はそれぞれセットで導入するのが好ましい。
In addition to substitution of serine for an arginine residue present at position 202 or equivalent thereto in SEQ ID NO: 2, the present invention provides 58th aspartic acid, 74th glycine, 80th valine, 85th leucine, 89th threonine. 121th alanine, 124th serine, 168th lysine, 173th alanine, 206th serine, 208th lysine, 294th leucine, 298th glutamic acid, 303th histidine, 306th glutamic acid, 311th leucine, 323rd alanine, 328 Further substitution of one to several amino acid residues selected from the group consisting of th-tyrosine, 334th tryptophan, 338th aspartic acid, 341th threonine, 343th leucine and 345th leucine with other residues Is a mutant glucose dehydrogenase to be together.
The substitution residue to be introduced into each site may be any one that improves the specific activity of the glucose dehydrogenase at 37 ° C. as an effect after amino acid substitution. Valine, 46th valine, 49th arginine, 58th valine, 74th aspartic acid, 80th alanine, 85th histidine, 89th lysine, 121th threonine, 124th leucine, 168 Is glutamic acid, 173 is threonine, 206 is asparagine, 208 is arginine, 294 is tryptophan, 298 is glycine, 303 is arginine, 306 is glycine, 311 is proline, 323 is threonine, 328 The second is serine and threonine One of valine, glycine, glutamic acid and leucine, 330th is glycine, 334th is glycine, arginine, histidine, alanine, lysine and serine, 338th is valine or glycine 341th is arginine, leucine, lysine and glycine , Any one of methionine and proline, 343 is preferably substituted with th-proline and 345-th with glutamine or prosin, respectively.
Substitution of 46th isoleucine and 124th serine, substitution of 58th aspartic acid and 328th tyrosine, substitution of 74th glycine, 306th glutamic acid and 323rd alanine, substitution of 168th lysine and 330th glutamic acid, respectively, as a set It is preferable to do this.
 導入するアミノ酸置換のさらに好適な例としては202番目アルギニンに相当するアミノ酸残基のセリンへの置換に加えて、A3V、(I46V+S124P)、K49R、(D58V+Y328D)、(G74D+E306G+A323T)、V80A、L85H、T89K、A121T、S124L、(K168E+E330G)、A173T、S206N、K208R、L294W、E298G、H303R、L311P、Y328S、Y328T、Y328V、Y328G、Y328E、Y328L、W334G、W334R、W334H、W334A、W334K、(W334S+T335N)、D338G、D338V、(I339P+T341G)、(I339P+T341R)、(I339P+T341L)、(I339P+T341K)、T341R、T341G、T341M、L343P、L345QおよびL345Pからなる群より選ばれた1種類のアミノ酸置換をさらに加えた二重ないし多重変異酵素が好ましい。 As a more preferable example of the amino acid substitution to be introduced, in addition to substitution of the amino acid residue corresponding to the 202nd arginine with serine, A3V, (I46V + S124P), K49R, (D58V + Y328D), (G74D + E306G + A323T), V80A, L85H, T89K , A121T, S124L, (K168E + E330G), A173T, S206N, K208R, L294W, E298G, H303R, L311P, Y328S, Y328T, Y328V, Y328G, Y328E, Y328L, W334G, W334W, T334W, T334W, T334W, T334W , D338V, (I339P + T341G), (I339P + T341R), (I339P + T341L), (I339 + T341K), T341R, T341G, T341M, L343P, double or multiple mutations enzymes were also added one amino acid substitution selected from the group consisting of L345Q and L345P are preferred.
[1-2]
 本発明の実施形態の一つは、熱安定性が高くかつNADに対する親和性の高い変異型グルコースデヒドロゲナーゼである。さらに好ましくは、該特性に加え、さらに基質特異性に優れる変異型グルコースデヒドロゲナーゼである。
[1-2]
One of the embodiments of the present invention is a mutant glucose dehydrogenase having high thermostability and high affinity for NAD. More preferably, it is a mutant glucose dehydrogenase having excellent substrate specificity in addition to the above properties.
 具体的には、配列番号2に記載するアミノ酸配列における202番目に存在するアルギニン残基を、グリシン、アラニン、ロイシン、イソロイシン、セリン、トレオニン、アスパラギン、およびリジンからなる群より選ばれる1つのアミノ酸残基に置換してなるグルコースデヒドロゲナーゼが例示できる。 Specifically, the 202th arginine residue in the amino acid sequence shown in SEQ ID NO: 2 is replaced with one amino acid residue selected from the group consisting of glycine, alanine, leucine, isoleucine, serine, threonine, asparagine, and lysine. Examples thereof include glucose dehydrogenase substituted with a group.
 さらに本発明は配列番号2における202番目またはそれと同等の位置に存在するアルギニン残基の、グリシン、アラニン、ロイシン、イソロイシン、セリン、トレオニン、アスパラギン、およびリジンのいずれかへの置換に加えて、58番目アスパラギン酸、286番目バリン、328番目チロシン、334番目トリプトファン、336番目ヒスチジン、340番目アルギニン、341番目トレオニンおよび345番目ロイシンのいずれかのアミノ酸残基の他アミノ酸残基への置換をさらに組み合わせてなる変異型グルコースデヒドロゲナーゼである。
 それぞれの部位へ導入する置換残基としては、アミノ酸置換後の効果として該グルコースデヒドロゲナーゼのNADに対するミカエリス定数を低下させるものであればよく、そのような置換残基の例としては、たとえば58番目アスパラギン酸はバリンに、286番目バリンはアラニンに、328番目チロシンはアスパラギン酸に、334番目トリプトファンはグリシンもしくはアルギニンに、340番目アルギニンはリジンに、341番目トレオニンはアルギニン、グリシン、プロリン、メチオニンおよびセリンのいずれかに、345番目ロイシンはグルタミンに、それぞれ置換するのが好ましい。
 また58番目アスパラギン酸の置換と328番目チロシンの置換とはセットで導入するのが好ましい。
Furthermore, the present invention relates to the substitution of arginine residue present at position 202 or equivalent thereto in SEQ ID NO: 2 with any of glycine, alanine, leucine, isoleucine, serine, threonine, asparagine, and lysine. A further combination of substitution of any one of the amino acid residues of any of the first aspartic acid, 286th valine, 328th tyrosine, 334th tryptophan, 336th histidine, 340th arginine, 341th threonine and 345th leucine with another amino acid residue Is a mutant glucose dehydrogenase.
The substitution residue introduced into each site may be any residue that reduces the Michaelis constant for NAD of glucose dehydrogenase as an effect after amino acid substitution. Examples of such substitution residues include, for example, the 58th asparagine. Acid is valine, 286th valine is alanine, 328th tyrosine is aspartic acid, 334th tryptophan is glycine or arginine, 340th arginine is lysine, 341th threonine is arginine, glycine, proline, methionine and serine In any case, the 345th leucine is preferably substituted with glutamine.
The substitution of the 58th aspartic acid and the substitution of the 328th tyrosine are preferably introduced as a set.
 導入するアミノ酸置換のさらに好適な例としては、R202Sの変異型GDHに、(D58V+Y328D)、V286A、Y328T、Y328E、W334G、W334R、W334H、W334A、W334K、I339P、K340R、T341R、T341G、T341P、T341M、T341SおよびL345Qのいずれかのアミノ酸置換をさらに加えた二重もしくは三重変異酵素が好ましい。 As a more preferable example of the amino acid substitution to be introduced, the mutant GDH of R202S is added to (D58V + Y328D), V286A, Y328T, Y328E, W334G, W334R, W334H, W334A, W334K, I339P, K340R, T341R, T341T, P341M, A double or triple mutant enzyme to which any one of the amino acid substitutions of T341S and L345Q is further added is preferable.
[1-3]
 本発明の実施形態の一つは、熱安定性が高くかつ37℃以下の温度における比活性の高い変異型グルコースデヒドロゲナーゼである。また好ましくはさらに基質特異性に優れたグルコースデヒドロゲナーゼである。
[1-3]
One embodiment of the present invention is a mutant glucose dehydrogenase having high thermostability and high specific activity at a temperature of 37 ° C. or lower. Also preferred is glucose dehydrogenase which is further excellent in substrate specificity.
 具体的には、配列番号2に記載するアミノ酸配列における202番目に存在するアルギニン残基を、セリンに置換してなるグルコースデヒドロゲナーゼが例示できる。 Specifically, glucose dehydrogenase formed by substituting serine for the arginine residue present at position 202 in the amino acid sequence shown in SEQ ID NO: 2 can be exemplified.
 さらに本発明は配列番号2における202番目またはそれと同等の位置に存在するアルギニン残基のセリンへの置換に加えて、3番目アラニン、46番目イソロイシン、49番目リジン、58番目アスパラギン酸、74番目グリシン、80番目バリン、85番目ロイシン、89番目トレオニン、121番目アラニン、124番目セリン、168番目リジン、173番目アラニン、206番目セリン、208番目リジン、294番目ロイシン、298番目グルタミン酸、303番目ヒスチジン、306番目グルタミン酸、311番目ロイシン、323番目アラニン、328番目チロシン、334番目トリプトファン、338番目アスパラギン酸、341番目トレオニン、343番目ロイシンおよび345番目ロイシンからなる群より選ばれる1ないし数箇所のアミノ酸残基の他の残基への置換をさらに組み合わせてなる変異型グルコースデヒドロゲナーゼである。
 それぞれの部位へ導入する置換残基としては、アミノ酸置換後の効果として該グルコースデヒドロゲナーゼの37℃における比活性を向上させるものであればよく、そのような置換残基の例としては、たとえば3番目はバリン、46番目はバリン、49は番目アルギニン、58番目はバリン、74番目はアスパラギン酸、80番目はアラニン、85番目はヒスチジン、89番目はリジン、121番目はトレオニン、124番目はロイシン、168番目はグルタミン酸、173番目はトレオニン、206番目はアスパラギン、208番目はアルギニン、294番目はトリプトファン、298番目はグリシン、303番目はアルギニン、306番目はグリシン、311番目はプロリン、323番目はトレオニン、328番目はセリン、トレオニン、バリン、グリシン、グルタミン酸およびロイシンのいずれか、330番目はグリシン、334番目はグリシン、アルギニン、ヒスチジン、アラニン、リジンおよびセリンのいずれか、338番目はバリンまたはグリシン341番目はアルギニン、ロイシン、リジン、グリシン、メチオニンおよびプロリンのいずれか、343は番目プロリン、345番目はグルタミンまたはプロシンにそれぞれ置換するのが好ましい。
 また46番目イソロイシンと124番目セリンの置換、58番目アスパラギン酸と328番目チロシンの置換、74番目グリシンと306番目グルタミン酸と323番目アラニンの置換、168番目リジンと330番目グルタミン酸の置換はそれぞれセットで導入するのが好ましい。
In addition to substitution of serine for an arginine residue present at position 202 or equivalent thereto in SEQ ID NO: 2, the present invention provides the third alanine, 46th isoleucine, 49th lysine, 58th aspartic acid, 74th glycine. 80th valine, 85th leucine, 89th threonine, 121st alanine, 124th serine, 168th lysine, 173th alanine, 206th serine, 208th lysine, 294th leucine, 298th glutamic acid, 303th histidine, 306 1st selected from the group consisting of glutamic acid, 311th leucine, 323rd alanine, 328th tyrosine, 334th tryptophan, 338th aspartic acid, 341th threonine, 343th leucine and 345th leucine A mutant glucose dehydrogenase comprising further combining substitution of other residues of the amino acid residues of the stone several places.
The substitution residue to be introduced into each site may be any one that improves the specific activity of the glucose dehydrogenase at 37 ° C. as an effect after amino acid substitution. Valine, 46th valine, 49th arginine, 58th valine, 74th aspartic acid, 80th alanine, 85th histidine, 89th lysine, 121th threonine, 124th leucine, 168 Is glutamic acid, 173 is threonine, 206 is asparagine, 208 is arginine, 294 is tryptophan, 298 is glycine, 303 is arginine, 306 is glycine, 311 is proline, 323 is threonine, 328 The second is serine and threonine One of valine, glycine, glutamic acid and leucine, 330th is glycine, 334th is glycine, arginine, histidine, alanine, lysine and serine, 338th is valine or glycine 341th is arginine, leucine, lysine and glycine , Any one of methionine and proline, 343 is preferably substituted with th-proline and 345-th with glutamine or prosin, respectively.
Substitution of 46th isoleucine and 124th serine, substitution of 58th aspartic acid and 328th tyrosine, substitution of 74th glycine, 306th glutamic acid and 323rd alanine, substitution of 168th lysine and 330th glutamic acid, respectively, as a set It is preferable to do this.
 導入するアミノ酸置換のさらに好適な例としては202番目アルギニンに相当するアミノ酸残基のセリンへの置換に加えて、A3V、(I46V+S124P)、K49R、(D58V+Y328D)、(G74D+E306G+A323T)、V80A、L85H、T89K、A121T、S124L、(K168E+E330G)、A173T、S206N、K208R、L294W、E298G、H303R、L311P、Y328S、Y328T、Y328V、Y328G、Y328E、Y328L、W334G、W334R、W334H、W334A、W334K、(W334S+T335N)、D338G、D338V、(I339P+T341G)、(I339P+T341R)、(I339P+T341L)、(I339P+T341K)、T341R、T341G、T341M、L343P、L345QおよびL345Pからなる群より選ばれる1種類のアミノ酸置換をさらに加えた二重ないし多重変異酵素が好ましい。 As a more preferable example of the amino acid substitution to be introduced, in addition to substitution of the amino acid residue corresponding to the 202nd arginine with serine, A3V, (I46V + S124P), K49R, (D58V + Y328D), (G74D + E306G + A323T), V80A, L85H, T89K , A121T, S124L, (K168E + E330G), A173T, S206N, K208R, L294W, E298G, H303R, L311P, Y328S, Y328T, Y328V, Y328G, Y328E, Y328L, W334G, W334W, T334W, T334W, T334W, T334W , D338V, (I339P + T341G), (I339P + T341R), (I339P + T341L), (I339 + T341K), T341R, T341G, T341M, L343P, 1 kind of further double or multiple mutations enzyme plus amino acid substitutions selected from the group consisting of L345Q and L345P are preferred.
[1-4]
 本発明の実施形態の一つは、熱安定性が高くかつ37℃以下の温度領域における温度依存的な活性値の変動を低減した変異型グルコースデヒドロゲナーゼである。さらに好ましくは、該特性に加え、さらに基質特異性に優れる変異型グルコースデヒドロゲナーゼである。よりさらに好ましくは、該特性に加え、中性付近のpH領域において安定なグルコースデヒドロゲナーゼである。
[1-4]
One embodiment of the present invention is a mutant glucose dehydrogenase having high thermostability and reduced temperature-dependent activity value fluctuation in a temperature range of 37 ° C. or lower. More preferably, it is a mutant glucose dehydrogenase having excellent substrate specificity in addition to the above properties. Even more preferably, the glucose dehydrogenase is stable in the pH range near neutrality in addition to the above properties.
 具体的には、配列番号2に記載するアミノ酸配列における202番目に存在するアルギニン残基がセリンに置換され、かつ202番目セリン以外の1ないし数個のアミノ酸残基を他のアミノ酸残基に置換してなる変異型グルコースデヒドロゲナーゼである。 Specifically, the arginine residue present at the 202nd position in the amino acid sequence shown in SEQ ID NO: 2 is substituted with serine, and 1 to several amino acid residues other than the 202nd serine are substituted with other amino acid residues. Is a mutant glucose dehydrogenase.
 202番目アルギニンのセリンへの置換に加えてアミノ酸置換を導入する位置としては、好ましくは46番目イソロイシン、49番目リジン、58番目アスパラギン酸、74番目グリシン、89番目トレオニン、168番目リジン、124番目セリン、206番目セリン、208番目リジン、294番目ロイシン、303番目ヒスチジン、306番目グルタミン酸、311番目ロイシン、323番目アラニン、328番目チロシン、330番目グルタミン酸、334番目トリプトファン、335番目トレオニン、338番目アスパラギン酸、345番目ロイシンが挙げられる。
 それぞれの部位へ導入する置換残基としては、アミノ酸置換後の効果として37℃以下の温度領域における温度依存的な活性の変動を低減させるものであればよく、そのような置換残基の例としては、たとえば46番目イソロイシンはバリンに、49番目リジンはアルギニンに、58番目アスパラギン酸バリンに、74番目グリシンアスパラギン酸に、89番目トレオニンはリジンに、168番目リジングルタミン酸に、124番目セリンはプロリンまたはリジンに、206番目セリンアスパラギンに、208番目リジンはアルギニンに、294番目ロイシンはトリプトファンに、303番目ヒスチジンアルギニンに、306番目グルタミン酸グリシンに、311番目ロイシンプロリンに、323番目アラニントレオニンに、328番目チロシンはアスパラギン酸、セリン、トレオニン、バリン、グリシン、グルタミン酸およびロイシンのいずれかに、330番目グルタミン酸はグリシンに、334番目トリプトファンはグリシン、アルギニン、ヒスチジン、アラニン、セリンおよびリジンのいずれかに、335番目トレオニンはアスパラギンに、338番目アスパラギン酸はバリンもしくはグリシンに、345番目ロイシンはグルタミンもしくはプロリンに、それぞれ置換するのが好ましい。
 また上記アミノ酸残基のうち2個以上の置換を組み合わせる際の好適な例としては、46番目イソロイシンと124番目セリン、58番目アスパラギン酸と328番目チロシン、74番目グリシンと306番目グルタミン酸と323番目アラニン、168番目リジンと330番目グルタミン酸、334番目トリプトファンと335番目トレオニンの各残基のアミノ酸置換の組み合わせが例示されるがこれらに限定されない。
The position at which amino acid substitution is introduced in addition to substitution of serine at 202nd arginine is preferably 46th isoleucine, 49th lysine, 58th aspartic acid, 74th glycine, 89th threonine, 168th lysine, 124th serine. 206th serine, 208th lysine, 294th leucine, 303th histidine, 306th glutamic acid, 311th leucine, 323rd alanine, 328th tyrosine, 330th glutamic acid, 334th tryptophan, 335th threonine, 338th aspartic acid, The 345th leucine is mentioned.
The substituted residue introduced into each site may be any residue that reduces temperature-dependent activity fluctuation in a temperature range of 37 ° C. or lower as an effect after amino acid substitution. For example, 46th isoleucine is valine, 49th lysine is arginine, 58th aspartate valine, 74th glycine aspartate, 89th threonine is lysine, 168th lysine glutamate, 124th serine is proline or Lysine, 206th serine asparagine, 208th lysine, arginine, 294th leucine, tryptophan, 303th histidine arginine, 306th glutamic acid glycine, 311th leucine proline, 323th alanine threonine, 328th tyrosine Is aspartic acid, serine, threonine, valine, glycine, glutamic acid and leucine, 330th glutamic acid is glycine, 334th tryptophan is glycine, arginine, histidine, alanine, serine and lysine 335th It is preferable to substitute threonine for asparagine, 338th aspartic acid for valine or glycine, and 345th leucine for glutamine or proline, respectively.
Preferred examples of the combination of two or more substitutions among the above amino acid residues include 46th isoleucine and 124th serine, 58th aspartic acid and 328th tyrosine, 74th glycine, 306th glutamic acid and 323rd alanine. Examples include, but are not limited to, combinations of amino acid substitutions of the 168th lysine, 330th glutamic acid, 334th tryptophan, and 335th threonine residues.
 導入するアミノ酸置換のさらに好適な例としては、R202Sの変異型GDHに、(I46V+S124P)、K49R、(D58V+Y328D)、(G74D+E306G+A323T)、T89K、S124L、(K168E+E330G)、S206N、K208R、L294W、H303R、L311P、Y328S、Y328T、Y328V、Y328G、Y328E、Y328L、W334G、W334R、W334H、W334A、W334K、(W334S+T335N)、D338V、D338G、L345Qお
よびL345Pからなる群より選ばれるいずれか1種類のアミノ酸置換をさらに加えた二重ないし四重変異酵素が好ましい。
As a more preferable example of the amino acid substitution to be introduced, the mutant GDH of R202S includes (I46V + S124P), K49R, (D58V + Y328D), (G74D + E306G + A323T), T89K, S124L, (K168E + E330G), S206N, K208R, R294L, H Y328S, Y328T, Y328V, Y328G, Y328E, Y328L, W334G, W334R, W334H, W334A, W334K, (W334S + T335N), D338V, D338G, L345Q, and L345P. Double to quadruple mutant enzymes are preferred.
[1-5]
 本発明の実施形態の一つは、熱安定性が高くかつ37℃以下の温度領域における比活性の高められた変異型グルコースデヒドロゲナーゼである。さらに、補酵素としてのNADに対する親和性が高められ、同時にNADを補酵素とした場合に基質であるグルコースに対して親和性が高められた変異型グルコースデヒドロゲナーゼである。さらに、上記特性に加え37℃以下の温度領域における温度依存的な活性値の変動を低減した変異型グルコースデヒドロゲナーゼである。そして上記特性に加え、さらに基質特異性に優れる変異型グルコースデヒドロゲナーゼである。そしてさらに上記特性に加え、中性付近のpH領域において安定なグルコースデヒドロゲナーゼである。
[1-5]
One embodiment of the present invention is a mutant glucose dehydrogenase having high thermostability and increased specific activity in a temperature range of 37 ° C. or lower. Furthermore, it is a mutant glucose dehydrogenase having an increased affinity for NAD as a coenzyme and at the same time an increased affinity for glucose as a substrate when NAD is used as a coenzyme. Furthermore, in addition to the above characteristics, it is a mutant glucose dehydrogenase that has reduced temperature-dependent activity value fluctuations in a temperature range of 37 ° C. or lower. And in addition to the said characteristic, it is a mutant | variant glucose dehydrogenase which is further excellent in substrate specificity. Furthermore, in addition to the above properties, it is a glucose dehydrogenase that is stable in a pH range near neutrality.
 具体的には、配列番号2に記載するアミノ酸配列における202番目に存在するアルギニン残基がセリンに置換され、かつ334番目に存在するトリプトファン残基がグリシンに置換されてなる変異型グルコースデヒドロゲナーゼである。
 または、配列番号2に記載するアミノ酸配列における202番目に存在するアルギニン残基がセリンに置換され、かつ334番目に存在するトリプトファン残基がアルギニンに置換されてなる変異型グルコースデヒドロゲナーゼである。
 または、配列番号2に記載するアミノ酸配列における58番目に存在するアスパラギン酸残基がバリンに置換され、かつ202番目アルギニン残基がセリンに置換され、かつ328番目チロシン残基がアスパラギン酸残基に置換されてなる変異型グルコースデヒドロゲナーゼである。
Specifically, it is a mutant glucose dehydrogenase in which the 202th arginine residue in the amino acid sequence shown in SEQ ID NO: 2 is substituted with serine, and the 334th tryptophan residue is substituted with glycine. .
Alternatively, it is a mutant glucose dehydrogenase in which the 202nd arginine residue in the amino acid sequence shown in SEQ ID NO: 2 is substituted with serine and the 334th tryptophan residue is substituted with arginine.
Alternatively, the 58th aspartic acid residue in the amino acid sequence shown in SEQ ID NO: 2 is substituted with valine, the 202th arginine residue is substituted with serine, and the 328th tyrosine residue is replaced with an aspartic acid residue. It is a mutant glucose dehydrogenase obtained by substitution.
 変異を導入するベースとなるGDHとしては、配列番号2に示すアミノ酸配列を有するポリペプチドからなるGDHが好適な例として挙げられるが、配列番号2に示すアミノ酸配列と比して少なくとも50%以上、より好ましくは60%以上、さらに好ましくは70%以上、最も好ましくは80%以上の相同性を有するGDHも利用可能であると推定される。
このようなGDHとしては好適には超好熱性始原菌由来のNAD(P)-GDHが挙げられ、好ましくはサーモプロテウス属由来GDHである。
As a GDH serving as a base for introducing a mutation, a GDH comprising a polypeptide having the amino acid sequence shown in SEQ ID NO: 2 is a preferred example, but at least 50% or more compared to the amino acid sequence shown in SEQ ID NO: It is estimated that GDH having a homology of 60% or more, more preferably 70% or more, and most preferably 80% or more is also available.
Such GDH preferably includes NAD (P) -GDH derived from a hyperthermophilic archaeon, preferably GDH derived from Thermoproteus.
 このようなGDHを変異導入のベースとした場合、GENETYXなどの配列解析ソフトを用いて、配列番号2に記載するアミノ酸配列における58番目と同等の位置に存在すると考えられるアスパラギン酸残基、202番目と同等の位置に存在すると考えられるアルギニン残基、328番目と同等の位置に存在すると考えられるチロシン残基、並びに334番目と同等の位置に存在するトリプトファン残基を特定することができる。これらを他のアミノ酸残基に置換して得られた変異型GDHも本願発明の均等範囲に包含される。 When such GDH is used as a base for mutagenesis, an aspartic acid residue considered to be present at the position equivalent to the 58th position in the amino acid sequence described in SEQ ID NO: 2 using the sequence analysis software such as GENETYX, the 202nd position Can be identified as arginine residues considered to be present at positions equivalent to tyrosine, tyrosine residues considered to be present at positions equivalent to position 328, and tryptophan residues present at positions equivalent to position 334. Mutant GDH obtained by substituting these with other amino acid residues is also included in the equivalent scope of the present invention.
[2]本明細書における用語の定義など
[2-1]アミノ酸置換の表記
 本明細書において、アミノ酸置換の表記は、元のアミノ酸残基・N末端からの位置・置換後のアミノ酸残基の順に記しており、例えばV286Aとは配列番号2において286番目バリンをアラニンに置換するという意味である。アルファベット表記は、Rはアルギニン、Sはセリン、Vはバリン、Aはアラニン、Wはトリプトファン、Gはグリシン、Pはプロリン、Tはトレオニン、Mはメチオニン、Qはグルタミン、Kはリジン、Dはアスパラギン酸、Lはロイシン、Iはイソロイシン、Yはチロシンをそれぞれ指す。
 ここで(D58V+Y328D)とは、D58VおよびY328Dで表されるアミノ酸置換を同時に有することを意味し、R202Sの変異型GDHにさらに(D58V+Y328D)のアミノ酸置換を加えた酵素とはすなわちD58V+R202S+Y328Dで表される3重変異型GDHということができる。
[2] Definition of terms and the like in this specification [2-1] Notation of amino acid substitution In this specification, the notation of amino acid substitution is the original amino acid residue, the position from the N-terminal, the amino acid residue after substitution, For example, V286A means that the 286th valine in SEQ ID NO: 2 is substituted with alanine. Alphabet notation is R for arginine, S for serine, V for valine, A for alanine, W for tryptophan, G for glycine, P for proline, T for threonine, M for methionine, Q for glutamine, K for lysine, D for Aspartic acid, L is leucine, I is isoleucine, and Y is tyrosine.
Here, (D58V + Y328D) means having the amino acid substitution represented by D58V and Y328D at the same time, and the enzyme obtained by further adding (D58V + Y328D) amino acid substitution to the mutant GDH of R202S is represented by D58V + R202S + Y328D. It can be called triple mutant GDH.
[2-2]基質に対する親和性
 本発明において、基質に対する親和性は、グルコースに対するミカエリス定数(Km)によって評価する。
 本発明に述べるグルコースに対するミカエリス定数(Km)は、後述の測定例に従って測定・算出することによって得られる値である。
 本発明の変異型GDHにおけるグルコースに対するミカエリス定数としては、好ましくは50mM以下であり、より好ましくは35mM以下であり、さらに好ましくは20mM以下であり、よりさらに好ましくは10mM以下であり、最も好ましくは5mM以下である。
 また別の観点からは、変異の導入後におけるグルコースに対するミカエリス定数(Km)は、好ましくは野生型比78%以下、より好ましくは55%以下、さらに好ましくは30%以下、よりさらに好ましくは16%以下、最も好ましくは8%以下である。
[2-2] Affinity for substrate In the present invention, affinity for a substrate is evaluated by the Michaelis constant (Km) for glucose.
The Michaelis constant (Km) for glucose described in the present invention is a value obtained by measurement and calculation according to a measurement example described later.
The Michaelis constant for glucose in the mutant GDH of the present invention is preferably 50 mM or less, more preferably 35 mM or less, still more preferably 20 mM or less, still more preferably 10 mM or less, and most preferably 5 mM. It is as follows.
From another point of view, the Michaelis constant (Km) for glucose after introduction of mutation is preferably 78% or less, more preferably 55% or less, still more preferably 30% or less, still more preferably 16% relative to the wild type. Hereinafter, it is most preferably 8% or less.
 本発明において、NADに対する親和性は、NADに対するミカエリス定数(Km)によって評価する。
 本発明に述べるNADに対するミカエリス定数(Km)は、後述の「ニコチンアミドアデニンジヌクレオチド(NAD)に対するミカエリス定数(Km)の算出例」に記載の方法に従って測定・算出することによって得られる値である。
 本発明の変異型GDHにおけるNADに対するミカエリス定数としては、好ましくは5mM以下であり、より好ましくは2mM以下であり、さらに好ましくは1.25mM以下であり、よりさらに好ましくは1mM以下であり、最も好ましくは0.5mM以下である。 
 また別の観点からは、変異の導入によるNADに対するミカエリス定数(Km)の低減度は、好ましくは野生型比60%以下、より好ましくは25%以下、さらに好ましくは15%以下、よりさらに好ましくは12%以下、最も好ましくは6%以下である。
In the present invention, the affinity for NAD is evaluated by the Michaelis constant (Km) for NAD.
The Michaelis constant (Km) for NAD described in the present invention is a value obtained by measurement and calculation according to the method described in “Example of calculation of Michaelis constant (Km) for nicotinamide adenine dinucleotide (NAD)” described later. .
The Michaelis constant for NAD in the mutant GDH of the present invention is preferably 5 mM or less, more preferably 2 mM or less, still more preferably 1.25 mM or less, even more preferably 1 mM or less, and most preferably Is 0.5 mM or less.
From another viewpoint, the degree of reduction of the Michaelis constant (Km) relative to NAD due to the introduction of mutation is preferably 60% or less, more preferably 25% or less, still more preferably 15% or less, and still more preferably, compared to the wild type. 12% or less, most preferably 6% or less.
[2-3]熱安定性
 本発明のGDHは、上記特性に加えて、必要な熱安定性を有していることが好ましい。熱安定性は、塩化ナトリウムを含まない0.1Mのリン酸カリウムバッファー(pH8.0)に5U/mlのGDHが含まれる状態で30分間の加温処理をした後も維持される活性で評価される。
 必要な熱安定性とは、80℃で加温した際の活性残存率が好ましくは加温処理前比50%以上であり、より好ましくは80%以上であり、最も好ましくは90%以上である。
 また、別の観点からは30分の加温処理後の活性残存率が90%以上となる温度条件の最大限界値が好ましくは70℃以上90℃以下であり、より好ましくは75℃以上85℃以下であるグルコースデヒドロゲナーゼである。
[2-3] Thermal Stability The GDH of the present invention preferably has the necessary thermal stability in addition to the above characteristics. Thermal stability is evaluated by the activity maintained even after 30 minutes of heating in a 0.1 M potassium phosphate buffer (pH 8.0) containing 5 U / ml GDH. Is done.
The necessary thermal stability means that the activity remaining rate when heated at 80 ° C. is preferably 50% or more, more preferably 80% or more, and most preferably 90% or more, compared to the pre-heating treatment. .
From another point of view, the maximum limit value of the temperature condition where the activity remaining rate after the heating treatment for 30 minutes is 90% or more is preferably 70 ° C. or more and 90 ° C. or less, more preferably 75 ° C. or more and 85 ° C. Glucose dehydrogenase which is:
[2-4]基質特異性
 本発明のGDHは、上記特性に加えて、必要な基質特異性を有していることが好ましい。
 基質特異性は、後述の「基質特異性の算出例」に従って評価される。本発明に述べるグルコースデヒドロゲナーゼの基質特異性としては、対グルコース比としてマルトース・ガラクトース・キシロースに対する作用性が好ましくは5%以下であり、より好ましくは3%以下であり、よりさらに好ましくは2%以下であり、最も好ましくは1%未満である。
[2-4] Substrate specificity In addition to the above properties, the GDH of the present invention preferably has the necessary substrate specificity.
Substrate specificity is evaluated according to “Substrate specificity calculation example” described later. The substrate specificity of glucose dehydrogenase described in the present invention is preferably 5% or less, more preferably 3% or less, and still more preferably 2% or less, as a function of maltose, galactose, and xylose as a glucose ratio. And most preferably less than 1%.
[2-5]比活性
 本発明に述べる比活性は、後述の「タンパク質の定量および比活性の算出例」に記載の方法により測定・算出されるものである。
 本発明の変異型GDHの比活性としては、好ましくは220U/mg以上であり、より好ましくは400U/mg以上であり、さらに好ましくは500U/mg以上であり、最も好ましくは600U/mg以上である。
 別の観点からは、本発明による変異型GDHの比活性の向上度は、野生型比として好ましくは1.3倍以上、より好ましくは2.3倍以上、さらに好ましくは2.9倍以上、最も好ましくは3.5倍以上である。
[2-5] Specific activity The specific activity described in the present invention is measured and calculated by the method described in “Examples of protein quantification and calculation of specific activity” described later.
The specific activity of the mutant GDH of the present invention is preferably 220 U / mg or more, more preferably 400 U / mg or more, still more preferably 500 U / mg or more, and most preferably 600 U / mg or more. .
From another viewpoint, the degree of improvement in the specific activity of the mutant GDH according to the present invention is preferably 1.3 times or more, more preferably 2.3 times or more, still more preferably 2.9 times or more as a wild type ratio, Most preferably, it is 3.5 times or more.
[2-6]温度依存的な活性の変動
 本発明において、温度依存的な活性の変動は25℃/37℃活性温度比として評価され、その算出方法は、後述する「25℃/37℃活性温度比の算出例」に記す方法である。
 この値が上昇しているということはすなわち25℃-37℃間の活性の温度依存的変動が低減していることを意味する。
 また生化学的知見に照らせば、25℃における酵素活性が周囲の温度領域に比して突出して高いまたは低いということはありえず、25℃における相対活性(37℃における活性を100とする)が高いことはすなわち、37℃未満の広範な温度領域、少なくとも10℃以上37℃未満の温度範囲における相対活性が高いことを示唆し、よって少なくとも10℃以上37℃以下の温度領域における活性の温度依存的な変動が低減していることを示唆するものと考えられる。
 本発明の変異型GDHにおける25℃/37℃活性温度比は、好ましくは0.40以上であり、より好ましくは0.45以上であり、最も好ましくは0.5以上である。
 また別の観点からは、変異の導入による25℃/37℃活性温度比の上昇度は、好ましくは野生型比1.2倍以上、より好ましくは1.4倍以上、最も好ましくは1.5倍以上である。
[2-6] Temperature-Dependent Activity Variation In the present invention, the temperature-dependent activity variation is evaluated as a 25 ° C./37° C. activity temperature ratio, and the calculation method is described later in “25 ° C./37° C. activity”. It is a method described in “Example of calculating temperature ratio”.
An increase in this value means that the temperature dependent variation of activity between 25 ° C. and 37 ° C. is reduced.
In light of biochemical knowledge, the enzyme activity at 25 ° C cannot be significantly higher or lower than the surrounding temperature region, and the relative activity at 25 ° C (the activity at 37 ° C is defined as 100). High means that the relative activity is high in a wide temperature range of less than 37 ° C., at least in the temperature range of 10 ° C. or more and less than 37 ° C., and thus the temperature dependence of the activity in the temperature range of at least 10 ° C. or more and 37 ° C. or less. It is thought that this suggests that there is a reduction in general fluctuations.
The 25 ° C./37° C. active temperature ratio in the mutant GDH of the present invention is preferably 0.40 or more, more preferably 0.45 or more, and most preferably 0.5 or more.
From another point of view, the degree of increase in the 25 ° C / 37 ° C activity temperature ratio due to the introduction of mutation is preferably 1.2 times or more, more preferably 1.4 times or more, and most preferably 1.5 times the wild type ratio. It is more than double.
[2-7]pH安定性
 本発明のGDHは、上記特性に加えて、中性領域を中心とする広範なpH領域において安定であることが好ましい。
 本発明に述べるpH安定性は、50mMの各バッファー溶液にGDH濃度が10U/mlとなるよう含まれた状態で25℃で16時間インキュベートを行い、インキュベート前のGDH活性に対するインキュベート後の活性残存率として評価する。
 この条件において、80%以上の活性残存率を示すpH領域として少なくとも5.5~9.5であり、さらに好ましくは5.0~9.9であり、よりさらに好ましくは5.0~10.7である。
[2-7] pH stability In addition to the above characteristics, the GDH of the present invention is preferably stable in a wide pH range centering on a neutral range.
The pH stability described in the present invention is the activity remaining ratio after incubation with respect to GDH activity before incubation by incubating at 25 ° C. for 16 hours in a 50 mM buffer solution containing a GDH concentration of 10 U / ml. Evaluate as
Under these conditions, the pH range showing an activity remaining rate of 80% or more is at least 5.5 to 9.5, more preferably 5.0 to 9.9, and still more preferably 5.0 to 10. 7.
[3]本発明の変異型グルコースデヒドロゲナーゼをコードする遺伝子、該遺伝子を含むベクター、該ベクターで形質転換された形質転換体、および、該形質転換体を培養することを特徴とする変異型グルコースデヒドロゲナーゼの製造方法
[3-1]
 本発明の実施形態の一つは、熱安定性が高くかつNADに対する親和性の高い変異型グルコースデヒドロゲナーゼをコードする遺伝子である。
 また、本発明の実施形態の一つは、熱安定性が高く37℃以下の温度における比活性の高い変異型グルコースデヒドロゲナーゼをコードする遺伝子である。
[3-2] 
 また、該遺伝子を含むベクター、該ベクターで形質転換された形質転換体、該形質転換体を培養することを特徴とする変異型グルコースデヒドロゲナーゼの製造方法も本発明の実施形態として挙げられる。
 本発明のGDHを生産する方法としては、該GDHのアミノ酸配列をコードするポリヌクレオチドを作製し、これを宿主細胞に形質転換して培養することにより発現させる方法が好適である。
[3] A gene encoding the mutant glucose dehydrogenase of the present invention, a vector containing the gene, a transformant transformed with the vector, and a mutant glucose dehydrogenase characterized by culturing the transformant Manufacturing method [3-1]
One embodiment of the present invention is a gene encoding a mutant glucose dehydrogenase having high thermostability and high affinity for NAD.
One of the embodiments of the present invention is a gene encoding a mutant glucose dehydrogenase having high thermal stability and high specific activity at a temperature of 37 ° C. or lower.
[3-2]
In addition, a vector containing the gene, a transformant transformed with the vector, and a method for producing a mutant glucose dehydrogenase characterized by culturing the transformant are also included as embodiments of the present invention.
As a method for producing the GDH of the present invention, a method of producing a polynucleotide encoding the amino acid sequence of the GDH and transforming it into a host cell and culturing it is preferable.
 本発明のGDHをコードするポリヌクレオチド、および該ポリヌクレオチドをからなる遺伝子を発現可能なプラスミドの作製方法としては、例えば配列番号1に記載のアミノ酸配列をコードするDNAもしくは該DNAを含んでなるプラスミドを取得し、これに所望の変異を導入する方法、並びに本発明のGDHをコードする塩基配列を有するポリヌクレオチド全長を人工的に化学合成し、制限酵素処理、ライゲーションによりプラスミドに挿入する方法が挙げられるが、これらに限定されない。
 ここで、配列番号1は、本発明者らがサーモプロテウス・エスピー・GDH1株(Thermoproteus sp. GDH1)より取得したグルコースデヒドロゲナーゼのアミノ酸配列をコードする遺伝子である。配列番号2に記載のアミノ酸配列をコードするDNA(配列番号1)および該DNAを挿入したプラスミドの取得方法は特願2008-60032に記載されているが、実施例でも後述する。
As a method for producing a polynucleotide encoding GDH of the present invention and a plasmid capable of expressing a gene comprising the polynucleotide, for example, a DNA encoding the amino acid sequence set forth in SEQ ID NO: 1 or a plasmid comprising the DNA And a method for introducing a desired mutation into this, and a method for artificially chemically synthesizing the entire polynucleotide having the base sequence encoding GDH of the present invention and inserting it into a plasmid by restriction enzyme treatment and ligation. However, it is not limited to these.
Here, SEQ ID NO: 1 is a gene encoding the amino acid sequence of glucose dehydrogenase obtained by the present inventors from Thermoproteus sp. GDH1 strain (Thermoproteus sp. GDH1). A method for obtaining DNA encoding the amino acid sequence described in SEQ ID NO: 2 (SEQ ID NO: 1) and a plasmid into which the DNA has been inserted is described in Japanese Patent Application No. 2008-60032, and will be described later in the Examples.
 そして、本発明のGDHを産生させるためのDNAへの変異導入方法としては、例えば置換しようとするアミノ酸残基をコードするコドンに相当する部分を、置換後のアミノ酸をコードするコドンに換えた配列を有するミスマッチプライマーを作製し、このプライマーとDNAポリメラーゼを用いて配列番号2をコードするDNA(配列番号1に代表される)を鋳型に変異が導入された配列を有するDNAを伸長作製する方法が利用される。このような遺伝子の部位特異的改変を行うに際しては、市販の各種サイトダイレクト変異導入キットを使用することも可能であり、例えばClontech社製TransformerMutagenesis Kit、 あるいはStratagene社製QuickChange Site Direct Mutagenesis Kitなどが適用可能であるが、これらに限定されない。 And, as a method for introducing a mutation into DNA for producing GDH of the present invention, for example, a sequence in which a portion corresponding to a codon encoding an amino acid residue to be substituted is replaced with a codon encoding an amino acid after substitution And a method for extending a DNA having a sequence into which a mutation has been introduced using a DNA encoding SEQ ID NO: 2 (typified by SEQ ID NO: 1) as a template using this primer and DNA polymerase. Used. When performing site-specific modification of such genes, it is also possible to use various commercially available site direct mutagenesis kits such as Clontech's Transformer Mutagenesis Kit or Stratagene's QuickChange Site Direct Mutagenesis Kit. Although it is possible, it is not limited to these.
 また、本発明のGDH生産に用いるDNAの入手方法としては、化学的にDNA鎖を合成するか、もしくは合成した一部オーバーラップするオリゴDNA短鎖を、PCR法を利用して接続することにより、本発明のGDHの全長をコードするDNAを構築することも可能である。
 化学合成もしくはPCR法との組み合わせで全長DNAを構築することの利点は、該遺伝子を導入する宿主に合わせて使用コドンを遺伝子全長にわたり設計できる点にある。同一のアミノ酸をコードする複数のコドンは均一に使用されるわけではなく、生物種によってその使用頻度が異なる。一般にある生物種において高発現する遺伝子に含まれるコドンは、その生物種において使用頻度の高いコドンを多く含んでおり、逆に発現量の低い遺伝子は使用頻度の低いコドンの存在がボトルネックとなって高発現を妨げている例が少なくない。異種遺伝子の発現に際し、その遺伝子配列を宿主生物において使用頻度の高いコドンに置換することで該異種タンパク質発現量が増大した例はこれまでに多数報告されており、このような使用コドンの改変は異種遺伝子発現量の増大に効果があると期待される。
In addition, as a method for obtaining DNA used for GDH production of the present invention, a DNA strand is chemically synthesized or a synthesized partially overlapping oligo DNA short chain is connected by using a PCR method. It is also possible to construct a DNA encoding the full length of the GDH of the present invention.
The advantage of constructing full-length DNA in combination with chemical synthesis or PCR is that the codons used can be designed over the entire length of the gene in accordance with the host into which the gene is introduced. A plurality of codons encoding the same amino acid are not used uniformly, and the frequency of use varies depending on the species. In general, codons contained in genes that are highly expressed in a given species contain many codons that are frequently used in that species, and conversely, the presence of codons that are used infrequently becomes a bottleneck for genes with low expression levels. There are many examples that prevent high expression. In the expression of heterologous genes, many examples have been reported so far in which the expression level of the heterologous protein has been increased by replacing the gene sequence with a codon frequently used in the host organism. It is expected to be effective in increasing the expression level of heterologous genes.
 上記の理由から、本発明のGDHをコードするDNAは、それが導入される宿主細胞により適したコドン(即ち、該宿主において使用頻度の高いコドン)に改変することが望ましい。各宿主のコドン使用頻度は、該宿主生物のゲノム配列上に存在する全遺伝子における各コドンの使用される割合で定義され、たとえば1000コドンあたりの使用回数で表される。またコドン使用頻度は、その全ゲノム配列の解明されていない生物にあっては代表的な複数遺伝子の配列から近似的に算出することも可能である。
 組換えようとする宿主生物におけるコドン使用頻度のデータは、例えば(財)かずさDNA研究所のホームページ(http://www.kazusa.or.jp)に公開されている遺伝暗号使用頻度データベースを用いることができ、または各生物におけるコドン使用頻度を記した文献を参照してもよく、あるいは使用する宿主生物のコドン使用頻度データを自ら決定してもよい。入手したデータと導入しようとする遺伝子配列を参照し、遺伝子配列に用いられているコドンの中で宿主生物において使用頻度の低いものを、同一のアミノ酸をコードし使用頻度の高いコドンに置換すればよい。
 このような使用頻度の高いコドンとしては、例えば宿主が大腸菌K12株である場合にあっては、GlyにはGGTまたはGGC、GluにはGAA、AspにはGAT、ValにはGTG、AlaにはGCG、ArgにはCGTまたはCGC、SerにはAGC、LysにはAAA、IleにはATTまたはATC、ThrにはACC、LeuにはCTG、GlnにはCAG、ProにはCCGなどが挙げられる。
For the above reasons, it is desirable to modify the DNA encoding the GDH of the present invention into a codon more suitable for the host cell into which it is introduced (ie, a codon frequently used in the host). The codon usage frequency of each host is defined by the ratio of each codon used in all genes existing on the genome sequence of the host organism, and is expressed, for example, by the number of times used per 1000 codons. In addition, the codon usage frequency can be approximately calculated from a sequence of a plurality of representative genes in an organism whose whole genome sequence has not been elucidated.
For the data of codon usage in the host organism to be recombined, for example, the genetic code usage database published on the website of Kazusa DNA Research Institute (http://www.kazusa.or.jp) is used. Or refer to the literature describing the codon usage in each organism, or determine the codon usage data of the host organism used. Refer to the obtained data and the gene sequence to be introduced, and replace the less frequently used codons in the host organism with the most frequently used codons that encode the same amino acid. Good.
As such a frequently used codon, for example, when the host is E. coli K12, Gly is GGT or GGC, Glu is GAA, Asp is GAT, Val is GTG, and Ala is Gly. GCG and Arg are CGT or CGC, Ser is AGC, Lys is AAA, Ile is ATT or ATC, Thr is ACC, Leu is CTG, Gln is CAG, Pro is CCG, and the like.
 本発明のGDHをコードするDNAは、組換えベクターに接続した状態で形質転換される。本発明の組換えベクターは原核および/または真核細胞の各種宿主細胞内で複製保持または自律増殖できるものであれば特に限定されず、プラスミドベクターやウイルスベクター等が包含される。
 当該組換えベクターは、簡便には当該技術分野において入手可能な公知のクローニングベクターまたは発現ベクターに、上記のGDHをコードするDNAを適当な制限酵素およびリガーゼ、あるいは必要に応じてさらにリンカーもしくはアダプターDNAを用いて連結することにより調製することができる。
 また、Taqポリメラーゼのように増幅末端に一塩基を付加するようなDNAポリメラーゼを用いて増幅作製した遺伝子断片であれば、TAクローニングによるベクターへの接続も可能である。
The DNA encoding the GDH of the present invention is transformed in a state of being connected to a recombinant vector. The recombinant vector of the present invention is not particularly limited as long as it can be replicated and maintained or autonomously propagated in various prokaryotic and / or eukaryotic host cells, and includes plasmid vectors and viral vectors.
The recombinant vector is simply a known cloning vector or expression vector available in the art, and the DNA encoding the above GDH is converted to an appropriate restriction enzyme and ligase, or, if necessary, a linker or adapter DNA. Can be prepared by ligation using
In addition, a gene fragment amplified using a DNA polymerase that adds a single base to the amplification end, such as Taq polymerase, can be connected to a vector by TA cloning.
 ベクターとしては、大腸菌由来のプラスミドとして、例えばpBR322、pBR325、pUC18、pUC19など、酵母由来プラスミドとして、例えばpSH19、pSH15など、枯草菌由来プラスミドとして、例えばpUB110、pTP5、pC194などが挙げられる。また、ウイルスとして、λファージなどのバクテリオファージや、SV40、ウシパピローマウイルス(BPV)等のパポバウイルス、モロニーマウス白血病ウイルス(MoMuLV)等のレトロウイルス、アデノウイルス(AdV)、アデノ随伴ウイルス(AAV)、ワクシニヤウイルス、バキュロウイルスなどの動物および昆虫のウイルスが例示される。 Examples of vectors include Escherichia coli-derived plasmids such as pBR322, pBR325, pUC18 and pUC19, yeast-derived plasmids such as pSH19 and pSH15, and Bacillus subtilis-derived plasmids such as pUB110, pTP5 and pC194. Moreover, bacteriophage such as λ phage, papovirus such as SV40, bovine papilloma virus (BPV), retrovirus such as Moloney murine leukemia virus (MoMuLV), adenovirus (AdV), adeno-associated virus (AAV), Illustrative are animal and insect viruses such as vaccinia virus, baculovirus.
 特に、本発明は、目的の宿主細胞内で機能的なプロモーターの制御下にGDHをコードするDNAが配置されたGDH発現ベクターを提供する。
 使用されるベクターとしては、原核および/または真核細胞の各種宿主細胞内で機能して、その下流に配置された遺伝子の転写を制御し得るプロモーター領域(例えば宿主が大腸菌の場合、trpプロモーター、lacプロモーター、lecAプロモーター等、宿主が枯草菌の場合、SPO1プロモーター、SPO2プロモーター、penPプロモーター等、宿主が酵母の場合、PHO5プロモーター、PGKプロモーター、GAPプロモーター、ADHプロモーター等、宿主が哺乳動物細胞の場合、SV40由来初期プロモーター、MoMuLV由来ロングターミナルリピート、アデノウイルス由来初期プロモーター等のウイルスプロモーター)と、該遺伝子の転写終結シグナル、すなわちターミネーター領域を含有し、該プロモーター領域と該ターミネーター領域とが、少なくとも1つの制限酵素認識部位、好ましくは該ベクターをその箇所のみで切断するユニークな制限部位を含む配列を介して連結されたものであれば特に制限はないが、形質転換体選択のための選択マーカー遺伝子(テトラサイクリン、アンピシリン、カナマイシン、ハイグロマイシン、ホスフィノスリシン等の薬剤に対する抵抗性を付与する遺伝子、栄養要求性変異を相補する遺伝子等)をさらに含有していることが好ましい。さらに、挿入されるGDHをコードするDNAが開始コドンおよび終止コドンを含まない場合には、開始コドン(ATGまたはGTG)および終止コドン(TAG、TGA、TAA)を、それぞれプロモーター領域の下流およびターミネーター領域の上流に含むベクターが好ましく使用される。
 宿主細胞として細菌を用いる場合、一般に発現ベクターは上記のプロモーター領域およびターミネーター領域に加えて、宿主細胞内で自律複製し得る複製可能単位を含む必要がある。また、プロモーター領域は、プロモーターの近傍にオペレーターおよびShine-Dalgarno(SD)配列を包含する。
 宿主として酵母,動物細胞または昆虫細胞を用いる場合、発現ベクターは、エンハンサー配列、GDH mRNAの5’側および3’側の非翻訳領域、ポリアデニレーション部位等をさらに含むことが好ましい。
In particular, the present invention provides a GDH expression vector in which DNA encoding GDH is placed under the control of a promoter functional in the intended host cell.
As a vector to be used, a promoter region that functions in various prokaryotic and / or eukaryotic host cells and can control transcription of a gene located downstream thereof (for example, trp promoter when the host is E. coli, When the host is Bacillus subtilis, such as lac promoter, lectA promoter, etc. When the host is a yeast, SPO1 promoter, SPO2 promoter, penP promoter, etc. When the host is yeast, PHO5 promoter, PGK promoter, GAP promoter, ADH promoter, etc. When the host is a mammalian cell SV40-derived early promoter, MoMuLV-derived long terminal repeat, adenovirus-derived early promoter, and the like, and a transcription termination signal of the gene, that is, a terminator region, The terminator region is not particularly limited as long as it is linked via a sequence containing at least one restriction enzyme recognition site, preferably a unique restriction site that cleaves the vector only at that site. It further contains a selection marker gene for selection of transformants (a gene that confers resistance to drugs such as tetracycline, ampicillin, kanamycin, hygromycin, phosphinothricin, a gene that complements auxotrophic mutations, etc.) It is preferable. Furthermore, when the DNA encoding GDH to be inserted does not contain a start codon and a stop codon, the start codon (ATG or GTG) and the stop codon (TAG, TGA, TAA) are respectively located downstream of the promoter region and the terminator region. A vector contained upstream of is preferably used.
When a bacterium is used as a host cell, the expression vector generally needs to contain a replicable unit capable of autonomous replication in the host cell in addition to the promoter region and terminator region described above. The promoter region includes an operator and a Shine-Dalgarno (SD) sequence in the vicinity of the promoter.
When yeast, animal cells or insect cells are used as the host, the expression vector preferably further contains an enhancer sequence, 5 ′ and 3 ′ untranslated regions of GDH mRNA, a polyadenylation site, and the like.
本発明のGDHは、上記のようにして調製されるGDH発現ベクターを含む形質転換体を培地中で培養し、得られる培養物からGDHを回収することによって製造することができる。 The GDH of the present invention can be produced by culturing a transformant containing the GDH expression vector prepared as described above in a medium and recovering GDH from the resulting culture.
 使用される培地は、宿主細胞(形質転換体)の生育に必要な炭素源,無機窒素源もしくは有機窒素源を含んでいることが好ましい。炭素源としては、例えばグルコース,デキストラン,可溶性デンプン,ショ糖などが、無機窒素源もしくは有機窒素源としては、例えばアンモニウム塩類,硝酸塩類,アミノ酸,コーンスチープ・リカー,ペプトン,カゼイン,肉エキス,大豆粕,バレイショ抽出液などが例示される。また所望により他の栄養素〔例えば、無機塩(例えば塩化カルシウム,リン酸二水素ナトリウム,塩化マグネシウム),ビタミン類,抗生物質(例えばテトラサイクリン,ネオマイシン,アンピシリン,カナマイシン等)など〕を含んでいてもよい。 The medium to be used preferably contains a carbon source, an inorganic nitrogen source or an organic nitrogen source necessary for the growth of the host cell (transformant). Examples of the carbon source include glucose, dextran, soluble starch, and sucrose. Examples of the inorganic or organic nitrogen source include ammonium salts, nitrates, amino acids, corn steep liquor, peptone, casein, meat extract, large Examples include soybean cake and potato extract. Further, other nutrients [for example, inorganic salts (for example, calcium chloride, sodium dihydrogen phosphate, magnesium chloride), vitamins, antibiotics (for example, tetracycline, neomycin, ampicillin, kanamycin, etc.)] may be included as desired. .
 培養は当分野において知られている方法により行われる。下記に宿主細胞に応じて用いられる具体的な培地および培養条件を例示するが、本発明における培養条件はこれらに何ら限定されるものではない。
 宿主が細菌,放線菌,酵母,糸状菌等である場合、例えば上記栄養源を含有する液体培地が適当である。好ましくは、pHが5~9である培地である。宿主が大腸菌の場合、好ましい培地としてLB培地,M9培地[Miller. J., Exp. Mol. Genet, p.431, Cold Spring Harbor Laboratory, New York (1972)]等が例示される。培養は、必要により通気・攪拌をしながら、通常14~43℃で約3~72時間行うことができる。宿主が枯草菌の場合、必要により通気・攪拌をしながら、通常30~40℃で約16~96時間行うことができる。宿主が酵母の場合、培地として、例えばBurkholder最少培地 [Bostian. K.L. et al, Proc. Natl. Acad. Sci. USA, 77, 4505 (1980)]が挙げられ、pHは5~8であることが望ましい。培養は通常約20~35℃で約14~144時間行なわれ、必要により通気や攪拌を行うこともできる。
 宿主が動物細胞の場合、培地として、例えば約5~20%のウシ胎仔血清を含む最少必須培地(MEM)[Science, 122, 501 (1952)]、ダルベッコ改変イーグル培地(DMEM)[Virology, 8, 396 (1959)]、RPMI1640培地[J. Am. Med. Assoc., 199, 519 (1967)]、199培地[Proc. Soc. Exp. Biol. Med., 73, 1 (1950)] 等を用いることができる。培地のpHは約6~8であるのが好ましく、培養は通常約30~40℃で約15~72時間行なわれ、必要により通気や攪拌を行うこともできる。
 宿主が昆虫細胞の場合、培地として、例えばウシ胎仔血清を含むGrace’s培地[Proc. Natl. Acad. Sci. USA, 82, 8404 (1985)]等が挙げられ、そのpHは約5~8であるのが好ましい。培養は通常約20~40℃で15~100時間行なわれ、必要により通気や攪拌を行うこともできる。
Culturing is performed by methods known in the art. Specific media and culture conditions used according to the host cells are exemplified below, but the culture conditions in the present invention are not limited to these.
When the host is a bacterium, actinomycetes, yeast, filamentous fungus or the like, for example, a liquid medium containing the above nutrient source is suitable. A medium having a pH of 5 to 9 is preferred. When the host is Escherichia coli, LB medium and M9 medium [Miller. J. et al. , Exp. Mol. Genet, p. 431, Cold Spring Harbor Laboratory, New York (1972)]. Culturing can be performed usually at 14 to 43 ° C. for about 3 to 72 hours with aeration and agitation, if necessary. When the host is Bacillus subtilis, it can be performed usually at 30 to 40 ° C. for about 16 to 96 hours with aeration and stirring as necessary. When the host is yeast, as a medium, for example, Burkholder minimal medium [Bostian. K. L. et al, Proc. Natl. Acad. Sci. USA, 77, 4505 (1980)], and the pH is preferably 5-8. The culture is usually carried out at about 20 to 35 ° C. for about 14 to 144 hours, and if necessary, aeration or stirring can be performed.
When the host is an animal cell, the medium is, for example, minimal essential medium (MEM) containing about 5 to 20% fetal calf serum [Science, 122, 501 (1952)], Dulbecco's modified Eagle medium (DMEM) [Virology, 8 , 396 (1959)], RPMI 1640 medium [J. Am. Med. Assoc. , 199, 519 (1967)], 199 medium [Proc. Soc. Exp. Biol. Med. , 73, 1 (1950)] or the like. The pH of the medium is preferably about 6 to 8, and the culture is usually carried out at about 30 to 40 ° C. for about 15 to 72 hours, and if necessary, aeration and stirring can be performed.
When the host is an insect cell, for example, Grace's medium containing fetal calf serum [Proc. Natl. Acad. Sci. USA, 82, 8404 (1985)], etc., and the pH is preferably about 5-8. Cultivation is usually carried out at about 20 to 40 ° C. for 15 to 100 hours, and if necessary, aeration or stirring can be performed.
 GDHの精製は、GDH活性の存在する画分に応じて、通常使用される種々の分離技術を適宜組み合わせることにより行うことができる。
 培養物の培地中に存在するGDHは、培養物を遠心または濾過して培養上清(濾液)を得、該培養上清から、例えば、塩析、溶媒沈澱、透析、限外濾過、ゲル濾過、非変性PAGE、SDS-PAGE、イオン交換クロマトグラフィー、ヒドロキシルアパタイトクロマトグラフィー、アフィニティークロマトグラフィー、逆相高速液体クロマトグラフィー、等電点電気泳動などの公知の分離方法を適当に選択して行うことにより得ることができる。
Purification of GDH can be performed by appropriately combining various commonly used separation techniques depending on the fraction in which GDH activity is present.
GDH present in the culture medium is obtained by centrifuging or filtering the culture to obtain a culture supernatant (filtrate), for example, salting out, solvent precipitation, dialysis, ultrafiltration, gel filtration. By appropriately selecting a known separation method such as non-denaturing PAGE, SDS-PAGE, ion exchange chromatography, hydroxylapatite chromatography, affinity chromatography, reverse phase high performance liquid chromatography, isoelectric focusing, etc. Obtainable.
 一方、細胞質に存在するGDHは、培養物を遠心または濾過して細胞を集め、これを適当な緩衝液に懸濁し、例えば超音波処理、リゾチーム処理、凍結融解、浸透圧ショック、および/またはトライトン-X100等の界面活性剤処理などにより、細胞およびオルガネラ膜を破砕(溶解)した後、遠心分離や濾過などによりデブリスを除去して可溶性画分を得、該可溶性画分を、上記と同様の方法で処理することにより単離精製することができる。 On the other hand, GDH present in the cytoplasm collects cells by centrifuging or filtering the culture and suspending it in an appropriate buffer, such as sonication, lysozyme treatment, freeze-thawing, osmotic shock, and / or triton. After crushing (dissolving) the cells and the organelle membrane by treatment with a surfactant such as -X100, the debris is removed by centrifugation or filtration to obtain a soluble fraction. It can be isolated and purified by treating with a method.
 組換えGDHを迅速且つ簡便に取得する手段として、GDHのコード配列のある部分(好ましくはNまたはC末端)に、金属イオンキレートに吸着し得るアミノ酸配列(例えば、ヒスチジン、アルギニン、リシン等の塩基性アミノ酸からなる配列、好ましくはヒスチジンからなる配列)(いわゆる「タグ」)をコードするDNA配列を、遺伝子操作により付加して宿主細胞で発現させ、該細胞の培養物のGDH活性画分から、該金属イオンキレートを固定化した担体とのアフィニティーによりGDHを分離回収する方法が好ましく例示される。
 金属イオンキレートに吸着し得るアミノ酸配列をコードするDNA配列は、例えば、GDHをコードするDNAをクローニングする過程で、GDHのC末端アミノ酸配列をコードする塩基配列に該DNA配列を連結したハイブリッドプライマーを用いてPCR増幅を行ったり、あるいは該DNA配列を終止コドンの前に含む発現ベクターにGDHをコードするDNAをインフレームで挿入することにより、GDHコード配列に導入することができる。また、精製に使用される金属イオンキレート吸着体は、遷移金属、例えばコバルト、銅、ニッケル、鉄の二価イオン、あるいは鉄、アルミニウムの三価イオン等、好ましくはコバルトまたはニッケルの二価イオン含有溶液を、リガンド、例えばイミノジ酢酸(IDA)基、ニトリロトリ酢酸(NTA)基、トリス(カルボキシメチル)エチレンジアミン(TED)基等を付着したマトリックスと接触させて該リガンドに結合させることにより調製される。キレート吸着体のマトリックス部は通常の不溶性担体であれば特に限定されない。
 あるいは、タグとしてグルタチオン-S-トランスフェラーゼ(GST)、マルトース
結合タンパク質(MBP)、HA、FLAGペプチドなどを用いてアフィニティー精製することもできる。
As a means for obtaining recombinant GDH quickly and conveniently, an amino acid sequence (for example, a base such as histidine, arginine, lysine, etc.) that can be adsorbed to a metal ion chelate at a portion (preferably N or C terminal) of the coding sequence of GDH. A DNA sequence encoding a sequence consisting of a natural amino acid, preferably a sequence consisting of histidine (so-called “tag”), is added by genetic manipulation and expressed in a host cell, and from the GDH activity fraction of the culture of the cell, A method of separating and recovering GDH by affinity with a carrier on which a metal ion chelate is immobilized is preferably exemplified.
The DNA sequence encoding the amino acid sequence that can be adsorbed to the metal ion chelate is obtained by, for example, using a hybrid primer in which the DNA sequence is linked to the base sequence encoding the C-terminal amino acid sequence of GDH in the process of cloning the DNA encoding GDH. The DNA can be introduced into the GDH coding sequence by performing PCR amplification or inserting the DNA encoding GDH in frame into an expression vector containing the DNA sequence before the stop codon. The metal ion chelate adsorbent used for purification contains transition metals such as cobalt, copper, nickel, iron divalent ions, or iron, aluminum trivalent ions, etc., preferably cobalt or nickel divalent ions. The solution is prepared by contacting a ligand, such as an iminodiacetic acid (IDA) group, a nitrilotriacetic acid (NTA) group, a tris (carboxymethyl) ethylenediamine (TED) group, etc., in contact with the ligand. The matrix part of the chelate adsorbent is not particularly limited as long as it is a normal insoluble carrier.
Alternatively, affinity purification can be performed using glutathione-S-transferase (GST), maltose binding protein (MBP), HA, FLAG peptide or the like as a tag.
 上記精製工程において、必要に応じて膜濃縮、減圧濃縮、活性化剤および安定化剤添加等の処理を行うこともできる。特に本GDHは耐熱性に優れているため、他の宿主細胞由来夾雑タンパク質を熱変性せしめ、かつGDH活性を保持しうる範囲での加温処理が、大幅なGDH純度向上に有効である。これら工程に用いる溶媒としては特に限定されないが、pH6~9程度の範囲において緩衝能を有するK-リン酸緩衝液、トリス-塩酸緩衝液、GOODの緩衝液等に代表される各種緩衝液が好ましい。 In the purification step, membrane concentration, reduced pressure concentration, activator and stabilizer addition may be performed as necessary. In particular, since the present GDH is excellent in heat resistance, a heating treatment within a range in which other host cell-derived contaminating proteins can be heat denatured and GDH activity can be maintained is effective in greatly improving GDH purity. The solvent used in these steps is not particularly limited, but various buffer solutions represented by K-phosphate buffer solution, Tris-HCl buffer solution, GOOD buffer solution and the like having a buffer capacity in the range of about pH 6-9 are preferable. .
 かくして得られるGDHが遊離体である場合には、自体公知の方法あるいはそれに準じる方法によって該遊離体を塩に変換することができ、該タンパク質が塩として得られた場合には、自体公知の方法あるいはそれに準じる方法により該塩を遊離体または他の塩に変換することができる。
 また、該GDHを含む溶液または組成物に対して安定化剤及び/又は活性化剤としてウシ血清アルブミン、セリシン等のタンパク質、TritonX-100、Tween20、コール酸塩、デオキシコール酸塩などの界面活性剤、グリシン、セリン、グルタミン酸、グルタミン、アスパラギン酸、アスパラギン、グリシルグリシン等のアミノ酸、トレハロース、イノシトール、ソルビトール、キシリトール、グリセロール、スクロース等の糖及び/又は糖アルコール類、塩化ナトリウム、塩化カリウム等の無機塩類を適宜添加してもよい。
When the GDH thus obtained is a free form, the free form can be converted into a salt by a method known per se or a method analogous thereto, and when the protein is obtained as a salt, a method known per se Alternatively, the salt can be converted to a free form or other salt by a method analogous thereto.
Further, as a stabilizer and / or activator for a solution or composition containing the GDH, a protein such as bovine serum albumin or sericin, a surface activity such as Triton X-100, Tween 20, cholate or deoxycholate Agents, amino acids such as glycine, serine, glutamic acid, glutamine, aspartic acid, asparagine, glycylglycine, sugars and / or sugar alcohols such as trehalose, inositol, sorbitol, xylitol, glycerol, sucrose, sodium chloride, potassium chloride, etc. Inorganic salts may be added as appropriate.
 精製酵素は液状で産業利用に供することも可能であるが、粉末化し、あるいはさらに造粒することもできる。液状酵素の粉末化は定法により凍結乾燥することでなされる。 The purified enzyme is liquid and can be used for industrial use, but can also be pulverized or further granulated. The liquid enzyme is pulverized by lyophilization by a conventional method.
 さらに、本発明のGDHは、それをコードするDNAに対応するRNAを鋳型として、ウサギ網状赤血球ライセート、コムギ胚芽ライセート、大腸菌ライセートなどからなる無細胞タンパク質翻訳系を用いてインビトロ翻訳することによっても合成することができる。
 本発明のGDHをコードするRNAは、本発明のGDHをコードするcDNAの取得方法において上記した、本発明のGDHをコードするmRNAを常法を用いて該RNAを発現する宿主細胞から精製するか、あるいは、GDHをコードするDNAを鋳型とし、RNAポリメラーゼを含む無細胞転写系を用いてcRNAを調製することによって取得することができる。無細胞タンパク質転写/翻訳系は市販のものを用いることもできるし、それ自体既知の方法、具体的には、大腸菌抽出液はPratt J.M. et al., "Transcription and Tranlation", Hames B.D. and Higgins S.J. eds., IRL Press, Oxford 179-209 (1984) に記載の方法等に準じて調製することもできる。
 市販の細胞ライセートとしては、大腸菌由来のものはE.coli S30 extract system (Promega社製) やRTS 500 Rapid Tranlation System (Roche社製) 等が挙げられ、ウサギ網状赤血球由来のものはRabbit Reticulocyte Lysate System (Promega社製) 等、さらにコムギ胚芽由来のものはPROTEIOSTM(TOYOBO社製) 等が挙げられる。このうちコムギ胚芽ライセートを用いたものが好適である。コムギ胚芽ライセートの作製法としては、例えばJohnston F.B. et al., Nature, 179: 160-161 (1957) あるいはErickson A.H. et al., Meth. Enzymol., 96: 38-50 (1996) 等に記載の方法を用いることができる。
Further, the GDH of the present invention can also be synthesized by in vitro translation using a cell-free protein translation system comprising rabbit reticulocyte lysate, wheat germ lysate, E. coli lysate, etc., using RNA corresponding to the DNA encoding it as a template. can do.
Whether the RNA encoding the GDH of the present invention is purified from the host cell expressing the RNA using the conventional method for the mRNA encoding the GDH of the present invention described above in the method for obtaining the cDNA encoding the GDH of the present invention. Alternatively, it can be obtained by preparing cRNA using DNA encoding GDH as a template and using a cell-free transcription system containing RNA polymerase. As the cell-free protein transcription / translation system, a commercially available one can be used. M.M. et al. "Transscription and Translation", Hames B .; D. and Higgins S. J. et al. eds. , IRL Press, Oxford 179-209 (1984).
Commercially available cell lysates include those derived from E. coli. Examples include E. coli S30 extract system (Promega) and RTS 500 Rapid Translation System (Roche), and those derived from rabbit reticulocytes are those of Rabbit Reticulocyte Lysate System (Promega) PROTEIOSTM (made by TOYOBO) etc. are mentioned. Of these, those using wheat germ lysate are preferred. As a method for producing wheat germ lysate, for example, Johnston F. et al. B. et al. , Nature, 179: 160-161 (1957) or Erickson A. et al. H. et al. , Meth. Enzymol. 96: 38-50 (1996).
 化学合成によるGDHの製造は、例えば、配列番号1に所望の変異を導入したアミノ酸配列、すなわち本発明のGDHのアミノ酸配列を基にして、配列の全部または一部をペプチ
ド合成機を用いて合成することにより行うことができる。
 ペプチド合成法は、例えば、固相合成法、液相合成法のいずれであってもよい。本発明のGDHを構成し得る部分ペプチドもしくはアミノ酸と残余部分とを縮合し、生成物が保護基を含む場合は保護基を脱離することにより、目的とするタンパク質を製造することができる。ここで、縮合や保護基の脱離は、自体公知の方法、例えば、以下の(1)および(2)に記載された方法に従って行われる。
(1) M. Bodanszkyand M.A. Ondetti, Peptide Synthesis, Interscience Publishers, New York (1966)
(2) Schroeder and Luebke, The Peptide, Academic Press, NewYork(1965)
The production of GDH by chemical synthesis is, for example, synthesized by using a peptide synthesizer based on the amino acid sequence obtained by introducing a desired mutation into SEQ ID NO: 1, that is, the amino acid sequence of GDH of the present invention. This can be done.
The peptide synthesis method may be, for example, either a solid phase synthesis method or a liquid phase synthesis method. When the partial peptide or amino acid capable of constituting the GDH of the present invention is condensed with the remaining part, and the product contains a protecting group, the protecting group is eliminated, whereby the target protein can be produced. Here, the condensation and the removal of the protecting group are carried out according to a method known per se, for example, the method described in the following (1) and (2).
(1) M.M. Bodanszkyand M.M. A. Ondetti, Peptide Synthesis, Interscience Publishers, New York (1966)
(2) Schroeder and Luebke, The Peptide, Academic Press, New York (1965)
 このようにして得られた本発明のGDHは、公知の精製法により精製単離することができる。ここで、精製法としては、例えば、溶媒抽出、蒸留、カラムクロマトグラフィー、液体クロマトグラフィー、再結晶、これらの組み合わせなどが挙げられる。
 上記方法で得られるGDHが遊離体である場合には、該遊離体を公知の方法あるいはそれに準じる方法によって適当な塩に変換することができるし、逆にタンパク質が塩として得られた場合には、該塩を公知の方法あるいはそれに準じる方法によって遊離体または他の塩に変換することができる。
The GDH of the present invention thus obtained can be purified and isolated by a known purification method. Here, examples of the purification method include solvent extraction, distillation, column chromatography, liquid chromatography, recrystallization, and combinations thereof.
When the GDH obtained by the above method is a free form, the free form can be converted into an appropriate salt by a known method or a method according thereto, and conversely, when a protein is obtained as a salt. The salt can be converted into a free form or other salt by a known method or a method analogous thereto.
[4]グルコース測定用試薬
 本発明のグルコース測定用試薬は、典型的には、本発明のGDH、補酵素、緩衝液、キャリブレーションカーブ作製のためのグルコース標準溶液、ならびに使用の指針を含む。また好ましくはメディエーターなど測定に必要な試薬を含む。また、GDHを含む試薬中には、安定化剤及び/又は活性化剤としてウシ血清アルブミン、セリシン等のタンパク質、TritonX-100、Tween20、コール酸塩、デオキシコール酸塩などの界面活性剤、グリシン、セリン、グルタミン酸、グルタミン、アスパラギン酸、アスパラギン、グリシルグリシン等のアミノ酸、トレハロース、イノシトール、ソルビトール、キシリトール、グリセロール、スクロース等の糖及び/又は糖アルコール類、塩化ナトリウム、塩化カリウム等の無機塩類を適宜添加してもよい。
[4] Reagent for measuring glucose The reagent for measuring glucose of the present invention typically comprises the GDH of the present invention, a coenzyme, a buffer, a glucose standard solution for preparing a calibration curve, and a usage guideline. Further, it preferably contains a reagent necessary for measurement such as a mediator. Further, in the reagent containing GDH, as a stabilizer and / or an activator, a protein such as bovine serum albumin or sericin, a surfactant such as Triton X-100, Tween 20, cholate or deoxycholate, glycine Amino acids such as serine, glutamic acid, glutamine, aspartic acid, asparagine, glycylglycine, sugars such as trehalose, inositol, sorbitol, xylitol, glycerol, sucrose and / or sugar alcohols, and inorganic salts such as sodium chloride and potassium chloride You may add suitably.
[5]グルコースアッセイキット
 本発明のグルコースアッセイキットは、典型的には、本発明のGDH、補酵素、緩衝液、メディエーターなど測定に必要な試薬、キャリブレーションカーブ作製のためのグルコース標準溶液、ならびに使用の指針を含む。
 本発明のキットは、例えば、凍結乾燥された試薬として、または適切な保存溶液中の溶液として提供することができる。また、GDHを含む試薬中には、安定化剤及び/又は活性化剤としてウシ血清アルブミン、セリシン等のタンパク質、TritonX-100、Tween20、コール酸塩、デオキシコール酸塩などの界面活性剤、グリシン、セリン、グルタミン酸、グルタミン、アスパラギン酸、アスパラギン、グリシルグリシン等のアミノ酸、トレハロース、イノシトール、ソルビトール、キシリトール、グリセロール、スクロース等の糖及び/又は糖アルコール類、塩化ナトリウム、塩化カリウム等の無機塩類を適宜添加してもよい。
[5] Glucose assay kit The glucose assay kit of the present invention typically comprises the GDH of the present invention, a coenzyme, a buffer, a mediator and other reagents necessary for measurement, a glucose standard solution for preparing a calibration curve, and Includes usage guidelines.
The kit of the invention can be provided, for example, as a lyophilized reagent or as a solution in a suitable storage solution. Further, in the reagent containing GDH, as a stabilizer and / or an activator, a protein such as bovine serum albumin or sericin, a surfactant such as Triton X-100, Tween 20, cholate or deoxycholate, glycine Amino acids such as serine, glutamic acid, glutamine, aspartic acid, asparagine, glycylglycine, sugars such as trehalose, inositol, sorbitol, xylitol, glycerol, sucrose and / or sugar alcohols, and inorganic salts such as sodium chloride and potassium chloride You may add suitably.
[6]グルコースセンサ
 本発明のグルコースセンサは、電極としては、カーボン電極、金電極、白金電極などを用い、この電極上にGDHを固定化する。固定化方法としては、架橋試薬を用いる方法、高分子マトリックス中に封入する方法、透析膜で被覆する方法、光架橋性ポリマー、導電性ポリマー、酸化還元ポリマーなどを用いる方法があり、NADもしくはNADPといった補酵素、あるいは電子メディエーターとともにポリマー中に固定あるいは電極上に吸着固定してもよく、またこれらを組み合わせて用いてもよい。
 本発明のGDHは補酵素であるNADもしくはNADPと共存させた形態で電極上に固定化するが、補酵素不在の形態で固定化し、補酵素を別の層としてまたは溶液中で供給することも可能である。典型的には、グルタルアルデヒドを用いて本発明のGDHをカーボン電極上に固定化した後、アミン基を有する試薬で処理してグルタルアルデヒドをブロッキングする。
 使用する電子メディエーターとしては、GDHの補酵素であるNADもしくはNADPから電子を受け取り、発色物質や電極に電子を供与しうるものが挙げられ、たとえばフェリシアン化物塩、フェナジンエトサルフェート、フェナジンメトサルフェート、フェニレンジアミン、N,N,N’,N’-テトラメチルフェニレンジアミン、1-メトキシ-フェナジンメトサルフェート、2,6-ジクロロフェノールインドフェノール、2,5-ジメチル-1,4-ベンゾキノン、2,6-ジメチル-1,4-ベンゾキノン、2,5-ジクロロ-1,4-ベンゾキノン、ニトロソアニリン、フェロセン誘導体、オスミウム錯体、ルテニウム錯体等が例示されるが、これらに限定されない。
 また、電極上のGDH組成物中には、安定化剤及び/又は活性化剤としてウシ血清アルブミン、セリシン等のタンパク質、TritonX-100、Tween20、コール酸塩、デオキシコール酸塩などの界面活性剤、グリシン、セリン、グルタミン酸、グルタミン、アスパラギン酸、アスパラギン、グリシルグリシン等のアミノ酸、トレハロース、イノシトール、ソルビトール、キシリトール、グリセロール、スクロース等の糖及び/又は糖アルコール類、塩化ナトリウム、塩化カリウム等の無機塩類を適宜添加してもよく、またあるいはプルラン、デキストラン、ポリエチレングリコール、カルボキシメチルセルロースなどに代表される親水性ポリマーを賦形剤として含んでもよい。
[6] Glucose sensor In the glucose sensor of the present invention, a carbon electrode, a gold electrode, a platinum electrode, or the like is used as an electrode, and GDH is immobilized on the electrode. As immobilization methods, there are a method using a crosslinking reagent, a method of encapsulating in a polymer matrix, a method of coating with a dialysis membrane, a method of using a photocrosslinkable polymer, a conductive polymer, a redox polymer, etc. NAD or NADP Such a coenzyme or an electron mediator may be fixed in a polymer or adsorbed and fixed on an electrode, or a combination thereof may be used.
The GDH of the present invention is immobilized on the electrode in the form of coexisting with the coenzyme NAD or NADP, but may be immobilized in the absence of the coenzyme and supplied as a separate layer or in solution. Is possible. Typically, the GDH of the present invention is immobilized on a carbon electrode using glutaraldehyde, and then treated with a reagent having an amine group to block glutaraldehyde.
Examples of the electron mediator to be used include those that receive electrons from NAD or NADP, which are GDH coenzymes, and can donate electrons to the color-developing substances and electrodes. Phenylenediamine, N, N, N ′, N′-tetramethylphenylenediamine, 1-methoxy-phenazine methosulfate, 2,6-dichlorophenolindophenol, 2,5-dimethyl-1,4-benzoquinone, 2,6 Examples include, but are not limited to, dimethyl-1,4-benzoquinone, 2,5-dichloro-1,4-benzoquinone, nitrosoaniline, ferrocene derivatives, osmium complexes, ruthenium complexes and the like.
In addition, in the GDH composition on the electrode, surfactants such as proteins such as bovine serum albumin and sericin, Triton X-100, Tween 20, cholate and deoxycholate are used as stabilizers and / or activators. , Glycine, serine, glutamic acid, glutamine, aspartic acid, asparagine, glycylglycine and other amino acids, trehalose, inositol, sorbitol, xylitol, glycerol, sucrose and other sugars and / or sugar alcohols, sodium chloride, potassium chloride and other inorganic substances Salts may be added as appropriate, or a hydrophilic polymer represented by pullulan, dextran, polyethylene glycol, carboxymethyl cellulose and the like may be included as an excipient.
 グルコース濃度の測定は、以下のようにして行うことができる。恒温セルに緩衝液、GDH、補酵素としてNADもしくはNADPを含む反応液を入れ、一定温度に維持する。そこにグルコースを含む試料を加え、一定温度で一定時間反応させる。この間、340nmの吸光度をモニタリングする。レート法であれば吸光度の時間あたりの上昇率から、エンドポイント法であれば試料中のグルコースがすべて酸化された時点までの吸光度上昇度より、あらかじめ標準濃度のグルコース溶液により作製したキャリブレーションカーブを元に試料中のグルコース濃度を算出することができる。また、可視光領域での比色による定量を行う場合においては、さらに適当なメディエーター及び発色試薬を添加すればよい。
 このような例としては、たとえば2,6-ジクロロフェノールインドフェノール(DCPIP)を添加し、600nmにおける吸光度の減少をモニタリングすることでグルコースの定量が可能である。また、メディエーターとしてphenazine methosulfate (PMS)を、さらに発色試薬としてnitrotetrazorium blue (NTB)を加え、570nm吸光度を測定することにより生成するジホルマザンの量を決定し、グルコース濃度を算出することが可能である。いうまでもなく使用するメディエーターおよび発色試薬はこれらに限定されない。
The glucose concentration can be measured as follows. A reaction solution containing a buffer solution, GDH, and NAD or NADP as a coenzyme is placed in a constant temperature cell and maintained at a constant temperature. A sample containing glucose is added thereto and reacted at a constant temperature for a fixed time. During this time, the absorbance at 340 nm is monitored. From the rate of increase in absorbance per hour for the rate method, and the absorbance increase up to the point when all glucose in the sample is oxidized for the endpoint method, a calibration curve prepared in advance with a standard concentration glucose solution is used. Originally, the glucose concentration in the sample can be calculated. In addition, in the case of performing quantification by colorimetry in the visible light region, an appropriate mediator and coloring reagent may be added.
For example, glucose can be quantified by adding 2,6-dichlorophenolindophenol (DCPIP) and monitoring the decrease in absorbance at 600 nm. Further, it is possible to determine the amount of diformazan produced by adding phenazine method (PMS) as a mediator and nitrotetrazorium blue (NTB) as a coloring reagent and measuring the absorbance at 570 nm to calculate the glucose concentration. Needless to say, the mediator and coloring reagent used are not limited to these.
 またグルコース濃度の測定は、以下のようにしても行うことができる。恒温セルに緩衝液を入れ、補酵素、および必要に応じてメディエーターを加えて一定温度に維持する。メディエーターとしては、フェリシアン化カリウム、フェナジンメトサルフェートなどを用いることができる。作用電極として本発明のGDHを固定化した電極を用い、対極(例えば白金電極)および参照電極(例えばAg/AgCl電極)を用いる。カーボン電極に一定の電圧を印加して、電流が定常になった後、グルコースを含む試料を加えて電流の増加を測定する。標準濃度のグルコース溶液により作製したキャリブレーションカーブに従い、試料中のグルコース濃度を計算することができる。 The glucose concentration can also be measured as follows. Put the buffer in the thermostat cell and add coenzyme and mediator as needed to maintain constant temperature. As the mediator, potassium ferricyanide, phenazine methosulfate, or the like can be used. An electrode on which the GDH of the present invention is immobilized is used as a working electrode, and a counter electrode (for example, a platinum electrode) and a reference electrode (for example, an Ag / AgCl electrode) are used. After a constant voltage is applied to the carbon electrode and the current becomes steady, a sample containing glucose is added and the increase in current is measured. The glucose concentration in the sample can be calculated according to a calibration curve prepared with a standard concentration glucose solution.
活性測定例
 本発明においては、GDH活性は特に断りのない限り、以下の方法に従って行われる。
 反応液(0.1mol/L トリス、10mmol/L β-NAD、150mmol/L D-グルコース、 pH8.0)2.9mLを石英セルにいれ、37℃で5分間予備加温する。そしてGDH溶液0.1mLを加えて混和し、37℃で5分反応させ、この間340nm吸光度を測定する。吸光度変化の直線部分から1分間あたりの吸光度の上昇度(ΔODTEST)を算出する。盲検は、GDH溶液の代わりに緩衝液を加えて混和し、同様に37℃5分インキュベートして340nm吸光度を記録し、1分間あたりの吸光度変化(ΔODBLANK)を算出する。これらの値を以下の式に当てはめて活性値(U/mL)を算出する。なおここでは、基質存在下で1分間に1マイクロモルの補酵素を還元する酵素量を1Uと定義する。
 
GDH活性(U/mL)=[(ΔODTEST-ΔODBLANK)×3.0×希釈倍率]/(6.22×1.0×0.1)
 
なお、ここで
3.0  :GDH溶液混和後の容量(mL)
6.22 :NADHのミリモル分子吸光係数(cm/マイクロモル)
1.0  :光路長(cm)
0.1  :添加するGDH溶液の液量(mL)
である。
Activity measurement examples In the present invention, GDH activity is carried out according to the following method unless otherwise specified.
Place 2.9 mL of the reaction solution (0.1 mol / L Tris, 10 mmol / L β-NAD + , 150 mmol / L D-glucose, pH 8.0) in a quartz cell, and preheat at 37 ° C. for 5 minutes. And 0.1 mL of GDH solution is added and mixed, it is made to react at 37 degreeC for 5 minutes, 340 nm light absorbency is measured in the meantime. The degree of increase in absorbance per minute (ΔOD TEST ) is calculated from the linear portion of the absorbance change. In the blind test, a buffer solution is added in place of the GDH solution and mixed, and similarly, incubated at 37 ° C. for 5 minutes, the absorbance at 340 nm is recorded, and the absorbance change per minute (ΔOD BLANK ) is calculated. The activity value (U / mL) is calculated by applying these values to the following equation. Here, the amount of enzyme that reduces 1 micromole of coenzyme per minute in the presence of a substrate is defined as 1 U.

GDH activity (U / mL) = [(ΔOD TEST −ΔOD BLANK ) × 3.0 × dilution ratio] / (6.22 × 1.0 × 0.1)

Here, 3.0: Volume after mixing with GDH solution (mL)
6.22: millimolar molecular extinction coefficient of NADH (cm 2 / micromolar)
1.0: Optical path length (cm)
0.1: Volume of GDH solution to be added (mL)
It is.
タンパク質の定量および比活性の算出例
 本発明に述べるタンパク質量は280nmの吸光度を測定することにより測定したものである。
 すなわち、280nmにおける吸光度が0.1~1.0の範囲となるように酵素溶液を蒸留水で希釈し、蒸留水を用いてゼロ点補正を行った吸光度計を用いて280nmの吸光度(Abs)を測定する。本発明に述べるタンパク質濃度は、1Abs≒1mg/mlと近似し、吸光度の測定と測定した溶液の希釈倍率とを乗じた値で示したものである。
 また、本発明に述べる比活性とは、本測定方法によるタンパク質量として1mgあたりのGDHの活性(U/mg)であり、この際のGDH活性は、上記活性測定例に従って測定することにより得られる値である。
Example of Calculation of Protein Quantification and Specific Activity The amount of protein described in the present invention is measured by measuring absorbance at 280 nm.
That is, the enzyme solution was diluted with distilled water so that the absorbance at 280 nm was in the range of 0.1 to 1.0, and the absorbance (Abs) at 280 nm was measured using an absorptiometer corrected with zero point using distilled water. Measure. The protein concentration described in the present invention approximates 1 Abs≈1 mg / ml, and is expressed by a value obtained by multiplying the absorbance measurement and the measured solution dilution rate.
The specific activity described in the present invention is the activity (U / mg) of GDH per mg as the amount of protein by this measurement method, and the GDH activity at this time is obtained by measuring according to the above activity measurement example. Value.
ニコチンアミドアデニンジヌクレオチド(NAD)に対するミカエリス定数(Km)の算出例
 本発明に述べるNADに対するミカエリス定数(Km)の算出方法は、以下の測定方法により行う。
 すなわち、測定溶液として上述の活性測定例に記載の反応液組成におけるβ―NAD+の濃度を20mmol/L、10mmol/L、5mmol/L、2.5mmol/L、1mmol/L、0.5mmol/Lとした6種類の反応液を作製し、それぞれの測定溶液を用いて上述の活性測定例の方法に従いGDH溶液(上述の活性測定例における活性値が0.8U/mlとなるよう調整した溶液)のΔOD(ΔODTEST-ΔODBLANK)を測定する。それら測定値をもとにLineweaver-Burkプロット法(両逆数プロット法)に従ってミカエリス定数(Km)を算出する。
Calculation Example of Michaelis Constant (Km) for Nicotinamide Adenine Dinucleotide (NAD) The method for calculating the Michaelis constant (Km) for NAD described in the present invention is performed by the following measurement method.
That is, the concentration of β-NAD + in the reaction solution composition described in the above activity measurement example as a measurement solution is 20 mmol / L, 10 mmol / L, 5 mmol / L, 2.5 mmol / L, 1 mmol / L, 0.5 mmol / L. 6 types of reaction solutions were prepared, and GDH solutions (solutions adjusted to have an activity value of 0.8 U / ml in the above-mentioned activity measurement example) using the respective measurement solutions according to the method of the above-described activity measurement example. ΔOD (ΔODTEST−ΔODBLANK) is measured. Based on these measured values, the Michaelis constant (Km) is calculated according to the Lineweaver-Burk plot method (both reciprocal plot method).
グルコースに対するミカエリス定数(Km)の算出例
 本発明に述べる基質に対するミカエリス定数(Km)の算出方法は、以下の測定方法により行う。
 すなわち、測定溶液として上述の活性測定例に記載の反応液組成におけるD-グルコースの濃度を1000mmol/L、 200mmol/L、100mmol/L、50mmol/L、20mmol/L、10mmol/Lとした6種類の反応液を作製し、それぞれの測定溶液を用いて上述の活性測定例の方法に従いGDH溶液(上述の活性測定例における活性値が0.8U/mlとなるよう調整した溶液)のΔOD(ΔODTEST-ΔODBLANK)を測定する。それら測定値をもとにLineweaver-Burkプロット法(両逆数プロット法)に従ってミカエリス定数(Km)を算出する
Calculation Example of Michaelis Constant (Km) for Glucose The method for calculating the Michaelis constant (Km) for the substrate described in the present invention is performed by the following measurement method.
That is, six types of D-glucose concentrations in the reaction liquid composition described in the above activity measurement examples as measurement solutions were 1000 mmol / L, 200 mmol / L, 100 mmol / L, 50 mmol / L, 20 mmol / L, 10 mmol / L. And using each measurement solution according to the method of the above activity measurement example, ΔOD (ΔODTEST) of the GDH solution (solution adjusted so that the activity value in the above activity measurement example is 0.8 U / ml) -ΔODBLANK). Based on these measured values, the Michaelis constant (Km) is calculated according to the Lineweaver-Burk plot method (both reciprocal plot method).
基質特異性の算出例
 本発明に述べる基質特異性の評価方法は、以下の測定方法により行う。すなわち、測定溶液として上述の活性測定例に記載の反応液組成におけるD-グルコースに換えて、マルトース、ガラクトース、キシロースを150mmol/L含む反応液をそれぞれ作製し、これらを用いて活性測定例に従って活性値を測定する。これら反応液を用いた活性値を、グルコースを基質とした場合の活性値で割った値を、各基質に対する反応性(対グルコース%)として算出する。
Calculation Example of Substrate Specificity The substrate specificity evaluation method described in the present invention is performed by the following measurement method. That is, reaction solutions containing 150 mmol / L of maltose, galactose, and xylose were prepared in place of D-glucose in the reaction solution composition described in the above-mentioned activity measurement example as a measurement solution, and these were used for activity according to the activity measurement example. Measure the value. A value obtained by dividing the activity value using these reaction solutions by the activity value when glucose is used as a substrate is calculated as the reactivity to each substrate (vs. glucose).
25℃/37℃活性温度比の算出例
 本発明に述べる25℃/37℃活性温度比の算出方法は、以下のとおり行う。
 すなわち、上述の活性測定例による活性の測定を、反応温度25℃において実施することで得られる活性値を、37℃において測定した活性値で割ることにより25℃/37℃活性温度比を算出する。
Calculation Example of 25 ° C./37° C. Active Temperature Ratio The calculation method of the 25 ° C./37° C. active temperature ratio described in the present invention is performed as follows.
That is, the 25 ° C / 37 ° C activity temperature ratio is calculated by dividing the activity value obtained by carrying out the activity measurement by the above activity measurement example at the reaction temperature of 25 ° C by the activity value measured at 37 ° C. .
 以下、本発明を実施例により具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to the following examples.
 まず、本発明者らがサーモプロテウス・エスピー・GDH1株(Thermoproteus sp. GDH1)より取得したグルコースデヒドロゲナーゼのアミノ酸配列(配列番号2に記載のアミノ酸配列)をコードする遺伝子(配列番号1)および該遺伝子を挿入したプラスミドの取得方法を、以下の試験例1~4に示す。(この方法は特願2008-60032にも記載されている。) First, the gene (SEQ ID NO: 1) encoding the amino acid sequence (amino acid sequence described in SEQ ID NO: 2) of glucose dehydrogenase obtained by the present inventors from Thermoproteus sp. GDH1 strain (Thermoproteus sp. GDH1) and the gene Methods for obtaining the plasmid into which is inserted are shown in Test Examples 1 to 4 below. (This method is also described in Japanese Patent Application No. 2008-60032.)
<試験例1>
超好熱性始原菌の培養とGDHの精製
 発明者らは、鹿児島県小宝島の温泉水より超好熱性始原菌を分離した。本菌株は、16SrRNAの塩基配列より、サーモプロテウス属に分類される菌であると推定され、さらに以下の(A)~(G)に示す特性を有していた。(A)16SrRNAをコードするゲノムDNA上の塩基配列として、配列番号3に示す塩基配列を含む。(B)80℃以上の温度で生育可能であり、至適生育温度は約90℃である。(C)ゲノムDNAのGC含量が58~62モル%である。(D)絶対嫌気性菌である。(E)電子受容体としてチオ硫酸塩を加えた場合に良好な増殖を示す。(F)NaCl濃度1%以下で生育可能である。(G)形状は長さ10~30μm、幅約5μmの長桿菌である。以上の特徴を有する本菌株を、サーモプロテウス・エスピー・GDH1株(Thermoproteus sp. GDH1)と名づけた。
 GDH1株を培養するにあたって、0.5%トリプトン、0.5%酵母エキス、0.5%チオ硫酸ナトリウム、0.5%塩化ナトリウム、0.005%硫化ナトリウム、さらに溶存酸素の指示薬として5mg/Lのレサズリンを成分として含む培地を嫌気性グローブボックスに入れ、窒素置換を繰り返すことで培地中の酸素を除いた。ここに、上記の分離菌株を植え、85℃で3日間静置培養した。さらに、上記培地組成に終濃度0.5%のグルコースを追加した培地に増殖菌体を植え継ぎ、85℃で3日間嫌気培養を行った。培養液7Lを、高速冷却遠心装置を用いて遠心し、上清を除くことで菌体を回収した。この菌体を20mLの50mMリン酸カリウムバッファー(pH7.0)に懸濁して氷上に置き、超音波破砕機(トミー精工社製、UD-201)を用いて出力3、駆動率40%で10分処理し、菌体を破砕した。破砕液をさらに遠心分離することで固形残渣を取り除き、GDH粗抽出液を得た。この粗抽出液に、硫酸アンモニウムを終濃度30%となるよう溶解して室温で20分攪拌することで夾雑タンパク質を沈殿させた。遠心分離にて沈殿を取り除き、さらに終濃度48%となるよう硫酸アンモニウムを加えて溶解し、室温で20分攪拌することでGDHを含む画分を沈殿させた。遠心分離にて上清を取り除き、得られたGDH画分を20mLの50mMリン酸カリウムバッファー(pH7.0)に溶解した。この液をカラム容量6mLのResourceQ(GEヘルスケア社製)にアプライして夾
雑タンパク質をカラムに吸着させ、GDHを透過させた。この透過液に終濃度22.8%となるよう硫酸アンモニウムを溶解し、疎水性カラムであるresourceISOカラム(GEヘルスケア社製、容量6mL)にアプライし吸着させた。硫酸アンモニウム濃度22.8%~0%のグラジエントをかけて吸着タンパク質を溶出してGDH活性を有するフラクションを集めた。さらに分離カラムとしてSuperdex200、溶出バッファーとして50mMトリス、0.15mM塩化ナトリウムを含むpH7.0の緩衝液を用いてゲルろ過を行った。得られたGDH画分を精製溶液とした。
<Test Example 1>
Culture of hyperthermophilic archaeon and purification of GDH The inventors isolated the hyperthermophilic archaeon from hot spring water in Kohojima, Kagoshima Prefecture. This strain was estimated to be a bacterium belonging to the genus Thermoproteus from the base sequence of 16S rRNA, and further had the following characteristics (A) to (G). (A) The base sequence shown in SEQ ID NO: 3 is included as the base sequence on the genomic DNA encoding 16S rRNA. (B) It can grow at a temperature of 80 ° C. or higher, and the optimum growth temperature is about 90 ° C. (C) The GC content of the genomic DNA is 58 to 62 mol%. (D) Absolute anaerobic bacteria. (E) Good growth when thiosulfate is added as an electron acceptor. (F) It can grow at a NaCl concentration of 1% or less. (G) The shape is a long koji mold having a length of 10 to 30 μm and a width of about 5 μm. This strain having the above characteristics was named Thermoproteus sp. GDH1 strain (Thermoproteus sp. GDH1).
In culturing GDH1 strain, 0.5% tryptone, 0.5% yeast extract, 0.5% sodium thiosulfate, 0.5% sodium chloride, 0.005% sodium sulfide, and 5 mg / A medium containing L resazurin as a component was placed in an anaerobic glove box, and nitrogen substitution was repeated to remove oxygen in the medium. Here, the above isolate was planted and statically cultured at 85 ° C. for 3 days. Furthermore, the proliferating cells were inoculated into a medium in which glucose having a final concentration of 0.5% was added to the medium composition, and anaerobic culture was performed at 85 ° C. for 3 days. 7 L of the culture solution was centrifuged using a high-speed cooling centrifuge, and the cells were collected by removing the supernatant. This microbial cell was suspended in 20 mL of 50 mM potassium phosphate buffer (pH 7.0) and placed on ice. Using an ultrasonic crusher (Tomy Seiko Co., Ltd., UD-201), the output was 3 at a driving rate of 40%. The cells were divided and the cells were crushed. The crushing liquid was further centrifuged to remove solid residues, and a GDH crude extract was obtained. In this crude extract, ammonium sulfate was dissolved to a final concentration of 30% and stirred at room temperature for 20 minutes to precipitate contaminating proteins. The precipitate was removed by centrifugation, and ammonium sulfate was added and dissolved to a final concentration of 48%, followed by stirring at room temperature for 20 minutes to precipitate a fraction containing GDH. The supernatant was removed by centrifugation, and the obtained GDH fraction was dissolved in 20 mL of 50 mM potassium phosphate buffer (pH 7.0). This liquid was applied to ResourceQ (manufactured by GE Healthcare) having a column volume of 6 mL to adsorb contaminating proteins on the column, and GDH was permeated. Ammonium sulfate was dissolved in this permeate so as to have a final concentration of 22.8%, and applied to a resource ISO column (manufactured by GE Healthcare, volume 6 mL) as a hydrophobic column and adsorbed. The adsorbed protein was eluted with a gradient of ammonium sulfate concentration of 22.8% to 0% to collect fractions having GDH activity. Furthermore, gel filtration was performed using Superdex 200 as a separation column and a buffer solution of pH 7.0 containing 50 mM Tris and 0.15 mM sodium chloride as an elution buffer. The obtained GDH fraction was used as a purified solution.
<試験例2>
GDH遺伝子のクローニング
 実施例1で得られたGDH溶液10μLに等量の2×SDSサンプルバッファー(10mM Tris-HCl、10%グリセロール、2%SDS、0.1%ブロモフェノールブルー、2%(v/v)2-メルカプトエタノール、pH6.8)を加えて100℃で10分煮沸した。これを12.5%アクリルアミドゲルにアプライし、40mAで電気泳動の後、CBB Stain One(ナカライテスク社製)を用いてゲルのCBB染色を行った。染色後のゲルから、サンプルのメインバンドを切り出し、質量分析装置によるペプチドシーケンスの解析を行った。得られた推定アミノ酸配列を元に、ミックス塩基を含むディジェネレートPCRプライマーを作製し、ゲノムDNAをテンプレートにPCR反応を行った。このPCR反応液を1%アガロースゲルにアプライして電気泳動し、エチジウムブロマイドで染色したのち、UV照射下で増幅したGDH遺伝子の内部部分断片のバンドを切り出した。そして切り出したゲル片からWizard SV Gel and PCR Clean-up System(プロメガ社製)を用いてDNAを抽出・精製した。得られたDNA断片を東洋紡製TArget Clone Plusを用い、TAクローニングの要領で本キットに付属のクローニングベクターpTA2にライゲーションした。ライゲーション産物を大腸菌JM109株コンピテントセル(東洋紡製コンピテントハイJM109)に添加してヒートショックによる形質転換を行い、100μg/mLのアンピシリンを含むLBアガロースプレート上に塗布、37℃一晩培養して形質転換体コロニーを形成させた。複数のコロニーをそれぞれ5mLのLB培地(100μg/mLのアンピシリンを含む)に植菌して一晩培養し、培養液からQuantum Prep ミニプレップキット(バイオラッド社製)を用いて、本キットのマニュアルに従いプラスミドを抽出した。抽出したプラスミドのインサートの塩基配列を解析することで、目的のGDH遺伝子の部分塩基配列を決定した。さらに決定した配列を元に、内部部分配列の外側に向けたプライマーを作製し、このプライマーとLA PCR in vitro Cloning Kit(タカラバイオ製)を用いてGDH遺伝子の5’側および3’側末端領域の増幅および塩基配列決定を行うことで、遺伝子の全塩基配列を決定した。決定した塩基配列を配列番号1に、推定されるアミノ酸配列を配列番号2に示す。
<Test Example 2>
Cloning of GDH gene In 10 μL of the GDH solution obtained in Example 1, an equal volume of 2 × SDS sample buffer (10 mM Tris-HCl, 10% glycerol, 2% SDS, 0.1% bromophenol blue, 2% (v / v) 2-mercaptoethanol, pH 6.8) was added and boiled at 100 ° C. for 10 minutes. This was applied to a 12.5% acrylamide gel, and after electrophoresis at 40 mA, the gel was subjected to CBB staining using CBB Stain One (manufactured by Nacalai Tesque). The main band of the sample was cut out from the stained gel, and the peptide sequence was analyzed with a mass spectrometer. Based on the obtained deduced amino acid sequence, a degenerate PCR primer containing a mixed base was prepared, and a PCR reaction was performed using genomic DNA as a template. This PCR reaction solution was applied to a 1% agarose gel, electrophoresed, stained with ethidium bromide, and then a band of an internal partial fragment of the GDH gene amplified under UV irradiation was cut out. Then, DNA was extracted and purified from the cut gel piece using Wizard SV Gel and PCR Clean-up System (Promega). The obtained DNA fragment was ligated to the cloning vector pTA2 attached to this kit in the manner of TA cloning using Toyobo's TARGET Clone Plus. The ligation product was added to E. coli JM109 strain competent cells (Toyobo Competent High JM109), transformed by heat shock, coated on LB agarose plate containing 100 μg / mL ampicillin, and cultured at 37 ° C. overnight. Transformant colonies were formed. Multiple colonies are inoculated into 5 mL of LB medium (containing 100 μg / mL of ampicillin) and cultured overnight, and the manual of this kit is used from the culture solution using Quantum Prep Miniprep Kit (BioRad). The plasmid was extracted according to By analyzing the base sequence of the extracted plasmid insert, the partial base sequence of the target GDH gene was determined. Further, based on the determined sequence, a primer directed to the outside of the internal partial sequence was prepared, and using this primer and LA PCR in vitro Cloning Kit (manufactured by Takara Bio Inc.), the 5 ′ and 3 ′ end regions of the GDH gene The entire nucleotide sequence of the gene was determined by performing amplification and sequencing. The determined base sequence is shown in SEQ ID NO: 1, and the deduced amino acid sequence is shown in SEQ ID NO: 2.
<試験例3>
GDH発現ベクターの構築
 超好熱菌ゲノムDNAをテンプレートに、GDH遺伝子の開始コドンにNdeI、終止コドン直後にBamHIサイトを付加させた配列を有するよう設計したプライマーを用いてPCR反応を行った。反応液を1%アガロースゲルにアプライして電気泳動し、エチジウムブロマイドで染色したのち、UV照射下で増幅したGDH遺伝子のバンドを切り出した。そして切り出したゲル片からDNAを抽出・精製し、得られたDNA断片をTArget Clone Plusを用い、本キットに付属のクローニングベクターpTA2に挿入した(pTA2TGDH1)。挿入したGDH遺伝子内部に存在するNdeIサイト(CATATG)を、コードするアミノ酸は変えずに別の塩基配列に置換するために以下の操作を行った。5’-AGCACGGCATTTGGGGGCTCC-3’(配列番号4)および5’-GGAGCCCCCAAATGCCGTGCT-3’(配列番号5)からなる塩基配列を有するオリゴDNAをプライマーとし、上記で得られたpTA2TGD
H1をテンプレートとしてPCRと同様の反応をサーマルサイクラーを用いて行った。つづいて反応液に対液2%のDpnIを添加し、37℃1時間処理することでテンプレート(pTA2TGDH1)を消化した。このDpnI処理液を大腸菌JM109株コンピテントセル(東洋紡製コンピテントハイJM109)に添加してヒートショックによる形質転換を行い、100μg/mLのアンピシリンを含むLBアガロースプレート上に塗布、37℃一晩培養して形質転換体コロニーを形成させた。複数のコロニーをそれぞれ5mLのLB培地(100μg/mLのアンピシリンを含む)に植菌して一晩培養し、培養液からQuantum Prep プラスミドミニプレップキットを用いてプラスミドを抽出した。得られたプラスミドの塩基配列を解析し、GDHアミノ酸配列のうち113番目のイソロイシンをコードするコドンがATAからATTに変換された、すなわちGDH遺伝子塩基配列のうち339番目のAがTに置換されたことを確認して配列修正済みプラスミドpTA2TGDH2とした。このpTA2TGDH2についてNdeI、BamHIによる制限酵素処理を行い、1%アガロースゲルで電気泳動を行ってGDH遺伝子(NdeI及びBamHI切断末端を5’、3’末端にそれぞれ有する)を含むゲル片を切り出し、Wizard SV Gel and PCR Clean-up Systemを用いてDNAを抽出・精製した。これを同じ制限酵素で処理した発現ベクターpET21aと混合し、この混合液と等量のライゲーションハイ(東洋紡製)を混和して16℃30分インキュベートすることによりライゲーションを行った。このライゲーション液を大腸菌JM109株コンピテントセルに添加してヒートショックによる形質転換を行い、100μg/mLのアンピシリンを含むLBアガロースプレート上に塗布、37℃一晩培養して形質転換体コロニーを形成させた。形質転換体コロニーのうち、コロニーダイレクトPCRでインサートの挿入が確認されたものを5mLのLB培地(100μg/mLのアンピシリンを含む)に植菌して一晩培養した。培養液を遠心分離して得られた菌体から、プラスミド抽出キットを用いてプラスミドを回収した。このプラスミドのインサートのシーケンス解析により、正しい遺伝子配列を有していることを確認して発現ベクター(pET21aTGDH2)とした。
<Test Example 3>
Construction of GDH expression vector A PCR reaction was carried out using primers designed to have a sequence in which NdeI was added to the start codon of the GDH gene and a BamHI site was added immediately after the stop codon using the hyperthermophilic genomic DNA as a template. The reaction solution was applied to a 1% agarose gel, electrophoresed, stained with ethidium bromide, and then the GDH gene band amplified under UV irradiation was excised. Then, DNA was extracted and purified from the cut gel piece, and the obtained DNA fragment was inserted into the cloning vector pTA2 attached to this kit (pTA2TGDH1) using TARGET Clone Plus. In order to replace the NdeI site (CATATG) present in the inserted GDH gene with another base sequence without changing the encoded amino acid, the following operation was performed. PTA2TGD obtained above using as a primer an oligo DNA having a base sequence consisting of 5′-AGCACGGGCATTTGGGGGCCTCC-3 ′ (SEQ ID NO: 4) and 5′-GGAGCCCCCAAATGCCGTGCT-3 ′ (SEQ ID NO: 5)
A reaction similar to PCR was performed using H1 as a template using a thermal cycler. Subsequently, 2% DpnI to the reaction solution was added to the reaction solution, and the template (pTA2TGDH1) was digested by treatment at 37 ° C. for 1 hour. This DpnI treatment solution was added to E. coli JM109 strain competent cells (Toyobo Competent High JM109), transformed by heat shock, coated on LB agarose plate containing 100 μg / mL ampicillin, and cultured at 37 ° C. overnight. Thus, a transformant colony was formed. A plurality of colonies were each inoculated into 5 mL of LB medium (containing 100 μg / mL ampicillin) and cultured overnight, and a plasmid was extracted from the culture solution using a Quantum Prep plasmid miniprep kit. The base sequence of the obtained plasmid was analyzed, and the codon encoding the 113th isoleucine in the GDH amino acid sequence was converted from ATA to ATT, that is, the 339th A in the GDH gene base sequence was replaced with T. It was confirmed that the plasmid pTA2TGDH2 was sequence-corrected. This pTA2TGDH2 was treated with restriction enzymes NdeI and BamHI, electrophoresed on a 1% agarose gel to cut out a gel piece containing the GDH gene (having NdeI and BamHI cleavage ends at 5 ′ and 3 ′ ends, respectively), Wizard DNA was extracted and purified using SV Gel and PCR Clean-up System. This was mixed with the expression vector pET21a treated with the same restriction enzyme, and this mixture was mixed with an equal amount of Ligation High (manufactured by Toyobo) and incubated at 16 ° C. for 30 minutes for ligation. This ligation solution is added to E. coli JM109 strain competent cells, transformed by heat shock, spread on LB agarose plates containing 100 μg / mL ampicillin, and cultured overnight at 37 ° C. to form transformant colonies. It was. Among the transformant colonies, colonies whose insertion was confirmed by colony direct PCR were inoculated into 5 mL of LB medium (containing 100 μg / mL ampicillin) and cultured overnight. From the cells obtained by centrifuging the culture solution, the plasmid was recovered using a plasmid extraction kit. By analyzing the sequence of the insert of this plasmid, it was confirmed that it had the correct gene sequence and used as an expression vector (pET21aTGDH2).
<試験例4>
GDH遺伝子の発現と精製
 実施例3で得たpET21aTGDH2を、大腸菌BL21(DE3)コンピテントセル(ストラタジーン社製)に添付のマニュアルに従ってヒートショック導入し、形質転換株を得た。形質転換コロニーを試験管中のLB培地5mL(100μg/mLのアンピシリンを含む)8本に懸濁し、37℃で1晩振とう培養した。得られた培養液を、2L容坂口フラスコ中のLB培地800mL(100μg/mLのアンピシリンを含む)4本にそれぞれ8mLずつ植菌した。フラスコは37℃120rpmで3時間振とうし、660nmにおける菌体濁度が約0.6になった時点で終濃度0.1mMとなるようIPTGを添加し、さらに37℃120rpmで4時間振とう培養を継続した。培養液を高速冷却遠心分離機で遠心分離して上清をデカントにより除き、得られた菌体を70mLの50mM Tris塩酸緩衝液+0.1M NaCl(pH8.0)に懸濁した。この懸濁液に、超音波破砕機(トミー精工社製、UD-201)を用いて出力4、駆動率40%で20分処理することで菌体を破砕した。破砕液を遠心分離して残渣を取り除き、GDH粗抽出液とした。この粗抽出液を85℃で30分処理して夾雑タンパク質を変性させ、変性タンパク質を遠心分離によって除いた。上清画分は50mM Tris-HCl・0.1M NaCl(pH8.0)で緩衝化したresourceQカラムを透過させた後、透過液に対液21.3%の硫酸アンモニウムを溶解させた。この液を、50mM Tris-HCl・22.8%硫酸アンモニウム(pH8.0)で緩衝化したresourceISOカラムに吸着させ、硫酸アンモニウム濃度0%までのグラジエント溶出を行い、GDH画分を集めた。この画分をさらにsuperdex200カラムを用いてゲルろ過し、得られたGDH画分を精製リコンビナントGDH溶液とした。この精製溶液は、SDS-PAGEにてCBB染色で単一バンドを示す純品であることを確認した。
<Test Example 4>
Expression and purification of GDH gene pET21aTGDH2 obtained in Example 3 was introduced into Escherichia coli BL21 (DE3) competent cells (manufactured by Stratagene) according to the attached manual, and a transformant was obtained. The transformed colony was suspended in 8 mL of LB medium (containing 100 μg / mL ampicillin) in a test tube and cultured with shaking at 37 ° C. overnight. 8 mL each of the obtained culture solution was inoculated into 4 800 mL LB medium (containing 100 μg / mL ampicillin) in a 2 L Sakaguchi flask. The flask was shaken at 37 ° C. and 120 rpm for 3 hours, and when the turbidity at 660 nm reached about 0.6, IPTG was added to a final concentration of 0.1 mM, and further shaken at 37 ° C. and 120 rpm for 4 hours. The culture was continued. The culture solution was centrifuged with a high-speed cooling centrifuge, the supernatant was removed by decantation, and the obtained bacterial cells were suspended in 70 mL of 50 mM Tris-hydrochloric acid buffer + 0.1 M NaCl (pH 8.0). The suspension was treated for 20 minutes at an output of 4 and a driving rate of 40% using an ultrasonic crusher (UD-201, manufactured by Tommy Seiko Co., Ltd.) to crush the cells. The crushed liquid was centrifuged to remove the residue, and a GDH crude extract was obtained. This crude extract was treated at 85 ° C. for 30 minutes to denature contaminating proteins, and the denatured proteins were removed by centrifugation. The supernatant fraction was passed through a resourceQ column buffered with 50 mM Tris-HCl / 0.1 M NaCl (pH 8.0), and 21.3% ammonium sulfate was dissolved in the permeate. This solution was adsorbed on a resource ISO column buffered with 50 mM Tris-HCl · 22.8% ammonium sulfate (pH 8.0), and gradient elution was performed up to an ammonium sulfate concentration of 0% to collect GDH fractions. This fraction was further subjected to gel filtration using a superdex 200 column, and the obtained GDH fraction was used as a purified recombinant GDH solution. This purified solution was confirmed to be a pure product showing a single band by CBB staining by SDS-PAGE.
<実施例1>
202番目アルギニンに相当する残基の部位特異的変異導入
 試験例3の要領で得たpET21aTGDH2を制限酵素NdeI・BamHIで消化し、1%アガロースを含むゲルにアプライして電気泳動を行い、エチジウムブロマイドで染色ののち紫外線照射下で約1kbのバンドを切り出し、切り出したゲルを東洋紡製の核酸精製キット(MagExtrantor -Gel&PCR Clean Up-)を用いて精製・抽出することで野生型GDHをコードするDNA断片を得た。
 この精製DNAをNdeI/BamHIによる制限酵素処理を行った発現ベクターpBluescriptKSN+(pBluescriptKS+のβガラクトシダーゼ遺伝子翻訳開始コドン位置に塩基置換によりNdeIサイトを導入したもの)溶液と混合してライゲーションを行うことで発現プラスミドpBSTGDH2を作製した。
 202番目アルギニンを別の任意のアミノ酸残基に置換するにあたって、ミスマッチプライマーの設計を行った。プライマーの配列は、R202X-F:5’-CGTGGCCACGNNSCCGCCGGAT-3’(配列番号6)、R202X-R:5’-ATCCGGCGGSNNCGTGGCCACG-3’(配列番号7)である。但し、配列中のNはA、T、G、Cを含むミックス塩基、SはG、Cを含むミックス塩基を示す。
 このミスマッチプライマーを用いてDNAポリメラーゼによる伸長反応並びに制限酵素DpnI処理によるテンプレートDNAの消化を経て、202番目Argに任意の変異が導入されたGDHの発現プラスミドライブラリーを作製した。このライブラリー溶液を大腸菌JM109株コンピテントセル(東洋紡製コンピテント・ハイJM109)に添加し、本製品に添付のマニュアルに従ってヒートショックにより形質転換を行った。
 得られた形質転換コロニーから50個を爪楊枝でピックアップし、それぞれ試験管中の5mlのLB培地(100μg/mlのアンピシリンを含む)に植菌し、37℃で24時間振とう培養を行った。培養液1mlを1.5ml容エッペンドルフチューブに移し、12000rpmで5分間遠心し、上清を除いて菌体を得た。この菌体を20mMリン酸カリウムバッファー(pH8.0)1mlに懸濁し、超音波処理により菌体を破砕した。
 この破砕液についてまずは活性測定例に記載のとおり活性を測り、活性の認められた液について培養液からミニプレップによりプラスミドを抽出・精製し、シーケンスを解析することで202番目アルギニンに相当する部位に導入されたアミノ酸置換を調べた。
 またこれら変異型GDHについては、発現プラスミドを形質転換した大腸菌JM109株を500ml容坂口フラスコに入った50mlGDH生産培地(2.4%酵母エキス、2.4%ペプトン、1.25%リン酸1水素2カリウム、0.23%リン酸2水素1カリウム、0.4%グリセロール、pH7.0)に植菌し、37℃180rpmで24時間振とう培養して発現させた。
 得られた培養液を遠心後上清を捨てて菌体を得、これを10mlの20mMリン酸カリウムバッファー(pH8.0)に懸濁して超音波により破砕した。さらにこの破砕液に1.52gの硫酸アンモニウムを加えて溶解し、60℃1時間の加温を行い、さらに遠心分離によって沈殿を除いた。この溶液を、15.2%硫酸アンモニウムを含む20mMリン酸カリウムバッファー(pH8.0)で緩衝化させたOctyl-Sepharose樹脂(GEヘルスケア社製)にアプライしてGDHを樹脂に吸着させた。そして硫酸アンモニウム濃度を15.2%から0%へ、同時にエチレングリコール濃度を0%から0.1%へ、それぞれグラジエントをかけながらバッファーを通液することでGDHを溶出させた。最後に、50mMリン酸カリウムバッファー(pH7.0)により緩衝化したG-25
Sepharose樹脂を用いて脱塩を行い、精製GDHとした。
<Example 1>
PET21aTGDH2 obtained in the same manner as in Test Example 3 for site-directed mutagenesis of the residue corresponding to the 202nd arginine was digested with the restriction enzymes NdeI and BamHI, applied to a gel containing 1% agarose, electrophoresed, and ethidium bromide A DNA fragment encoding wild-type GDH is obtained by excising a band of about 1 kb under ultraviolet irradiation and purifying and extracting the excised gel using Toyobo's nucleic acid purification kit (MagExtrantor-Gel & PCR Clean Up-). Got.
This purified DNA is mixed with NdeI / BamHI restriction enzyme treatment expression vector pBluescriptKSN + (pBluescriptKS + β-galactosidase gene translation start codon position into which NdeI site is introduced by base substitution) and ligated for expression plasmid pBSTGDH2 was prepared.
In substituting the 202nd arginine with another arbitrary amino acid residue, a mismatch primer was designed. The primer sequences are R202X-F: 5'-CGTGGCCCAGNNSCCGCCGGAT-3 '(SEQ ID NO: 6), R202X-R: 5'-ATCCGGCGSNNCGTGGCCACCG-3' (SEQ ID NO: 7). However, N in the sequence represents a mixed base containing A, T, G and C, and S represents a mixed base containing G and C.
Using this mismatch primer, a DNA polymerase expression plasmid library in which an arbitrary mutation was introduced into the 202nd Arg was prepared through extension reaction with DNA polymerase and digestion of template DNA by treatment with restriction enzyme DpnI. This library solution was added to Escherichia coli JM109 strain competent cell (Toyobo Competent High JM109), and transformation was performed by heat shock according to the manual attached to this product.
50 of the resulting transformed colonies were picked up with toothpicks, each inoculated into 5 ml of LB medium (containing 100 μg / ml ampicillin) in a test tube, and cultured with shaking at 37 ° C. for 24 hours. 1 ml of the culture solution was transferred to a 1.5 ml Eppendorf tube, centrifuged at 12,000 rpm for 5 minutes, and the supernatant was removed to obtain bacterial cells. The cells were suspended in 1 ml of 20 mM potassium phosphate buffer (pH 8.0), and the cells were disrupted by ultrasonic treatment.
First, measure the activity of this disrupted solution as described in the activity measurement example, extract and purify the plasmid from the culture solution with a miniprep for the activity confirmed, and analyze the sequence to the site corresponding to the 202nd arginine. Introduced amino acid substitutions were examined.
In addition, for these mutant GDH, 50 ml GDH production medium (2.4% yeast extract, 2.4% peptone, 1.25% monohydrogen phosphate) in an E. coli JM109 strain transformed with the expression plasmid was placed in a 500 ml Sakaguchi flask. 2 potassium, 0.23% monopotassium dihydrogen phosphate, 0.4% glycerol, pH 7.0), and cultured by shaking at 37 ° C. and 180 rpm for 24 hours for expression.
After centrifuging the obtained culture solution, the supernatant was discarded to obtain bacterial cells, which were suspended in 10 ml of 20 mM potassium phosphate buffer (pH 8.0) and disrupted by ultrasonic waves. Further, 1.52 g of ammonium sulfate was added to this crushed solution to dissolve it, and the mixture was heated at 60 ° C. for 1 hour, and further the precipitate was removed by centrifugation. This solution was applied to Octyl-Sepharose resin (manufactured by GE Healthcare) buffered with 20 mM potassium phosphate buffer (pH 8.0) containing 15.2% ammonium sulfate to adsorb GDH to the resin. Then, GDH was eluted by passing the buffer through a gradient while changing the ammonium sulfate concentration from 15.2% to 0% and simultaneously the ethylene glycol concentration from 0% to 0.1%. Finally, G-25 buffered with 50 mM potassium phosphate buffer (pH 7.0)
Desalting was performed using Sepharose resin to obtain purified GDH.
 このようにして得た精製GDHについて、NADに対するミカエリス定数の算出・グルコースに対するミカエリス定数の算出を上述の算出例に従ってそれぞれ測定・算出した。
 また、pBSTGDH2を発現ベクターとして使用し、同様に発現および精製を行った野生型GDHについても同様にNADに対するミカエリス定数の算出・グルコースに対す
るミカエリス定数の算出を行った。
 結果を表1に示す。この結果から、202番目アルギニンに相当するアミノ酸残基を、グリシン、アラニン、ロイシン、イソロイシン、セリン、トレオニン、アスパラギン、およびリジンのいずれかに置換した変異酵素では、野生型に比べてNADに対するミカエリス定数が低下していることが見出された。また、202番目アルギニンに相当するアミノ酸残基を、グリシン、アラニン、セリン、トレオニン、およびアスパラギンのいずれかに置換した変異酵素では、野生型に比べて基質(グルコース)に対するミカエリス定数が低下していることが見出された。
With respect to the purified GDH thus obtained, the calculation of the Michaelis constant for NAD and the calculation of the Michaelis constant for glucose were respectively measured and calculated according to the above calculation examples.
In addition, the wild-type GDH that was similarly expressed and purified using pBSTGDH2 as an expression vector was similarly calculated for the Michaelis constant for NAD and the Michaelis constant for glucose.
The results are shown in Table 1. From this result, in the mutant enzyme in which the amino acid residue corresponding to the 202nd arginine is substituted with any of glycine, alanine, leucine, isoleucine, serine, threonine, asparagine, and lysine, the Michaelis constant for NAD compared to the wild type Was found to be reduced. Further, in the mutant enzyme in which the amino acid residue corresponding to the 202nd arginine is substituted with any of glycine, alanine, serine, threonine, and asparagine, the Michaelis constant for the substrate (glucose) is lower than that of the wild type. It was found.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 さらに、試験例4で得た野生型GDHとR202S変異酵素の37℃における比活性をそれぞれ上述の方法に従って算出した。その結果、野生型GDHが172U/mgであったのに対しR202Sは229U/mgであった。上述の精製方法に従って精製したR202S変異型GDHの純度は、SDS-PAGEによれば全タンパク質の約85~90%であり、すなわちR202S変異型GDH自体の比活性は少なくとも229U/mgを超える比活性を有しているということができる。以上から、R202S変異型GDHは野生型GDHに比して比活性が上昇していることが確認された。 Furthermore, the specific activities at 37 ° C. of the wild-type GDH and R202S mutant enzyme obtained in Test Example 4 were calculated according to the methods described above. As a result, wild type GDH was 172 U / mg, while R202S was 229 U / mg. The purity of R202S mutant GDH purified according to the purification method described above is about 85-90% of the total protein according to SDS-PAGE, that is, the specific activity of R202S mutant GDH itself exceeds at least 229 U / mg. It can be said that it has. From the above, it was confirmed that the specific activity of R202S mutant GDH was increased as compared to wild type GDH.
<実施例2>
340番目リジンおよびその近傍への部位特異的変異導入
 実施例1で得られた、202番目アルギニンをセリンに置換した変異酵素(R202S)の発現プラスミドをテンプレートとして用い、実施例1の要領でさらに339番目~341番目へのアミノ酸置換導入の検討を行い、特製が改変したと推定される変異酵素の選抜、並びに導入されたアミノ酸置換の確認を行った。またそれぞれについて実施例1のとおり作製した精製酵素について、比活性、NADに対するミカエリス定数、およびグルコースに対するミカエリス定数の算出を上述の方法に従って行った。
 導入されたアミノ酸置換と、それぞれの変異酵素の特性を表2に示す。R202Sに加えて、T341R、T341G、T341Mのいずれかの変異がさらに導入された変異GDHにおいて、37℃における比活性のさらなる向上が見出された。また、R202Sに加えて、I339P、K340R、T341R、T341P、T341M、T341SおよびT341Gのいずれかの変異がさらに導入された変異GDHにおいて、NADに対するミカエリス定数のさらなる低下が見出された。同時に、R202KおよびR202NについてもK340Rとの組合せを検討したところ、これらもR202Sとの組みあわせ同
様にNADに対するミカエリス定数の顕著な低下がみられた。さらに、R202Sに加えて、T341R、T341M、T341Gのいずれかの変異がさらに導入された変異GDHにおいて、グルコースに対するミカエリス定数の顕著な低下が見出された。
<Example 2>
Site-directed mutagenesis to the 340th lysine and its vicinity The expression plasmid of the mutant enzyme (R202S) obtained by substituting the 202nd arginine with serine obtained in Example 1 was used as a template, and further 339 in the same manner as in Example 1. Examination of the introduction of amino acid substitutions to the 341 th to 341 th was carried out, selection of mutant enzymes presumed to be modified by special products, and confirmation of the introduced amino acid substitutions. For each of the purified enzymes prepared as in Example 1, specific activity, Michaelis constant for NAD, and Michaelis constant for glucose were calculated according to the methods described above.
Table 2 shows the introduced amino acid substitutions and the characteristics of each mutant enzyme. In addition to R202S, the specific activity at 37 ° C. was further improved in the mutant GDH in which any mutation of T341R, T341G, and T341M was further introduced. Further, in addition to R202S, in the mutant GDH in which any mutation of I339P, K340R, T341R, T341P, T341M, T341S and T341G was further introduced, the Michaelis constant for NAD was further reduced. At the same time, the combination of K202R with R202K and R202N was also examined. As with the combination with R202S, the Michaelis constant for NAD was significantly reduced. Furthermore, in the mutant GDH in which any mutation of T341R, T341M, and T341G was further introduced in addition to R202S, a significant decrease in the Michaelis constant for glucose was found.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 引き続き、R202S+I339Pをベースに341番目トレオニンへの変異導入の検討を行った。このR202S+I339Pは補酵素NADに対するミカエリス定数の低下した変異酵素として取得されたものであって、37℃における比活性は132U/mgとむしろ野生型よりも低い。しかし、この変異酵素に341番目のアミノ酸置換を組み合わせることで意外にも飛躍的な37℃における比活性の向上が認められた。
 効果のあった組合せとしては、表2に示すR202S+I339P+T341G、R202S+I339P+T341R、R202S+I339P+T341LおよびR202S+I339P+T341Kであった。また、R202S+I339Pは、グルコースに対するミカエリス定数としては野生型よりも低減されているものの、R202S単独変異よりは高まっている。
 しかし、このR202S+I339Pに加えて、T341G、T341R、T341LおよびT341Kのいずれかの変異をさらに加えることにより、グルコースに対するミカエリス定数の顕著な低減が認められた。
Subsequently, the introduction of mutation into 341 threonine was examined based on R202S + I339P. This R202S + I339P was obtained as a mutant enzyme having a reduced Michaelis constant for the coenzyme NAD, and its specific activity at 37 ° C. is 132 U / mg, which is rather lower than that of the wild type. However, a surprisingly dramatic improvement in specific activity at 37 ° C. was recognized by combining this mutant enzyme with the 341st amino acid substitution.
The effective combinations were R202S + I339P + T341G, R202S + I339P + T341R, R202S + I339P + T341L and R202S + I339P + T341K shown in Table 2. R202S + I339P has a higher Michaelis constant for glucose than wild type, but is higher than R202S alone mutation.
However, in addition to this R202S + I339P, by further adding any mutation of T341G, T341R, T341L and T341K, a significant reduction in the Michaelis constant for glucose was observed.
<実施例3>
ランダム変異導入による改変
 実施例1で得られた、202番目アルギニンをセリンに置換した変異酵素(R202S)の発現プラスミドをテンプレートとして、エラープローンPCRを実施することにより、GDH遺伝子全長およびその上流・下流部分を含む領域を増幅させた。
 エラープローンPCRは、クロンテック社製DiversifyTM PCR Ramdom Mutagenesis Kitを用い、本キットに添付のマニュアルに従って
行い、GDH遺伝子中にランダムに変異を導入させた。
 増幅されたDNAを制限酵素NdeIおよびBamHIで処理し、同じ制限酵素処理を行った発現ベクターpBluescriptKSN+溶液と混合してライゲーションを行うことでランダム変異GDH発現プラスミドライブラリーを作製した。
 このライブラリ溶液を大腸菌JM109コンピテントセルに形質転換し、得られた形質転換コロニーを96ウエルマイクロプレート中のLB培地400μLに植菌し、マイクロプレートシェーカーを用いて37℃で24時間振とう培養した。
 得られた培養液は液体窒素による凍結と60℃ヒートバス湯浴による融解を繰り返すことで菌体を破砕し、10μLの破砕液を200μLのアッセイ溶液(50mM D-グルコース、2mM β―NAD、0.2mM 2,6-ジクロロフェノールインドフェノール(DCPIP)、0.1M Tris-HCl、pH8.0)に懸濁、室温に静置してDCPIPの青色の退色を目視することにより活性の有無を判断した。
 活性の認められた液について上述の活性測定例に従って活性を測定した。また、NADに対するミカエリス定数の低下を評価するために、活性測定例に記載の反応液組成のうち、NAD濃度を0.2mM、5mMとした2種類の反応液を作製して活性を測定し、0.2mMのNADを使用して測定した活性値を5mMのNADを使用して測定した活性値で割ることにより、0.2mM/5mM比を算出した。
 また、グルコースに対するミカエリス定数の低下を評価するために、活性測定例に記載の反応液組成のうち、グルコース濃度を15mM、150mMとした2種類の反応液を作製して活性を測定し、15mMグルコースを使用して測定した活性値を150mMのグルコースを使用して測定した活性値で割ることにより、15mM/150mM比を算出した。
 これらの値が同様に培養・破砕を行って生産したR202S変異酵素と比して上昇しているものを選抜した。約10,000コロニーについてアッセイし、25株を選抜してそれぞれについて導入された変異をプラスミドのシーケンス解析により特定すると共に、それぞれの変異酵素について実施例1の要領に従って培養発現・精製し、各種酵素特性を調べた。さらに、上記の「25℃/37℃活性温度比の算出例」に記載の方法に従い、各変異酵素について温度依存性の評価も実施した。
<Example 3>
Modification by random mutagenesis By carrying out error-prone PCR using the expression plasmid of the mutant enzyme (R202S) obtained by substituting serine for the 202nd arginine obtained in Example 1, the full length of the GDH gene and its upstream / downstream The region containing the part was amplified.
Error-prone PCR was performed using Diversify ™ PCR Random Mutagenesis Kit manufactured by Clontech, according to the manual attached to this kit, and mutations were randomly introduced into the GDH gene.
The amplified DNA was treated with restriction enzymes NdeI and BamHI, mixed with an expression vector pBluescript KSN + solution treated with the same restriction enzyme, and ligated to prepare a random mutant GDH expression plasmid library.
This library solution was transformed into E. coli JM109 competent cells, and the resulting transformed colonies were inoculated into 400 μL of LB medium in a 96-well microplate and cultured with shaking at 37 ° C. for 24 hours using a microplate shaker. .
The obtained culture broth was crushed by repeatedly freezing with liquid nitrogen and thawing with a 60 ° C. heat bath water bath, and 10 μL of the disrupted solution was added to 200 μL of an assay solution (50 mM D-glucose, 2 mM β-NAD + , 0 .Suspension in 2 mM 2,6-dichlorophenolindophenol (DCPIP), 0.1 M Tris-HCl, pH 8.0) and leave at room temperature to determine the presence or absence of activity by visually observing the blue fading of DCPIP did.
The activity of the liquid with recognized activity was measured according to the above activity measurement example. Moreover, in order to evaluate the decrease in Michaelis constant with respect to NAD, among the reaction solution compositions described in the activity measurement examples, two types of reaction solutions with NAD concentrations of 0.2 mM and 5 mM were prepared and the activity was measured. The ratio of 0.2 mM / 5 mM was calculated by dividing the activity value measured using 0.2 mM NAD by the activity value measured using 5 mM NAD.
Further, in order to evaluate the decrease in Michaelis constant with respect to glucose, among the reaction solution compositions described in the activity measurement examples, two types of reaction solutions having glucose concentrations of 15 mM and 150 mM were prepared and the activity was measured. The ratio of 15 mM / 150 mM was calculated by dividing the activity value measured using, by the activity value measured using 150 mM glucose.
Those whose values were increased compared to the R202S mutant enzyme produced by culturing and disrupting were selected. About 10,000 colonies were assayed, 25 strains were selected and the introduced mutation was identified by sequence analysis of the plasmid, and each mutant enzyme was cultured and expressed and purified according to the procedure of Example 1, and various enzymes The characteristics were investigated. Furthermore, according to the method described in “Example of calculating the temperature ratio of 25 ° C./37° C.” above, the temperature dependency of each mutant enzyme was also evaluated.
 導入された変異と各変異酵素の特性とを表3に示す。比活性向上という観点から改変効果のみられた変異としては、A3V+R202S、I46V+S124P+R202S、K49R+R202S、D58V+R202S+Y328D、G74D+R202S+E306G+A323T、V80A+R202S、L85H+R202S、T89K+R202S、A121T+R202S、S124L+R202S、K168E+R202S+E330G、A173T+R202S、R202S+S206N、R202S+K208R、R202S+L294W、R202S+E298G、R202S+H303R、R202S+L311P、R202S+Y328S、R202S+W334G、R202S+D338V、R202S+D338G、R202S+L343P、R202S+L345Q、R202S+L345Pが挙げられる。 Table 3 shows the introduced mutations and the characteristics of each mutant enzyme. Mutations were observed with the modified effective from the viewpoint of specific activity increase, A3V + R202S, I46V + S124P + R202S, K49R + R202S, D58V + R202S + Y328D, G74D + R202S + E306G + A323T, V80A + R202S, L85H + R202S, T89K + R202S, A121T + R202S, S124L + R202S, K168E + R202S + E330G, A173T + R202S, R202S + S206N, R202S + K208R, R202S + L294W, R202S + E298G, R202S + H303R, R202S + L311P , R202S + Y328S, R202S + W334G, R202S + D338V, R202S + D338G, R202S + L343P, R202S + L3 5Q, include the R202S + L345P.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 また、NADに対するミカエリス定数の低減という観点から改変効果のみられた変異としては、D58V+R202S+Y328D、R202S+V286A、R202S+W334G、R202S+H336P、R202S+L345Qが挙げられる。 Also, mutations that have been altered from the viewpoint of reducing the Michaelis constant for NAD include D58V + R202S + Y328D, R202S + V286A, R202S + W334G, R202S + H336P, and R202S + L345Q.
 また、基質であるグルコースに対するミカエリス定数の低減という観点から改変効果のみられた変異としては、I46V+S124P+R202S、D58V+R202S+Y
328D、G74D+R202S+E306G+A323T、T89K+R202S、A121T+R202S、S124L+R202S、R202S+V286A、R202S+L294W、R202S+W334G、R202S+D338V、R202S+L345Q、R202S+L345Pが挙げられる。
In addition, mutations having a modification effect from the viewpoint of reducing the Michaelis constant for the substrate glucose include I46V + S124P + R202S, D58V + R202S + Y.
328D, G74D + R202S + E306G + A323T, T89K + R202S, A121T + R202S, S124L + R202S, R202S + V286A, R202S + L294W, R202S + W334G, R202S + D338V, R202S + L345Q, and R202S + L345.
 さらに、温度依存的活性値変動幅の低減、すなわち25℃/37℃活性温度比の上昇という観点から改変効果のみられた変異としては、I46V+S124P+R202S、K49R+R202S、D58V+R202S+Y328D、G74D+R202S+E306G+A323T、T89K+R202S、S124L+R202S、K168E+R202S+E330G、R202S+S206N、R202S+K208R、R202S+L294W、R202S+E298G、R202S+H303R、R202S+L311P、R202S+Y328S、R202S+W334G、R202S+D338V、R202S+D338G、R202S+L345Q、R202S+L345Pが挙げられる。 Furthermore, mutations that have been altered only from the viewpoint of reducing the temperature-dependent activity fluctuation range, that is, increasing the temperature ratio of 25 ° C./37° C. include I46V + S124P + R202S, K49R + R202S, D58V + R202S + Y328D, G74D + R202S + E306G + A323T, T89K + R202S + S202S + S202S + S202S + S202S + R202S + K208R, R202S + L294W, R202S + E298G, R202S + H303R, R202S + L311P, R202S + Y328S, R202S + W334G, R202S + D338V, R202S + D338G, R202S + L345Q, R202S + L345.
 特に、これらすべての観点において改変効果がみられ、かつ基質特異性としても、マルトース・ガラクトース・キシロースに対して実用上問題とならない低い反応性を維持している変異GDHとしてはD58V+R202S+Y328DとR202S+W334Gの2種類が挙げられる。 In particular, as a mutant GDH that has a modification effect in all these aspects and maintains low reactivity that does not cause a practical problem with respect to maltose, galactose, and xylose as substrate specificity, D58V + R202S + Y328D and R202S + W334G 2 There are types.
<実施例4>
アミノ酸置換による改変効果の高い部位における導入残基の検討
 実施例3の結果から改変効果の高い部位と推定される328番目チロシン並びに334番目トリプトファンについて、置換されるアミノ酸の違いによる改変効果を詳細に検討した。
 実施例1に記載する方法に従ってそれぞれの部位をコードするコドン部位に任意のアミノ酸残基が導入されるようにミックス塩基を導入した配列のミスマッチプライマーを作製し、それぞれR202S変異GDH発現プラスミドを鋳型に部位特異的変異導入を行った。
 それぞれの部位に任意のコドン置換を導入した変異GDH発現ライブラリーについて、実施例3と同様のスクリーニングを実施し、得られた改変GDHについて実施例1の要領に従って培養発現・精製し、実施例3と同じ要領で各酵素特性を調べた。また、それぞれについて培養液よりプラスミドを抽出・精製し、シーケンスを解析することで、導入されたアミノ酸残基を特定した。
<Example 4>
Examination of introduced residues at sites with high alteration effect by amino acid substitution Details of alteration effects due to differences in amino acids substituted for 328th tyrosine and 334th tryptophan presumed to be sites with high alteration effect from the results of Example 3 investigated.
According to the method described in Example 1, mismatch primers of a sequence in which a mixed base was introduced so that an arbitrary amino acid residue was introduced into a codon site encoding each site were prepared, and an R202S mutant GDH expression plasmid was used as a template. Site-directed mutagenesis was performed.
A mutant GDH expression library in which an arbitrary codon substitution was introduced at each site was subjected to the same screening as in Example 3. The obtained modified GDH was cultured and expressed and purified according to the procedure of Example 1, and Example 3 was obtained. The characteristics of each enzyme were examined in the same manner. Moreover, the plasmid was extracted and purified from the culture solution for each, and the introduced amino acid residue was identified by analyzing the sequence.
 結果を表4に示す。328番目チロシンについては、Y328T、Y328V、Y328G、Y328E、Y328Lが、また334番目トリプトファンについてはW334R、W334H、W334A、W334Kが、それぞれR202Sとの組合せでさらなる比活性の向上に寄与することが確認された。また、334番目への変異導入操作にも関わらずR202S+W334S+T335Nという335番目にもアミノ酸置換の導入された変異酵素も得られたが、これも同様にR202S単独変異に比し高い比活性を示した。 The results are shown in Table 4. For the 328th tyrosine, Y328T, Y328V, Y328G, Y328E, Y328L and for the 334th tryptophan, W334R, W334H, W334A, W334K were confirmed to contribute to further increase in specific activity in combination with R202S. It was. In addition, a mutant enzyme having an amino acid substitution introduced at the 335th position, ie, R202S + W334S + T335N, was also obtained in spite of the mutation introduction operation at the 334th position. This also showed a higher specific activity than the R202S single mutation.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 また、NADに対するミカエリス定数(Km)の低減に寄与する変異としては、328番目チロシンについては、Y328T、Y328E、Y328Rが、また334番目トリプトファンについてはW334R、W334H、W334A、W334Kが、それぞれR202Sとの組合せで効果があることが確認された。 Further, mutations that contribute to the reduction of the Michaelis constant (Km) for NAD include Y328T, Y328E, and Y328R for the 328th tyrosine, and W334R, W334H, W334A, and W334K for the 334th tryptophan, respectively, with R202S. It was confirmed that the combination was effective.
 また、Y328T、Y328V、Y328G、Y328E、Y328L、W334R、W334H、W334A、W334K、W334S+T335Nの各変異のいずれかとR202Sとの組合せにより、R202S単独での変異と比してグルコースに対するミカエリス定数がより低減されていることが確認された。 In addition, the combination of any one of the mutations Y328T, Y328V, Y328G, Y328E, Y328L, W334R, W334H, W334A, W334K, W334S + T335N and R202S further reduces the Michaelis constant for glucose compared to the mutation of R202S alone. It was confirmed that
 さらに、温度依存的活性値変動幅の低減、すなわち25℃/37℃活性温度比の上昇という観点からも、Y328T、Y328V、Y328G、Y328E、Y328L、W334R、W334H、W334A、W334K、W334S+T335Nの各変異のいずれかとR202Sとの組合せが有効であることが確認された。 Further, from the viewpoint of reducing the temperature-dependent activity value fluctuation range, that is, increasing the 25 ° C./37° C. active temperature ratio, each mutation of Y328T, Y328V, Y328G, Y328E, Y328L, W334R, W334H, W334A, W334K, W334S + T335N It was confirmed that the combination of any of the above and R202S was effective.
<実施例5>
変異型GDHのスケールアップ製造
 実施例3で得られたD58V+R202S+Y328D変異GDH発現プラスミド、R202S+W334G変異GDH発現プラスミド、並びに実施例4で得られたR202S+W334R発現プラスミドについて、それぞれコンピテント・ハイJM109に形質転換し、組換え大腸菌を得た。それぞれの組換え大腸菌を、500ml容坂口フラスコに入った200ml前培養培地(0.5%酵母エキス、0.25%ペプトン、0.5%塩化ナトリウム、0.5%グルコース、100μg/mlアンピシリンナトリウム、pH7.4)に植菌し、30℃180rpmで16時間振とう培養した。得られた前培養液を、10L容ジャーファーメンター中の6LのGDH生産培地(2.4%コウボエキス、2.4%ペプトン、1.25%リン酸1水素2カリウム、0.23%リン酸2水素1カリウム、0.4%グリセロール、0.1%消泡剤、100μg/mlアンピシリンナトリウム、pH7.0)に全量投入し、通気量2L/分、攪拌速度310rpm、槽内圧0.02MPa、温度37℃で24時間通気攪拌培養を行った。得られた培養液を遠心分離することにより
菌体を得、これを1Lの20mMリン酸カリウムバッファー(pH8.0)に懸濁してフレンチプレス菌体破砕装置を用いて平均圧力80MPaで菌体を破砕した。さらにこの破砕液に1Lあたり152gの硫酸アンモニウムを加えて溶解し、60℃1時間の加温を行い、さらに遠心分離によって沈殿を除いた。この溶液を、15.2%硫酸アンモニウムを含む20mMリン酸カリウムバッファー(pH8.0)で緩衝化させたOctyl-Sepharose樹脂(GEヘルスケア社製)にアプライしてGDHを樹脂に吸着させ、さらに7.6%硫酸アンモニウムを含む20mMリン酸カリウムバッファー(pH8.0)で樹脂を洗浄した。そして硫酸アンモニウム濃度を7.6%から0%へ、同時にエチレングリコール濃度を0%から0.2%へ、それぞれグラジエントをかけながらバッファーを通液することでGDHを溶出させた。次に、50mMリン酸カリウムバッファー(pH7.0)により緩衝化したG-25
Sepharose樹脂を用いて脱塩・バッファー置換を行った。最後に、50mMリン酸カリウムバッファー(pH7.0)で緩衝化したDEAE-SepharoseにGDH溶液を通液することで夾雑タンパク質を樹脂に吸着させ、透過液を精製GDHとした。
 このように得られた各変異GDHは、SDS-PAGEの結果、CBB染色で単一のバンドとなる高い純度であることが確認され、この状態における各GDHの比活性は、R202S+W334Gが857U/mg、D58V+R202S+Y328Dが889U/mg、R202S+W334Rが923U/mgであった。
<Example 5>
Scale-up production of mutant GDH The D58V + R202S + Y328D mutant GDH expression plasmid obtained in Example 3, the R202S + W334G mutant GDH expression plasmid, and the R202S + W334R expression plasmid obtained in Example 4 were each transformed into competent high JM109. Recombinant E. coli was obtained. Each recombinant Escherichia coli was placed in a 200 ml Sakaguchi flask in a 200 ml preculture medium (0.5% yeast extract, 0.25% peptone, 0.5% sodium chloride, 0.5% glucose, 100 μg / ml ampicillin sodium). , PH 7.4), and cultured with shaking at 30 ° C. and 180 rpm for 16 hours. The obtained precultured solution was mixed with 6 L of GDH production medium (2.4% yeast extract, 2.4% peptone, 1.25% dihydrogen phosphate, 0.23% phosphate in 10 L jar fermenter. 2 hydrogen 1 potassium, 0.4% glycerol, 0.1% antifoaming agent, 100 μg / ml ampicillin sodium, pH 7.0), the whole amount was charged, aeration rate 2 L / min, stirring speed 310 rpm, tank pressure 0.02 MPa, The culture was aerated and stirred at a temperature of 37 ° C. for 24 hours. The resulting culture is centrifuged to obtain bacterial cells, which are suspended in 1 L of 20 mM potassium phosphate buffer (pH 8.0), and the bacterial cells are removed at an average pressure of 80 MPa using a French press bacterial cell crusher. It was crushed. Further, 152 g of ammonium sulfate per liter was added to this crushed solution for dissolution, followed by heating at 60 ° C. for 1 hour, and further removing the precipitate by centrifugation. This solution was applied to Octyl-Sepharose resin (manufactured by GE Healthcare) buffered with 20 mM potassium phosphate buffer (pH 8.0) containing 15.2% ammonium sulfate to adsorb GDH to the resin. The resin was washed with 20 mM potassium phosphate buffer (pH 8.0) containing 6% ammonium sulfate. Then, the GDH was eluted by passing the buffer through a gradient while changing the ammonium sulfate concentration from 7.6% to 0% and simultaneously the ethylene glycol concentration from 0% to 0.2%. Next, G-25 buffered with 50 mM potassium phosphate buffer (pH 7.0).
Desalting and buffer replacement were performed using Sepharose resin. Finally, the GDH solution was passed through DEAE-Sepharose buffered with 50 mM potassium phosphate buffer (pH 7.0) to adsorb the contaminating protein to the resin, and the permeate was used as purified GDH.
As a result of SDS-PAGE, each mutant GDH thus obtained was confirmed to have a high purity that forms a single band by CBB staining. The specific activity of each GDH in this state was 857 U / mg for R202S + W334G. D58V + R202S + Y328D was 889 U / mg, and R202S + W334R was 923 U / mg.
<実施例6>
変異型GDHの熱安定性
 実施例5で得られた各GDHおよび試験例4で得られた野生型GDHについて、50mMリン酸カリウムバッファー(pH8.0)を用いてGDH濃度5U/mlとなるよう希釈し、それぞれの溶液について50℃、60℃、70℃、80℃、90℃の各温度で30分加温処理を行い、加温後におけるGDH活性の加温前のGDH活性に対する比率(活性残存率)を調べた。結果を図1に示す。70℃30分処理では野生型・3種の変異型GDHはいずれも活性の低下がみられなかった。80℃30分処理後の活性残存率は、R202S+W334R、D58V+R202S+Y328DおよびR202S+W334Gはいずれも約90%であり、野生型は99%であった。また、90℃30分処理後の活性残存率は、R202S+W334Gが75%、D58V+R202S+Y328Dが34%、R202S+W334Rが76%であり、野生型は91%であった。いずれの変異型GDHも、80℃30分処理で少なくとも85%、90℃30分処理で少なくとも30%以上の活性を維持しており、変異導入後も熱安定性が高いレベルで維持されていることが確認された。 
 本発明におけるその他の変異型GDHも同様の安定性を有していると推察され、各変異型GDHを30分間加温処理した後に90%以上の活性が残存する温度条件の最大限界点は、70℃以上90℃以下の範囲に存在すると考えられる。
<Example 6>
Thermal stability of mutant GDH For each GDH obtained in Example 5 and wild-type GDH obtained in Test Example 4, a GDH concentration of 5 U / ml was obtained using 50 mM potassium phosphate buffer (pH 8.0). After dilution, each solution was heated at 50 ° C., 60 ° C., 70 ° C., 80 ° C., and 90 ° C. for 30 minutes, and the ratio of the GDH activity after heating to the GDH activity before heating (activity) (Residual rate) was examined. The results are shown in FIG. In the treatment at 70 ° C. for 30 minutes, the activity of the wild type and the three mutant GDHs were not reduced. The activity remaining rate after 30 minutes of treatment at 80 ° C. was about 90% for R202S + W334R, D58V + R202S + Y328D, and R202S + W334G, and the wild type was 99%. In addition, the activity remaining rate after treatment at 90 ° C. for 30 minutes was 75% for R202S + W334G, 34% for D58V + R202S + Y328D, 76% for R202S + W334R, and 91% for the wild type. All mutant GDHs maintain at least 85% activity at 80 ° C. for 30 minutes and at least 30% activity at 90 ° C. for 30 minutes, and maintain a high level of thermal stability after mutation introduction. It was confirmed.
The other mutant GDH in the present invention is presumed to have the same stability, and the maximum limit point of the temperature condition in which 90% or more of the activity remains after each mutant GDH is heated for 30 minutes, It is thought that it exists in the range of 70 degreeC or more and 90 degrees C or less.
<実施例7>
変異型GDHのpH安定性
 実施例5で得られた各GDHについて、次のようにGDHの安定pH領域を調べた。まず、pH3.5~11.0の範囲でバッファーを作製した。使用したバッファー種は、酢酸ナトリウム(pH3.5~6.0)、リン酸カリウム(pH6.0~8.0)、トリス塩酸(pH7.0~9.0)、グリシンNaOH(pH9.0~11.0)であり、バッファー濃度はすべて50mMである。それぞれのバッファーを用いてGDH濃度が10U/mlとなるよう希釈し、希釈後の各溶液のpHを測定するとともに、それぞれの溶液を25℃で16時間インキュベートした。インキュベート後におけるGDH活性のインキュベート前のGDH活性に対する比率(活性残存率)を調べた。R202S+W334G、D58V+R202S+Y328D、R202S+W334Rの各変異型GDH活性のpH安定性をそれぞれ図2、図3、図4に示す。活性残存率が80%以上となるpH領域は、R202S+W334Rが5.0~10.7、D58V+R202S+Y328Dが5.0~9.9、R202S+W334Gが、5.0~10.7であり、いずれも広いpH領域で安定であることが確認された。
 またその他の変異型GDHについても同様のpH安定性を有していると推定され、少なくともpH6.0~9.0の範囲において25℃16時間のインキュベート後も80%以上の活性残存率が示すものと考えられる。
<Example 7>
PH stability of mutant GDH For each GDH obtained in Example 5, the stable pH region of GDH was examined as follows. First, a buffer was prepared in the range of pH 3.5 to 11.0. The buffer species used were sodium acetate (pH 3.5-6.0), potassium phosphate (pH 6.0-8.0), Tris-HCl (pH 7.0-9.0), glycine NaOH (pH 9.0- 11.0) and all buffer concentrations are 50 mM. Each buffer was diluted to a GDH concentration of 10 U / ml, the pH of each diluted solution was measured, and each solution was incubated at 25 ° C. for 16 hours. The ratio of GDH activity after incubation to GDH activity before incubation (activity remaining rate) was examined. The pH stability of each mutant GDH activity of R202S + W334G, D58V + R202S + Y328D, and R202S + W334R is shown in FIG. 2, FIG. 3, and FIG. 4, respectively. The pH range where the activity remaining rate is 80% or more is 5.0 to 10.7 for R202S + W334R, 5.0 to 9.9 for D58V + R202S + Y328D, and 5.0 to 10.7 for R202S + W334G, all of which have a wide pH range. It was confirmed to be stable in the region.
In addition, it is estimated that other mutant GDHs have the same pH stability, and an activity remaining rate of 80% or more is exhibited even after incubation at 25 ° C. for 16 hours at least in the range of pH 6.0 to 9.0. It is considered a thing.
<実施例8>
変異型GDH活性値のpH依存性
 実施例5で得られた各GDHについて、次のようにGDH活性値のpH依存性を調べた。活性測定例に示す組成のうち、0.1mol/Lのトリスに代えて各種バッファーを使用し、pH3.5~11.0の範囲でさまざまなpHの測定液を作製した。使用したバッファー種は、酢酸ナトリウム(pH3.5~6.0)、リン酸カリウム(pH6.0~8.0)、トリス塩酸(pH8.0~9.0)、グリシンNaOH(pH9.0~11.0)であり、測定液中におけるバッファー濃度はすべて50mMである。それぞれの測定液を用い、上述の活性測定例の手順に従って各pHにおけるGDH活性を測定した。最も高い活性を示した条件における活性値を100として、各pHにおける相対活性値を算出した。R202S+W334G、D58V+R202S+Y328D、R202S+W334Rの各変異型GDH活性のpH依存性をそれぞれ図5、図6、図7に示す。至適反応pHは、いずれもおおよそ9.0であったが、pH7.0における相対活性はR202S+W334Rが87、D58V+R202S+Y328Dが66、R202S+W334Gが74あり、いずれも中性領域において十分な活性を示すことが確認された。
<Example 8>
PH Dependency of Mutant GDH Activity Value For each GDH obtained in Example 5, the pH dependency of GDH activity value was examined as follows. Among the compositions shown in the activity measurement examples, various buffers were used in place of 0.1 mol / L Tris, and various pH measurement solutions were prepared in the pH range of 3.5 to 11.0. The buffer species used were sodium acetate (pH 3.5-6.0), potassium phosphate (pH 6.0-8.0), Tris-HCl (pH 8.0-9.0), glycine NaOH (pH 9.0- 11.0), and the buffer concentration in the measurement solution is all 50 mM. Using each measurement solution, the GDH activity at each pH was measured according to the procedure of the activity measurement example described above. The relative activity value at each pH was calculated with the activity value under the condition showing the highest activity as 100. The pH dependence of each mutant GDH activity of R202S + W334G, D58V + R202S + Y328D, and R202S + W334R is shown in FIG. 5, FIG. 6, and FIG. 7, respectively. The optimum reaction pH was about 9.0 in all cases, but the relative activities at pH 7.0 were 87 for R202S + W334R, 66 for D58V + R202S + Y328D, and 74 for R202S + W334G, all showing sufficient activity in the neutral region. confirmed.
<実施例9>
変異型GDHの詳細な基質特異性
 実施例5で得られた各GDHについて、さらに詳細に基質特異性を調べた。方法は上述の基質特異性の評価例に従うが、使用する基質としてマルトース、ガラクトース、キシロースに加えて、さらに2-デオキシグルコース、ソルボース、マンノース、フルクトース、ラクトース、ソルビトール、マンニトール、サッカロース、イノシトール、マルチトール、ラクチトールについても同様に反応性(対グルコース%)を測定した。結果を表5に示す。各GDHは、良好な基質特異性を維持していることが確認された。
<Example 9>
Detailed substrate specificity of mutant GDH The substrate specificity of each GDH obtained in Example 5 was examined in more detail. The method follows the above-mentioned evaluation example of substrate specificity, but in addition to maltose, galactose, and xylose as substrates to be used, 2-deoxyglucose, sorbose, mannose, fructose, lactose, sorbitol, mannitol, saccharose, inositol, maltitol The reactivity (vs. glucose) was similarly measured for lactitol. The results are shown in Table 5. Each GDH was confirmed to maintain good substrate specificity.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
<実施例10>
変異型GDHの温度依存的活性変動
 試験例4で得られた野生型GDHおよび実施例5で得られたR202S+W334R変異型GDHについて、反応温度10℃、20℃、25℃、30℃、37℃における活性を測定し、37℃における活性を100とした場合の各温度における相対活性を算出した。測定方法は上記の活性測定例に準じ、予備加温および反応中の温度を各温度条件の温度に設定して活性を測定した。結果を図8に示す。該変異型GDHは、少なくとも10℃以上37℃以下の温度範囲において温度依存的な活性変動が少ないことが示された。同様に、25℃/37℃活性温度比が野生型に比して高い変異型GDHは、少なくとも10℃以上37℃以下の温度範囲において野生型よりも温度依存的な活性変動が少ないものと推察される。
<Example 10>
Temperature-dependent activity variation of mutant GDH The wild-type GDH obtained in Test Example 4 and the R202S + W334R mutant GDH obtained in Example 5 were reacted at 10 ° C., 20 ° C., 25 ° C., 30 ° C., and 37 ° C. The activity was measured, and the relative activity at each temperature when the activity at 37 ° C. was taken as 100 was calculated. The measurement was performed according to the above activity measurement example, and the activity was measured by setting the preheating and the temperature during the reaction to the temperature of each temperature condition. The results are shown in FIG. The mutant GDH was shown to have little temperature-dependent activity fluctuation in a temperature range of at least 10 ° C. and 37 ° C. Similarly, the mutant GDH having a higher temperature ratio of 25 ° C / 37 ° C compared to the wild type is presumed to have less temperature-dependent activity fluctuation than the wild type in the temperature range of at least 10 ° C and 37 ° C. Is done.
 本発明により製造したグルコースデヒドロゲナーゼは、血糖値測定用試薬、血糖センサー並びにグルコース定量キットの原料としての供給が可能である。 The glucose dehydrogenase produced according to the present invention can be supplied as a raw material for a reagent for measuring blood glucose level, a blood glucose sensor, and a glucose determination kit.

Claims (28)

  1. 配列番号2に記載されるアミノ酸配列において202番目アルギニンに相当するアミノ酸残基を、グリシン、アラニン、ロイシン、イソロイシン、セリン、トレオニン、アスパラギン、およびリジンのいずれかに置換してなる、変異型グルコースデヒドロゲナーゼ。 A mutant glucose dehydrogenase obtained by substituting the amino acid residue corresponding to the 202nd arginine in the amino acid sequence shown in SEQ ID NO: 2 with any of glycine, alanine, leucine, isoleucine, serine, threonine, asparagine, and lysine .
  2. さらに、202番目アルギニン以外のアミノ酸残基の1ないし数個が欠失、置換、挿入及び/又は付加されてなる、請求項1に記載の変異型グルコースデヒドロゲナーゼ。 The mutant glucose dehydrogenase according to claim 1, wherein one or several amino acid residues other than the 202nd arginine are deleted, substituted, inserted and / or added.
  3. 配列番号2に記載されるアミノ酸配列において、58番目アスパラギン酸、286番目バリン、328番目チロシン、334番目トリプトファン、339番目イソロイシン、340番目リジン、341番目トレオニンおよび345番目ロイシンからなる群より選ばれる1ないし数箇所のアミノ酸残基の他の残基への置換をさらに組み合わせてなる、請求項1に記載の変異型グルコースデヒドロゲナーゼ。 1 selected from the group consisting of 58th aspartic acid, 286th valine, 328th tyrosine, 334th tryptophan, 339th isoleucine, 340th lysine, 341th threonine and 345th leucine in the amino acid sequence described in SEQ ID NO: 2 The mutant glucose dehydrogenase according to claim 1, further comprising a combination of substitution of several amino acid residues with other residues.
  4. 配列番号2に記載されるアミノ酸配列において(D58V+Y328D)、V286A、Y328T、Y328E、W334G、W334R、W334H、W334A、W334K、I339P、K340R、T341R、T341G、T341P、T341M、T341SおよびL345Qからなる群より選ばれる1ないし数種類のアミノ酸置換をさらに組み合わせてなる、請求項1に記載の変異型グルコースデヒドロゲナーゼ。 In the amino acid sequence described in SEQ ID NO: 2 (D58V + Y328D), selected from V286A, Y328T, Y328E, W334G, W334R, W334H, W334A, W334K, I339P, K340R, T341R, T341G, T341P, T341M, and T341Q The mutant glucose dehydrogenase according to claim 1, further comprising one or several amino acid substitutions.
  5. 配列番号2に記載されるアミノ酸配列において202番目アルギニンに相当するアミノ酸残基がセリンに置換され、かつ(D58V+Y328D)、V286A、Y328T、Y328E、W334G、W334R、W334H、W334A、W334K、I339P、K340R、T341R、T341G、T341P、T341M、T341SおよびL345Qからなる群より選ばれる1ないし数種類のアミノ酸置換をさらに組み合わせてなる、請求項1に記載の変異型グルコースデヒドロゲナーゼ。 The amino acid residue corresponding to the 202nd arginine in the amino acid sequence shown in SEQ ID NO: 2 is substituted with serine, and (D58V + Y328D), V286A, Y328T, Y328E, W334G, W334R, W334H, W334A, W334K, I339P, K340R, The mutant glucose dehydrogenase according to claim 1, further comprising one or several amino acid substitutions selected from the group consisting of T341R, T341G, T341P, T341M, T341S and L345Q.
  6. 配列番号2に記載されるアミノ酸配列において202番目アルギニンに相当するアミノ酸残基をセリンに置換してなる、グルコースに対する親和性の高い変異型グルコースデヒドロゲナーゼ。 A mutant glucose dehydrogenase having high affinity for glucose, wherein the amino acid residue corresponding to the 202nd arginine in the amino acid sequence described in SEQ ID NO: 2 is substituted with serine.
  7. さらに、202番目アルギニン以外のアミノ酸残基の1ないし数個が欠失、置換、挿入及び/又は付加されてなる、請求項6に記載の変異型グルコースデヒドロゲナーゼ。 The mutant glucose dehydrogenase according to claim 6, wherein one or several amino acid residues other than the 202nd arginine are deleted, substituted, inserted and / or added.
  8. 配列番号2に記載されるアミノ酸配列において、さらに3番目アラニン、46番目イソロイシン、49番目リジン、58番目アスパラギン酸、74番目グリシン、80番目バリン、85番目ロイシン、89番目トレオニン、121番目アラニン、124番目セリン、168番目リジン、173番目アラニン、206番目セリン、208番目リジン、294番目ロイシン、298番目グルタミン酸、303番目ヒスチジン、306番目グルタミン酸、311番目ロイシン、323番目アラニン、328番目チロシン、330番目グルタミン酸、334番目トリプトファン、335番目トレオニン、338番目アスパラギン酸、341番目トレオニン、343番目ロイシンおよび345番目ロイシンからなる群より選ばれる1ないし数個のアミノ酸残基の他のアミノ酸残基への置換をさらに組み合わせてなる、請求項6に記載の変異型グルコースデヒドロゲナーゼ。 In the amino acid sequence shown in SEQ ID NO: 2, the 3rd alanine, 46th isoleucine, 49th lysine, 58th aspartic acid, 74th glycine, 80th valine, 85th leucine, 89th threonine, 121st alanine, 124 Serine, 168th lysine, 173th alanine, 206th serine, 208th lysine, 294th leucine, 298th glutamic acid, 303th histidine, 306th glutamic acid, 311th leucine, 323rd alanine, 328th tyrosine, 330th glutamic acid 1 to several amino acids selected from the group consisting of 334th tryptophan, 335th threonine, 338th aspartic acid, 341th threonine, 343th leucine and 345th leucine Comprising further combined substitution of another amino acid residue of residue, mutant glucose dehydrogenase according to claim 6.
  9. 配列番号2に記載されるアミノ酸配列においてA3V、I46V、K49R、D58V、G74D、V80A、L85H、T89K、A121T、S124L、S124P、K168E、A173T、S206N、K208R、L294W、E298G、H303R、E306G、L311P、A323T、Y328D、Y328S、Y328T、Y328V、Y328G、Y328E、Y328L、E330G、W334G、W334R、W334H、W334A、W334K、W334S、T335N、D338G、D338V、T341R、T341G、T341M、L343P、L345QおよびL345Pからなる群より選ばれる1ないし数種類のアミノ酸置換をさらに組み合わせてなる、請求項6に記載の変異型グルコースデヒドロゲナーゼ。 In the amino acid sequence shown in SEQ ID NO: 2, A3V, I46V, K49R, D58V, G74D, V80A, L85H, T89K, A121T, S124L, S124P, K168E, A173T, S206N, K208R, L294W, E298G, H303R, E306G, L311P, A323T, Y328D, Y328S, Y328T, Y328V, Y328G, Y328E, Y328L, E330G, W334G, W334R, W334H, W334A, W334K, W334S, T335N, D338G, D338V, T341R, P345L, P345T, L345P The mutant glucose protein according to claim 6, further comprising one or more amino acid substitutions selected from Rogenaze.
  10. 配列番号2に記載されるアミノ酸配列において202番目アルギニンに相当するアミノ酸残基がセリンに置換され、かつA3V、(I46V+S124P)、K49R、(D58V+Y328D)、(G74D+E306G+A323T)、V80A、L85H、T89K、A121T、S124L、(K168E+E330G)、A173T、S206N、K208R、L294W、E298G、H303R、L311P、Y328S、Y328T、Y328V、Y328G、Y328E、Y328L、W334G、W334R、W334H、W334A、W334K、(W334S+T335N)、D338G、D338V、(I339P+T341G)、(I339P+T341R)、(I339P+T341L)、(I339P+T341K)、T341R、T341G、T341M、L343P、L345QおよびL345Pからなる群より選ばれる1種類のアミノ酸置換をさらに組み合わせてなる、請求項6に記載の変異型グルコースデヒドロゲナーゼ。 In the amino acid sequence shown in SEQ ID NO: 2, the amino acid residue corresponding to the 202nd arginine is substituted with serine, and A3V, (I46V + S124P), K49R, (D58V + Y328D), (G74D + E306G + A323T), V80A, L85H, T89K, A121T, S124L, (K168E + E330G), A173T, S206N, K208R, L294W, E298G, H303R, L311P, Y328S, Y328T, Y328V, Y328G, Y328E, Y328L, W334G, W334R, W334T, W334T, W334T, W334T, W334T, W334T (I339P + T341G), (I339P + T341R), (I339P + T341L), (I339P + T 41K), T341R, T341G, T341M, L343P, comprising further combining one of the amino acid substitutions selected from the group consisting of L345Q and L345P, mutant glucose dehydrogenase according to claim 6.
  11. 配列番号2に記載されるアミノ酸配列において202番目アルギニンに相当するアミノ酸残基をセリンに置換してなる、37℃以下における比活性の向上した変異型グルコースデヒドロゲナーゼ。 A mutant glucose dehydrogenase having an improved specific activity at 37 ° C. or lower, wherein the amino acid residue corresponding to the 202nd arginine in the amino acid sequence shown in SEQ ID NO: 2 is substituted with serine.
  12. さらに、202番目アルギニン以外のアミノ酸残基の1ないし数個が欠失、置換、挿入及び/又は付加されてなる、請求項11に記載の変異型グルコースデヒドロゲナーゼ。 The mutant glucose dehydrogenase according to claim 11, wherein one or several amino acid residues other than the 202nd arginine are deleted, substituted, inserted and / or added.
  13. 配列番号2に記載されるアミノ酸配列において、さらに3番目アラニン、46番目イソロイシン、49番目リジン、58番目アスパラギン酸、74番目グリシン、80番目バリン、85番目ロイシン、89番目トレオニン、121番目アラニン、124番目セリン、168番目リジン、173番目アラニン、206番目セリン、208番目リジン、294番目ロイシン、298番目グルタミン酸、303番目ヒスチジン、306番目グルタミン酸、311番目ロイシン、323番目アラニン、328番目チロシン、330番目グルタミン酸、334番目トリプトファン、335番目トレオニン、338番目アスパラギン酸、341番目トレオニン、343番目ロイシンおよび345番目ロイシンからなる群より選ばれる1ないし数個のアミノ酸残基の他のアミノ酸残基への置換をさらに組み合わせてなる、請求項11に記載の変異型グルコースデヒドロゲナーゼ。 In the amino acid sequence shown in SEQ ID NO: 2, the 3rd alanine, 46th isoleucine, 49th lysine, 58th aspartic acid, 74th glycine, 80th valine, 85th leucine, 89th threonine, 121st alanine, 124 Serine, 168th lysine, 173th alanine, 206th serine, 208th lysine, 294th leucine, 298th glutamic acid, 303th histidine, 306th glutamic acid, 311th leucine, 323rd alanine, 328th tyrosine, 330th glutamic acid 1 to several amino acids selected from the group consisting of 334th tryptophan, 335th threonine, 338th aspartic acid, 341th threonine, 343th leucine and 345th leucine Comprising further combined substitution of another amino acid residue of residue, mutant glucose dehydrogenase according to claim 11.
  14. 配列番号2に記載されるアミノ酸配列においてA3V、I46V、K49R、D58V、G74D、V80A、L85H、T89K、A121T、S124L、S124P、K168E、A173T、S206N、K208R、L294W、E298G、H303R、E306G、L311P、A323T、Y328D、Y328S、Y328T、Y328V、Y328G、Y328E、Y328L、E330G、W334G、W334R、W334H、W334A、W334K、W334S、T335N、D338G、D338V、T341R、T341G、T341M、L343P、L345QおよびL345Pからなる群より選ばれる1ないし数種類のアミノ酸置換をさらに組み合わせてなる、請求項11に記載の変異型グルコースデヒドロゲナーゼ。 In the amino acid sequence shown in SEQ ID NO: 2, A3V, I46V, K49R, D58V, G74D, V80A, L85H, T89K, A121T, S124L, S124P, K168E, A173T, S206N, K208R, L294W, E298G, H303R, E306G, L311P, A323T, Y328D, Y328S, Y328T, Y328V, Y328G, Y328E, Y328L, E330G, W334G, W334R, W334H, W334A, W334K, W334S, T335N, D338G, D338V, T341R, P345L, P345T, L345P The mutant glucose deoxypeptide according to claim 11, further comprising one or several amino acid substitutions selected from Dehydrogenase.
  15. 配列番号2に記載されるアミノ酸配列において202番目アルギニンに相当するアミノ酸残基がセリンに置換され、かつA3V、(I46V+S124P)、K49R、(D58V+Y328D)、(G74D+E306G+A323T)、V80A、L85H、T89K、A121T、S124L、(K168E+E330G)、A173T、S206N、K208R、L294W、E298G、H303R、L311P、Y328S、Y328T、Y328V、Y328G、Y328E、Y328L、W334G、W334R、W334H、W334A、W334K、(W334S+T335N)、D338G、D338V、(I339P+T341G)、(I339P+T341R)、(I339P+T341L)、(I339P+T341K)、T341R、T341G、T341M、L343P、L345QおよびL345Pからなる群より選ばれる1種類のアミノ酸置換をさらに組み合わせてなる、請求項11に記載の変異型グルコースデヒドロゲナーゼ。 In the amino acid sequence shown in SEQ ID NO: 2, the amino acid residue corresponding to the 202nd arginine is substituted with serine, and A3V, (I46V + S124P), K49R, (D58V + Y328D), (G74D + E306G + A323T), V80A, L85H, T89K, A121T, S124L, (K168E + E330G), A173T, S206N, K208R, L294W, E298G, H303R, L311P, Y328S, Y328T, Y328V, Y328G, Y328E, Y328L, W334G, W334R, W334T, W334T, W334T, W334T, W334T, W334T (I339P + T341G), (I339P + T341R), (I339P + T341L), (I339P + T 41K), T341R, T341G, T341M, L343P, comprising further combining one of the amino acid substitutions selected from the group consisting of L345Q and L345P, mutant glucose dehydrogenase according to claim 11.
  16. 配列番号2に記載されるアミノ酸配列において202番目アルギニンがセリンへ置換され、かつ46番目イソロイシン、49番目リジン、58番目アスパラギン酸、74番目グリシン、89番目トレオニン、168番目リジン、124番目セリン、206番目セリン、208番目リジン、294番目ロイシン、303番目ヒスチジン、306番目グルタミン酸、311番目ロイシン、323番目アラニン、328番目チロシン、330番目グルタミン酸、334番目トリプトファン、335番目トレオニン、338番目アスパラギン酸および345番目ロイシンからなる群より選ばれる1ないし数個のアミノ酸を他のアミノ酸に置換してなる変異型グルコースデヒドロゲナーゼ。 In the amino acid sequence shown in SEQ ID NO: 2, the 202nd arginine is substituted with serine, and the 46th isoleucine, 49th lysine, 58th aspartic acid, 74th glycine, 89th threonine, 168th lysine, 124th serine, 206 Serine, 208th lysine, 294th leucine, 303th histidine, 306th glutamic acid, 311th leucine, 323rd alanine, 328th tyrosine, 330th glutamic acid, 334th tryptophan, 335th threonine, 338th aspartic acid and 345th A mutant glucose dehydrogenase obtained by substituting one or several amino acids selected from the group consisting of leucine with other amino acids.
  17. 配列番号2に記載されるアミノ酸配列において202番目アルギニンがセリンへ置換され、かつ(I46V+S124P)、K49R、(D58V+Y328D)、(G74D+E306G+A323T)、T89K、S124L、(K168E+E330G)、S206N、K208R、L294W、H303R、L311P、Y328S、Y328T、Y328V、Y328G、Y328E、Y328L、W334G、W334R、W334H、W334A、W334K、(W334S+T335N)、D338V、D338G、L345QおよびL345Pからなる群より選ばれる1ないし数種類のアミノ酸置換をさらに組み合わせてなる請求項16に記載の変異型グルコースデヒドロゲナーゼ。 Arginine at position 202 is substituted with serine in the amino acid sequence shown in SEQ ID NO: 2, and (I46V + S124P), K49R, (D58V + Y328D), (G74D + E306G + A323T), T89K, S124L, (K168E + E330G), S206N, K208R, L294W, H303R, L311P, Y328S, Y328T, Y328V, Y328G, Y328E, Y328L, W334G, W334R, W334H, W334A, W334K, (W334S + T335N), a combination of amino acids selected from the group consisting of a combination of D338V, D338G, L345Q and L345P. The mutant glucose dehydrogenase according to claim 16.
  18. 配列番号2に記載されるアミノ酸配列において202番目アルギニンがセリンへ置換され、かつ(I46V+S124P)、K49R、(D58V+Y328D)、(G74D+E306G+A323T)、T89K、S124L、(K168E+E330G)、S206N、K208R、L294W、H303R、L311P、Y328S、Y328T、Y328V、Y328G、Y328E、Y328L、W334G、W334R、W334H、W334A、W334K、(W334S+T335N)、D338V、D338G、L345QおよびL345Pからなる群より選ばれる1種類のアミノ酸置換をさらに組み合わせてなる請求項16に記載の変異型グルコースデヒドロゲナーゼ。 Arginine at position 202 is substituted with serine in the amino acid sequence shown in SEQ ID NO: 2, and (I46V + S124P), K49R, (D58V + Y328D), (G74D + E306G + A323T), T89K, S124L, (K168E + E330G), S206N, K208R, L294W, H303R, L311P, Y328S, Y328T, Y328V, Y328G, Y328E, Y328L, W334G, W334R, W334H, W334A, W334K, (W334S + T335N), a combination selected from the group consisting of D338V, D338G, L345Q and L345P. The mutant glucose dehydrogenase according to claim 16.
  19. 配列番号2に記載されるアミノ酸配列において202番目アルギニンがセリンへ置換され、かつ334番目トリプトファンがグリシンに置換されてなる変異型グルコースデヒドロゲナーゼ。 A mutant glucose dehydrogenase in which the 202nd arginine is substituted with serine and the 334th tryptophan is substituted with glycine in the amino acid sequence shown in SEQ ID NO: 2.
  20. 配列番号2に記載されるアミノ酸配列において202番目アルギニンがセリンへ置換され、かつ334番目トリプトファンがアルギニンに置換されてなる変異型グルコースデヒドロゲナーゼ。 A mutant glucose dehydrogenase in which the 202nd arginine is substituted with serine and the 334th tryptophan is substituted with arginine in the amino acid sequence shown in SEQ ID NO: 2.
  21. 配列番号2に記載されるアミノ酸配列において58番目アスパラギン酸がバリンに置換され、かつ202番目アルギニンがセリンへ置換され、かつ328番目チロシンがアスパラギン酸に置換されてなる変異型グルコースデヒドロゲナーゼ。 A mutant glucose dehydrogenase in which the 58th aspartic acid is substituted with valine, the 202nd arginine is substituted with serine, and the 328th tyrosine is substituted with aspartic acid in the amino acid sequence shown in SEQ ID NO: 2.
  22. 請求項1~21のいずれかに記載の変異型グルコースデヒドロゲナーゼをコードする遺伝子。 A gene encoding the mutant glucose dehydrogenase according to any one of claims 1 to 21.
  23. 請求項22に記載の遺伝子を含むベクター。 A vector comprising the gene according to claim 22.
  24. 請求項23に記載のベクターで形質転換された形質転換体。 A transformant transformed with the vector of claim 23.
  25. 請求項24に記載の形質転換体を培養することを特徴とする変異型グルコースデヒドロゲナーゼの製造方法。 A method for producing a mutant glucose dehydrogenase, comprising culturing the transformant according to claim 24.
  26. 請求項1~21のいずれかに記載の変異型グルコースデヒドロゲナーゼを含むグルコースアッセイキット。 A glucose assay kit comprising the mutant glucose dehydrogenase according to any one of claims 1 to 21.
  27. 請求項1~21のいずれかに記載の変異型グルコースデヒドロゲナーゼを含むグルコースセンサー。 A glucose sensor comprising the mutant glucose dehydrogenase according to any one of claims 1 to 21.
  28. 請求項1~21のいずれかに記載の変異型グルコースデヒドロゲナーゼを含むグルコース測定法。
     
    A glucose measuring method comprising the mutant glucose dehydrogenase according to any one of claims 1 to 21.
PCT/JP2010/058332 2009-05-28 2010-05-18 Glucose dehydrogenase having altered properties WO2010137489A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011515985A JP5846908B2 (en) 2009-05-28 2010-05-18 Glucose dehydrogenase with modified properties

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2009128774 2009-05-28
JP2009128770 2009-05-28
JP2009128773 2009-05-28
JP2009-128773 2009-05-28
JP2009-128770 2009-05-28
JP2009128772 2009-05-28
JP2009-128771 2009-05-28
JP2009128771 2009-05-28
JP2009-128772 2009-05-28
JP2009-128774 2009-05-28

Publications (1)

Publication Number Publication Date
WO2010137489A1 true WO2010137489A1 (en) 2010-12-02

Family

ID=43222600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/058332 WO2010137489A1 (en) 2009-05-28 2010-05-18 Glucose dehydrogenase having altered properties

Country Status (2)

Country Link
JP (1) JP5846908B2 (en)
WO (1) WO2010137489A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012055229A (en) * 2010-09-09 2012-03-22 Toyobo Co Ltd Method for improving specific activity of flavin adenine dinucleotide-dependent glucose dehydrogenase
WO2014017390A1 (en) * 2012-07-24 2014-01-30 東洋紡株式会社 Nad-dependent glucose dehydrogenase and production method thereof
JP2015208312A (en) * 2014-04-30 2015-11-24 ニプロ株式会社 Variant glucose-6-phosphate dehydrogenase
CN105331591A (en) * 2015-10-29 2016-02-17 英科隆生物技术(杭州)有限公司 PQQ-sGDH mutant, polynucleotide and glucose detection device
CN107955791A (en) * 2017-11-20 2018-04-24 苏州东和盛昌生物科技有限公司 It is a kind of can a step be catalyzed nicotinamide adenine dinucleotide strain and its screening technique and application
JP6484742B1 (en) * 2018-04-13 2019-03-13 キッコーマン株式会社 New mediator
JP6484741B1 (en) * 2018-04-13 2019-03-13 キッコーマン株式会社 New mediator
JP2022522891A (en) * 2019-03-12 2022-04-20 アイコン ジェネティクス ゲーエムベーハー Norovirus-like particles with improved stability

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150267178A1 (en) * 2012-09-18 2015-09-24 National Institute Of Advanced Industrial Science And Technology Protein having flavin adenine dinucleotide-dependent glucose dehydrogenase activity

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009087929A1 (en) * 2008-01-07 2009-07-16 Toyo Boseki Kabushiki Kaisha Novel glucose dehydrogenase

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009087929A1 (en) * 2008-01-07 2009-07-16 Toyo Boseki Kabushiki Kaisha Novel glucose dehydrogenase

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SEIBERS, B. ET AL.: "Carbohydrate metabolism in Thermoproteus tenax: in vivo utilization of the non-phosphorylative Entner-Doudoroff pathway and characterization of its first enzyme, glucose dehydrogenase.", ARCH. MICROBIOL., vol. 168, no. 2, April 1997 (1997-04-01), pages 120 - 127, XP008130269, DOI: doi:10.1007/s002030050477 *
SEIBERS, B. ET AL.: "Reconstruction of the central carbohydrate metabolism of Thermoproteus tenax by use of genomic and biochemical data.", J. BACTERIOL., vol. 186, no. 7, April 2004 (2004-04-01), pages 2179 - 2194 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012055229A (en) * 2010-09-09 2012-03-22 Toyobo Co Ltd Method for improving specific activity of flavin adenine dinucleotide-dependent glucose dehydrogenase
WO2014017390A1 (en) * 2012-07-24 2014-01-30 東洋紡株式会社 Nad-dependent glucose dehydrogenase and production method thereof
JPWO2014017390A1 (en) * 2012-07-24 2016-07-11 東洋紡株式会社 NAD-dependent glucose dehydrogenase and method for producing the same
JP2015208312A (en) * 2014-04-30 2015-11-24 ニプロ株式会社 Variant glucose-6-phosphate dehydrogenase
CN105331591A (en) * 2015-10-29 2016-02-17 英科隆生物技术(杭州)有限公司 PQQ-sGDH mutant, polynucleotide and glucose detection device
CN107955791A (en) * 2017-11-20 2018-04-24 苏州东和盛昌生物科技有限公司 It is a kind of can a step be catalyzed nicotinamide adenine dinucleotide strain and its screening technique and application
CN107955791B (en) * 2017-11-20 2021-01-15 江苏美科生物科技有限公司 Strain capable of obtaining nicotinamide adenine dinucleotide through one-step catalysis, screening method and application thereof
JP6484742B1 (en) * 2018-04-13 2019-03-13 キッコーマン株式会社 New mediator
JP6484741B1 (en) * 2018-04-13 2019-03-13 キッコーマン株式会社 New mediator
JP2019186122A (en) * 2018-04-13 2019-10-24 キッコーマン株式会社 New mediator
JP2019180335A (en) * 2018-04-13 2019-10-24 キッコーマン株式会社 Novel mediator
JP2022522891A (en) * 2019-03-12 2022-04-20 アイコン ジェネティクス ゲーエムベーハー Norovirus-like particles with improved stability

Also Published As

Publication number Publication date
JP5846908B2 (en) 2016-01-20
JPWO2010137489A1 (en) 2012-11-12

Similar Documents

Publication Publication Date Title
JP5846908B2 (en) Glucose dehydrogenase with modified properties
JP6583503B2 (en) Novel glucose dehydrogenase
JP6460152B2 (en) Novel glucose dehydrogenase
JP5169991B2 (en) Modified flavin adenine dinucleotide-dependent glucose dehydrogenase
EP2508600B1 (en) Mutant enzyme and application thereof
JP5641738B2 (en) Novel glucose dehydrogenase
US7067295B1 (en) Glucose dehydrogenase
WO2012073987A1 (en) E. coli transformant, production method for flavin-bound glucose dehydrogenase using same, and mutant flavin-bound glucose dehydrogenase
JP6311270B2 (en) Flavin adenine dinucleotide-dependent glucose dehydrogenase with excellent thermostability
JP6465156B2 (en) Novel glucose dehydrogenase
JP5408125B2 (en) Filamentous flavin adenine dinucleotide-dependent glucose dehydrogenase (FADGDH)
KR20050042771A (en) Glucose dehydrogenase
JP6390776B2 (en) Flavin adenine dinucleotide-dependent glucose dehydrogenase with excellent thermostability

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10780444

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011515985

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10780444

Country of ref document: EP

Kind code of ref document: A1