WO2010137450A1 - Polarizing element and display device using same - Google Patents

Polarizing element and display device using same Download PDF

Info

Publication number
WO2010137450A1
WO2010137450A1 PCT/JP2010/057865 JP2010057865W WO2010137450A1 WO 2010137450 A1 WO2010137450 A1 WO 2010137450A1 JP 2010057865 W JP2010057865 W JP 2010057865W WO 2010137450 A1 WO2010137450 A1 WO 2010137450A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarizing element
dispersed phase
resin
stretching
continuous phase
Prior art date
Application number
PCT/JP2010/057865
Other languages
French (fr)
Japanese (ja)
Inventor
貴寛 鄭
平石 政憲
Original Assignee
ダイセル化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイセル化学工業株式会社 filed Critical ダイセル化学工業株式会社
Priority to JP2011515964A priority Critical patent/JPWO2010137450A1/en
Publication of WO2010137450A1 publication Critical patent/WO2010137450A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers

Definitions

  • the present invention relates to a polarizing element having a light diffusing property and a polarizing property, and a display device (a surface light source device, a transmission type or a reflection type liquid crystal display device, etc.) provided with the polarizing element.
  • a display device a surface light source device, a transmission type or a reflection type liquid crystal display device, etc.
  • Liquid crystal display devices generally use iodine or dye type absorption polarizing plates. Therefore, the brightness of the display surface is less than half the brightness of a light source such as outside light or irradiation light. Further, since the two absorption polarizing plates are used on the front and back of the liquid crystal panel, the brightness is actually reduced to 30 to 40% of the brightness of the light source. Therefore, in order to obtain higher luminance, an attempt has been made to compensate for the above-mentioned drawbacks by polarization conversion.
  • the polarization conversion method include a method using a prism such as a polarization beam splitter, and a polarization conversion method using the circular polarization characteristics of cholesteric liquid crystal.
  • the polarization depends on the angle and wavelength, and the lightness and compactness are lacking.
  • cholesteric liquid crystal in order to cover all wavelengths, it is necessary to make the liquid crystal into multiple layers with different helical pitches, making the liquid crystal complicated and expensive.
  • Patent Document 1 JP-A-9-297204 discloses an anisotropic scattering element in which inorganic scattering particles having an aspect ratio of 1 or more are dispersed and arranged in resins or polymers having different refractive indexes.
  • this element is liable to produce voids between the polymer and the inorganic particles when the scattering particles are arranged in a certain direction, and cannot be manufactured stably.
  • the method of performing ultraviolet curing while arranging inorganic particles in the polymer by calendaring using a roller as a processing method that hardly generates voids the polymer to be used is limited.
  • Patent Document 2 a second polymer composed of a crystalline polypropylene resin is dispersed in a first polymer composed of an aromatic polyester resin. A method of stretching the resulting sheet to produce microvoids is disclosed. However, the method of generating elliptical microvoids around the dispersion is difficult to control the polarization properties of the sheet because of the varying interface geometry.
  • JP-T-2000-506990 discloses a first phase having a birefringence of at least about 0.05 and a refractive index difference between the first phase and the first phase. And a second phase that is greater than about 0.05 along the first axis and less than about 0.05 along a second axis that is orthogonal to the first axis, the optical body comprising: An optical body is disclosed wherein the diffuse reflectance as a whole of the first and second phases is at least about 30% along at least one axis for at least one polarization of electromagnetic radiation.
  • This document describes a combination of 2,6-polyethylene naphthalate and polymethyl methacrylate or syndiotactic polystyrene as a combination of the first and second polymers. It also describes that a small amount of naphthalenedicarboxylic acid can be used to improve the adhesion between phases, and that a compatibilizing agent is used to form voids (voids).
  • Patent Document 4 discloses a stable and uniform polarizing element that eliminates these problems, has excellent scattering characteristics and polarization characteristics, and does not generate voids.
  • This document describes blending a second transparent resin having an epoxy group or a compatibilizer having an epoxy group with the first transparent resin composed of a polyester-based resin.
  • Patent Document 5 discloses a scattering polarizer having a continuous phase composed of a polyester-based resin (A) and a dispersed phase composed of a polystyrene-based resin (B).
  • a scattering type polarizing element having a (YI value) in the range of ⁇ 3 to 3 is disclosed.
  • inexpensive resin materials include polyolefin resins, polymethyl methacrylate resins, styrene resins, polycarbonate resins, etc., but the refractive index change caused by stretching is small, and the above-mentioned continuous phase
  • it is not suitable for forming a polarizing element of a type that causes anisotropy of refractive index. That is, when an inexpensive material is used as a continuous phase, since many inexpensive materials have a small change in refractive index, it is required to obtain higher luminance by polarization conversion in such a material.
  • a resin that is more flexible than the continuous phase has been used as the dispersed phase.
  • an object of the present invention is to provide a polarizing element capable of exhibiting excellent polarization characteristics and scattering characteristics by a simple method and a display device (display device such as a surface light source device or a liquid crystal display device) provided with the polarizing element.
  • a display device display device such as a surface light source device or a liquid crystal display device
  • Another object of the present invention is to provide a polarizing element that can improve the luminance of the display device even at a low stretch ratio, and a display device including the polarizing element.
  • Still another object of the present invention is to provide a polarizing element having excellent polarization characteristics without causing lacerations or voids due to stretching, and a display device including the polarizing element.
  • Another object of the present invention is to inexpensively and easily manufacture the polarizing element and a display device including the polarizing element.
  • the inventors of the present invention have achieved a simple method by uniaxially stretching a sheet in which the matrix phase (continuous phase) is composed of a polycarbonate-based resin and the dispersed phase is composed of a predetermined transparent resin.
  • the inventors have found that excellent polarization characteristics and scattering characteristics can be expressed, and completed the present invention.
  • the polarizing element of the present invention is an element composed of a stretched sheet in which a disperse phase composed of a transparent resin is dispersed in a continuous phase composed of a polycarbonate-based resin, and the continuous phase
  • the in-plane birefringence of the dispersed phase is less than 0.05
  • the in-plane birefringence of the dispersed phase is 0.05 or more
  • the difference in refractive index between the continuous phase and the dispersed phase with respect to linearly polarized light is the stretching direction and the stretching direction. It differs in the direction perpendicular to.
  • the absolute value of the difference in refractive index between the continuous phase and the dispersed phase in the stretching direction is 0.1 to 0.3, and the refraction between the continuous phase and the dispersed phase in the direction perpendicular to the stretching direction.
  • the absolute value of the rate difference may be 0.1 or less.
  • the dispersed phase may have an average length of a major axis and a minor axis of 0.8 to 10 ⁇ m and 0.05 to 0.8 ⁇ m, respectively, and an average aspect ratio of 2 to 200.
  • the total light transmittance of linearly polarized light in the direction perpendicular to the stretching direction is 80% or more, and the reflectance of linearly polarized light in the direction parallel to the stretching direction (regular reflection component and backscattering). 30% or more may be sufficient as the reflectance by a component.
  • the polycarbonate resin may be a bisphenol A type polycarbonate resin having a glass transition temperature of 120 to 160 ° C.
  • the dispersed phase may be composed of a polyester resin (particularly, a polyalkylene naphthalate resin such as a polyethylene naphthalate resin).
  • the present invention includes a method of producing the polarizing element by uniaxially stretching a sheet formed by melting and mixing a polycarbonate resin and a transparent resin.
  • uniaxial stretching may be performed 1.2 to 4 times at a temperature of Tg ° C. to (Tg + 80) ° C., where Tg is the glass transition temperature of the polycarbonate resin.
  • Tg is the glass transition temperature of the polycarbonate resin.
  • you may heat-process at the temperature more than extending
  • the present invention includes a surface light source device and a liquid crystal display device provided with the polarizing element.
  • film is used to mean including a sheet regardless of thickness.
  • the sheet in which the continuous phase is composed of polycarbonate resin and the dispersed phase is composed of a predetermined transparent resin is uniaxially stretched, excellent polarization characteristics and scattering characteristics can be expressed by a simple method. Moreover, even if it is a low draw ratio, the brightness
  • FIG. 1 is a schematic sectional view showing an example of a transmissive liquid crystal display device using the surface light source device of the present invention.
  • FIG. 2 is a schematic sectional view showing an example of the reflective liquid crystal display device of the present invention.
  • FIG. 3 is a schematic sectional view showing another example of the reflective liquid crystal display device of the present invention.
  • the polarizing element of the present invention is composed of a stretched sheet in which a dispersed phase composed of a transparent resin is dispersed in the form of particles in a continuous phase composed of a polycarbonate-based resin. That is, the polarizing element is formed of a continuous phase that forms a matrix (matrix) of the polarizing element and a dispersed phase that is present in the matrix and exhibits a polarizing function.
  • the interface between the continuous phase and the dispersed phase is substantially free from voids, and the continuous phase and the dispersed phase are bonded or in close contact with each other.
  • the continuous phase is composed of a polycarbonate resin, and has an in-plane birefringence (absolute value of the difference in refractive index between the stretching direction and the direction perpendicular to the stretching direction) of less than 0.05, for example, 0 to 0 0.03, preferably 0 to 0.02, more preferably about 0 to 0.01.
  • the draw ratio can also be suppressed low.
  • the in-plane birefringence is substantially zero at a draw ratio of 3 to 5 times under the conditions of Examples described later.
  • the refractive index can be measured at a wavelength of 633 nm using a prism coupler (manufactured by Metricon), as described in Examples described later.
  • Polycarbonate resins include aromatic polycarbonates based on bisphenols and aliphatic polycarbonates such as diethylene glycol bisallyl carbonate. Of these, aromatic polycarbonates based on bisphenols are preferred because of their excellent optical properties and low cost.
  • bisphenols examples include biphenols such as dihydroxybiphenyl, bis (hydroxyaryl) alkanes such as bisphenol A, bisphenol F, bisphenol AD, bis (4-hydroxytolyl) alkane, and bis (4-hydroxyxylyl) alkane.
  • bis (hydroxyaryl) C 1-10 alkanes preferably bis (hydroxyaryl) C 1-6 alkanes
  • bis (hydroxyaryl) cycloalkanes such as bis (hydroxyphenyl) cyclohexane [eg bis (hydroxyaryl) (Hydroxyaryl) C 3-12 cycloalkanes, preferably bis (hydroxyaryl) C 4-10 cycloalkanes] di (hydroxyphenyl) ether such as 4,4′-di (hydroxyphenyl) ether
  • Di (hydroxyphenyl) ketones such as 4,4′-di (hydroxyphenyl) ketone
  • di (hydroxyphenyl) sulfoxides such as bisphenol S, bis (hydroxyphenyl) sulfones, bisphenol fluorenes [for example, 9,9-bis (4-hydroxyphenyl) fluorene, 9,9-bis (4-hydroxy-3-methylphenyl) fluorene, etc.].
  • These bisphenols may be C 2-4
  • the polycarbonate resin may be a polyester carbonate resin obtained by copolymerizing a dicarboxylic acid component (such as an aliphatic, alicyclic or aromatic dicarboxylic acid or an acid halide thereof). These polycarbonate resins can be used alone or in combination of two or more.
  • Preferred polycarbonate resins are resins based on bis (hydroxyphenyl) C 1-6 alkanes, for example, bisphenol A type polycarbonate resins.
  • the proportion of the copolymerizable monomer other than bisphenol A is, for example, about 20 mol% or less, preferably about 10 mol% or less (for example, 0.1 to 10 mol%). is there.
  • the average molecular weight of the polycarbonate-based resin is selected from a range of about 10,000 to 200,000 (for example, 15,000 to 150,000) as a viscosity average molecular weight obtained from a viscosity measured in a methylene chloride solution having a concentration of 0.7 g / dL at 20 ° C., for example.
  • it is about 15,000 to 120,000, preferably about 17,000 to 100,000, more preferably about 18,000 to 50,000 (particularly 18,000 to 30,000). If the molecular weight of the polycarbonate-based resin is too small, the mechanical strength of the film tends to be lowered. If the molecular weight is too large, the melt fluidity is lowered, and the handleability during film formation and the uniform dispersibility of the dispersed phase are likely to be lowered.
  • the melt flow rate (MFR) of the polycarbonate resin can be selected from a range of, for example, about 3 to 30 g / 10 minutes in accordance with ISO 1133 (300 ° C., 1.2 kg load (11.8 N)). It is about 30 to 10 g, preferably 6 to 25 g / 10 min, more preferably about 7 to 20 g / 10 min (especially 8 to 15 g / 10 min).
  • the viscosity of the polycarbonate-based resin using a rotary rheometer (Anton Paar Co. Ltd.), 270 ° C., measured at the conditions of a shear rate of 10 sec -1, for example, 100 ⁇ 1500 Pa ⁇ s, preferably 200 ⁇ 1200 Pa ⁇ s, more preferably about 300 to 1000 Pa ⁇ s (particularly 500 to 750 Pa ⁇ s).
  • the glass transition temperature of the polycarbonate-based resin can be selected, for example, from a range of about 110 to 250 ° C., but from the viewpoint that the stretching temperature can be set low and the selection range of the resin for the dispersed phase is expanded, for example, 110 to 180 ° C.
  • the temperature is preferably 120 to 160 ° C, more preferably about 130 to 160 ° C (particularly 140 to 155 ° C).
  • the glass transition temperature can be measured using a differential scanning calorimeter, for example, using a differential scanning calorimeter (“DSC6200” manufactured by Seiko Denshi Kogyo Co., Ltd.) under a nitrogen stream at a heating rate of 10 ° C./min. It can be measured.
  • the continuous phase may be composed of a polymer alloy of a polycarbonate resin and another resin (particularly a transparent resin) as long as the optical properties and mechanical properties of the polycarbonate resin are not impaired.
  • a polymer alloy of a polycarbonate resin and another resin particularly a transparent resin
  • the transparent resin etc. which comprise the continuous phase mentioned later are mentioned.
  • the ratio of the other resin is, for example, 100 parts by weight or less, preferably 50 parts by weight or less, more preferably 10 parts by weight or less (for example, 0.1 to 10 parts by weight) with respect to 100 parts by weight of the polycarbonate resin.
  • Specific examples of the polymer alloy include, for example, a polycarbonate resin composition disclosed in Japanese Patent Application Laid-Open No.
  • 9-183892 (a resin composition in which a polyester resin and a transesterification catalyst are blended with polycarbonate to reduce haze value and birefringence). ), A polycarbonate resin composition disclosed in JP-A-11-3479969 (a resin composition in which an aromatic alkenyl compound or a vinyl cyanide compound is blended with polycarbonate), and a polycarbonate resin composition disclosed in Japanese Patent No. 4021741 (Resin composition in which polyester and epoxy-modified polyolefin are blended with polycarbonate).
  • the dispersed phase is incompatible with the polycarbonate-based resin constituting the continuous phase, and in-plane birefringence (the absolute value of the difference in refractive index between the refractive index in the stretching direction and the direction perpendicular to the stretching direction). ) Is not particularly limited as long as it is a transparent resin of 0.05 or more.
  • the in-plane birefringence is, for example, about 0.05 to 0.5, preferably about 0.1 to 0.4, more preferably about 0.15 to 0.3 (particularly 0.2 to 0.25). .
  • the continuous phase is composed of a polycarbonate-based resin and the dispersed phase is composed of a transparent resin having a large intrinsic birefringence, so that a high degree of efficiency can be effectively achieved between the continuous phase and the dispersed phase at low magnification.
  • An element having a refractive index difference and having high scattering characteristics and high polarization characteristics can be prepared.
  • transparent resins examples include cyclic olefin resins, vinyl resins (polyvinyl chloride, vinyl chloride-vinyl acetate copolymers, polyvinyl pyrrolidone, etc.), styrene resins (styrene-acrylonitrile resins, etc.), acrylic Resin (poly (meth) acrylic acid, poly (meth) acrylic acid alkyl ester such as poly (meth) acrylic acid methyl ester), acrylonitrile resin (poly (meth) acrylonitrile, etc.), polyester resin (non-crystalline fragrance) Aromatic polyester resins, aliphatic polyester resins, liquid crystal polyesters, etc.), polyamide resins (polyamide 6, polyamide 66, polyamide 610 etc.), cellulose derivatives (cellulose acetate etc.), synthetic rubber (polybutadiene, polyisoprene etc.), natural Rubber etc. It is included. These transparent resins can be used alone or in combination of two or more.
  • polyester resins particularly polyalkylene arylate resins
  • polyalkylene arylate resins are preferred because they have substantially the same refractive index as polycarbonate resins and can easily increase the refractive index in the stretching direction by stretching.
  • the polyalkylene arylate resin has, as a main component, an alkylene arylate unit, for example, at a ratio of 50 mol% or more, preferably 75 to 100 mol%, more preferably 80 to 100 mol% (particularly 90 to 100 mol%). Containing homo or copolyesters are included.
  • Examples of the copolymerizable monomer constituting the copolyester include dicarboxylic acid components (for example, C 8-20 aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, 2,7-naphthalenedicarboxylic acid, and 2,5-naphthalenedicarboxylic acid).
  • dicarboxylic acid components for example, C 8-20 aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, 2,7-naphthalenedicarboxylic acid, and 2,5-naphthalenedicarboxylic acid).
  • Acid adipic acid, azelaic acid, C 4-12 alkane dicarboxylic acid such as sebacic acid, C 4-12 cycloalkane dicarboxylic acid such as 1,4-cyclohexanedicarboxylic acid, etc.
  • diol component eg, ethylene glycol, propylene glycol
  • butanediol C 2-10 alkanediol such as neopentyl glycol
  • diethylene glycol diethylene glycol
  • C 4-12 cycloalkane diols such as poly C 2-4 alkylene glycol
  • 1,4-cyclohexanedimethanol such as polyethylene glycol, bisphenol And aromatic diols such as
  • hydroxycarboxylic acid component e.g., p- hydroxybenzoic acid, p- hydroxyethoxy benzoic acid
  • hydroxycarboxylic acid component e.g., p- hydroxybenzoic acid, p- hydroxy
  • the polyalkylene arylate-series resin for example, polyethylene terephthalate, polypropylene terephthalate, poly C 2-4 alkylene terephthalate-series resin such as polybutylene terephthalate, polyethylene naphthalate, polypropylene naphthalate, poly C 2-4, such as polybutylene naphthalate Examples include alkylene naphthalate resins.
  • polyalkylene naphthalate has a refractive index equivalent to that of the polycarbonate resin before stretching, and can easily increase the refractive index in the stretching direction by stretching.
  • Resin especially poly C 2-4 alkylene naphthalate resin such as polyethylene naphthalate resin
  • the polyalkylene naphthalate resin is a homopolyester of an alkylene naphthalate unit (especially a C 2-4 alkylene naphthalate unit such as ethylene-2,6-naphthalate) or an alkylene naphthalate unit content of 80 mol% or more. (Especially 90 mol% or more) copolyesters.
  • copolymerizable monomer constituting the copolyester examples include the aforementioned dicarboxylic acid component, diol component, and hydroxycarboxylic acid. Of these copolymerizable monomers, dicarboxylic acid components such as terephthalic acid are widely used.
  • the average molecular weight of the polyester-based resin (for example, polyalkylene naphthalate-based resin) can be selected from the range of, for example, about 5,000 to 1,000,000 in terms of number average molecular weight, for example, 10,000 to 500,000, preferably 12,000 to 300,000, and more preferably 15,000. It is about ⁇ 100,000. If the molecular weight of the polyethylene naphthalate resin is too large, the melt fluidity is lowered and the aspect ratio of the dispersed phase tends to be lowered.
  • the number average molecular weight can be measured in terms of polystyrene using gel permeation chromatography.
  • the viscosity of the polyester resin by using a rotary rheometer (Anton Paar Co. Ltd.), 270 ° C., measured at the conditions of a shear rate of 10 sec -1, for example, 200 ⁇ 5000Pa ⁇ s, ⁇ preferably 300 ⁇ 4000 Pa s, more preferably about 500 to 3000 Pa ⁇ s (particularly 1000 to 2000 Pa ⁇ s).
  • both resins are sufficiently mixed to form a dispersion layer having an appropriate size in the continuous phase, and the dispersion phase has an appropriate particle size. It can be controlled, and high in-plane birefringence can be imparted to the dispersed phase.
  • the glass transition temperature of the polyester-based resin can be selected from the range of, for example, about 50 to 200 ° C. From the viewpoint that the aspect ratio of the dispersed phase can be easily increased by stretching.
  • the glass transition temperature is preferably lower than the glass transition temperature of the resin, for example, 1 to 100 ° C., preferably 5 to 80 ° C., more preferably 10 to 50 ° C. (especially 20 to 40 ° C.).
  • the glass transition temperature of the polyester resin is, for example, about 60 to 180 ° C., preferably about 80 to 150 ° C., more preferably about 90 to 130 ° C. (particularly about 100 to 120 ° C.).
  • the glass transition temperature can be measured using a differential scanning calorimeter, for example, using a differential scanning calorimeter (“DSC6200” manufactured by Seiko Denshi Kogyo Co., Ltd.) under a nitrogen stream at a heating rate of 10 ° C./min. It can be measured.
  • a differential scanning calorimeter (“DSC6200” manufactured by Seiko Denshi Kogyo Co., Ltd.) under a nitrogen stream at a heating rate of 10 ° C./min. It can be measured.
  • the average diameter in the major axis direction of the dispersed phase is 0.8 to 10 ⁇ m, preferably 1 to 5 ⁇ m, more preferably about 1.5 to 3 ⁇ m.
  • the average diameter in the minor axis direction of the dispersed phase is 0.05 to 0.8 ⁇ m, preferably 0.1 to 0.7 ⁇ m, more preferably about 0.2 to 0.6 ⁇ m.
  • the average aspect ratio of the dispersed phase is 2 to 1000 (for example, 2 to 200), preferably 3 to 500, more preferably 5 to 100 (especially 7 to 30).
  • the dispersed phase is phase-separated from the continuous phase by stretching, and changes from a spherical shape to an anisotropic shape.
  • the anisotropic shape may be, for example, a rugby ball shape (an ellipsoid such as a spheroid), a flat body, a rectangular parallelepiped shape, a fibrous shape, a filamentous shape, or the like.
  • the average diameter of the dispersed phase before orientation processing by stretching may be, for example, about 0.3 to 3 ⁇ m.
  • the orientation coefficient as the degree of alignment of the particles constituting the dispersed phase is preferably as high as possible, for example, 0.34 or more (about 0.34 to 1), preferably 0.4 to 1 (eg 0.5 to 1), More preferably, it may be about 0.7 to 1 (particularly 0.8 to 1). Higher polarization characteristics can be imparted as the orientation coefficient of the dispersed phase particles is higher.
  • the orientation coefficient can be calculated based on the following formula.
  • n ( ⁇ ) represents the ratio (weight ratio) of dispersed phase particles having an angle ⁇ in all dispersed phase particles)].
  • the dispersed phase can be uniformly dispersed even if the pellets of each component are directly melt-kneaded without compounding both components in advance, and voids are generated due to orientation treatment such as uniaxial stretching. Can be prevented, and a good polarizing element can be obtained.
  • the dispersed phase is bonded or closely adhered to the continuous phase without substantially generating voids at the interface with the continuous phase, but if necessary, a compatibilizing agent is blended. May be. When a compatibilizing agent is blended, the dispersed phase may be bonded or adhered to the continuous phase via the compatibilizing agent.
  • a compatibilizing agent a polymer (random, block or graft copolymer) having the same or common components as the resin constituting the continuous phase and the dispersed phase, and the resin constituting the continuous phase and the dispersed phase are usually used.
  • An affinity polymer (random, block or graft copolymer) or the like is used.
  • polyester elastomers compatibilizers having an epoxy group in the main chain, particularly epoxy-modified aromatic vinyl-diene block copolymers [for example, epoxidized styrene-butadiene-styrene (SBS) block copolymers And an epoxidized styrene-diene copolymer or an epoxy-modified styrene-diene copolymer such as an epoxidized styrene-butadiene block copolymer (SB)].
  • SBS epoxidized styrene-butadiene-styrene
  • SB epoxy-modified styrene-diene copolymer
  • the epoxidized aromatic vinyl-diene copolymer not only has high transparency, but also has a relatively high softening temperature of about 70 ° C., which makes the resin compatible in many combinations of a continuous phase and a dispersed phase,
  • the dispersed phase can be uniformly dispersed.
  • the polarizing element of the present invention is a conventional additive, for example, a stabilizer such as an antioxidant or a heat stabilizer, a plasticizer, an antistatic agent, a flame retardant, a filler, an ultraviolet ray, as long as the optical properties are not impaired. It may contain an absorbent or the like.
  • the refractive index difference between the continuous phase and the dispersed phase with respect to the linearly polarized light is large in the sheet stretching direction (hereinafter sometimes referred to as “X-axis direction”) and is perpendicular to the stretching direction.
  • the direction (hereinafter, sometimes referred to as “Y-axis direction”) is small. Therefore, the polarizing element has a property of scattering polarized light in a direction in which the refractive index difference is large. A part of the polarized light is scattered in front of the stretched sheet, and the remaining polarized light is scattered behind the stretched sheet. Not absorbed.
  • the absolute value of the refractive index difference between the continuous phase and the dispersed phase in the X-axis direction is 0.1 or more (for example, 0.1 to 0.5), preferably 0.1 to 0.3. More preferably, it is about 0.1 to 0.2, and the absolute value of the refractive index difference between the continuous phase and the dispersed phase in the Y-axis direction may be 0.1 or less, for example, 0.05 or less It is preferably 0.04 or less, more preferably 0.03 or less (for example, about 0.001 to 0.03).
  • the balance between backscattering (reflection) and transmission scattering is excellent, and excellent polarization characteristics and scattering characteristics can be exhibited, and the brightness of the display device can also be improved.
  • the continuous phase and the disperse phase have a small refractive index anisotropy at the stage of film formation (so-called cast sheet) and have substantially the same refractive index. It is preferable to have it.
  • the absolute value of the difference in refractive index between the polycarbonate resin before stretching and the transparent resin constituting the dispersed phase may be 0.05 or less, preferably 0.04 or less, and more preferably 0.03 or less.
  • a polarizing element is prepared by increasing the refractive index in the X-axis direction of a transparent resin in a continuous phase without significantly changing the refractive index in the Y-axis direction.
  • the change in refractive index is small even when the continuous phase is in the X-axis direction, and the refractive index of the fine particle dispersed phase is remarkably changed between the X-axis direction and the Y-axis direction.
  • the dispersed phase deforms into an anisotropic shape such as a rugby ball shape or a rod shape due to stretching and also causes a large difference in refractive index.
  • the refractive index of the continuous phase and the disperse phase are greatly different in the X-axis direction and substantially coincide with each other in the Y-axis direction.
  • a polarizing element having a characteristic that the polarized light in the direction having substantially the same refractive index is substantially transmitted and the polarized light in the direction having a different refractive index is scattered is produced.
  • the disperse phase has a large difference in refractive index between the X-axis direction and the Y-axis direction.
  • the greater the difference in refractive index between the continuous phase and the dispersed phase the greater the scattering property for polarized light in that direction, and the ratio of backscattering (reflected light) also increases.
  • the refractive index of the continuous phase and the refractive index of the disperse phase completely coincide, the polarized light in the Y-axis direction is transmitted as a complete transparent body without being scattered.
  • the total light transmittance in the Y-axis direction is high, for example, 80% or more (for example, 80 to 99%), preferably 82 to 98%, More preferably, it is about 85 to 95%.
  • the diffuse light transmittance in the Y-axis direction is, for example, 30% or more (for example, 30 to 90%), preferably 40 to 80%, more preferably about 50 to 70%.
  • it may be 30% or less, preferably 20% or less, and more preferably 10% or less.
  • the polarizing element of the present invention has excellent scattering characteristics in the X-axis direction, and the total light transmittance in the X-axis direction is 75% or less (for example, 10 to 75%), preferably 70% or less (for example, 20 to 70%), more preferably 60% or less (25 to 60%). That is, the polarizing element of the present invention has a high reflectance (backscattering rate), and the reflectance in the stretching direction (backscattering rate) is 25% or more (for example, 25 to 90%), preferably 30% or more ( For example, 30 to 80%), more preferably 40% or more (for example, 40 to 75%), particularly 50% or more (for example, 50 to 70%) may be used.
  • the polarizing element of the present invention has a total light transmittance in the Y-axis direction of 80% or more and a reflectance in the X-axis direction (reflectance due to regular reflection components and backscattering components) of 30% or more.
  • a total light transmittance in the Y-axis direction of 80% or more and a reflectance in the X-axis direction (reflectance due to regular reflection components and backscattering components) of 30% or more.
  • the polarizing element of the present invention has properties similar to those of an absorption polarizing plate.
  • it since it reflects without absorbing polarized light, it does not increase in temperature due to absorption of one of the polarized light, which is a defect of the absorption type, and becomes a good scattering type polarizing plate similar to a transmission type polarizing plate.
  • the polarizing element of the present invention can be used as a luminance improvement sheet for liquid crystal display devices and the like.
  • the total light transmittance and the diffuse light transmittance are measured using a polarization measuring device (haze meter) (manufactured by Nippon Denshoku Industries Co., Ltd., NDH-300A), as described in Examples below.
  • the total light can be measured by a method according to JIS K7361-1, and the haze (diffused light) can be measured by a method according to JIS K7136.
  • the thickness of the polarizing element of the present invention is about 3 to 500 ⁇ m, preferably about 5 to 400 ⁇ m (for example, 30 to 400 ⁇ m), more preferably about 5 to 300 ⁇ m (for example, 50 to 300 ⁇ m).
  • the resin of the transparent resin layer can be selected from the resins exemplified as the constituent components of the continuous phase or the dispersed phase.
  • a preferred transparent resin layer is formed of the same series (particularly the same) polycarbonate resin as the continuous phase.
  • the transparent resin layer may also contain the aforementioned conventional additives as long as the optical properties are not impaired.
  • the total thickness of the transparent resin layer may be the same as that of the polarizing element, for example.
  • the thickness of the polarizing element layer is about 3 to 500 ⁇ m
  • the thickness of the transparent resin layer can be selected from about 3 to 150 ⁇ m, preferably 5 to 50 ⁇ m, and more preferably about 5 to 15 ⁇ m.
  • the thickness of the laminated film is, for example, about 6 to 800 ⁇ m, preferably about 10 to 600 ⁇ m, and more preferably about 20 to 450 ⁇ m.
  • the polarizing element can be obtained by dispersing and orienting the transparent resin constituting the dispersed phase in the polycarbonate resin constituting the continuous phase.
  • a polycarbonate resin, a transparent resin, and additives such as a compatibilizer, if necessary, are blended by a conventional method (for example, a melt blending method, a tumbler method, etc.), melt-mixed, and T-die
  • the dispersed phase can be dispersed in the continuous phase by extrusion from a ring die or the like to form a film.
  • the melting temperature is preferably equal to or higher than the melting point of the polycarbonate resin and the transparent resin, and varies depending on the type of the resin, but is, for example, about 150 to 290 ° C., preferably about 200 to 260 ° C.
  • the orientation treatment of the dispersed phase is performed by, for example, (1) a method of stretching an extruded sheet, (2) a method of forming a film while drawing the extruded sheet, solidifying the sheet, and then stretching the sheet.
  • a cast obtained by solidifying and cooling a sheet in which a dispersed phase, which is a transparent resin, is dispersed in a continuous phase, which is a polycarbonate-based resin, is formed by the melt film formation. It is preferable to reheat the sheet and then perform orientation processing by stretching.
  • the stretching may be simple free width uniaxial stretching or constant width (fixed width) uniaxial stretching.
  • the uniaxial stretching method is not particularly limited. For example, a method of pulling both ends of a solidified film (tensile stretching), and a plurality of series (for example, two series) of a pair of opposed rolls (two rolls) are prepared in parallel. The film is inserted between the two rolls on the feeding side and the two rolls on the feeding side, and the film feeding speed of the two rolls on the feeding side is set.
  • a free-width uniaxial stretch can be preferably used from the viewpoint that tensile stretching, in particular, the deformation can be surely generated in the dispersed phase and the in-plane birefringence of the dispersed phase can be increased.
  • fixed width uniaxial stretching by a tenter method can be preferably used.
  • Fixed-width uniaxial stretching by the tenter method is different from free-width uniaxial stretching in which the width in the direction perpendicular to the stretching direction decreases with stretching and the thickness tends to be non-uniform across the entire width. This is a method that does not change, and is advantageous for producing a uniform sheet over the entire width while maintaining the anisotropic orientation of the dispersed phase. Furthermore, although the details of the action are unknown, it is also effective for changing the refractive index of the dispersed phase.
  • the stretching direction may be the sheet flow direction or the sheet width direction.
  • the stretching temperature is preferably a temperature equal to or higher than the glass transition temperature of the polycarbonate resin.
  • Tg glass transition temperature of the polycarbonate resin
  • the temperature may be as high as (Tg + 5) to (Tg + 30) ° C. [particularly (Tg + 8) to (Tg + 20) ° C.].
  • the specific stretching temperature may be, for example, about 120 to 180 ° C., preferably 150 to 175 ° C., more preferably about 150 to 170 ° C. (especially 160 to 170 ° C.).
  • the heat treatment time is, for example, 0.1 to 30 minutes, preferably 1 to 10 minutes, more preferably about 2 to 5 minutes, and can be selected according to the temperature. For example, when the temperature is about 165 ° C., 2 to It takes about 3 minutes.
  • the refractive index difference between the continuous phases can be reduced, and the refractive index of the continuous phase and the dispersed phase can be matched in the direction perpendicular to the stretching direction, so that the optical characteristics can be improved.
  • heat resistance such as dimensional stability of the polarizing element and strength can be improved.
  • the laminated film is obtained by laminating a transparent resin layer on at least one surface of the polarizing element layer by a conventional method, for example, a coextrusion molding method, a laminating method (extrusion laminating method, dry laminating method, etc.), or the like. be able to.
  • a conventional method for example, a coextrusion molding method, a laminating method (extrusion laminating method, dry laminating method, etc.), or the like.
  • FIG. 1 is a schematic cross-sectional view showing an example of a transmissive liquid crystal display device using a surface light source device in which luminance is improved using the polarizing element of the present invention.
  • the liquid crystal display device 1 is provided with a fluorescent tube 2 serving as a tubular light source and a side portion of the fluorescent tube 2, and guides the light from the fluorescent tube 2 to be incident from a side surface and emitted from a flat emission surface.
  • An optical member (light guide plate) 4 a TN liquid crystal cell 7 illuminated by light emitted from the light guide plate 4, a reflective member (reflecting plate) 3 that reflects the incident light, the light guide plate 4, and the liquid crystal
  • a polarizing element 5 disposed between the cell 7 and a diffusion sheet 6 that diffuses light transmitted through the polarizing element 5 is provided.
  • the light from the fluorescent tube 2 passes through the light guide plate 4, is reflected by the reflection plate 3, and is emitted from the light guide plate 4.
  • the polarizing element 5 the emitted light is almost transmitted through the polarizing element 5 in the direction where the refractive index difference between the continuous phase and the dispersed phase is small (Y-axis direction), and is polarized in the direction where the refractive index difference is large (X-axis direction). Scattered and transmitted or reflected.
  • the reflected light again passes through the light guide plate 4 and is reflected by the reflection plate 3. This reflection generates light whose polarization direction is partially rotated by 90 degrees.
  • the light whose polarization direction is rotated passes through the light guide plate 4 again, reaches the polarizing element 5 and is transmitted therethrough.
  • the light whose polarization direction has not changed is reflected again by the polarizing element 5, but the light whose polarization direction has been rotated again by 90 degrees due to reflection by the reflecting plate 3 passes through the polarizing element 5.
  • the light that has passed through the polarizing element 5 is scattered by the diffusion sheet 6 and irradiates the liquid crystal cell 7.
  • the polarizing element of the present invention used for this application has a total light transmittance of linearly polarized light in the Y-axis direction of 80% or more, and the reflectance of linearly polarized light in the X-axis direction (reflectance by regular reflection component and backscattering component).
  • the effect of improving the luminance of the polarizing element of the present invention is effective even when laminated on a light guide plate / diffusion plate / prism sheet, which is usually used.
  • the brightness improvement effect of the polarizing element of the present invention is also preferable for a direct type backlight (surface light source device) that does not use a light guide plate and a transmissive liquid crystal display device using the same.
  • a liquid crystal cell may be disposed between the polarizing element of the present invention and the reflecting plate, and the polarizing element of the present invention is disposed between the liquid crystal cell and the reflecting plate. May be.
  • a reflective liquid crystal display device in which the polarizing element is disposed between a liquid crystal cell and a reflector is preferable.
  • FIG. 2 is a schematic cross-sectional view showing an example of a reflective liquid crystal display device in which the luminance is improved by using the polarizing element of the present invention.
  • the reflective liquid crystal display device 10 includes a reflective member (reflective plate) 13 for reflecting external light, a TN liquid crystal cell 17 (for a reflective liquid crystal device) illuminated by light emitted from the reflective plate 13, an external An absorptive polarizing plate 18 for guiding light to the liquid crystal cell 17 and a polarizing element 15 disposed between the reflecting plate 13 and the liquid crystal cell 17 for scattering light emitted from the reflecting plate 13 are provided. Yes.
  • the reflective liquid crystal display device 10 only the light having the same polarization axis as that of the polarizing plate is transmitted among the external light incident on the absorption polarizing plate 18 and reaches the liquid crystal cell 17.
  • the light incident on the liquid crystal cell 17 rotates the polarization direction and reaches the polarizing element 15.
  • the polarizing element 15 is arranged so that the polarization direction of the external light that has passed through the liquid crystal cell 17 coincides with the Y-axis direction of the polarizing element 15.
  • the polarized light that has passed through the absorptive polarizing plate 18 passes through the polarizing element 15 again, and the direction of the polarized light is rotated by the liquid crystal cell 17 and becomes a direction perpendicular to the polarizing axis of the absorptive polarizing plate 18, so that dark display is obtained.
  • FIG. 3 is a schematic cross-sectional view showing another example of the reflective liquid crystal display device in which the luminance is improved by using the polarizing element of the present invention.
  • the reflective liquid crystal display device 20 includes a reflective liquid crystal device liquid crystal cell 27 that is illuminated by light emitted from the reflective plate 23, a reflective member (reflective plate) 23 for reflecting external light, and the liquid crystal cell 27 and the reflective liquid crystal cell 27.
  • a quarter wave plate 29 disposed between the plate 23 and a polarizing element disposed between the quarter wave plate 29 and the liquid crystal cell 27 for scattering light emitted from the reflector plate 23. 25.
  • the liquid crystal cell 27 is a type of liquid crystal containing a dichroic dye.
  • the liquid crystal molecules are aligned in the liquid crystal alignment processing direction (the direction parallel to the glass substrate of the liquid crystal cell), and the dichroic dye is similarly aligned.
  • the linearly polarized light component parallel to the long axis direction of the dichroic dye molecule is absorbed by the dichroic dye.
  • the linearly polarized light component in the direction perpendicular to the major axis direction of the dichroic dye molecule passes through the liquid crystal cell 27 and enters the polarizing element 25.
  • the liquid crystal cell 27 when a voltage is applied, the liquid crystal molecules are aligned perpendicular to the glass substrate, and the dichroic dye is similarly aligned.
  • the incident external light passes through the liquid crystal cell 27 without being absorbed by the dichroic dye of the liquid crystal cell 27 containing the dichroic dye, and enters the polarizing element 25.
  • the incident light passes through the polarizing element 25 as it is, with the polarization in the Y-axis direction intact, but the polarization in the X-axis direction is scattered.
  • the polarized light emitted from the polarizing element 25 becomes circularly polarized light by the quarter wavelength plate 29 and is reflected by the reflecting plate 23.
  • Example 1 Polyethylene naphthalate resin (PEN, manufactured by Teijin Chemicals Ltd., “Teonex TN8065S”, viscosity at 270 ° C. and shear rate of 10 sec ⁇ 1 ) as a resin constituting the dispersed phase, 10 parts by weight, constituting the continuous phase Bisphenol A type polycarbonate resin (PC, manufactured by Mitsubishi Engineering Plastics Co., Ltd., “medium viscosity product Iupilon S-2000”, viscosity average molecular weight 18000 to 20000, MFR 10 g / 10 min, 270 ° C.
  • PC Bisphenol A type polycarbonate resin
  • Example 3 A stretched sheet was produced in the same manner as in Example 1 except that a press sheet having a thickness of 500 ⁇ m was prepared by press molding and the obtained sheet was stretched 5 times.
  • Example 6 In the same manner as in Example 1, a press sheet having a thickness of 300 ⁇ m was produced by press molding. The obtained sheet was cut into a width of 40 mm and a length of 70 mm, and pre-heated at 155 ° C. for 5 minutes at 50 mm between chucks using a tensile tester equipped with a constant temperature unit, and then stretched twice at a tensile rate of 200 mm / min. Then, after being heat-treated at 155 ° C. for 3 minutes while being held on the chuck, it was rapidly cooled to room temperature to obtain a stretched sheet.
  • Example 8 In the same manner as in Example 1, a press sheet having a thickness of 300 ⁇ m was produced by press molding. The obtained sheet was cut into a width of 40 mm and a length of 70 mm, and pre-heated at 155 ° C. for 5 minutes at 50 mm between chucks using a tensile tester equipped with a constant temperature unit, and then stretched twice at a tensile rate of 200 mm / min. Thereafter, it was rapidly cooled to room temperature to obtain a stretched sheet.
  • Comparative Example 1 8 parts by weight of polystyrene resin (PS, manufactured by Toyo Styrol Co., Ltd., “GPMW4D”) as the resin constituting the dispersed phase, 92 parts by weight of polyethylene naphthalate resin as the resin constituting the continuous phase, It was melted and kneaded at a cylinder temperature of 280 ° C., extruded, and cooled to produce pellets. The obtained pellets were press-molded for 3 minutes at a pressure of 270 ° C. and 10 MPa using a small press machine to produce a press sheet having a thickness of 550 ⁇ m. The obtained sheet was cut into a width of 40 mm and a length of 70 mm, and preheated at 133 ° C. for 5 minutes using a tensile tester equipped with a thermostatic unit, and then stretched 4 times at a pulling rate of 100 mm / min. Thereafter, it was rapidly cooled to room temperature to obtain a stretched sheet.
  • PS polysty
  • Comparative Example 2 A stretched sheet was produced in the same manner as in Comparative Example 1 except that the press sheet was stretched 5 times.
  • Comparative Example 3 A stretched sheet was produced in the same manner as in Comparative Example 1 except that the press sheet was stretched 6 times.
  • Comparative Example 4 A press sheet obtained in the same manner as in Comparative Example 1 was cut into a width of 40 mm and a length of 70 mm, and pre-heated at 133 ° C. for 5 minutes with a chuck of 50 mm between chucks and a tensile speed. The film was stretched 5 times at 100 mm / min and then heat treated at 133 ° C. for 3 minutes while being held on the chuck, and then rapidly cooled to room temperature to obtain a stretched sheet.
  • Comparative Example 5 4 parts by weight of polystyrene resin as the resin constituting the dispersed phase and 96 parts by weight of polyethylene naphthalate resin as the resin constituting the continuous phase were melt kneaded and extruded at a cylinder temperature of 280 ° C. using a twin screw extruder, Cooled to produce pellets. The obtained pellets were press-molded for 3 minutes at a pressure of 270 ° C. and 10 MPa using a small press machine to produce a press sheet having a thickness of 1 mm. The obtained sheet was cut into a width of 40 mm and a length of 70 mm, and preheated at 133 ° C. for 5 minutes using a tensile tester equipped with a thermostatic unit, and then stretched 6 times at a pulling rate of 100 mm / min. Thereafter, it was rapidly cooled to room temperature to obtain a stretched sheet.
  • the polarizing element of the present invention can be used for various surface light source devices.
  • a transmissive or reflective liquid crystal display device for example, display of electrical products such as personal computers, word processors, liquid crystal televisions, mobile phones, watches, calculators, etc. Part

Abstract

Disclosed is a polarizing element which can be obtained by a simple method and is capable of exhibiting excellent polarization characteristics and scattering characteristics. Specifically disclosed is a polarizing element which is configured of a stretched sheet obtained by uniaxially stretching a sheet that is formed by melt-mixing and molding a polycarbonate resin and a transparent resin, in said stretched sheet dispersed phases that are configured of the transparent resin being dispersed in the form of particles in the continuous phase that is configured of the polycarbonate resin. In the polarizing element, the absolute value of the refractive index difference of the continuous phase between the stretching direction and the direction perpendicular to the stretching direction is less than 0.05, the absolute value of the refractive index difference of the dispersed phases between the stretching direction and the direction perpendicular to the stretching direction is not less than 0.05, the refractive index difference between the continuous phase and the dispersed phases with respect to linearly polarized light in the stretching direction is different from that in the direction perpendicular to the stretching direction, and the reflectance of polarized light parallel to the stretching direction is not less than 30%.

Description

偏光素子及びそれを用いた表示装置Polarizing element and display device using the same
 本発明は、光拡散性及び偏光性を有する偏光素子及びこの偏光素子を備えた表示装置(面光源装置、透過型又は反射型液晶表示装置など)に関する。 The present invention relates to a polarizing element having a light diffusing property and a polarizing property, and a display device (a surface light source device, a transmission type or a reflection type liquid crystal display device, etc.) provided with the polarizing element.
 液晶表示装置では、一般にヨウ素系や染料系の吸収型偏光板が使用されている。そのため、表示面の明るさが外光又は照射光などの光源の明るさの半分以下になる。また、液晶パネルの表裏に2枚の前記吸収型偏光板を用いるため、実際は光源の明るさの30~40%の明るさに低減する。従って、より高い輝度を得るため、偏光変換して前記欠点を補う試みがなされている。偏光変換の方法としては、例えば、偏光ビームスプリッターなどのプリズムによる方法や、コレステリック液晶の円偏光の特性を利用した偏光変換法等が挙げられる。 Liquid crystal display devices generally use iodine or dye type absorption polarizing plates. Therefore, the brightness of the display surface is less than half the brightness of a light source such as outside light or irradiation light. Further, since the two absorption polarizing plates are used on the front and back of the liquid crystal panel, the brightness is actually reduced to 30 to 40% of the brightness of the light source. Therefore, in order to obtain higher luminance, an attempt has been made to compensate for the above-mentioned drawbacks by polarization conversion. Examples of the polarization conversion method include a method using a prism such as a polarization beam splitter, and a polarization conversion method using the circular polarization characteristics of cholesteric liquid crystal.
 しかし、プリズムによる方法では、偏光が角度や波長に依存するとともに、軽量性やコンパクト性に欠ける。コレステリック液晶を用いる場合は、全波長をカバーするには、液晶を螺旋ピッチの異なる多層にする必要があり、液晶の作製が複雑でコストが高くなる。さらに、方解石などの複屈折物質からなる平板状素子の両面に光学素子を積層した偏光シート、ポリエステル系樹脂などで構成されたフィルムを多層積層した偏光子、液晶と高分子との複合体を用いる方法なども知られているが、いずれも製法が複雑である上に、高価であり、普及するには至っていない。 However, in the prism method, the polarization depends on the angle and wavelength, and the lightness and compactness are lacking. When using cholesteric liquid crystal, in order to cover all wavelengths, it is necessary to make the liquid crystal into multiple layers with different helical pitches, making the liquid crystal complicated and expensive. Furthermore, a polarizing sheet in which optical elements are laminated on both sides of a flat element made of a birefringent material such as calcite, a polarizer in which a film composed of a polyester resin, etc., is laminated, and a composite of liquid crystal and polymer is used. Methods are also known, but all of them are complicated and expensive and have not yet become widespread.
 一方、連続相中に、連続相とは屈折率の異なる分散相を粒子状に分散させた散乱シートを偏光素子として利用する方法も提案されている。例えば、特開平9-297204号公報(特許文献1)には、アスペクト比が1以上の無機散乱粒子を屈折率の異なる樹脂又は高分子に分散配列した異方性散乱素子が開示されている。しかし、この素子は散乱粒子を一定方向に配列する場合に、高分子と無機粒子との間に空隙を生じ易く、安定して製造できない。なお、空隙を生じにくい加工方法として、ローラーを使用してカレンダー加工により高分子中の無機粒子を配列しつつ、紫外線硬化を行う方法が採用されているものの、使用する高分子が限定される。 On the other hand, a method is also proposed in which a scattering sheet in which a dispersed phase having a refractive index different from that of the continuous phase is dispersed in the form of particles in the continuous phase is used as a polarizing element. For example, JP-A-9-297204 (Patent Document 1) discloses an anisotropic scattering element in which inorganic scattering particles having an aspect ratio of 1 or more are dispersed and arranged in resins or polymers having different refractive indexes. However, this element is liable to produce voids between the polymer and the inorganic particles when the scattering particles are arranged in a certain direction, and cannot be manufactured stably. In addition, although the method of performing ultraviolet curing while arranging inorganic particles in the polymer by calendaring using a roller as a processing method that hardly generates voids, the polymer to be used is limited.
 米国特許4,871,784号公報(特許文献2)には、芳香族ポリエステル系樹脂で構成された第1の高分子中に、結晶性ポリプロピレン系樹脂で構成された第2の高分子が分散したシートを延伸してミクロボイドを生じさせる方法が開示されている。しかし、分散物の周りに楕円形のミクロボイドを生じさせる方法は、界面の幾何学的構造が様々であるため、シートの偏光特性を制御することが難しい。 In US Pat. No. 4,871,784 (Patent Document 2), a second polymer composed of a crystalline polypropylene resin is dispersed in a first polymer composed of an aromatic polyester resin. A method of stretching the resulting sheet to produce microvoids is disclosed. However, the method of generating elliptical microvoids around the dispersion is difficult to control the polarization properties of the sheet because of the varying interface geometry.
 特表2000-506990号公報(特許文献3)には、少なくとも約0.05の複屈折率を有する第1の相と、第1の相内に配置され、第1の相との屈折率差が、第1の軸に沿って約0.05より大きく、かつ第1の軸に直交した第2の軸に沿って約0.05より小さい第2の相とを含む光学体であって、第1及び第2の相全体としての拡散反射率が、電磁線の少なくとも1つの偏光に対して、少なくとも1つの軸に沿って、少なくとも約30%である光学体が開示されている。この文献には、第1及び第2の高分子の組合せとしては、2,6-ポリエチレンナフタレートと、ポリメチルメタクリレートやシンジオタクチックポリスチレンとの組合せが記載されている。また、相間の接着性を改良するために、少量のナフタレンジカルボン酸を利用できること、ボイド(空隙)を形成するために、相溶化剤を使用することが記載されている。 JP-T-2000-506990 (Patent Document 3) discloses a first phase having a birefringence of at least about 0.05 and a refractive index difference between the first phase and the first phase. And a second phase that is greater than about 0.05 along the first axis and less than about 0.05 along a second axis that is orthogonal to the first axis, the optical body comprising: An optical body is disclosed wherein the diffuse reflectance as a whole of the first and second phases is at least about 30% along at least one axis for at least one polarization of electromagnetic radiation. This document describes a combination of 2,6-polyethylene naphthalate and polymethyl methacrylate or syndiotactic polystyrene as a combination of the first and second polymers. It also describes that a small amount of naphthalenedicarboxylic acid can be used to improve the adhesion between phases, and that a compatibilizing agent is used to form voids (voids).
 しかし、第1の相を構成する高分子中に、第2の相を構成する高分子が分散したシートを延伸すると、前記2つの高分子間の結合力が弱く、延伸に伴って連続相と分散相との間に微量の空隙を生じ、シートを安定して製造できない。また、相溶化剤として、ポリスチレングリシジルメタクリレートを使用する例が記載されているが、相溶化剤を配合しても、末端の急激な粘度の上昇及びゲル化を生じ、安定でかつ外観の平滑性に優れたシートが得られない。 However, when a sheet in which the polymer constituting the second phase is dispersed in the polymer constituting the first phase, the bonding force between the two polymers is weak, and the continuous phase and A small amount of voids are formed between the dispersed phase and the sheet cannot be stably produced. Moreover, although the example which uses a polystyrene glycidyl methacrylate as a compatibilizing agent is described, even if a compatibilizing agent is blended, an abrupt increase in viscosity and gelation occur at the end, and it is stable and smooth in appearance. An excellent sheet cannot be obtained.
 これらの問題点を解消し、優れた散乱特性及び偏光特性を有するとともに、ボイドを生じることなく、安定して均一な偏光素子として、特開2003-075643号公報(特許文献4)には、第1の透明樹脂で構成された連続相に、第2の透明樹脂で構成された分散相が粒子状に分散している延伸シートで構成された素子であって、シートの延伸方向と垂直方向とで両相における屈折率差が異なり、両相の間に実質的に空隙が生じていない偏光素子が開示されている。この文献には、ポリエステル系樹脂で構成された第1の透明樹脂に対して、エポキシ基を有する第2の透明樹脂又はエポキシ基を有する相溶化剤を配合することが記載されている。 Japanese Patent Application Laid-Open No. 2003-075643 (Patent Document 4) discloses a stable and uniform polarizing element that eliminates these problems, has excellent scattering characteristics and polarization characteristics, and does not generate voids. An element composed of a stretched sheet in which a disperse phase composed of a second transparent resin is dispersed in a continuous phase composed of one transparent resin in the form of particles, A polarizing element is disclosed in which the difference in refractive index between the two phases is different and a gap is not substantially generated between the two phases. This document describes blending a second transparent resin having an epoxy group or a compatibilizer having an epoxy group with the first transparent resin composed of a polyester-based resin.
 しかし、この樹脂組成物でも、4倍以上の高倍率の延伸やロール圧延などの特殊な方法が必要であり、4倍以上に延伸した偏光素子は裂け易い。また、ロール圧延などの特殊な方法を用いない場合は、高倍率延伸が必要なため、汎用の延伸機を使用できない。 However, even with this resin composition, a special method such as stretching at a high magnification of 4 times or more and roll rolling is required, and a polarizing element stretched at 4 times or more is easily torn. Further, when a special method such as roll rolling is not used, a general-purpose stretching machine cannot be used because high-strength stretching is necessary.
 特開2008-129556号公報(特許文献5)には、ポリエステル系樹脂(A)からなる連続相と、ポリスチレン系樹脂(B)からなる分散相とを有する散乱型偏光子であって、黄色度(YI値)が-3~3の範囲内である散乱型偏光素子が開示されている。 Japanese Patent Application Laid-Open No. 2008-129556 (Patent Document 5) discloses a scattering polarizer having a continuous phase composed of a polyester-based resin (A) and a dispersed phase composed of a polystyrene-based resin (B). A scattering type polarizing element having a (YI value) in the range of −3 to 3 is disclosed.
 しかし、この偏光素子においても、輝度を向上するためには、4倍以上の高倍率の延伸が必要である。これに対して、延伸倍率が4倍以下であれば、汎用のポリエステル用2軸延伸装置、テンター装置の使用が可能となり、便宜性が高い。例えば、横1軸延伸すれば、細幅の未延伸シートから広幅の延伸シートが容易に作製できる。また、使用する材料についても、高価なポリエステル系樹脂が連続相として使用されるため、材料費が高く、経済性が低い。 However, even in this polarizing element, it is necessary to stretch at a high magnification of 4 times or more in order to improve the luminance. On the other hand, when the draw ratio is 4 times or less, a general-purpose biaxial stretching device for polyester and a tenter device can be used, which is highly convenient. For example, if the uniaxial stretching is performed, a wide stretched sheet can be easily produced from a narrow unstretched sheet. In addition, since the expensive polyester-based resin is used as the continuous phase, the material cost is high and the economy is low.
 なお、安価な材料樹脂としては、一般的に、ポリオレフィン系樹脂、ポリメチルメタクリレート系樹脂、スチレン系樹脂、ポリカーボネート系樹脂などが挙げられるが、延伸により生じる屈折率の変化が小さく、前述の連続相が屈折率の異方性を生じるタイプの偏光素子の形成には適さない。すなわち、安価な材料を連続相として用いる場合に、多くの安価な材料は屈折率の変化が小さいため、このような材料において、偏光変換してより高い輝度を得ることが求められている。しかし、従来は、分散相として連続相よりも柔軟な樹脂が使用されていたが、延伸によりラグビーボール状又は棒状に変形はするものの、変形の応力が小さく、分子鎖が容易に配向緩和するため、分散相では、延伸しても大きな屈折率差は生じないと考えられていた。従って、ポリカーボネートなどの安価な材料を連続相とした偏光素子は知られていない。 In general, inexpensive resin materials include polyolefin resins, polymethyl methacrylate resins, styrene resins, polycarbonate resins, etc., but the refractive index change caused by stretching is small, and the above-mentioned continuous phase However, it is not suitable for forming a polarizing element of a type that causes anisotropy of refractive index. That is, when an inexpensive material is used as a continuous phase, since many inexpensive materials have a small change in refractive index, it is required to obtain higher luminance by polarization conversion in such a material. Conventionally, however, a resin that is more flexible than the continuous phase has been used as the dispersed phase. However, although it is deformed into a rugby ball or rod shape by stretching, the deformation stress is small and the molecular chains are easily relaxed in orientation. In the disperse phase, it was considered that a large difference in refractive index did not occur even when stretched. Therefore, a polarizing element using a cheap material such as polycarbonate as a continuous phase is not known.
特開平9-297204号公報(特許請求の範囲、実施例)JP-A-9-297204 (Claims and Examples) 米国特許4,871,784号公報(特許請求の範囲)US Pat. No. 4,871,784 (Claims) 特表2000-506990号公報(特許請求の範囲、実施例)JP 2000-506990 A (Claims, Examples) 特開2003-075643号公報(特許請求の範囲、実施例)JP 2003-075643 A (Claims, Examples) 特開2008-129556号公報(特許請求の範囲、段落[0024]、実施例)JP 2008-129556 A (Claims, paragraph [0024], Examples)
 従って、本発明の目的は、簡便な方法で、優れた偏光特性及び散乱特性を発現できる偏光素子及びこの偏光素子を備えた表示装置(面光源装置、液晶表示装置などの表示装置)を提供することにある。 Accordingly, an object of the present invention is to provide a polarizing element capable of exhibiting excellent polarization characteristics and scattering characteristics by a simple method and a display device (display device such as a surface light source device or a liquid crystal display device) provided with the polarizing element. There is.
 本発明の他の目的は、低い延伸倍率であっても、表示装置の輝度を向上できる偏光素子及びこの偏光素子を備えた表示装置を提供することにある。 Another object of the present invention is to provide a polarizing element that can improve the luminance of the display device even at a low stretch ratio, and a display device including the polarizing element.
 本発明のさらに他の目的は、延伸により裂傷やボイドを発生することなく、偏光特性に優れた偏光素子及びこの偏光素子を備えた表示装置を提供することにある。 Still another object of the present invention is to provide a polarizing element having excellent polarization characteristics without causing lacerations or voids due to stretching, and a display device including the polarizing element.
 本発明の別の目的は、前記偏光素子及びこの偏光素子を備えた表示装置を安価かつ簡便に製造することにある。 Another object of the present invention is to inexpensively and easily manufacture the polarizing element and a display device including the polarizing element.
 本発明者らは、前記課題を達成するため鋭意検討した結果、マトリックス相(連続相)をポリカーボネート系樹脂で構成し、分散相を所定の透明樹脂で構成したシートを一軸延伸すると、簡便な方法で、優れた偏光特性及び散乱特性を発現できることを見いだし、本発明を完成した。 As a result of intensive studies to achieve the above-mentioned problems, the inventors of the present invention have achieved a simple method by uniaxially stretching a sheet in which the matrix phase (continuous phase) is composed of a polycarbonate-based resin and the dispersed phase is composed of a predetermined transparent resin. Thus, the inventors have found that excellent polarization characteristics and scattering characteristics can be expressed, and completed the present invention.
 すなわち、本発明の偏光素子は、ポリカーボネート系樹脂で構成された連続相に、透明樹脂で構成された分散相が粒子状に分散している延伸シートで構成された素子であって、前記連続相の面内複屈折が0.05未満であり、前記分散相の面内複屈折が0.05以上であり、かつ直線偏光に対する連続相と分散相との屈折率差が延伸方向とこの延伸方向に対して垂直な方向とで異なる。この偏光素子は、延伸方向における連続相と分散相との屈折率差の絶対値が0.1~0.3であり、かつ延伸方向に対して垂直な方向における連続相と分散相との屈折率差の絶対値が0.1以下であってもよい。前記分散相は、長軸及び短軸の平均長さが、それぞれ0.8~10μm及び0.05~0.8μmであり、平均アスペクト比が2~200であってもよい。本発明の偏光素子は、延伸方向に対して垂直な方向の直線偏光の全光線透過率が80%以上であり、かつ延伸方向に平行な方向の直線偏光の反射率(正反射成分及び後方散乱成分による反射率)が30%以上であってもよい。前記ポリカーボネート系樹脂は、ガラス転移温度120~160℃のビスフェノールA型ポリカーボネート系樹脂であってもよい。分散相は、ポリエステル系樹脂(特にポリエチレンナフタレート系樹脂などのポリアルキレンナフタレート系樹脂)で構成されていてもよい。前記連続相と分散相との割合は、連続相/分散相=99/1~50/50(重量比)程度である。 That is, the polarizing element of the present invention is an element composed of a stretched sheet in which a disperse phase composed of a transparent resin is dispersed in a continuous phase composed of a polycarbonate-based resin, and the continuous phase The in-plane birefringence of the dispersed phase is less than 0.05, the in-plane birefringence of the dispersed phase is 0.05 or more, and the difference in refractive index between the continuous phase and the dispersed phase with respect to linearly polarized light is the stretching direction and the stretching direction. It differs in the direction perpendicular to. In this polarizing element, the absolute value of the difference in refractive index between the continuous phase and the dispersed phase in the stretching direction is 0.1 to 0.3, and the refraction between the continuous phase and the dispersed phase in the direction perpendicular to the stretching direction. The absolute value of the rate difference may be 0.1 or less. The dispersed phase may have an average length of a major axis and a minor axis of 0.8 to 10 μm and 0.05 to 0.8 μm, respectively, and an average aspect ratio of 2 to 200. In the polarizing element of the present invention, the total light transmittance of linearly polarized light in the direction perpendicular to the stretching direction is 80% or more, and the reflectance of linearly polarized light in the direction parallel to the stretching direction (regular reflection component and backscattering). 30% or more may be sufficient as the reflectance by a component. The polycarbonate resin may be a bisphenol A type polycarbonate resin having a glass transition temperature of 120 to 160 ° C. The dispersed phase may be composed of a polyester resin (particularly, a polyalkylene naphthalate resin such as a polyethylene naphthalate resin). The ratio of the continuous phase to the dispersed phase is about continuous phase / dispersed phase = 99/1 to 50/50 (weight ratio).
 本発明には、ポリカーボネート系樹脂と透明樹脂とを溶融混合して成形したシートを、一軸延伸して前記偏光素子を製造する方法も含まれる。この方法において、ポリカーボネート系樹脂のガラス転移温度をTgとしたとき、Tg℃~(Tg+80)℃の温度で、1.2~4倍に一軸延伸してもよい。さらに延伸温度以上の温度で熱処理してもよい。 The present invention includes a method of producing the polarizing element by uniaxially stretching a sheet formed by melting and mixing a polycarbonate resin and a transparent resin. In this method, uniaxial stretching may be performed 1.2 to 4 times at a temperature of Tg ° C. to (Tg + 80) ° C., where Tg is the glass transition temperature of the polycarbonate resin. Furthermore, you may heat-process at the temperature more than extending | stretching temperature.
 本発明には、前記偏光素子を備えた面光源装置及び液晶表示装置も含まれる。 The present invention includes a surface light source device and a liquid crystal display device provided with the polarizing element.
 なお、本明細書において、「フィルム」とは厚みの如何を問わず、シートを含む意味に用いる。 In this specification, “film” is used to mean including a sheet regardless of thickness.
 本発明では、連続相をポリカーボネート系樹脂で構成し、分散相を所定の透明樹脂で構成したシートを一軸延伸するため、簡便な方法で、優れた偏光特性及び散乱特性を発現できる。また、低い延伸倍率であっても、表示装置の輝度を向上でき、延伸により裂傷やボイドを発生することなく、偏光特性を向上できる。さらに、本発明では、このような優れた偏光素子を安価かつ簡便に製造できる。 In the present invention, since the sheet in which the continuous phase is composed of polycarbonate resin and the dispersed phase is composed of a predetermined transparent resin is uniaxially stretched, excellent polarization characteristics and scattering characteristics can be expressed by a simple method. Moreover, even if it is a low draw ratio, the brightness | luminance of a display apparatus can be improved and a polarization characteristic can be improved, without generating a tear and a void by extending | stretching. Furthermore, according to the present invention, such an excellent polarizing element can be manufactured inexpensively and easily.
図1は、本発明の面光源装置を用いた透過型液晶表示装置の一例を示す概略断面図である。FIG. 1 is a schematic sectional view showing an example of a transmissive liquid crystal display device using the surface light source device of the present invention. 図2は、本発明の反射型液晶表示装置の一例を示す概略断面図である。FIG. 2 is a schematic sectional view showing an example of the reflective liquid crystal display device of the present invention. 図3は、本発明の反射型液晶表示装置の他の一例を示す概略断面図である。FIG. 3 is a schematic sectional view showing another example of the reflective liquid crystal display device of the present invention.
 [偏光素子]
 本発明の偏光素子は、ポリカーボネート系樹脂で構成された連続相に、透明樹脂で構成された分散相が粒子状に分散している延伸シートで構成されている。すなわち、偏光素子は、偏光素子の母体(マトリックス)を形成する連続相と、そのマトリックス中に存在し、かつ偏光機能を発現する分散相とで形成されている。連続相と分散相との界面は実質的に空隙が生じることなく、連続相と分散相とが結合又は密着している。
[Polarizing element]
The polarizing element of the present invention is composed of a stretched sheet in which a dispersed phase composed of a transparent resin is dispersed in the form of particles in a continuous phase composed of a polycarbonate-based resin. That is, the polarizing element is formed of a continuous phase that forms a matrix (matrix) of the polarizing element and a dispersed phase that is present in the matrix and exhibits a polarizing function. The interface between the continuous phase and the dispersed phase is substantially free from voids, and the continuous phase and the dispersed phase are bonded or in close contact with each other.
 (連続相)
 連続相は、ポリカーボネート系樹脂で構成されており、面内複屈折(延伸方向とこの延伸方向に対して垂直な方向との屈折率差の絶対値)が0.05未満、例えば、0~0.03、好ましくは0~0.02、さらに好ましくは0~0.01程度である。本発明では、延伸倍率も低く抑制できる。特に、ビスフェノールA型ポリカーボネート系樹脂では、後述する実施例の条件での延伸倍率3~5倍において、前記面内複屈折は略0である。なお、屈折率は、後述する実施例で記載されているように、プリズムカップラー(メトリコン社製)を用いて、波長633nmで測定できる。
(Continuous phase)
The continuous phase is composed of a polycarbonate resin, and has an in-plane birefringence (absolute value of the difference in refractive index between the stretching direction and the direction perpendicular to the stretching direction) of less than 0.05, for example, 0 to 0 0.03, preferably 0 to 0.02, more preferably about 0 to 0.01. In the present invention, the draw ratio can also be suppressed low. In particular, in the case of a bisphenol A type polycarbonate-based resin, the in-plane birefringence is substantially zero at a draw ratio of 3 to 5 times under the conditions of Examples described later. The refractive index can be measured at a wavelength of 633 nm using a prism coupler (manufactured by Metricon), as described in Examples described later.
 ポリカーボネート系樹脂には、ビスフェノール類をベースとする芳香族ポリカーボネート、ジエチレングリコールビスアリルカーボネートなどの脂肪族ポリカーボネートなどが含まれる。これらのうち、光学的特性に優れ、安価である点から、ビスフェノール類をベースとする芳香族ポリカーボネートが好ましい。 Polycarbonate resins include aromatic polycarbonates based on bisphenols and aliphatic polycarbonates such as diethylene glycol bisallyl carbonate. Of these, aromatic polycarbonates based on bisphenols are preferred because of their excellent optical properties and low cost.
 ビスフェノール類としては、例えば、ジヒドロキシビフェニルなどのビフェノール類、ビスフェノールA、ビスフェノールF、ビスフェノールAD、ビス(4-ヒドロキシトリル)アルカン、ビス(4-ヒドロキシキシリル)アルカンなどのビス(ヒドロキシアリール)アルカン類[例えば、ビス(ヒドロキシアリール)C1-10アルカン類、好ましくはビス(ヒドロキシアリール)C1-6アルカン類]、ビス(ヒドロキシフェニル)シクロヘキサンなどのビス(ヒドロキシアリール)シクロアルカン類[例えば、ビス(ヒドロキシアリール)C3-12シクロアルカン類、好ましくはビス(ヒドロキシアリール)C4-10シクロアルカン類]、4,4′-ジ(ヒドロキシフェニル)エーテルなどのジ(ヒドロキシフェニル)エーテル類、4,4′-ジ(ヒドロキシフェニル)ケトンなどのジ(ヒドロキシフェニル)ケトン類、ビスフェノールSなどのジ(ヒドロキシフェニル)スルホキシド類、ビス(ヒドロキシフェニル)スルホン類、ビスフェノールフルオレン類[例えば、9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレンなど]などが挙げられる。これらのビスフェノール類は、C2-4アルキレンオキサイド付加体であってもよい。これらのビスフェノール類は、単独で又は二種以上組み合わせて使用できる。 Examples of bisphenols include biphenols such as dihydroxybiphenyl, bis (hydroxyaryl) alkanes such as bisphenol A, bisphenol F, bisphenol AD, bis (4-hydroxytolyl) alkane, and bis (4-hydroxyxylyl) alkane. [Eg bis (hydroxyaryl) C 1-10 alkanes, preferably bis (hydroxyaryl) C 1-6 alkanes], bis (hydroxyaryl) cycloalkanes such as bis (hydroxyphenyl) cyclohexane [eg bis (hydroxyaryl) (Hydroxyaryl) C 3-12 cycloalkanes, preferably bis (hydroxyaryl) C 4-10 cycloalkanes], di (hydroxyphenyl) ether such as 4,4′-di (hydroxyphenyl) ether Di (hydroxyphenyl) ketones such as 4,4′-di (hydroxyphenyl) ketone, di (hydroxyphenyl) sulfoxides such as bisphenol S, bis (hydroxyphenyl) sulfones, bisphenol fluorenes [for example, 9,9-bis (4-hydroxyphenyl) fluorene, 9,9-bis (4-hydroxy-3-methylphenyl) fluorene, etc.]. These bisphenols may be C 2-4 alkylene oxide adducts. These bisphenols can be used alone or in combination of two or more.
 ポリカーボネート系樹脂はジカルボン酸成分(脂肪族、脂環族又は芳香族ジカルボン酸又はその酸ハライドなど)を共重合したポリエステルカーボネート系樹脂であってもよい。これらのポリカーボネート系樹脂は単独で又は二種以上組み合わせて使用できる。好ましいポリカーボネート系樹脂は、ビス(ヒドロキシフェニル)C1-6アルカン類をベースとする樹脂、例えば、ビスフェノールA型ポリカーボネート系樹脂である。ビスフェノールA型ポリカーボネート系樹脂において、ビスフェノールA以外の他の共重合性単量体の割合は、例えば、20モル%以下、好ましくは10モル%以下(例えば、0.1~10モル%)程度である。 The polycarbonate resin may be a polyester carbonate resin obtained by copolymerizing a dicarboxylic acid component (such as an aliphatic, alicyclic or aromatic dicarboxylic acid or an acid halide thereof). These polycarbonate resins can be used alone or in combination of two or more. Preferred polycarbonate resins are resins based on bis (hydroxyphenyl) C 1-6 alkanes, for example, bisphenol A type polycarbonate resins. In the bisphenol A-type polycarbonate resin, the proportion of the copolymerizable monomer other than bisphenol A is, for example, about 20 mol% or less, preferably about 10 mol% or less (for example, 0.1 to 10 mol%). is there.
 ポリカーボネート系樹脂の平均分子量は、例えば、20℃での濃度0.7g/dLの塩化メチレン溶液中で測定した粘度から求める粘度平均分子量で10000~200000(例えば、15000~150000)程度の範囲から選択でき、例えば、15000~120000、好ましくは17000~100000、さらに好ましくは18000~50000(特に18000~30000)程度である。ポリカーボネート系樹脂の分子量が小さすぎるとフィルムの機械的強度が低下し易く、分子量が大きすぎると溶融流動性が低下し、製膜時の取り扱い性や分散相の均一分散性が低下し易い。 The average molecular weight of the polycarbonate-based resin is selected from a range of about 10,000 to 200,000 (for example, 15,000 to 150,000) as a viscosity average molecular weight obtained from a viscosity measured in a methylene chloride solution having a concentration of 0.7 g / dL at 20 ° C., for example. For example, it is about 15,000 to 120,000, preferably about 17,000 to 100,000, more preferably about 18,000 to 50,000 (particularly 18,000 to 30,000). If the molecular weight of the polycarbonate-based resin is too small, the mechanical strength of the film tends to be lowered. If the molecular weight is too large, the melt fluidity is lowered, and the handleability during film formation and the uniform dispersibility of the dispersed phase are likely to be lowered.
 ポリカーボネート系樹脂のメルトフローレート(MFR)は、ISO1133(300℃、1.2kg荷重(11.8N))に準拠して、例えば、3~30g/10分程度の範囲から選択でき、例えば、5~30g/10分、好ましくは6~25g/10分、さらに好ましくは7~20g/10分(特に8~15g/10分)程度である。 The melt flow rate (MFR) of the polycarbonate resin can be selected from a range of, for example, about 3 to 30 g / 10 minutes in accordance with ISO 1133 (300 ° C., 1.2 kg load (11.8 N)). It is about 30 to 10 g, preferably 6 to 25 g / 10 min, more preferably about 7 to 20 g / 10 min (especially 8 to 15 g / 10 min).
 ポリカーボネート系樹脂の粘度は、回転型レオメーター(Anton Paar社製)を用いて、270℃、剪断速度10sec-1の条件で測定したとき、例えば、100~1500Pa・s、好ましくは200~1200Pa・s、さらに好ましくは300~1000Pa・s(特に500~750Pa・s)程度である。 The viscosity of the polycarbonate-based resin, using a rotary rheometer (Anton Paar Co. Ltd.), 270 ° C., measured at the conditions of a shear rate of 10 sec -1, for example, 100 ~ 1500 Pa · s, preferably 200 ~ 1200 Pa · s, more preferably about 300 to 1000 Pa · s (particularly 500 to 750 Pa · s).
 ポリカーボネート系樹脂のガラス転移温度は、例えば、110~250℃程度の範囲から選択できるが、延伸温度を低めに設定でき、分散相の樹脂の選択範囲が拡がる観点から、例えば、110~180℃、好ましくは120~160℃、さらに好ましくは130~160℃(特に140~155℃)程度である。なお、ガラス転移温度は、示差走査熱量計を用いて測定でき、例えば、示差走査熱量計(セイコー電子工業(株)製「DSC6200」)を用い、窒素気流下、昇温速度10℃/分で測定できる。 The glass transition temperature of the polycarbonate-based resin can be selected, for example, from a range of about 110 to 250 ° C., but from the viewpoint that the stretching temperature can be set low and the selection range of the resin for the dispersed phase is expanded, for example, 110 to 180 ° C. The temperature is preferably 120 to 160 ° C, more preferably about 130 to 160 ° C (particularly 140 to 155 ° C). The glass transition temperature can be measured using a differential scanning calorimeter, for example, using a differential scanning calorimeter (“DSC6200” manufactured by Seiko Denshi Kogyo Co., Ltd.) under a nitrogen stream at a heating rate of 10 ° C./min. It can be measured.
 連続相は、ポリカーボネート系樹脂の光学特性や機械的特性を損なわない範囲で、ポリカーボネート系樹脂と他の樹脂(特に透明樹脂)とのポリマーアロイで構成されていてもよい。他の樹脂(透明樹脂など)としては、後述する連続相を構成する透明樹脂などが挙げられる。他の樹脂の割合は、例えば、ポリカーボネート系樹脂100重量部に対して、例えば、100重量部以下、好ましくは50重量部以下、さらに好ましくは10重量部以下(例えば、0.1~10重量部)程度である。ポリマーアロイの具体例としては、例えば、特開平9-183892号公報に開示されたポリカーボネート樹脂組成物(ポリカーボネートにポリエステル樹脂及びエステル交換反応触媒を配合し、ヘイズ値及び複屈折を低下させた樹脂組成物)、特開平11-3497969号公報に開示されたポリカーボネート樹脂組成物(ポリカーボネートに芳香族アルケニル化合物やシアン化ビニル化合物を配合した樹脂組成物)、特許4021741号公報に開示されたポリカーボネート樹脂組成物(ポリカーボネートにポリエステル及びエポキシ変性ポリオレフィンを配合した樹脂組成物)などが挙げられる。 The continuous phase may be composed of a polymer alloy of a polycarbonate resin and another resin (particularly a transparent resin) as long as the optical properties and mechanical properties of the polycarbonate resin are not impaired. As other resin (transparent resin etc.), the transparent resin etc. which comprise the continuous phase mentioned later are mentioned. The ratio of the other resin is, for example, 100 parts by weight or less, preferably 50 parts by weight or less, more preferably 10 parts by weight or less (for example, 0.1 to 10 parts by weight) with respect to 100 parts by weight of the polycarbonate resin. ) Specific examples of the polymer alloy include, for example, a polycarbonate resin composition disclosed in Japanese Patent Application Laid-Open No. 9-183892 (a resin composition in which a polyester resin and a transesterification catalyst are blended with polycarbonate to reduce haze value and birefringence). ), A polycarbonate resin composition disclosed in JP-A-11-3479969 (a resin composition in which an aromatic alkenyl compound or a vinyl cyanide compound is blended with polycarbonate), and a polycarbonate resin composition disclosed in Japanese Patent No. 4021741 (Resin composition in which polyester and epoxy-modified polyolefin are blended with polycarbonate).
 (分散相)
 分散相は、前記連続相を構成するポリカーボネート系樹脂に対して、非相溶であり、かつ面内複屈折(延伸方向における屈折率と延伸方向に対して垂直な方向における屈折率差の絶対値)が0.05以上の透明樹脂であれば特に限定されない。前記面内複屈折は、例えば、0.05~0.5、好ましくは0.1~0.4、さらに好ましくは0.15~0.3(特に0.2~0.25)程度である。本発明では、ポリカーボネート系樹脂で連続相を構成するとともに、固有複屈折が大きい透明樹脂で分散相を構成することにより、低倍率の延伸で効果的に連続相と分散相との間に高度な屈折率差を発現でき、散乱特性及び偏光特性の高い素子を調製できる。
(Dispersed phase)
The dispersed phase is incompatible with the polycarbonate-based resin constituting the continuous phase, and in-plane birefringence (the absolute value of the difference in refractive index between the refractive index in the stretching direction and the direction perpendicular to the stretching direction). ) Is not particularly limited as long as it is a transparent resin of 0.05 or more. The in-plane birefringence is, for example, about 0.05 to 0.5, preferably about 0.1 to 0.4, more preferably about 0.15 to 0.3 (particularly 0.2 to 0.25). . In the present invention, the continuous phase is composed of a polycarbonate-based resin and the dispersed phase is composed of a transparent resin having a large intrinsic birefringence, so that a high degree of efficiency can be effectively achieved between the continuous phase and the dispersed phase at low magnification. An element having a refractive index difference and having high scattering characteristics and high polarization characteristics can be prepared.
 このような透明樹脂としては、例えば、環状オレフィン系樹脂、ビニル系有樹脂(ポリ塩化ビニル、塩化ビニル-酢酸ビニル共重合体、ポリビニルピロリドンなど)、スチレン系樹脂(スチレン-アクリロニトリル樹脂など)、アクリル系樹脂(ポリ(メタ)アクリル酸、ポリ(メタ)アクリル酸メチルなどのポリ(メタ)アクリル酸アルキルエステルなど)、アクリロニトリル系樹脂(ポリ(メタ)アクリロニトリルなど)、ポリエステル系樹脂(非晶性芳香族ポリエステル系樹脂、脂肪族ポリエステル系樹脂、液晶ポリエステルなど)、ポリアミド系樹脂(ポリアミド6、ポリアミド66、ポリアミド610など)、セルロース誘導体(セルロースアセテートなど)、合成ゴム(ポリブタジエン、ポリイソプレンなど)、天然ゴムなどが含まれる。これらの透明樹脂は、単独で又は二種以上組み合わせて使用できる。 Examples of such transparent resins include cyclic olefin resins, vinyl resins (polyvinyl chloride, vinyl chloride-vinyl acetate copolymers, polyvinyl pyrrolidone, etc.), styrene resins (styrene-acrylonitrile resins, etc.), acrylic Resin (poly (meth) acrylic acid, poly (meth) acrylic acid alkyl ester such as poly (meth) acrylic acid methyl ester), acrylonitrile resin (poly (meth) acrylonitrile, etc.), polyester resin (non-crystalline fragrance) Aromatic polyester resins, aliphatic polyester resins, liquid crystal polyesters, etc.), polyamide resins (polyamide 6, polyamide 66, polyamide 610 etc.), cellulose derivatives (cellulose acetate etc.), synthetic rubber (polybutadiene, polyisoprene etc.), natural Rubber etc. It is included. These transparent resins can be used alone or in combination of two or more.
 これらの透明樹脂のうち、ポリカーボネート系樹脂と略同一の屈折率を有するとともに、延伸により容易に延伸方向での屈折率を上昇できる点から、ポリエステル系樹脂、特に、ポリアルキレンアリレート系樹脂が好ましい。ポリアルキレンアリレート系樹脂には、アルキレンアリレート単位を主成分として、例えば、50モル%以上、好ましくは75~100モル%、さらに好ましくは80~100モル%(特に90~100モル%)の割合で含むホモ又はコポリエステルが含まれる。コポリエステルを構成する共重合性単量体には、ジカルボン酸成分(例えば、テレフタル酸、イソフタル酸、2,7-ナフタレンジカルボン酸、2,5-ナフタレンジカルボン酸などのC8-20芳香族ジカルボン酸、アジピン酸、アゼライン酸、セバシン酸などのC4-12アルカンジカルボン酸、1,4-シクロヘキサンジカルボン酸などのC4-12シクロアルカンジカルボン酸など)、ジオール成分(例えば、エチレングリコール、プロピレングリコール、ブタンジオール、ネオペンチルグリコールなどのC2-10アルカンジオール、ジエチレングリコール、ポリエチレングリコールなどのポリC2-4アルキレングリコール、1,4-シクロヘキサンジメタノールなどのC4-12シクロアルカンジオール、ビスフェノールAなどの芳香族ジオールなど)、ヒドロキシカルボン酸成分(例えば、p-ヒドロキシ安息香酸、p-ヒドロキシエトキシ安息香酸など)などが含まれる。これらの共重合性単量体は、単独で又は二種以上組み合わせて使用できる。ポリアルキレンアリレート系樹脂としては、例えば、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレートなどのポリC2-4アルキレンテレフタレート系樹脂、ポリエチレンナフタレート、ポリプロピレンナフタレート、ポリブチレンナフタレートなどのポリC2-4アルキレンナフタレート系樹脂などが挙げられる。 Of these transparent resins, polyester resins, particularly polyalkylene arylate resins, are preferred because they have substantially the same refractive index as polycarbonate resins and can easily increase the refractive index in the stretching direction by stretching. The polyalkylene arylate resin has, as a main component, an alkylene arylate unit, for example, at a ratio of 50 mol% or more, preferably 75 to 100 mol%, more preferably 80 to 100 mol% (particularly 90 to 100 mol%). Containing homo or copolyesters are included. Examples of the copolymerizable monomer constituting the copolyester include dicarboxylic acid components (for example, C 8-20 aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, 2,7-naphthalenedicarboxylic acid, and 2,5-naphthalenedicarboxylic acid). Acid, adipic acid, azelaic acid, C 4-12 alkane dicarboxylic acid such as sebacic acid, C 4-12 cycloalkane dicarboxylic acid such as 1,4-cyclohexanedicarboxylic acid, etc.), diol component (eg, ethylene glycol, propylene glycol) , butanediol, C 2-10 alkanediol such as neopentyl glycol, diethylene glycol, C 4-12 cycloalkane diols such as poly C 2-4 alkylene glycol, 1,4-cyclohexanedimethanol, such as polyethylene glycol, bisphenol And aromatic diols such as), hydroxycarboxylic acid component (e.g., p- hydroxybenzoic acid, p- hydroxyethoxy benzoic acid) and the like. These copolymerizable monomers can be used alone or in combination of two or more. The polyalkylene arylate-series resin, for example, polyethylene terephthalate, polypropylene terephthalate, poly C 2-4 alkylene terephthalate-series resin such as polybutylene terephthalate, polyethylene naphthalate, polypropylene naphthalate, poly C 2-4, such as polybutylene naphthalate Examples include alkylene naphthalate resins.
 本発明では、これらのポリアルキレンアリレート系樹脂の中でも、延伸前に前記ポリカーボネート系樹脂と同等の屈折率を有し、かつ延伸により延伸方向で屈折率を容易に上昇できる点から、ポリアルキレンナフタレート系樹脂(特にポリエチレンナフタレート系樹脂などのポリC2-4アルキレンナフタレート系樹脂)が好ましい。ポリアルキレンナフタレート系樹脂としては、アルキレンナフタレート単位(特にエチレン-2,6-ナフタレートなどのC2-4アルキレンナフタレート単位)のホモポリエステル、又はアルキレンナフタレート単位の含有量が80モル%以上(特に90モル%以上)のコポリエステルが挙げられる。コポリエステルを構成する共重合性単量体としては、前述のジカルボン酸成分、ジオール成分、ヒドロキシカルボン酸などが挙げられる。これらの共重合性単量体のうち、テレフタル酸などのジカルボン酸成分などが汎用される。 In the present invention, among these polyalkylene arylate resins, polyalkylene naphthalate has a refractive index equivalent to that of the polycarbonate resin before stretching, and can easily increase the refractive index in the stretching direction by stretching. Resin (especially poly C 2-4 alkylene naphthalate resin such as polyethylene naphthalate resin) is preferable. The polyalkylene naphthalate resin is a homopolyester of an alkylene naphthalate unit (especially a C 2-4 alkylene naphthalate unit such as ethylene-2,6-naphthalate) or an alkylene naphthalate unit content of 80 mol% or more. (Especially 90 mol% or more) copolyesters. Examples of the copolymerizable monomer constituting the copolyester include the aforementioned dicarboxylic acid component, diol component, and hydroxycarboxylic acid. Of these copolymerizable monomers, dicarboxylic acid components such as terephthalic acid are widely used.
 ポリエステル系樹脂(例えば、ポリアルキレンナフタレート系樹脂)の平均分子量は、例えば、数平均分子量で5000~1000000程度の範囲から選択でき、例えば、10000~500000、好ましくは12000~300000、さらに好ましくは15000~100000程度である。ポリエチレンナフタレート系樹脂の分子量が大きすぎると溶融流動性が低下し、分散相のアスペクト比が低下し易い。なお、数平均分子量は、ゲルパーミエーションクロマトグラフィーを用いて、ポリスチレン換算で測定できる。 The average molecular weight of the polyester-based resin (for example, polyalkylene naphthalate-based resin) can be selected from the range of, for example, about 5,000 to 1,000,000 in terms of number average molecular weight, for example, 10,000 to 500,000, preferably 12,000 to 300,000, and more preferably 15,000. It is about ~ 100,000. If the molecular weight of the polyethylene naphthalate resin is too large, the melt fluidity is lowered and the aspect ratio of the dispersed phase tends to be lowered. The number average molecular weight can be measured in terms of polystyrene using gel permeation chromatography.
 ポリエステル系樹脂の粘度は、回転型レオメーター(Anton Paar社製)を用いて、270℃、剪断速度10sec-1の条件で測定したとき、例えば、200~5000Pa・s、好ましくは300~4000Pa・s、さらに好ましくは500~3000Pa・s(特に1000~2000Pa・s)程度である。 The viscosity of the polyester resin, by using a rotary rheometer (Anton Paar Co. Ltd.), 270 ° C., measured at the conditions of a shear rate of 10 sec -1, for example, 200 ~ 5000Pa · s, · preferably 300 ~ 4000 Pa s, more preferably about 500 to 3000 Pa · s (particularly 1000 to 2000 Pa · s).
 ポリカーボネート系樹脂の粘度との比率は、例えば、ポリカーボネート系樹脂の粘度/ポリエステル系樹脂の粘度=2/1~1/10、好ましくは2/1~1/5、さらに好ましくは2/1~1/3(特に1/1~1/2.5)程度である。両者の粘度の比率がこのような範囲にあると、両樹脂が充分に混合されて、連続相中に適度な大きさを有する分散層を均一に形成できるとともに、分散相を適度な粒径に制御でき、分散相に高い面内複屈折を付与できる。 The ratio of the viscosity of the polycarbonate resin is, for example, the viscosity of the polycarbonate resin / viscosity of the polyester resin = 2/1 to 1/10, preferably 2/1 to 1/5, more preferably 2/1 to 1. / 3 (particularly 1/1 to 1 / 2.5). When the ratio of the viscosities is in such a range, both resins are sufficiently mixed to form a dispersion layer having an appropriate size in the continuous phase, and the dispersion phase has an appropriate particle size. It can be controlled, and high in-plane birefringence can be imparted to the dispersed phase.
 ポリエステル系樹脂(例えば、ポリアルキレンナフタレート系樹脂)のガラス転移温度は、例えば、50~200℃程度の範囲から選択できるが、延伸により分散相のアスペクト比を容易に上昇できる点から、前記ポリカーボネート系樹脂のガラス転移温度よりも低いのが好ましく、例えば、1~100℃、好ましくは5~80℃、さらに好ましくは10~50℃(特に20~40℃)程度低くてもよい。具体的に、ポリエステル系樹脂のガラス転移温度は、例えば、60~180℃、好ましくは80~150℃、さらに好ましくは90~130℃(特に100~120℃)程度である。なお、ガラス転移温度は、示差走査熱量計を用いて測定でき、例えば、示差走査熱量計(セイコー電子工業(株)製「DSC6200」)を用い、窒素気流下、昇温速度10℃/分で測定できる。 The glass transition temperature of the polyester-based resin (for example, polyalkylene naphthalate-based resin) can be selected from the range of, for example, about 50 to 200 ° C. From the viewpoint that the aspect ratio of the dispersed phase can be easily increased by stretching. The glass transition temperature is preferably lower than the glass transition temperature of the resin, for example, 1 to 100 ° C., preferably 5 to 80 ° C., more preferably 10 to 50 ° C. (especially 20 to 40 ° C.). Specifically, the glass transition temperature of the polyester resin is, for example, about 60 to 180 ° C., preferably about 80 to 150 ° C., more preferably about 90 to 130 ° C. (particularly about 100 to 120 ° C.). The glass transition temperature can be measured using a differential scanning calorimeter, for example, using a differential scanning calorimeter (“DSC6200” manufactured by Seiko Denshi Kogyo Co., Ltd.) under a nitrogen stream at a heating rate of 10 ° C./min. It can be measured.
 分散相の長径方向の平均径は、0.8~10μm、好ましくは1~5μm、さらに好ましくは1.5~3μm程度である。分散相の短径方向の平均径は、0.05~0.8μm、好ましくは0.1~0.7μm、さらに好ましくは0.2~0.6μm程度である。分散相の平均アスペクト比は、2~1000(例えば、2~200)、好ましくは3~500、さらに好ましくは5~100(特に7~30)程度である。分散相は、延伸によって、連続相と相分離し、球状から異方形状となる。異方形状は、例えば、ラグビーボール型形状(回転楕円体などの楕円体)、扁平体、直方体状、繊維状又は糸状体などであってもよい。延伸による配向加工前の分散相の平均直径は、例えば、0.3~3μm程度であってもよい。 The average diameter in the major axis direction of the dispersed phase is 0.8 to 10 μm, preferably 1 to 5 μm, more preferably about 1.5 to 3 μm. The average diameter in the minor axis direction of the dispersed phase is 0.05 to 0.8 μm, preferably 0.1 to 0.7 μm, more preferably about 0.2 to 0.6 μm. The average aspect ratio of the dispersed phase is 2 to 1000 (for example, 2 to 200), preferably 3 to 500, more preferably 5 to 100 (especially 7 to 30). The dispersed phase is phase-separated from the continuous phase by stretching, and changes from a spherical shape to an anisotropic shape. The anisotropic shape may be, for example, a rugby ball shape (an ellipsoid such as a spheroid), a flat body, a rectangular parallelepiped shape, a fibrous shape, a filamentous shape, or the like. The average diameter of the dispersed phase before orientation processing by stretching may be, for example, about 0.3 to 3 μm.
 分散相を構成する粒子の配列度としての配向係数は高いほど好ましく、例えば、0.34以上(0.34~1程度)、好ましくは0.4~1(例えば、0.5~1)、さらに好ましくは0.7~1(特に0.8~1)程度であってもよい。分散相粒子の配向係数が高い程、高い偏光特性を付与できる。 The orientation coefficient as the degree of alignment of the particles constituting the dispersed phase is preferably as high as possible, for example, 0.34 or more (about 0.34 to 1), preferably 0.4 to 1 (eg 0.5 to 1), More preferably, it may be about 0.7 to 1 (particularly 0.8 to 1). Higher polarization characteristics can be imparted as the orientation coefficient of the dispersed phase particles is higher.
 なお、配向係数は、下記式に基づいて算出できる。 The orientation coefficient can be calculated based on the following formula.
    配向係数=(3<cosθ>-1)/2
[式中、θは粒子状分散相の長軸とフィルムのX軸との間の角度を示し(長軸とX軸とが平行の場合、θ=0゜)、<cosθ>は各分散相粒子について算出したcosθの平均を示し、下記式で表される。
Orientation coefficient = (3 <cos 2 θ> −1) / 2
[Wherein θ represents the angle between the long axis of the particulate dispersed phase and the X axis of the film (when the long axis and the X axis are parallel, θ = 0 °), and <cos 2 θ> represents each The average of cos 2 θ calculated for the dispersed phase particles is shown and is represented by the following formula.
   <cosθ>=∫n(θ)・cosθ・dθ
(式中、n(θ)は、全分散相粒子中の角度θを有する分散相粒子の割合(重率)を示す)]。
<Cos 2 θ> = ∫n (θ) · cos 2 θ · dθ
(In the formula, n (θ) represents the ratio (weight ratio) of dispersed phase particles having an angle θ in all dispersed phase particles)].
 連続相(連続相を構成する樹脂成分)と分散相(分散相を構成する樹脂成分)との割合(重量比)は、樹脂の種類や溶融粘度、光拡散性などに応じて選択でき、例えば、連続相/分散相=99/1~50/50、好ましくは98/2~70/30、さらに好ましくは96/4~80/20程度の範囲から選択でき、通常、95/5~85/15程度である。このような割合で用いると、予め両成分をコンパウンド化することなく、各成分のペレットを直接的に溶融混練しても、均一に分散相を分散でき、一軸延伸などの配向処理によりボイドが発生するのを防止でき、良好な偏光素子を得ることができる。 The ratio (weight ratio) between the continuous phase (resin component constituting the continuous phase) and the dispersed phase (resin component constituting the dispersed phase) can be selected according to the type of resin, melt viscosity, light diffusibility, etc. , Continuous phase / dispersed phase = 99/1 to 50/50, preferably 98/2 to 70/30, more preferably about 96/4 to 80/20, and usually 95/5 to 85 / About 15. When used in such a ratio, the dispersed phase can be uniformly dispersed even if the pellets of each component are directly melt-kneaded without compounding both components in advance, and voids are generated due to orientation treatment such as uniaxial stretching. Can be prevented, and a good polarizing element can be obtained.
 (添加剤)
 本発明の偏光素子において、分散相は、連続相との界面において実質的に空隙(ボイド)を生じることなく、連続相と結合又は密着しているが、必要に応じて、相溶化剤を配合してもよい。相溶化剤を配合した場合、分散相が相溶化剤を介して連続相と結合又は密着してもよい。
(Additive)
In the polarizing element of the present invention, the dispersed phase is bonded or closely adhered to the continuous phase without substantially generating voids at the interface with the continuous phase, but if necessary, a compatibilizing agent is blended. May be. When a compatibilizing agent is blended, the dispersed phase may be bonded or adhered to the continuous phase via the compatibilizing agent.
 相溶化剤としては、通常、連続相及び分散相を構成する樹脂と同じ又は共通する成分を有する重合体(ランダム、ブロック又はグラフト共重合体)、連続相及び分散相を構成する樹脂に対して親和性を有する重合体(ランダム、ブロック又はグラフト共重合体)などが使用される。具体的には、ポリエステル系エラストマー、主鎖にエポキシ基を有する相溶化剤、特にエポキシ変性芳香族ビニル-ジエン系ブロック共重合体[例えば、エポキシ化されたスチレン-ブタジエン-スチレン(SBS)ブロック共重合体やエポキシ化されたスチレン-ブタジエンブロック共重合体(SB)等のエポキシ化スチレン-ジエン系共重合体又はエポキシ変性スチレン-ジエン系共重合体]などが挙げられる。エポキシ化芳香族ビニル-ジエン系共重合体は、透明性が高いだけでなく、軟化温度が約70℃程度と比較的高く、連続相と分散相との多くの組み合わせにおいて樹脂を相溶化させ、分散相を均一に分散できる。 As a compatibilizing agent, a polymer (random, block or graft copolymer) having the same or common components as the resin constituting the continuous phase and the dispersed phase, and the resin constituting the continuous phase and the dispersed phase are usually used. An affinity polymer (random, block or graft copolymer) or the like is used. Specifically, polyester elastomers, compatibilizers having an epoxy group in the main chain, particularly epoxy-modified aromatic vinyl-diene block copolymers [for example, epoxidized styrene-butadiene-styrene (SBS) block copolymers And an epoxidized styrene-diene copolymer or an epoxy-modified styrene-diene copolymer such as an epoxidized styrene-butadiene block copolymer (SB)]. The epoxidized aromatic vinyl-diene copolymer not only has high transparency, but also has a relatively high softening temperature of about 70 ° C., which makes the resin compatible in many combinations of a continuous phase and a dispersed phase, The dispersed phase can be uniformly dispersed.
 相溶化剤の割合は、例えば、分散相に対する割合(重量比)として、分散相/相溶化剤(重量比)=99/1~50/50、好ましくは99/1~70/30、さらに好ましくは98/2~80/20程度である。さらに、相溶化剤の割合は、例えば、連続相と分散相との合計100重量部に対して0.1~20重量部、好ましくは0.5~15重量部、さらに好ましくは1~10重量部程度である。 The ratio of the compatibilizing agent is, for example, as a ratio (weight ratio) to the dispersed phase, dispersed phase / compatibilizing agent (weight ratio) = 99/1 to 50/50, preferably 99/1 to 70/30, more preferably Is about 98/2 to 80/20. Further, the proportion of the compatibilizer is, for example, 0.1 to 20 parts by weight, preferably 0.5 to 15 parts by weight, more preferably 1 to 10 parts by weight with respect to 100 parts by weight of the total of the continuous phase and the dispersed phase. About a part.
 本発明の偏光素子は、光学的特性を損なわない範囲で、慣用の添加剤、例えば、酸化防止剤、熱安定剤などの安定化剤、可塑剤、帯電防止剤、難燃剤、充填剤、紫外線吸収剤などを含有していてもよい。 The polarizing element of the present invention is a conventional additive, for example, a stabilizer such as an antioxidant or a heat stabilizer, a plasticizer, an antistatic agent, a flame retardant, a filler, an ultraviolet ray, as long as the optical properties are not impaired. It may contain an absorbent or the like.
 (偏光素子の特性)
 本発明の偏光素子は、直線偏光に対する連続相と分散相との屈折率差が、シートの延伸方向(以下、「X軸方向」と称することがある)で大きく、延伸方向に対して垂直な方向(以下、「Y軸方向」と称することがある)で小さい。従って、前記偏光素子は、屈折率差が大きい方向の偏光は散乱する特性を有し、一部の偏光が延伸シートの前方に散乱するとともに、残りの偏光が延伸シートの後方に散乱し、ほとんど吸収されない。また、屈折率差の小さい方向の偏光はほぼ透過する特性を有する。すなわち、前記偏光素子は、延伸方向の直線偏光を大きく散乱し、この延伸方向に対して垂直な方向の直線偏光は、延伸方向よりも小さく散乱するか又はほぼ散乱しない。
(Characteristics of polarizing element)
In the polarizing element of the present invention, the refractive index difference between the continuous phase and the dispersed phase with respect to the linearly polarized light is large in the sheet stretching direction (hereinafter sometimes referred to as “X-axis direction”) and is perpendicular to the stretching direction. The direction (hereinafter, sometimes referred to as “Y-axis direction”) is small. Therefore, the polarizing element has a property of scattering polarized light in a direction in which the refractive index difference is large. A part of the polarized light is scattered in front of the stretched sheet, and the remaining polarized light is scattered behind the stretched sheet. Not absorbed. Further, polarized light in a direction with a small difference in refractive index has a characteristic of almost transmitting. That is, the polarizing element greatly scatters linearly polarized light in the stretching direction, and linearly polarized light in a direction perpendicular to the stretching direction scatters less than or substantially not in the stretching direction.
 前記屈折率差について、X軸方向での連続相と分散相との屈折率差の絶対値は0.1以上(例えば、0.1~0.5)、好ましくは0.1~0.3、さらに好ましくは0.1~0.2程度であり、Y軸方向での連続相と分散相との屈折率差の絶対値は0.1以下であってもよく、例えば、0.05以下、好ましくは0.04以下、さらに好ましくは0.03以下(例えば、0.001~0.03程度)である。両者の屈折率差の絶対値が、それぞれ前記範囲にあると、後方散乱(反射)と透過散乱とのバランスに優れ、優れた偏光特性及び散乱特性を発現できるとともに、表示装置の輝度も向上できる。 Regarding the refractive index difference, the absolute value of the refractive index difference between the continuous phase and the dispersed phase in the X-axis direction is 0.1 or more (for example, 0.1 to 0.5), preferably 0.1 to 0.3. More preferably, it is about 0.1 to 0.2, and the absolute value of the refractive index difference between the continuous phase and the dispersed phase in the Y-axis direction may be 0.1 or less, for example, 0.05 or less It is preferably 0.04 or less, more preferably 0.03 or less (for example, about 0.001 to 0.03). When the absolute value of the refractive index difference between the two is in the above range, the balance between backscattering (reflection) and transmission scattering is excellent, and excellent polarization characteristics and scattering characteristics can be exhibited, and the brightness of the display device can also be improved. .
 前記屈折率差の偏光素子において、連続相と分散相とは、製膜時のシート(いわゆるキャストシート)の段階では、それぞれの屈折率の異方性は小さく、しかも互いに略同一の屈折率を有しているのが好ましい。例えば、延伸前のポリカーボネート系樹脂と分散相を構成する透明樹脂との屈折率差の絶対値は0.05以下、好ましくは0.04以下、さらに好ましくは0.03以下であってもよい。延伸前の両樹脂の屈折率差がこの範囲にあると、延伸によって容易に屈折率差の異方性を発現できる。 In the polarizing element having the refractive index difference, the continuous phase and the disperse phase have a small refractive index anisotropy at the stage of film formation (so-called cast sheet) and have substantially the same refractive index. It is preferable to have it. For example, the absolute value of the difference in refractive index between the polycarbonate resin before stretching and the transparent resin constituting the dispersed phase may be 0.05 or less, preferably 0.04 or less, and more preferably 0.03 or less. When the refractive index difference between the two resins before stretching is in this range, the anisotropy of the refractive index difference can be easily expressed by stretching.
 一般的に、キャストシートを一軸延伸すると、連続相の延伸方向(X軸方向)で屈折率が著しく増大することが知られており、前述の特許文献2~5においても、連続相の透明樹脂のY軸方向の屈折率をあまり変化させずに、連続相の透明樹脂のX軸方向の屈折率を増大させることにより偏光素子が調製されている。これに対して、本発明の偏光素子は、連続相がX軸方向でも屈折率の変化は小さく、微粒子状の分散相がX軸方向とY軸方向とで著しく屈折率が変化している。すなわち、連続相が延伸によって大きな屈折率差が生じないのに対して、分散相は延伸によってラグビーボール状又は棒状などの異方形状に変形するとともに、大きな屈折率差を生じる。 Generally, it is known that when a cast sheet is uniaxially stretched, the refractive index is remarkably increased in the stretch direction of the continuous phase (X-axis direction). A polarizing element is prepared by increasing the refractive index in the X-axis direction of a transparent resin in a continuous phase without significantly changing the refractive index in the Y-axis direction. On the other hand, in the polarizing element of the present invention, the change in refractive index is small even when the continuous phase is in the X-axis direction, and the refractive index of the fine particle dispersed phase is remarkably changed between the X-axis direction and the Y-axis direction. That is, while the continuous phase does not cause a large difference in refractive index due to stretching, the dispersed phase deforms into an anisotropic shape such as a rugby ball shape or a rod shape due to stretching and also causes a large difference in refractive index.
 従って、本発明の偏光素子は、一軸延伸により、連続相と分散相との屈折率がX軸方向で大きく相違し、Y軸方向で略一致する。これにより、屈折率が略同一である方向の偏光はほぼ透過し、屈折率が異なる方向の偏光は散乱する特性を有する偏光素子が作製される。 Therefore, in the polarizing element of the present invention, due to uniaxial stretching, the refractive index of the continuous phase and the disperse phase are greatly different in the X-axis direction and substantially coincide with each other in the Y-axis direction. As a result, a polarizing element having a characteristic that the polarized light in the direction having substantially the same refractive index is substantially transmitted and the polarized light in the direction having a different refractive index is scattered is produced.
 なお、本発明では、従来の偏光素子とは異なり、分散相がX軸方向とY軸方向とで大きな屈折率差を有するが、従来の偏光素子と同様に偏光に対する散乱特性を発現し、X軸方向では連続相と分散相との屈折率差が大きいほど、その方向の偏光に対する散乱性が大きくなり、後方散乱(反射光)の比率も増大する。一方、Y軸方向の偏光は、連続相の屈折率と分散相の屈折率とが完全に一致すれば、その偏光に対しては完全な透明体として散乱せずに透過する。本発明では、Y軸方向における屈折率差は、用途に応じて選択でき、延伸前の屈折率差が前述の範囲にある透明樹脂を用いて、両相の屈折率を略一致させることにより、Y軸方向での透過散乱性を向上してもよく、一方、両相の屈折率を多少相違させることにより、拡散効果を低減させてもよい。 In the present invention, unlike the conventional polarizing element, the disperse phase has a large difference in refractive index between the X-axis direction and the Y-axis direction. In the axial direction, the greater the difference in refractive index between the continuous phase and the dispersed phase, the greater the scattering property for polarized light in that direction, and the ratio of backscattering (reflected light) also increases. On the other hand, if the refractive index of the continuous phase and the refractive index of the disperse phase completely coincide, the polarized light in the Y-axis direction is transmitted as a complete transparent body without being scattered. In the present invention, the refractive index difference in the Y-axis direction can be selected according to the application, and by using a transparent resin in which the refractive index difference before stretching is in the above-described range, the refractive indexes of both phases are substantially matched, The transmission / scattering property in the Y-axis direction may be improved. On the other hand, the diffusion effect may be reduced by making the refractive indexes of both phases slightly different.
 本発明の偏光素子は、このような屈折率差を有するため、Y軸方向での全光線透過率は高く、例えば、80%以上(例えば、80~99%)、好ましくは82~98%、さらに好ましくは85~95%程度である。さらに、Y軸方向での拡散光線透過率は、拡散シートとして用いる場合、例えば、30%以上(例えば、30~90%)、好ましくは40~80%、さらに好ましくは50~70%程度であり、拡散シートして用いない場合、例えば、30%以下、好ましくは20%以下、さらに好ましくは10%以下であってもよい。 Since the polarizing element of the present invention has such a refractive index difference, the total light transmittance in the Y-axis direction is high, for example, 80% or more (for example, 80 to 99%), preferably 82 to 98%, More preferably, it is about 85 to 95%. Further, when used as a diffusion sheet, the diffuse light transmittance in the Y-axis direction is, for example, 30% or more (for example, 30 to 90%), preferably 40 to 80%, more preferably about 50 to 70%. When not used as a diffusion sheet, for example, it may be 30% or less, preferably 20% or less, and more preferably 10% or less.
 一方、本発明の偏光素子は、X軸方向では、散乱特性に優れており、X軸方向での全光線透過率は75%以下(例えば、10~75%)、好ましくは70%以下(例えば、20~70%)、さらに好ましくは60%以下(25~60%)である。すなわち、本発明の偏光素子は反射率(後方散乱率)が高く、延伸方向での反射率(後方散乱率)は25%以上(例えば、25~90%)を示し、好ましくは30%以上(例えば、30~80%)、さらに好ましくは40%以上(例えば、40~75%)であり、特に50%以上(例えば、50~70%)であってもよい。 On the other hand, the polarizing element of the present invention has excellent scattering characteristics in the X-axis direction, and the total light transmittance in the X-axis direction is 75% or less (for example, 10 to 75%), preferably 70% or less (for example, 20 to 70%), more preferably 60% or less (25 to 60%). That is, the polarizing element of the present invention has a high reflectance (backscattering rate), and the reflectance in the stretching direction (backscattering rate) is 25% or more (for example, 25 to 90%), preferably 30% or more ( For example, 30 to 80%), more preferably 40% or more (for example, 40 to 75%), particularly 50% or more (for example, 50 to 70%) may be used.
 すなわち、本発明の偏光素子は、Y軸方向での全光線透過率が80%以上であり、かつX軸方向での反射率(正反射成分及び後方散乱成分による反射率)が30%以上であり、透過光に光拡散と偏光性とを付与するため、吸収型偏光板と類似の性質を有する。しかも、偏光を吸収せずに反射するため、吸収型の欠点である片方の偏光の吸収による温度上昇がなく、良好な透過型偏光板類似の散乱型偏光板となる。さらに、反射光は輝度の向上に寄与するため、本発明の偏光素子は、液晶表示装置などの輝度向上シートとしても利用できる。 That is, the polarizing element of the present invention has a total light transmittance in the Y-axis direction of 80% or more and a reflectance in the X-axis direction (reflectance due to regular reflection components and backscattering components) of 30% or more. In order to impart light diffusion and polarization to transmitted light, it has properties similar to those of an absorption polarizing plate. Moreover, since it reflects without absorbing polarized light, it does not increase in temperature due to absorption of one of the polarized light, which is a defect of the absorption type, and becomes a good scattering type polarizing plate similar to a transmission type polarizing plate. Furthermore, since the reflected light contributes to the improvement in luminance, the polarizing element of the present invention can be used as a luminance improvement sheet for liquid crystal display devices and the like.
 なお、全光線透過率及び拡散光線透過率は、後述する実施例で記載されているように、偏光測定装置(ヘイズメーター)(日本電色工業(株)製、NDH-300A)を用いて、全光線については、JIS K7361-1に準じた手法で測定でき、ヘーズ(拡散光線)については、JIS K7136に準じた手法で測定できる。 The total light transmittance and the diffuse light transmittance are measured using a polarization measuring device (haze meter) (manufactured by Nippon Denshoku Industries Co., Ltd., NDH-300A), as described in Examples below. The total light can be measured by a method according to JIS K7361-1, and the haze (diffused light) can be measured by a method according to JIS K7136.
 本発明の偏光素子の厚みは、3~500μm、好ましくは5~400μm(例えば、30~400μm)、さらに好ましくは5~300μm(例えば、50~300μm)程度である。 The thickness of the polarizing element of the present invention is about 3 to 500 μm, preferably about 5 to 400 μm (for example, 30 to 400 μm), more preferably about 5 to 300 μm (for example, 50 to 300 μm).
 本発明の偏光素子は、単層フィルムであってもよく、その少なくとも一方の面(特に両面)に、光学的特性を損なわない透明樹脂層が積層された積層フィルムであってもよい。透明樹脂層で偏光素子を保護すると分散相粒子の脱落や付着を防止でき、偏光素子の耐擦傷性や製造安定性を向上できるとともに、その強度や取扱い性を高めることができる。 The polarizing element of the present invention may be a single layer film, or may be a laminated film in which a transparent resin layer that does not impair optical properties is laminated on at least one side (particularly both sides). When the polarizing element is protected by the transparent resin layer, the dispersed phase particles can be prevented from falling off and adhering, and the scratch resistance and production stability of the polarizing element can be improved, and the strength and handleability can be improved.
 透明樹脂層の樹脂は、前記連続相又は分散相の構成成分として例示した樹脂から選択できる。好ましい透明樹脂層は、連続相と同系統(特に、同一)のポリカーボネート系樹脂により形成されている。透明樹脂層も、光学的特性を損なわない範囲で、前述の慣用の添加剤を含んでいてもよい。 The resin of the transparent resin layer can be selected from the resins exemplified as the constituent components of the continuous phase or the dispersed phase. A preferred transparent resin layer is formed of the same series (particularly the same) polycarbonate resin as the continuous phase. The transparent resin layer may also contain the aforementioned conventional additives as long as the optical properties are not impaired.
 透明樹脂層の合計厚みは、例えば、前記偏光素子と同程度であってもよい。特に、偏光素子層の厚みが3~500μm程度の場合、透明樹脂層の厚みは3~150μm、好ましくは5~50μm、さらに好ましくは5~15μm程度から選択できる。 The total thickness of the transparent resin layer may be the same as that of the polarizing element, for example. In particular, when the thickness of the polarizing element layer is about 3 to 500 μm, the thickness of the transparent resin layer can be selected from about 3 to 150 μm, preferably 5 to 50 μm, and more preferably about 5 to 15 μm.
 偏光素子の厚みと透明樹脂層の合計厚みとの割合は、例えば、偏光素子/透明樹脂層=5/95~99/1程度の範囲から選択でき、通常、50/50~99/1、好ましくは70/30~95/5程度である。積層フィルムの厚みは、例えば、6~800μm、好ましくは10~600μm、さらに好ましくは20~450μm程度である。 The ratio between the thickness of the polarizing element and the total thickness of the transparent resin layer can be selected, for example, from the range of polarizing element / transparent resin layer = 5/95 to 99/1, and is usually 50/50 to 99/1, preferably Is about 70/30 to 95/5. The thickness of the laminated film is, for example, about 6 to 800 μm, preferably about 10 to 600 μm, and more preferably about 20 to 450 μm.
 偏光素子の表面には、光学特性を妨げない範囲で、シリコーンオイルなどの離型剤を塗布してもよく、コロナ放電処理してもよい。なお、偏光素子の表面には、フィルムの凹凸部を形成してもよい。このような凹凸部を形成すると、防眩性を付与できる。 The surface of the polarizing element may be coated with a release agent such as silicone oil or may be subjected to corona discharge treatment as long as the optical properties are not hindered. In addition, you may form the uneven | corrugated | grooved part of a film on the surface of a polarizing element. When such an uneven part is formed, antiglare properties can be imparted.
 [偏光素子の製造方法]
 偏光素子は、連続相を構成するポリカーボネート系樹脂中に、分散相を構成する透明樹脂を分散して配向させることにより得ることができる。例えば、ポリカーボネート系樹脂と透明樹脂と必要により相溶化剤などの添加剤とを、必要に応じて、慣用の方法(例えば、溶融ブレンド法、タンブラー法など)でブレンドし、溶融混合し、Tダイやリングダイなどから押出してフィルム成形することにより、連続相中に分散相を分散できる。溶融温度は、ポリカーボネート系樹脂及び透明樹脂の融点以上が好ましく、樹脂の種類により異なるが、例えば、150~290℃、好ましくは200~260℃程度である。
[Production method of polarizing element]
The polarizing element can be obtained by dispersing and orienting the transparent resin constituting the dispersed phase in the polycarbonate resin constituting the continuous phase. For example, a polycarbonate resin, a transparent resin, and additives such as a compatibilizer, if necessary, are blended by a conventional method (for example, a melt blending method, a tumbler method, etc.), melt-mixed, and T-die The dispersed phase can be dispersed in the continuous phase by extrusion from a ring die or the like to form a film. The melting temperature is preferably equal to or higher than the melting point of the polycarbonate resin and the transparent resin, and varies depending on the type of the resin, but is, for example, about 150 to 290 ° C., preferably about 200 to 260 ° C.
 次に、分散相の配向処理は、例えば、(1)押出成形シートを延伸する方法、(2)押出成形シートをドローしながら製膜してシートを固化し、その後延伸する方法などにより行うことができる。本発明の偏光素子の優れた特質を発現するには、前記溶融製膜により、ポリカーボネート系樹脂である連続相に、透明樹脂である分散相を粒子状に分散させたシートを固化し冷却したキャストシートを再加熱して、その後に延伸により配向加工することが好ましい。 Next, the orientation treatment of the dispersed phase is performed by, for example, (1) a method of stretching an extruded sheet, (2) a method of forming a film while drawing the extruded sheet, solidifying the sheet, and then stretching the sheet. Can do. In order to express the excellent characteristics of the polarizing element of the present invention, a cast obtained by solidifying and cooling a sheet in which a dispersed phase, which is a transparent resin, is dispersed in a continuous phase, which is a polycarbonate-based resin, is formed by the melt film formation. It is preferable to reheat the sheet and then perform orientation processing by stretching.
 延伸は、単純な自由幅一軸延伸であってもよく、一定幅(固定幅)一軸延伸であってもよい。前記一軸延伸法は、特に限定されず、例えば、固化したフィルムの両端を引っ張る方法(引張延伸)、互いに対向する一対のロール(2本ロール)を複数系列(例えば、2系列)用意して並列に設置し、それぞれの2本ロールにフィルムを挿入すると共に、繰入れ側の2本ロールと繰出し側の2本ロールとの間にフィルムを張り渡し、繰出し側の2本ロールのフィルムの送り速度を繰入れ側の2本ロールより速くすることにより延伸する方法(ロール間延伸)、互いに対向する一対のロールの間にフィルムを挿入し、ロール圧でフィルムを圧延する方法(ロール圧延)、テンター法による固定幅一軸延伸などが挙げられる。 The stretching may be simple free width uniaxial stretching or constant width (fixed width) uniaxial stretching. The uniaxial stretching method is not particularly limited. For example, a method of pulling both ends of a solidified film (tensile stretching), and a plurality of series (for example, two series) of a pair of opposed rolls (two rolls) are prepared in parallel. The film is inserted between the two rolls on the feeding side and the two rolls on the feeding side, and the film feeding speed of the two rolls on the feeding side is set. A method of stretching by making it faster than two rolls on the feeding side (stretching between rolls), a method of inserting a film between a pair of rolls facing each other, rolling the film with a roll pressure (roll rolling), and a tenter method Examples include fixed width uniaxial stretching.
 これらの一軸延伸のうち、引張延伸、特に、分散相に確実な変形を生じさせ、かつ分散相の面内複屈折を上昇できる点から、自由幅一軸延伸を好ましく使用できる。 Of these uniaxial stretches, a free-width uniaxial stretch can be preferably used from the viewpoint that tensile stretching, in particular, the deformation can be surely generated in the dispersed phase and the in-plane birefringence of the dispersed phase can be increased.
 また、テンター法による固定幅一軸延伸も好ましく用いることができる。テンター法による固定幅一軸延伸は、延伸に伴い延伸方向に垂直な方向の幅が減少し、かつ全幅で厚みが不均一となる傾向がある自由幅一軸延伸とは異なり、延伸方向に垂直な方向の幅は変化しない方法であり、分散相の異方配向性を保持しながら、全幅で均一なシートを製造するのに有利である。さらに、その作用の詳細は不明であるが、分散相の屈折率の変化にも有効である。テンター法による一軸延伸は、延伸方向をシートの流れ方向としてもよく、シートの幅方向としてもよい。流れ方向とすると、生産速度が向上するが、所望の幅の偏光素子を得るためには、キャストシートの幅を広くする必要がある。一方、幅方向とすると、横方向に延伸するため、キャストシートの幅が小さくても、所望の幅の偏光素子は得られるが、生産速度が低下する。これらの方法は、用途に応じて選択できる。テンター方式による一軸延伸において、引張速度は、延伸温度や倍率に応じて、例えば、50~1000mm/分程度の範囲から選択でき、例えば、100~800mm/分、好ましくは150~700mm/分、さらに好ましくは200~600mm/分(特に400~600mm/分)程度である。 Also, fixed width uniaxial stretching by a tenter method can be preferably used. Fixed-width uniaxial stretching by the tenter method is different from free-width uniaxial stretching in which the width in the direction perpendicular to the stretching direction decreases with stretching and the thickness tends to be non-uniform across the entire width. This is a method that does not change, and is advantageous for producing a uniform sheet over the entire width while maintaining the anisotropic orientation of the dispersed phase. Furthermore, although the details of the action are unknown, it is also effective for changing the refractive index of the dispersed phase. In the uniaxial stretching by the tenter method, the stretching direction may be the sheet flow direction or the sheet width direction. When the flow direction is set, the production speed is improved, but in order to obtain a polarizing element having a desired width, it is necessary to increase the width of the cast sheet. On the other hand, when the width direction is set, since the film is stretched in the horizontal direction, a polarizing element having a desired width can be obtained even if the width of the cast sheet is small, but the production speed is lowered. These methods can be selected according to the application. In the uniaxial stretching by the tenter method, the tensile speed can be selected from the range of, for example, about 50 to 1000 mm / min depending on the stretching temperature and the magnification, for example, 100 to 800 mm / min, preferably 150 to 700 mm / min, Preferably, it is about 200 to 600 mm / min (particularly 400 to 600 mm / min).
 延伸温度は、ポリカーボネート系樹脂のガラス転移温度以上の温度が好ましく、ポリカーボネート系樹脂のガラス転移温度をTgとしたとき、例えば、Tg~(Tg+80)℃、好ましくは(Tg+5)~(Tg+50)℃、さらに好ましくは(Tg+5)~(Tg+30)℃[特に(Tg+8)~(Tg+20)℃]程度高い温度であってもよい。具体的な延伸温度は、例えば、120~180℃、好ましくは150~175℃、さらに好ましくは150~170℃(特に160~170℃)程度であってもよい。 The stretching temperature is preferably a temperature equal to or higher than the glass transition temperature of the polycarbonate resin. When the glass transition temperature of the polycarbonate resin is Tg, for example, Tg to (Tg + 80) ° C., preferably (Tg + 5) to (Tg + 50) ° C. More preferably, the temperature may be as high as (Tg + 5) to (Tg + 30) ° C. [particularly (Tg + 8) to (Tg + 20) ° C.]. The specific stretching temperature may be, for example, about 120 to 180 ° C., preferably 150 to 175 ° C., more preferably about 150 to 170 ° C. (especially 160 to 170 ° C.).
 延伸倍率は、幅広い範囲から選択できるが、本発明では、比較的低い延伸倍率でも延伸方向の屈折率と延伸方向に垂直な方向の屈折率に大きな差を生じさせることができ、例えば、1.2~5倍(例えば、1.5~4倍)、好ましくは2~4倍、さらに好ましくは2.5~3.8倍(特に2.5~3.5倍)程度であってもよい。特に、本発明では、4倍以下の延伸倍率であっても、散乱特性に優れるシートを製造できるため、前述のテンター法による一次延伸などの汎用の延伸装置を用いて簡便に製造できる。 Although the draw ratio can be selected from a wide range, in the present invention, even at a relatively low draw ratio, a large difference can be caused between the refractive index in the stretching direction and the refractive index in the direction perpendicular to the stretching direction. It may be about 2 to 5 times (for example, 1.5 to 4 times), preferably about 2 to 4 times, more preferably about 2.5 to 3.8 times (especially 2.5 to 3.5 times). . In particular, in the present invention, since a sheet having excellent scattering characteristics can be produced even at a draw ratio of 4 times or less, it can be easily produced using a general-purpose stretching apparatus such as the primary stretching by the tenter method described above.
 本発明の偏光素子は、連続相の複屈折を緩和して偏光特性を発現するため、延伸温度又は延伸温度よりも高い温度で緊張熱処理(シートの長さを保持したままでの熱処理)することにより、偏光特性を維持しながら、耐熱性を付与できる。熱処理温度は、例えば、延伸温度から延伸温度よりも50℃程度高い温度までの範囲から選択でき、例えば、延伸温度から延伸温度よりも30℃程度高い温度であってもよく、例えば、延伸温度と略同一の温度であってもよい。熱処理時間は、例えば、0.1~30分間、好ましくは1~10分間、さらに好ましくは2~5分間程度であり、温度に応じて選択でき、例えば、165℃程度の温度の場合、2~3分程度でよい。この熱処理により、連続相の屈折率差を減少でき、延伸方向に垂直な方向において連続相と分散相との屈折率を一致させることができるため、光学特性も向上できる。さらに、偏光素子の寸法安定性などの耐熱性や強度が向上できる。 The polarizing element of the present invention is subjected to tension heat treatment (heat treatment while maintaining the length of the sheet) at a stretching temperature or a temperature higher than the stretching temperature in order to relax the birefringence of the continuous phase and develop the polarization characteristics. Thus, heat resistance can be imparted while maintaining polarization characteristics. The heat treatment temperature can be selected from, for example, a range from the stretching temperature to a temperature that is about 50 ° C. higher than the stretching temperature, and may be, for example, a temperature that is about 30 ° C. higher than the stretching temperature. Substantially the same temperature may be used. The heat treatment time is, for example, 0.1 to 30 minutes, preferably 1 to 10 minutes, more preferably about 2 to 5 minutes, and can be selected according to the temperature. For example, when the temperature is about 165 ° C., 2 to It takes about 3 minutes. By this heat treatment, the refractive index difference between the continuous phases can be reduced, and the refractive index of the continuous phase and the dispersed phase can be matched in the direction perpendicular to the stretching direction, so that the optical characteristics can be improved. Furthermore, heat resistance such as dimensional stability of the polarizing element and strength can be improved.
 なお、前記積層フィルムは、慣用の方法、例えば、共押出成形法、ラミネート法(押出ラミネート法、ドライラミネート法など)などにより、偏光素子層の少なくとも一方の面に透明樹脂層を積層させて得ることができる。 The laminated film is obtained by laminating a transparent resin layer on at least one surface of the polarizing element layer by a conventional method, for example, a coextrusion molding method, a laminating method (extrusion laminating method, dry laminating method, etc.), or the like. be able to.
 [面光源装置及び透過型液晶表示装置]
 本発明の面光源装置は、管状光源(蛍光管など)と、この管状光源からの光を側面から入射して平坦な出射面から出射させるための導光部材と、この導光部材の出射光側に配設された偏光素子とを備えている。なお、前記面光源装置において、偏光素子は散乱型素子として使用されている。
[Surface light source device and transmissive liquid crystal display device]
The surface light source device of the present invention includes a tubular light source (such as a fluorescent tube), a light guide member for allowing light from the tubular light source to be incident from the side surface and emitted from a flat light exit surface, and light emitted from the light guide member. And a polarizing element disposed on the side. In the surface light source device, the polarizing element is used as a scattering element.
 図1は、本発明の偏光素子を用いて輝度を向上させた面光源装置を用いた透過型液晶表示装置の一例を示す概略断面図である。液晶表示装置1は、管状光源としての蛍光管2と、この蛍光管2の側部に配設され、前記蛍光管2からの光を側面から入射して平坦な出射面から出射させるための導光部材(導光板)4と、この導光板4からの出射光により照明されるTN型液晶セル7と、前記入射光を反射させる反射部材(反射板)3と、前記導光板4と前記液晶セル7との間に配設された偏光素子5と、偏光素子5を透過した光を拡散させる拡散シート6とを備えている。 FIG. 1 is a schematic cross-sectional view showing an example of a transmissive liquid crystal display device using a surface light source device in which luminance is improved using the polarizing element of the present invention. The liquid crystal display device 1 is provided with a fluorescent tube 2 serving as a tubular light source and a side portion of the fluorescent tube 2, and guides the light from the fluorescent tube 2 to be incident from a side surface and emitted from a flat emission surface. An optical member (light guide plate) 4, a TN liquid crystal cell 7 illuminated by light emitted from the light guide plate 4, a reflective member (reflecting plate) 3 that reflects the incident light, the light guide plate 4, and the liquid crystal A polarizing element 5 disposed between the cell 7 and a diffusion sheet 6 that diffuses light transmitted through the polarizing element 5 is provided.
 液晶表示装置1において、蛍光管2からの光は、導光板4を通過し、反射板3で反射され、前記導光板4から出射される。出射した光は、偏光素子5内において、連続相と分散相との屈折率差が小さい方向(Y軸方向)の偏光がほぼ透過され、屈折率差が大きい方向(X軸方向)の偏光が散乱して透過又は反射される。 In the liquid crystal display device 1, the light from the fluorescent tube 2 passes through the light guide plate 4, is reflected by the reflection plate 3, and is emitted from the light guide plate 4. In the polarizing element 5, the emitted light is almost transmitted through the polarizing element 5 in the direction where the refractive index difference between the continuous phase and the dispersed phase is small (Y-axis direction), and is polarized in the direction where the refractive index difference is large (X-axis direction). Scattered and transmitted or reflected.
 反射した光は、再び、導光板4を通過し、反射板3で反射される。そして、この反射により、一部その偏光の向きが90度回転した光が発生する。この偏光の向きが回転した光は、再び導光板4を通過して偏光素子5に達して透過する。偏光の向きが変わらなかった光は、再度、偏光素子5で反射されるが、反射板3での反射により、再び偏光の向きが90度回転した光は、偏光素子5を通過する。偏光素子5を通過した光は、拡散シート6によって散乱され、液晶セル7を照射する。 The reflected light again passes through the light guide plate 4 and is reflected by the reflection plate 3. This reflection generates light whose polarization direction is partially rotated by 90 degrees. The light whose polarization direction is rotated passes through the light guide plate 4 again, reaches the polarizing element 5 and is transmitted therethrough. The light whose polarization direction has not changed is reflected again by the polarizing element 5, but the light whose polarization direction has been rotated again by 90 degrees due to reflection by the reflecting plate 3 passes through the polarizing element 5. The light that has passed through the polarizing element 5 is scattered by the diffusion sheet 6 and irradiates the liquid crystal cell 7.
 従って、蛍光管2からの多くの光は、ほとんど偏光軸を一致させ、偏光素子5から出射するので、液晶セル7の入射側の吸収型偏光板(図示せず)の偏光軸を、前記の軸と一致させれば、従来では50%程度しか利用されなかった蛍光管2の光を、それ以上の効率で用いることができる。 Therefore, most of the light from the fluorescent tube 2 is made to coincide with the polarization axis and is emitted from the polarization element 5, so that the polarization axis of the absorption polarizing plate (not shown) on the incident side of the liquid crystal cell 7 is If matched with the axis, the light of the fluorescent tube 2 that was conventionally used only about 50% can be used with higher efficiency.
 この用途に用いる本発明の偏光素子は、Y軸方向の直線偏光の全光線透過率は80%以上であり、X軸方向の直線偏光の反射率(正反射成分及び後方散乱成分による反射率)が30%以上の散乱特性を有する透過型液晶表示装置に用いるのが好ましい。本発明の偏光素子の輝度向上効果は、通常用いられている、導光板/拡散板/プリズムシートの上に積層しても効果がある。さらに、本発明の偏光素子の輝度向上効果は、導光板を用いない直下型のバックライト(面光源装置)及びそれを使用した透過型液晶表示装置にも同様に好ましい。 The polarizing element of the present invention used for this application has a total light transmittance of linearly polarized light in the Y-axis direction of 80% or more, and the reflectance of linearly polarized light in the X-axis direction (reflectance by regular reflection component and backscattering component). Is preferably used for a transmissive liquid crystal display device having a scattering characteristic of 30% or more. The effect of improving the luminance of the polarizing element of the present invention is effective even when laminated on a light guide plate / diffusion plate / prism sheet, which is usually used. Furthermore, the brightness improvement effect of the polarizing element of the present invention is also preferable for a direct type backlight (surface light source device) that does not use a light guide plate and a transmissive liquid crystal display device using the same.
 [反射型液晶表示装置]
 本発明の反射型液晶表示装置は、本発明の偏光素子と反射板との間に液晶セルが配設されていてもよく、液晶セルと反射板との間に本発明の偏光素子が配設されていてもよい。これらの装置のうち、液晶セルと反射板との間に前記偏光素子が配設された反射型液晶表示装置が好ましい。
[Reflective liquid crystal display]
In the reflective liquid crystal display device of the present invention, a liquid crystal cell may be disposed between the polarizing element of the present invention and the reflecting plate, and the polarizing element of the present invention is disposed between the liquid crystal cell and the reflecting plate. May be. Of these devices, a reflective liquid crystal display device in which the polarizing element is disposed between a liquid crystal cell and a reflector is preferable.
 図2は本発明の偏光素子を用いて輝度を向上させた反射型液晶表示装置の一例を示す概略断面図である。反射型液晶表示装置10は、外光を反射するための反射部材(反射板)13と、反射板13からの出射光により照明される(反射型液晶装置用)TN型液晶セル17と、外光を液晶セル17に導くための吸収型偏光板18と、反射板13と液晶セル17との間に配設され、反射板13からの出射光を散乱するための偏光素子15とを備えている。 FIG. 2 is a schematic cross-sectional view showing an example of a reflective liquid crystal display device in which the luminance is improved by using the polarizing element of the present invention. The reflective liquid crystal display device 10 includes a reflective member (reflective plate) 13 for reflecting external light, a TN liquid crystal cell 17 (for a reflective liquid crystal device) illuminated by light emitted from the reflective plate 13, an external An absorptive polarizing plate 18 for guiding light to the liquid crystal cell 17 and a polarizing element 15 disposed between the reflecting plate 13 and the liquid crystal cell 17 for scattering light emitted from the reflecting plate 13 are provided. Yes.
 反射型液晶表示装置10において、吸収型偏光板18に入射した外光のうち、偏光板と偏光軸の一致する光のみが透過されて、液晶セル17に到達する。液晶セル17に入射した光は、偏光方向を回転して、偏光素子15に到達する。 In the reflective liquid crystal display device 10, only the light having the same polarization axis as that of the polarizing plate is transmitted among the external light incident on the absorption polarizing plate 18 and reaches the liquid crystal cell 17. The light incident on the liquid crystal cell 17 rotates the polarization direction and reaches the polarizing element 15.
 液晶セルの表示を暗表示とする場合には、液晶セル17を通過した外光の偏光方向を、偏光素子15のY軸方向に一致させるように、偏光素子15を配置する。吸収型偏光板18を通過した偏光は再び偏光素子15を通過し、液晶セル17で偏光の向きを回転され、吸収型偏光板18の偏光軸と直行する方向となるので、暗表示となる。 When the display of the liquid crystal cell is a dark display, the polarizing element 15 is arranged so that the polarization direction of the external light that has passed through the liquid crystal cell 17 coincides with the Y-axis direction of the polarizing element 15. The polarized light that has passed through the absorptive polarizing plate 18 passes through the polarizing element 15 again, and the direction of the polarized light is rotated by the liquid crystal cell 17 and becomes a direction perpendicular to the polarizing axis of the absorptive polarizing plate 18, so that dark display is obtained.
 一方、液晶セルの表示を明表示とする場合には、液晶セル17を通過した外光の偏光方向を、偏光素子15のX軸方向に一致させるように、偏光素子15を配置する。吸収型偏光板18に入射した外光のうち、偏光板18と偏光軸の一致する光のみが液晶セル17に透過され、液晶セル17で偏光方向を回転しないで、偏光素子15に到達する。偏光素子15に入射した偏光は、反射方向又は透過方向に散乱される。透過方向に散乱された光は反射板13で反射され、すでに偏光素子15により散乱された光と合体して吸収型偏光板18に到達し、そのまま透過する。この透過光は、偏光子15により充分に散乱されているので、視野角依存性の少ない良好な白表示を示す。 On the other hand, when the display of the liquid crystal cell is a bright display, the polarizing element 15 is arranged so that the polarization direction of the external light that has passed through the liquid crystal cell 17 coincides with the X-axis direction of the polarizing element 15. Of the external light incident on the absorption-type polarizing plate 18, only the light whose polarization axis coincides with the polarizing plate 18 is transmitted to the liquid crystal cell 17 and reaches the polarizing element 15 without rotating the polarization direction in the liquid crystal cell 17. The polarized light incident on the polarizing element 15 is scattered in the reflection direction or the transmission direction. The light scattered in the transmission direction is reflected by the reflecting plate 13, merged with the light already scattered by the polarizing element 15, reaches the absorption polarizing plate 18, and is transmitted as it is. Since this transmitted light is sufficiently scattered by the polarizer 15, it shows a good white display with little viewing angle dependency.
 図3は本発明の偏光素子を用いて輝度を向上させた反射型液晶表示装置の他の一例を示す概略断面図である。反射型液晶表示装置20は、反射板23からの出射光により照明される反射型液晶装置用液晶セル27と、外光を反射するための反射部材(反射板)23と、液晶セル27と反射板23との間に配設された1/4波長板29と、1/4波長板29と液晶セル27との間に配設され、反射板23からの出射光を散乱するための偏光素子25とを備えている。なお、前記液晶セル27は、2色性色素を含むタイプの液晶である。 FIG. 3 is a schematic cross-sectional view showing another example of the reflective liquid crystal display device in which the luminance is improved by using the polarizing element of the present invention. The reflective liquid crystal display device 20 includes a reflective liquid crystal device liquid crystal cell 27 that is illuminated by light emitted from the reflective plate 23, a reflective member (reflective plate) 23 for reflecting external light, and the liquid crystal cell 27 and the reflective liquid crystal cell 27. A quarter wave plate 29 disposed between the plate 23 and a polarizing element disposed between the quarter wave plate 29 and the liquid crystal cell 27 for scattering light emitted from the reflector plate 23. 25. The liquid crystal cell 27 is a type of liquid crystal containing a dichroic dye.
 反射型液晶表示装置20において、液晶セル27は、電圧無印加状態では、液晶分子は液晶の配向処理方向(液晶セルのガラス基板に平行な方向)に配向し、2色性色素も同様に配向する。液晶セル27に入射した外光のうち、2色性色素分子の長軸方向に対して平行な直線偏光成分は、2色性色素により吸収される。また、2色性色素分子の長軸方向に対して垂直な方向の直線偏光成分は、液晶セル27を通過し、偏光素子25に入射する。この通過する直線偏光の向きを、偏光素子8のY軸方向に一致させるように、偏光素子25を配置すると、偏光素子25を出射した偏光は、1/4波長板(位相差板)29により円偏光になる。さらに、その円偏光は、反射板23で反射され、その円偏光の向きを回転し、再び1/4波長板29に入射して、もとの直線偏光の向きを90度回転して、再度、偏光素子25に入射する。入射した光は、偏光素子25のX軸方向の偏光となり、2色性色素の分子の長軸方向に平行な直線偏光として散乱され、液晶セル27において2色性色素により吸収されるので、液晶セル27の表示は良好な黒表示となる。 In the reflective liquid crystal display device 20, in the liquid crystal cell 27, when no voltage is applied, the liquid crystal molecules are aligned in the liquid crystal alignment processing direction (the direction parallel to the glass substrate of the liquid crystal cell), and the dichroic dye is similarly aligned. To do. Of the external light incident on the liquid crystal cell 27, the linearly polarized light component parallel to the long axis direction of the dichroic dye molecule is absorbed by the dichroic dye. Further, the linearly polarized light component in the direction perpendicular to the major axis direction of the dichroic dye molecule passes through the liquid crystal cell 27 and enters the polarizing element 25. When the polarizing element 25 is arranged so that the direction of the linearly polarized light passing therethrough coincides with the Y-axis direction of the polarizing element 8, the polarized light emitted from the polarizing element 25 is reflected by the quarter wavelength plate (phase difference plate) 29. It becomes circularly polarized light. Further, the circularly polarized light is reflected by the reflecting plate 23, rotates the direction of the circularly polarized light, enters the quarter wavelength plate 29 again, rotates the direction of the original linearly polarized light by 90 degrees, and again , Enters the polarizing element 25. The incident light becomes polarized light in the X-axis direction of the polarizing element 25 and is scattered as linearly polarized light parallel to the long-axis direction of the molecules of the dichroic dye, and is absorbed by the dichroic dye in the liquid crystal cell 27. The display of the cell 27 is a good black display.
 一方、液晶セル27は、電圧印加状態では、液晶分子がガラス基板に対し垂直に配向し、2色性色素も同様に配向する。入射した外光は、2色性色素を含む液晶セル27の2色性色素によって吸収されずに液晶セル27を通過し、偏光素子25に入射する。入射した光は、偏光素子25において、Y軸方向の偏光はそのまま通過するが、X軸方向の偏光は散乱される。次に、偏光素子25を出射した偏光は、1/4波長板29で円偏光となり、反射板23で反射する。反射した光は、前記円偏光の向きが逆周りとなり、再び1/4波長板29に入射する。入射光のうち、Y軸方向の偏光はそのまま通過し、円偏光になった偏光は90度回転し、偏光素子25により散乱される。従って、2色性色素を含む液晶セル27を通過した光は、すべて散乱された反射光となるため、良好な白色表示を実現できる。 On the other hand, in the liquid crystal cell 27, when a voltage is applied, the liquid crystal molecules are aligned perpendicular to the glass substrate, and the dichroic dye is similarly aligned. The incident external light passes through the liquid crystal cell 27 without being absorbed by the dichroic dye of the liquid crystal cell 27 containing the dichroic dye, and enters the polarizing element 25. The incident light passes through the polarizing element 25 as it is, with the polarization in the Y-axis direction intact, but the polarization in the X-axis direction is scattered. Next, the polarized light emitted from the polarizing element 25 becomes circularly polarized light by the quarter wavelength plate 29 and is reflected by the reflecting plate 23. The reflected light is reversed in the direction of the circularly polarized light and is incident on the quarter-wave plate 29 again. Of the incident light, the polarized light in the Y-axis direction passes as it is, and the polarized light that has become circularly polarized light is rotated by 90 degrees and scattered by the polarizing element 25. Therefore, since all the light that has passed through the liquid crystal cell 27 containing the dichroic dye becomes scattered reflected light, a good white display can be realized.
 本発明の偏光素子を用いると、透過光及び反射光に高い散乱性と偏光性を付与できるため、液晶表示画面の視認性を向上できる。特に、面積の大きな液晶表示面であっても、全体に亘り明るく表示できる。そのため、透過型又は反射型液晶表示装置は、例えば、パーソナルコンピューター(パソコン)、ワードプロセッサー、液晶テレビ、携帯電話、時計、電卓などの電気製品の表示部に幅広く利用できる。特に、携帯型情報機器の液晶表示装置に好適に利用できる。 When the polarizing element of the present invention is used, high scattering and polarization can be imparted to transmitted light and reflected light, so that the visibility of the liquid crystal display screen can be improved. In particular, even a liquid crystal display surface having a large area can be brightly displayed throughout. Therefore, the transmissive or reflective liquid crystal display device can be widely used for display parts of electric products such as personal computers (personal computers), word processors, liquid crystal televisions, mobile phones, watches, calculators, and the like. In particular, it can be suitably used for a liquid crystal display device of a portable information device.
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。なお、実施例及び比較例で得られた偏光素子の特性は、下記の方法に従って評価した。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples. In addition, the characteristic of the polarizing element obtained by the Example and the comparative example was evaluated in accordance with the following method.
 [シートの断面観察]
 延伸前の原反シートと、延伸後の延伸シートから微小切片を2方向(延伸シートの場合、延伸方向に平行及び垂直方向)に切り出し、透過型電子顕微鏡(日本電子(株)製、JEM1200EXII)で観察したところ、分散相のポリマーは押出方向に配列した楕円体状(又は細長い線状)の形態の散乱子(粒子状分散相)を形成しており、その長軸長さと短軸長さを50個の分散相粒子について測定し、加算平均した。
[Section observation of sheet]
Microsections are cut out in two directions (in the case of a stretched sheet, parallel to and perpendicular to the stretching direction) from the unstretched original sheet and the stretched sheet after stretching, and a transmission electron microscope (JEM 1200EXII, manufactured by JEOL Ltd.) When observed in, the polymer of the dispersed phase forms ellipsoidal (or elongated linear) scatterers (particulate dispersed phase) arranged in the extrusion direction, and the major axis length and minor axis length thereof. Were measured for 50 dispersed phase particles and averaged.
 [屈折率]
 連続及び分散相の屈折率は、実施例及び比較例と同条件でそれぞれの樹脂単体シートを延伸したときの延伸方向(X軸方向)及び垂直方向(Y軸方向)について、プリズムカップラー(メトリコン社製)を用いて、波長633nmで測定した。さらに、測定した屈折率に基づいて屈折率差を求めた。
[Refractive index]
The refractive indexes of the continuous and dispersed phases are prism couplers (Metricon Corporation) with respect to the stretching direction (X-axis direction) and the vertical direction (Y-axis direction) when each resin single sheet is stretched under the same conditions as in Examples and Comparative Examples. And made at a wavelength of 633 nm. Further, the refractive index difference was determined based on the measured refractive index.
 [偏光及び散乱特性の評価]
 偏光測定装置(日本電色工業(株)製、NDH-300A)を用いて、全光線については、JIS K7361-1に準じた手法で測定し、ヘーズ(拡散光線)については、JIS K7136に準じた手法で測定した。測定は、その光源側に吸収型偏光板を挿入し、光源を鉛直方向に偏光する直線偏光のみにして実施例及び比較例の偏光素子を挿入して、偏光素子の偏光に対する全光線透過率、拡散光線透過率、全光線反射率(全光線反射率=1-全光線透過率で計算した)を測定した。この全光線反射率は、前記反射率(正反射成分及び後方散乱成分による反射率)と一致する。測定は、連続相と分散相との屈折率差が小さい方向を前記吸収型偏光板の偏光軸に一致させた場合(表3中の「平行」)と、連続相と分散相との屈折率差が大きい方向を前記吸収型偏光板の偏光軸に一致させた場合(表3中の「垂直」)とについて測定した。
[Evaluation of polarization and scattering characteristics]
Using a polarimeter (Nippon Denshoku Industries Co., Ltd., NDH-300A), all rays were measured by a method according to JIS K7361-1, and haze (diffuse rays) was measured according to JIS K7136. Measured by different methods. Measurement is performed by inserting an absorption type polarizing plate on the light source side, inserting only the linearly polarized light that vertically polarizes the light source, and inserting the polarizing elements of Examples and Comparative Examples, and the total light transmittance for the polarized light of the polarizing element, Diffuse light transmittance and total light reflectance (total light reflectance = 1−calculated by total light transmittance) were measured. This total light reflectivity coincides with the reflectivity (the reflectivity due to the regular reflection component and the backscattering component). In the measurement, when the direction in which the refractive index difference between the continuous phase and the dispersed phase is small coincides with the polarization axis of the absorption polarizing plate ("parallel" in Table 3), the refractive index between the continuous phase and the dispersed phase. The measurement was performed for the case where the direction in which the difference was large coincided with the polarization axis of the absorption polarizing plate (“vertical” in Table 3).
 [輝度向上度の評価]
 偏光測定装置(日本電色工業(株)製、NDH-300A)を用いて、その光源側に反射板、吸収型偏光板を挿入し、全光線透過率を測定し、それを基準の値とした。反射板と吸収型偏光板の間に実施例及び比較例の偏光素子を連続相と分散相との屈折率差が小さい方向と、前記吸収型偏光板の透過方向が一致するように挿入し、全光線透過率を測定した。この測定値を先の基準値に対して下記式のように規格化した値を輝度向上度とした。
[Evaluation of brightness improvement]
Using a polarization measuring device (NDH-300A, manufactured by Nippon Denshoku Industries Co., Ltd.), a reflector and an absorption polarizing plate are inserted on the light source side, and the total light transmittance is measured. did. The polarizing elements of Examples and Comparative Examples were inserted between the reflecting plate and the absorbing polarizing plate so that the direction in which the refractive index difference between the continuous phase and the dispersed phase is small and the transmission direction of the absorbing polarizing plate coincided with each other. The transmittance was measured. A value obtained by normalizing the measured value with respect to the previous reference value as shown in the following formula was defined as the luminance improvement degree.
  (輝度向上度)=[(測定値)/(基準値)]×100。 (Brightness improvement level) = [(measured value) / (reference value)] × 100.
 [トラウザー引裂]
 引裂き強さはトラウザー引裂き法を用い、JIS K7128-1に準じた手法で行った。恒温条件(23℃、相対湿度50%)下、試験片を所定の寸法に切り出し、延伸方向に75mmのスリットを入れ、200mm/分の速度で引裂試験を行った。引裂開始の20mmと引裂終了前5mmを除外し、残りの50mmの引裂強さの平均値から求めた。試験はN=5で行い、平均値を求めた。
[Trouser tearing]
The tear strength was determined by a trouser tear method according to JIS K7128-1. Under constant temperature conditions (23 ° C., relative humidity 50%), a test piece was cut into a predetermined size, a 75 mm slit was inserted in the stretching direction, and a tear test was performed at a speed of 200 mm / min. 20 mm at the start of tearing and 5 mm before the end of tearing were excluded, and the average value of the remaining 50 mm tear strength was obtained. The test was performed at N = 5, and the average value was obtained.
 実施例1
 分散相を構成する樹脂としてのポリエチレンナフタレート樹脂(PEN、帝人化成(株)製、「テオネックス TN8065S」、270℃及び剪断速度10sec-1における粘度:1578Pa・s)10重量部、連続相を構成する樹脂としてのビスフェノールA型ポリカーボネート樹脂(PC、三菱エンジニアリングプラスチック(株)製、「中粘度品 ユーピロンS-2000」、粘度平均分子量18000~20000、MFR10g/10分、270℃及び剪断速度10sec-1における粘度:681Pa・s)90重量部を、二軸押出機(池貝鉄工(株)製、PCM30)を用いて、シリンダー温度280℃で溶融混練して押出し、冷却してペレットを作製した。得られたペレットを小型プレス機((株)東洋精機製作所、ミニテストプレス10)を用いて、270℃、10MPaのプレス圧で3分間プレス成形することにより、厚み1mmのプレスシートを作製した。得られたシートを幅40mm、長さ70mmに切り出し、恒温ユニットを備えた引張試験機((株)オリエンテック製、テンシロン UCT-5T)を用いて、チャック間50mmで、165℃で5分間予熱したのち、引張速度500mm/分で3.5倍に延伸後、チャックに保持した状態で、3分間165℃で熱処理した後、室温に急冷し、延伸シートを得た。
Example 1
Polyethylene naphthalate resin (PEN, manufactured by Teijin Chemicals Ltd., “Teonex TN8065S”, viscosity at 270 ° C. and shear rate of 10 sec −1 ) as a resin constituting the dispersed phase, 10 parts by weight, constituting the continuous phase Bisphenol A type polycarbonate resin (PC, manufactured by Mitsubishi Engineering Plastics Co., Ltd., “medium viscosity product Iupilon S-2000”, viscosity average molecular weight 18000 to 20000, MFR 10 g / 10 min, 270 ° C. and shear rate 10 sec −1 Viscosity: 681 Pa · s) 90 parts by weight were melt-kneaded and extruded at a cylinder temperature of 280 ° C. using a twin screw extruder (manufactured by Ikekai Tekko Co., Ltd., PCM30), and cooled to produce pellets. The obtained pellets were press-molded for 3 minutes at a press pressure of 270 ° C. and 10 MPa using a small press machine (Toyo Seiki Seisakusho, Mini Test Press 10) to prepare a press sheet having a thickness of 1 mm. The obtained sheet was cut into a width of 40 mm and a length of 70 mm, and preheated at 165 ° C. for 5 minutes at 50 mm between chucks using a tensile tester (Orientec Co., Ltd., Tensilon UCT-5T) equipped with a constant temperature unit. Thereafter, the film was stretched 3.5 times at a pulling speed of 500 mm / min, heat-treated at 165 ° C. for 3 minutes while being held in the chuck, and then rapidly cooled to room temperature to obtain a stretched sheet.
 実施例2
 プレス成形により、厚み500μmのプレスシートを作製する以外は実施例1と同様にして、延伸シートを製造した。
Example 2
A stretched sheet was produced in the same manner as in Example 1 except that a press sheet having a thickness of 500 μm was produced by press molding.
 実施例3
 プレス成形により、厚み500μmのプレスシートを作製し、かつ得られたシートを5倍に延伸する以外は実施例1と同様にして、延伸シートを製造した。
Example 3
A stretched sheet was produced in the same manner as in Example 1 except that a press sheet having a thickness of 500 μm was prepared by press molding and the obtained sheet was stretched 5 times.
 実施例4
 プレス成形により、厚み500μmのプレスシートを作製し、かつ得られたシートを3倍に延伸する以外は実施例1と同様にして、延伸シートを製造した。
Example 4
A stretched sheet was produced in the same manner as in Example 1 except that a press sheet having a thickness of 500 μm was produced by press molding and the obtained sheet was stretched three times.
 実施例5
 プレス成形により、厚み300μmのプレスシートを作製し、かつ得られたシートを2倍に延伸する以外は実施例1と同様にして、延伸シートを製造した。
Example 5
A stretched sheet was produced in the same manner as in Example 1 except that a press sheet having a thickness of 300 μm was produced by press molding and the obtained sheet was stretched twice.
 実施例6
 実施例1と同様にして、プレス成形により、厚み300μmのプレスシートを作製した。得られたシートを幅40mm、長さ70mmに切り出し、恒温ユニットを備えた引張試験機を用いて、チャック間50mmで、155℃で5分間予熱したのち、引張速度200mm/分で2倍に延伸後、チャックに保持した状態で、3分間155℃で熱処理した後、室温に急冷し、延伸シートを得た。
Example 6
In the same manner as in Example 1, a press sheet having a thickness of 300 μm was produced by press molding. The obtained sheet was cut into a width of 40 mm and a length of 70 mm, and pre-heated at 155 ° C. for 5 minutes at 50 mm between chucks using a tensile tester equipped with a constant temperature unit, and then stretched twice at a tensile rate of 200 mm / min. Then, after being heat-treated at 155 ° C. for 3 minutes while being held on the chuck, it was rapidly cooled to room temperature to obtain a stretched sheet.
 実施例7
 分散相を構成する樹脂としてのポリエチレンナフタレート樹脂5重量部、連続相を構成する樹脂としてのビスフェノールA型ポリカーボネート樹脂95量部を、二軸押出機を用いて、シリンダー温度280℃で溶融混練して押出し、冷却してペレットを作製した。得られたペレットを小型プレス機を用いて、270℃、10MPaのプレス圧で3分間プレス成形することにより、厚み300μmのプレスシートを作製した。得られたシートを幅40mm、長さ70mmに切り出し、恒温ユニットを備えた引張試験機を用いて、チャック間50mmで、155℃で5分間予熱したのち、引張速度200mm/分で2倍に延伸後、チャックに保持した状態で、3分間155℃で熱処理した後、室温に急冷し、延伸シートを得た。
Example 7
5 parts by weight of polyethylene naphthalate resin as the resin constituting the dispersed phase and 95 parts by weight of bisphenol A type polycarbonate resin as the resin constituting the continuous phase are melt kneaded at a cylinder temperature of 280 ° C. using a twin screw extruder. Extruded and cooled to produce pellets. The obtained pellets were press-molded for 3 minutes at a pressure of 270 ° C. and 10 MPa using a small press machine to produce a press sheet having a thickness of 300 μm. The obtained sheet was cut into a width of 40 mm and a length of 70 mm, and pre-heated at 155 ° C. for 5 minutes at 50 mm between chucks using a tensile tester equipped with a constant temperature unit, and then stretched twice at a tensile rate of 200 mm / min. Then, after being heat-treated at 155 ° C. for 3 minutes while being held on the chuck, it was rapidly cooled to room temperature to obtain a stretched sheet.
 実施例8
 実施例1と同様にして、プレス成形により、厚み300μmのプレスシートを作製した。得られたシートを幅40mm、長さ70mmに切り出し、恒温ユニットを備えた引張試験機を用いて、チャック間50mmで、155℃で5分間予熱したのち、引張速度200mm/分で2倍に延伸後、室温に急冷し、延伸シートを得た。
Example 8
In the same manner as in Example 1, a press sheet having a thickness of 300 μm was produced by press molding. The obtained sheet was cut into a width of 40 mm and a length of 70 mm, and pre-heated at 155 ° C. for 5 minutes at 50 mm between chucks using a tensile tester equipped with a constant temperature unit, and then stretched twice at a tensile rate of 200 mm / min. Thereafter, it was rapidly cooled to room temperature to obtain a stretched sheet.
 比較例1
 分散相を構成する樹脂としてのポリスチレン樹脂(PS、東洋スチロール(株)製、「GPMW4D」)8重量部、連続相を構成する樹脂としてのポリエチレンナフタレート樹脂92重量部を、二軸押出機を用いて、シリンダー温度280℃で溶融混練して押出し、冷却してペレットを作製した。得られたペレットを小型プレス機を用いて、270℃、10MPaのプレス圧で3分間プレス成形することにより、厚み550μmのプレスシートを作製した。得られたシートを幅40mm、長さ70mmに切り出し、恒温ユニットを備えた引張試験機を用いて、チャック間50mmで、133℃で5分間予熱したのち、引張速度100mm/分で4倍に延伸後、室温に急冷し、延伸シートを得た。
Comparative Example 1
8 parts by weight of polystyrene resin (PS, manufactured by Toyo Styrol Co., Ltd., “GPMW4D”) as the resin constituting the dispersed phase, 92 parts by weight of polyethylene naphthalate resin as the resin constituting the continuous phase, It was melted and kneaded at a cylinder temperature of 280 ° C., extruded, and cooled to produce pellets. The obtained pellets were press-molded for 3 minutes at a pressure of 270 ° C. and 10 MPa using a small press machine to produce a press sheet having a thickness of 550 μm. The obtained sheet was cut into a width of 40 mm and a length of 70 mm, and preheated at 133 ° C. for 5 minutes using a tensile tester equipped with a thermostatic unit, and then stretched 4 times at a pulling rate of 100 mm / min. Thereafter, it was rapidly cooled to room temperature to obtain a stretched sheet.
 比較例2
 プレスシートを5倍に延伸する以外は比較例1と同様にして、延伸シートを製造した。
Comparative Example 2
A stretched sheet was produced in the same manner as in Comparative Example 1 except that the press sheet was stretched 5 times.
 比較例3
 プレスシートを6倍に延伸する以外は比較例1と同様にして、延伸シートを製造した。
Comparative Example 3
A stretched sheet was produced in the same manner as in Comparative Example 1 except that the press sheet was stretched 6 times.
 比較例4
 比較例1と同様にして得られたプレスシートを幅40mm、長さ70mmに切り出し、恒温ユニットを備えた引張試験機を用いて、チャック間50mmで、133℃で5分間予熱したのち、引張速度100mm/分で5倍に延伸後、チャックに保持した状態で、3分間133℃で熱処理した後、室温に急冷し、延伸シートを得た。
Comparative Example 4
A press sheet obtained in the same manner as in Comparative Example 1 was cut into a width of 40 mm and a length of 70 mm, and pre-heated at 133 ° C. for 5 minutes with a chuck of 50 mm between chucks and a tensile speed. The film was stretched 5 times at 100 mm / min and then heat treated at 133 ° C. for 3 minutes while being held on the chuck, and then rapidly cooled to room temperature to obtain a stretched sheet.
 比較例5
 分散相を構成する樹脂としてのポリスチレン樹脂4重量部、連続相を構成する樹脂としてのポリエチレンナフタレート樹脂96重量部を、二軸押出機を用いて、シリンダー温度280℃で溶融混練して押出し、冷却してペレットを作製した。得られたペレットを小型プレス機を用いて、270℃、10MPaのプレス圧で3分間プレス成形することにより、厚み1mmのプレスシートを作製した。得られたシートを幅40mm、長さ70mmに切り出し、恒温ユニットを備えた引張試験機を用いて、チャック間50mmで、133℃で5分間予熱したのち、引張速度100mm/分で6倍に延伸後、室温に急冷し、延伸シートを得た。
Comparative Example 5
4 parts by weight of polystyrene resin as the resin constituting the dispersed phase and 96 parts by weight of polyethylene naphthalate resin as the resin constituting the continuous phase were melt kneaded and extruded at a cylinder temperature of 280 ° C. using a twin screw extruder, Cooled to produce pellets. The obtained pellets were press-molded for 3 minutes at a pressure of 270 ° C. and 10 MPa using a small press machine to produce a press sheet having a thickness of 1 mm. The obtained sheet was cut into a width of 40 mm and a length of 70 mm, and preheated at 133 ° C. for 5 minutes using a tensile tester equipped with a thermostatic unit, and then stretched 6 times at a pulling rate of 100 mm / min. Thereafter, it was rapidly cooled to room temperature to obtain a stretched sheet.
 比較例6
 分散相を構成する樹脂としてのポリスチレン樹脂12重量部、連続相を構成する樹脂としてのポリエチレンナフタレート樹脂88重量部を、二軸押出機を用いて、シリンダー温度280℃で溶融混練して押出し、冷却してペレットを作製した。得られたペレットを小型プレス機を用いて、270℃、10MPaのプレス圧で3分間プレス成形することにより、厚み1mmのプレスシートを作製した。得られたシートを幅40mm、長さ70mmに切り出し、恒温ユニットを備えた引張試験機を用いて、チャック間50mmで、133℃で5分間予熱したのち、引張速度100mm/分で6倍に延伸後、室温に急冷し、延伸シートを得た。
Comparative Example 6
12 parts by weight of polystyrene resin as the resin constituting the dispersed phase and 88 parts by weight of polyethylene naphthalate resin as the resin constituting the continuous phase were melt-kneaded and extruded at a cylinder temperature of 280 ° C. using a twin screw extruder, Cooled to produce pellets. The obtained pellets were press-molded for 3 minutes at a pressure of 270 ° C. and 10 MPa using a small press machine to produce a press sheet having a thickness of 1 mm. The obtained sheet was cut into a width of 40 mm and a length of 70 mm, and preheated at 133 ° C. for 5 minutes using a tensile tester equipped with a thermostatic unit, and then stretched 6 times at a pulling rate of 100 mm / min. Thereafter, it was rapidly cooled to room temperature to obtain a stretched sheet.
 実施例1~8及び比較例1~6における配合組成、延伸温度及び倍率、熱処理温度、延伸シートの厚みを表1に示す。また、原反シート及び延伸シートにおける分散相の平均径、屈折率について測定した結果を表2に示す。さらに、延伸シートの全光線透過率、反射率、拡散光線透過率、輝度向上度、トラウザー引裂についての結果を表3に示す。 Table 1 shows the blending composition, stretching temperature and magnification, heat treatment temperature, and stretched sheet thickness in Examples 1 to 8 and Comparative Examples 1 to 6. Table 2 shows the results of measurement of the average diameter and refractive index of the dispersed phase in the raw sheet and stretched sheet. Further, Table 3 shows the results regarding the total light transmittance, reflectance, diffused light transmittance, brightness enhancement degree, and trouser tear of the stretched sheet.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表から明らかなように、実施例の偏光素子は、輝度を向上でき、引裂強度も高い。特に、実施例1及び2の偏光素子は、延伸倍率が3.5倍であるにも拘わらず、高い輝度向上度及び散乱特性を示している。一方、比較例の偏光素子は、引裂強度が低く、延伸倍率が高いにも拘わらず、輝度向上度及び散乱特性の向上が充分でない。さらに、比較例(特に比較例3、5及び6)の偏光素子では、ボイドの発生により白化が観察された。 As is clear from the table, the polarizing elements of the examples can improve luminance and have high tear strength. In particular, the polarizing elements of Examples 1 and 2 exhibit high brightness enhancement and scattering characteristics despite the draw ratio of 3.5. On the other hand, although the polarizing element of the comparative example has a low tear strength and a high draw ratio, the brightness improvement degree and the scattering characteristics are not sufficiently improved. Furthermore, whitening was observed in the polarizing elements of the comparative examples (particularly Comparative Examples 3, 5 and 6) due to the generation of voids.
 本発明の偏光素子は、各種の面光源装置に利用できるが、特に、透過型又は反射型液晶表示装置(例えば、パーソナルコンピューター、ワードプロセッサー、液晶テレビ、携帯電話、時計、電卓などの電気製品の表示部など)に有効に利用できる。 The polarizing element of the present invention can be used for various surface light source devices. In particular, a transmissive or reflective liquid crystal display device (for example, display of electrical products such as personal computers, word processors, liquid crystal televisions, mobile phones, watches, calculators, etc.) Part)
 1,10,20…液晶表示装置
 2…蛍光管
 3,13,23…反射部材又は反射層
 4…導光板
 5,15,25…偏光素子
 6…拡散シート
 7,17,27…液晶セル
 18…吸収型偏光板
 29…1/4波長板
DESCRIPTION OF SYMBOLS 1,10,20 ... Liquid crystal display device 2 ... Fluorescent tube 3,13,23 ... Reflective member or reflective layer 4 ... Light guide plate 5,15,25 ... Polarizing element 6 ... Diffusion sheet 7,17,27 ... Liquid crystal cell 18 ... Absorption type polarizing plate 29 ... 1/4 wavelength plate

Claims (13)

  1.  ポリカーボネート系樹脂で構成された連続相に、透明樹脂で構成された分散相が粒子状に分散している延伸シートで構成された偏光素子であって、前記連続相の面内複屈折が0.05未満であり、前記分散相の面内複屈折が0.05以上であり、かつ直線偏光に対する連続相と分散相との屈折率差が延伸方向とこの延伸方向に対して垂直な方向とで異なる偏光素子。 A polarizing element composed of a stretched sheet in which a dispersed phase composed of a transparent resin is dispersed in a continuous phase composed of a polycarbonate-based resin, wherein the in-plane birefringence of the continuous phase is 0.00. Is less than 05, the in-plane birefringence of the dispersed phase is 0.05 or more, and the refractive index difference between the continuous phase and the dispersed phase with respect to linearly polarized light is different between the stretching direction and the direction perpendicular to the stretching direction. Different polarizing elements.
  2.  延伸方向における連続相と分散相との屈折率差の絶対値が0.1~0.3であり、かつ延伸方向に対して垂直な方向における連続相と分散相との屈折率差の絶対値が0.1以下である請求項1記載の偏光素子。 The absolute value of the refractive index difference between the continuous phase and the dispersed phase in the stretching direction is 0.1 to 0.3, and the absolute value of the refractive index difference between the continuous phase and the dispersed phase in the direction perpendicular to the stretching direction. The polarizing element according to claim 1, wherein is 0.1 or less.
  3.  分散相の長軸及び短軸の平均長さが、それぞれ0.8~10μm及び0.05~0.8μmであり、分散相の平均アスペクト比が2~200である請求項1又は2記載の偏光素子。 The average length of the major axis and the minor axis of the dispersed phase is 0.8 to 10 µm and 0.05 to 0.8 µm, respectively, and the average aspect ratio of the dispersed phase is 2 to 200. Polarizing element.
  4.  延伸方向に対して垂直な方向の直線偏光の全光線透過率が80%以上であり、かつ延伸方向に平行な方向の直線偏光の反射率が30%以上である請求項1~3のいずれかに記載の偏光素子。 4. The total light transmittance of linearly polarized light in a direction perpendicular to the stretching direction is 80% or more, and the reflectance of linearly polarized light in a direction parallel to the stretching direction is 30% or more. A polarizing element according to 1.
  5.  ポリカーボネート系樹脂がガラス転移温度120~160℃のビスフェノールA型ポリカーボネート系樹脂である請求項1~4のいずれかに記載の偏光素子。 5. The polarizing element according to claim 1, wherein the polycarbonate resin is a bisphenol A type polycarbonate resin having a glass transition temperature of 120 to 160 ° C.
  6.  分散相がポリエステル系樹脂で構成されている請求項1~5のいずれかに記載の偏光素子。 6. The polarizing element according to claim 1, wherein the dispersed phase is composed of a polyester resin.
  7.  分散相がポリアルキレンナフタレート系樹脂で構成されている請求項1~6のいずれかに記載の偏光素子。 7. The polarizing element according to claim 1, wherein the dispersed phase is composed of a polyalkylene naphthalate resin.
  8.  連続相と分散相との割合が、連続相/分散相=99/1~50/50(重量比)である請求項1~7のいずれかに記載の偏光素子。 The polarizing element according to any one of claims 1 to 7, wherein the ratio of the continuous phase to the dispersed phase is continuous phase / dispersed phase = 99/1 to 50/50 (weight ratio).
  9.  ポリカーボネート系樹脂と透明樹脂とを溶融混合して成形したシートを、一軸延伸して請求項1記載の偏光素子を製造する方法。 A method for producing a polarizing element according to claim 1, wherein a sheet formed by melting and mixing a polycarbonate-based resin and a transparent resin is uniaxially stretched.
  10.  ポリカーボネート系樹脂のガラス転移温度をTgとしたとき、Tg℃~(Tg+80)℃の温度で、1.2~4倍に一軸延伸する請求項9記載の方法。 The method according to claim 9, wherein the polycarbonate resin is uniaxially stretched 1.2 to 4 times at a temperature of Tg ° C to (Tg + 80) ° C, where Tg is a glass transition temperature.
  11.  さらに延伸温度以上の温度で熱処理する請求項9又は10記載の方法。 Furthermore, the method of Claim 9 or 10 which heat-processes at the temperature more than extending | stretching temperature.
  12.  請求項1~8のいずれかに記載の偏光素子を備えた面光源装置。 A surface light source device comprising the polarizing element according to any one of claims 1 to 8.
  13.  請求項1~8のいずれかに記載の偏光素子を備えた液晶表示装置。 A liquid crystal display device comprising the polarizing element according to any one of claims 1 to 8.
PCT/JP2010/057865 2009-05-27 2010-05-10 Polarizing element and display device using same WO2010137450A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011515964A JPWO2010137450A1 (en) 2009-05-27 2010-05-10 Polarizing element and display device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009127180 2009-05-27
JP2009-127180 2009-05-27

Publications (1)

Publication Number Publication Date
WO2010137450A1 true WO2010137450A1 (en) 2010-12-02

Family

ID=43222565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057865 WO2010137450A1 (en) 2009-05-27 2010-05-10 Polarizing element and display device using same

Country Status (3)

Country Link
JP (1) JPWO2010137450A1 (en)
TW (1) TWI497126B (en)
WO (1) WO2010137450A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012226078A (en) * 2011-04-19 2012-11-15 Daicel Corp Polarizing film, method for producing the same, and display device
WO2013157512A1 (en) * 2012-04-16 2013-10-24 三菱樹脂株式会社 Scattering type polarizer and liquid crystal display device equipped with same
JP2013222047A (en) * 2012-04-16 2013-10-28 Mitsubishi Plastics Inc Scattering type polarizer and liquid crystal display device equipped with same
JP2014044270A (en) * 2012-08-24 2014-03-13 Mitsubishi Plastics Inc Scatter type polarizer and liquid crystal display device including the same
WO2014112412A1 (en) * 2013-01-17 2014-07-24 株式会社ダイセル Semitransparent diffusion-polarization laminate and usage therefor
WO2016152461A1 (en) * 2015-03-25 2016-09-29 コニカミノルタ株式会社 Thermoplastic resin film, method for producing thermoplastic resin film and liquid crystal display device
KR20170040565A (en) * 2015-10-05 2017-04-13 주식회사 엘지화학 Optical Film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003075643A (en) * 2001-06-22 2003-03-12 Daicel Chem Ind Ltd Polarizing element and surface light source device and liquid crystal display device using the same
JP2003131035A (en) * 2001-02-19 2003-05-08 Fuji Photo Film Co Ltd Optical film, polarizing plate and liquid crystal display device
WO2007145811A2 (en) * 2006-06-05 2007-12-21 Eastman Kodak Company Diffusely-reflecting polarizer having nearly isotropic continuous phase
JP2008533514A (en) * 2005-02-28 2008-08-21 スリーエム イノベイティブ プロパティズ カンパニー Optical element including polymer fiber fabric

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003207631A (en) * 2002-01-11 2003-07-25 Fuji Photo Film Co Ltd Optical film, polarizing plate and liquid crystal display device
JP2003302507A (en) * 2002-02-05 2003-10-24 Sumitomo Chem Co Ltd Anisotropic scattering film and liquid crystal display device using the same
KR20080005405A (en) * 2005-04-06 2008-01-11 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Diffuse reflective polarizing films with orientable polymer blends

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003131035A (en) * 2001-02-19 2003-05-08 Fuji Photo Film Co Ltd Optical film, polarizing plate and liquid crystal display device
JP2003075643A (en) * 2001-06-22 2003-03-12 Daicel Chem Ind Ltd Polarizing element and surface light source device and liquid crystal display device using the same
JP2008533514A (en) * 2005-02-28 2008-08-21 スリーエム イノベイティブ プロパティズ カンパニー Optical element including polymer fiber fabric
WO2007145811A2 (en) * 2006-06-05 2007-12-21 Eastman Kodak Company Diffusely-reflecting polarizer having nearly isotropic continuous phase

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012226078A (en) * 2011-04-19 2012-11-15 Daicel Corp Polarizing film, method for producing the same, and display device
WO2013157512A1 (en) * 2012-04-16 2013-10-24 三菱樹脂株式会社 Scattering type polarizer and liquid crystal display device equipped with same
JP2013222047A (en) * 2012-04-16 2013-10-28 Mitsubishi Plastics Inc Scattering type polarizer and liquid crystal display device equipped with same
JP2014044270A (en) * 2012-08-24 2014-03-13 Mitsubishi Plastics Inc Scatter type polarizer and liquid crystal display device including the same
WO2014112412A1 (en) * 2013-01-17 2014-07-24 株式会社ダイセル Semitransparent diffusion-polarization laminate and usage therefor
WO2016152461A1 (en) * 2015-03-25 2016-09-29 コニカミノルタ株式会社 Thermoplastic resin film, method for producing thermoplastic resin film and liquid crystal display device
KR20170040565A (en) * 2015-10-05 2017-04-13 주식회사 엘지화학 Optical Film
KR102069487B1 (en) 2015-10-05 2020-01-23 주식회사 엘지화학 Optical Film

Also Published As

Publication number Publication date
TWI497126B (en) 2015-08-21
JPWO2010137450A1 (en) 2012-11-12
TW201106029A (en) 2011-02-16

Similar Documents

Publication Publication Date Title
JP4253472B2 (en) Polarizing element and surface light source device and liquid crystal display device using the same
WO2010137450A1 (en) Polarizing element and display device using same
KR100865625B1 (en) Light Diffusion Film, Surface Illuminant Device and Liquid Crystal Display Device
WO2014112412A1 (en) Semitransparent diffusion-polarization laminate and usage therefor
KR100800230B1 (en) Polarizing Element, and Plane Light Source Unit and Liquid Crystal Display Apparatus Using the Same
TWI326782B (en) Light diffuser with excellent optical properties and high thermal resistance and anti-moisture absorptivity
US20030123150A1 (en) Microvoided light diffuser
JP2003195059A (en) Stacked microvoided light diffuser
JP5729296B2 (en) White film and surface light source using the same
JP5864128B2 (en) Laminated film
TW200909943A (en) Thin film bulk and surface diffuser
JP2012226078A (en) Polarizing film, method for producing the same, and display device
JP7247887B2 (en) white polyester film
CN1474201A (en) Optical element containing nano composite particles
JP5682667B2 (en) White film and surface light source using the same
JP2004101641A (en) Anisotropic diffusing film and system provided therewith
JP5635885B2 (en) Polarizing element and display device using the same
JP2010243826A (en) Light diffusing reflective polarizing film
JP2009096999A (en) White film and surface light sources with the same
JP2008164929A (en) Light scattering polarizer
JP6014415B2 (en) Scattering polarizer and liquid crystal display device comprising the same
WO2013157512A1 (en) Scattering type polarizer and liquid crystal display device equipped with same
JP5875451B2 (en) Scattering polarizer and liquid crystal display device comprising the same
US20080252814A1 (en) Optical elements covering member, backlight and liquid crystal display device
JP2018036335A (en) Method for producing scattering type polarizer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10780407

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011515964

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10780407

Country of ref document: EP

Kind code of ref document: A1