WO2010134374A1 - Image display apparatus, head-mounted display, and head-up display - Google Patents

Image display apparatus, head-mounted display, and head-up display Download PDF

Info

Publication number
WO2010134374A1
WO2010134374A1 PCT/JP2010/053649 JP2010053649W WO2010134374A1 WO 2010134374 A1 WO2010134374 A1 WO 2010134374A1 JP 2010053649 W JP2010053649 W JP 2010053649W WO 2010134374 A1 WO2010134374 A1 WO 2010134374A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
pupil
light source
wavelength
image
Prior art date
Application number
PCT/JP2010/053649
Other languages
French (fr)
Japanese (ja)
Inventor
佳恵 清水
哲也 野田
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Publication of WO2010134374A1 publication Critical patent/WO2010134374A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/223Absorbing filters containing organic substances, e.g. dyes, inks or pigments
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0112Head-up displays characterised by optical features comprising device for genereting colour display

Definitions

  • the present invention relates to a video display device, and a head mounted display (hereinafter also referred to as HMD) and a head-up display (hereinafter also referred to as HUD) provided with the video display device.
  • HMD head mounted display
  • HUD head-up display
  • FIG. 16 shows a schematic configuration of a conventional general video display device using HOE.
  • red (R), green (G), and blue (B) light emitted from the light source 101 is collected by the condenser lens 102 and incident on the display element 103, where image data is obtained.
  • Is modulated according to. RGB image light from the display element 103 is diffracted and reflected by the HOE 105 of the eyepiece optical system 104 and guided to the optical pupil P. Therefore, by locating the observer's pupil at the position of the optical pupil P, the observer can observe the image.
  • the volume phase type reflection type HOE 105 has high wavelength selectivity and transmits almost all the external light, so that the observer can observe the external world see-through simultaneously with the above-mentioned image.
  • observation illuminance the intensity of light felt when an observer observes an image
  • This observation illuminance is determined by the image light intensity and the human specific visual sensitivity.
  • the former image light intensity is substantially determined by the product of the radiated light intensity of the light source 101 and the diffraction efficiency of the HOE 105.
  • the latter specific luminous efficiency is the highest near the wavelength of 555 nm, and decreases from the wavelength toward the long wavelength side and the short wavelength side.
  • FIG. 18 shows an example of a manufacturing optical system of the HOE 105 used in the video display device of FIG.
  • the volume phase type reflective HOE 105 is emitted from one point light source 201 (spherical wave) disposed at the center of the optical pupil P of the eyepiece optical system 104 in use and emitted from the other point light source 301. It is manufactured by exposing the hologram photosensitive material 105a with a light beam shaped into a desired wavefront by the optical system 302 and recording the interference fringes of these two light beams as a refractive index distribution. At this time, the HOE 105 that diffracts the RGB image light can be produced by exposing the hologram photosensitive material 105a with the RGB light beams.
  • the axis that optically connects the center of the display surface of the display element 103 and the center of the optical pupil P is an optical axis, and the surface includes the optical axis of incident light and the optical axis of reflected light in the HOE 105.
  • a direction perpendicular to the optical axis and parallel to the optical axis incidence surface is defined as a Y direction, and a direction in which the diffraction angle of the HOE 105 decreases in the Y direction is defined as a positive direction.
  • FIG. 19 shows the diffraction characteristics of the HOE 105 for each pupil position in the Y direction for each of RGB.
  • the exposure wavelength of the hologram photosensitive material 105a is, for example, 476.5 nm, 532 nm, and 647 nm
  • the diffraction peak of the image light reaching the center (Y 0) of the optical pupil P
  • the wavelengths are 467 nm, 521.4 nm, and 634.1 nm for RGB on the entire screen (at any angle of view) when the shrinkage of the hologram photosensitive material 105a during exposure is 2%.
  • FIG. 20 shows the relationship between the pupil position in the Y direction and the ratio of the maximum diffraction efficiency of RGB. Also from FIG. 20, the ratio of the maximum diffraction efficiency of RGB is almost the same regardless of the pupil position. (It is almost 1). That is, the ratio of the maximum diffraction efficiency of image light reaching other pupil positions to the maximum diffraction efficiency of image light reaching the pupil center is approximately 1 for both RGB.
  • FIG. 23 shows the relationship between the pupil position in the Y direction and the relative visibility for each of RGB. That is, FIG. 23 shows a portion corresponding to the wavelength range of the image light reaching the negative side end from the positive side end in the Y direction of the optical pupil P for RGB in the relative visibility curve shown in FIG.
  • FIG. 25 shows the relationship between the pupil position in the Y direction and the ratio of RGB observation illuminance when white balance is achieved at the center of the pupil.
  • the ratio of RGB observation illuminance in FIG. This is shown in FIG.
  • the present invention has been made to solve the above-described problems, and its purpose is to minimize the change in the color of the image perceived by the observer depending on the pupil position in consideration of human specific visibility. It is an object to provide a video display device capable of performing the above and an HMD and HUD including the video display device.
  • the image display device of the present invention includes a light source, a display element that modulates light from the light source and displays an image, and a volume phase reflection type that diffracts and reflects the image light from the display element and guides it to an optical pupil.
  • an observation optical system having the hologram optical element, wherein the light source has an intensity peak of radiated light in each of the red, green, and blue wavelength ranges, and the red, green, blue ⁇ Rlong and ⁇ Glong of the diffraction peak wavelengths of image light incident on the center of the optical pupil from the respective positions on the display surface of the display element through the hologram optical element in the respective wavelength regions , ⁇ Blong, and ⁇ Rshort, ⁇ Gshort, and ⁇ Bshort on the shortest wavelength side, ⁇ Rlong / ⁇ Rshort ⁇ 1.05 ⁇ Glong / ⁇ Gshort ⁇ 1.05 ⁇ Blong / ⁇ Bshort ⁇ 1.05 Satisfied,
  • the radiated light intensity of the light source for the diffraction peak wavelength of the image light incident on the positive end of the direction is E RY and E BY , respectively, and the image light incident on the negative end of the optical pupil in the Y direction the emitted light intensity of the light source for the diffraction peak wavelengths E R-Y, when the E B-Y, E BY -E BY ⁇ 0 E RY -E RY> 0 It is characterized by satisfying.
  • the video display device of the present invention is E RY / E RY> E BY / E BY It is desirable to satisfy
  • the video display device of the present invention is (E RY / E RY) / (E BY / E BY) ⁇ 2 It is desirable to satisfy
  • the radiated light intensity of the light source for the diffraction peak wavelength of the image light incident on the positive end of the optical pupil in the Y direction is E GY
  • the emitted light intensity of the light source for the diffraction peak wavelength of the image light incident was E G-Y on the end of the negative side in the Y direction
  • the video display device of the present invention is E RY / E RY> E GY / E GY It is desirable to satisfy
  • the video display device of the present invention is (E RY / E RY) / (E GY / E GY) ⁇ 4 It is desirable to satisfy
  • the light source and the optical pupil are conjugate.
  • the head-mounted display of the present invention may be configured to include the above-described video display device of the present invention and support means for supporting the video display device in front of the observer's eyes.
  • the head-up display of the present invention includes the above-described video display device of the present invention, and the hologram optical element of the video display device may be held on a substrate arranged in the field of view of the observer. Good.
  • the observer's pupil is shifted in either the positive or negative direction in the Y direction from the center of the optical pupil.
  • the HOE diffraction efficiency also affects the observation illuminance, as described above, the maximum diffraction efficiency of the HOE for the light reaching each pupil position is substantially constant, so that the RGB observation is performed at any pupil position in the Y direction. There is no change in that the change in the illuminance ratio can be reduced, and the effect of the present invention that can reduce the change in the color of the observation image due to the pupil position is still obtained.
  • FIG. 2 is a perspective view showing a schematic configuration of the HMD.
  • the HMD includes a video display device 1 and support means 2.
  • the video display device 1 has a housing 3 that contains at least a light source 11 and a display element 13 (both see FIG. 3).
  • the housing 3 holds a part of the eyepiece optical system 14.
  • the eyepiece optical system 14 is configured by bonding an eyepiece prism 31 and a deflection prism 32, and has a shape like one lens of a pair of glasses (lens for right eye in FIG. 2) as a whole.
  • the video display device 1 has a circuit board (not shown) for supplying at least driving power and a video signal to the light source 11 and the display element 13 via a cable 4 provided through the housing 3. is doing.
  • the support means 2 is a support mechanism corresponding to a spectacle frame (including a bridge and a temple), and supports the video display device 1 in front of the observer's eyes (for example, in front of the right eye). Further, the support means 2 includes a nose pad 5 (right nose pad 5R / left nose pad 5L) that contacts the observer's nose, and a nose pad lock unit 6 that fixes the nose pad 5 at a predetermined position. Yes. The nose pad lock unit 6 holds the nose pad 5 with a spring shaft.
  • the HMD When the HMD is mounted on the observer's head and the nose pad 5 is fixed by the nose pad lock unit 6 and an image is displayed on the display element 13, the image light is guided to the optical pupil via the eyepiece optical system 14. . Therefore, by aligning the observer's pupil with the position of the optical pupil, the observer can observe an enlarged virtual image of the display image of the image display device 1. At the same time, the observer can observe the outside world through the eyepiece optical system 14 in a see-through manner.
  • the observer can observe the video provided from the video display device 1 in a hands-free and stable manner for a long time.
  • FIG. it is necessary to provide an adjustment mechanism (not shown) for adjusting the distance (eye width distance) between both eyepiece optical systems.
  • FIG. 3 is a cross-sectional view showing a schematic configuration of the video display device 1 of the present embodiment.
  • the video display device 1 includes a light source 11, an illumination optical system 12, a display element 13, and an eyepiece optical system 14.
  • the observation angle in the horizontal direction is, for example, ⁇ 13 °
  • the observation angle in the vertical direction is, for example, ⁇ 7.5 °, so that a so-called wide screen image can be observed. .
  • an axis that optically connects the center of the display surface of the display element 13 and the center of the optical pupil P formed by the eyepiece optical system 14 is an optical axis
  • the eyepiece optical system 14 A surface including an optical axis of incident light and an optical axis of reflected light in the HOE 33 described later is defined as an optical axis incident surface.
  • a direction perpendicular to the optical axis and parallel to the optical axis incidence surface is defined as a Y direction
  • a direction in which the diffraction angle of the HOE 33 decreases in the Y direction is defined as a positive direction.
  • the Y direction in the optical pupil P also corresponds to the vertical direction perpendicular to the eye width direction (left-right direction) of the observer.
  • the light source 11 illuminates the display element 13, and in this embodiment, light in each wavelength region of blue (B), green (G), and red (R) is the same region 11a (FIGS. 4 and 5). , See FIG. 6). The configuration of the light source 11 and details of the light emission characteristics will be described later.
  • the light source 11 (particularly the region 11a) is disposed at a position substantially conjugate with the optical pupil P.
  • the size of the region 11a of the light source 11 is, for example, 1 mm in the vertical direction ⁇ 2 mm in the horizontal direction, and the magnification of the optical pupil P with respect to the light source 11 is set to about 3 times.
  • the size of the optical pupil P is, for example, 3 mm vertically and 6 mm horizontally.
  • the illumination optical system 12 is an optical system that condenses the light from the light source 11 and guides it to the display element 13, and includes, for example, a mirror 21 having a concave reflecting surface.
  • the display element 13 displays an image by modulating light incident from the light source 11 via the illumination optical system 12 in accordance with image data, and is configured by, for example, a transmissive LCD.
  • the display element 13 is arranged such that the long side direction of the rectangular display screen is the horizontal direction (direction perpendicular to the paper surface of FIG. 3; the same as the left-right direction), and the short side direction is the direction perpendicular thereto.
  • the eyepiece optical system 14 is an observation optical system that guides the image light from the display element 13 to the optical pupil P (or the observer's pupil at the position of the optical pupil P), and includes an eyepiece prism 31, a deflection prism 32, and a HOE 33. And is configured.
  • the eyepiece prism 31 totally reflects the image light from the display element 13 and guides it to the optical pupil P through the HOE 33, while transmitting the external light to the optical pupil P.
  • the deflection prism 32 For example, it is made of an acrylic resin.
  • the eyepiece prism 31 is formed in a shape in which a lower end portion of a parallel plate is wedge-shaped.
  • An upper end surface of the eyepiece prism 31 is a surface 31a as an incident surface for image light, and two surfaces positioned in the front-rear direction are surfaces 31b and 31c parallel to each other.
  • the deflection prism 32 is configured by a substantially U-shaped parallel plate in plan view (see FIG. 2), and when attached to the lower end portion and both side surface portions (left and right end surfaces) of the eyepiece prism 31, the eyepiece prism. 31 and a substantially parallel flat plate.
  • the deflection prism 32 is provided adjacent to or adhering to the eyepiece prism 31 so as to sandwich the HOE 33 therebetween. Thereby, the refraction when the external light passes through the wedge-shaped lower end of the eyepiece prism 31 can be canceled by the deflecting prism 32, and distortion of the external image observed through the see-through can be prevented. .
  • the HOE 33 diffracts and reflects the image light (BGR light) from the display element 13 in the direction of the optical pupil P, while transmitting the external light and guiding it to the optical pupil P, and a volume phase type reflection hologram. It is an optical element, and is formed on a surface 31 d that is a joint surface with the deflection prism 32 in the eyepiece prism 31.
  • the HOE 33 has an axially asymmetric positive optical power and has the same function as an aspherical concave mirror having a positive optical power. Thereby, the degree of freedom of arrangement of each optical member constituting the apparatus can be increased, and the apparatus can be easily reduced in size, and an image with good aberration correction can be provided to the observer.
  • the diffraction peak wavelength of the HOE 33 for light incident on the center of the optical pupil P is, for example, 467 nm, 521.4 nm, and 634.1 nm, as will be described later.
  • the light emitted from the light source 11 is reflected and collected by the mirror 21 of the illumination optical system 12 and is substantially collimated and incident on the display element 13 where it is modulated and imaged. It is emitted as light.
  • the image light from the display element 13 enters the inside of the eyepiece prism 31 of the eyepiece optical system 14 from the surface 31a, and then is totally reflected at least once by the surfaces 31b and 31c and enters the HOE 33.
  • the HOE 33 has wavelength selectivity that functions as a diffraction element that independently diffracts light in each wavelength region of BGR emitted from the light source 11 for each wavelength region. It is designed to function as a concave reflecting surface for light. Therefore, the light incident on the HOE 33 is diffracted and reflected there and reaches the optical pupil P. At the same time, external light passes through the HOE 33 and travels toward the optical pupil P. Therefore, by locating the observer's pupil at the position of the optical pupil P, the observer can observe the image displayed on the display element 13 as an enlarged virtual image, and at the same time, can observe the outside world in a see-through manner. it can. Note that various aberrations (coma aberration, curvature of field, astigmatism, distortion) are corrected in the eyepiece optical system 14 so that the viewer can observe the image displayed on the display element 13 satisfactorily.
  • FIG. 4 is a cross-sectional view illustrating a configuration example of the light source 11.
  • the light source 11 includes an LED 42 that is a semiconductor light emitting element that emits B light, a green phosphor 43G that is excited by B light and emits G light, and an R light that is excited by B light.
  • a red phosphor 43R that emits light.
  • the LED 42 is mounted on a substrate 44 and is connected to an electrode on the substrate 44 by a wire 45.
  • the LED 42, the green phosphor 43G, and the red phosphor 43R are sealed with a first sealing material 46 that is a molding material such as an epoxy resin, and further, with respect to the first sealing material 46
  • the side opposite to the substrate 44 is sealed with a second sealing material 47.
  • the surface of the second sealing material 47 (the surface opposite to the substrate 44) is the same region 11a that emits light in each of the RGB wavelength regions.
  • the light source 11 may be configured as shown in FIG. FIG. 5 is a cross-sectional view showing another configuration example of the light source 11.
  • the light source 11 of FIG. 5 replaces the LED 42 of the light source 11 of FIG. 4 with an LED 42 ′, newly provides a blue phosphor 43B, and replaces the green phosphor 43G and the red phosphor 43R with the green phosphor 43G ′ and the red phosphor, respectively. It is replaced with 43R ′.
  • the LED 42 ′ is a semiconductor light emitting element that emits near-ultraviolet light, and the blue phosphor 43B, the green phosphor 43G ′, and the red phosphor 43R ′ are respectively excited by near-ultraviolet light to emit B light, G light, R It is a phosphor that emits light.
  • the light source 11 may be configured by stacking BGR semiconductor light emitting elements (LEDs), and may be configured by a stacked type that emits white (three colors of BGR) light from the same region 11a.
  • LEDs BGR semiconductor light emitting elements
  • the laminated type light source 11 since the half-value wavelength width of the radiation intensity peak is narrower than that of the fluorescent type shown in FIGS. 4 and 5, there is an effect that unnecessary flare light can be further reduced.
  • the laminated light source 11 will be briefly described as follows.
  • FIG. 6 is a cross-sectional view showing a schematic configuration of a stacked type light source 11.
  • the light source 11 includes a GaN buffer layer 52, an undoped GaN layer 53, an n-type contact / cladding layer 54 made of Si-doped GaN, a superlattice layer 55, an active layer 56 made of a multiple quantum well structure, A p-type cladding layer 57 made of Mg-doped AlGaN and a p-type contact layer 58 made of Mg-doped GaN are sequentially stacked.
  • the active layer 56 includes a plurality of barrier layers 56a and well layers 56B, 56G, and 56R made of InGaN.
  • the well layer 56B has the smallest In content and the well layer 56R has the largest In content.
  • the well layers 56G, 56R, and 56B are stacked in this order from the n-type contact / cladding layer 54 side, and are sandwiched between the barrier layers 56a (each stacked via the barrier layer 56a). Have been).
  • a p-side transparent electrode 59 and a p-side pad electrode 60 are sequentially formed on the p-type contact layer 58, and an n-electrode 61 is formed on the n-type contact layer / cladding layer 54.
  • light having a wavelength of, for example, 448 nm, 500 nm, and 570 nm is emitted from the well layers 56B, 56G, and 56R, and the surface of the p-side transparent electrode 59 (the surface opposite to the p-type contact layer 58) is BGR. It becomes the same area
  • RGB light is uniformly emitted from the same region 11a on the surface (upper side) of the element.
  • each light of BGR emitted from the same region 11a can be efficiently guided to the optical pupil P. it can. Therefore, no matter where the optical pupil P is located, the observer can observe a bright and high-quality image.
  • the same distribution as in FIGS. 21 and 22 can be easily realized. That is, the distribution of the radiated light intensity of the light source 11 (the relationship between the pupil position and the radiated light intensity) is aligned in RGB, and the intensity distribution of the image light reaching the optical pupil P (the relationship between the pupil position and the image light intensity) is RGB. Can be almost aligned. As a result, the setting of the radiated light intensity of the present invention, which will be described later, in consideration of the relative visibility is more effective.
  • FIG. 7 is an explanatory view showing, in an enlarged manner, main parts of the manufacturing optical system of the HOE 33.
  • the HOE 33 which is a reflection type color hologram is produced by exposing the hologram photosensitive material 33a on the substrate (eyepiece prism 31) using two light beams for each BGR.
  • the hologram photosensitive material include a photopolymer, a silver salt material, and dichromated gelatin. Among them, a photopolymer that can be manufactured by a dry process is preferable.
  • One of the two light beams is irradiated from the opposite side of the substrate to the hologram photosensitive material 33a. This light beam will be referred to as object light.
  • the other light beam is irradiated from the substrate side to the hologram photosensitive material 33a, and this light beam is referred to as reference light.
  • RGB divergent light from the point light source 71 (object light side light source) is shaped into a predetermined wavefront by a free-form surface mirror 72, which is a reflection surface having optical power, and is planarly reflected.
  • the hologram photosensitive material 33 a is irradiated through the color correction prism 74.
  • the surface 74a that is the incident surface of the object light in the color correction prism 74 is generated due to refraction of the image light on the surface 31a of the eyepiece prism 31 of the eyepiece optical system 14 used during reproduction (image observation). The angle is determined so as to cancel the chromatic aberration.
  • the color correction prism 74 is desirably disposed in close contact with the hologram photosensitive material 33a or is disposed via emulsion oil or the like in order to prevent ghosts due to surface reflection.
  • RGB divergent light for example, spherical wave
  • the point light source 81 reference light side light source
  • the point light source 81 is arranged at the center of the optical pupil P for all of RGB.
  • the hologram photosensitive material 33a by exposing the hologram photosensitive material 33a with two light beams of object light and reference light for each of RGB, interference fringes are formed in the hologram photosensitive material 33a by interference of the two light beams, and the HOE 33 is manufactured. .
  • the exposure with two light beams may be performed simultaneously for RGB or sequentially.
  • the point light source 81 at the time of exposure is arranged at the center of the optical pupil P, and the HOE 33 is manufactured.
  • aberration is caused between the light source 11 and the optical pupil P. If corrected properly, when the observer's pupil is positioned at the center of the optical pupil P, the illumination light (image light) is reliably diffracted and reflected by the HOE 33 and reaches the observer's pupil at all angles of view. To do. Therefore, the observer can observe a bright and high-quality image over the entire screen.
  • the exposure wavelengths of RGB are, for example, 647 nm, 532 nm, 476.5 nm, and the shrinkage rate in the thickness direction of the hologram photosensitive material 33a is, for example, 2%.
  • the diffraction peak wavelength of the HOE 33 for light passing through the center of the optical pupil P during reproduction is as shown in Table 1.
  • the longest wavelength side of the diffraction peak wavelengths of the image light incident on the center of the optical pupil P via the HOE 33 from each position on the display surface of the display element 13 is ⁇ Rlong ( nm), ⁇ Glong (nm), and ⁇ Blong (nm), and those on the shortest wavelength side are ⁇ Rshort (nm), ⁇ Gshort (nm), and ⁇ Bshort (nm), respectively.
  • the diffraction of the image light reaching the position (Y 1.5) shifted from the center of the optical pupil P to the Y-direction positive side with respect to the diffraction peak wavelength of the image light reaching the center of the optical pupil P.
  • the peak wavelength shifts to the long wavelength side
  • the Y direction can be paraphrased as a direction in which the diffraction peak wavelength shifts in the plane of the optical pupil P, and the positive direction in the Y direction is a long diffraction peak wavelength in the Y direction. In other words, the direction is shifted to the wavelength side.
  • FIG. 1 shows spectral characteristics (radiated light intensity characteristics) of the light source 11 (for example, the configuration of FIG. 4). As shown in the figure, the light source 11 has an intensity peak of radiated light in each of the RGB wavelength ranges. In the figure, relative intensity characteristics when the maximum radiated light intensity of B is set to 1 are shown.
  • the radiated light intensity of the light source 11 with respect to the diffraction peak wavelength of the image light incident on the Y-direction positive end of the optical pupil P is respectively expressed as E RY , E GY , E BY. and then, the emitted light intensity of the light source 11 for the diffraction peak wavelength of the image light to be incident on the end portion of the negative side in the Y direction of the optical pupil, respectively E R-Y, E G- Y, and E B-Y, optical Assume that the radiated light intensities of the light source 11 with respect to the diffraction peak wavelength of the image light incident on the center of the pupil P are E R0 , E G0 and E B0 , respectively.
  • Table 3 shows the values of the parameters related to the light source 11 of the present embodiment.
  • the point light source 81 arranged on the optical pupil P side at the time of manufacturing the HOE 33 is arranged on the surface of the substantially optical pupil P.
  • the HOE 33 when the HOE 33 is manufactured, when the observer's pupil is shifted from the center of the optical pupil P, the diffraction peak wavelength of the image light incident on the observer's pupil is shifted.
  • the light intensity (observation illuminance) that the observer feels when observing an image is determined by the image light intensity and the relative visibility.
  • the former image light intensity is substantially determined by the product of the radiated light intensity of the light source 11 and the diffraction efficiency of the HOE 33.
  • the specific luminous sensitivity of the latter is the highest in the vicinity of the wavelength 555 nm, and decreases from the wavelength toward the long wavelength side and the short wavelength side. That is, the relative visibility is higher in the B wavelength region as it is longer, and is lower in the R wavelength region as it is longer.
  • the change in the emitted light intensity of the light source 11 in the B and R wavelength ranges is opposite to the change in the relative luminous sensitivity. That is, the emitted light intensity of the light source 11 is low on the long wavelength side in the B wavelength range and high on the long wavelength side in the R wavelength range.
  • the change in the RGB observation illuminance ratio due to the difference in the pupil position in the Y direction is reduced in consideration of the relative visibility. Can be suppressed. As a result, it is possible to suppress a change in the color of the video perceived by the observer depending on the pupil position in the Y direction.
  • FIG. 8 shows the change in the RGB observation illuminance ratio due to the difference in the pupil position in the Y direction in the present embodiment, with the G observation illuminance as a reference. From the figure, it can be seen that, compared to the conventional example shown in FIG. 26, the change in the RGB observation illuminance ratio is suppressed to be small, particularly at the pupil end portion (upper pupil end, lower pupil end) in the Y direction.
  • the positive and negative slopes of the straight line connecting the two points on the radiated light intensity curve and the two points on the relative luminous efficiency curve are obtained in the B and R wavelength regions.
  • the polarity of the connecting straight line is reversed, and this relationship works in a direction to suppress the change in the RGB observation illumination ratio due to the difference in the pupil position in the Y direction, so that the color of the image perceived by the observer is in the Y direction. It is possible to suppress the change depending on the pupil position.
  • the diffraction efficiency of the HOE also affects the observation illuminance
  • the maximum diffraction efficiency of the HOE for the light reaching each pupil position is substantially constant as described above, so that the conditional expressions (4) and (5) are satisfied.
  • the change in RGB observation illuminance ratio can be reduced at any pupil position in the Y direction, and the change in the color of the observation image due to the pupil position can be reduced.
  • Condition mentioned above (4) i.e., is satisfied under the conditions that satisfy the E BY -E BY ⁇ 0
  • the conditional expression (6) between E BY, E B0, E BY the, it holds the relationship of E BY ⁇ E B0 ⁇ E BY .
  • the above-mentioned conditional expression (5) i.e., it is satisfied under the conditions that satisfy the E RY -E RY> 0, the conditional expression (7), E RY, E R0, E RY between, holds the relationship of E RY> E R0> E RY .
  • the specific visibility becomes higher in the B wavelength region on the shorter wavelength side than the wavelength 555 nm (monotonically increases), and on the longer wavelength side than the wavelength 555 nm.
  • the longer the wavelength the lower (monotonically decreasing).
  • the change in the radiated light intensity of the light source 11 is a monotonous change in accordance with the monotonous change in the relative luminous efficiency, and is opposite to the change in the monochromatic sensitivity (monotonic increase).
  • the change in the intensity of the radiated light of the light source 11 is changed to a monotonous change in accordance with the monotonous change in the relative luminous efficiency, and is opposite to the change in the luminous efficiency (monotonic decrease).
  • the radiated light intensity characteristics are adapted to the monotonous change in specific visibility.
  • the video display device 1 of the present embodiment has the same configuration as that of the first embodiment except that the diffraction characteristics of the HOE 33 and the emitted light intensity characteristics of the light source 11 are different.
  • FIG. 9 is an explanatory view showing, in an enlarged manner, main parts of the manufacturing optical system of the HOE 33 applied to the video display device 1 of the present embodiment.
  • the HOE 33 of this embodiment is manufactured as follows. That is, among the point light sources 81R, 81G, and 81B arranged on the optical pupil P side at the time of exposure, the point light sources 81G and 81B are arranged at the center of the optical pupil P, while the point light source 81R is arranged with respect to the point light sources 81G and 81B.
  • the HOE 33 is manufactured by shifting the optical pupil P on the surface and exposing the hologram photosensitive material 33a in this state.
  • the incident angle of the R exposure light beam from the point light source 81R to the hologram photosensitive material 33a is 30 degrees
  • the incident angle of the B and G exposure light beams from the point light sources 81B and 81G to the hologram photosensitive material 33a is It is 32 degrees.
  • the diffraction peak wavelength of the HOE 33 for light passing through the center of the optical pupil P during reproduction is as shown in Table 4.
  • the RGB exposure wavelengths are, for example, 647 nm, 532 nm, and 476.5 nm, and the shrinkage rate in the thickness direction of the hologram photosensitive material 33a is, for example, 2%.
  • the used wavelengths of RGB are, for example, 627.4 nm, 526.9 nm, and 471.9 nm. In other words, the difference between the exposure wavelength and the use wavelength is larger in R than in G or B.
  • the point light source 81R is arranged away from the point light sources 81G and 81B, and the HOE 33 is manufactured, so that the optical signal can be obtained during image observation.
  • the observer's pupil center is made to coincide with the center of the pupil P, the illumination light is reliably diffracted and reflected by the HOE 33 at all angles of view and reaches the observer's pupil. Therefore, the observer can observe a bright and high-definition image over the entire screen at the center position of the optical pupil P.
  • Table 5 shows diffraction peak wavelengths of image light that is diffracted and reflected by the HOE 33 at the time of reproduction and reaches each position in the Y direction of the optical pupil P using the HOE 33 produced by the above-described manufacturing optical system.
  • FIG. 10 shows the radiated light intensity characteristics of the light source 11 of the present embodiment.
  • the light source 11 is composed of an RGB-integrated white LED (3-chip in 1 package) in which chips emitting RGB individual light are packaged, and the RGB emitted light intensity is independent.
  • RGB-integrated white LED 3-chip in 1 package
  • Table 6 shows the value of each parameter related to the light source 11 of the present embodiment.
  • the ratio of E RY for E RY is greater than the ratio of E BY for E BY, towards the wavelength range of R than the wavelength region of B is, the light source 11
  • the change in the intensity of the emitted light increases.
  • the change in the relative visibility is larger in the R wavelength region than in the B wavelength region. Therefore, by setting the radiated light intensity of the light source 11 as described above, the change in R due to the difference in the pupil position in the Y direction is set. The change in observation illuminance can be effectively reduced.
  • the balance of the observation illuminance between B and R due to the difference in the pupil position in the Y direction (change in the observation illuminance ratio between B and R) can be reduced, and the color of the image felt by the observer is the pupil in the Y direction.
  • the change depending on the position can be further reduced.
  • FIG. 11 shows the change in the RGB observation illuminance ratio due to the difference in the pupil position in the Y direction in the present embodiment, with the G observation illuminance as a reference. From the figure, it can be seen that the change in the observation illuminance ratio of R and B due to the difference in the pupil position in the Y direction is suppressed to be smaller than that in the first embodiment.
  • conditional expression (9) the change in the radiated light intensity of the light source 11 in the R wavelength range is set to an appropriate range with respect to the change in the radiated light intensity of the light source 11 in the B wavelength range. Therefore, since the change in the intensity of the emitted light does not become too large, it is possible to reliably suppress the change in the color of the image perceived by the observer depending on the pupil position in the Y direction.
  • the peak wavelength of the G image light is between 500 nm and 540 nm.
  • the relative visibility in the above wavelength range becomes higher on the longer wavelength side (monotonically increasing) as in the B wavelength range.
  • the radiated light intensity of the light source 11 is low on the long wavelength side in the G wavelength range, similarly to the B wavelength range, so that G due to the difference in the pupil position in the Y direction.
  • the change in observation illuminance can be kept small. As a result, it is possible to suppress a change in the color of the image perceived by the observer depending on the pupil position in the Y direction while widening the color reproduction region of the observation image.
  • the ratio of E RY for E RY is greater than the ratio of E GY for E GY, towards the wavelength range of R than the wavelength band of G is, the light source 11
  • the change in the intensity of the emitted light increases. Since the change in the relative visibility is generally larger in the R wavelength range than in the G wavelength range, setting the radiated light intensity of the light source 11 as described above makes it possible to change the R value due to the difference in the pupil position in the Y direction. While effectively suppressing the change in the observation illuminance, it is possible to reduce the balance of the observation illuminance between G and R (change in the illuminance ratio between G and R) due to the difference in the pupil position in the Y direction.
  • conditional expression (12) the change in the radiated light intensity of the light source 11 in the R wavelength range is set to an appropriate range with respect to the change in the radiated light intensity of the light source 11 in the G wavelength range. Therefore, the change in the color of the observation image due to the difference in the pupil position in the Y direction can be reliably suppressed.
  • conditional expression (10) i.e., is satisfied under the conditions that satisfy the E GY -E GY ⁇ 0
  • conditional expression (13) between E GY, E G0, E GY the, it holds the relationship of E GY ⁇ E G0 ⁇ E GY .
  • the relative visibility is generally higher in the G wavelength region shorter than the wavelength 555 nm as the longer wavelength side (monotonically increases).
  • conditional expression (13) As in the B wavelength range, the change in the emitted light intensity of the light source 11 in the G wavelength range is changed to a monotonous change in accordance with the monotonous change in the relative luminous efficiency. It is a monotonic decrease opposite to the change in monoscopic sensitivity (monotonic increase), and the radiated light intensity characteristic is adapted to the monotonous change in specific visibility in the G wavelength range.
  • Table 6 shows that in this embodiment, all conditional expressions (9) to (13) are satisfied.
  • Embodiment 3 The following will describe still another embodiment of the present invention with reference to the drawings.
  • the same components as those in Embodiments 1 and 2 are denoted by the same member numbers, and the description thereof is omitted.
  • FIG. 12 is a cross-sectional view showing a schematic configuration of the video display device 1 of the present embodiment and the HUD including the same.
  • the video display device 1 according to the present embodiment includes a light source 11, an illumination lens 22 as the illumination optical system 12, a display element 13, and an observation optical system 15.
  • the observation optical system 15 includes a volume phase type reflection type HOE 34 and a substrate 35 that holds the HOE 34.
  • the substrate 35 can be composed of a transparent windshield corresponding to the windshield in front of the driver's seat in a vehicle, ship, railroad, aircraft, etc., for example, at least a part of which is within the observer's field of view. Placed in.
  • the light emitted from the light source 11 is collected by the illumination lens 22 and enters the display element 13.
  • Light (video light) modulated in accordance with image data by the display element 13 enters the HOE 34, where it is diffracted and reflected and guided to the optical pupil P.
  • the observer can observe the magnified virtual image of the image displayed on the display element 13 and can observe the outside world through the HOE 34 and the windshield 35.
  • the HUD may be configured by holding the HOE 34 on a substrate separate from the windshield and placing the substrate in the field of view of the observer.
  • the HUD can function as a document display device such as a prompter. Therefore, it can be said that the HUD of the present embodiment only needs to be configured by holding the HOE 34 of the video display device 1 on the substrate disposed in the field of view of the observer.
  • HUD like HMD, is a see-through display that can be observed with images superimposed on the background (outside).
  • the above-described HOE 34 is used as a combiner that superimposes image light and external light.
  • the HOE 34 is often arranged substantially parallel to the substrate 35, it is necessary to consider the surface reflection of the substrate 35. is there. That is, when the optical system is set so that the light beam at the center of the screen is substantially regularly reflected by the HOE 34, the angle deviation between the light diffracted by the HOE 34 and the light reflected by the surface of the substrate 35 is small. The image due to the surface reflection is observed as a ghost.
  • the angle at which the screen center chief ray (ray on the optical axis) from the display element 13 enters the HOE 34 is 45.5 °, and the exit angle after the screen center chief ray is diffracted by the HOE 34 is 35.
  • the viewing angle in the vertical direction is 5.4 ° and the viewing angle in the horizontal direction to 7.2 °, the light reflected by the surface of the substrate 35 is reflected outside the observation region.
  • the size of the optical pupil P is about 50 mm in diameter.
  • FIG. 13 is an explanatory view showing, in an enlarged manner, main parts of the manufacturing optical system of the HOE 34.
  • the light source 91 is disposed on the surface of the optical pupil P (for example, the center of the pupil).
  • the light beam emitted from the light source 91 is irradiated to the hologram photosensitive material 34a as it is (from the side opposite to the substrate 35).
  • a light source 92 and a wavefront generating optical system 93 are disposed on the opposite side (substrate 35 side) of the hologram photosensitive material 34a from the optical pupil P, and the light beam emitted from the light source 92 is wavefront generating optical.
  • the hologram photosensitive material 34a After being converted into a light beam having a desired wavefront by the system 93, the hologram photosensitive material 34a is irradiated. By recording these two light flux interference fringes on the hologram photosensitive material 34a as a refractive index distribution, the HOE 34 is manufactured. Note that light emitted from an RGB laser light source (not shown) is focused on one point at the positions of the light sources 91 and 92.
  • the diffraction peak wavelength of the HOE 34 for the light passing through the center of the optical pupil P during reproduction is as shown in Table 7.
  • Table 8 shows diffraction peak wavelengths of image light that is diffracted and reflected by the HOE 34 at the time of reproduction and reaches each position in the Y direction of the optical pupil P at the time of reproduction using the HOE 34 manufactured by the above-described manufacturing optical system.
  • the direction in which the diffraction angle of the HOE 33 decreases in the plane of the optical pupil P in FIG. 12 is the direction from the upper end of the pupil to the lower end of the pupil, and therefore, this direction is defined as the positive direction of the Y direction. Yes.
  • FIG. 14 shows the radiated light intensity characteristics of the light source 11 of the present embodiment.
  • the light source 11 is configured by an RGB-integrated white LED (3-chip in one package) in which chips emitting RGB individual light are packaged in one package.
  • the RGB radiation light intensity can be controlled independently.
  • Table 9 shows the value of each parameter related to the light source 11 of the present embodiment.
  • FIG. 15 shows the change in the RGB observation illuminance ratio due to the difference in the pupil position in the Y direction in this embodiment with reference to the G observation illuminance. From the figure, it can be seen that the change in the RGB observation illuminance ratio due to the difference in the pupil position in the Y direction is significantly improved as compared with the conventional case shown in FIG.
  • the wavelength region of RGB image light incident on the optical pupil includes color reproduction out of the wavelength region determined by the combination of the wavelength of the laser light source available for exposure and the light source satisfying the above-described conditional expression of the present invention. It is desirable to select a wide wavelength region. For example, if the intensity peak wavelength of RGB image light incident on the optical pupil is in the range of B: 450 nm to 480 nm, G: 510 nm to 540 nm, and R: 610 nm to 650 nm, the RGB color purity in the observed image is increased. Thus, the color reproduction area can be expanded.
  • the video display device, the HMD, and the HUD can be configured by appropriately combining the configurations described in the embodiments.
  • the image display satisfying the above-described conditional expressions (1) to (5) and satisfying at least one of the conditional expressions (6) to (13).
  • the video display device of the present invention can be used for HMD and HUD, for example.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

Provided is an image display apparatus in which a change in a color tone of an image which is sensed by a viewer, depending on the position of a pupil is suppressed in consideration of a human's relative luminous efficiency. To this end, the image display apparatus is configured to shift the diffraction peak wavelength of image light incident upon a pupil of a viewer when the pupil of the viewer is deviated from the center of an optical pupil, wherein a change in the intensity of light emitted from a light source in B and R wavelength ranges is opposite a change in a human's relative luminous efficiency. Namely, the intensity of light emitted from the light source is set to be low on the long wavelength side in the B wavelength range, and is set to be high on the long wavelength side in the R wavelength range.

Description

映像表示装置、ヘッドマウントディスプレイおよびヘッドアップディスプレイVideo display device, head-mounted display, and head-up display
 本発明は、映像表示装置と、その映像表示装置を備えたヘッドマウントディスプレイ(以下、HMDとも称する)およびヘッドアップディスプレイ(以下、HUDとも称する)とに関するものである。 The present invention relates to a video display device, and a head mounted display (hereinafter also referred to as HMD) and a head-up display (hereinafter also referred to as HUD) provided with the video display device.
 従来から、非球面凹面鏡と等価な光学パワーを有する体積位相型で反射型のホログラム光学素子(以下、HOEとも称する)をコンバイナとして用い、映像と外界とを重畳して観察可能な映像表示装置が、例えば特許文献1をはじめとして種々提案されている。 2. Description of the Related Art Conventionally, an image display apparatus that uses a volume phase type reflection hologram optical element (hereinafter also referred to as HOE) having an optical power equivalent to that of an aspherical concave mirror as a combiner and can superimpose an image and the outside world for observation. Various proposals have been made including, for example, Patent Document 1.
 図16は、HOEを用いた従来の一般的な映像表示装置の概略の構成を示している。この映像表示装置では、光源101から出射される赤(R)、緑(G)、青(B)の光は、集光レンズ102にて集光されて表示素子103に入射し、そこで画像データに応じて変調される。表示素子103からのRGBの映像光は、接眼光学系104のHOE105にて回折反射されて光学瞳Pに導かれる。したがって、光学瞳Pの位置に観察者の瞳を位置させることにより、観察者は映像を観察することができる。また、体積位相型で反射型のHOE105は波長選択性が高く、外界光をほとんど透過させるので、観察者は上記の映像と同時に外界をシースルーで観察することができる。 FIG. 16 shows a schematic configuration of a conventional general video display device using HOE. In this video display device, red (R), green (G), and blue (B) light emitted from the light source 101 is collected by the condenser lens 102 and incident on the display element 103, where image data is obtained. Is modulated according to. RGB image light from the display element 103 is diffracted and reflected by the HOE 105 of the eyepiece optical system 104 and guided to the optical pupil P. Therefore, by locating the observer's pupil at the position of the optical pupil P, the observer can observe the image. Further, the volume phase type reflection type HOE 105 has high wavelength selectivity and transmits almost all the external light, so that the observer can observe the external world see-through simultaneously with the above-mentioned image.
特開2008-191527号公報JP 2008-191527 A
 ところで、観察者が映像を観察するときに感じる光の強度のことを、観察照度と称することとする。この観察照度は、映像光強度と、人間の比視感度とで決まる。前者の映像光強度は、光源101の放射光強度とHOE105の回折効率との積でほぼ決まる。一方、後者の比視感度は、図17に示すように、波長555nm付近で最も高く、その波長から長波長側および短波長側に向かうにつれて減少する。 By the way, the intensity of light felt when an observer observes an image is referred to as observation illuminance. This observation illuminance is determined by the image light intensity and the human specific visual sensitivity. The former image light intensity is substantially determined by the product of the radiated light intensity of the light source 101 and the diffraction efficiency of the HOE 105. On the other hand, as shown in FIG. 17, the latter specific luminous efficiency is the highest near the wavelength of 555 nm, and decreases from the wavelength toward the long wavelength side and the short wavelength side.
 観察照度は、映像光強度のみならず比視感度にも影響されるので、比視感度を考慮せずに設計された映像表示装置では、観察者の瞳位置によって、観察者が感じ取る映像の色目(色合い、色調、色バランス)が変化するという問題が生ずる。以下、この点について、より詳細に説明する。 Since the observation illuminance is affected not only by the image light intensity but also by the relative visibility, in the video display device designed without considering the relative visibility, the color of the image that the viewer perceives depending on the pupil position of the viewer. There arises a problem that (tone, color tone, color balance) changes. Hereinafter, this point will be described in more detail.
 図18は、図16の映像表示装置に用いられるHOE105の製造光学系の一例を示している。体積位相型で反射型のHOE105は、使用時の接眼光学系104の光学瞳Pの中心に配置される一方の点光源201からの光束(球面波)と、他方の点光源301から出射されて光学系302にて所望の波面に整形された光束とで、ホログラム感光材料105aを露光し、これら2光束の干渉縞を屈折率分布として記録することにより作製される。このとき、ホログラム感光材料105aをRGBの各光束で露光することにより、RGBの映像光を回折させるHOE105を作製することができる。 FIG. 18 shows an example of a manufacturing optical system of the HOE 105 used in the video display device of FIG. The volume phase type reflective HOE 105 is emitted from one point light source 201 (spherical wave) disposed at the center of the optical pupil P of the eyepiece optical system 104 in use and emitted from the other point light source 301. It is manufactured by exposing the hologram photosensitive material 105a with a light beam shaped into a desired wavefront by the optical system 302 and recording the interference fringes of these two light beams as a refractive index distribution. At this time, the HOE 105 that diffracts the RGB image light can be produced by exposing the hologram photosensitive material 105a with the RGB light beams.
 ここで、図16において、表示素子103の表示面の中心と光学瞳Pの中心とを光学的に結ぶ軸を光軸とし、HOE105における入射光の光軸と反射光の光軸とを含む面を光軸入射面とする。そして、光学瞳Pの面内で、光軸に垂直で、かつ、光軸入射面に平行な方向をY方向とし、Y方向においてHOE105の回折角度が小さくなる方向を正の方向とする。 Here, in FIG. 16, the axis that optically connects the center of the display surface of the display element 103 and the center of the optical pupil P is an optical axis, and the surface includes the optical axis of incident light and the optical axis of reflected light in the HOE 105. Is the optical axis incident surface. In the plane of the optical pupil P, a direction perpendicular to the optical axis and parallel to the optical axis incidence surface is defined as a Y direction, and a direction in which the diffraction angle of the HOE 105 decreases in the Y direction is defined as a positive direction.
 図19は、Y方向の瞳位置ごとのHOE105の回折特性を、RGBのそれぞれに示している。ホログラム感光材料105aの露光波長を、例えば476.5nm、532nm、647nmとしたとき、上記のHOE105を用いた映像表示装置では、光学瞳Pの中心(Y=0)に到達する映像光の回折ピーク波長は、露光時のホログラム感光材料105aの収縮を2%としたとき、画面全体で(どの画角においても)、RGBそれぞれ467nm、521.4nm、634.1nmとなる。 FIG. 19 shows the diffraction characteristics of the HOE 105 for each pupil position in the Y direction for each of RGB. When the exposure wavelength of the hologram photosensitive material 105a is, for example, 476.5 nm, 532 nm, and 647 nm, in the image display device using the HOE 105 described above, the diffraction peak of the image light reaching the center (Y = 0) of the optical pupil P The wavelengths are 467 nm, 521.4 nm, and 634.1 nm for RGB on the entire screen (at any angle of view) when the shrinkage of the hologram photosensitive material 105a during exposure is 2%.
 これに対して、光学瞳Pの面内で中心からY方向にずれた位置に到達する映像光の回折ピーク波長は、ブラッグの条件式に従って変化する。つまり、光学瞳Pの中心からY方向正側にずれた位置(例えばY=1、2)に到達する映像光の回折ピーク波長は、長波長側にシフトし、光学瞳Pの中心からY方向負側にずれた位置(例えばY=-1、-2)に到達する映像光の回折ピーク波長は、短波長側にシフトする。 On the other hand, the diffraction peak wavelength of the image light reaching the position shifted in the Y direction from the center in the plane of the optical pupil P changes according to the Bragg conditional expression. That is, the diffraction peak wavelength of the image light reaching the position shifted from the center of the optical pupil P to the Y direction positive side (for example, Y = 1, 2) is shifted to the long wavelength side, and from the center of the optical pupil P to the Y direction. The diffraction peak wavelength of the image light reaching the position shifted to the negative side (for example, Y = −1, −2) is shifted to the short wavelength side.
 しかし、図19より、各瞳位置に到達する映像光のHOE105における最大回折効率は、どの瞳位置についてもほぼ同じであると言える。図20は、Y方向の瞳位置とRGBの最大回折効率の比との関係を示しているが、同図からも、RGBの最大回折効率の比は、瞳位置によらずにほぼ同じである(ほぼ1である)ことがわかる。つまり、瞳中心に到達する映像光の最大回折効率に対する、他の瞳位置に到達する映像光の最大回折効率の比が、RGBともほぼ1である。 However, from FIG. 19, it can be said that the maximum diffraction efficiency in the HOE 105 of the image light reaching each pupil position is almost the same for any pupil position. FIG. 20 shows the relationship between the pupil position in the Y direction and the ratio of the maximum diffraction efficiency of RGB. Also from FIG. 20, the ratio of the maximum diffraction efficiency of RGB is almost the same regardless of the pupil position. (It is almost 1). That is, the ratio of the maximum diffraction efficiency of image light reaching other pupil positions to the maximum diffraction efficiency of image light reaching the pupil center is approximately 1 for both RGB.
 したがって、図21に示すように、Y方向のどの瞳位置についても光源101のRGBの放射光強度の比(発光強度比)がほぼ同じであるとした場合、図20のように、Y方向の瞳位置とRGBの最大回折効率の比との関係はほぼ一定であるので、図22に示すように、観察者の瞳に到達するRGBの映像光の強度比は、Y方向の瞳位置によらずにほぼ同じになる。つまり、各瞳位置に到達する映像光の瞳中心に到達する光に対する強度比は、RGB間でほぼ同じとなる。 Therefore, as shown in FIG. 21, when the ratio of the radiated light intensity of RGB of the light source 101 (light emission intensity ratio) is almost the same for any pupil position in the Y direction, as shown in FIG. Since the relationship between the pupil position and the ratio of the maximum diffraction efficiency of RGB is substantially constant, as shown in FIG. 22, the intensity ratio of RGB image light reaching the observer's pupil depends on the pupil position in the Y direction. Almost the same. That is, the intensity ratio of the image light reaching each pupil position to the light reaching the pupil center is substantially the same between RGB.
 一方、図23は、RGBのそれぞれについて、Y方向の瞳位置と比視感度との関係を示している。すなわち、図23は、図17で示した比視感度曲線のうち、RGBについて、光学瞳PのY方向の正側端部から負側端部に到達する映像光の波長範囲に相当する部分を抜き出し、RGBでY方向の瞳位置を揃えて示したものである。瞳中心(Y=0)でホワイトバランスを取り(光源101のRGBの放射光強度を決定し)、瞳中心での比視感度を基準にすると(瞳中心で比視感度の比をR:G:B=1:1:1にすると)、Y方向の瞳位置とRGBの比視感度の比との関係は、図24のようになる。また、瞳中心でホワイトバランスを取ったときの、Y方向の瞳位置とRGBの観察照度の比との関係を図25に示し、図25におけるRGBの観察照度の比をGの観察照度を基準として示したものを図26に示す。 On the other hand, FIG. 23 shows the relationship between the pupil position in the Y direction and the relative visibility for each of RGB. That is, FIG. 23 shows a portion corresponding to the wavelength range of the image light reaching the negative side end from the positive side end in the Y direction of the optical pupil P for RGB in the relative visibility curve shown in FIG. The extracted pupils are aligned in the Y direction in RGB. Taking white balance at the center of the pupil (Y = 0) (determining the RGB radiated light intensity of the light source 101) and using the relative luminous sensitivity at the center of the pupil as a reference (the ratio of relative luminous sensitivity at the center of the pupil is R: G). : B = 1: 1: 1), the relationship between the pupil position in the Y direction and the ratio of RGB relative luminous sensitivities is as shown in FIG. FIG. 25 shows the relationship between the pupil position in the Y direction and the ratio of RGB observation illuminance when white balance is achieved at the center of the pupil. The ratio of RGB observation illuminance in FIG. This is shown in FIG.
 上述したように、各瞳位置に到達する映像光の、瞳中心に到達する映像光に対する強度比が、RGBの全てについてほぼ同じ場合、図26より、観察者の瞳位置がY方向にずれると、観察者が感じ取る映像の色目が変化することがわかる。すなわち、瞳中心(Y=0)では、白色を表示させたときに、白色を観察することができるが、Y=-2の位置では、白色を表示させたときに観察者は映像を赤っぽく感じ、Y=2の位置では、白色を表示させたときに観察者は映像を青緑っぽく感じる。 As described above, when the intensity ratio of the image light reaching each pupil position to the image light reaching the pupil center is substantially the same for all RGB, the observer's pupil position is shifted in the Y direction from FIG. It can be seen that the color of the image perceived by the observer changes. That is, at the center of the pupil (Y = 0), white can be observed when white is displayed, but at the position of Y = −2, the observer can see the image red when displaying white. At the position of Y = 2, the observer feels the image blue-green when white is displayed.
 本発明は、上記の問題点を解決するためになされたもので、その目的は、人間の比視感度を考慮して、観察者が感じ取る映像の色目が瞳位置によって変化するのを小さく抑えることができる映像表示装置と、その映像表示装置を備えたHMDおよびHUDとを提供することにある。 The present invention has been made to solve the above-described problems, and its purpose is to minimize the change in the color of the image perceived by the observer depending on the pupil position in consideration of human specific visibility. It is an object to provide a video display device capable of performing the above and an HMD and HUD including the video display device.
 本発明の映像表示装置は、光源と、前記光源からの光を変調して映像を表示する表示素子と、前記表示素子からの映像光を回折反射させて光学瞳に導く体積位相型で反射型のホログラム光学素子を有する観察光学系とを備えた映像表示装置であって、前記光源は、赤、緑、青の各波長域に放射光の強度ピークを有しており、赤、緑、青の各波長域において、前記表示素子の表示面の各位置から前記ホログラム光学素子を介して光学瞳の中心に入射する映像光の回折ピーク波長のうち、最も長波長側のものをそれぞれλRlong、λGlong、λBlongとし、最も短波長側のものをそれぞれλRshort、λGshort、λBshortとすると、
   λRlong/λRshort<1.05
   λGlong/λGshort<1.05
   λBlong/λBshort<1.05
を満足し、
 光学瞳の面内で回折ピーク波長がシフトする方向をY方向とし、そのY方向において回折ピーク波長が長波長側にシフトする方向を正とし、赤および青の各波長域において、光学瞳のY方向の正側の端部に入射する映像光の回折ピーク波長についての前記光源の放射光強度をそれぞれERY、EBYとし、光学瞳のY方向の負側の端部に入射する映像光の回折ピーク波長についての前記光源の放射光強度をそれぞれER-Y、EB-Yとしたとき、
   EBY-EB-Y<0
   ERY-ER-Y>0
を満足することを特徴としている。
The image display device of the present invention includes a light source, a display element that modulates light from the light source and displays an image, and a volume phase reflection type that diffracts and reflects the image light from the display element and guides it to an optical pupil. And an observation optical system having the hologram optical element, wherein the light source has an intensity peak of radiated light in each of the red, green, and blue wavelength ranges, and the red, green, blue ΛRlong and λGlong of the diffraction peak wavelengths of image light incident on the center of the optical pupil from the respective positions on the display surface of the display element through the hologram optical element in the respective wavelength regions , ΛBlong, and λRshort, λGshort, and λBshort on the shortest wavelength side,
λRlong / λRshort <1.05
λGlong / λGshort <1.05
λBlong / λBshort <1.05
Satisfied,
The direction in which the diffraction peak wavelength shifts in the plane of the optical pupil is the Y direction, the direction in which the diffraction peak wavelength shifts to the long wavelength side in the Y direction is positive, and the Y of the optical pupil is in each of the red and blue wavelength regions. The radiated light intensity of the light source for the diffraction peak wavelength of the image light incident on the positive end of the direction is E RY and E BY , respectively, and the image light incident on the negative end of the optical pupil in the Y direction the emitted light intensity of the light source for the diffraction peak wavelengths E R-Y, when the E B-Y,
E BY -E BY <0
E RY -E RY> 0
It is characterized by satisfying.
 本発明の映像表示装置は、
   ERY/ER-Y>EB-Y/EBY
を満足することが望ましい。
The video display device of the present invention is
E RY / E RY> E BY / E BY
It is desirable to satisfy
 本発明の映像表示装置は、
   (ERY/ER-Y)/(EB-Y/EBY)<2
を満足することが望ましい。
The video display device of the present invention is
(E RY / E RY) / (E BY / E BY) <2
It is desirable to satisfy
 本発明の映像表示装置は、赤および青の各波長域において、光学瞳の中心に入射する映像光の回折ピーク波長についての前記光源の放射光強度をそれぞれER0、EB0とすると、
   (EBY-EB0)×(EB0-EB-Y)>0
   (ERY-ER0)×(ER0-ER-Y)>0
を満足することが望ましい。
In the image display device of the present invention, when the radiated light intensity of the light source with respect to the diffraction peak wavelength of the image light incident on the center of the optical pupil in each of the red and blue wavelength ranges is E R0 and E B0 ,
(E BY -E B0) × ( E B0 -E BY)> 0
(E RY -E R0) × ( E R0 -E RY)> 0
It is desirable to satisfy
 本発明の映像表示装置は、緑の波長域において、光学瞳のY方向の正側の端部に入射する映像光の回折ピーク波長についての前記光源の放射光強度をEGYとし、光学瞳のY方向の負側の端部に入射する映像光の回折ピーク波長についての前記光源の放射光強度をEG-Yとしたとき、
   EGY-EG-Y<0
を満足することが望ましい。
In the image display device of the present invention, in the green wavelength range, the radiated light intensity of the light source for the diffraction peak wavelength of the image light incident on the positive end of the optical pupil in the Y direction is E GY, and when the emitted light intensity of the light source for the diffraction peak wavelength of the image light incident was E G-Y on the end of the negative side in the Y direction,
E GY -E GY <0
It is desirable to satisfy
 本発明の映像表示装置は、
   ERY/ER-Y>EG-Y/EGY
を満足することが望ましい。
The video display device of the present invention is
E RY / E RY> E GY / E GY
It is desirable to satisfy
 本発明の映像表示装置は、
   (ERY/ER-Y)/(EG-Y/EGY)<4
を満足することが望ましい。
The video display device of the present invention is
(E RY / E RY) / (E GY / E GY) <4
It is desirable to satisfy
 本発明の映像表示装置は、緑の波長域において、光学瞳の中心に入射する映像光の回折ピーク波長についての前記光源の放射光強度をEG0とすると、
   (EGY-EG0)×(EG0-EG-Y)>0
を満足することが望ましい。
In the image display device of the present invention, when the emitted light intensity of the light source for the diffraction peak wavelength of the image light incident on the center of the optical pupil in the green wavelength region is E G0 ,
(E GY -E G0) × ( E G0 -E GY)> 0
It is desirable to satisfy
 本発明の映像表示装置において、前記光源と光学瞳とは、共役であることが望ましい。 In the video display device of the present invention, it is desirable that the light source and the optical pupil are conjugate.
 本発明の映像表示装置において、前記光源における同一の領域から、赤、緑、青の各波長域の光が放射されることが望ましい。 In the video display device of the present invention, it is desirable that light in each wavelength region of red, green, and blue is emitted from the same region of the light source.
 本発明のヘッドマウントディスプレイは、上述した本発明の映像表示装置と、前記映像表示装置を観察者の眼前で支持する支持手段とを備えて構成されてもよい。 The head-mounted display of the present invention may be configured to include the above-described video display device of the present invention and support means for supporting the video display device in front of the observer's eyes.
 本発明のヘッドアップディスプレイは、上述した本発明の映像表示装置を備え、前記映像表示装置の前記ホログラム光学素子が、観察者の視界内に配置される基板に保持されている構成であってもよい。 The head-up display of the present invention includes the above-described video display device of the present invention, and the hologram optical element of the video display device may be held on a substrate arranged in the field of view of the observer. Good.
 λRlong/λRshort<1.05、λGlong/λGshort<1.05、λBlong/λBshort<1.05の各条件式を満足する構成において、すなわち、光学瞳の中心から観察者の瞳がずれて位置すると観察者の瞳に入射する映像光の回折ピーク波長がシフトする構成において、EBY-EB-Y<0、ERY-ER-Y>0の各条件式を満足する場合、BおよびRの波長域における光源の放射光強度の変化は、人間の比視感度の変化とは逆になる。すなわち、光源の放射光強度は、Bの波長域では長波長側で低く、Rの波長域では長波長側で高い。 Observation in a configuration satisfying the conditional expressions of λRlong / λRshort <1.05, λGlong / λGshort <1.05, and λBlong / λBshort <1.05, that is, when the observer's pupil is shifted from the center of the optical pupil. in the structure the diffraction peak wavelength of the image light incident on the person of the pupil is shifted, is satisfied E BY -E BY <0, E RY -E RY> the conditional expressions 0, B and R A change in the emitted light intensity of the light source in the wavelength range is opposite to a change in human specific luminous efficiency. That is, the emitted light intensity of the light source is low on the long wavelength side in the B wavelength range and high on the long wavelength side in the R wavelength range.
 このように、BおよびRの波長域において、比視感度を考慮して光源の放射光強度を設定することにより、光学瞳の中心から観察者の瞳がY方向の正負どちらの方向にずれても、比視感度を考慮したRGBの観察照度比の変化を小さく抑えることができる。その結果、Y方向の瞳位置の違いによって生じる、観察者が感じ取る映像の色目の変化を小さく抑えることができる。 In this way, by setting the radiated light intensity of the light source in consideration of the relative visibility in the B and R wavelength regions, the observer's pupil is shifted in either the positive or negative direction in the Y direction from the center of the optical pupil. However, it is possible to suppress a change in the RGB observation illuminance ratio in consideration of the relative visibility. As a result, it is possible to suppress a change in the color of the image perceived by the observer due to a difference in the pupil position in the Y direction.
 なお、観察照度にはHOEの回折効率も影響するが、前述したように各瞳位置に到達する光についてのHOEの最大回折効率はほぼ一定であるので、Y方向のどの瞳位置でもRGBの観察照度比の変化を小さくできる点に変わりはなく、瞳位置による観察映像の色目の変化を小さくできる本発明の効果が得られることに変わりはない。 Although the HOE diffraction efficiency also affects the observation illuminance, as described above, the maximum diffraction efficiency of the HOE for the light reaching each pupil position is substantially constant, so that the RGB observation is performed at any pupil position in the Y direction. There is no change in that the change in the illuminance ratio can be reduced, and the effect of the present invention that can reduce the change in the color of the observation image due to the pupil position is still obtained.
本発明の実施の一形態の映像表示装置の光源の放射光強度特性を示す説明図である。It is explanatory drawing which shows the emitted light intensity characteristic of the light source of the video display apparatus of one Embodiment of this invention. 上記映像表示装置が適用されるHMDの概略の構成を示す斜視図である。It is a perspective view which shows the structure of the outline of HMD to which the said video display apparatus is applied. 上記映像表示装置の概略の構成を示す断面図である。It is sectional drawing which shows the schematic structure of the said video display apparatus. 上記光源の一構成例を示す断面図である。It is sectional drawing which shows one structural example of the said light source. 上記光源の他の構成例を示す断面図である。It is sectional drawing which shows the other structural example of the said light source. 上記光源のさらに他の構成例である積層タイプの光源の概略の構成を示す断面図である。It is sectional drawing which shows the schematic structure of the lamination | stacking type light source which is another structural example of the said light source. 上記映像表示装置のHOEの製造光学系の主要部を拡大して示す説明図である。It is explanatory drawing which expands and shows the principal part of the manufacturing optical system of HOE of the said video display apparatus. Y方向の瞳位置と観察照度比との関係を、Gの観察照度を基準として示した説明図である。It is explanatory drawing which showed the relationship between the pupil position of a Y direction, and observation illumination intensity ratio on the basis of G observation illumination intensity. 本発明の他の実施の形態の映像表示装置に適用されるHOEの製造光学系の主要部を拡大して示す説明図である。It is explanatory drawing which expands and shows the principal part of the manufacturing optical system of HOE applied to the video display apparatus of other embodiment of this invention. 上記映像表示装置の光源の放射光強度特性を示す説明図である。It is explanatory drawing which shows the emitted light intensity characteristic of the light source of the said video display apparatus. Y方向の瞳位置と観察照度比との関係を、Gの観察照度を基準として示した説明図である。It is explanatory drawing which showed the relationship between the pupil position of a Y direction, and observation illumination intensity ratio on the basis of G observation illumination intensity. 本発明のさらに他の実施の形態の映像表示装置およびそれを備えたHUDの概略の構成を示す断面図である。It is sectional drawing which shows the schematic structure of the video display apparatus of further another embodiment of this invention, and HUD provided with the same. 上記映像表示装置のHOEの製造光学系の主要部を拡大して示す説明図である。It is explanatory drawing which expands and shows the principal part of the manufacturing optical system of HOE of the said video display apparatus. 上記映像表示装置の光源の放射光強度特性を示す説明図である。It is explanatory drawing which shows the emitted light intensity characteristic of the light source of the said video display apparatus. Y方向の瞳位置と観察照度比との関係を、Gの観察照度を基準として示した説明図である。It is explanatory drawing which showed the relationship between the pupil position of a Y direction, and observation illumination intensity ratio on the basis of G observation illumination intensity. HOEを用いた従来の一般的な映像表示装置の概略の構成を示す断面図である。It is sectional drawing which shows the structure of the outline of the conventional common video display apparatus using HOE. 波長と比視感度との関係を示す説明図である。It is explanatory drawing which shows the relationship between a wavelength and specific luminous efficiency. 上記映像表示装置に用いられるHOEの製造光学系の一例を示す説明図である。It is explanatory drawing which shows an example of the manufacturing optical system of HOE used for the said video display apparatus. HOEのRGBの回折特性を示す説明図である。It is explanatory drawing which shows the diffraction characteristic of RGB of HOE. Y方向の瞳位置とRGBの最大回折効率の比との関係を示す説明図である。It is explanatory drawing which shows the relationship between the pupil position of a Y direction, and the ratio of RGB maximum diffraction efficiency. Y方向の瞳位置と光源のRGBの放射光強度比との関係を示す説明図である。It is explanatory drawing which shows the relationship between the pupil position of a Y direction, and the radiated light intensity ratio of RGB of a light source. Y方向の瞳位置とRGBの瞳到達光強度比との関係を示す説明図である。It is explanatory drawing which shows the relationship between the pupil position of a Y direction, and the pupil arrival light intensity ratio of RGB. Y方向の瞳位置と比視感度との関係をRGBのそれぞれについて示す説明図である。It is explanatory drawing which shows the relationship between the pupil position of a Y direction, and relative luminous sensitivity about each of RGB. Y方向の瞳位置とRGBの比視感度の比との関係を示す説明図である。It is explanatory drawing which shows the relationship between the pupil position of a Y direction, and the ratio of the relative luminous sensitivity of RGB. Y方向の瞳位置とRGBの観察照度の比との関係を示す説明図である。It is explanatory drawing which shows the relationship between the pupil position of a Y direction, and the ratio of the observation illumination intensity of RGB. Y方向の瞳位置とRGBの観察照度の比との関係を、Gの観察照度を基準として示す説明図である。It is explanatory drawing which shows the relationship between the pupil position of a Y direction, and the ratio of RGB observation illumination intensity on the basis of G observation illumination intensity.
 〔実施の形態1〕
 本発明の実施の一形態について、図面に基づいて説明すれば、以下の通りである。
[Embodiment 1]
An embodiment of the present invention will be described below with reference to the drawings.
 (HMDについて)
 図2は、HMDの概略の構成を示す斜視図である。HMDは、映像表示装置1と、支持手段2とで構成されている。
(About HMD)
FIG. 2 is a perspective view showing a schematic configuration of the HMD. The HMD includes a video display device 1 and support means 2.
 映像表示装置1は、少なくとも光源11および表示素子13(ともに図3参照)を内包する筐体3を有している。この筐体3は、接眼光学系14の一部を保持している。接眼光学系14は、接眼プリズム31および偏向プリズム32の貼り合わせによって構成されており、全体として眼鏡の一方のレンズ(図2では右眼用レンズ)のような形状をしている。また、映像表示装置1は、筐体3を貫通して設けられるケーブル4を介して、光源11および表示素子13に少なくとも駆動電力および映像信号を供給するための回路基板(図示せず)を有している。 The video display device 1 has a housing 3 that contains at least a light source 11 and a display element 13 (both see FIG. 3). The housing 3 holds a part of the eyepiece optical system 14. The eyepiece optical system 14 is configured by bonding an eyepiece prism 31 and a deflection prism 32, and has a shape like one lens of a pair of glasses (lens for right eye in FIG. 2) as a whole. In addition, the video display device 1 has a circuit board (not shown) for supplying at least driving power and a video signal to the light source 11 and the display element 13 via a cable 4 provided through the housing 3. is doing.
 支持手段2は、眼鏡のフレーム(ブリッジ、テンプルを含む)に相当する支持機構であり、映像表示装置1を観察者の眼前(例えば右眼の前)で支持している。また、支持手段2は、観察者の鼻と当接する鼻当て5(右鼻当て5R・左鼻当て5L)と、その鼻当て5を所定の位置で固定する鼻当てロックユニット6とを含んでいる。鼻当てロックユニット6は、ばね性の軸により鼻当て5を保持している。 The support means 2 is a support mechanism corresponding to a spectacle frame (including a bridge and a temple), and supports the video display device 1 in front of the observer's eyes (for example, in front of the right eye). Further, the support means 2 includes a nose pad 5 (right nose pad 5R / left nose pad 5L) that contacts the observer's nose, and a nose pad lock unit 6 that fixes the nose pad 5 at a predetermined position. Yes. The nose pad lock unit 6 holds the nose pad 5 with a spring shaft.
 HMDを観察者の頭部に装着するとともに、鼻当てロックユニット6によって鼻当て5を固定し、表示素子13に映像を表示すると、その映像光が接眼光学系14を介して光学瞳に導かれる。したがって、光学瞳の位置に観察者の瞳を合わせることにより、観察者は、映像表示装置1の表示映像の拡大虚像を観察することができる。また、これと同時に、観察者は、接眼光学系14を介して、外界をシースルーで観察することができる。 When the HMD is mounted on the observer's head and the nose pad 5 is fixed by the nose pad lock unit 6 and an image is displayed on the display element 13, the image light is guided to the optical pupil via the eyepiece optical system 14. . Therefore, by aligning the observer's pupil with the position of the optical pupil, the observer can observe an enlarged virtual image of the display image of the image display device 1. At the same time, the observer can observe the outside world through the eyepiece optical system 14 in a see-through manner.
 このように、映像表示装置1が支持手段2にて支持されることにより、観察者は映像表示装置1から提供される映像をハンズフリーで長時間安定して観察することができる。なお、映像表示装置1を2つ用いて両眼で映像を観察できるようにしてもよい。この場合は、両方の接眼光学系の間の距離(眼幅距離)を調整するための調整機構(図示せず)を設けることが必要である。 Thus, by supporting the video display device 1 by the support means 2, the observer can observe the video provided from the video display device 1 in a hands-free and stable manner for a long time. In addition, you may enable it to observe an image | video with both eyes using two image display apparatuses 1. FIG. In this case, it is necessary to provide an adjustment mechanism (not shown) for adjusting the distance (eye width distance) between both eyepiece optical systems.
 (映像表示装置について)
 次に、上記した映像表示装置1の詳細について説明する。図3は、本実施形態の映像表示装置1の概略の構成を示す断面図である。映像表示装置1は、光源11と、照明光学系12と、表示素子13と、接眼光学系14とを有して構成されている。本実施形態では、水平方向の観察画角が例えば±13°、垂直方向の観察画角が例えば±7.5°となっており、いわゆるワイド画面の映像を観察することが可能となっている。
(About video display device)
Next, details of the video display device 1 will be described. FIG. 3 is a cross-sectional view showing a schematic configuration of the video display device 1 of the present embodiment. The video display device 1 includes a light source 11, an illumination optical system 12, a display element 13, and an eyepiece optical system 14. In the present embodiment, the observation angle in the horizontal direction is, for example, ± 13 °, and the observation angle in the vertical direction is, for example, ± 7.5 °, so that a so-called wide screen image can be observed. .
 ここで、以下での説明の便宜上、表示素子13の表示面の中心と、接眼光学系14によって形成される光学瞳Pの中心とを光学的に結ぶ軸を光軸とし、接眼光学系14の後述するHOE33における入射光の光軸と反射光の光軸とを含む面を光軸入射面とする。そして、光学瞳Pの面内で、光軸に垂直で、かつ、光軸入射面に平行な方向をY方向とし、Y方向においてHOE33の回折角度が小さくなる方向を正の方向とする。なお、光学瞳PにおけるY方向は、観察者の眼幅方向(左右方向)に垂直な上下方向にも対応する。 Here, for convenience of explanation below, an axis that optically connects the center of the display surface of the display element 13 and the center of the optical pupil P formed by the eyepiece optical system 14 is an optical axis, and the eyepiece optical system 14 A surface including an optical axis of incident light and an optical axis of reflected light in the HOE 33 described later is defined as an optical axis incident surface. In the plane of the optical pupil P, a direction perpendicular to the optical axis and parallel to the optical axis incidence surface is defined as a Y direction, and a direction in which the diffraction angle of the HOE 33 decreases in the Y direction is defined as a positive direction. Note that the Y direction in the optical pupil P also corresponds to the vertical direction perpendicular to the eye width direction (left-right direction) of the observer.
 光源11は、表示素子13を照明するものであり、本実施形態では、青(B)、緑(G)、赤(R)の各波長領域の光を同一の領域11a(図4、図5、図6参照)から放射する高演色白色光源で構成されている。なお、光源11の構成および発光特性の詳細については後述する。光源11(特に領域11a)は、光学瞳Pと略共役な位置に配置されている。 The light source 11 illuminates the display element 13, and in this embodiment, light in each wavelength region of blue (B), green (G), and red (R) is the same region 11a (FIGS. 4 and 5). , See FIG. 6). The configuration of the light source 11 and details of the light emission characteristics will be described later. The light source 11 (particularly the region 11a) is disposed at a position substantially conjugate with the optical pupil P.
 光源11の領域11aのサイズは、例えば上下方向1mm×左右方向2mmであり、光源11に対する光学瞳Pの倍率は、約3倍に設定されている。この結果、光学瞳Pのサイズは、例えば上下方向3mm×左右方向6mmとなっている。 The size of the region 11a of the light source 11 is, for example, 1 mm in the vertical direction × 2 mm in the horizontal direction, and the magnification of the optical pupil P with respect to the light source 11 is set to about 3 times. As a result, the size of the optical pupil P is, for example, 3 mm vertically and 6 mm horizontally.
 照明光学系12は、光源11からの光を集光して表示素子13に導く光学系であり、例えば凹面反射面を有するミラー21で構成されている。表示素子13は、光源11から照明光学系12を介して入射する光を画像データに応じて変調して映像を表示するものであり、例えば透過型のLCDで構成されている。表示素子13は、矩形の表示画面の長辺方向が水平方向(図3の紙面に垂直な方向;左右方向と同じ)となり、短辺方向がそれに垂直な方向となるように配置されている。 The illumination optical system 12 is an optical system that condenses the light from the light source 11 and guides it to the display element 13, and includes, for example, a mirror 21 having a concave reflecting surface. The display element 13 displays an image by modulating light incident from the light source 11 via the illumination optical system 12 in accordance with image data, and is configured by, for example, a transmissive LCD. The display element 13 is arranged such that the long side direction of the rectangular display screen is the horizontal direction (direction perpendicular to the paper surface of FIG. 3; the same as the left-right direction), and the short side direction is the direction perpendicular thereto.
 接眼光学系14は、表示素子13からの映像光を光学瞳P(または光学瞳Pの位置にある観察者の瞳)に導く観察光学系であり、接眼プリズム31と、偏向プリズム32と、HOE33とを有して構成されている。 The eyepiece optical system 14 is an observation optical system that guides the image light from the display element 13 to the optical pupil P (or the observer's pupil at the position of the optical pupil P), and includes an eyepiece prism 31, a deflection prism 32, and a HOE 33. And is configured.
 接眼プリズム31は、表示素子13からの映像光を内部で全反射させてHOE33を介して光学瞳Pに導く一方、外界光を透過させて光学瞳Pに導くものであり、偏向プリズム32とともに、例えばアクリル系樹脂で構成されている。この接眼プリズム31は、平行平板の下端部を楔状にした形状で構成されている。接眼プリズム31の上端面は、映像光の入射面としての面31aとなっており、前後方向に位置する2面は、互いに平行な面31b・31cとなっている。 The eyepiece prism 31 totally reflects the image light from the display element 13 and guides it to the optical pupil P through the HOE 33, while transmitting the external light to the optical pupil P. Together with the deflection prism 32, For example, it is made of an acrylic resin. The eyepiece prism 31 is formed in a shape in which a lower end portion of a parallel plate is wedge-shaped. An upper end surface of the eyepiece prism 31 is a surface 31a as an incident surface for image light, and two surfaces positioned in the front-rear direction are surfaces 31b and 31c parallel to each other.
 偏向プリズム32は、平面視で略U字型の平行平板で構成されており(図2参照)、接眼プリズム31の下端部および両側面部(左右の各端面)と貼り合わされたときに、接眼プリズム31と一体となって略平行平板となるものである。偏向プリズム32は、HOE33を挟むように接眼プリズム31と隣接または接着して設けられている。これにより、外界光が接眼プリズム31の楔状の下端部を透過するときの屈折を偏向プリズム32でキャンセルすることができ、シースルーで観察される外界の像に歪みが生じるのを防止することができる。 The deflection prism 32 is configured by a substantially U-shaped parallel plate in plan view (see FIG. 2), and when attached to the lower end portion and both side surface portions (left and right end surfaces) of the eyepiece prism 31, the eyepiece prism. 31 and a substantially parallel flat plate. The deflection prism 32 is provided adjacent to or adhering to the eyepiece prism 31 so as to sandwich the HOE 33 therebetween. Thereby, the refraction when the external light passes through the wedge-shaped lower end of the eyepiece prism 31 can be canceled by the deflecting prism 32, and distortion of the external image observed through the see-through can be prevented. .
 HOE33は、表示素子13からの映像光(BGRの各光)を光学瞳Pの方向に回折反射させる一方、外界光を透過させて光学瞳Pに導くコンバイナとしての体積位相型で反射型のホログラム光学素子であり、接眼プリズム31において偏向プリズム32との接合面である面31dに形成されている。HOE33は、軸非対称な正の光学的パワーを有しており、正の光学的パワーを持つ非球面凹面ミラーと同様の機能を持っている。これにより、装置を構成する各光学部材の配置の自由度を高めて装置を容易に小型化することができるとともに、良好に収差補正された映像を観察者に提供することができる。本実施形態では、光学瞳Pの中心に入射する光についてのHOE33の回折ピーク波長は、後述するように、例えば467nm、521.4nm、634.1nmである。 The HOE 33 diffracts and reflects the image light (BGR light) from the display element 13 in the direction of the optical pupil P, while transmitting the external light and guiding it to the optical pupil P, and a volume phase type reflection hologram. It is an optical element, and is formed on a surface 31 d that is a joint surface with the deflection prism 32 in the eyepiece prism 31. The HOE 33 has an axially asymmetric positive optical power and has the same function as an aspherical concave mirror having a positive optical power. Thereby, the degree of freedom of arrangement of each optical member constituting the apparatus can be increased, and the apparatus can be easily reduced in size, and an image with good aberration correction can be provided to the observer. In the present embodiment, the diffraction peak wavelength of the HOE 33 for light incident on the center of the optical pupil P is, for example, 467 nm, 521.4 nm, and 634.1 nm, as will be described later.
 上記構成の映像表示装置1において、光源11から放射された光は、照明光学系12のミラー21によって反射、集光され、ほぼコリメート光となって表示素子13に入射し、そこで変調されて映像光として出射される。表示素子13からの映像光は、接眼光学系14の接眼プリズム31の内部に面31aから入射し、続いて面31b・31cで少なくとも1回ずつ全反射されてHOE33に入射する。 In the image display device 1 having the above-described configuration, the light emitted from the light source 11 is reflected and collected by the mirror 21 of the illumination optical system 12 and is substantially collimated and incident on the display element 13 where it is modulated and imaged. It is emitted as light. The image light from the display element 13 enters the inside of the eyepiece prism 31 of the eyepiece optical system 14 from the surface 31a, and then is totally reflected at least once by the surfaces 31b and 31c and enters the HOE 33.
 HOE33は、光源11が放射するBGRの各波長領域の光を、各波長領域ごとに独立して回折する回折素子として機能する波長選択性を有しており、また、光源11が放射するBGRの光に対しては凹面反射面として機能するように設計されている。したがって、HOE33に入射した光は、そこで回折反射されて光学瞳Pに達し、同時に、外界光もHOE33を透過して、光学瞳Pに向かう。よって、光学瞳Pの位置に観察者の瞳を位置させることにより、観察者は、表示素子13に表示された映像を拡大虚像として観察することができると同時に、外界をシースルーで観察することができる。なお、表示素子13に表示された映像を観察者が良好に観察できるように、接眼光学系14において諸収差(コマ収差、像面湾曲、非点収差、歪曲収差)が補正されている。 The HOE 33 has wavelength selectivity that functions as a diffraction element that independently diffracts light in each wavelength region of BGR emitted from the light source 11 for each wavelength region. It is designed to function as a concave reflecting surface for light. Therefore, the light incident on the HOE 33 is diffracted and reflected there and reaches the optical pupil P. At the same time, external light passes through the HOE 33 and travels toward the optical pupil P. Therefore, by locating the observer's pupil at the position of the optical pupil P, the observer can observe the image displayed on the display element 13 as an enlarged virtual image, and at the same time, can observe the outside world in a see-through manner. it can. Note that various aberrations (coma aberration, curvature of field, astigmatism, distortion) are corrected in the eyepiece optical system 14 so that the viewer can observe the image displayed on the display element 13 satisfactorily.
 (光源の構成について)
 次に、上記した光源11の構成の詳細について説明する。図4は、光源11の一構成例を示す断面図である。光源11は、筐体41の内部に、B光を発光する半導体発光素子であるLED42と、B光で励起されてG光を発光する緑色蛍光体43Gと、B光で励起されてR光を発光する赤色蛍光体43Rとを有している。LED42は、基板44上に搭載されており、基板44上の電極とワイヤ45で接続されている。筐体41内では、LED42、緑色蛍光体43G、赤色蛍光体43Rがエポキシ樹脂などのモールディング材である第1の封止材46で封止されており、さらに第1の封止材46に対して基板44とは反対側が第2の封止材47で封止されている。この結果、第2の封止材47の表面(基板44とは反対側の面)が、RGBの各波長域の光を放射する同一の領域11aとなっている。
(About the structure of the light source)
Next, the details of the configuration of the light source 11 will be described. FIG. 4 is a cross-sectional view illustrating a configuration example of the light source 11. The light source 11 includes an LED 42 that is a semiconductor light emitting element that emits B light, a green phosphor 43G that is excited by B light and emits G light, and an R light that is excited by B light. A red phosphor 43R that emits light. The LED 42 is mounted on a substrate 44 and is connected to an electrode on the substrate 44 by a wire 45. In the housing 41, the LED 42, the green phosphor 43G, and the red phosphor 43R are sealed with a first sealing material 46 that is a molding material such as an epoxy resin, and further, with respect to the first sealing material 46 The side opposite to the substrate 44 is sealed with a second sealing material 47. As a result, the surface of the second sealing material 47 (the surface opposite to the substrate 44) is the same region 11a that emits light in each of the RGB wavelength regions.
 また、光源11は、図5のように構成されてもよい。図5は、光源11の他の構成例を示す断面図である。図5の光源11は、図4の光源11のLED42をLED42’に置き換え、青色蛍光体43Bを新たに設けるとともに、緑色蛍光体43Gおよび赤色蛍光体43Rをそれぞれ緑色蛍光体43G’および赤色蛍光体43R’に置き換えたものである。LED42’は、近紫外光を発光する半導体発光素子であり、青色蛍光体43B、緑色蛍光体43G’および赤色蛍光体43R’は、それぞれ、近紫外光で励起されてB光、G光、R光を発光する蛍光体である。 Further, the light source 11 may be configured as shown in FIG. FIG. 5 is a cross-sectional view showing another configuration example of the light source 11. The light source 11 of FIG. 5 replaces the LED 42 of the light source 11 of FIG. 4 with an LED 42 ′, newly provides a blue phosphor 43B, and replaces the green phosphor 43G and the red phosphor 43R with the green phosphor 43G ′ and the red phosphor, respectively. It is replaced with 43R ′. The LED 42 ′ is a semiconductor light emitting element that emits near-ultraviolet light, and the blue phosphor 43B, the green phosphor 43G ′, and the red phosphor 43R ′ are respectively excited by near-ultraviolet light to emit B light, G light, R It is a phosphor that emits light.
 また、光源11は、BGRの各半導体発光素子(LED)を積層して構成され、白色(BGRの3色)の光を同一の領域11aから放射する積層タイプのもので構成されてもよい。積層タイプの光源11を用いた場合は、図4および図5に示した蛍光タイプに比べて放射強度ピークの半値波長幅が狭いので、不要なフレア光をより低減できる効果がある。積層タイプの光源11について簡単に説明すると、以下の通りである。 The light source 11 may be configured by stacking BGR semiconductor light emitting elements (LEDs), and may be configured by a stacked type that emits white (three colors of BGR) light from the same region 11a. When the laminated type light source 11 is used, since the half-value wavelength width of the radiation intensity peak is narrower than that of the fluorescent type shown in FIGS. 4 and 5, there is an effect that unnecessary flare light can be further reduced. The laminated light source 11 will be briefly described as follows.
 図6は、積層タイプの光源11の概略の構成を示す断面図である。この光源11は、基板51上に、GaNバッファ層52、アンドープGaN層53、SiドープのGaNからなるn型コンタクト層兼クラッド層54、超格子層55、多重量子井戸構造からなる活性層56、MgドープのAlGaNからなるp型クラッド層57、MgドープのGaNからなるp型コンタクト層58が順に積層されて形成されている。活性層56は、複数の障壁層56aと、InGaNからなる井戸層56B・56G・56Rとで構成されている。全ての井戸層56B・56G・56Rのうち、井戸層56BのIn含有量が最も少なく、井戸層56RのIn含有量が最も多い。井戸層56G・56R・56Bは、n型コンタクト層兼クラッド層54側から、この順で積層されており、かつ、それぞれは障壁層56aで挟まれている(それぞれは障壁層56aを介して積層されている)。また、p型コンタクト層58上には、p側透明電極59およびp側パッド電極60が順に形成されており、n型コンタクト層兼クラッド層54上にはn電極61が形成されている。この構成では、井戸層56B・56G・56Rから、例えば448nm、500nm、570nmの波長の光が発光され、p側透明電極59の表面(p型コンタクト層58とは反対側の面)が、BGRの光を放射する同一の領域11aとなる。 FIG. 6 is a cross-sectional view showing a schematic configuration of a stacked type light source 11. The light source 11 includes a GaN buffer layer 52, an undoped GaN layer 53, an n-type contact / cladding layer 54 made of Si-doped GaN, a superlattice layer 55, an active layer 56 made of a multiple quantum well structure, A p-type cladding layer 57 made of Mg-doped AlGaN and a p-type contact layer 58 made of Mg-doped GaN are sequentially stacked. The active layer 56 includes a plurality of barrier layers 56a and well layers 56B, 56G, and 56R made of InGaN. Of all the well layers 56B, 56G, and 56R, the well layer 56B has the smallest In content and the well layer 56R has the largest In content. The well layers 56G, 56R, and 56B are stacked in this order from the n-type contact / cladding layer 54 side, and are sandwiched between the barrier layers 56a (each stacked via the barrier layer 56a). Have been). A p-side transparent electrode 59 and a p-side pad electrode 60 are sequentially formed on the p-type contact layer 58, and an n-electrode 61 is formed on the n-type contact layer / cladding layer 54. In this configuration, light having a wavelength of, for example, 448 nm, 500 nm, and 570 nm is emitted from the well layers 56B, 56G, and 56R, and the surface of the p-side transparent electrode 59 (the surface opposite to the p-type contact layer 58) is BGR. It becomes the same area | region 11a which radiates | emits light.
 以上で説明した各タイプの光源11においては、RGBの光は、素子の表面(上側)の同一の領域11aから均一に放射される。 In each type of light source 11 described above, RGB light is uniformly emitted from the same region 11a on the surface (upper side) of the element.
 光源11(特に領域11a)は、上述したように光学瞳Pと略共役な位置に配置されているので、同一の領域11aから放射されるBGRの各光を効率よく光学瞳Pに導くことができる。したがって、光学瞳Pのどの位置に観察者の瞳が位置しても、観察者は明るく高品位な映像を観察することができる。 Since the light source 11 (particularly the region 11a) is disposed at a position substantially conjugate with the optical pupil P as described above, each light of BGR emitted from the same region 11a can be efficiently guided to the optical pupil P. it can. Therefore, no matter where the optical pupil P is located, the observer can observe a bright and high-quality image.
 また、光源11における同一の領域11aから、RGBの各波長域の光を放射する構成とすることにより、図21および図22と同様の分布を容易に実現することができる。つまり、光源11の放射光強度の分布(瞳位置と放射光強度との関係)をRGBで揃え、光学瞳Pに到達する映像光の強度分布(瞳位置と映像光強度との関係)をRGBでほぼ揃えることができる。その結果、比視感度を考慮した後述する本発明の放射光強度の設定がより有効となる。 Further, by adopting a configuration in which light in each wavelength region of RGB is emitted from the same region 11a in the light source 11, the same distribution as in FIGS. 21 and 22 can be easily realized. That is, the distribution of the radiated light intensity of the light source 11 (the relationship between the pupil position and the radiated light intensity) is aligned in RGB, and the intensity distribution of the image light reaching the optical pupil P (the relationship between the pupil position and the image light intensity) is RGB. Can be almost aligned. As a result, the setting of the radiated light intensity of the present invention, which will be described later, in consideration of the relative visibility is more effective.
 (HOEの製造方法について)
 次に、上記したHOE33の製造方法について説明する。図7は、HOE33の製造光学系の主要部を拡大して示す説明図である。反射型のカラーホログラムであるHOE33は、BGRのそれぞれについて、2光束を用いて基板(接眼プリズム31)上のホログラム感光材料33aを露光して作製される。ホログラム感光材料としては、フォトポリマー、銀塩材料、重クロム酸ゼラチンなどが挙げられるが、中でもドライプロセスで製造できるフォトポリマーが望ましい。上記2光束のうちの一方の光束は、ホログラム感光材料33aに対して基板とは反対側から照射されるが、この光束を物体光と呼ぶことにする。また、他方の光束は、ホログラム感光材料33aに対して基板側から照射されるが、この光束を参照光と呼ぶことにする。
(About manufacturing method of HOE)
Next, a method for manufacturing the above HOE 33 will be described. FIG. 7 is an explanatory view showing, in an enlarged manner, main parts of the manufacturing optical system of the HOE 33. As shown in FIG. The HOE 33 which is a reflection type color hologram is produced by exposing the hologram photosensitive material 33a on the substrate (eyepiece prism 31) using two light beams for each BGR. Examples of the hologram photosensitive material include a photopolymer, a silver salt material, and dichromated gelatin. Among them, a photopolymer that can be manufactured by a dry process is preferable. One of the two light beams is irradiated from the opposite side of the substrate to the hologram photosensitive material 33a. This light beam will be referred to as object light. The other light beam is irradiated from the substrate side to the hologram photosensitive material 33a, and this light beam is referred to as reference light.
 物体光生成側の光学系において、点光源71(物体光側光源)からのRGBの発散光は、光学的なパワーを有する反射面である自由曲面ミラー72によって所定の波面に整形され、平面反射ミラー73で反射された後、色補正プリズム74を介してホログラム感光材料33aに照射される。なお、色補正プリズム74における物体光の入射面である面74aは、再生時(映像観察時)に用いられる接眼光学系14の接眼プリズム31の面31aでの映像光の屈折に起因して発生する色収差を打ち消すように、その角度が決定されている。このとき、色補正プリズム74は、表面反射によるゴーストを防止するためにホログラム感光材料33aに対して密着して配置されるか、エマルジョンオイルなどを介して配置されることが望ましい。 In the optical system on the object light generation side, RGB divergent light from the point light source 71 (object light side light source) is shaped into a predetermined wavefront by a free-form surface mirror 72, which is a reflection surface having optical power, and is planarly reflected. After being reflected by the mirror 73, the hologram photosensitive material 33 a is irradiated through the color correction prism 74. Note that the surface 74a that is the incident surface of the object light in the color correction prism 74 is generated due to refraction of the image light on the surface 31a of the eyepiece prism 31 of the eyepiece optical system 14 used during reproduction (image observation). The angle is determined so as to cancel the chromatic aberration. At this time, the color correction prism 74 is desirably disposed in close contact with the hologram photosensitive material 33a or is disposed via emulsion oil or the like in order to prevent ghosts due to surface reflection.
 一方、参照光生成側の光学系において、点光源81(参照光側光源)からのRGBの発散光(例えば球面波)は、参照光としてホログラム感光材料33aに接眼プリズム31側から照射される。このとき、RGBの全てについて、点光源81は光学瞳Pの中心に配置されている。 On the other hand, in the optical system on the reference light generation side, RGB divergent light (for example, spherical wave) from the point light source 81 (reference light side light source) is irradiated from the eyepiece prism 31 side to the hologram photosensitive material 33a as reference light. At this time, the point light source 81 is arranged at the center of the optical pupil P for all of RGB.
 このようにして、RGBのそれぞれについて物体光および参照光の2光束でホログラム感光材料33aを露光することにより、その2光束の干渉によってホログラム感光材料33aに干渉縞が形成され、HOE33が作製される。このとき、2光束による露光は、RGBについて同時に行ってもよいし、順次に行ってもよい。 In this way, by exposing the hologram photosensitive material 33a with two light beams of object light and reference light for each of RGB, interference fringes are formed in the hologram photosensitive material 33a by interference of the two light beams, and the HOE 33 is manufactured. . At this time, the exposure with two light beams may be performed simultaneously for RGB or sequentially.
 上記のように、露光時の点光源81を光学瞳Pの中心に配置してHOE33を製造することにより、そのHOE33を含む接眼光学系14において、光源11と光学瞳Pとの間で収差を良好に補正すれば、光学瞳Pの中心に観察者の瞳を位置させたときに、全ての画角において、照明光(映像光)がHOE33で確実に回折反射されて観察者の瞳に到達する。したがって、観察者は、画面全域にわたって明るく高品位な映像を観察することができる。 As described above, the point light source 81 at the time of exposure is arranged at the center of the optical pupil P, and the HOE 33 is manufactured. Thus, in the eyepiece optical system 14 including the HOE 33, aberration is caused between the light source 11 and the optical pupil P. If corrected properly, when the observer's pupil is positioned at the center of the optical pupil P, the illumination light (image light) is reliably diffracted and reflected by the HOE 33 and reaches the observer's pupil at all angles of view. To do. Therefore, the observer can observe a bright and high-quality image over the entire screen.
 ここで、RGBの露光波長は、例えば647nm、532nm、476.5nmであり、ホログラム感光材料33aの厚さ方向の収縮率は例えば2%である。この場合、再生時に光学瞳Pの中心を通過する光についてのHOE33の回折ピーク波長は、表1のようになる。なお、RGBの各波長域において、表示素子13の表示面の各位置からHOE33を介して光学瞳Pの中心に入射する映像光の回折ピーク波長のうち、最も長波長側のものをそれぞれλRlong(nm)、λGlong(nm)、λBlong(nm)とし、最も短波長側のものをそれぞれλRshort(nm)、λGshort(nm)、λBshort(nm)とする。 Here, the exposure wavelengths of RGB are, for example, 647 nm, 532 nm, 476.5 nm, and the shrinkage rate in the thickness direction of the hologram photosensitive material 33a is, for example, 2%. In this case, the diffraction peak wavelength of the HOE 33 for light passing through the center of the optical pupil P during reproduction is as shown in Table 1. In each of the RGB wavelength ranges, the longest wavelength side of the diffraction peak wavelengths of the image light incident on the center of the optical pupil P via the HOE 33 from each position on the display surface of the display element 13 is λRlong ( nm), λGlong (nm), and λBlong (nm), and those on the shortest wavelength side are λRshort (nm), λGshort (nm), and λBshort (nm), respectively.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本実施形態では、HOE33の作製時に光学瞳P側に配置される点光源81は、光学瞳Pの中心に配置されているので、表1において、λRlong/λRshort=λGlong/λGshort=λBlong/λBshort=1となっている。しかし、以下の条件式(1)(2)(3)を満足する範囲内で、点光源81が光学瞳Pとずれて配置されていても、後述する放射光強度の設定によって本発明の効果を得ることができる。すなわち、
   λRlong/λRshort<1.05   ・・・(1)
   λGlong/λGshort<1.05   ・・・(2)
   λBlong/λBshort<1.05   ・・・(3)
である。
In this embodiment, the point light source 81 arranged on the optical pupil P side when the HOE 33 is manufactured is arranged at the center of the optical pupil P. Therefore, in Table 1, λRlong / λRshort = λGlong / λGshort = λBlong / λBshort = It is 1. However, even if the point light source 81 is arranged so as to deviate from the optical pupil P within a range that satisfies the following conditional expressions (1), (2), and (3), the effect of the present invention can be achieved by setting the radiated light intensity described later. Can be obtained. That is,
λRlong / λRshort <1.05 (1)
λGlong / λGshort <1.05 (2)
λBlong / λBshort <1.05 (3)
It is.
 また、表2は、上記の製造光学系で作製されたHOE33を用い、再生時にそのHOE33で回折反射されて光学瞳PのY方向の各位置に到達する映像光の回折ピーク波長を示している。なお、Y方向(上下方向)の光学瞳Pの大きさは、上述したように3mmであるので、ここでは、瞳下端、瞳中心、瞳上端にそれぞれ対応する、Y=-1.5(mm)、Y=0(mm)、Y=1.5(mm)の各位置に到達する映像光の回折ピーク波長を示している。なお、Y方向において、HOE33の回折角度が小さくなる方向、すなわち、瞳下端から瞳上端に向かう方向を正とする。 Table 2 shows diffraction peak wavelengths of image light that is diffracted and reflected by the HOE 33 during reproduction and reaches each position in the Y direction of the optical pupil P during reproduction. . Since the size of the optical pupil P in the Y direction (vertical direction) is 3 mm as described above, here, Y = −1.5 (mm corresponding to the pupil lower end, the pupil center, and the pupil upper end, respectively. ), Y = 0 (mm), and the diffraction peak wavelength of the image light reaching each position of Y = 1.5 (mm). In the Y direction, the direction in which the diffraction angle of the HOE 33 decreases, that is, the direction from the lower end of the pupil to the upper end of the pupil is positive.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2より、光学瞳Pの中心に到達する映像光の回折ピーク波長に対して、光学瞳Pの中心からY方向正側にずれた位置(Y=1.5)に到達する映像光の回折ピーク波長は、長波長側にシフトし、光学瞳Pの中心からY方向負側にずれた位置(Y=-1.5)に到達する映像光の回折ピーク波長は、短波長側にシフトすることがわかる。このことから、Y方向とは、光学瞳Pの面内で回折ピーク波長がシフトする方向であると言い換えることもでき、また、Y方向における正の方向とは、Y方向において回折ピーク波長が長波長側にシフトする方向であると言い換えることもできる。 From Table 2, the diffraction of the image light reaching the position (Y = 1.5) shifted from the center of the optical pupil P to the Y-direction positive side with respect to the diffraction peak wavelength of the image light reaching the center of the optical pupil P. The peak wavelength shifts to the long wavelength side, and the diffraction peak wavelength of the image light reaching the position (Y = −1.5) shifted from the center of the optical pupil P to the Y direction negative side shifts to the short wavelength side. I understand that. From this, the Y direction can be paraphrased as a direction in which the diffraction peak wavelength shifts in the plane of the optical pupil P, and the positive direction in the Y direction is a long diffraction peak wavelength in the Y direction. In other words, the direction is shifted to the wavelength side.
 (光源の放射光強度の設定について)
 次に、本発明の特徴である、光源11の放射光強度の設定について説明する。図1は、光源11(例えば図4の構成)の分光特性(放射光強度特性)を示している。同図に示すように、光源11は、RGBの各波長域に放射光の強度ピークを有している。なお、同図では、Bの最大放射光強度を1としたときの相対的な強度特性を示している。
(About the setting of the emitted light intensity of the light source)
Next, the setting of the emitted light intensity of the light source 11 which is a feature of the present invention will be described. FIG. 1 shows spectral characteristics (radiated light intensity characteristics) of the light source 11 (for example, the configuration of FIG. 4). As shown in the figure, the light source 11 has an intensity peak of radiated light in each of the RGB wavelength ranges. In the figure, relative intensity characteristics when the maximum radiated light intensity of B is set to 1 are shown.
 ここで、RGBの各波長域において、光学瞳PのY方向の正側の端部に入射する映像光の回折ピーク波長についての光源11の放射光強度を、それぞれERY、EGY、EBYとし、光学瞳のY方向の負側の端部に入射する映像光の回折ピーク波長についての光源11の放射光強度を、それぞれER-Y、EG-Y、EB-Yとし、光学瞳Pの中心に入射する映像光の回折ピーク波長についての光源11の放射光強度を、それぞれER0、EG0、EB0とする。表3は、本実施形態の光源11に関する各パラメータの値を示している。 Here, in each of the RGB wavelength ranges, the radiated light intensity of the light source 11 with respect to the diffraction peak wavelength of the image light incident on the Y-direction positive end of the optical pupil P is respectively expressed as E RY , E GY , E BY. and then, the emitted light intensity of the light source 11 for the diffraction peak wavelength of the image light to be incident on the end portion of the negative side in the Y direction of the optical pupil, respectively E R-Y, E G- Y, and E B-Y, optical Assume that the radiated light intensities of the light source 11 with respect to the diffraction peak wavelength of the image light incident on the center of the pupil P are E R0 , E G0 and E B0 , respectively. Table 3 shows the values of the parameters related to the light source 11 of the present embodiment.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、本実施形態では、以下の条件式(4)(5)を満足している。すなわち、
   EBY-EB-Y<0   ・・・(4)
   ERY-ER-Y>0   ・・・(5)
である。
As shown in Table 3, in this embodiment, the following conditional expressions (4) and (5) are satisfied. That is,
E BY -E BY <0 ··· ( 4)
E RY -E RY> 0 ··· ( 5)
It is.
 上述した条件式(1)、(2)、(3)を満足するとき、すなわち、HOE33の作製時の光学瞳P側に配置される点光源81を、略光学瞳Pの面上に配置してHOE33を作製した場合、光学瞳Pの中心から観察者の瞳がずれて位置すると、観察者の瞳に入射する映像光の回折ピーク波長がシフトする点は、前述した通りである。 When the conditional expressions (1), (2), and (3) described above are satisfied, that is, the point light source 81 arranged on the optical pupil P side at the time of manufacturing the HOE 33 is arranged on the surface of the substantially optical pupil P. As described above, when the HOE 33 is manufactured, when the observer's pupil is shifted from the center of the optical pupil P, the diffraction peak wavelength of the image light incident on the observer's pupil is shifted.
 一方、観察者が映像を観察するときに感じる光の強度(観察照度)は、映像光強度および比視感度で決まる。前者の映像光強度は、光源11の放射光強度とHOE33の回折効率との積でほぼ決まる。これに対して、後者の比視感度は、図17で示したように、波長555nm付近で最も高く、その波長から長波長側および短波長側に向かうにつれて減少する。つまり、比視感度は、Bの波長域では長波長側ほど高く、Rの波長域では長波長側ほど低い。 On the other hand, the light intensity (observation illuminance) that the observer feels when observing an image is determined by the image light intensity and the relative visibility. The former image light intensity is substantially determined by the product of the radiated light intensity of the light source 11 and the diffraction efficiency of the HOE 33. On the other hand, as shown in FIG. 17, the specific luminous sensitivity of the latter is the highest in the vicinity of the wavelength 555 nm, and decreases from the wavelength toward the long wavelength side and the short wavelength side. That is, the relative visibility is higher in the B wavelength region as it is longer, and is lower in the R wavelength region as it is longer.
 条件式(4)(5)を満足する場合、BおよびRの波長域における光源11の放射光強度の変化は、比視感度の変化とは逆になる。すなわち、光源11の放射光強度は、Bの波長域では長波長側で低く、Rの波長域では長波長側で高い。これにより、光学瞳Pの中心から観察者の瞳がY方向の正負どちらの方向にずれても、比視感度を考慮した、Y方向の瞳位置の違いによるRGBの観察照度比の変化を小さく抑えることができる。その結果、観察者が感じ取る映像の色目がY方向の瞳位置によって変化するのを小さく抑えることができる。 When the conditional expressions (4) and (5) are satisfied, the change in the emitted light intensity of the light source 11 in the B and R wavelength ranges is opposite to the change in the relative luminous sensitivity. That is, the emitted light intensity of the light source 11 is low on the long wavelength side in the B wavelength range and high on the long wavelength side in the R wavelength range. As a result, even if the observer's pupil deviates from the center of the optical pupil P in either the positive or negative direction in the Y direction, the change in the RGB observation illuminance ratio due to the difference in the pupil position in the Y direction is reduced in consideration of the relative visibility. Can be suppressed. As a result, it is possible to suppress a change in the color of the video perceived by the observer depending on the pupil position in the Y direction.
 図8は、本実施形態における、Y方向の瞳位置の違いによるRGBの観察照度比の変化を、Gの観察照度を基準として示している。同図より、図26で示した従来に比べて、特に、Y方向の瞳端部(瞳上端、瞳下端)において、RGBの観察照度比の変化が小さく抑えられていることがわかる。 FIG. 8 shows the change in the RGB observation illuminance ratio due to the difference in the pupil position in the Y direction in the present embodiment, with the G observation illuminance as a reference. From the figure, it can be seen that, compared to the conventional example shown in FIG. 26, the change in the RGB observation illuminance ratio is suppressed to be small, particularly at the pupil end portion (upper pupil end, lower pupil end) in the Y direction.
 つまり、条件式(4)(5)を満足することにより、BおよびRの波長域において、放射光強度曲線上の2点を結ぶ直線の傾きの正負と、比視感度曲線上の2点を結ぶ直線の傾きの正負とが逆になり、この関係が、Y方向の瞳位置の違いによるRGBの観察照度比の変化を小さく抑える方向に働くため、観察者が感じ取る映像の色目がY方向の瞳位置によって変化するのを小さく抑えることができる。 In other words, by satisfying the conditional expressions (4) and (5), the positive and negative slopes of the straight line connecting the two points on the radiated light intensity curve and the two points on the relative luminous efficiency curve are obtained in the B and R wavelength regions. The polarity of the connecting straight line is reversed, and this relationship works in a direction to suppress the change in the RGB observation illumination ratio due to the difference in the pupil position in the Y direction, so that the color of the image perceived by the observer is in the Y direction. It is possible to suppress the change depending on the pupil position.
 なお、観察照度にはHOEの回折効率も影響するが、前述したように各瞳位置に到達する光についてのHOEの最大回折効率はほぼ一定であるので、条件式(4)(5)を満足することによって、Y方向のどの瞳位置でもRGBの観察照度比の変化を小さくでき、瞳位置による観察映像の色目の変化を小さくできる点に変わりはない。 Note that although the diffraction efficiency of the HOE also affects the observation illuminance, the maximum diffraction efficiency of the HOE for the light reaching each pupil position is substantially constant as described above, so that the conditional expressions (4) and (5) are satisfied. By doing so, the change in RGB observation illuminance ratio can be reduced at any pupil position in the Y direction, and the change in the color of the observation image due to the pupil position can be reduced.
 また、表3より、本実施形態では、以下の条件式(6)(7)をさらに満足していることがわかる。すなわち、
   (EBY-EB0)×(EB0-EB-Y)>0   ・・・(6)
   (ERY-ER0)×(ER0-ER-Y)>0   ・・・(7)
である。
Further, from Table 3, it can be seen that the following conditional expressions (6) and (7) are further satisfied in this embodiment. That is,
(E BY -E B0) × ( E B0 -E BY)> 0 ··· (6)
(E RY -E R0) × ( E R0 -E RY)> 0 ··· (7)
It is.
 上述した条件式(4)、すなわち、EBY-EB-Y<0を満足する条件のもとで、条件式(6)を満足する場合、EBY、EB0、EB-Yの間には、EBY<EB0<EB-Yの関係が成り立つ。これは、Bの波長域では、放射光強度が長波長側ほど低くなる(単調減少である)ことを意味する。また、上述した条件式(5)、すなわち、ERY-ER-Y>0を満足する条件のもとで、条件式(7)を満足する場合、ERY、ER0、ER-Yの間には、ERY>ER0>ER-Yの関係が成り立つ。これは、Rの波長域では、放射光強度が長波長側ほど高くなる(単調増加である)ことを意味する。 Condition mentioned above (4), i.e., is satisfied under the conditions that satisfy the E BY -E BY <0, the conditional expression (6), between E BY, E B0, E BY the, it holds the relationship of E BY <E B0 <E BY . This means that in the wavelength range of B, the emitted light intensity becomes lower (monotonically decreasing) toward the longer wavelength side. Further, the above-mentioned conditional expression (5), i.e., it is satisfied under the conditions that satisfy the E RY -E RY> 0, the conditional expression (7), E RY, E R0, E RY between, holds the relationship of E RY> E R0> E RY . This means that in the wavelength region of R, the emitted light intensity becomes higher as the wavelength is longer (monotonically increasing).
 一方、比視感度は、図17に示したように、波長555nmよりも短波長側のBの波長域では、長波長側ほど高くなり(単調増加であり)、波長555nmよりも長波長側のRの波長域では、長波長側ほど低くなる(単調減少である)。 On the other hand, as shown in FIG. 17, the specific visibility becomes higher in the B wavelength region on the shorter wavelength side than the wavelength 555 nm (monotonically increases), and on the longer wavelength side than the wavelength 555 nm. In the wavelength region of R, the longer the wavelength, the lower (monotonically decreasing).
 本実施形態では、Bの波長域では、光源11の放射光強度の変化を、比視感度の単調な変化に合わせて単調な変化としつつ、比視感度の変化(単調増加)とは逆の単調減少とする一方、Rの波長域では、光源11の放射光強度の変化を、比視感度の単調な変化に合わせて単調な変化としつつ、比視感度の変化(単調減少)とは逆の単調増加としている。すなわち、BおよびRの波長域で、比視感度の単調な変化に合わせた放射光強度特性としている。これにより、Y方向の瞳位置の違いによる観察映像の色の変化を小さく抑える本発明の効果を高めることができる。 In the present embodiment, in the B wavelength range, the change in the radiated light intensity of the light source 11 is a monotonous change in accordance with the monotonous change in the relative luminous efficiency, and is opposite to the change in the monochromatic sensitivity (monotonic increase). On the other hand, in the wavelength region of R, the change in the intensity of the radiated light of the light source 11 is changed to a monotonous change in accordance with the monotonous change in the relative luminous efficiency, and is opposite to the change in the luminous efficiency (monotonic decrease). The monotonic increase. In other words, in the B and R wavelength regions, the radiated light intensity characteristics are adapted to the monotonous change in specific visibility. Thereby, the effect of this invention which suppresses the change of the color of the observation image | video by the difference in the pupil position of a Y direction can be heightened.
 〔実施の形態2〕
 本発明のさらに他の実施の形態について、図面に基づいて説明すれば、以下の通りである。なお、説明の便宜上、実施の形態1と同一の構成には同一の部材番号を付記し、その説明を省略する。
[Embodiment 2]
The following will describe still another embodiment of the present invention with reference to the drawings. For convenience of explanation, the same components as those in the first embodiment are denoted by the same member numbers, and the description thereof is omitted.
 本実施形態の映像表示装置1は、HOE33の回折特性および光源11の放射光強度特性が異なる以外は、実施の形態1と同様の構成である。 The video display device 1 of the present embodiment has the same configuration as that of the first embodiment except that the diffraction characteristics of the HOE 33 and the emitted light intensity characteristics of the light source 11 are different.
 図9は、本実施形態の映像表示装置1に適用されるHOE33の製造光学系の主要部を拡大して示す説明図である。本実施形態のHOE33は、以下のようにして作製されている。すなわち、露光時に光学瞳P側に配置される点光源81R・81G・81Bのうち、点光源81G・81Bを光学瞳Pの中心に配置する一方、点光源81Rを点光源81G・81Bに対して光学瞳Pの面上でずらして配置し、この状態でホログラム感光材料33aを露光することによってHOE33が作製されている。このとき、点光源81RからのRの露光光線のホログラム感光材料33aへの入射角度は30度であり、点光源81B・81GからのBおよびGの露光光線のホログラム感光材料33aへの入射角度は32度となっている。 FIG. 9 is an explanatory view showing, in an enlarged manner, main parts of the manufacturing optical system of the HOE 33 applied to the video display device 1 of the present embodiment. The HOE 33 of this embodiment is manufactured as follows. That is, among the point light sources 81R, 81G, and 81B arranged on the optical pupil P side at the time of exposure, the point light sources 81G and 81B are arranged at the center of the optical pupil P, while the point light source 81R is arranged with respect to the point light sources 81G and 81B. The HOE 33 is manufactured by shifting the optical pupil P on the surface and exposing the hologram photosensitive material 33a in this state. At this time, the incident angle of the R exposure light beam from the point light source 81R to the hologram photosensitive material 33a is 30 degrees, and the incident angle of the B and G exposure light beams from the point light sources 81B and 81G to the hologram photosensitive material 33a is It is 32 degrees.
 本実施形態において、再生時に光学瞳Pの中心を通過する光についてのHOE33の回折ピーク波長は、表4のようになる。 In this embodiment, the diffraction peak wavelength of the HOE 33 for light passing through the center of the optical pupil P during reproduction is as shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本実施形態において、RGBの露光波長は、実施の形態1と同様に、例えば647nm、532nm、476.5nmであり、ホログラム感光材料33aの厚さ方向の収縮率は例えば2%である。一方、RGBの使用波長(光源11の使用波長領域を考慮したときの瞳中心到達波長)は、例えば627.4nm、526.9nm、471.9nmである。つまり、露光波長と使用波長とのズレが、GやBよりもRのほうが大きい。 In the present embodiment, the RGB exposure wavelengths are, for example, 647 nm, 532 nm, and 476.5 nm, and the shrinkage rate in the thickness direction of the hologram photosensitive material 33a is, for example, 2%. On the other hand, the used wavelengths of RGB (wavelengths reaching the pupil center when the used wavelength region of the light source 11 is taken into consideration) are, for example, 627.4 nm, 526.9 nm, and 471.9 nm. In other words, the difference between the exposure wavelength and the use wavelength is larger in R than in G or B.
 そこで、上記のようにRについての露光波長と使用波長とのズレ量を考慮して、点光源81Rを点光源81G・81Bとはずらして配置し、HOE33を作製することにより、映像観察時に光学瞳Pの中心に観察者の瞳中心を一致させたときには、全ての画角において、照明光がHOE33で確実に回折反射されて観察者の瞳に到達する。したがって、観察者は、光学瞳Pの中心位置で画面全域にわたって明るく高品位な映像を観察することができる。 Therefore, in consideration of the deviation between the exposure wavelength and the used wavelength for R as described above, the point light source 81R is arranged away from the point light sources 81G and 81B, and the HOE 33 is manufactured, so that the optical signal can be obtained during image observation. When the observer's pupil center is made to coincide with the center of the pupil P, the illumination light is reliably diffracted and reflected by the HOE 33 at all angles of view and reaches the observer's pupil. Therefore, the observer can observe a bright and high-definition image over the entire screen at the center position of the optical pupil P.
 表5は、上記の製造光学系で作製されたHOE33を用い、再生時にそのHOE33で回折反射されて光学瞳PのY方向の各位置に到達する映像光の回折ピーク波長を示している。なお、Y方向(上下方向)の光学瞳Pの大きさは、実施の形態1と同様に3mmであるので、ここでは、瞳下端、瞳中心、瞳上端にそれぞれ対応する、Y=-1.5(mm)、Y=0(mm)、Y=1.5(mm)の各位置に到達する映像光の回折ピーク波長を示している。 Table 5 shows diffraction peak wavelengths of image light that is diffracted and reflected by the HOE 33 at the time of reproduction and reaches each position in the Y direction of the optical pupil P using the HOE 33 produced by the above-described manufacturing optical system. Note that the size of the optical pupil P in the Y direction (vertical direction) is 3 mm, as in the first embodiment, and here, corresponding to the pupil lower end, the pupil center, and the pupil upper end, respectively, Y = −1. The diffraction peak wavelength of the image light reaching each position of 5 (mm), Y = 0 (mm), and Y = 1.5 (mm) is shown.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5より、本実施形態においても、光学瞳Pの中心に到達する映像光の回折ピーク波長に対して、光学瞳Pの中心からY方向正側にずれた位置(Y=1.5)に到達する映像光の回折ピーク波長は、長波長側にシフトし、光学瞳Pの中心からY方向負側にずれた位置(Y=-1.5)に到達する映像光の回折ピーク波長は、短波長側にシフトしていることがわかる。 From Table 5, also in this embodiment, with respect to the diffraction peak wavelength of the image light reaching the center of the optical pupil P, the position is shifted to the Y-direction positive side from the center of the optical pupil P (Y = 1.5). The diffraction peak wavelength of the image light that arrives shifts to the long wavelength side, and the diffraction peak wavelength of the image light that reaches the position shifted from the center of the optical pupil P to the Y direction negative side (Y = −1.5) is It turns out that it has shifted to the short wavelength side.
 次に、本実施形態の光源11の放射光強度特性について説明する。図10は、本実施形態の光源11の放射光強度特性を示している。本実施形態では、光源11は、RGBの個々の光を放射するチップを1パッケージ化した、RGB一体型の白色LED(3チップイン1パッケージ)で構成されており、RGBの放射光強度を独立して制御することが可能な構成となっている。ここで、表6は、本実施形態の光源11に関する各パラメータの値を示している。 Next, the radiated light intensity characteristic of the light source 11 of this embodiment will be described. FIG. 10 shows the radiated light intensity characteristics of the light source 11 of the present embodiment. In this embodiment, the light source 11 is composed of an RGB-integrated white LED (3-chip in 1 package) in which chips emitting RGB individual light are packaged, and the RGB emitted light intensity is independent. Thus, the configuration can be controlled. Here, Table 6 shows the value of each parameter related to the light source 11 of the present embodiment.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6より、本実施形態では、実施の形態1で示した条件式(1)~(5)を全て満足していることに加えて、以下の条件式(8)をさらに満足していることがわかる。すなわち、
   ERY/ER-Y>EB-Y/EBY   ・・・(8)
である。
From Table 6, in this embodiment, in addition to satisfying all of the conditional expressions (1) to (5) shown in the first embodiment, the following conditional expression (8) is further satisfied: I understand. That is,
E RY / E RY> E BY / E BY ··· (8)
It is.
 条件式(8)を満足する場合、ER-Yに対するERYの比が、EBYに対するEB-Yの比よりも大きいので、Bの波長域よりもRの波長域のほうが、光源11の放射光強度の変化が大きくなる。比視感度の変化は、一般に、Bの波長域よりもRの波長域のほうが大きいので、上記のように光源11の放射光強度を設定することにより、Y方向の瞳位置の違いによるRの観察照度の変化を効果的に小さく抑えることができる。したがって、Y方向の瞳位置の違いによるBとRの観察照度のバランスの崩れ(BとRの観察照度比の変化)を小さくすることができ、観察者が感じ取る映像の色目がY方向の瞳位置によって変化するのをさらに小さく抑えることができる。 When satisfying the conditional expression (8), the ratio of E RY for E RY is is greater than the ratio of E BY for E BY, towards the wavelength range of R than the wavelength region of B is, the light source 11 The change in the intensity of the emitted light increases. In general, the change in the relative visibility is larger in the R wavelength region than in the B wavelength region. Therefore, by setting the radiated light intensity of the light source 11 as described above, the change in R due to the difference in the pupil position in the Y direction is set. The change in observation illuminance can be effectively reduced. Therefore, the balance of the observation illuminance between B and R due to the difference in the pupil position in the Y direction (change in the observation illuminance ratio between B and R) can be reduced, and the color of the image felt by the observer is the pupil in the Y direction. The change depending on the position can be further reduced.
 図11は、本実施形態における、Y方向の瞳位置の違いによるRGBの観察照度比の変化を、Gの観察照度を基準として示している。同図より、Y方向の瞳位置の違いによる、RとBの観察照度比の変化が、実施の形態1よりも小さく抑えられていることがわかる。 FIG. 11 shows the change in the RGB observation illuminance ratio due to the difference in the pupil position in the Y direction in the present embodiment, with the G observation illuminance as a reference. From the figure, it can be seen that the change in the observation illuminance ratio of R and B due to the difference in the pupil position in the Y direction is suppressed to be smaller than that in the first embodiment.
 また、本実施形態では、以下の条件式(9)をさらに満足することが望ましい。すなわち、
   (ERY/ER-Y)/(EB-Y/EBY)<2   ・・・(9)
である。
In the present embodiment, it is desirable that the following conditional expression (9) is further satisfied. That is,
(E RY / E RY) / (E BY / E BY) <2 ··· (9)
It is.
 条件式(9)を満足することにより、Rの波長域での光源11の放射光強度の変化が、Bの波長域での光源11の放射光強度の変化に対して、適正な範囲に設定されるため(放射光強度の変化が大きくなりすぎないため)、観察者が感じ取る映像の色目がY方向の瞳位置によって変化するのを確実に抑えることができる。 By satisfying conditional expression (9), the change in the radiated light intensity of the light source 11 in the R wavelength range is set to an appropriate range with respect to the change in the radiated light intensity of the light source 11 in the B wavelength range. Therefore, since the change in the intensity of the emitted light does not become too large, it is possible to reliably suppress the change in the color of the image perceived by the observer depending on the pupil position in the Y direction.
 また、本実施形態では、以下の条件式(10)をさらに満足することが望ましい。すなわち、
   EGY-EG-Y<0   ・・・(10)
である。
In this embodiment, it is desirable that the following conditional expression (10) is further satisfied. That is,
E GY -E GY <0 ··· ( 10)
It is.
 色度図(例えばXYZ表色系におけるXY色度座標で示した図)で広い色再現範囲を実現するためには、Gの映像光のピーク波長は500nmから540nmの間にあることが望ましい。上記波長範囲における比視感度は、Bの波長域と同じように、長波長側ほど高くなる(単調増加である)。 In order to realize a wide color reproduction range in a chromaticity diagram (for example, a diagram represented by XY chromaticity coordinates in the XYZ color system), it is desirable that the peak wavelength of the G image light is between 500 nm and 540 nm. The relative visibility in the above wavelength range becomes higher on the longer wavelength side (monotonically increasing) as in the B wavelength range.
 そこで、条件式(10)を満足することにより、光源11の放射光強度は、Bの波長域と同様に、Gの波長域において長波長側で低いので、Y方向の瞳位置の違いによるGの観察照度の変化を小さく抑えることができる。その結果、観察映像の色再現領域を広くしながら、観察者が感じ取る映像の色目がY方向の瞳位置によって変化するのを小さく抑えることができる。 Therefore, by satisfying the conditional expression (10), the radiated light intensity of the light source 11 is low on the long wavelength side in the G wavelength range, similarly to the B wavelength range, so that G due to the difference in the pupil position in the Y direction. The change in observation illuminance can be kept small. As a result, it is possible to suppress a change in the color of the image perceived by the observer depending on the pupil position in the Y direction while widening the color reproduction region of the observation image.
 また、本実施形態では、以下の条件式(11)をさらに満足することが望ましい。すなわち、
   ERY/ER-Y>EG-Y/EGY   ・・・(11)
である。
In the present embodiment, it is desirable that the following conditional expression (11) is further satisfied. That is,
E RY / E RY> E GY / E GY ··· (11)
It is.
 条件式(11)を満足する場合、ER-Yに対するERYの比が、EGYに対するEG-Yの比よりも大きいので、Gの波長域よりもRの波長域のほうが、光源11の放射光強度の変化が大きくなる。比視感度の変化は、一般に、Gの波長域よりもRの波長域のほうが大きいので、上記のように光源11の放射光強度を設定することにより、Y方向の瞳位置の違いによるRの観察照度の変化を効果的に小さく抑えながら、Y方向の瞳位置の違いによるGとRの観察照度のバランスの崩れ(GとRの照度比の変化)を小さく抑えることができる。 When satisfying the conditional expression (11), the ratio of E RY for E RY is is greater than the ratio of E GY for E GY, towards the wavelength range of R than the wavelength band of G is, the light source 11 The change in the intensity of the emitted light increases. Since the change in the relative visibility is generally larger in the R wavelength range than in the G wavelength range, setting the radiated light intensity of the light source 11 as described above makes it possible to change the R value due to the difference in the pupil position in the Y direction. While effectively suppressing the change in the observation illuminance, it is possible to reduce the balance of the observation illuminance between G and R (change in the illuminance ratio between G and R) due to the difference in the pupil position in the Y direction.
 また、本実施形態では、以下の条件式(12)をさらに満足することが望ましい。すなわち、
   (ERY/ER-Y)/(EG-Y/EGY)<4   ・・・(12)
である。
In the present embodiment, it is desirable that the following conditional expression (12) is further satisfied. That is,
(E RY / E RY) / (E GY / E GY) <4 ··· (12)
It is.
 条件式(12)を満足することにより、Rの波長域での光源11の放射光強度の変化が、Gの波長域での光源11の放射光強度の変化に対して、適正な範囲に設定されるため(放射光強度の変化が大きくなりすぎないため)、Y方向の瞳位置の違いによる観察映像の色の変化を確実に抑えることができる。 By satisfying conditional expression (12), the change in the radiated light intensity of the light source 11 in the R wavelength range is set to an appropriate range with respect to the change in the radiated light intensity of the light source 11 in the G wavelength range. Therefore, the change in the color of the observation image due to the difference in the pupil position in the Y direction can be reliably suppressed.
 また、本実施形態では、以下の条件式(13)をさらに満足することが望ましい。すなわち、
   (EGY-EG0)×(EG0-EG-Y)>0   ・・・(13)
である。
In the present embodiment, it is desirable that the following conditional expression (13) is further satisfied. That is,
(E GY -E G0) × ( E G0 -E GY)> 0 ··· (13)
It is.
 上述した条件式(10)、すなわち、EGY-EG-Y<0を満足する条件のもとで、条件式(13)を満足する場合、EGY、EG0、EG-Yの間には、EGY<EG0<EG-Yの関係が成り立つ。これは、Gの波長域では、放射光強度が長波長側ほど低くなる(単調減少である)ことを意味する。一方、比視感度は、一般に、波長555nmよりも短波長側のGの波長域では、長波長側ほど高くなる(単調増加である)。 Above conditional expression (10), i.e., is satisfied under the conditions that satisfy the E GY -E GY <0, the conditional expression (13), between E GY, E G0, E GY the, it holds the relationship of E GY <E G0 <E GY . This means that in the G wavelength range, the emitted light intensity becomes lower (monotonically decreasing) toward the longer wavelength side. On the other hand, the relative visibility is generally higher in the G wavelength region shorter than the wavelength 555 nm as the longer wavelength side (monotonically increases).
 条件式(13)を満足することにより、Bの波長域と同様に、Gの波長域における光源11の放射光強度の変化を、比視感度の単調な変化に合わせて単調な変化としつつ、比視感度の変化(単調増加)とは逆の単調減少とし、Gの波長域で、比視感度の単調な変化に合わせた放射光強度特性となる。これにより、Y方向の瞳位置の違いによる観察映像の色の変化を小さく抑える本発明の効果をさらに高めることができる。 By satisfying conditional expression (13), as in the B wavelength range, the change in the emitted light intensity of the light source 11 in the G wavelength range is changed to a monotonous change in accordance with the monotonous change in the relative luminous efficiency. It is a monotonic decrease opposite to the change in monoscopic sensitivity (monotonic increase), and the radiated light intensity characteristic is adapted to the monotonous change in specific visibility in the G wavelength range. Thereby, the effect of this invention which suppresses the change of the color of the observation image | video by the difference in the pupil position of a Y direction can further be heightened.
 表6より、本実施形態では、条件式(9)~(13)を全て満足していることがわかる。 Table 6 shows that in this embodiment, all conditional expressions (9) to (13) are satisfied.
 〔実施の形態3〕
 本発明のさらに他の実施の形態について、図面に基づいて説明すれば、以下の通りである。なお、説明の便宜上、実施の形態1、2と同一の構成には同一の部材番号を付記し、その説明を省略する。
[Embodiment 3]
The following will describe still another embodiment of the present invention with reference to the drawings. For convenience of explanation, the same components as those in Embodiments 1 and 2 are denoted by the same member numbers, and the description thereof is omitted.
 図12は、本実施形態の映像表示装置1およびそれを備えたHUDの概略の構成を示す断面図である。本実施形態の映像表示装置1は、光源11と、照明光学系12としての照明レンズ22と、表示素子13と、観察光学系15とを有している。 FIG. 12 is a cross-sectional view showing a schematic configuration of the video display device 1 of the present embodiment and the HUD including the same. The video display device 1 according to the present embodiment includes a light source 11, an illumination lens 22 as the illumination optical system 12, a display element 13, and an observation optical system 15.
 観察光学系15は、体積位相型で反射型のHOE34と、そのHOE34を保持する基板35とで構成されている。基板35は、例えば、車両、船舶、鉄道、航空機などの輸送手段における運転席前面のフロントガラスに相当する透明なウィンドシールドで構成することが可能であり、その少なくとも一部が観察者の視界内に配置される。 The observation optical system 15 includes a volume phase type reflection type HOE 34 and a substrate 35 that holds the HOE 34. The substrate 35 can be composed of a transparent windshield corresponding to the windshield in front of the driver's seat in a vehicle, ship, railroad, aircraft, etc., for example, at least a part of which is within the observer's field of view. Placed in.
 上記の構成によれば、光源11から出射される光は、照明レンズ22で集光され、表示素子13に入射する。表示素子13にて画像データに応じて変調された光(映像光)は、HOE34に入射し、そこで回折反射されて光学瞳Pに導かれる。光学瞳Pの位置では、観察者は、表示素子13にて表示された映像の拡大虚像を観察できると同時に、HOE34およびウィンドシールド35を介して外界を観察することができる。 According to the above configuration, the light emitted from the light source 11 is collected by the illumination lens 22 and enters the display element 13. Light (video light) modulated in accordance with image data by the display element 13 enters the HOE 34, where it is diffracted and reflected and guided to the optical pupil P. At the position of the optical pupil P, the observer can observe the magnified virtual image of the image displayed on the display element 13 and can observe the outside world through the HOE 34 and the windshield 35.
 なお、ウィンドシールドとは別体の基板にHOE34を保持し、上記基板を観察者の視界内に配置することによってHUDを構成してもよい。この場合は、プロンプタのような原稿表示装置としてHUDを機能させることができる。したがって、本実施形態のHUDは、映像表示装置1のHOE34が観察者の視界内に配置される基板に保持されて構成されればよいと言うことができる。 It should be noted that the HUD may be configured by holding the HOE 34 on a substrate separate from the windshield and placing the substrate in the field of view of the observer. In this case, the HUD can function as a document display device such as a prompter. Therefore, it can be said that the HUD of the present embodiment only needs to be configured by holding the HOE 34 of the video display device 1 on the substrate disposed in the field of view of the observer.
 ところで、HUDもHMDと同様に、映像を背景(外界)に重ねて観察可能なシースルーディスプレイである。HUDでは、映像光と外界光とを重ね合わせるコンバイナとして上記のHOE34が用いられているが、HOE34が基板35にほぼ平行に配置されることが多いので、基板35の表面反射を考慮する必要がある。つまり、画面中心の光線がHOE34でほぼ正反射するように光学系を設定すると、HOE34にて回折される光と基板35の表面で反射される光との角度ズレが小さいために、基板35の表面反射による像がゴーストとして観察されることになる。 By the way, HUD, like HMD, is a see-through display that can be observed with images superimposed on the background (outside). In the HUD, the above-described HOE 34 is used as a combiner that superimposes image light and external light. However, since the HOE 34 is often arranged substantially parallel to the substrate 35, it is necessary to consider the surface reflection of the substrate 35. is there. That is, when the optical system is set so that the light beam at the center of the screen is substantially regularly reflected by the HOE 34, the angle deviation between the light diffracted by the HOE 34 and the light reflected by the surface of the substrate 35 is small. The image due to the surface reflection is observed as a ghost.
 このようなゴースト像の観察を回避するためには、HOE34での回折角度が全ての像高に対して、正反射角度からずれるように設定する必要がある。本実施形態では、表示素子13からの画面中心主光線(光軸上の光線)がHOE34に入射する角度を45.5°とし、画面中心主光線がHOE34で回折された後の射出角度を35°とし、上下方向の観察画角を5.4°、水平方向の観察画角を7.2°とすることにより、基板35の表面反射による光を、観察領域外へ反射させている。また、本実施形態では、光学瞳Pのサイズは、直径50mm程度としている。 In order to avoid the observation of such a ghost image, it is necessary to set the diffraction angle at the HOE 34 to deviate from the regular reflection angle with respect to all image heights. In this embodiment, the angle at which the screen center chief ray (ray on the optical axis) from the display element 13 enters the HOE 34 is 45.5 °, and the exit angle after the screen center chief ray is diffracted by the HOE 34 is 35. By setting the viewing angle in the vertical direction to 5.4 ° and the viewing angle in the horizontal direction to 7.2 °, the light reflected by the surface of the substrate 35 is reflected outside the observation region. In the present embodiment, the size of the optical pupil P is about 50 mm in diameter.
 図13は、HOE34の製造光学系の主要部を拡大して示す説明図である。製造光学系において、光源91は、光学瞳Pの面上(例えば瞳中心)に配置されている。光源91から射出された光束は、そのまま(基板35とは反対側から)ホログラム感光材料34aに照射される。一方、ホログラム感光材料34aに対して光学瞳Pとは反対側(基板35側)には、光源92および波面生成光学系93が配置されており、光源92から射出された光束は、波面生成光学系93にて所望の波面を有する光束に変換された後、ホログラム感光材料34aに照射される。これら2光束の干渉縞をホログラム感光材料34aに屈折率分布として記録することにより、HOE34が作製される。なお、光源91・92の位置には、図示しないRGBのレーザ光源から射出された光が1点に重なって集光されている。 FIG. 13 is an explanatory view showing, in an enlarged manner, main parts of the manufacturing optical system of the HOE 34. As shown in FIG. In the manufacturing optical system, the light source 91 is disposed on the surface of the optical pupil P (for example, the center of the pupil). The light beam emitted from the light source 91 is irradiated to the hologram photosensitive material 34a as it is (from the side opposite to the substrate 35). On the other hand, a light source 92 and a wavefront generating optical system 93 are disposed on the opposite side (substrate 35 side) of the hologram photosensitive material 34a from the optical pupil P, and the light beam emitted from the light source 92 is wavefront generating optical. After being converted into a light beam having a desired wavefront by the system 93, the hologram photosensitive material 34a is irradiated. By recording these two light flux interference fringes on the hologram photosensitive material 34a as a refractive index distribution, the HOE 34 is manufactured. Note that light emitted from an RGB laser light source (not shown) is focused on one point at the positions of the light sources 91 and 92.
 本実施形態では、再生時に光学瞳Pの中心を通過する光についてのHOE34の回折ピーク波長は、表7のようになっている。 In this embodiment, the diffraction peak wavelength of the HOE 34 for the light passing through the center of the optical pupil P during reproduction is as shown in Table 7.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 また、表8は、上記の製造光学系で作製されたHOE34を用い、再生時にそのHOE34で回折反射されて光学瞳PのY方向の各位置に到達する映像光の回折ピーク波長を示している。なお、本実施形態では、図12の光学瞳Pの面内で、HOE33の回折角度が小さくなる方向は、瞳上端から瞳下端に向かう方向であるため、その方向をY方向の正の方向としている。本実施形態では、Y方向(上下方向)の光学瞳Pの大きさは、上述したように50mmであるので、表8では、瞳上端、瞳中心、瞳下端にそれぞれ対応する、Y=-25(mm)、Y=0(mm)、Y=25(mm)の各位置に到達する映像光の回折ピーク波長を示している。 Table 8 shows diffraction peak wavelengths of image light that is diffracted and reflected by the HOE 34 at the time of reproduction and reaches each position in the Y direction of the optical pupil P at the time of reproduction using the HOE 34 manufactured by the above-described manufacturing optical system. . In the present embodiment, the direction in which the diffraction angle of the HOE 33 decreases in the plane of the optical pupil P in FIG. 12 is the direction from the upper end of the pupil to the lower end of the pupil, and therefore, this direction is defined as the positive direction of the Y direction. Yes. In the present embodiment, since the size of the optical pupil P in the Y direction (vertical direction) is 50 mm as described above, in Table 8, corresponding to the pupil upper end, the pupil center, and the pupil lower end, Y = −25 The diffraction peak wavelengths of the image light reaching the respective positions (mm), Y = 0 (mm), and Y = 25 (mm) are shown.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表8より、光学瞳Pの中心に到達する映像光の回折ピーク波長に対して、光学瞳Pの中心からY方向正側にずれた位置(Y=25)に到達する映像光の回折ピーク波長は、長波長側にシフトし、光学瞳Pの中心からY方向負側にずれた位置(Y=-25)に到達する映像光の回折ピーク波長は、短波長側にシフトすることがわかる。このことから、Y方向とは、光学瞳Pの面内で回折ピーク波長がシフトする方向であり、Y方向における正の方向とは、Y方向において回折ピーク波長が長波長側にシフトする方向である点は、実施の形態1および2と同様であると言える。 From Table 8, with respect to the diffraction peak wavelength of the image light reaching the center of the optical pupil P, the diffraction peak wavelength of the image light reaching the position shifted from the center of the optical pupil P to the Y direction positive side (Y = 25). Is shifted to the long wavelength side, and the diffraction peak wavelength of the image light reaching the position (Y = −25) shifted from the center of the optical pupil P to the Y direction negative side is shifted to the short wavelength side. Therefore, the Y direction is the direction in which the diffraction peak wavelength shifts in the plane of the optical pupil P, and the positive direction in the Y direction is the direction in which the diffraction peak wavelength shifts to the long wavelength side in the Y direction. It can be said that a certain point is the same as in the first and second embodiments.
 次に、本実施形態の光源11の放射光強度特性について説明する。図14は、本実施形態の光源11の放射光強度特性を示している。本実施形態では、光源11は、実施の形態2と同様、RGBの個々の光を放射するチップを1パッケージ化した、RGB一体型の白色LED(3チップイン1パッケージ)で構成されており、RGBの放射光強度を独立して制御することが可能な構成となっている。ここで、表9は、本実施形態の光源11に関する各パラメータの値を示している。 Next, the radiated light intensity characteristic of the light source 11 of this embodiment will be described. FIG. 14 shows the radiated light intensity characteristics of the light source 11 of the present embodiment. In the present embodiment, as in the second embodiment, the light source 11 is configured by an RGB-integrated white LED (3-chip in one package) in which chips emitting RGB individual light are packaged in one package. The RGB radiation light intensity can be controlled independently. Here, Table 9 shows the value of each parameter related to the light source 11 of the present embodiment.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表9より、本実施形態では、実施の形態1で示した条件式(1)~(5)を全て満足していることに加えて、実施の形態2で示した条件式(8)~(12)をさらに満足していることがわかる。 From Table 9, in this embodiment, in addition to satisfying all the conditional expressions (1) to (5) shown in the first embodiment, the conditional expressions (8) to (8) shown in the second embodiment are satisfied. It can be seen that 12) is further satisfied.
 図15は、本実施形態における、Y方向の瞳位置の違いによるRGBの観察照度比の変化を、Gの観察照度を基準として示している。同図より、図26で示した従来に比べて、Y方向の瞳位置の違いによるRGBの観察照度比の変化が大幅に改善されていることがわかる。 FIG. 15 shows the change in the RGB observation illuminance ratio due to the difference in the pupil position in the Y direction in this embodiment with reference to the G observation illuminance. From the figure, it can be seen that the change in the RGB observation illuminance ratio due to the difference in the pupil position in the Y direction is significantly improved as compared with the conventional case shown in FIG.
 〔補足〕
 露光時の光学瞳側の光源位置を光学瞳から離してホログラム感光材料を露光し(光学瞳と光源との距離の極限値は無限大)、作製されたHOEを用いた場合、観察映像において、瞳位置のずれによる色ムラは発生しないが、画面内で色ムラが発生する。しかし、この場合でも、本発明と同様に、光源の放射光強度特性を比視感度特性と逆にすれば、つまり、光学瞳に入射するRGBの映像光の波長範囲において、放射光強度曲線上の2点を結ぶ直線の傾きを比視感度曲線上の2点を結ぶ直線の傾きと逆にすれば、瞳位置による色バランスのずれを小さくできる。また、画像の画面内での色補正(画像データの補正)を行うことにより、色バランスのずれを改善することも可能である。
[Supplement]
When exposing the hologram photosensitive material with the light source position on the optical pupil side at the time of exposure away from the optical pupil (the limit value of the distance between the optical pupil and the light source is infinite), and using the produced HOE, Color unevenness due to pupil position shift does not occur, but color unevenness occurs in the screen. However, even in this case, as in the present invention, if the radiated light intensity characteristic of the light source is reversed from the relative visibility characteristic, that is, in the wavelength range of RGB image light incident on the optical pupil, If the slope of the straight line connecting the two points is reversed to the slope of the straight line connecting the two points on the relative visibility curve, the color balance shift due to the pupil position can be reduced. It is also possible to improve color balance deviation by performing color correction (image data correction) within the image screen.
 光学瞳に入射するRGBの映像光の波長領域としては、露光用に入手可能なレーザ光源の波長と、本発明の上述した条件式を満足する光源との組み合わせによって決まる波長領域のうち、色再現領域の広い波長領域を選択することが望ましい。例えば、光学瞳に入射するRGBの映像光の強度ピーク波長が、B:450nm~480nm、G:510nm~540nm、R:610nm~650nmの範囲内にあれば、観察映像においてRGBの色純度を高めて、色再現領域を広げることができる。 The wavelength region of RGB image light incident on the optical pupil includes color reproduction out of the wavelength region determined by the combination of the wavelength of the laser light source available for exposure and the light source satisfying the above-described conditional expression of the present invention. It is desirable to select a wide wavelength region. For example, if the intensity peak wavelength of RGB image light incident on the optical pupil is in the range of B: 450 nm to 480 nm, G: 510 nm to 540 nm, and R: 610 nm to 650 nm, the RGB color purity in the observed image is increased. Thus, the color reproduction area can be expanded.
 各実施の形態で説明した構成を適宜組み合わせて映像表示装置やHMD、HUDを構成することも勿論可能である。また、光源の放射光強度を適切に設定することにより、上述した条件式(1)~(5)を満足し、かつ、条件式(6)~(13)の少なくともいずれかを満足する映像表示装置を実現することができる。 Of course, the video display device, the HMD, and the HUD can be configured by appropriately combining the configurations described in the embodiments. In addition, by appropriately setting the emitted light intensity of the light source, the image display satisfying the above-described conditional expressions (1) to (5) and satisfying at least one of the conditional expressions (6) to (13). An apparatus can be realized.
 本発明の映像表示装置は、例えばHMDやHUDに利用可能である。 The video display device of the present invention can be used for HMD and HUD, for example.
 1 映像表示装置
 2 支持手段
 11 光源
 11a 領域
 13 表示素子
 14 接眼光学系(観察光学系)
 15 観察光学系
 33 HOE
 34 HOE
 35 基板
 P 光学瞳
DESCRIPTION OF SYMBOLS 1 Image display apparatus 2 Support means 11 Light source 11a Area | region 13 Display element 14 Eyepiece optical system (observation optical system)
15 Observation optical system 33 HOE
34 HOE
35 Substrate P Optical pupil

Claims (12)

  1.  光源と、
     前記光源からの光を変調して映像を表示する表示素子と、
     前記表示素子からの映像光を回折反射させて光学瞳に導く体積位相型で反射型のホログラム光学素子を有する観察光学系と、を備えた映像表示装置であって、
     前記光源は、赤、緑、青の各波長域に放射光の強度ピークを有しており、
     赤、緑、青の各波長域において、前記表示素子の表示面の各位置から前記ホログラム光学素子を介して光学瞳の中心に入射する映像光の回折ピーク波長のうち、最も長波長側のものをそれぞれλRlong、λGlong、λBlongとし、最も短波長側のものをそれぞれλRshort、λGshort、λBshortとすると、
       λRlong/λRshort<1.05
       λGlong/λGshort<1.05
       λBlong/λBshort<1.05
    を満足し、
     光学瞳の面内で回折ピーク波長がシフトする方向をY方向とし、そのY方向において回折ピーク波長が長波長側にシフトする方向を正とし、赤および青の各波長域において、光学瞳のY方向の正側の端部に入射する映像光の回折ピーク波長についての前記光源の放射光強度をそれぞれERY、EBYとし、光学瞳のY方向の負側の端部に入射する映像光の回折ピーク波長についての前記光源の放射光強度をそれぞれER-Y、EB-Yとしたとき、
       EBY-EB-Y<0
       ERY-ER-Y>0
    を満足することを特徴とする映像表示装置。
    A light source;
    A display element that displays light by modulating light from the light source;
    An observation optical system having a volume phase type reflection type hologram optical element that diffracts and reflects the image light from the display element and guides it to the optical pupil, and an image display device comprising:
    The light source has an intensity peak of radiated light in each wavelength region of red, green, and blue,
    In each of the red, green, and blue wavelength ranges, the longest wavelength among the diffraction peak wavelengths of image light that enters the center of the optical pupil from each position on the display surface of the display element via the hologram optical element Are λRlong, λGlong, and λBlong respectively, and those on the shortest wavelength side are respectively λRshort, λGshort, and λBshort,
    λRlong / λRshort <1.05
    λGlong / λGshort <1.05
    λBlong / λBshort <1.05
    Satisfied,
    The direction in which the diffraction peak wavelength shifts in the plane of the optical pupil is the Y direction, the direction in which the diffraction peak wavelength shifts to the long wavelength side in the Y direction is positive, and the Y of the optical pupil is in each of the red and blue wavelength regions. direction of the positive side of the radiation intensity of the light source for the diffraction peak wavelength of the image light to be incident on the end portion respectively E RY, and E bY, the image light incident on the end portion of the negative side in the Y direction of the optical pupil the emitted light intensity of the light source for the diffraction peak wavelengths E R-Y, when the E B-Y,
    E BY -E BY <0
    E RY -E RY> 0
    An image display device characterized by satisfying
  2.    ERY/ER-Y>EB-Y/EBY
    を満足することを特徴とする請求項1に記載の映像表示装置。
    E RY / E RY> E BY / E BY
    The video display device according to claim 1, wherein:
  3.    (ERY/ER-Y)/(EB-Y/EBY)<2
    を満足することを特徴とする請求項2に記載の映像表示装置。
    (E RY / E RY) / (E BY / E BY) <2
    The video display device according to claim 2, wherein:
  4.  赤および青の各波長域において、光学瞳の中心に入射する映像光の回折ピーク波長についての前記光源の放射光強度をそれぞれER0、EB0とすると、
       (EBY-EB0)×(EB0-EB-Y)>0
       (ERY-ER0)×(ER0-ER-Y)>0
    を満足することを特徴とする請求項1から3のいずれかに記載の映像表示装置。
    In each of the red and blue wavelength regions, if the radiated light intensity of the light source for the diffraction peak wavelength of the image light incident on the center of the optical pupil is E R0 and E B0 , respectively,
    (E BY -E B0) × ( E B0 -E BY)> 0
    (E RY -E R0) × ( E R0 -E RY)> 0
    4. The video display device according to claim 1, wherein:
  5.  緑の波長域において、光学瞳のY方向の正側の端部に入射する映像光の回折ピーク波長についての前記光源の放射光強度をEGYとし、光学瞳のY方向の負側の端部に入射する映像光の回折ピーク波長についての前記光源の放射光強度をEG-Yとしたとき、
       EGY-EG-Y<0
    を満足することを特徴とする請求項1から4のいずれかに記載の映像表示装置。
    In the green wavelength range, the radiated light intensity of the light source for the diffraction peak wavelength of the image light incident on the Y-direction positive end of the optical pupil is E GY, and the negative end of the optical pupil in the Y-direction when the emitted light intensity of the light source for the diffraction peak wavelength of the image light incident was E G-Y, the
    E GY -E GY <0
    5. The video display device according to claim 1, wherein:
  6.    ERY/ER-Y>EG-Y/EGY
    を満足することを特徴とする請求項5に記載の映像表示装置。
    E RY / E RY> E GY / E GY
    The video display device according to claim 5, wherein:
  7.    (ERY/ER-Y)/(EG-Y/EGY)<4
    を満足することを特徴とする請求項6に記載の映像表示装置。
    (E RY / E RY) / (E GY / E GY) <4
    The video display device according to claim 6, wherein:
  8.  緑の波長域において、光学瞳の中心に入射する映像光の回折ピーク波長についての前記光源の放射光強度をEG0とすると、
       (EGY-EG0)×(EG0-EG-Y)>0
    を満足することを特徴とする請求項5から7のいずれかに記載の映像表示装置。
    When the emitted light intensity of the light source for the diffraction peak wavelength of the image light incident on the center of the optical pupil in the green wavelength region is E G0 ,
    (E GY -E G0) × ( E G0 -E GY)> 0
    The video display device according to claim 5, wherein:
  9.  前記光源と光学瞳とは、共役であることを特徴とする請求項1から8のいずれかに記載の映像表示装置。 The image display device according to any one of claims 1 to 8, wherein the light source and the optical pupil are conjugate.
  10.  前記光源における同一の領域から、赤、緑、青の各波長域の光が放射されることを特徴とする請求項1から9のいずれかに記載の映像表示装置。 10. The video display device according to claim 1, wherein light in each wavelength region of red, green, and blue is emitted from the same region in the light source.
  11.  請求項1から10のいずれかに記載の映像表示装置と、
     前記映像表示装置を観察者の眼前で支持する支持手段と、を備えていることを特徴とするヘッドマウントディスプレイ。
    A video display device according to any one of claims 1 to 10,
    And a support means for supporting the video display device in front of the observer's eyes.
  12.  請求項1から10のいずれかに記載の映像表示装置を備え、前記映像表示装置の前記ホログラム光学素子が、観察者の視界内に配置される基板に保持されていることを特徴とするヘッドアップディスプレイ。 A head-up comprising the video display device according to claim 1, wherein the hologram optical element of the video display device is held on a substrate disposed in a field of view of an observer. display.
PCT/JP2010/053649 2009-05-20 2010-03-05 Image display apparatus, head-mounted display, and head-up display WO2010134374A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009122200 2009-05-20
JP2009-122200 2009-05-20

Publications (1)

Publication Number Publication Date
WO2010134374A1 true WO2010134374A1 (en) 2010-11-25

Family

ID=43126063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053649 WO2010134374A1 (en) 2009-05-20 2010-03-05 Image display apparatus, head-mounted display, and head-up display

Country Status (1)

Country Link
WO (1) WO2010134374A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019522234A (en) * 2016-06-21 2019-08-08 株式会社Nttドコモ Optical system of wearable display device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004061731A (en) * 2002-07-26 2004-02-26 Nikon Corp Image combiner and image display device
JP2007033601A (en) * 2005-07-25 2007-02-08 Konica Minolta Photo Imaging Inc Optical device, video display device, and head mounted display
JP2007052086A (en) * 2005-08-16 2007-03-01 Konica Minolta Photo Imaging Inc Image display apparatus and head mount display

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004061731A (en) * 2002-07-26 2004-02-26 Nikon Corp Image combiner and image display device
JP2007033601A (en) * 2005-07-25 2007-02-08 Konica Minolta Photo Imaging Inc Optical device, video display device, and head mounted display
JP2007052086A (en) * 2005-08-16 2007-03-01 Konica Minolta Photo Imaging Inc Image display apparatus and head mount display

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019522234A (en) * 2016-06-21 2019-08-08 株式会社Nttドコモ Optical system of wearable display device
JP7093729B2 (en) 2016-06-21 2022-06-30 株式会社Nttドコモ See-through display system

Similar Documents

Publication Publication Date Title
JP5534009B2 (en) Video display device, head-mounted display, and head-up display
JP4874593B2 (en) Video display device and head mounted display
JP5250853B2 (en) Video display device and head mounted display
JP5286638B2 (en) Video display device and head mounted display
US20110194163A1 (en) Image display device and head-mounted display
JP4492536B2 (en) Image combiner and image display device
JP2018087949A (en) Video display device and light guide device
US20070291355A1 (en) Image display apparatus, head-mounted display, and optical axis adjustment method
JP5408057B2 (en) Video display device and head mounted display
JP2010072150A (en) Video display apparatus and head mount display
JP2007052086A (en) Image display apparatus and head mount display
JP2010262232A (en) Apparatus for displaying video image and head-mounted display
US20180045962A1 (en) Image Display Device and Optical See-Through Display
JP2006349719A (en) Video display device and head mount display
WO2011001787A1 (en) Video display device, hmd, and hud
CN111736346B (en) Display device
WO2010044356A1 (en) Image display device and head-mount display
JPWO2018043254A1 (en) Video display and optical see-through display
JP2008216852A (en) Video display device and head-mounted display
JP2010243972A (en) Video display device and head-mounted display
WO2010134374A1 (en) Image display apparatus, head-mounted display, and head-up display
JP2010072151A (en) Video display apparatus and head mount display
JP2017058388A (en) Virtual image display device
WO2010122854A1 (en) Image display apparatus, head-mounted display, and head-up display
US11415804B2 (en) Virtual image display apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10777610

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10777610

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP