WO2010135900A1 - 双能欠采样物质识别方法和系统 - Google Patents
双能欠采样物质识别方法和系统 Download PDFInfo
- Publication number
- WO2010135900A1 WO2010135900A1 PCT/CN2009/076295 CN2009076295W WO2010135900A1 WO 2010135900 A1 WO2010135900 A1 WO 2010135900A1 CN 2009076295 W CN2009076295 W CN 2009076295W WO 2010135900 A1 WO2010135900 A1 WO 2010135900A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- energy
- substance
- dual
- inspected
- coefficient
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 41
- 238000005070 sampling Methods 0.000 title claims abstract description 21
- 239000000463 material Substances 0.000 title abstract description 12
- 239000000126 substance Substances 0.000 claims abstract description 46
- 230000009977 dual effect Effects 0.000 claims abstract description 19
- 238000012545 processing Methods 0.000 claims abstract description 15
- 238000007781 pre-processing Methods 0.000 claims abstract description 6
- 230000011218 segmentation Effects 0.000 claims description 7
- 238000000354 decomposition reaction Methods 0.000 claims description 6
- 238000002591 computed tomography Methods 0.000 claims description 4
- 210000001747 pupil Anatomy 0.000 claims description 3
- 238000009434 installation Methods 0.000 claims 1
- 230000000149 penetrating effect Effects 0.000 claims 1
- 230000010354 integration Effects 0.000 abstract 2
- 238000003384 imaging method Methods 0.000 description 10
- 230000005540 biological transmission Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 238000013170 computed tomography imaging Methods 0.000 description 6
- 238000001514 detection method Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 238000007689 inspection Methods 0.000 description 5
- 230000005855 radiation Effects 0.000 description 5
- 238000003745 diagnosis Methods 0.000 description 4
- 238000009659 non-destructive testing Methods 0.000 description 3
- 238000004590 computer program Methods 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 241000239226 Scorpiones Species 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- SYHGEUNFJIGTRX-UHFFFAOYSA-N methylenedioxypyrovalerone Chemical compound C=1C=C2OCOC2=CC=1C(=O)C(CCC)N1CCCC1 SYHGEUNFJIGTRX-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/40—Arrangements for generating radiation specially adapted for radiation diagnosis
- A61B6/4035—Arrangements for generating radiation specially adapted for radiation diagnosis the source being combined with a filter or grating
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/02—Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
- A61B6/03—Computed tomography [CT]
- A61B6/032—Transmission computed tomography [CT]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/42—Arrangements for detecting radiation specially adapted for radiation diagnosis
- A61B6/4208—Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
- A61B6/4241—Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using energy resolving detectors, e.g. photon counting
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/48—Diagnostic techniques
- A61B6/482—Diagnostic techniques involving multiple energy imaging
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/52—Devices using data or image processing specially adapted for radiation diagnosis
- A61B6/5205—Devices using data or image processing specially adapted for radiation diagnosis involving processing of raw data to produce diagnostic data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
- G06T11/003—Reconstruction from projections, e.g. tomography
- G06T11/005—Specific pre-processing for tomographic reconstruction, e.g. calibration, source positioning, rebinning, scatter correction, retrospective gating
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
- G06T11/003—Reconstruction from projections, e.g. tomography
- G06T11/008—Specific post-processing after tomographic reconstruction, e.g. voxelisation, metal artifact correction
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2211/00—Image generation
- G06T2211/40—Computed tomography
- G06T2211/408—Dual energy
Definitions
- the present invention relates to the field of radiation imaging technology, and in particular to a dual energy undersampling material identification method and system, which can reduce radiation dose and system cost, and improve scanning speed. Background technique
- one is a pseudo-two-energy system that realizes dual-energy imaging by using a specially designed double-layer detector, as shown in Fig. 1.
- Fig. 1 when scanning, the ray passes through the object and then reaches the low-energy detector of the first layer, then passes through the filter, and finally reaches the high-energy detector of the second layer, at this time on the two transmission images.
- the pixels automatically correspond to the same ray path.
- the other is a true dual-energy system that uses a different source of radiation to scan the object twice, as shown in Figures 2A and 2B.
- the object is scanned using the first energy ray.
- the ray energy is then switched from the first energy to the second energy.
- the object is scanned using the second energy ray.
- the radiation dose and scan time are approximately twice as large as a single scan. It is also necessary to register the low-energy and perforated transmission images to ensure that the pixels of the same coordinates on the two images correspond to the same ray path.
- the object of the present invention is to provide a dual-energy under-sampling substance identification method and system, which can solve the two types of systems that utilize dual-energy CT imaging technology to reconstruct and detect substances in a detected object, and cannot achieve low cost, low dose, and rapid speed.
- the problem of detection can be applied to security inspection Inspection, non-destructive testing, medical diagnosis and many other testing areas.
- a dual-energy under-sampling substance identification method comprising: performing CT scanning on an object to be inspected by using a beam of a first energy to obtain projection data of various angles at a first energy and reconstructing is detected.
- a CT image of the object scanning the object to be inspected with the beam of the second energy to obtain projection data of a partial angle of the second energy; combining the projection data of the first energy with the projection data of the second energy to obtain The dual-energy under-sampling data of the partial angle; the integral value of the photoelectric coefficient and the integral value of the Compton coefficient are obtained according to the dual-energy under-sampling data; the CT image of the detected object is segmented, and the divided regions are obtained and the dual energy is calculated The length of the ray passing through each region; according to the length of the double-energy ray passing through each region, the integral value of the pupil coefficient and the integral value of the Compton coefficient, the dual-energy pre-processing double-effect decomposition reconstruction method is used to solve the Compton coefficient and the photoelectric coefficient Calculating at least the atomic number of the substance in each divided region based on the Compton coefficient and the photoelectric coefficient; Atomic number less based on the substance being examined object is identified.
- a dual energy bleed substance recognition system comprising: a ray generating device that generates a ray beam of a first energy that penetrates an object to be inspected and a beam of a second energy; a mechanical rotation control portion, including a rotation device and a control system, for performing a rotation scan of the object to be inspected; a data acquisition subsystem including an array detector for obtaining transmission projection data of a beam ⁇ that penetrates the object to be inspected; a control and data processing computer, controlling the ray generating device, the mechanical rotation control portion and the data acquisition subsystem, performing CT scanning on the object to be inspected by using the beam of the first energy to obtain projection data at the first energy and reconstructing the detected object a CT image, and scanning the object to be inspected with a beam of the second energy to obtain projection data of a partial angle of the second energy; wherein the main control and data processing computer comprises: combining projection data of the first energy and Projection data at the second energy to obtain a dual angle under
- the dual image projection undersampling material recognition method and system based on CT image can reduce the number of detectors and effectively reduce the cost compared with the conventional two-layer detector pseudo dual energy system. It enables the dual-energy substance recognition imaging system to be applied to safety inspection in large quantities; for true dual-energy systems, the number of rotations can be reduced, and fast, low-dose dual-energy substance recognition imaging can be realized. It is very meaningful to reduce the radiation dose received by the patient in rapid examination and medical diagnosis.
- the method and system of the embodiments of the present invention effectively solve several key difficulties in the dual-energy material recognition imaging problem based on the prior knowledge of the CT image, and realize low-cost, high-speed, low-dose fast scanning, which is very Great market application potential.
- Figure 1 is a schematic diagram of a circular trajectory scanning plane of a pseudo dual energy CT imaging system
- FIGS. 2A and 2B are schematic diagrams showing a circular trajectory scanning plane of a true dual-energy CT imaging system
- 3A is a schematic diagram showing the structure of an improved true dual energy substance recognition imaging detecting system according to an embodiment of the present invention
- FIG. 3B is a schematic structural diagram of a main control and data processing computer shown in FIG. 3A;
- FIG. 4 is a schematic flow chart of a dual-energy projection under-sampling material identification method based on CT images according to an embodiment of the present invention;
- 5A and 5B are schematic diagrams showing a scanning plane of an improved true dual energy substance recognition imaging detection circular trajectory according to an embodiment of the present invention
- Figure 6 shows a look-up table of the photoelectric coefficient integral and the Compton coefficient integral
- Figure 7 is a schematic diagram depicting the calculation of the length of a ray passing through a segmented region. detailed description
- the system according to an embodiment of the present invention is an improved true dual-energy circular trajectory material recognition imaging detection system using a dual-energy projection under-sampling material recognition method based on CT image.
- the system uses a fan beam circular scan consisting of a ray source and a layer of detectors.
- the shape information of the object is obtained by using the CT image reconstructed by the one-circle trajectory scan, and then a small amount of dual-energy projection sampling is obtained by using the projection information of one or several angles of the second week, which can be realized quickly.
- Low dose dual energy Quality recognition imaging As shown in FIG. 5A, in the first week, a full 360 degree conventional angle sampling scan is performed, for example, using low energy rays to reconstruct a CT image. In the second week, selective scanning is performed using high-energy rays to obtain partial projection data.
- a system according to an embodiment of the present invention has the following components.
- the ray generating device 11 which includes an X-ray accelerator, an X-ray machine or a radioactive isotope, and corresponding auxiliary equipment.
- the mechanical rotation control portion 12 includes a rotating device and a control system for rotating the object to be inspected (or the source and the detector), and the motion of the object is relative to the movement of the source and the detector, and is equivalent.
- the source and the detector can be simultaneously rotated. In this embodiment, the object to be inspected is rotated.
- the data acquisition subsystem 13 which mainly includes array detectors (generally equidistant or equiangular), is used to acquire transmission projection data of rays.
- the subsystem 13 also includes a pop-out circuit and a logic control unit for projecting data on the detector.
- the detector can be a solid state detector, a gas detector, or a semiconductor detector.
- the sampling interval is required to be uniform on the time axis J1, and the object to be inspected is also moved at a constant speed, and all array detectors are required to be acquired synchronously.
- the obtained projection data is processed, the object tomographic image is reconstructed by the projection data acquired in the first week, and the image region segmentation mark is performed, and a small amount of dual-energy projection samples are used to reconstruct the material of each block region by using a small amount of samples obtained by the second week scan.
- the atomic number and electron density image are identified by the substance and displayed on the display.
- the computer 14 can be a high performance single PC or a workstation or fleet.
- FIG. 3B shows a block diagram of the main control and data processing computer 14 shown in FIG. 3A.
- the data collected by the data collection subsystem 13 is stored in the memory 141.
- Configuration information and programs of the computer data processor are stored in a read only memory (ROM) 142.
- a random access memory (RAM) 143 is used to temporarily store various data during the operation of the processor 146.
- the memory 141 further stores a computer program for performing data processing and a pre-programmed database, which stores related information of various known objects, a photoelectric coefficient integral and a Compton coefficient integral lookup table, which is originally searched for the ordinal number.
- the internal bus 144 is connected to the above-described memory 141, read only memory 142, random access memory 143, input device 145, processor 146, and display device 147.
- the processor 146 in the computer program executes a predetermined data processing algorithm, and after obtaining the data processing result, displays it on an LCD display or the like.
- the display device 147 or directly outputs the processing result in the form of a hard copy.
- FIG. 4 is a flow chart showing a method for identifying a dual-energy projection under-sampling substance based on a CT image according to an embodiment of the present invention.
- the main control and data processing computer 14 controls the ray generating device 11, the mechanical rotation control portion 12, and the data acquisition subsystem 13, and scans the first week energy _ 1 using the circular trajectory fan beam reconstruction method.
- the obtained projection data samples are subjected to CT reconstruction to obtain a CT image of the detected object.
- a small amount of dual-energy under-sampling projection data is formed by using the projection data and the projection information at the energy of -2 degrees or even an angle of the second week, that is, the measured value is measured under the second-week scanning angle of view.
- the object performs a dual-energy undersampling scan.
- the scanning angle of view of the second week may be one or more.
- the correlation of the projection data at the plurality of viewing angles is preferably relatively small, such as less than a predetermined threshold.
- step S22 the photoelectric coefficient integral and the Compton coefficient integral value corresponding to each pair of 'low energy projections can be obtained from the lookup table stored in the memory 141 of the computer 14 and can also be solved in other manners. Use the look-up table method to solve the solution.
- the horizontal and vertical coordinates PI, P2 represent the projections obtained under high and low energy conditions, respectively.
- the horizontal and vertical coordinates PI, P2 represent the projections obtained under high and low energy conditions, respectively.
- the value of the coefficient integral A That is, when the high and low energy projection data is known, the corresponding photoelectric coefficient integral and Compton coefficient integral A can be obtained by looking up the table.
- the above lookup table is disclosed in the prior art ("A Volumetric Object Detection Framework with Dual-Energy CT" IEEE NSS/MIC 2008).
- step S12 the main control and data processing computer 14 divides the CT reconstructed image into different regions according to the difference in gradation and marks them based on the region segmentation method.
- the above method based on region segmentation is an improved one-way split merge segmentation method.
- step S13 the length of the beam corresponding to the jth block region / (/) is calculated based on the dual energy projection sampling information obtained in step S21.
- ⁇ represents the Compton coefficient and the photoelectric coefficient.
- ⁇ ⁇ indicates the dependence of the photoelectric cross section on the ray energy ;; characterizes the relationship between Compton's cross section and photon energy; indicates the X-ray ray energy spectrum measured by the high-energy detector; D L (K) indicates that the low-energy detector measures X-ray machine ray energy spectrum; ", represents the photoelectric coefficient; ⁇ 2 represents the Compton coefficient; 4 represents the photoelectric coefficient integral; 4 represents the Compton coefficient integral, that is, as shown in the following formula (4):
- step S14 The equation set constructed in step S14 is solved by the method of least squares in step S15, and a, that is, the photoelectric coefficient ⁇ , and the Compton coefficient are calculated. Then, in step S16, the atomic number and electron density are obtained by the formulas (8) and (9):
- ⁇ denotes the atomic number
- ⁇ denotes the electron density
- A denotes the Avogadro constant
- the constant contains all other coefficients unrelated to the ray energy and material parameters
- the constant contains all other parameters independent of the ray energy and material parameters. coefficient.
- the atomic number of the material in the block region and the density of the scorpion can be obtained, thereby effectively identifying the substance.
- a method based on a lookup table method or a classification curve uses atomic numbers to identify substances in respective regions of an object to be inspected.
- the calculated atomic number and electron density can be used simultaneously to identify the substance.
- the method and system according to an embodiment of the present invention can realize low-cost, low-dose, and rapid dual-energy substance recognition imaging using only a small number of dual-energy projection samples based on CT images. It has the potential to be used in safety inspection, non-destructive testing, medical diagnosis and other fields.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Physics & Mathematics (AREA)
- Heart & Thoracic Surgery (AREA)
- Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Optics & Photonics (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- High Energy & Nuclear Physics (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Pulmonology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Description
双能欠采样物质识别方法和系统 技术领域
本发明涉及辐射成像技术领域,具体涉及一种双能欠采样物质识别方法和系 统, 能够降低辐射剂量和系统成本, 并且提高扫描速度。 背景技术
近年来, 由于双能 CT成像技术能够获得最佳的检测精度, 有效的对被检测 物体重建并进行物质识别, 使其在安全检查, 无损检测, 医疗诊断等领域中有着 十分重要的怠义。
1=1前, 双能 CT成像技术主要有两种实现方式: 一种是利用专门设计的双层 探测器实现双能成像的伪双能系统,如图 1所示。按照图 1所示的方法,扫描时, 射线穿过物体之后先到达第 层的低能探测器, 接着穿过滤波片, 最后再到达第 二层的高能探测器, 此时两个透射图像上的像素自动对应相同的射线路径。
另一种是利用不同能量的射线源对物体进行两次圆周扫描的真双能系统,如 图 2A和 2B所示。 如图 2A所示, 在第一周扫描过程中, 使用第一能量的射线 对物体进行扫描。 然后将射线能量从第一能量切换到第二能量。 如图 2B所示, 在第二周扫描过程中, 使用第二能量的射线对物体进行扫描。 按照图 2A和 2B 所示的方法, 辐射剂量和扫描时间大概相当于单次扫描的两倍。而且需要对低能 和卨能透射图像进行配准, 确保两个图像上相同坐标的象素对应相同的射线路 径。
但从工程实现的角度看, 由于第一种系统需要两层探测器同时进行采集, 所 以成本较高, 不易普及。第二种系统除了需要对低能和高能透射图像的配准耍求 严格, 而且耗吋长, 扫描速度慢, 并且由于多扫描的一周增加了对被检测物体的 扫描剂量。 这些问题都对双能 CT成像技术的推广造成不良的影响。 发明内容
本发明的目的在于提出一种双能欠采样物质识别方法和系统,解决目前两类 利用双能 CT成像技术对被检测物体重建并进行物质识别的系统中无法实现低成 本, 低剂量, 快速度检测的难题。 本发明实施例的方法和系统可以应用于安全检
查, 无损检测, 医疗诊断等诸多检测领域。
在本发明的一个方面, 提出了一种双能欠采样物质识别方法, 包括: 利用第 一能量的射线束对被检查物体进行 CT扫描, 获得第一能量下各个角度的投影数 据并且重建被检测物体的 CT图像; 利用第二能量的射线束对被检杳物体进行扫 描, 获得第二能量下部分角度的投影数据; 组合第一能量下的投影数据和第二能 量下的投影数据, 以获得部分角度的双能欠采样数据; 根据双能欠采样数据获得 光电系数积分值和康普顿系数积分值; 对被检测物体的 CT图像进行区域分割, 得到分割后的多个区域并且计算双能射线穿过各个区域的长度;根据双能射线穿 过各个区域的长度, 光屯系数积分值和康普顿系数积分值, 利用双能前处理双效 应分解重建方法求解康普顿系数和光电系数;基于康普顿系数和光电系数至少计 算各分割的区域中物质的原子序数;至少基于原子序数对被检査物体的物质进行 识别。
在本发明的另一方面, 提出了一种双能欠 ¾样物质识别系统, 包括: 射线发 生装置, 产生耍穿透被检査物体的第一能量的射线束和第二能量的射线束; 机械 转动控制部分, 包括转动装置和控制系统, 用于实现对被检查物体的旋转扫描; 数据采集分系统, 包括阵列探测器, 用于获取穿透被检查物体的射线朿的透射投 影数据; 主控制及数据处理计算机, 控制上述射线发生装置, 机械转动控制部分 和数据采集分系统, 利用第一能量的射线束对被检查物体进行 CT扫描, 获得第 能量下的投影数据并且重建被检测物体的 CT图像, 以及利用第二能量的射线 束对被检查物体进行扫描, 获得第二能量下部分角度的投影数据; 其屮所述主控 制及数据处理计算机包括: 组合第一能量下的投影数据和第二能量下的投影数 据, 以获得部分角度的双能欠采样数据的装置; 根据双能欠采样数据获得光电系 数积分值和康普顿系数积分值的装置; 对被检测物体的 CT图像进行区域分割, 得到分割后的多个区域并且计算双能射线穿过各个区域的长度的装置;根据双能 射线穿过各个区域的长度, 光电系数积分值和康普顿系数积分值, 利用双能前处 理双效应分解重建方法求解康普顿系数和光电系数的装置;基于康普顿系数和光 屯系数至少计算各分割的区域中物质的原子序数的装置;至少基于原子序数对被 检査物体的物质进行识别的装置。
根据本发明实施例的基于 CT图像的双能投影欠采样物质识别方法和系统对 比于传统的两层探测器伪双能系统, 可以减少探测器的数 有效的降低成本,
使得双能物质识別成像系统能够大批量的应用到安全检査中成为可能;对于真双 能系统, 可以减少旋转次数, 即可实现快速, 低剂量的双能物质识别成像, 对于 安检领域中快速检查和医疗诊断中降低病人接收的辐射剂量是十分有意义的。
因此, 本发明实施例的方法和系统以 CT图像的先验知识为基础有效的解决 双能物质识别成像问题中的几个关键难点, 实现低成本, 快速度, 低剂量的快速 扫描, 具有很大的市场应用潜力。 附图说明
从下面结合附图的详细描述中, 本发明的上述特征和优点将更明显, 其中: 图 1 是伪双能 CT成像系统圆轨迹扫描平面示意图;
图 2A和 2B 是真双能 CT成像系统圆轨迹扫描平面示意图;
图 3A 是根据本发明实施例的改进的真双能物质识别成像检测系统的结构 示意图;
图 3B 是如图 3A所示的主控制及数据处理计算机的结构示意图; 图 4 是根据本发明实施例的基于 CT图像的双能投影欠采样物质识别方法 流程示意图;
图 5A和 5B 是根据本发明实施例的改进的真双能物质识别成像检测圆轨迹 扫描平面示意图;
图 6 示出了光电系数积分和康普顿系数积分的査找表; 以及
图 7 是描述计算穿过分割区域的射线长度示意图。 具体实施方式
下面, 参考附图详细说明本发明的优选实施方式。 在附图中, 虽然示于不同 的附阁中, 但相同的附图标记用于表示相同的或相似的组件。 为了清楚和简明, 包含在这里的已知的功能和结构的详细描述将被省略,否则它们将使本发明的主 题不清楚。
根据本发明实施例的系统是一种利用基于 CT图像的双能投影欠采样物质识 別方法实现改进的真双能圆轨迹物质识别成像检测系统。 如图 3A所示, 该系统 采用一个射线源和一层探测器组成的扇束圆轨迹扫描。 如图 5A和 5B所示, 利 用笫一周圆轨迹扫描重建的 CT图像获得物体的形状信息, 再利用第二周一个或 儿个角度的投影信息获得少量的双能投影采样, 即可实现快速,低剂量的双能物
质识别成像。 如图 5A所示, 在第 周, 例如利用低能射线进行完整的 360度常 规角度采样扫描, 来重建 CT图像。在第二周,利用高能射线进行选择性的扫描, 来获得部分的卨能投影数据。
如图 3Λ所示, 根据本发明实施例的系统具备以下儿个组成部分。
射线发生装置 11, 它包括 X射线加速器、 X光机或者放射性同位素, 以及 相应的辅助设备。
机械转动控制部分 12, 它包括一个旋转被检查物体 (或者源和探测器) 的 转动装置和控制系统, 物体运动与源和探测器运动属于相对运动, 是等价的。在 医疗领域中, 由于病人不易转动,可以同时转动源和探测器实现,在本实施例中, 采用旋转被检查物体的方式实现。
数据采集分系统 13, 它主要包括阵列探测器 (一般是等距排列, 也可以是 等角排列), 用于获取射线的透射投影数据。该分系统 13还包括探测器上投影数 据的渎出电路和逻辑控制单元等。探测器可以是固体探测器, 也可以是气体探测 器, 还可以是半导体探测器。
数据采集时, 要求采样间隔在时间轴 Jl是均匀的, 被检査物体也要是匀速运 动, 并要求所有阵列探测器同步采集。
主控制及数据处理计算机 14, 它通过控制信号及数据传输线 15发送和接收 信号, 负责 CT系统运行过程的主控制, 包括机械转动, 电气控制, 安全连锁控 制等, 并对由数据采集分系统 13获得的投影数据进行处理, 通过第一周采集的 投影数据重建出物体断层图像并进行图像区域分割标记,再利用第二周扫描得到 的少量采样组成少量双能投影采样重建出各分块区域物质的原子序数和电子密 度阁像进行物质识别, 并通过显示器显示出来。 该计算机 14可以是高性能的单 个 PC, 也可以是工作站或机群。
图 3B示出了如图 3A所示的主控制及数据处理计算机 14的结构框图。如图 3B所示, 数据采集分系统 13所采集的数据存储在存储器 141 中。 只读存储器 (ROM) 142 中存储有计算机数据处理器的配置信息和程序。 随机存取存储器 (RAM) 143 用于在处理器 146工作过程中暂存各种数据。 另外, 存储器 141 中还存储有用于进行数据处理的计算机程序和预先编制的数据库,该数据库存储 有各种已知物体的相关信息, 光电系数积分和康普顿系数积分查找表, 原于序数 査找表或者原子序数分类曲线, 以及物质的电子密度等信息, 用于与处理器 146
所计算出的被检査物体中各个区域的诸如原子序数和电子密度之类的属性进行 比较。 内部总线 144连接上述的存储器 141、 只读存储器 142、 随机存取存储器 143、 输入装置 145、 处理器 146和显示装置 147。
在用户通过诸如键盘和鼠标之类的输入装置 145输入的操作命令后,该计算 机程序中的处理器 146执行预定的数据处理算法, 在得到数据处理结果之后,将 其显示在诸如 LCD显示器之类的显示装置 147上, 或者直接以硬拷贝的形式输 出处理结果。
下面参照附图 4详细描述本发明实施例的方法的执行过程。图 4是根据本发 明实施例的基于 CT图像的双能投影欠采样物质识别方法流程示意图。
在歩骤 Sl l, 主控制及数据处理计算机 14控制射线发生装置 11、 机械转动 控制部分 12、 和数据采集分系统 13, 利用圆轨迹扇束重建方法将在第一周能量 - 1情况下扫描获得的投影数据采样进行 CT重建, 获得被检测物体的 CT图像。 在歩骤 S21,利用此投影数据和在第二周能量 -2几个^]度甚至一个角度下的投影 信息组成少量的双能欠采样投影数据,即在第二周扫描视角下对被测物体进行双 能欠采样扫描。
根据本发明的实施例, 第二周的扫描视角可以是一个或者多个。在多个视角 的情况下,该多个视角下的投影数据的相关度最好比较小,例如小于预定的阈值。
进而在步骤 S22, 可从存储在计算机 14的存储器 141 中的査找表中查表求 出每对 '低能投影对应的光电系数积分和康普顿系数积分值 也可用其它方式 求解, 本实施例仅用査表法进行求解说明。
如图 6所示, 横纵坐标 PI, P2分别表示高低能情况下得到的投影, 在表中 的每一个坐标点处都存有与此时高低能投影数据对应的光电系数积分和康普顿 系数积分 A 的取值。 即当已知高低能投影数据时, 就可通过査找此表得到与之 对应的光电系数积分和康普顿系数积分 A 的取值。 在现有文献 ("A Volumetric Object Detection Framework with Dual-Energy CT "IEEE NSS/MIC 2008 )中公开了 上述的查找表。
在歩骤 S12,主控制及数据处理计算机 14采用基于区域分割的方法将 CT重建 图像根据灰度的差异分割成不同几个区域并进行标记。例如, 上述基于区域分割 的方法是改进的单程分裂合并分割方法。
如图 7所示, 表示第 条射线穿过第. /割区域的长度; Γ(0表示投影数
据。 这样, 在歩骤 S13, 根据歩骤 S21 中获得的双能投影采样信息计算出第 /组 投影数据所对应的射束经过第 j块区域的长度 /,(/)。
在步骤 S14, 主控制及数据处理计算机 14利用双能前处理双效应分解重建 方法建立方程组 ^ = 其中 α表示康普顿系数和光电系数。 令在第二周扫 描视角下共获得了 Μ组 DR双能透射数据, 将 CT图像共分割成 Ν块标记区域 并用 (0和 71()表示第 /组高、 低能投影数据。 通过公式 (1) 对线性衰减系数 进行双效应分解:
ΤΗ - A KN (E))dE ······ (2)
其中 ΛΑ 表示光电截面对射线能量 Ε的依赖关系; 刻画康普顿截面和 光子能量的关系; 表示高能探测器测量到的 X光机射线能谱; DL(K)表 示低能探测器测量到的 X光机射线能谱; 《,表示光电系数; α2表示康普顿系数; 4表示光电系数积分; 4表示康普顿系数积分, 即如下公式 (4) 所示:
A = ja dl …… (4) 从而构逑线性方程组:
具体而言, 用下而的方程组 (6) 和 (7) 对《,, 《2进行求解:
- - "】) 「4(1)—
(2) A (2)
(6)
— . lN{M)_
αλ^Κχ-^-ρΖη{η^ …… (8)
? V
α^Κ,^ρ (9)
2 2 2
其中 Ζ表示原子序数, ρ表示电子密度, A 表示阿伏加德罗常数, 为常 数即包含其它所有与射线能量和物质参数无关的系数, 为常数即包含其它所 有与射线能量和物质参数无关的系数。这样即可求出分块区域物质的原子序数和 屯子密度, 从而有效的对物质进行识别。例如, 基于査找表方法或者分类曲线的 方法利用原子序数来对被检查物体的各个区域中的物质进行识别。根据另一实施 方式, 可以同时使用计算的原子序数和电子密度来对物质进行识别。
如上所述, 根据本发明实施例的方法和系统在基于 CT图像基础上仅利用少 量的儿个双能投影采样即可实现低成本, 低剂量, 快速度的双能物质识别成像。 具有应用于安全检査, 无损检测, 医疗诊断等领域的潜力。
上而的描述仅用于实现本发明的实施方式, 本领域的技术人员应该理解, 在 不脱离本发明的范围的任何修改或局部替换,均应该属于本发明的权利要求来限 定的范围, 因此, 本发明的保护范围应该以权利要求书的保护范围为准。
Claims
1、 一种双能欠采样物质识别方法, 包括:
利用第一能量的射线朿对被检查物体进行 CT扫描, 获得第一能量下各个角 度的投影数据并且重建被检测物体的 CT图像;
利用第二能量的射线束对被检查物体进行扫描,获得第二能量下部分角度的 投影数据;
组合第一能量下的投影数据和第二能量下的投影数据,以获得部分角度的双 能欠采样数据;
根据双能欠 ¾样数据获得光电系数积分值和康普顿系数积分值;
对被检测物体的 CT图像进行区域分割, 得到分割后的多个区域并且计算双 能射线穿过各个区域的长度;
根据双能射线穿过各个区域的长度, 光电系数积分值和康普顿系数积分值, 利用双能前处理双效应分解重建方法求解康普顿系数和光电系数;
基于康普顿系数和光电系数至少计算各分割的区域中物质的原子序数; 至少基于原子序数对被检查物体的物质进行识别。
2、 如权利耍求 1所述的方法, 所述基于康普顿系数和光电系数至少计算各 分割的区域中物质的原子序数的歩骤包括计算各分割区域中物质的原子序数和 电子密度,以及所述至少基于原子序数对被检查物体的物质进行识别的歩骤包括 基于原子序数和计算的电子密度对被检查物体的物质进行识别。
3、 如权利要求 1或 2所述的方法, 其中对被检査物体的物质进行识别的歩 骤包括: 利用査找表来确定被检查物体的各个分割区域中的物质。
4、 如权利要求 1或 2所述的方法, 其中对被检查物体的物质进行识别的步 骤包括: 利用事先创建的分类曲线来确定被检査物体的各个分割区域中的物质。
5、 如权利要求 1所述的方法, 其中所述第二能量下部分投影角度的投影数 据是单个投影角度下的投影数据。
6、 如权利要求 1所述的方法, 其中所述第二能量下部分投影角度的投影数 据是多个投影角度下的投影数据,并且所述多个投影角度下的投影数据之间的相 关度小于预定的阈值。
7、 如权利要求 1所述的方法, 还包括对分割的区域进行标记的歩骤。
8、 一种双能欠采样物质识别系统, 包括:
射线发生装置,产生要穿透被检查物体的第一能量的射线束和第二能量的射 线朿;
机械转动控制部分, 包括转动装置和控制系统,用于实现对被检查物体的旋 转扫描;
数据采集分系统, 包括阵列探测器, 用于获取穿透被检查物体的射线束的透 射投影数据;
主控制及数据处理计算机, 控制上述射线发生装置,机械转动控制部分和数 据采集分系统, 利用第一能量的射线束对被检查物体进行 CT扫描, 获得第一能 量下的投影数据并且重建被检测物体的 CT图像, 以及利用第二能量的射线束对 被检查物体进行扫描, 获得第二能量下部分角度的投影数据;
其中所述主控制及数据处理计算机包括:
组合第一能量下的投影数据和第二能量下的投影数据,以获得部分角度 的双能欠采样数据的装置;
根据双能欠采样数据获得光电系数积分值和康普顿系数积分值的装置; 对被检测物体的 CT图像进行区域分割, 得到分割后的多个区域并且计 算双能射线穿过各个区域的长度的装置;
根据双能射线穿过各个区域的长度,光电系数积分值和康普顿系数积分 值, 利用双能前处理双效应分解重建方法求解康普顿系数和光电系数的装置; 基于康普顿系数和光电系数至少计算各分割的区域中物质的原子序数 的装置;
至少基于原子序数对被检查物体的物质进行识别的装置。
9、 如权利要求 8所述的系统, 其中所述基于康普顿系数和光屯系数至少计 算各分割的区域中物质的原子序数的装置包括计算各分割区域中物质的原子序 数和电子密度的装置,以及所述至少基于原子序数对被检查物体的物质进行识别 的装置包括基于原子序数和计算的电子密度对被检查物体的物质进行识别的装 置。
10、如权利要求 8或 9所述的系统,其中对被检査物体的物质进行识别的装 置包括: 利用查找表来确定被检査物体的各个分割区域中的物质的装置。
11、如权利要求 8或 9所述的系统, 其中对被检查物体的物质进行识别的装
包括:利用事先创建的分类曲线来确定被检查物体的各个分割区域 ' ί'的物质的 装置。
12、如权利要求 8所述的系统, 其中所述第二能量下部分投影角度的投影数 据是单个投影角度下的投影数据。
13、如权利要求 8所述的系统, 其中所述第二能量下部分投影角度的投影数 据是多个投影角度下的投影数据,并且所述多个投影角度下的投影数据之间的相 关度小于预定的阈值。
14、 如权利要求 8所述的系统, 还包括对分割的区域进行标记的装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/322,243 US8582857B2 (en) | 2009-05-27 | 2009-12-30 | Dual-energy material identification method and apparatus with undersampling |
EP09845116.4A EP2437050B1 (en) | 2009-05-27 | 2009-12-30 | Dual-energy material identification method and apparatus with undersampling |
PL09845116T PL2437050T3 (pl) | 2009-05-27 | 2009-12-30 | Metoda i urządzenia do dwuenergetycznej identyfikacji materiałów przy próbkowaniu ze zbyt niską częstotliwością |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200910085925XA CN101900696B (zh) | 2009-05-27 | 2009-05-27 | 双能欠采样物质识别方法和系统 |
CN200910085925.X | 2009-05-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010135900A1 true WO2010135900A1 (zh) | 2010-12-02 |
Family
ID=43222128
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2009/076295 WO2010135900A1 (zh) | 2009-05-27 | 2009-12-30 | 双能欠采样物质识别方法和系统 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8582857B2 (zh) |
EP (1) | EP2437050B1 (zh) |
CN (1) | CN101900696B (zh) |
PL (1) | PL2437050T3 (zh) |
WO (1) | WO2010135900A1 (zh) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101900695B (zh) * | 2009-05-27 | 2011-11-23 | 清华大学 | 伪双能欠采样物质识别系统和方法 |
DE102011087127B4 (de) * | 2011-11-25 | 2015-11-19 | Siemens Aktiengesellschaft | Bestimmung von Aufnahmeparametern bei einer Dual-Energy Tomosynthese |
DE102012211146A1 (de) * | 2012-06-28 | 2014-01-02 | Siemens Aktiengesellschaft | Verfahren und Röntgensystem zur Erzeugung einer Phasenkontrastdarstellung |
US9414790B2 (en) * | 2012-10-15 | 2016-08-16 | Elekta Ab (Publ) | Dual-energy cone-beam CT scanning |
US9128584B2 (en) * | 2013-02-15 | 2015-09-08 | Carl Zeiss X-ray Microscopy, Inc. | Multi energy X-ray microscope data acquisition and image reconstruction system and method |
CN104240270B (zh) * | 2013-06-14 | 2017-12-05 | 同方威视技术股份有限公司 | Ct成像方法和系统 |
JP2016099308A (ja) * | 2014-11-26 | 2016-05-30 | 株式会社日立ハイテクサイエンス | 蛍光x線分析装置及び蛍光x線分析方法 |
GB2533632B (en) * | 2014-12-24 | 2018-01-03 | Gen Electric | Method and system for obtaining low dose tomosynthesis and material decomposition images |
CN107209946B (zh) * | 2015-01-20 | 2020-09-25 | 皇家飞利浦有限公司 | 图像数据分割和显示 |
EP3157017B1 (en) | 2015-10-18 | 2019-05-22 | Carl Zeiss X-Ray Microscopy, Inc. | Method for combining tomographic volume data sets and image analysis tool of an x-ray imaging microscopy system |
CN107356615B (zh) * | 2016-05-10 | 2020-01-21 | 清华大学 | 一种用于双能x射线ct的方法和系统 |
US10466183B2 (en) * | 2016-10-31 | 2019-11-05 | Lawrence Livermore National Security, Llc | System-independent characterization of materials using dual-energy computed tomography |
JP7054329B2 (ja) | 2017-10-06 | 2022-04-13 | キヤノン株式会社 | 画像処理装置、画像処理方法及びプログラム |
CN109978809B (zh) * | 2017-12-26 | 2022-02-22 | 同方威视技术股份有限公司 | 图像处理方法、装置及计算机可读存储介质 |
JP2021517058A (ja) * | 2018-01-22 | 2021-07-15 | センスラボ エルエルシーXenselab, Llc | 多重エネルギー弁別を用いた被検体のx線イメージング方法 |
EP3768167A2 (en) | 2018-03-19 | 2021-01-27 | Xenselab Llc | X-ray tomography |
USD981565S1 (en) | 2021-06-21 | 2023-03-21 | Xenselab Llc | Medical imaging apparatus |
CN113240617B (zh) * | 2021-07-09 | 2021-11-02 | 同方威视技术股份有限公司 | 扫描图像重建方法、检查设备及计算机可读存储介质 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7190757B2 (en) * | 2004-05-21 | 2007-03-13 | Analogic Corporation | Method of and system for computing effective atomic number images in multi-energy computed tomography |
US7197172B1 (en) * | 2003-07-01 | 2007-03-27 | Analogic Corporation | Decomposition of multi-energy scan projections using multi-step fitting |
CN101237819A (zh) * | 2005-08-09 | 2008-08-06 | 皇家飞利浦电子股份有限公司 | 用于双能量动态x射线成像的系统和方法 |
CN101433464A (zh) * | 2007-11-12 | 2009-05-20 | Ge医疗系统环球技术有限公司 | X射线ct装置和图像处理装置 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7298812B2 (en) * | 2006-03-31 | 2007-11-20 | General Electric Company | Image-based material decomposition |
-
2009
- 2009-05-27 CN CN200910085925XA patent/CN101900696B/zh active Active
- 2009-12-30 EP EP09845116.4A patent/EP2437050B1/en active Active
- 2009-12-30 US US13/322,243 patent/US8582857B2/en active Active
- 2009-12-30 PL PL09845116T patent/PL2437050T3/pl unknown
- 2009-12-30 WO PCT/CN2009/076295 patent/WO2010135900A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7197172B1 (en) * | 2003-07-01 | 2007-03-27 | Analogic Corporation | Decomposition of multi-energy scan projections using multi-step fitting |
US7190757B2 (en) * | 2004-05-21 | 2007-03-13 | Analogic Corporation | Method of and system for computing effective atomic number images in multi-energy computed tomography |
CN101237819A (zh) * | 2005-08-09 | 2008-08-06 | 皇家飞利浦电子股份有限公司 | 用于双能量动态x射线成像的系统和方法 |
CN101433464A (zh) * | 2007-11-12 | 2009-05-20 | Ge医疗系统环球技术有限公司 | X射线ct装置和图像处理装置 |
Non-Patent Citations (2)
Title |
---|
"A Volumetric Object Detection Framework with Dual-Energy CT", IEEE NSS/MIC, 2008 |
LIU, YUANYUAN ET AL.: "Improved Single-Pass Split-Merge Image Segmentation in the Application of the Dual Energy CT Reconstruction Method with Reduced Data.", NATIONAL DIGITAL RADIOGRAPHIC IMAGING AND CT NEW TECHNOLOGY SEMINAR. COLLECTED PAPERS, June 2009 (2009-06-01), pages 86 - 90, XP008148034 * |
Also Published As
Publication number | Publication date |
---|---|
CN101900696B (zh) | 2012-01-04 |
US8582857B2 (en) | 2013-11-12 |
EP2437050B1 (en) | 2017-09-06 |
EP2437050A1 (en) | 2012-04-04 |
CN101900696A (zh) | 2010-12-01 |
US20120148133A1 (en) | 2012-06-14 |
EP2437050A4 (en) | 2014-05-28 |
PL2437050T3 (pl) | 2018-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010135900A1 (zh) | 双能欠采样物质识别方法和系统 | |
WO2010135901A1 (zh) | 伪双能欠采样物质识别系统和方法 | |
CN105784731B (zh) | 一种定位三维ct图像中的目标的方法和安检系统 | |
US8306180B2 (en) | Image reconstruction method for high-energy, dual-energy CT system | |
US7561659B2 (en) | Method for reconstructing a local high resolution X-ray CT image and apparatus for reconstructing a local high resolution X-ray CT image | |
EP1953700A1 (en) | System and method for reconstructing an image by rectilinear trajectory scanning | |
CN101175439B (zh) | 执行超短扫描和对最新数据的更强加权的连续计算机层析成像 | |
US20180192967A1 (en) | Tiled detector arrangement for differential phase contrast ct | |
EP2002286A2 (en) | Effective dual-energy x-ray attenuation measurement | |
EP1728215A1 (en) | Beam-hardening and attenuation correction for coherent-scatter ct | |
Zhu et al. | Cone beam micro-CT system for small animal imaging and performance evaluation | |
GB2552412A (en) | Systems and methods for detecting luggage in an imaging system | |
US10145977B2 (en) | Method for positioning target in three-dimensional CT image and security check system | |
CA2850845A1 (en) | A computed tomography imaging process and system | |
JP7242622B2 (ja) | コンピュータ断層撮影のためのセグメント化された光子計数検出器を使用するコヒーレント散乱撮像のためのシステムおよび方法 | |
CN102435621B (zh) | 双能欠采样物质识别方法和系统 | |
US20140169520A1 (en) | Systems and methods for dual energy imaging | |
US8854355B2 (en) | System and method of visualizing features in an image | |
JP2015532140A (ja) | スペクトル画像診断のための方法及びシステム | |
CN102519989B (zh) | 伪双能欠采样物质识别系统和方法 | |
CN105321206B (zh) | 一种适用于中子层析成像系统的旋转轴线偏摆角的误差补偿方法 | |
JP2001324568A (ja) | ガンマカメラ | |
CN115641388A (zh) | 物品成像方法、装置、设备、系统和介质 | |
JPH04120492A (ja) | Spect装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09845116 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2009845116 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009845116 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13322243 Country of ref document: US |