WO2010122854A1 - Image display apparatus, head-mounted display, and head-up display - Google Patents

Image display apparatus, head-mounted display, and head-up display Download PDF

Info

Publication number
WO2010122854A1
WO2010122854A1 PCT/JP2010/054207 JP2010054207W WO2010122854A1 WO 2010122854 A1 WO2010122854 A1 WO 2010122854A1 JP 2010054207 W JP2010054207 W JP 2010054207W WO 2010122854 A1 WO2010122854 A1 WO 2010122854A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
wavelength
region
image
angle
Prior art date
Application number
PCT/JP2010/054207
Other languages
French (fr)
Japanese (ja)
Inventor
佳恵 清水
哲也 野田
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Publication of WO2010122854A1 publication Critical patent/WO2010122854A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0112Head-up displays characterised by optical features comprising device for genereting colour display
    • G02B2027/0116Head-up displays characterised by optical features comprising device for genereting colour display comprising devices for correcting chromatic aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0118Head-up displays characterised by optical features comprising devices for improving the contrast of the display / brillance control visibility
    • G02B2027/012Head-up displays characterised by optical features comprising devices for improving the contrast of the display / brillance control visibility comprising devices for attenuating parasitic image effects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • G02B2027/0174Head mounted characterised by optical features holographic

Definitions

  • image light from a display element is diffracted and reflected by a reflection type volume phase type hologram optical element (hereinafter also referred to as HOE) and guided to an optical pupil, whereby an image is displayed to an observer at the position of the optical pupil.
  • a head-mounted display hereinafter also referred to as HMD
  • a head-up display hereinafter also referred to as HUD
  • a wavelength limiting filter is inserted in the optical path to narrow the spectral half-value width for all light beams incident on the HOE.
  • the spread of the diffracted light in the HOE is suppressed, and blurring of the image is suppressed.
  • the HOE color is used at the center of the screen by using the HOE so that the region corresponding to the center of the screen and the HOE (hereinafter also referred to as the center) has an incident / reflection characteristic close to regular reflection.
  • the influence of dispersion is suppressed and lateral chromatic aberration is reduced.
  • the viewing angle of view of the video is ⁇ 5 ° in the horizontal direction and ⁇ 6.75 ° in the vertical direction.
  • JP 2000-267042 A Japanese Patent Laid-Open No. 2003-140079
  • the reflection type diffractive optical element has a larger dispersion due to the wavelength as the diffraction angle deviates from the regular reflection angle. Therefore, it is necessary to improve the resolution reduction due to dispersion when the angle deviation between the diffraction angle and the specular reflection angle is large.
  • the angle deviation is small, if the half-value width is limited by the wavelength limiting filter, the video luminance is lowered.
  • the half-value width of the light beam incident on the HOE is uniformly narrowed by the wavelength limiting filter without considering the angle deviation between the diffraction angle and the specular reflection angle at all.
  • the brightness of an image expressed by light diffracted at a diffraction angle with a small angle deviation from the regular reflection angle is lowered.
  • Patent Document 2 when the HOE is used so that the incident / reflection characteristics are close to regular reflection at the center of the HOE, if the HOE has characteristics (optical power) as an optical lens, the center of the screen is obtained. Even if lateral chromatic aberration does not occur, lateral chromatic aberration due to chromatic dispersion of HOE occurs around the screen. Regarding the lateral chromatic aberration around the screen, unless the HOE has an extremely strong optical power, the influence of the chromatic dispersion of the HOE is canceled by the dispersion of the other optical system, and is suppressed to a range where there is no practical problem. it can. However, this is only when the viewing angle of view of the image is small.
  • the angle deviation between the diffraction angle and the specular reflection angle increases, so the influence of the color dispersion of HOE around the screen is affected. It can no longer be ignored. As a result, the image quality of the observed image is degraded due to an increase in lateral chromatic aberration around the screen.
  • the present invention has been made to solve the above-described problems, and its purpose is to ensure a sufficient image luminance at an angle of view where the angle difference between the diffraction angle and the regular reflection angle is small, and an image with a large angle difference.
  • An object of the present invention is to provide a video display apparatus that can correct lateral chromatic aberration at the corner and observe a bright image with good image quality as a whole, and an HMD and HUD including the video display apparatus.
  • An image display apparatus includes a light source, a display element that displays an image by modulating light from the light source, and an observation optical system that guides the image light from the display element to an optical pupil.
  • the light emitted from the light source has at least one emission peak wavelength and at least one emission wavelength region including the emission peak wavelength, and the observation optical system corresponds to the emission wavelength region.
  • a reflection type volume phase type hologram optical element that has one diffraction peak wavelength in at least one wavelength region and that diffracts and reflects the image light from the display element in the direction of the optical pupil;
  • the reflection optical power of the hologram optical element is different from the reflection optical power of the substrate surface on which the hologram optical element is formed, and is emitted from the display element to the hologram optical element.
  • an image light having a wavelength width incident on the center of the optical pupil from the angle of view at which ⁇ is maximum, and an image of light incident on the center of the optical pupil from an angle of view at which ⁇ is minimum It is characterized by being narrower than the wavelength width of the light beam.
  • the half-value width of the diffraction wavelength of the hologram optical element may be incident on the light having an angle of view at which ⁇ is greater than the region on which the light having an angle of view at which ⁇ is minimum It may be narrow in the area.
  • the thickness of the film forming the hologram optical element is such that the light having an angle of view at which ⁇ is larger than the region at which the light having an angle of view at which ⁇ is minimum is incident. May be thick.
  • the film forming the hologram optical element is formed by exposing a hologram photosensitive material, has a constant film thickness, and has an angle of view that minimizes the ⁇ of the display element. At least one of reducing the exposure dose, lowering the heat treatment temperature, or shortening the heat treatment temperature is performed in the region where the light having the angle of view where ⁇ is maximum is incident than the region where the light is incident. May be formed.
  • the video display device of the present invention further includes a wavelength limiting element that limits a wavelength width of light emitted from the light source, and the wavelength limiting element has the ⁇ within a region where a light beam is incident on the hologram optical element. You may arrange
  • the video display device of the present invention further includes a wavelength limiting element that limits a wavelength width of light emitted from the light source, and the wavelength limiting element has the ⁇ within a region where a light beam is incident on the hologram optical element. It is arranged across both the optical path of the light beam incident on a part of the region including the minimum position and the optical path of the peripheral light beam, and enters the part of the region including the position where the ⁇ is minimum.
  • the wavelength width of the peripheral light beam may be narrower than the wavelength width of the light beam.
  • the wavelength width of the image light incident on the optical pupil center may be gradually reduced from the angle of view at which ⁇ is minimized toward the angle of view at which ⁇ is maximized.
  • the wavelength width of the image light incident on the optical pupil center may be continuously narrowed from the angle of view at which ⁇ is minimized toward the angle of view at which ⁇ is maximized.
  • the wavelength width of the image light from the periphery of the screen of the display element is from the center of the screen. It may be narrower than the wavelength width of the image light.
  • the change in wavelength width of the image light incident on the center of the optical pupil may be symmetric with respect to at least one symmetry axis on the screen.
  • the video display device of the present invention further includes a luminance adjusting element in which the transmittance of light emitted from the light source is different for each incident region, and in the luminance adjusting element, the region in which the light beam is incident on the hologram optical element, A configuration may be employed in which the transmittance of the light flux in the vicinity thereof is higher than the transmittance of the light flux incident on a part of the region including the position where ⁇ is minimized.
  • the head-mounted display of the present invention may be configured to include the above-described video display device of the present invention and support means for supporting the video display device in front of the observer's eyes.
  • the head-up display of the present invention includes the above-described video display device of the present invention, and the hologram optical element of the video display device may be held on a substrate arranged in the field of view of the observer. Good.
  • the wavelength width of the image light incident on the center of the optical pupil from the angle of view where ⁇ is maximum is from the angle of view where ⁇ is minimum. It is narrower than the wavelength width of the image beam incident on the center. That is, the wavelength width of a light beam having a large chromatic dispersion (large ⁇ ) is narrower than the wavelength width of a light beam having a small chromatic dispersion (small ⁇ ).
  • the wavelength width of the image light is controlled according to ⁇ as described above by using an HOE having a half-value width of the diffraction wavelength depending on the incident region or using a wavelength limiting element having a wavelength width limited by the incident region. It is possible.
  • the image light has a wide wavelength width at an angle of view with small chromatic dispersion, so that sufficient image brightness can be ensured, and the wavelength width of the image light is narrowed only at an angle of view with large chromatic dispersion to correct lateral chromatic aberration. can do. Accordingly, it is possible to observe an image that is bright as a whole and has good image quality with reduced blur.
  • the use efficiency of illumination light is increased and power saving is also achieved. Can do.
  • FIG. 1 is a cross-sectional view illustrating a schematic configuration of a video display device according to a first embodiment. It is explanatory drawing which expands and shows the principal part of the manufacturing optical system of HOE of the said video display apparatus. It is explanatory drawing which shows the light emission characteristic of the light source of the said video display apparatus. It is explanatory drawing which shows the diffraction characteristic of HOE of the said video display apparatus.
  • (A) is explanatory drawing which shows the optical path of the principal ray of the manufacturing optical system at the time of exposure of a hologram photosensitive material
  • (b) is explanatory drawing which shows the optical path of the principal ray at the time of reproduction
  • FIG. 7 is an explanatory diagram showing the relationship between the HOE position and film thickness on the A-A ′ line in FIG. 6.
  • FIG. 7 is an explanatory diagram showing the relationship between the position of the HOE on the A-A ′ line in FIG. 6 and the half width of the diffraction wavelength.
  • It is explanatory drawing which shows the relationship between the diffraction angle when an image ray is diffracted by HOE, and goes to the center of an optical pupil, and the regular reflection angle in the board
  • FIG. 6 is an aberration diagram showing lateral chromatic aberration in the X direction and the Y direction in the video display apparatus of Example 1.
  • 6 is an aberration diagram illustrating lateral chromatic aberration in the X direction and the Y direction in the video display device of Comparative Example 1.
  • FIG. It is a perspective view which shows the structure of the outline of HMD to which the video display apparatus of Embodiment 1 is applied.
  • 6 is a cross-sectional view illustrating a schematic configuration of a video display device according to a second embodiment. It is explanatory drawing which shows the light emission characteristic of the light source of the said video display apparatus. It is a top view which shows the schematic structure of HOE of the said video display apparatus.
  • FIG. 20 is an explanatory diagram showing the relationship between the HOE position and the film thickness on the B-B ′ line of FIG. 19.
  • FIG. 20 is an explanatory diagram showing the relationship between the position of the HOE on the B-B ′ line of FIG. 19 and the half width of the diffraction wavelength. It is explanatory drawing which shows the relationship between the angle of view of image light and wavelength width in the said video display apparatus.
  • FIG. 6 is an aberration diagram showing lateral chromatic aberration in the X direction and the Y direction in the video display apparatus of Example 2.
  • 10 is an aberration diagram showing lateral chromatic aberration in the X direction and the Y direction in the video display device of Comparative Example 2.
  • FIG. 10 is an aberration diagram showing lateral chromatic aberration in the X direction and the Y direction in the video display apparatus of Example 3.
  • 10 is an aberration diagram showing lateral chromatic aberration in the X direction and the Y direction in the video display device of Comparative Example 3.
  • FIG. 10 is an aberration diagram showing lateral chromatic aberration in the X direction and the Y direction in the video display device of Comparative Example 3.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a video display device 1 of the present embodiment.
  • the video display device 1 includes a light source 11, an illumination optical system 12, a display element 13, and an eyepiece optical system 14.
  • the observation angle in the horizontal direction is, for example, ⁇ 13 °
  • the observation angle in the vertical direction is, for example, ⁇ 7.5 °, so that a so-called wide screen image can be observed. .
  • the light source 11 illuminates the display element 13, and in the present embodiment, a high color rendering white light that emits light in each wavelength region of blue (B), green (G), and red (R) from the same light emitting surface. It consists of a light source. That is, the light source 11 includes, for example, an LED, which is a semiconductor light emitting element that emits B light, a green phosphor that emits G light when excited by B light, and red fluorescence that emits R light when excited by B light. The BGR light is emitted from the same light emitting surface. The light emission characteristics of the light source 11 will be described later.
  • the light source 11 (particularly the same light emitting surface as described above) is disposed so as to be substantially conjugate with the optical pupil P formed by the eyepiece optical system 14.
  • the light source 11 may be a light source that emits one or two lights of RGB.
  • the illumination optical system 12 is an optical system that condenses the light from the light source 11 and guides it to the display element 13, and includes, for example, a mirror 21 having a concave reflecting surface.
  • the display element 13 displays an image by modulating light incident from the light source 11 via the illumination optical system 12 in accordance with image data, and is configured by, for example, a transmissive LCD.
  • the display element 13 is arranged so that the long side direction of the rectangular display screen is the horizontal direction (direction perpendicular to the paper surface of FIG. 1; the same as the left-right direction), and the short side direction is the direction perpendicular thereto.
  • the eyepiece optical system 14 is an observation optical system that guides the image light from the display element 13 to the optical pupil P (or the observer's pupil at the position of the optical pupil P), and includes an eyepiece prism 31, a deflection prism 32, and a HOE 33. And is configured.
  • the eyepiece prism 31 totally reflects the image light from the display element 13 and guides it to the optical pupil P through the HOE 33, while transmitting the external light to the optical pupil P.
  • the deflection prism 32 For example, it is made of an acrylic resin.
  • the eyepiece prism 31 is formed in a shape in which a lower end portion of a parallel plate is wedge-shaped.
  • An upper end surface of the eyepiece prism 31 is a surface 31a as an incident surface for image light, and two surfaces positioned in the front-rear direction are surfaces 31b and 31c parallel to each other.
  • the deflection prism 32 is formed of a substantially U-shaped parallel plate in plan view (see FIG. 16), and when attached to the lower end portion and both side surface portions (left and right end surfaces) of the eyepiece prism 31, the eyepiece prism. 31 and a substantially parallel flat plate.
  • the deflection prism 32 is provided adjacent to or adhering to the eyepiece prism 31 so as to sandwich the HOE 33 therebetween. Thereby, the refraction when the external light passes through the wedge-shaped lower end of the eyepiece prism 31 can be canceled by the deflecting prism 32, and distortion of the external image observed through the see-through can be prevented.
  • the HOE 33 diffracts and reflects the image light (BGR light) from the display element 13 in the direction of the optical pupil P, while transmitting the external light and guiding it to the optical pupil P, and a volume phase type reflection hologram. It is an optical element, and is formed on a surface 31 d that is a joint surface with the deflection prism 32 in the eyepiece prism 31.
  • the HOE 33 has an axially asymmetric positive optical power and has the same function as an aspherical concave mirror having a positive optical power. Thereby, the degree of freedom of arrangement of each optical member constituting the apparatus can be increased, and the apparatus can be easily reduced in size, and an image with good aberration correction can be provided to the observer. Details of the diffraction characteristics of the HOE 33 will be described later.
  • the light emitted from the light source 11 is reflected and collected by the mirror 21 of the illumination optical system 12 and is substantially collimated and incident on the display element 13 where it is modulated and imaged. It is emitted as light.
  • the image light from the display element 13 enters the inside of the eyepiece prism 31 of the eyepiece optical system 14 from the surface 31a, and then is totally reflected at least once by the surfaces 31b and 31c and enters the HOE 33.
  • the HOE 33 has wavelength selectivity that functions as a diffraction element that independently diffracts light in each wavelength region of the BGR emitted from the light source 11 for each wavelength region. It is designed to function as a concave reflecting surface for light. Therefore, the light incident on the HOE 33 is diffracted and reflected there and reaches the optical pupil P. At the same time, external light passes through the HOE 33 and travels toward the optical pupil P. Therefore, by locating the observer's pupil at the position of the optical pupil P, the observer can observe the image displayed on the display element 13 as an enlarged virtual image, and at the same time, observe the outside world image with see-through. Can do. Note that various aberrations (coma aberration, curvature of field, astigmatism, distortion) are corrected in the eyepiece optical system 14 so that the viewer can observe the image displayed on the display element 13 satisfactorily.
  • the light emitting surface of the light source 11 and the optical pupil P (observer's pupil) of the eyepiece optical system 14 are substantially conjugate, the light emitted from the light source 11 can be efficiently guided to the optical pupil P.
  • the observer's pupil is positioned at the position of the optical pupil P, the light from the light source 11 can be efficiently incident on the pupil (pupil) of the observer, and the observer can obtain a bright high-definition image. Can be observed.
  • FIG. 2 is an explanatory view showing, in an enlarged manner, main parts of the manufacturing optical system of the HOE 33.
  • the HOE 33 which is a reflection type color hologram is produced by exposing the hologram photosensitive material 33a on the substrate (eyepiece prism 31) using two light beams for each BGR. At this time, one light beam is irradiated to the hologram photosensitive material 33a from the side opposite to the substrate, and this light beam is referred to as object light. The other light beam is irradiated from the substrate side to the hologram photosensitive material 33a, and this light beam is referred to as reference light.
  • the RGB divergent light from the point light source 41 (object light side light source) is shaped into a predetermined wavefront by a free-form surface mirror 42 which is a reflection surface having optical power, and is planarly reflected.
  • the hologram photosensitive material 33 a is irradiated through the color correction prism 44.
  • the surface 44a that is the incident surface of the object light in the color correction prism 44 is generated due to the refraction of the image light on the surface 31a of the eyepiece prism 31 of the eyepiece optical system 14 that is used during reproduction (image observation).
  • the angle is determined so as to cancel the chromatic aberration.
  • it is desirable that the color correction prism 44 is disposed in close contact with the hologram photosensitive material 33a in order to prevent a ghost due to surface reflection, or is disposed via emulsion oil or the like.
  • divergent light for example, spherical waves
  • the RGB point light sources 51R, 51G, and 51B which are reference light side light sources
  • the hologram photosensitive material 33a on the eyepiece prism 31 side Irradiated from.
  • the hologram photosensitive material 33a by exposing the hologram photosensitive material 33a with two light beams of object light and reference light for each of RGB, interference fringes are formed in the hologram photosensitive material 33a by interference of the two light beams, and the HOE 33 is manufactured. .
  • the exposure with two light beams may be performed simultaneously for RGB or sequentially.
  • one of two exposure light sources that exposes the reference light side light source, that is, the hologram photosensitive material 33a used when the HOE 33 is manufactured, is an eyepiece during image observation.
  • the optical system 14 is disposed on a surface including the optical pupil P. Thereby, at the time of image observation, the image light from the display element 13 can be efficiently diffracted by the HOE 33 and guided to the optical pupil P. Therefore, by locating the observer's pupil at the position of the optical pupil P, the observer can observe a bright and high-quality image.
  • the BGR exposure light sources may all be at the same position on the surface of the optical pupil P, or the amount of deviation (exactly between the exposure wavelength and the used wavelength (emission peak wavelength)). May be shifted on the pupil plane in accordance with the deviation of the ratio between the exposure wavelength and the used wavelength between different colors.
  • the point light sources 51R, 51G, and 51B are used at the time of image observation so that the light of the emission peak wavelength in each wavelength region of the BGR of the light source 11 is diffracted toward the center of the optical pupil P during image observation. It is arranged on the surface of the optical pupil P. That is, as will be described later, with respect to B, since the deviation between the exposure wavelength and the emission peak wavelength is large, only the point light source 51B is shifted from the other point light sources 51G and 51R on the surface of the optical pupil P. Yes. On the other hand, for G and R, since the difference between the exposure wavelength and the emission peak wavelength is small, the point light sources 51G and 51R are arranged at the center of the optical pupil P.
  • the point light sources 51R, 51G, and 51B are arranged in consideration of the deviation amount between the exposure wavelength and the emission peak wavelength, and the HOE 33 is manufactured, so that the center of the observer's pupil is centered on the optical pupil P during image observation.
  • the illumination light is reliably diffracted and reflected by the HOE 33 and reaches the observer's pupil at all angles of view. Therefore, the observer can observe a bright and high-definition image over the entire screen at the center position of the optical pupil P.
  • FIG. 3 shows the light emission characteristics of the light source 11.
  • the light emitted from the light source 11 emits one light (radiation) in each of the first wavelength region of 400 nm or more and less than 500 nm, the second wavelength region of 500 nm or more and less than 570 nm, and the third wavelength region of 570 nm or more and less than 700 nm.
  • It has a peak wavelength and an emission wavelength region including the emission peak wavelength.
  • the first to third wavelength regions correspond to the BGR wavelength regions.
  • region the area
  • the amount of deviation between the exposure wavelength and the emission peak wavelength described above is
  • 23.5 nm for B , and
  • 1 nm for G , R Is
  • 5 nm. Therefore, since the amount of deviation between the exposure wavelength and the emission peak wavelength for B is larger than the amount of deviation between the exposure wavelength and the emission peak wavelength for G and R, as described above, the point light source 51B is used when the HOE 33 is manufactured. The hologram photosensitive material 33a is exposed by being shifted from the other point light sources 51G and 51R.
  • FIG. 4 shows the diffraction characteristics of the HOE 33 with respect to the screen center chief ray.
  • the screen center principal ray refers to a light ray that is emitted from the center of the display element 13 and enters the center of the optical pupil P via the HOE 33.
  • the peak wavelengths (diffraction peak wavelengths) of the diffraction efficiency of the HOE 33 with respect to the screen center principal ray are ⁇ 3 B , ⁇ 3 G , and ⁇ 3 R , respectively, and the half-value wavelength widths of the diffraction efficiency peaks are ⁇ 3 B and ⁇ 3, respectively.
  • the HOE 33 has one diffraction peak wavelength and a half width of the diffraction wavelength including the diffraction peak wavelength in the BGR wavelength region corresponding to the light emission wavelength region of the light source 11.
  • the half-width of the diffraction wavelength of the HOE 33 (half-width of the diffraction efficiency peak) of the HOE 33 is controlled, so that the optical pupil is transmitted via the HOE 33.
  • the wavelength width of the image light incident on P is limited.
  • FIG. 5A is an explanatory diagram showing the optical path of the principal ray of the production optical system at the time of exposure of the hologram photosensitive material 33a
  • FIG. 5B shows the optical path of the principal ray at the time of reproduction (use state).
  • the principal ray of the manufacturing optical system includes the point where the principal ray in use (screen center principal ray) intersects with the HOE 33, the point light source for reference light, and the point light source for object light. Let it be a ray of light.
  • the incident angles of the principal rays of the RGB reference light at the time of exposure are different so as to satisfy the Bragg condition in advance so that the diffraction angles (directions) at the HOE 33 at the emission peak wavelength match in RGB in the usage state. .
  • the diffraction intensity of the light diffracted in the Bragg condition that is, the direction in which the following two expressions are simultaneously satisfied is maximized.
  • the diffraction angle at the HOE 33 is equal to the regular reflection angle at the substrate surface (the surface 31d of the eyepiece prism 31) on which the HOE 33 is formed (that is,
  • the shape of the surface 31d on which the HOE 33 is formed is, for example, a flat surface.
  • the incident / reflection characteristics close to regular reflection (
  • the diffraction angle at the HOE 33 is a regular reflection at the surface 31d. It can be said that the lateral chromatic aberration due to chromatic dispersion during diffraction at the HOE 33 increases as the angle deviation ( ⁇ ) increases, that is, toward the periphery of the screen.
  • the wavelength width of the image light incident on the optical pupil P is limited by using the HOE 33 having the following diffraction characteristics. .
  • FIG. 6 is a plan view showing a schematic configuration of the HOE 33 of the present embodiment.
  • the difference in film thickness for each region is shown by gradation.
  • FIG. 7 is an explanatory diagram showing the relationship between the position (region) of the HOE 33 on the line AA ′ in FIG. 6 and the film thickness.
  • the direction of the line AA ′ corresponds to a direction (horizontal direction of the video display device) perpendicular to a later-described symmetry axis S 2 in which the change in film thickness is symmetric.
  • the thickness of HOE33 are from the region R C corresponding to the center of the screen, towards the region R E corresponding to the screen around the direction perpendicular to the axis of symmetry S 2 continuously becomes gradually thicker It has changed. That is, the surface of the HOE33 is a cylindrical surface, the film thickness in the central region R C including an axis of symmetry S 2 is the thinnest thickness in the two regions R E perpendicular direction across the axis of symmetry S 2 Is the thickest (see FIG. 7).
  • the “continuous change” refers to a change in which the half-value width of the diffraction wavelength is changed in each region and the half-value widths near the boundaries of the plurality of regions are substantially the same.
  • the FWHM of the diffraction wavelength of HOE33 as shown in FIG. 8, the most widely in the central region R C, which is narrowest at the two regions R E both ends.
  • the region R C corresponds to a region where image light from the center of the display device 13 is incident, the two regions R E both ends, the video from the (horizontal) screen periphery of the display device 13 It corresponds to the area where light enters. Therefore, from FIG. 8, the half-value width of the diffraction wavelength of the HOE 33 continuously changes from the region where the image light from the center of the screen is incident to gradually narrowing toward the region where the image light from the periphery of the screen is incident. I can say that.
  • the hologram photosensitive material (eg, photopolymer) for producing the HOE 33 may be a film-like material or a hologram-sensitive material solution obtained by dissolving a gel-like solid in an organic solvent.
  • the use of the hologram sensitive material liquid is advantageous in that a cylindrical surface can be easily formed.
  • the diffraction angle is ⁇ 1 (°).
  • the regular reflection angle of the light beam on the substrate surface (surface 31d) is ⁇ 2 (°), and the absolute value
  • FIG. 10 shows the relationship between the angle of view of the image light (for example, the horizontal direction) and the wavelength width of the image light incident on the center of the optical pupil P via the HOE 33.
  • the half-value width of the diffraction wavelength of the HOE 33 is made narrower in the region where the image light from the periphery of the screen is incident than in the region where the image light from the center of the display element 13 is incident.
  • the wavelength width of the image light beam that enters the center of the optical pupil P through the HOE 33 from the angle of view where ⁇ is maximized (for example, the angle of view at the left end or the right end in the horizontal direction) is the image where ⁇ is minimized. It can be made narrower than the wavelength width of the image light incident on the center of the optical pupil P from an angle (for example, a horizontal field angle of 0 °).
  • the lateral chromatic aberration due to chromatic dispersion during diffraction at the HOE 33 increases as ⁇ increases.
  • the wavelength width of the light beam having a large chromatic dispersion (large ⁇ ) is narrower than the wavelength width of the light beam having a small chromatic dispersion (small ⁇ ).
  • the image light has a wide wavelength width, so that sufficient image brightness can be secured, and only at the angle of view with large chromatic dispersion, the wavelength width of the image light is narrowed to correct lateral chromatic aberration. can do. Therefore, it is possible to realize a video display device that is bright overall and has high video quality.
  • the use efficiency of the illumination light is increased and power saving can be realized.
  • the lateral chromatic aberration can be corrected for at least one of RGB.
  • a photosensitive layer having a photosensitive layer sensitive to any one of RGB is used, and the film thickness of the hologram photosensitive material is gradually increased from a region corresponding to the center of the screen toward a region corresponding to the periphery of the screen.
  • the lateral chromatic aberration can be corrected for any one of RGB by limiting the diffraction wavelength width (wavelength width of image light) of RGB corresponding to the periphery of the screen.
  • a hologram photosensitive material having sensitivity to three colors of RGB in one photosensitive layer is used, and the film thickness of the hologram photosensitive material is gradually increased from an area corresponding to the center of the screen toward an area corresponding to the periphery of the screen.
  • three photosensitive hologram materials having sensitivity to any one of RGB are used in one photosensitive layer, and for each hologram photosensitive material, gradually from an area corresponding to the center of the screen toward an area corresponding to the periphery of the screen. If the film thickness is increased, all the diffraction wavelength widths of RGB corresponding to the periphery of the screen (wavelength width of image light) can be limited, and lateral chromatic aberration can be corrected for all of RGB.
  • the film thickness may be optimized for each hologram photosensitive material. From the same idea as described above, it is also possible to perform wavelength limitation on the HOE 33 for any two of RGB and correct lateral chromatic aberration for any two of RGB.
  • the angle of view of the wavelength of the image light ray that enters the center of the optical pupil P from the angle of view at which ⁇ is maximum is the angle of view at which ⁇ is minimum. It can be said that it should be narrower than the wavelength width of the image light incident on the center of the optical pupil P.
  • the width is narrower than the wavelength width of the image light from the center of the screen.
  • the HOE 33 is used with an incident / reflection characteristic that reduces ⁇ in order to reduce lateral chromatic aberration due to chromatic dispersion.
  • the lateral chromatic aberration is sufficiently small at the center of the screen where ⁇ is small, it is not necessary to limit the wavelength width of the light incident on the optical pupil P.
  • is large around the screen, lateral chromatic aberration due to chromatic dispersion increases.
  • the wavelength of the image light is narrowed around the screen rather than the center of the screen by the HOE 33, thereby reducing the lateral chromatic aberration around the screen and ensuring sufficient performance (image quality) on the entire screen.
  • a bright video display can be realized.
  • the half-value width of the diffraction wavelength of the HOE 33 is such that the image light from the periphery of the screen is incident (for example, the region R E ) than the region (for example, the region R C ) where the image light from the center of the display element 13 is incident. Therefore, the wavelength limitation can be partially performed by the HOE 33 alone without inserting a wavelength limiting element (such as a filter) in the optical path. Further, since the wavelength width of the image light incident on the center of the optical pupil P is wide at the center of the screen, sufficient image brightness can be secured, and the wavelength width of the image light incident on the center of the optical pupil P is narrow around the screen. Therefore, lateral chromatic aberration can be corrected.
  • the half-value width of the diffraction wavelength of the HOE 33 is a region where image light from the periphery of the screen enters from a region RC where image light from the center of the display element 13 enters. since it is narrower R and continuously towards the E, the wavelength width of the image light rays incident on the center of the diffracted by the optical pupil P at HOE33 is field angle ⁇ becomes minimum (e.g., horizontal direction angle of view It can be said that the angle gradually decreases from 0 ° to the angle of view where ⁇ is maximized (for example, the angle of view at the left end or the right end in the horizontal direction). In this way, by continuously changing the wavelength width of the image light beam, there is no boundary in the change in the image luminance, so that there is no influence on the image quality of the boundary, and a high-quality image display device can be realized.
  • the horizontal viewing angle of view for example ⁇ 13 °
  • the vertical viewing angle of view for example ⁇ 7.5 °
  • image quality degradation due to lateral chromatic aberration in the horizontal direction is caused. large. Therefore, the symmetry of the variation in the thickness of HOE33 to the axis of symmetry S 2, the horizontal direction only, by controlling the half width of the diffraction wavelength of HOE33, to improve the performance (quality) of the periphery of the screen in the horizontal direction be able to.
  • FIG. 11 is a plan view showing another configuration of the HOE 33.
  • regions having different thicknesses and half-value widths of diffraction wavelengths are indicated by different hatchings.
  • This HOE 33 has a plurality of regions R 1 , R 2 , R 3 in a plane and has a rectangular shape as a whole.
  • Region R 1 is a rectangular region including the center O of the HOE33
  • region R 2 is rectangular region around the region R 1 (the area surrounding the region R 1)
  • region R 3 is further region R 2 a rectangular region around the (area surrounding the region R 2).
  • the thickness of HOE33 is thinnest in the region R 1, thickest outermost regions R 3, and has a thickness between them in the region R 2.
  • the half width of the diffraction wavelength of the HOE 33 is gradually reduced from the region R 1 corresponding to the center of the screen toward the region R 3 corresponding to the periphery of the screen (in the order of the regions R 1 , R 2 , and R 3 ). It has become.
  • “stepwise change” refers to a change in which the half-value width of the diffraction wavelength is constant in one region and the half-value width is different among a plurality of regions.
  • FIG. 12 is a plan view showing still another configuration of the HOE 33.
  • the HOE 33 has a plurality of regions in the plane.
  • three regions R 11 , R 12 , and R 13 are considered.
  • Region R 11 is a circular area including the center O of the HOE33
  • region R 12 is a region around the region R 11 (the area surrounding at least a portion of the region R 11)
  • area R 13 is a further region around the region R 12 (the area surrounding at least a portion of the region R 12).
  • the half-value width of the diffraction wavelength of the HOE 33 is continuously narrowed from the region R 11 corresponding to the center of the screen toward the region R 13 corresponding to the periphery of the screen (in the order of the regions R 11 , R 12 , and R 13 ). .
  • the film thickness is constant regardless of the region.
  • the production conditions exposure amount, heat treatment conditions after exposure (heat treatment temperature, heat treatment time)
  • the half-value width of the diffraction wavelength differs depending on the region. For example, in the order of region R 11, R 12, R 13, to reduce the amount of exposure, lowering the heat treatment temperature, shortening the heat treatment time, the area R 11, R 12, half-width of the order of the diffraction wavelength of the R 13 Can be narrowed continuously.
  • the change in the wavelength width of the image light beam incident on the center of the optical pupil P changes to the two symmetry axes S 1 and S 2 or the myriad symmetry axes S and the axes (symmetry axes) corresponding to the screen. It becomes symmetrical with respect to it.
  • the luminance adjustment filter 15 shown in FIG. 13 may be arranged in the optical path between the light source 11 of FIG. 1 and the mirror 21 of the illumination optical system 12.
  • the brightness adjustment filter 15 is a brightness adjustment element in which the transmittance of light emitted from the light source 11 is different for each incident region. Specifically, the lowest transmittance in the central region T C of the brightness adjusting filter 15, the highest transmittance in the region T E at both ends of the horizontal direction, the transmittance continuously in the region between these It has changed. In FIG. 13, the change in transmittance due to the incident region is shown by gradation.
  • the brightness adjustment filter 15 has the lowest transmittance of the light beam (hereinafter also referred to as a main light beam) that enters the region where ⁇ is minimum in the HOE 33 and the light beam that enters the region where ⁇ is maximum in the HOE 33.
  • the transmissivity is the highest and the transmissivity continuously changes between them depending on the incident region. That is, the luminance adjustment filter 15 has a higher transmittance of the peripheral light beam (hereinafter also referred to as the peripheral light beam) than the main light beam.
  • the luminance adjustment filter 15 is arranged in the optical path, and the luminance adjustment filter 15 relatively increases the transmittance of the peripheral light beam rather than the main light beam, thereby realizing the video display device 1 with less luminance unevenness on the entire screen. can do.
  • the video display device of Example 1 corresponds to the video display device 1 of the present embodiment, and is closer to the periphery of the screen than the region (for example, the region RC ) where the image light from the center of the display element 13 is incident.
  • This is a configuration using the HOE 33 in which the half-value width of the diffraction wavelength is narrow in the region where the image light is incident (for example, the region R E ).
  • the video display device of Comparative Example 1 has a configuration using a normal HOE in which the half width of the diffraction wavelength is constant regardless of the region.
  • the video display devices of Example 1 and Comparative Example 1 have the same configuration except that the HOE is different (for example, the observation angle of view is the same).
  • FIG. 14 is an aberration diagram showing lateral chromatic aberration in the X direction and the Y direction on the display surface of the display element 13 in the video display apparatus of Example 1.
  • FIG. FIG. 15 is an aberration diagram showing lateral chromatic aberration in the X direction and the Y direction on the display surface of the display element in the video display apparatus of Comparative Example 1. 14 and 15 respectively show lateral chromatic aberration with respect to a wavelength within a range of ⁇ 5 nm with respect to the center wavelength 532 nm (G light).
  • the optical performance is evaluated on the display surface by reverse tracing from the optical pupil P. Therefore, the horizontal axis in FIGS. 14 and 15 corresponds to the position of the optical pupil P in the plane.
  • the vertical axis indicates the amount of lateral chromatic aberration, and the unit is mm.
  • the X direction is an optical path from the display element 13 toward the optical pupil P, with the axis optically connecting the center of the display surface of the display element 13 and the center of the optical pupil P as the Z axis (optical axis).
  • the direction is perpendicular to the optical axis and parallel to the long side direction of the rectangular display surface, and corresponds to the left-right direction at the pupil position.
  • the Y direction is a direction perpendicular to the optical axis and perpendicular to the X direction, and corresponds to the vertical direction at the pupil position.
  • each aberration diagram indicates local coordinates on the display surface of the display element 13, and “RF” is an abbreviation for a relative field, and the X direction (left-right direction) at the pupil position. And the viewing angle of view in the Y direction (vertical direction). This way of illustration is the same in the examples and comparative examples described later.
  • Comparative Example 1 it can be seen from FIG. 15 that the lateral chromatic aberration (magnification chromatic aberration) is abruptly deteriorated due to the chromatic dispersion of the HOE from the center of the screen to the periphery of the screen. In particular, since the viewing angle in the X direction is large, lateral chromatic aberration around the screen in the X direction is large. On the other hand, in Example 1, as shown in FIG. 14, it can be seen that lateral chromatic aberration particularly in the periphery of the screen in the X direction is suppressed. In FIG. 15: magnification chromatic aberration (magnification chromatic aberration) is abruptly deteriorated due to the chromatic dispersion of the HOE from the center of the screen to the periphery of the screen. In particular, since the viewing angle in the X direction is large, lateral chromatic aberration around the screen in the X direction is large. On the other hand, in Example 1, as shown in FIG. 14, it can
  • the lateral chromatic aberration for the G light having a center wavelength of 532 nm is shown as an example, but the same tendency is observed for the lateral chromatic aberration of the R light and the B light. That is, for R light and B light, chromatic dispersion increases toward the edge of the screen, and lateral chromatic aberration worsens. However, by controlling the half-value width of the diffraction wavelength for R light and B light with the HOE 33, lateral chromatic aberration for R light and B light around the screen in the X direction can also be suppressed.
  • FIG. 16 is a perspective view showing a schematic configuration of the HMD.
  • the HMD includes the above-described video display device 1 and support means 2.
  • the video display device 1 has a housing 3 that includes at least a light source 11 and a display element 13 (both see FIG. 1).
  • the housing 3 holds a part of the eyepiece optical system 14.
  • the eyepiece optical system 14 is configured by bonding an eyepiece prism 31 and a deflection prism 32, and has a shape like one lens of a pair of glasses (lens for right eye in FIG. 16) as a whole.
  • the video display device 1 has a circuit board (not shown) for supplying at least driving power and a video signal to the light source 11 and the display element 13 via a cable 4 provided through the housing 3. is doing.
  • the support means 2 is a support mechanism corresponding to a spectacle frame (including a bridge and a temple), and supports the video display device 1 in front of the observer's eyes (for example, in front of the right eye). Further, the support means 2 includes a nose pad 5 (right nose pad 5R / left nose pad 5L) that contacts the observer's nose, and a nose pad lock unit 6 that fixes the nose pad 5 at a predetermined position. Yes. The nose pad lock unit 6 holds the nose pad 5 with a spring shaft.
  • the observer When the observer wears the HMD on the head and displays an image on the display element 13, the image light is guided to the optical pupil via the eyepiece optical system 14. Therefore, by aligning the observer's pupil with the position of the optical pupil, the observer can observe an enlarged virtual image of the display image of the image display device 1. At the same time, the observer can observe the outside world image through the eyepiece optical system 14 in a see-through manner.
  • the observer can observe the video provided from the video display device 1 in a hands-free and stable manner for a long time.
  • FIG. it is necessary to provide an adjustment mechanism (not shown) for adjusting the distance (eye width distance) between both eyepiece optical systems.
  • the position of the image display device 1 can be adjusted relative to the observer in the front and rear, left and right, and up and down directions.
  • the position of the optical pupil of the system 14 can be placed at the position of the observer's pupil. After the position adjustment, the optical pupil can be fixed at a good position by fixing the position of the nose pad 5 by the nose pad lock unit 6.
  • the nose pad 5 and the nose pad lock unit 6 at least have an adjustment mechanism (first adjustment) that adjusts the distance between the eyepiece optical system 14 (or optical pupil) of the video display device 1 and the pupil of the observer.
  • the first adjustment mechanism may be configured independently of the second adjustment mechanism for adjusting the vertical and horizontal positions of the video display device 1. In this case, each position adjustment becomes easier.
  • FIG. 17 is a cross-sectional view showing a schematic configuration of the video display device 1 of the present embodiment.
  • the video display device 1 of the present embodiment uses the light source 16 as a light source for illuminating the display element 13, and the illumination optical system 12 further includes an aperture stop 22, but the other basic configuration is the embodiment. Same as 1.
  • the horizontal observation field angle is, for example, ⁇ 6.7 °
  • the vertical observation field angle is, for example, ⁇ 5 °.
  • the video display apparatus 1 of the present embodiment can also be applied to the HMD described in the first embodiment.
  • the light emitted from the light source 16 passes through the aperture stop 22 of the illumination optical system 12, is reflected and collected by the mirror 21, enters the display element 13 as almost collimated light, and is modulated there as image light. Emitted. Video light from the display element 13 travels to the optical pupil P through the same optical path as in the first embodiment.
  • the light source 16 of the present embodiment is configured by a white light source (RGB integrated LED (3-chip in 1 package)) in which independent LEDs are combined for each RGB.
  • FIG. 18 shows the light emission characteristics of the light source 16.
  • the light source 16 has a characteristic that the half-value width of the emission peak is narrower for all of RGB than the fluorescent type like the light source 11.
  • the half-value width of the emission peak is sufficiently narrow compared to the fluorescent type, there is no need to limit the wavelength around the screen.
  • only B and G are directed toward the screen periphery. The wavelength width of image light is limited. This will be described in detail below.
  • FIG. 19 is a plan view showing a schematic configuration of the HOE 33 of the present embodiment.
  • the difference in film thickness for each region is indicated by different hatching.
  • FIG. 20 is an explanatory diagram showing the relationship between the position of the HOE 33 on the line BB ′ of FIG. 19 and the film thickness.
  • the direction of the line B-B ' corresponds to the direction perpendicular (horizontal direction of the image display device) with respect to the symmetry axis S 2 of the change in thickness is symmetrical.
  • the HOE 33 of the present embodiment has only one symmetry axis (symmetric axis S 2 ) in which the change in film thickness is symmetric.
  • HOE33 film thickness is changed stepwise so as to gradually decrease as distance in a direction perpendicular to the axis of symmetry S 2 from the center of the region R 1 that includes an axis of symmetry S 2. More specifically, the central region R 1 has the smallest film thickness, the region R 3 farthest from the axis of symmetry S 2 in the vertical direction has the largest film thickness, and the region R 1 is between the region R 3 and the region R 3. It has become therebetween thickness in the region R 2 (see FIG. 20).
  • the half width of the diffraction wavelength of the HOE 33 is the largest in the center region R 1 , the narrowest in the two regions R 3 at both ends, and the half width between them in the region R 2. It has become.
  • the region R 1 is a region where image light from the screen center of the display element 13 is incident, and the two regions R 3 at both ends are incident with image light from the periphery of the screen (in the horizontal direction) of the display element 13. It is an area to do. Therefore, from FIG. 21, the half width of the diffraction wavelength of the HOE 33 is gradually narrowed from the region R 1 where the image light from the center of the screen is incident toward the region R 3 where the image light from the periphery of the screen is incident. It can be said that it is changing gradually.
  • FIG. 22 shows the relationship between the angle of view of the image light (for example, the horizontal direction) and the wavelength width of the image light incident on the center of the optical pupil P via the HOE 33.
  • the half-value width of the diffraction wavelength of the HOE 33 is narrower in the region R 3 where the image light from the periphery of the screen is incident than in the region R 1 where the image light from the screen center of the display element 13 is incident.
  • the wavelength width of the image light beam incident on the center of the optical pupil P through the HOE 33 from the angle of view where ⁇ is maximum (for example, the angle of view at the left end or the right end in the horizontal direction) is It becomes narrower than the wavelength width of the image light beam incident on the center of the optical pupil P from the angle of view where ⁇ is minimized (for example, the angle of view of 0 ° in the horizontal direction).
  • this makes it possible to ensure a sufficient video luminance at the angle of view with small chromatic dispersion since the wavelength width of the image light is wide, and the wavelength of the image light only at the angle of view with large chromatic dispersion.
  • the lateral chromatic aberration can be corrected by narrowing the width.
  • the wavelength width of the image light incident on the center of the optical pupil P is gradually increased from the angle of view at which ⁇ is minimized toward the angle of view at which ⁇ is maximized. It is narrower.
  • three hologram photosensitive materials of a region R 1 + region R 2 + region R 3 , a region R 2 + region R 3 , and a region R 3 are prepared, and these are prepared in each region R 1. , R 2 , and R 3 , the thickness of the HOE 33 can be changed step by step for each region. In this way, it is easy to change the thickness of the HOE 33 step by step for each region.
  • the video display device of Example 2 corresponds to the video display device 1 of the present embodiment, and is closer to the periphery of the screen than the region (for example, region R 1 ) where the image light from the center of the display element 13 is incident.
  • This is a configuration using the HOE 33 in which the half-value width of the diffraction wavelength is narrow in the region where the image light is incident (for example, the region R 3 ).
  • the video display device of Comparative Example 2 has a configuration using a normal HOE in which the half width of the diffraction wavelength is constant regardless of the region.
  • the video display devices of Example 2 and Comparative Example 2 have the same configuration except that the HOE is different (for example, the observation angle of view is the same).
  • FIG. 23 is an aberration diagram showing lateral chromatic aberration in the X direction and the Y direction on the display surface of the display element 13 in the video display apparatus of Example 2.
  • FIG. 24 is an aberration diagram showing lateral chromatic aberration in the X direction and Y direction on the display surface of the display element in the video display apparatus of Comparative Example 2. 23 and 24 show lateral chromatic aberration for wavelengths within a range of ⁇ 5 nm with respect to the center wavelength of 532 nm (G light).
  • Example 2 the lateral chromatic aberration around the screen in the X direction is large from FIG. 24, but in Example 2, the lateral chromatic aberration around the screen in the X direction is suppressed as shown in FIG. .
  • FIG. 23 due to the wavelength limitation at the HOE 33, light at both wavelengths (537 nm, 527 nm) at 532 ⁇ 5 nm is cut at both ends of the angle of view in the X direction, and lateral chromatic aberration is reduced.
  • the lateral chromatic aberration for the G light having a center wavelength of 532 nm is shown as an example, but the same tendency is observed for the lateral chromatic aberration of the B light. Therefore, the lateral chromatic aberration for the B light around the screen in the X direction can also be suppressed by controlling the half-value width of the diffraction wavelength for the B light by the HOE 33.
  • Embodiment 3 Still another embodiment of the present invention will be described below with reference to the drawings.
  • the same components as those in Embodiments 1 and 2 are denoted by the same member numbers, and the description thereof is omitted.
  • FIG. 25 is a cross-sectional view illustrating a schematic configuration of the video display device 1 of the present embodiment and a HUD including the same.
  • the video display device 1 of the present embodiment uses a light source 17 as a light source for illuminating the display element 13, uses an illumination lens 23 as the illumination optical system 12, and is in the illumination optical path of the display element 13 (in this embodiment, the illumination lens 23 and A wavelength limiting filter 18 is disposed between the display element 13 and an observation optical system 19 instead of the eyepiece optical system 14.
  • the HUD of the present embodiment includes the video display device 1 having such a configuration, and a configuration in which a later-described HOE 34 of the observation optical system 19 is held by a windshield 35 as a substrate disposed in the field of view of the observer. It is.
  • the light source 17 is composed of a high-intensity LED that emits monochromatic light (for example, G light having a center wavelength of 532 nm).
  • the wavelength limiting filter 18 is a wavelength limiting element (bandpass filter) that limits the wavelength width of the light emitted from the light source 17, and details thereof will be described later.
  • the observation optical system 19 includes an HOE 34 and a windshield 35 as a substrate on which the HOE 34 is formed.
  • the HOE 34 is composed of a volume phase type reflection type HOE having a diffraction peak wavelength (for example, 532 nm) only in the G wavelength region, but may have a diffraction peak wavelength also in the B or R wavelength region. Good.
  • the half-value width of the diffraction wavelength of the HOE 34 is substantially constant (for example, 10 nm) regardless of the incident region of the image light from the display element 13.
  • the windshield 35 corresponds to a windshield in front of the driver's seat in a transportation means such as a vehicle, a ship, a railroad, and an aircraft.
  • the light emitted from the light source 17 is collected by the illumination lens 23, passes through the wavelength limiting filter 18, and enters the display element 13.
  • Light (video light) modulated in accordance with image data by the display element 13 enters the HOE 34, where it is diffracted and reflected and guided to the optical pupil.
  • the observer can observe the magnified virtual image of the image displayed on the display element 13 and can observe the outside world through the HOE 34 and the windshield 35.
  • the HUD may be configured by holding the HOE 34 on a substrate separate from the windshield 35 and placing the substrate in the field of view of the observer.
  • the HUD can function as a document display device such as a prompter.
  • the HUD is a see-through display that can be observed by superimposing an image on the background (outside) as in the case of the HMD.
  • the above-described HOE 34 is used as a combiner for superimposing image light and external light.
  • the HOE 34 is often arranged almost in parallel with the substrate (windshield 35), the surface reflection of the substrate is taken into consideration. There is a need to. In other words, if the optical system is set so that the light beam at the center of the screen is substantially regularly reflected by the HOE 34, the angle deviation between the light diffracted by the HOE 34 and the light reflected by the surface of the substrate is small, and thus the surface reflection of the substrate. The image by is observed as a ghost.
  • the diffraction angle at the HOE 34 In order to avoid the observation of such a ghost image, it is necessary to set the diffraction angle at the HOE 34 to deviate from the regular reflection angle with respect to all image heights.
  • the angle at which the screen center chief ray from the display element 13 is incident on the HOE 34 is 45.5 °, and the exit angle after the screen center chief ray is diffracted by the HOE 34 is 30 °.
  • the angle of view to 5.4 ° and the horizontal observation angle of view to 7.2 °, the light reflected by the surface of the substrate is reflected outside the observation region.
  • the difference between the incident angle and the diffraction angle at the HOE 34 with respect to the center principal ray of the screen is large, that is, the difference between the regular reflection angle and the diffraction angle is large, and the region corresponding to the bottom edge of the screen and the HOE 34 Since the diffraction angle gradually shifts from the regular reflection angle from the (region where the image light is incident at the lower end of the screen) toward the region corresponding to the upper end of the screen and the HOE 34 (region where the image light is incident at the upper end of the screen), Lateral chromatic aberration increases from the lower end of the screen toward the upper end of the screen.
  • the lateral chromatic aberration is corrected by inserting the wavelength limiting filter 18 in the optical path. Details of the wavelength limiting filter 18 will be described below.
  • the region is also referred to as a region where ⁇ is minimized.
  • the angle deviation ⁇ between the diffraction angle and the regular reflection angle is the largest, so the area is also referred to as the area where ⁇ is the maximum.
  • the direction corresponding to the direction from the lower end of the screen toward the upper end of the screen is defined as the first direction, and the direction perpendicular to the first direction is defined as the second direction.
  • FIG. 26 is a plan view showing a schematic configuration of the wavelength limiting filter 18.
  • the wavelength limiting filter 18 includes a first region 18a, a second region 18b, a third region 18c, and a fourth region 18d.
  • the first region 18a ⁇ fourth region 18d are aligned in this order in a first direction, the second direction, shape which is symmetrical with respect to symmetry axis parallel S W in a first direction It is formed with.
  • the first region 18a, the third region 18c, and the fourth region 18d are all rectangular, and the sizes of the third region 18c and the fourth region 18d are substantially the same.
  • the second region 18b has a width in the second direction from the third region 18c and the fourth region 18d. It is the same and is formed in the shape which touches one long side and two short sides of the 1st field 18a. Thereby, the rectangular wavelength limiting filter 18 is formed as a whole.
  • the wavelength width of the transmitted light is varied for each region.
  • the wavelength widths of the transmitted light in the first region 18a, the second region 18b, the third region 18c, and the fourth region 18d are 10 nm ( ⁇ 5 nm with respect to the center wavelength of 532 nm) and 8 nm (center), respectively.
  • the wavelength is ⁇ 4 nm for the wavelength of 532 nm, 6.5 nm ( ⁇ 3.25 nm for the center wavelength of 532 nm), and 5 nm ( ⁇ 2.5 nm for the center wavelength of 532 nm).
  • the diffraction angle gradually deviates from the regular reflection angle from the region corresponding to the lower end of the screen to the region corresponding to the upper end of the screen and to the region corresponding to HOE 34.
  • the wavelength width of transmitted light is as wide as 10 nm.
  • the region corresponding to the upper end of the screen (for example, the fourth region 18d) has a wavelength width of transmitted light. It is as narrow as 5 nm.
  • the light emitted from the light source 17 is incident on the first region 18 a to the fourth region 18 d of the wavelength limiting filter 18.
  • the light transmitted through the first region 18a is incident on the display element 13 with the widest wavelength width (for example, 10 nm), modulated there, and then incident on the HOE 34 as the main light flux in the region where ⁇ is minimized. Then, it is diffracted at a diffraction angle that minimizes ⁇ and guided to the optical pupil.
  • the light transmitted through the second region 18b to the fourth region 18d enters the display element 13 as a peripheral light flux with a wavelength width narrower than the above wavelength width (for example, 8 nm, 6.5 nm, 5 nm) in each region. Then, after being modulated there, it is diffracted by the HOE 34 and guided to the optical pupil.
  • a wavelength width narrower than the above wavelength width for example, 8 nm, 6.5 nm, 5 nm
  • FIG. 27 shows the relationship between the angle of view of the image light (for example, the vertical direction) and the wavelength width of the image light incident on the center of the optical pupil.
  • the wavelength width of the image light ray (for example, the image light beam at the upper end of the screen) incident on the center of the optical pupil from the angle of view where ⁇ is maximum is from the angle of view where ⁇ is minimum. It becomes narrower than the wavelength width of the image light (for example, the image light at the lower end of the screen) incident on the center of the optical pupil.
  • the image light has a wide wavelength width at an angle of view with small chromatic dispersion, so that sufficient image brightness can be ensured, and the wavelength width of the image light is narrowed only at an angle of view with large chromatic dispersion to correct lateral chromatic aberration. can do. Therefore, even when the wavelength limiting filter 18 is used, it is possible to realize a video display device that is bright overall and has high video quality.
  • the wavelength limiting filter 18 can be said to be disposed across both the optical path of the main light beam incident on the region where ⁇ is minimum in the HOE 34 and the optical path of the peripheral light beam.
  • the wavelength is limited by the HOE 33 as in the first and second embodiments, it is necessary to control the stable diffraction efficiency or diffraction wavelength width at the time of manufacturing the HOE 33, that is, at the exposure of the hologram photosensitive material, and the exposure process is complicated. become.
  • the wavelength limiting filter 18 as in the present embodiment and arranging it in the optical paths of both the main light beam and the peripheral light beam, the wavelength width can be easily controlled by the main light beam and the peripheral light beam.
  • the wavelength limiting filter 18 has different wavelength widths depending on the region through which the light beam passes (the first region 18a to the fourth region 18d). Therefore, the wavelength width control for each region according to ⁇ is possible.
  • the first region 18a to the fourth region 18d are displayed by the main light beam by making the wavelength width of the peripheral light beam narrower than the wavelength width of the main light beam incident on the region where ⁇ is minimum in the HOE 34.
  • the lateral chromatic aberration can be corrected for the screen area (for example, the upper end of the screen) displayed by the peripheral luminous flux while ensuring the image brightness for the screen area (for example, the lower end of the screen).
  • FIG. 28 is a plan view showing another configuration of the wavelength limiting filter 18.
  • the wavelength limiting filter 18 may be configured by only the third region 18c and the fourth region 18d. That is, the wavelength limiting filter 18 may be configured not to be disposed in the optical path of the main light flux that enters the region where ⁇ is minimum in the HOE 34 but to be disposed only in the optical path of the peripheral light flux.
  • the wavelength width of the peripheral light beam can be easily and surely narrower than the wavelength width of the main light beam, and the wavelength width of the main light beam is not limited, so that the screen area displayed by the main light beam (for example, the lower end of the screen) It is possible to ensure sufficient video brightness.
  • the lateral chromatic aberration can be corrected for the screen area (for example, the upper end of the screen) displayed by the peripheral light beam, as in the configuration of FIG.
  • the wavelength width of the transmitted light in the wavelength limiting filter 18 is limited stepwise from the first region 18a toward the fourth region 18d, but may be continuously performed. Further, the number of regions for limiting the wavelength width of transmitted light in the wavelength limiting filter 18 is not limited to the above four (see FIG. 26) or two (see FIG. 28).
  • the configuration in which the wavelength width of the monochromatic light (G light) is limited by the wavelength limiting filter 18 has been described.
  • a filter made of a color HOE is arranged in the illumination system, and the wavelength limitation is performed.
  • it is possible to adopt a configuration in which the wavelength width is limited with respect to a plurality of wavelengths.
  • Example 3 corresponds to the video display apparatus 1 of the present embodiment, and has a configuration using the wavelength limiting filter 18 of FIG.
  • the video display device of Comparative Example 3 has a configuration in which the wavelength limiting filter 18 is removed from the video display device 1 of Example 3.
  • the viewing angle of view is the same in Example 3 and Comparative Example 3.
  • FIG. 29 is an aberration diagram showing lateral chromatic aberration in the X direction and Y direction on the display surface of the display element 13 in the video display apparatus of Example 3.
  • FIG. 30 is an aberration diagram showing lateral chromatic aberration in the X direction and Y direction on the display surface of the display element in the video display apparatus of Comparative Example 3. 29 and 30 respectively show lateral chromatic aberration with respect to a wavelength within a range of ⁇ 4 nm with respect to the center wavelength of 532 nm (G light).
  • Example 3 it can be seen from FIG. 30 that the lateral chromatic aberration gradually increases from the lower end of the screen toward the upper end of the screen in the vertical direction of the screen, that is, in the Y direction.
  • Example 3 as shown in FIG. 29, the lateral chromatic aberration at the upper end of the screen in the Y direction is particularly suppressed, and the lateral chromatic aberration around the screen is also suppressed in the X direction.
  • FIG. 29 due to the wavelength limitation by the wavelength limiting filter 18, light having wavelengths of 528 to 530 nm and 534 to 536 nm are cut at the angle of view corresponding to the upper end of the screen in the Y direction, and lateral chromatic aberration is reduced. .
  • ⁇ Rmin / ⁇ Rmax satisfy the following conditional expression, where ⁇ Rmax (mm) is the maximum value of the half-width of the image wavelength in the observation screen and ⁇ Rmin (mm) is the minimum value of the half-width of the image wavelength.
  • the video display device 1, the HMD, and the HUD can be configured by appropriately combining the configurations described in the embodiments.
  • the video display device of the present invention can be used for HMD and HUD, for example.

Abstract

Provided is an image display apparatus wherein a sufficient image brightness is obtained at a small angle of view at which an angle deviation ∆θ of a diffraction angle from a specular reflection angle is small, and at an angle of view at which the angle deviation is large, a lateral chromatic aberration is corrected so that an image which is bright as a whole and which has a high-quality can be observed. To this end, the wavelength range of image light incident upon a center of an optical pupil at an angle of view at which ∆θ is largest, within the wavelength range of at least one of RGB to be emitted is narrower than the wavelength range of the image light incident upon the center of the optical pupil at an angle of view at which ∆θ is smallest.

Description

映像表示装置、ヘッドマウントディスプレイおよびヘッドアップディスプレイVideo display device, head-mounted display, and head-up display
 本発明は、表示素子からの映像光を反射型で体積位相型のホログラム光学素子(以下、HOEとも称する)で回折反射させて光学瞳に導くことにより、光学瞳の位置にて観察者に映像を観察させる映像表示装置と、その映像表示装置を備えたヘッドマウントディスプレイ(以下、HMDとも称する)およびヘッドアップディスプレイ(以下、HUDとも称する)とに関するものである。 According to the present invention, image light from a display element is diffracted and reflected by a reflection type volume phase type hologram optical element (hereinafter also referred to as HOE) and guided to an optical pupil, whereby an image is displayed to an observer at the position of the optical pupil. And a head-mounted display (hereinafter also referred to as HMD) and a head-up display (hereinafter also referred to as HUD) provided with the video display device.
 従来、表示素子からの映像光と外界光とをHOEによって同時に観察者の瞳に導く映像表示装置が種々提案されている。このHOEは、回折光学素子なので、HOEに入射した光は波長によって異なる方向に回折する。このため、波長による分散(色分散)が生じ、観察される映像の画質が低下することが懸念される。例えば、表示素子を照明する光源としてLEDを用いたとき、光源の発光波長幅が広いために、HOEの色分散による横色収差が発生し、映像にボケが発生する(解像度が低下する)。 Conventionally, various video display devices have been proposed in which video light from the display element and external light are simultaneously guided to the observer's pupil by HOE. Since this HOE is a diffractive optical element, light incident on the HOE is diffracted in different directions depending on the wavelength. For this reason, dispersion (chromatic dispersion) due to wavelength occurs, and there is a concern that the image quality of the observed video is degraded. For example, when an LED is used as the light source for illuminating the display element, the light emission wavelength width of the light source is wide, so that lateral chromatic aberration due to HOE chromatic dispersion occurs, and the image is blurred (resolution is reduced).
 そこで、例えば特許文献1では、光路中に波長制限フィルタを挿入し、HOEに入射する全ての光束についてスペクトル半値幅を狭くしている。これにより、HOEでの回折光の広がりを抑制して、映像のボケを抑制している。 Therefore, for example, in Patent Document 1, a wavelength limiting filter is inserted in the optical path to narrow the spectral half-value width for all light beams incident on the HOE. Thereby, the spread of the diffracted light in the HOE is suppressed, and blurring of the image is suppressed.
 また、例えば特許文献2では、画面中心とHOEで対応する領域(以下、中心部とも称する)で正反射に近い入射・反射特性となるようにHOEを使用することで、画面中心でHOEの色分散の影響を抑え、横色収差を低減している。なお、特許文献2では、全ての実施例において、映像の観察画角は、水平方向について±5°、垂直方向について±6.75°となっている。 For example, in Patent Document 2, the HOE color is used at the center of the screen by using the HOE so that the region corresponding to the center of the screen and the HOE (hereinafter also referred to as the center) has an incident / reflection characteristic close to regular reflection. The influence of dispersion is suppressed and lateral chromatic aberration is reduced. In Patent Document 2, in all examples, the viewing angle of view of the video is ± 5 ° in the horizontal direction and ± 6.75 ° in the vertical direction.
特開2000-267042号公報JP 2000-267042 A 特開2003-140079号公報Japanese Patent Laid-Open No. 2003-140079
 反射型の回折光学素子は、回折角度が正反射角度からずれて使用するほど、波長による分散が大きくなる。したがって、分散による解像力低下の改善が必要なのは、回折角度と正反射角度との角度ズレが大きい場合であり、角度ズレが小さい場合に波長制限フィルタによって半値幅を制限すると、映像輝度が低下する。 The reflection type diffractive optical element has a larger dispersion due to the wavelength as the diffraction angle deviates from the regular reflection angle. Therefore, it is necessary to improve the resolution reduction due to dispersion when the angle deviation between the diffraction angle and the specular reflection angle is large. When the angle deviation is small, if the half-value width is limited by the wavelength limiting filter, the video luminance is lowered.
 この点、特許文献1の装置では、回折角度と正反射角度との角度ズレを全く考慮せずに、波長制限フィルタによってHOEに入射する光束の半値幅を光束全体で一律に狭めているため、正反射角度との角度ズレが小さい回折角度で回折される光によって表現される映像の輝度が低下する。 In this respect, in the apparatus of Patent Document 1, the half-value width of the light beam incident on the HOE is uniformly narrowed by the wavelength limiting filter without considering the angle deviation between the diffraction angle and the specular reflection angle at all. The brightness of an image expressed by light diffracted at a diffraction angle with a small angle deviation from the regular reflection angle is lowered.
 また、特許文献2のように、HOEの中心部で正反射に近い入射・反射特性となるようにHOEを使用する場合、HOEに光学レンズとしての特性(光学パワー)を持たせると、画面中心で横色収差が発生しないようにしても、画面周辺でHOEの色分散による横色収差が発生する。この画面周辺での横色収差については、HOEに極端に強い光学パワーを持たせなければ、HOEの色分散による影響を他の光学系の分散で打ち消して、実用上問題とならない範囲に抑えることができる。しかし、これは映像の観察画角が小さい場合だけであり、観察画角が大きくなるにつれて、回折角度と正反射角度との角度ズレが大きくなるため、画面周辺でのHOEの色分散の影響を無視することができなくなる。その結果、画面周辺での横色収差の増大によって、観察される映像の画質が低下する。 Further, as in Patent Document 2, when the HOE is used so that the incident / reflection characteristics are close to regular reflection at the center of the HOE, if the HOE has characteristics (optical power) as an optical lens, the center of the screen is obtained. Even if lateral chromatic aberration does not occur, lateral chromatic aberration due to chromatic dispersion of HOE occurs around the screen. Regarding the lateral chromatic aberration around the screen, unless the HOE has an extremely strong optical power, the influence of the chromatic dispersion of the HOE is canceled by the dispersion of the other optical system, and is suppressed to a range where there is no practical problem. it can. However, this is only when the viewing angle of view of the image is small. As the viewing angle of view increases, the angle deviation between the diffraction angle and the specular reflection angle increases, so the influence of the color dispersion of HOE around the screen is affected. It can no longer be ignored. As a result, the image quality of the observed image is degraded due to an increase in lateral chromatic aberration around the screen.
 本発明は、上記の問題点を解決するためになされたもので、その目的は、回折角度と正反射角度との角度ズレが小さい画角では十分な映像輝度を確保し、角度ズレが大きい画角では横色収差を補正して、全体として明るく、画質の良好な映像を観察させることができる映像表示装置と、その映像表示装置を備えたHMDおよびHUDとを提供することにある。 The present invention has been made to solve the above-described problems, and its purpose is to ensure a sufficient image luminance at an angle of view where the angle difference between the diffraction angle and the regular reflection angle is small, and an image with a large angle difference. An object of the present invention is to provide a video display apparatus that can correct lateral chromatic aberration at the corner and observe a bright image with good image quality as a whole, and an HMD and HUD including the video display apparatus.
 本発明の映像表示装置は、光源と、前記光源からの光を変調して映像を表示する表示素子と、前記表示素子からの映像光を光学瞳に導く観察光学系とを備えた映像表示装置であって、前記光源から出射される光は、少なくとも1つの発光ピーク波長と、その発光ピーク波長を含む少なくとも1つの発光波長領域とを有し、前記観察光学系は、前記発光波長領域に対応する少なくとも1つの波長領域において1つの回折ピーク波長を有し、かつ、前記表示素子からの映像光を前記光学瞳の方向に回折反射する、反射型で体積位相型のホログラム光学素子を有し、前記ホログラム光学素子の反射光学パワーは、前記ホログラム光学素子が形成されている基板面の反射光学パワーと異なり、前記表示素子から出射されて前記ホログラム光学素子に入射する映像光線が前記ホログラム光学素子で回折されて前記光学瞳の中心に向かうときの回折角度と、前記映像光線の前記基板面での正反射角度との差の絶対値をΔθとおくと、少なくとも1つの発光波長領域において、前記Δθが最大となる画角から前記光学瞳の中心に入射する映像光線の波長幅が、前記Δθが最小となる画角から前記光学瞳の中心に入射する映像光線の波長幅よりも狭いことを特徴としている。 An image display apparatus according to the present invention includes a light source, a display element that displays an image by modulating light from the light source, and an observation optical system that guides the image light from the display element to an optical pupil. The light emitted from the light source has at least one emission peak wavelength and at least one emission wavelength region including the emission peak wavelength, and the observation optical system corresponds to the emission wavelength region. A reflection type volume phase type hologram optical element that has one diffraction peak wavelength in at least one wavelength region and that diffracts and reflects the image light from the display element in the direction of the optical pupil; The reflection optical power of the hologram optical element is different from the reflection optical power of the substrate surface on which the hologram optical element is formed, and is emitted from the display element to the hologram optical element. When the absolute value of the difference between the diffraction angle when the projected image light beam is diffracted by the hologram optical element and travels toward the center of the optical pupil and the regular reflection angle of the image light beam on the substrate surface is Δθ, In at least one emission wavelength region, an image light having a wavelength width incident on the center of the optical pupil from the angle of view at which Δθ is maximum, and an image of light incident on the center of the optical pupil from an angle of view at which Δθ is minimum It is characterized by being narrower than the wavelength width of the light beam.
 本発明の映像表示装置において、前記ホログラム光学素子の回折波長の半値幅は、前記Δθが最小となる画角の光が入射する領域よりも、前記Δθが最大となる画角の光が入射する領域で狭くてもよい。 In the video display device according to the aspect of the invention, the half-value width of the diffraction wavelength of the hologram optical element may be incident on the light having an angle of view at which Δθ is greater than the region on which the light having an angle of view at which Δθ is minimum It may be narrow in the area.
 本発明の映像表示装置において、前記ホログラム光学素子をなす膜の厚みは、前記Δθが最小となる画角の光が入射する領域よりも、前記Δθが最大となる画角の光が入射する領域が厚くてもよい。 In the video display device of the present invention, the thickness of the film forming the hologram optical element is such that the light having an angle of view at which Δθ is larger than the region at which the light having an angle of view at which Δθ is minimum is incident. May be thick.
 本発明の映像表示装置において、前記ホログラム光学素子をなす膜は、ホログラム感光材料を露光して形成されるものであり、膜厚が一定で、前記表示素子の前記Δθが最小となる画角の光が入射する領域よりも、前記Δθが最大となる画角の光が入射する領域で、露光量を小さくする、熱処理温度を低くする、又は、熱処理温度を短くすることの少なくとも1つを行うことにより形成されてもよい。 In the video display device of the present invention, the film forming the hologram optical element is formed by exposing a hologram photosensitive material, has a constant film thickness, and has an angle of view that minimizes the Δθ of the display element. At least one of reducing the exposure dose, lowering the heat treatment temperature, or shortening the heat treatment temperature is performed in the region where the light having the angle of view where Δθ is maximum is incident than the region where the light is incident. May be formed.
 本発明の映像表示装置は、前記光源から出射される光の波長幅を制限する波長制限素子をさらに備え、前記波長制限素子は、前記ホログラム光学素子に光束が入射する領域の内、前記Δθが最小となる位置を含む一部の領域に入射する光束の周辺光束の光路中にのみ配置されていてもよい。 The video display device of the present invention further includes a wavelength limiting element that limits a wavelength width of light emitted from the light source, and the wavelength limiting element has the Δθ within a region where a light beam is incident on the hologram optical element. You may arrange | position only in the optical path of the peripheral light beam of the light beam which injects into the one part area | region containing the position which becomes the minimum.
 本発明の映像表示装置は、前記光源から出射される光の波長幅を制限する波長制限素子をさらに備え、前記波長制限素子は、前記ホログラム光学素子に光束が入射する領域の内、前記Δθが最小となる位置を含む一部の領域に入射する光束の光路と、その周辺光束の光路との両方にまたがって配置されており、前記Δθが最小となる位置を含む一部の領域に入射する光束の波長幅よりも、前記周辺光束の波長幅を狭くしてもよい。 The video display device of the present invention further includes a wavelength limiting element that limits a wavelength width of light emitted from the light source, and the wavelength limiting element has the Δθ within a region where a light beam is incident on the hologram optical element. It is arranged across both the optical path of the light beam incident on a part of the region including the minimum position and the optical path of the peripheral light beam, and enters the part of the region including the position where the Δθ is minimum. The wavelength width of the peripheral light beam may be narrower than the wavelength width of the light beam.
 本発明の映像表示装置において、前記光学瞳中心に入射する映像光線の波長幅は、前記Δθが最小となる画角から前記Δθが最大となる画角に向かって段階的に狭くなってもよい。 In the image display device of the present invention, the wavelength width of the image light incident on the optical pupil center may be gradually reduced from the angle of view at which Δθ is minimized toward the angle of view at which Δθ is maximized. .
 本発明の映像表示装置において、前記光学瞳中心に入射する映像光線の波長幅は、前記Δθが最小となる画角から前記Δθが最大となる画角に向かって連続的に狭くなってもよい。 In the image display device of the present invention, the wavelength width of the image light incident on the optical pupil center may be continuously narrowed from the angle of view at which Δθ is minimized toward the angle of view at which Δθ is maximized. .
 本発明の映像表示装置では、前記光源の全ての発光波長領域において、前記光学瞳の中心に入射する映像光のうちで前記表示素子の画面周辺からの映像光の波長幅が、画面中心からの映像光の波長幅よりも狭くてもよい。 In the image display device of the present invention, in all emission wavelength regions of the light source, among the image light incident on the center of the optical pupil, the wavelength width of the image light from the periphery of the screen of the display element is from the center of the screen. It may be narrower than the wavelength width of the image light.
 本発明の映像表示装置において、前記光学瞳の中心に入射する映像光線の波長幅の変化が、画面上において少なくとも1本の対称軸に対して対称であってもよい。 In the image display device of the present invention, the change in wavelength width of the image light incident on the center of the optical pupil may be symmetric with respect to at least one symmetry axis on the screen.
 本発明の映像表示装置は、前記光源から出射される光の透過率が入射領域ごとに異なる輝度調整素子をさらに備え、前記輝度調整素子において、前記ホログラム光学素子に光束が入射する領域の内、前記Δθが最小となる位置を含む一部の領域に入射する光束の透過率よりも、その周辺の光束の透過率が高い構成であってもよい。 The video display device of the present invention further includes a luminance adjusting element in which the transmittance of light emitted from the light source is different for each incident region, and in the luminance adjusting element, the region in which the light beam is incident on the hologram optical element, A configuration may be employed in which the transmittance of the light flux in the vicinity thereof is higher than the transmittance of the light flux incident on a part of the region including the position where Δθ is minimized.
 本発明のヘッドマウントディスプレイは、上述した本発明の映像表示装置と、前記映像表示装置を観察者の眼前で支持する支持手段とを備えて構成されてもよい。 The head-mounted display of the present invention may be configured to include the above-described video display device of the present invention and support means for supporting the video display device in front of the observer's eyes.
 本発明のヘッドアップディスプレイは、上述した本発明の映像表示装置を備え、前記映像表示装置の前記ホログラム光学素子が、観察者の視界内に配置される基板に保持されている構成であってもよい。 The head-up display of the present invention includes the above-described video display device of the present invention, and the hologram optical element of the video display device may be held on a substrate arranged in the field of view of the observer. Good.
 本発明では、少なくとも1つの発光波長領域(例えばRGBの波長領域)において、Δθが最大となる画角から光学瞳中心に入射する映像光線の波長幅が、Δθが最小となる画角から光学瞳中心に入射する映像光線の波長幅よりも狭い。つまり、色分散の大きい(Δθが大きい)光束の波長幅が、色分散の小さい(Δθが小さい)光束の波長幅よりも狭い。例えば、入射領域によって回折波長の半値幅が異なるHOEを用いたり、入射領域によって制限する波長幅の異なる波長制限素子を用いることにより、上記のようにΔθに応じて映像光の波長幅をコントロールすることが可能である。 In the present invention, in at least one light emission wavelength region (for example, RGB wavelength region), the wavelength width of the image light incident on the center of the optical pupil from the angle of view where Δθ is maximum is from the angle of view where Δθ is minimum. It is narrower than the wavelength width of the image beam incident on the center. That is, the wavelength width of a light beam having a large chromatic dispersion (large Δθ) is narrower than the wavelength width of a light beam having a small chromatic dispersion (small Δθ). For example, the wavelength width of the image light is controlled according to Δθ as described above by using an HOE having a half-value width of the diffraction wavelength depending on the incident region or using a wavelength limiting element having a wavelength width limited by the incident region. It is possible.
 これにより、色分散の小さい画角では、映像光の波長幅が広いので十分な映像輝度を確保することができ、色分散の大きい画角でのみ映像光の波長幅を狭めて横色収差を補正することができる。したがって、全体として明るく、ボケを低減した画質の良好な映像を観察させることができる。特に、制限波長幅が一律の波長制限素子を光路中に挿入し、光束の波長幅を画面全体で一律に制限する構成と比較して、照明光の利用効率も上がり、省電力化も図ることができる。 As a result, the image light has a wide wavelength width at an angle of view with small chromatic dispersion, so that sufficient image brightness can be ensured, and the wavelength width of the image light is narrowed only at an angle of view with large chromatic dispersion to correct lateral chromatic aberration. can do. Accordingly, it is possible to observe an image that is bright as a whole and has good image quality with reduced blur. In particular, compared to a configuration in which a wavelength limiting element with a uniform limiting wavelength width is inserted in the optical path and the wavelength width of the luminous flux is uniformly limited over the entire screen, the use efficiency of illumination light is increased and power saving is also achieved. Can do.
実施の形態1の映像表示装置の概略の構成を示す断面図である。1 is a cross-sectional view illustrating a schematic configuration of a video display device according to a first embodiment. 上記映像表示装置のHOEの製造光学系の主要部を拡大して示す説明図である。It is explanatory drawing which expands and shows the principal part of the manufacturing optical system of HOE of the said video display apparatus. 上記映像表示装置の光源の発光特性を示す説明図である。It is explanatory drawing which shows the light emission characteristic of the light source of the said video display apparatus. 上記映像表示装置のHOEの回折特性を示す説明図である。It is explanatory drawing which shows the diffraction characteristic of HOE of the said video display apparatus. (a)は、ホログラム感光材料の露光時の製造光学系の主光線の光路を示す説明図であり、(b)は、再生時の主光線の光路を示す説明図である。(A) is explanatory drawing which shows the optical path of the principal ray of the manufacturing optical system at the time of exposure of a hologram photosensitive material, (b) is explanatory drawing which shows the optical path of the principal ray at the time of reproduction | regeneration. 上記HOEの概略の構成を示す平面図である。It is a top view which shows the structure of the outline of the said HOE. 図6のA-A’線上のHOEのポジションと膜厚との関係を示す説明図である。FIG. 7 is an explanatory diagram showing the relationship between the HOE position and film thickness on the A-A ′ line in FIG. 6. 図6のA-A’線上のHOEのポジションと回折波長の半値幅との関係を示す説明図である。FIG. 7 is an explanatory diagram showing the relationship between the position of the HOE on the A-A ′ line in FIG. 6 and the half width of the diffraction wavelength. 映像光線がHOEで回折されて光学瞳の中心に向かうときの回折角度と、上記映像光線の基板面での正反射角度との関係を示す説明図である。It is explanatory drawing which shows the relationship between the diffraction angle when an image ray is diffracted by HOE, and goes to the center of an optical pupil, and the regular reflection angle in the board | substrate surface of the said image ray. 上記映像表示装置における映像光の画角と波長幅との関係を示す説明図である。It is explanatory drawing which shows the relationship between the angle of view of image light and wavelength width in the said video display apparatus. HOEの他の構成を示す平面図である。It is a top view which shows the other structure of HOE. HOEのさらに他の構成を示す平面図である。It is a top view which shows other structure of HOE. 輝度調整フィルタの概略の構成を示す平面図である。It is a top view which shows the schematic structure of a brightness adjustment filter. 実施例1の映像表示装置におけるX方向およびY方向の横色収差を示す収差図である。FIG. 6 is an aberration diagram showing lateral chromatic aberration in the X direction and the Y direction in the video display apparatus of Example 1. 比較例1の映像表示装置におけるX方向およびY方向の横色収差を示す収差図である。6 is an aberration diagram illustrating lateral chromatic aberration in the X direction and the Y direction in the video display device of Comparative Example 1. FIG. 実施の形態1の映像表示装置が適用されるHMDの概略の構成を示す斜視図である。It is a perspective view which shows the structure of the outline of HMD to which the video display apparatus of Embodiment 1 is applied. 実施の形態2の映像表示装置の概略の構成を示す断面図である。6 is a cross-sectional view illustrating a schematic configuration of a video display device according to a second embodiment. 上記映像表示装置の光源の発光特性を示す説明図である。It is explanatory drawing which shows the light emission characteristic of the light source of the said video display apparatus. 上記映像表示装置のHOEの概略の構成を示す平面図である。It is a top view which shows the schematic structure of HOE of the said video display apparatus. 図19のB-B’線上のHOEのポジションと膜厚との関係を示す説明図である。FIG. 20 is an explanatory diagram showing the relationship between the HOE position and the film thickness on the B-B ′ line of FIG. 19. 図19のB-B’線上のHOEのポジションと回折波長の半値幅との関係を示す説明図である。FIG. 20 is an explanatory diagram showing the relationship between the position of the HOE on the B-B ′ line of FIG. 19 and the half width of the diffraction wavelength. 上記映像表示装置における映像光の画角と波長幅との関係を示す説明図である。It is explanatory drawing which shows the relationship between the angle of view of image light and wavelength width in the said video display apparatus. 実施例2の映像表示装置におけるX方向およびY方向の横色収差を示す収差図である。FIG. 6 is an aberration diagram showing lateral chromatic aberration in the X direction and the Y direction in the video display apparatus of Example 2. 比較例2の映像表示装置におけるX方向およびY方向の横色収差を示す収差図である。10 is an aberration diagram showing lateral chromatic aberration in the X direction and the Y direction in the video display device of Comparative Example 2. FIG. 実施の形態3の映像表示装置およびそれを備えたHUDの概略の構成を示す断面図である。It is sectional drawing which shows the schematic structure of the video display apparatus of Embodiment 3, and HUD provided with the same. 上記映像表示装置の波長制限フィルタの概略の構成を示す平面図である。It is a top view which shows the schematic structure of the wavelength limiting filter of the said video display apparatus. 上記映像表示装置における映像光の画角と波長幅との関係を示す説明図である。It is explanatory drawing which shows the relationship between the angle of view of image light and wavelength width in the said video display apparatus. 波長制限フィルタの他の構成を示す平面図である。It is a top view which shows the other structure of a wavelength limiting filter. 実施例3の映像表示装置におけるX方向およびY方向の横色収差を示す収差図である。FIG. 10 is an aberration diagram showing lateral chromatic aberration in the X direction and the Y direction in the video display apparatus of Example 3. 比較例3の映像表示装置におけるX方向およびY方向の横色収差を示す収差図である。10 is an aberration diagram showing lateral chromatic aberration in the X direction and the Y direction in the video display device of Comparative Example 3. FIG.
 〔実施の形態1〕
 本発明の実施の一形態について、図面に基づいて説明すれば、以下の通りである。
[Embodiment 1]
An embodiment of the present invention will be described below with reference to the drawings.
 (映像表示装置について)
 図1は、本実施形態の映像表示装置1の概略の構成を示す断面図である。映像表示装置1は、光源11と、照明光学系12と、表示素子13と、接眼光学系14とを有して構成されている。本実施形態では、水平方向の観察画角が例えば±13°、垂直方向の観察画角が例えば±7.5°となっており、いわゆるワイド画面の映像を観察することが可能となっている。
(About video display device)
FIG. 1 is a cross-sectional view showing a schematic configuration of a video display device 1 of the present embodiment. The video display device 1 includes a light source 11, an illumination optical system 12, a display element 13, and an eyepiece optical system 14. In the present embodiment, the observation angle in the horizontal direction is, for example, ± 13 °, and the observation angle in the vertical direction is, for example, ± 7.5 °, so that a so-called wide screen image can be observed. .
 光源11は、表示素子13を照明するものであり、本実施形態では、青(B)、緑(G)、赤(R)の各波長領域の光を同一の発光面から発光する高演色白色光源で構成されている。つまり、光源11は、例えば、B光を発光する半導体発光素子であるLEDと、B光で励起されてG光を発光する緑色蛍光体と、B光で励起されてR光を発光する赤色蛍光体とを有して構成され、BGRの各光を同一の発光面から発光する。なお、光源11の発光特性については後述する。光源11(特に上記の同一の発光面)は、接眼光学系14によって形成される光学瞳Pと略共役となるように配置されている。なお、光源11は、RGBのいずれか1つまたは2つの光を発光する光源で構成されていてもよい。 The light source 11 illuminates the display element 13, and in the present embodiment, a high color rendering white light that emits light in each wavelength region of blue (B), green (G), and red (R) from the same light emitting surface. It consists of a light source. That is, the light source 11 includes, for example, an LED, which is a semiconductor light emitting element that emits B light, a green phosphor that emits G light when excited by B light, and red fluorescence that emits R light when excited by B light. The BGR light is emitted from the same light emitting surface. The light emission characteristics of the light source 11 will be described later. The light source 11 (particularly the same light emitting surface as described above) is disposed so as to be substantially conjugate with the optical pupil P formed by the eyepiece optical system 14. The light source 11 may be a light source that emits one or two lights of RGB.
 照明光学系12は、光源11からの光を集光して表示素子13に導く光学系であり、例えば凹面反射面を有するミラー21で構成されている。表示素子13は、光源11から照明光学系12を介して入射する光を画像データに応じて変調して映像を表示するものであり、例えば透過型のLCDで構成されている。表示素子13は、矩形の表示画面の長辺方向が水平方向(図1の紙面に垂直な方向;左右方向と同じ)となり、短辺方向がそれに垂直な方向となるように配置されている。 The illumination optical system 12 is an optical system that condenses the light from the light source 11 and guides it to the display element 13, and includes, for example, a mirror 21 having a concave reflecting surface. The display element 13 displays an image by modulating light incident from the light source 11 via the illumination optical system 12 in accordance with image data, and is configured by, for example, a transmissive LCD. The display element 13 is arranged so that the long side direction of the rectangular display screen is the horizontal direction (direction perpendicular to the paper surface of FIG. 1; the same as the left-right direction), and the short side direction is the direction perpendicular thereto.
 接眼光学系14は、表示素子13からの映像光を光学瞳P(または光学瞳Pの位置にある観察者の瞳)に導く観察光学系であり、接眼プリズム31と、偏向プリズム32と、HOE33とを有して構成されている。 The eyepiece optical system 14 is an observation optical system that guides the image light from the display element 13 to the optical pupil P (or the observer's pupil at the position of the optical pupil P), and includes an eyepiece prism 31, a deflection prism 32, and a HOE 33. And is configured.
 接眼プリズム31は、表示素子13からの映像光を内部で全反射させてHOE33を介して光学瞳Pに導く一方、外界光を透過させて光学瞳Pに導くものであり、偏向プリズム32とともに、例えばアクリル系樹脂で構成されている。この接眼プリズム31は、平行平板の下端部を楔状にした形状で構成されている。接眼プリズム31の上端面は、映像光の入射面としての面31aとなっており、前後方向に位置する2面は、互いに平行な面31b・31cとなっている。 The eyepiece prism 31 totally reflects the image light from the display element 13 and guides it to the optical pupil P through the HOE 33, while transmitting the external light to the optical pupil P. Together with the deflection prism 32, For example, it is made of an acrylic resin. The eyepiece prism 31 is formed in a shape in which a lower end portion of a parallel plate is wedge-shaped. An upper end surface of the eyepiece prism 31 is a surface 31a as an incident surface for image light, and two surfaces positioned in the front-rear direction are surfaces 31b and 31c parallel to each other.
 偏向プリズム32は、平面視で略U字型の平行平板で構成されており(図16参照)、接眼プリズム31の下端部および両側面部(左右の各端面)と貼り合わされたときに、接眼プリズム31と一体となって略平行平板となるものである。偏向プリズム32は、HOE33を挟むように接眼プリズム31と隣接または接着して設けられている。これにより、外界光が接眼プリズム31の楔状の下端部を透過するときの屈折を偏向プリズム32でキャンセルすることができ、シースルーで観察される外界像に歪みが生じるのを防止することができる。 The deflection prism 32 is formed of a substantially U-shaped parallel plate in plan view (see FIG. 16), and when attached to the lower end portion and both side surface portions (left and right end surfaces) of the eyepiece prism 31, the eyepiece prism. 31 and a substantially parallel flat plate. The deflection prism 32 is provided adjacent to or adhering to the eyepiece prism 31 so as to sandwich the HOE 33 therebetween. Thereby, the refraction when the external light passes through the wedge-shaped lower end of the eyepiece prism 31 can be canceled by the deflecting prism 32, and distortion of the external image observed through the see-through can be prevented.
 HOE33は、表示素子13からの映像光(BGRの各光)を光学瞳Pの方向に回折反射させる一方、外界光を透過させて光学瞳Pに導くコンバイナとしての体積位相型で反射型のホログラム光学素子であり、接眼プリズム31において偏向プリズム32との接合面である面31dに形成されている。HOE33は、軸非対称な正の光学的パワーを有しており、正の光学的パワーを持つ非球面凹面ミラーと同様の機能を持っている。これにより、装置を構成する各光学部材の配置の自由度を高めて装置を容易に小型化することができるとともに、良好に収差補正された映像を観察者に提供することができる。なお、HOE33の回折特性の詳細については後述する。 The HOE 33 diffracts and reflects the image light (BGR light) from the display element 13 in the direction of the optical pupil P, while transmitting the external light and guiding it to the optical pupil P, and a volume phase type reflection hologram. It is an optical element, and is formed on a surface 31 d that is a joint surface with the deflection prism 32 in the eyepiece prism 31. The HOE 33 has an axially asymmetric positive optical power and has the same function as an aspherical concave mirror having a positive optical power. Thereby, the degree of freedom of arrangement of each optical member constituting the apparatus can be increased, and the apparatus can be easily reduced in size, and an image with good aberration correction can be provided to the observer. Details of the diffraction characteristics of the HOE 33 will be described later.
 上記構成の映像表示装置1において、光源11から出射された光は、照明光学系12のミラー21によって反射、集光され、ほぼコリメート光となって表示素子13に入射し、そこで変調されて映像光として出射される。表示素子13からの映像光は、接眼光学系14の接眼プリズム31の内部に面31aから入射し、続いて面31b・31cで少なくとも1回ずつ全反射されてHOE33に入射する。 In the image display device 1 having the above-described configuration, the light emitted from the light source 11 is reflected and collected by the mirror 21 of the illumination optical system 12 and is substantially collimated and incident on the display element 13 where it is modulated and imaged. It is emitted as light. The image light from the display element 13 enters the inside of the eyepiece prism 31 of the eyepiece optical system 14 from the surface 31a, and then is totally reflected at least once by the surfaces 31b and 31c and enters the HOE 33.
 HOE33は、光源11が発光するBGRの各波長領域の光を、各波長領域ごとに独立して回折する回折素子として機能する波長選択性を有しており、また、光源11が発光するBGRの光に対しては凹面反射面として機能するように設計されている。したがって、HOE33に入射した光は、そこで回折反射されて光学瞳Pに達し、同時に、外界光もHOE33を透過して、光学瞳Pに向かう。よって、光学瞳Pの位置に観察者の瞳を位置させることにより、観察者は、表示素子13に表示された映像を拡大虚像として観察することができると同時に、外界像をシースルーで観察することができる。なお、表示素子13に表示された映像を観察者が良好に観察できるように、接眼光学系14において諸収差(コマ収差、像面湾曲、非点収差、歪曲収差)が補正されている。 The HOE 33 has wavelength selectivity that functions as a diffraction element that independently diffracts light in each wavelength region of the BGR emitted from the light source 11 for each wavelength region. It is designed to function as a concave reflecting surface for light. Therefore, the light incident on the HOE 33 is diffracted and reflected there and reaches the optical pupil P. At the same time, external light passes through the HOE 33 and travels toward the optical pupil P. Therefore, by locating the observer's pupil at the position of the optical pupil P, the observer can observe the image displayed on the display element 13 as an enlarged virtual image, and at the same time, observe the outside world image with see-through. Can do. Note that various aberrations (coma aberration, curvature of field, astigmatism, distortion) are corrected in the eyepiece optical system 14 so that the viewer can observe the image displayed on the display element 13 satisfactorily.
 また、光源11の発光面と接眼光学系14の光学瞳P(観察者の瞳)とは略共役であるので、光源11から射出された光を効率よく光学瞳Pに導くことができる。これにより、光学瞳Pの位置に観察者の瞳を位置させたときには、光源11からの光を観察者の瞳(瞳孔)に効率よく入射させることができ、観察者は、明るい高品位な映像を観察することができる。 Further, since the light emitting surface of the light source 11 and the optical pupil P (observer's pupil) of the eyepiece optical system 14 are substantially conjugate, the light emitted from the light source 11 can be efficiently guided to the optical pupil P. Thus, when the observer's pupil is positioned at the position of the optical pupil P, the light from the light source 11 can be efficiently incident on the pupil (pupil) of the observer, and the observer can obtain a bright high-definition image. Can be observed.
 (HOEの製造方法について)
 次に、上記したHOE33の製造方法について説明する。図2は、HOE33の製造光学系の主要部を拡大して示す説明図である。反射型のカラーホログラムであるHOE33は、BGRのそれぞれについて、2光束を用いて基板(接眼プリズム31)上のホログラム感光材料33aを露光して作製される。このとき、一方の光束は、ホログラム感光材料33aに対して基板とは反対側から照射されるが、この光束を物体光と呼ぶことにする。また、他方の光束は、ホログラム感光材料33aに対して基板側から照射されるが、この光束を参照光と呼ぶことにする。なお、BGRの露光波長(参照光、物体光の波長)をそれぞれλ1、λ1、λ1とすると、例えば、λ1=476.5nm、λ1=532nm、λ1=647nmである。
(About manufacturing method of HOE)
Next, a method for manufacturing the above HOE 33 will be described. FIG. 2 is an explanatory view showing, in an enlarged manner, main parts of the manufacturing optical system of the HOE 33. As shown in FIG. The HOE 33 which is a reflection type color hologram is produced by exposing the hologram photosensitive material 33a on the substrate (eyepiece prism 31) using two light beams for each BGR. At this time, one light beam is irradiated to the hologram photosensitive material 33a from the side opposite to the substrate, and this light beam is referred to as object light. The other light beam is irradiated from the substrate side to the hologram photosensitive material 33a, and this light beam is referred to as reference light. If the exposure wavelengths (reference light and object light) of BGR are λ1 B , λ1 G , and λ1 R , respectively, for example, λ1 B = 476.5 nm, λ1 G = 532 nm, and λ1 R = 647 nm.
 物体光生成側の光学系において、点光源41(物体光側光源)からのRGBの発散光は、光学的なパワーを有する反射面である自由曲面ミラー42によって所定の波面に整形され、平面反射ミラー43で反射された後、色補正プリズム44を介してホログラム感光材料33aに照射される。なお、色補正プリズム44における物体光の入射面である面44aは、再生時(映像観察時)に用いられる接眼光学系14の接眼プリズム31の面31aでの映像光の屈折に起因して発生する色収差を打ち消すように、その角度が決定されている。このとき、色補正プリズム44は、表面反射によるゴーストを防止するためにホログラム感光材料33aに対して密着して配置されるか、エマルジョンオイルなどを介して配置されることが望ましい。 In the optical system on the object light generation side, the RGB divergent light from the point light source 41 (object light side light source) is shaped into a predetermined wavefront by a free-form surface mirror 42 which is a reflection surface having optical power, and is planarly reflected. After being reflected by the mirror 43, the hologram photosensitive material 33 a is irradiated through the color correction prism 44. The surface 44a that is the incident surface of the object light in the color correction prism 44 is generated due to the refraction of the image light on the surface 31a of the eyepiece prism 31 of the eyepiece optical system 14 that is used during reproduction (image observation). The angle is determined so as to cancel the chromatic aberration. At this time, it is desirable that the color correction prism 44 is disposed in close contact with the hologram photosensitive material 33a in order to prevent a ghost due to surface reflection, or is disposed via emulsion oil or the like.
 一方、参照光生成側の光学系において、参照光側光源であるRGBの各点光源51R・51G・51Bからの発散光(例えば球面波)は、参照光としてホログラム感光材料33aに接眼プリズム31側から照射される。 On the other hand, in the optical system on the reference light generation side, divergent light (for example, spherical waves) from the RGB point light sources 51R, 51G, and 51B, which are reference light side light sources, is used as reference light on the hologram photosensitive material 33a on the eyepiece prism 31 side. Irradiated from.
 このようにして、RGBのそれぞれについて物体光および参照光の2光束でホログラム感光材料33aを露光することにより、その2光束の干渉によってホログラム感光材料33aに干渉縞が形成され、HOE33が作製される。このとき、2光束による露光は、RGBについて同時に行ってもよいし、順次に行ってもよい。 In this way, by exposing the hologram photosensitive material 33a with two light beams of object light and reference light for each of RGB, interference fringes are formed in the hologram photosensitive material 33a by interference of the two light beams, and the HOE 33 is manufactured. . At this time, the exposure with two light beams may be performed simultaneously for RGB or sequentially.
 本実施形態では、参照光側光源、すなわち、HOE33の作製時に用いるホログラム感光材料33aを露光する2つの露光光源(物体光側光源、参照光側光源)のうちの1つが、映像観察時の接眼光学系14の光学瞳Pを含む面上に配置されている。これにより、映像観察時に、表示素子13からの映像光をHOE33にて効率よく回折させて光学瞳Pに導くことができる。したがって、光学瞳Pの位置に観察者の瞳を位置させることにより、観察者は明るく高品位な映像を観察することができる。 In the present embodiment, one of two exposure light sources (object light side light source, reference light side light source) that exposes the reference light side light source, that is, the hologram photosensitive material 33a used when the HOE 33 is manufactured, is an eyepiece during image observation. The optical system 14 is disposed on a surface including the optical pupil P. Thereby, at the time of image observation, the image light from the display element 13 can be efficiently diffracted by the HOE 33 and guided to the optical pupil P. Therefore, by locating the observer's pupil at the position of the optical pupil P, the observer can observe a bright and high-quality image.
 ここで、BGRの露光光源(参照光側光源)は、全て、光学瞳Pの面上の同じ位置にあってもよいし、露光波長と使用波長(発光ピーク波長)とのズレ量(正確には、異なる色間での露光波長と使用波長との比のズレ量)に応じて、そのいずれかを瞳面上でずらしてもよい。 Here, the BGR exposure light sources (reference light side light sources) may all be at the same position on the surface of the optical pupil P, or the amount of deviation (exactly between the exposure wavelength and the used wavelength (emission peak wavelength)). May be shifted on the pupil plane in accordance with the deviation of the ratio between the exposure wavelength and the used wavelength between different colors.
 本実施形態では、映像観察時に光源11のBGRの各波長領域における発光ピーク波長の光が光学瞳Pの中心に向かって回折されるように、各点光源51R・51G・51Bを映像観察時の光学瞳Pの面上に配置している。つまり、後述するように、Bについては、露光波長と発光ピーク波長とのズレが大きいので、光学瞳Pの面上で、点光源51Bのみ、他の点光源51G・51Rとずらして配置している。一方、GとRについては、露光波長と発光ピーク波長とのズレがそれぞれ小さいので、点光源51G・51Rを光学瞳Pの中心に配置している。 In the present embodiment, the point light sources 51R, 51G, and 51B are used at the time of image observation so that the light of the emission peak wavelength in each wavelength region of the BGR of the light source 11 is diffracted toward the center of the optical pupil P during image observation. It is arranged on the surface of the optical pupil P. That is, as will be described later, with respect to B, since the deviation between the exposure wavelength and the emission peak wavelength is large, only the point light source 51B is shifted from the other point light sources 51G and 51R on the surface of the optical pupil P. Yes. On the other hand, for G and R, since the difference between the exposure wavelength and the emission peak wavelength is small, the point light sources 51G and 51R are arranged at the center of the optical pupil P.
 このように露光波長と発光ピーク波長とのズレ量を考慮して点光源51R・51G・51Bを配置し、HOE33を作製することにより、映像観察時に光学瞳Pの中心に観察者の瞳中心を一致させたときに、全ての画角において、照明光がHOE33で確実に回折反射されて観察者の瞳に到達する。したがって、観察者は、光学瞳Pの中心位置で画面全域にわたって明るく高品位な映像を観察することができる。 In this way, the point light sources 51R, 51G, and 51B are arranged in consideration of the deviation amount between the exposure wavelength and the emission peak wavelength, and the HOE 33 is manufactured, so that the center of the observer's pupil is centered on the optical pupil P during image observation. When matched, the illumination light is reliably diffracted and reflected by the HOE 33 and reaches the observer's pupil at all angles of view. Therefore, the observer can observe a bright and high-definition image over the entire screen at the center position of the optical pupil P.
 (光源の発光特性について)
 次に、光源11の発光特性について説明する。図3は、光源11の発光特性を示している。光源11から出射される光は、400nm以上500nm未満の第1の波長領域、500nm以上570nm未満の第2の波長領域、570nm以上700nm未満の第3の波長領域のそれぞれにおいて、1つの発光(放射)ピーク波長と、その発光ピーク波長を含む発光波長領域とを有している。
(Light emission characteristics of light source)
Next, the light emission characteristics of the light source 11 will be described. FIG. 3 shows the light emission characteristics of the light source 11. The light emitted from the light source 11 emits one light (radiation) in each of the first wavelength region of 400 nm or more and less than 500 nm, the second wavelength region of 500 nm or more and less than 570 nm, and the third wavelength region of 570 nm or more and less than 700 nm. ) It has a peak wavelength and an emission wavelength region including the emission peak wavelength.
 なお、第1~第3の波長領域は、BGRの各波長領域に対応している。また、上記の発光波長領域としては、例えば、BGRの各波長領域内で、かつ、発光ピークの半値波長幅内の領域を考えることができる。したがって、BGRのそれぞれについて、波長領域の下限の波長≦発光波長領域の下限の波長、波長領域の上限の波長≧発光波長領域の上限の波長、の関係にある。なお、以下では、波長領域と発光波長領域の用語を互いに区別して用いる。 The first to third wavelength regions correspond to the BGR wavelength regions. Moreover, as said light emission wavelength area | region, the area | region within each wavelength area | region of BGR and the half value wavelength width of a light emission peak can be considered, for example. Accordingly, for each of the BGRs, there is a relationship of the lower limit wavelength of the wavelength region ≦ the lower limit wavelength of the emission wavelength region, the upper limit wavelength of the wavelength region ≧ the upper limit wavelength of the emission wavelength region. In the following, the terms wavelength region and emission wavelength region are used separately from each other.
 本実施形態では、BGRの各波長領域での発光ピーク波長をそれぞれλ2、λ2、λ2とし、発光ピークの半値波長幅をそれぞれΔλ2、Δλ2、Δλ2とすると、例えば、λ2=453nm、λ2=531nm、λ2=652nmであり、Δλ2=26nm、Δλ2=100nm、Δλ2=120nmである。したがって、BGRの各発光波長領域としては、ここでは、440nm以上466nm以下、500nm以上570nm以下、592nm以上700nm以下の領域を考えることができる。 In this embodiment, assuming that the emission peak wavelengths in each wavelength region of BGR are λ2 B , λ2 G , and λ2 R , respectively, and the half-value wavelength widths of the emission peaks are Δλ2 B , Δλ2 G , and Δλ2 R , respectively, for example, λ2 B = 453nm, λ2 G = 531nm, a λ2 R = 652nm, Δλ2 B = 26nm, Δλ2 G = 100nm, a .DELTA..lambda.2 R = 120 nm. Therefore, as each emission wavelength region of BGR, here, regions of 440 nm to 466 nm, 500 nm to 570 nm, and 592 nm to 700 nm can be considered.
 前述した、露光波長と発光ピーク波長とのズレ量は、Bについては、|λ1-λ2|=23.5nmであり、Gについては、|λ1-λ2|=1nmであり、Rについては、|λ1-λ2|=5nmである。したがって、Bについての露光波長と発光ピーク波長とのズレ量が、GやRについての露光波長と発光ピーク波長とのズレ量よりも大きいので、上述したように、HOE33の作製時に点光源51Bを他の点光源51G・51Rとずらして配置し、ホログラム感光材料33aを露光している。 The amount of deviation between the exposure wavelength and the emission peak wavelength described above is | λ1 B −λ2 B | = 23.5 nm for B , and | λ1 G −λ2 G | = 1 nm for G , R Is | λ1 R −λ2 R | = 5 nm. Therefore, since the amount of deviation between the exposure wavelength and the emission peak wavelength for B is larger than the amount of deviation between the exposure wavelength and the emission peak wavelength for G and R, as described above, the point light source 51B is used when the HOE 33 is manufactured. The hologram photosensitive material 33a is exposed by being shifted from the other point light sources 51G and 51R.
 (HOEの回折特性について)
 次に、HOE33の回折特性について説明する。図4は、画面中心主光線に対するHOE33の回折特性を示している。なお、画面中心主光線とは、表示素子13の中心から射出されてHOE33を介して光学瞳Pの中心に入射する光線を指すものとする。BGRの各波長領域において、画面中心主光線についてのHOE33の回折効率のピーク波長(回折ピーク波長)をそれぞれλ3、λ3、λ3とし、回折効率ピークの半値波長幅をそれぞれΔλ3、Δλ3、Δλ3とすると、例えば、λ3=453nm、λ3=521nm、λ3=634nmであり、Δλ3=Δλ3=Δλ3=10nmである。つまり、本実施形態では、HOE33は、光源11の発光波長領域に対応するBGRの波長領域において、1つの回折ピーク波長と、その回折ピーク波長を含む回折波長の半値幅とを有している。
(Diffraction characteristics of HOE)
Next, the diffraction characteristics of the HOE 33 will be described. FIG. 4 shows the diffraction characteristics of the HOE 33 with respect to the screen center chief ray. Note that the screen center principal ray refers to a light ray that is emitted from the center of the display element 13 and enters the center of the optical pupil P via the HOE 33. In each wavelength region of the BGR, the peak wavelengths (diffraction peak wavelengths) of the diffraction efficiency of the HOE 33 with respect to the screen center principal ray are λ3 B , λ3 G , and λ3 R , respectively, and the half-value wavelength widths of the diffraction efficiency peaks are Δλ3 B and Δλ3, respectively. Assuming G 1 and Δλ3 R , for example, λ3 B = 453 nm, λ3 G = 521 nm, and λ3 R = 634 nm, and Δλ3 B = Δλ3 G = Δλ3 R = 10 nm. That is, in the present embodiment, the HOE 33 has one diffraction peak wavelength and a half width of the diffraction wavelength including the diffraction peak wavelength in the BGR wavelength region corresponding to the light emission wavelength region of the light source 11.
 (横色収差についての補足)
 本実施形態では、HOE33の色分散に起因する横色収差(倍率色収差)を低減すべく、HOE33の回折波長の半値幅(回折効率ピークの半値幅)をコントロールすることによって、HOE33を介して光学瞳Pに入射する映像光の波長幅を制限している。以下、この点について説明する前に、上記の横色収差が発生する原理について、説明を補足しておく。
(Supplementary about lateral chromatic aberration)
In the present embodiment, in order to reduce lateral chromatic aberration (magnification chromatic aberration) caused by chromatic dispersion of the HOE 33, the half-width of the diffraction wavelength of the HOE 33 (half-width of the diffraction efficiency peak) of the HOE 33 is controlled, so that the optical pupil is transmitted via the HOE 33. The wavelength width of the image light incident on P is limited. Hereinafter, before explaining this point, a supplementary explanation will be given on the principle of occurrence of the lateral chromatic aberration.
 図5(a)は、ホログラム感光材料33aの露光時の製造光学系の主光線の光路を示す説明図であり、図5(b)は、再生時(使用状態)の主光線の光路を示す説明図である。なお、製造光学系の主光線とは、同図(b)に示す使用状態の主光線(画面中心主光線)がHOE33と交わる点と、参照光の点光源、物体光の点光源とをそれぞれ結ぶ光線とする。 FIG. 5A is an explanatory diagram showing the optical path of the principal ray of the production optical system at the time of exposure of the hologram photosensitive material 33a, and FIG. 5B shows the optical path of the principal ray at the time of reproduction (use state). It is explanatory drawing. Note that the principal ray of the manufacturing optical system includes the point where the principal ray in use (screen center principal ray) intersects with the HOE 33, the point light source for reference light, and the point light source for object light. Let it be a ray of light.
 露光時のRGBの参照光の主光線の入射角は、使用状態において、発光ピーク波長におけるHOE33での回折角度(方向)がRGBで一致するように、予めブラッグの条件を満たすように異なっている。反射型のHOE33による回折では、ブラッグの条件、すなわち、下記の2つの式が同時に成立する方向に回折する光の回折強度が最大となる。
(sinθ-sinθ)/λ=(sinθ-sinθ)/λ
                             ・・(1)
(cosθ-cosθ)/λ=(cosθ-cosθ)/λ
                             ・・(2)
 ここで、
   λ(nm):製造波長(露光波長)
   θ(°) :物体光入射角(物体光角度)
   θ(°) :参照光入射角(参照光角度)
   λ(nm):使用波長(回折波長)
   θ(°) :映像主光線入射角度(映像光角度)
   θ(°) :映像主光線射出角度(視線角度)
である。なお、θ、θ、θ、θは、全てプリズム媒質中での角度である。
The incident angles of the principal rays of the RGB reference light at the time of exposure are different so as to satisfy the Bragg condition in advance so that the diffraction angles (directions) at the HOE 33 at the emission peak wavelength match in RGB in the usage state. . In the diffraction by the reflective HOE 33, the diffraction intensity of the light diffracted in the Bragg condition, that is, the direction in which the following two expressions are simultaneously satisfied is maximized.
(Sin θ O −sin θ R ) / λ R = (sin θ I −sin θ C ) / λ C
(1)
(Cos θ O −cos θ R ) / λ R = (cos θ I −cos θ C ) / λ C
(2)
here,
λ R (nm): Manufacturing wavelength (exposure wavelength)
θ O (°): Object light incident angle (object light angle)
θ R (°): Reference light incident angle (reference light angle)
λ C (nm): wavelength used (diffraction wavelength)
θ I (°): Image chief ray incident angle (image light angle)
θ C (°): Image chief ray emission angle (line-of-sight angle)
It is. Note that θ O , θ R , θ I and θ C are all angles in the prism medium.
 上記(1)式を変形すると、次の(3)式が得られる。
sinθ=sinθ+(λ/λ)×(sinθ-sinθ
                             ・・(3)
 上記(3)式において、sinθ-sinθ=0、つまり、θ=180°-θのとき、波長に依存する項がなくなり、このときの回折光の方向は、波長によらず一定で、sinθ=sinθを満たす方向、すなわち、θ=180°-θを満たす方向となる。このとき、HOE33での回折角度は、HOE33が形成される基板面(接眼プリズム31の面31d)での正反射角度と等しくなる(すなわち、|θ|=|180°-θ|)。
When the above equation (1) is modified, the following equation (3) is obtained.
sin θ I = sin θ C + (λ C / λ R ) × (sin θ O −sin θ R )
(3)
In the above equation (3), when sin θ O −sin θ R = 0, that is, θ R = 180 ° −θ O , there is no wavelength-dependent term, and the direction of the diffracted light at this time is constant regardless of the wavelength. Thus, the direction satisfies sin θ I = sin θ C , that is, the direction satisfying θ C = 180 ° −θ I. At this time, the diffraction angle at the HOE 33 is equal to the regular reflection angle at the substrate surface (the surface 31d of the eyepiece prism 31) on which the HOE 33 is formed (that is, | θ C | = | 180 ° −θ I |).
 本実施形態では、HOE33が形成される面31dの形状を例えば平面としている。この場合は、画面内の1点(例えば画面中心)では、正反射に近い入射・反射特性(|θ|=|180°-θ|、または、|θ|≒|180°-θ|)とすることができるが、画面周辺に向かうにしたがって、|θ|と|180°-θ|との差は大きくなってしまう。すなわち、画面周辺に向かうにしたがって、回折方向の波長依存度が大きくなる。これは、屈折光学系における色分散が画面周辺に向かうにしたがって急激に大きくなり、横色収差が増大することと等価である。 In the present embodiment, the shape of the surface 31d on which the HOE 33 is formed is, for example, a flat surface. In this case, at one point in the screen (for example, the center of the screen), the incident / reflection characteristics close to regular reflection (| θ C | = | 180 ° −θ I | or | θ C | ≈ | 180 ° −θ I |), but the difference between | θ C | and | 180 ° −θ I | increases toward the periphery of the screen. That is, the wavelength dependence in the diffraction direction increases as it goes toward the periphery of the screen. This is equivalent to the fact that the chromatic dispersion in the refractive optical system suddenly increases toward the periphery of the screen and lateral chromatic aberration increases.
 なお、HOE33が形成される面31dが反射光学パワーを持っている場合でも、HOE33の反射光学パワーと、面31dの反射光学パワーとが異なる場合は、HOE33における回折角度は、面31dにおける正反射角度とずれるので、この角度ズレ(Δθ)が大きいほど、すなわち、画面周辺に向かうほど、HOE33での回折時の色分散による横色収差が増大すると言える。 Even when the surface 31d on which the HOE 33 is formed has reflection optical power, if the reflection optical power of the HOE 33 and the reflection optical power of the surface 31d are different, the diffraction angle at the HOE 33 is a regular reflection at the surface 31d. It can be said that the lateral chromatic aberration due to chromatic dispersion during diffraction at the HOE 33 increases as the angle deviation (Δθ) increases, that is, toward the periphery of the screen.
 (映像光の波長制限について)
 以上のような横色収差(特に画面周辺)を低減すべく、本実施形態では、以下に示す回折特性を持つHOE33を用いることにより、光学瞳Pに入射する映像光の波長幅を制限している。
(About wavelength limitation of image light)
In the present embodiment, in order to reduce the lateral chromatic aberration (particularly the periphery of the screen) as described above, the wavelength width of the image light incident on the optical pupil P is limited by using the HOE 33 having the following diffraction characteristics. .
 図6は、本実施形態のHOE33の概略の構成を示す平面図である。なお、図6では、膜厚の領域ごとの違いをグラデーションで示している。また、図7は、図6のA-A’線上のHOE33のポジション(領域)と膜厚との関係を示す説明図である。なお、A-A’線の方向は、膜厚の変化が対称となる後述する対称軸Sに対して垂直な方向(映像表示装置の水平方向)に対応している。 FIG. 6 is a plan view showing a schematic configuration of the HOE 33 of the present embodiment. In FIG. 6, the difference in film thickness for each region is shown by gradation. FIG. 7 is an explanatory diagram showing the relationship between the position (region) of the HOE 33 on the line AA ′ in FIG. 6 and the film thickness. The direction of the line AA ′ corresponds to a direction (horizontal direction of the video display device) perpendicular to a later-described symmetry axis S 2 in which the change in film thickness is symmetric.
 本実施形態では、HOE33の膜厚は、画面中心に対応する領域Rから、対称軸Sに垂直な方向の画面周辺に対応する領域Rに向かって徐々に厚くなるように連続的に変化している。つまり、HOE33の表面はシリンドリカル面となっており、対称軸Sを含む中央の領域Rで膜厚が最も薄く、対称軸Sに垂直な方向の両端の2つの領域Rで膜厚が最も厚くなっている(図7参照)。ここで、「連続的な変化」とは、各領域内では回折波長の半値幅が変化しており、かつ、複数の領域の境界付近の半値幅がほぼ同じになるような変化を指す。この結果、HOE33の回折波長の半値幅は、図8に示すように、中央の領域Rで最も広く、両端の2つの領域Rで最も狭くなっている。 In the present embodiment, the thickness of HOE33 are from the region R C corresponding to the center of the screen, towards the region R E corresponding to the screen around the direction perpendicular to the axis of symmetry S 2 continuously becomes gradually thicker It has changed. That is, the surface of the HOE33 is a cylindrical surface, the film thickness in the central region R C including an axis of symmetry S 2 is the thinnest thickness in the two regions R E perpendicular direction across the axis of symmetry S 2 Is the thickest (see FIG. 7). Here, the “continuous change” refers to a change in which the half-value width of the diffraction wavelength is changed in each region and the half-value widths near the boundaries of the plurality of regions are substantially the same. As a result, the FWHM of the diffraction wavelength of HOE33, as shown in FIG. 8, the most widely in the central region R C, which is narrowest at the two regions R E both ends.
 なお、領域Rは、表示素子13の画面中心からの映像光が入射する領域に対応しており、両端の2つの領域Rは、表示素子13の(水平方向の)画面周辺からの映像光が入射する領域に対応している。したがって、図8より、HOE33の回折波長の半値幅は、画面中心からの映像光が入射する領域から、画面周辺からの映像光が入射する領域に向かって徐々に狭くなるように連続的に変化していると言える。 The region R C corresponds to a region where image light from the center of the display device 13 is incident, the two regions R E both ends, the video from the (horizontal) screen periphery of the display device 13 It corresponds to the area where light enters. Therefore, from FIG. 8, the half-value width of the diffraction wavelength of the HOE 33 continuously changes from the region where the image light from the center of the screen is incident to gradually narrowing toward the region where the image light from the periphery of the screen is incident. I can say that.
 なお、HOE33を作製するためにホログラム感光材料(例えばフォトポリマー)は、フィルム状のものであってもよいし、ジェル状の固体を有機溶剤に溶かしたホログラム感材液であってもよいが、ホログラム感材液を用いるほうがシリンドリカル面を容易に形成できる点で有利である。 The hologram photosensitive material (eg, photopolymer) for producing the HOE 33 may be a film-like material or a hologram-sensitive material solution obtained by dissolving a gel-like solid in an organic solvent. The use of the hologram sensitive material liquid is advantageous in that a cylindrical surface can be easily formed.
 ここで、図9に示すように、表示素子13から出射されてHOE33に入射する映像光線がHOE33で回折されて光学瞳Pの中心に向かうときの回折角度をθ(°)とし、上記映像光線の基板面(面31d)での正反射角度をθ(°)とし、θとθとの差の絶対値|θ-θ|をΔθとする。 Here, as shown in FIG. 9, when the image light beam emitted from the display element 13 and incident on the HOE 33 is diffracted by the HOE 33 and travels toward the center of the optical pupil P, the diffraction angle is θ 1 (°). The regular reflection angle of the light beam on the substrate surface (surface 31d) is θ 2 (°), and the absolute value | θ 1 −θ 2 | of the difference between θ 1 and θ 2 is Δθ.
 図10は、映像光の画角(例えば水平方向)と、HOE33を介して光学瞳Pの中心に入射する映像光線の波長幅との関係を示している。図8のように、HOE33の回折波長の半値幅を、表示素子13の画面中心からの映像光が入射する領域よりも、画面周辺からの映像光が入射する領域で狭くすることにより、図10に示すように、Δθが最大となる画角(例えば水平方向の左端または右端の画角)からHOE33を介して光学瞳Pの中心に入射する映像光線の波長幅を、Δθが最小となる画角(例えば水平方向の画角0°)から光学瞳Pの中心に入射する映像光線の波長幅よりも狭くすることができる。 FIG. 10 shows the relationship between the angle of view of the image light (for example, the horizontal direction) and the wavelength width of the image light incident on the center of the optical pupil P via the HOE 33. As shown in FIG. 8, the half-value width of the diffraction wavelength of the HOE 33 is made narrower in the region where the image light from the periphery of the screen is incident than in the region where the image light from the center of the display element 13 is incident. As shown in FIG. 5, the wavelength width of the image light beam that enters the center of the optical pupil P through the HOE 33 from the angle of view where Δθ is maximized (for example, the angle of view at the left end or the right end in the horizontal direction) is the image where Δθ is minimized. It can be made narrower than the wavelength width of the image light incident on the center of the optical pupil P from an angle (for example, a horizontal field angle of 0 °).
 HOE33の反射光学パワーと面31dの反射光学パワーとが異なるとき、Δθが大きいほどHOE33での回折時の色分散による横色収差が増大する点は、上述した通りであるが、上記のように、Δθが最大となる画角の映像光線の波長幅を制限することによって、色分散の大きい(Δθが大きい)光束の波長幅が、色分散の小さい(Δθが小さい)光束の波長幅よりも狭くなるので、色分散の小さい画角では、映像光の波長幅が広いので十分な映像輝度を確保することができ、色分散の大きい画角でのみ映像光の波長幅を狭めて横色収差を補正することができる。したがって、全体として明るく映像品位の高い映像表示装置を実現することができる。特に、光路中に波長制限素子を挿入し、光束の波長幅を画面全体で一律に制限する構成と比較して、照明光の利用効率も上がり、省電力化も実現することができる。 As described above, when the reflected optical power of the HOE 33 and the reflected optical power of the surface 31d are different, the lateral chromatic aberration due to chromatic dispersion during diffraction at the HOE 33 increases as Δθ increases. By limiting the wavelength width of the image light having the angle of view at which Δθ is maximized, the wavelength width of the light beam having a large chromatic dispersion (large Δθ) is narrower than the wavelength width of the light beam having a small chromatic dispersion (small Δθ). Therefore, at the angle of view with small chromatic dispersion, the image light has a wide wavelength width, so that sufficient image brightness can be secured, and only at the angle of view with large chromatic dispersion, the wavelength width of the image light is narrowed to correct lateral chromatic aberration. can do. Therefore, it is possible to realize a video display device that is bright overall and has high video quality. In particular, compared to a configuration in which a wavelength limiting element is inserted in the optical path and the wavelength width of the light beam is uniformly limited over the entire screen, the use efficiency of the illumination light is increased and power saving can be realized.
 また、HOE33での波長制限をRGBの少なくとも1つについて行えば、RGBの少なくとも1つについて横色収差を補正することができる。例えば、感光層1層でRGBのいずれかに感度を有するホログラム感光材料を用い、そのホログラム感光材料の膜厚を画面中心に対応する領域から画面周辺に対応する領域に向かって徐々に厚くすれば、画面周辺に対応するRGBのいずれか1つの回折波長幅(映像光の波長幅)を制限して、RGBのいずれか1つについて横色収差を補正することができる。 Further, if the wavelength limitation in the HOE 33 is performed for at least one of RGB, the lateral chromatic aberration can be corrected for at least one of RGB. For example, if a photosensitive layer having a photosensitive layer sensitive to any one of RGB is used, and the film thickness of the hologram photosensitive material is gradually increased from a region corresponding to the center of the screen toward a region corresponding to the periphery of the screen. The lateral chromatic aberration can be corrected for any one of RGB by limiting the diffraction wavelength width (wavelength width of image light) of RGB corresponding to the periphery of the screen.
 また、例えば、感光層1層でRGBの3色に感度を有するホログラム感光材料を用い、そのホログラム感光材料の膜厚を画面中心に対応する領域から画面周辺に対応する領域に向かって徐々に厚くする、または、感光層1層でRGBのいずれかに感度を有するホログラム感光材料を3色分用い、各ホログラム感光材料ごとに、画面中心に対応する領域から画面周辺に対応する領域に向かって徐々に膜厚を厚くすれば、画面周辺に対応するRGBの全ての回折波長幅(映像光の波長幅)を制限して、RGBの全てについて横色収差を補正することができる。なお、前者の場合は、比視感度の高いGについて膜厚を最適化することが望ましく、後者の場合は、各ホログラム感光材料ごとに膜厚を最適化すればよい。なお、上記と同様の考え方から、HOE33での波長制限をRGBのいずれか2つについて行い、RGBのいずれか2つについて横色収差を補正することも可能である。 For example, a hologram photosensitive material having sensitivity to three colors of RGB in one photosensitive layer is used, and the film thickness of the hologram photosensitive material is gradually increased from an area corresponding to the center of the screen toward an area corresponding to the periphery of the screen. Alternatively, three photosensitive hologram materials having sensitivity to any one of RGB are used in one photosensitive layer, and for each hologram photosensitive material, gradually from an area corresponding to the center of the screen toward an area corresponding to the periphery of the screen. If the film thickness is increased, all the diffraction wavelength widths of RGB corresponding to the periphery of the screen (wavelength width of image light) can be limited, and lateral chromatic aberration can be corrected for all of RGB. In the former case, it is desirable to optimize the film thickness for G having a high relative visibility. In the latter case, the film thickness may be optimized for each hologram photosensitive material. From the same idea as described above, it is also possible to perform wavelength limitation on the HOE 33 for any two of RGB and correct lateral chromatic aberration for any two of RGB.
 以上のことから、本実施形態では、RGBの少なくとも1つの発光波長領域において、Δθが最大となる画角から光学瞳Pの中心に入射する映像光線の波長幅が、Δθが最小となる画角から光学瞳Pの中心に入射する映像光線の波長幅よりも狭ければよいと言うことができる。 From the above, in the present embodiment, in at least one emission wavelength region of RGB, the angle of view of the wavelength of the image light ray that enters the center of the optical pupil P from the angle of view at which Δθ is maximum is the angle of view at which Δθ is minimum. It can be said that it should be narrower than the wavelength width of the image light incident on the center of the optical pupil P.
 また、上述したHOE33での波長制限により、本実施形態では、RGBの全ての発光波長領域において、光学瞳Pの中心に入射する映像光のうちで表示素子13の画面周辺からの映像光の波長幅が、画面中心からの映像光の波長幅よりも狭い。通常、画面中心では、色分散による横色収差を小さくするために、Δθが小さくなるような入射・反射特性でHOE33が使用される。このとき、Δθが小さい画面中心では、横色収差が十分小さいので、光学瞳Pに入射する光の波長幅を制限する必要はない。しかし、画面周辺では、Δθが大きいので、色分散による横色収差が増大する。 In addition, due to the wavelength limitation in the HOE 33 described above, in the present embodiment, the wavelength of the image light from the periphery of the screen of the display element 13 among the image light incident on the center of the optical pupil P in all of the RGB emission wavelength regions. The width is narrower than the wavelength width of the image light from the center of the screen. Normally, at the center of the screen, the HOE 33 is used with an incident / reflection characteristic that reduces Δθ in order to reduce lateral chromatic aberration due to chromatic dispersion. At this time, since the lateral chromatic aberration is sufficiently small at the center of the screen where Δθ is small, it is not necessary to limit the wavelength width of the light incident on the optical pupil P. However, since Δθ is large around the screen, lateral chromatic aberration due to chromatic dispersion increases.
 本実施形態のように、HOE33によって画面中心よりも画面周辺で映像光の波長幅を狭くすることにより、画面周辺での横色収差を低減して画面全体で十分な性能(映像品位)を確保しながら、明るい映像表示を実現することができる。 As in this embodiment, the wavelength of the image light is narrowed around the screen rather than the center of the screen by the HOE 33, thereby reducing the lateral chromatic aberration around the screen and ensuring sufficient performance (image quality) on the entire screen. However, a bright video display can be realized.
 また、HOE33の回折波長の半値幅は、表示素子13の画面中心からの映像光が入射する領域(例えば領域R)よりも、画面周辺からの映像光が入射する領域(例えば領域R)で狭いので、波長制限素子(フィルターなど)を光路中に挿入することなく、HOE33単独で波長制限を部分的に行うことができる。また、画面中心では、光学瞳Pの中心に入射する映像光の波長幅が広くなるので十分な映像輝度を確保でき、画面周辺では、光学瞳Pの中心に入射する映像光の波長幅が狭くなるので横色収差を補正することができる。 Further, the half-value width of the diffraction wavelength of the HOE 33 is such that the image light from the periphery of the screen is incident (for example, the region R E ) than the region (for example, the region R C ) where the image light from the center of the display element 13 is incident. Therefore, the wavelength limitation can be partially performed by the HOE 33 alone without inserting a wavelength limiting element (such as a filter) in the optical path. Further, since the wavelength width of the image light incident on the center of the optical pupil P is wide at the center of the screen, sufficient image brightness can be secured, and the wavelength width of the image light incident on the center of the optical pupil P is narrow around the screen. Therefore, lateral chromatic aberration can be corrected.
 また、本実施形態では、図8のように、HOE33の回折波長の半値幅は、表示素子13の画面中心からの映像光が入射する領域Rから、画面周辺からの映像光が入射する領域Rに向かって連続的に狭くなっていることから、HOE33にて回折されて光学瞳Pの中心に入射する映像光線の波長幅は、Δθが最小となる画角(例えば水平方向の画角0°)からΔθが最大となる画角(例えば水平方向の左端または右端の画角)に向かって連続的に狭くなると言える。このように、映像光線の波長幅を連続的に変化させることにより、映像輝度の変化に境界がなくなるので、境界の画質への影響がなくなり、高品位な映像表示装置を実現することができる。 In the present embodiment, as shown in FIG. 8, the half-value width of the diffraction wavelength of the HOE 33 is a region where image light from the periphery of the screen enters from a region RC where image light from the center of the display element 13 enters. since it is narrower R and continuously towards the E, the wavelength width of the image light rays incident on the center of the diffracted by the optical pupil P at HOE33 is field angle Δθ becomes minimum (e.g., horizontal direction angle of view It can be said that the angle gradually decreases from 0 ° to the angle of view where Δθ is maximized (for example, the angle of view at the left end or the right end in the horizontal direction). In this way, by continuously changing the wavelength width of the image light beam, there is no boundary in the change in the image luminance, so that there is no influence on the image quality of the boundary, and a high-quality image display device can be realized.
 また、図6で示したように、HOE33の膜厚の変化が対称軸Sに対して対称であることにより、HOE33の回折波長の半値幅の変化も対称軸Sに対して対称となるので、HOE33から光学瞳Pの中心に入射する映像光線の波長幅の変化も、対称軸Sと画面上で対応する軸(対称軸)に対して対称となる。この場合、HOE33の色分散による横色収差を上記対称軸に対して対称に低減することができ、高品位な映像表示を実現することができる。 Further, as shown in FIG. 6, by a change in thickness of HOE33 is symmetric with respect to the symmetry axis S 2, it is symmetrical with respect to the symmetry axis S 2 change in the half width of the diffraction wavelength of HOE33 since the change in the wavelength range of the image light rays incident on the center of the optical pupil P from HOE33 also symmetrical with respect to the axis (axis of symmetry) corresponding with the symmetry axis S 2 and screen. In this case, the lateral chromatic aberration due to the chromatic dispersion of the HOE 33 can be reduced symmetrically with respect to the symmetry axis, and a high-quality video display can be realized.
 また、本実施形態では、水平方向の観察画角(例えば±13°)が、垂直方向の観察画角(例えば±7.5°)よりも大きいために、水平方向において横色収差による画質劣化が大きい。そこで、HOE33の膜厚の変化を対称軸Sに対して対称とし、水平方向についてのみ、HOE33の回折波長の半値幅をコントロールすることにより、水平方向における画面周辺の性能(画質)を改善することができる。 In the present embodiment, since the horizontal viewing angle of view (for example ± 13 °) is larger than the vertical viewing angle of view (for example ± 7.5 °), image quality degradation due to lateral chromatic aberration in the horizontal direction is caused. large. Therefore, the symmetry of the variation in the thickness of HOE33 to the axis of symmetry S 2, the horizontal direction only, by controlling the half width of the diffraction wavelength of HOE33, to improve the performance (quality) of the periphery of the screen in the horizontal direction be able to.
 ところで、HOE33は、図11および図12のように構成されていてもよい。図11は、HOE33の他の構成を示す平面図である。なお、図11では、膜厚および回折波長の半値幅が異なる領域を異なるハッチングで示している。このHOE33は、面内に複数の領域R、R、Rを有し、全体として矩形形状となっている。領域RはHOE33の中心Oを含む矩形の領域であり、領域Rは領域Rの周辺に位置する矩形の領域(領域Rを囲む領域)であり、領域Rはさらに領域Rの周辺に位置する矩形の領域(領域Rを囲む領域)である。 Incidentally, the HOE 33 may be configured as shown in FIGS. 11 and 12. FIG. 11 is a plan view showing another configuration of the HOE 33. In FIG. 11, regions having different thicknesses and half-value widths of diffraction wavelengths are indicated by different hatchings. This HOE 33 has a plurality of regions R 1 , R 2 , R 3 in a plane and has a rectangular shape as a whole. Region R 1 is a rectangular region including the center O of the HOE33, region R 2 is rectangular region around the region R 1 (the area surrounding the region R 1), region R 3 is further region R 2 a rectangular region around the (area surrounding the region R 2).
 そして、HOE33の膜厚は、領域Rで最も薄く、一番外側の領域Rで最も厚く、領域Rでそれらの間の膜厚となっている。この結果、HOE33の回折波長の半値幅は、画面中心に対応する領域Rから画面周辺に対応する領域Rに向かって、(領域R、R、Rの順に)段階的に狭くなっている。ここで、「段階的な変化」とは、1つの領域内では回折波長の半値幅が一定であり、複数の領域間では半値幅が異なるような変化を指す。 The thickness of HOE33 is thinnest in the region R 1, thickest outermost regions R 3, and has a thickness between them in the region R 2. As a result, the half width of the diffraction wavelength of the HOE 33 is gradually reduced from the region R 1 corresponding to the center of the screen toward the region R 3 corresponding to the periphery of the screen (in the order of the regions R 1 , R 2 , and R 3 ). It has become. Here, “stepwise change” refers to a change in which the half-value width of the diffraction wavelength is constant in one region and the half-value width is different among a plurality of regions.
 一方、図12は、HOE33のさらに他の構成を示す平面図である。なお、図12では、回折波長の半値幅の変化をグラデーションで示している。このHOE33は、面内で複数の領域を有しているが、ここでは、3つの領域R11、R12、R13を考える。領域R11は、HOE33の中心Oを含む円形の領域であり、領域R12は、領域R11の周辺に位置する領域(領域R11の少なくとも一部を囲む領域)であり、領域R13は、さらに領域R12の周辺に位置する領域(領域R12の少なくとも一部を囲む領域)である。HOE33の回折波長の半値幅は、画面中心に対応する領域R11から画面周辺に対応する領域R13に向かって、(領域R11、R12、R13の順に)連続的に狭くなっている。 On the other hand, FIG. 12 is a plan view showing still another configuration of the HOE 33. In FIG. 12, the change in the half-value width of the diffraction wavelength is shown by gradation. The HOE 33 has a plurality of regions in the plane. Here, three regions R 11 , R 12 , and R 13 are considered. Region R 11 is a circular area including the center O of the HOE33, region R 12 is a region around the region R 11 (the area surrounding at least a portion of the region R 11), area R 13 is a further region around the region R 12 (the area surrounding at least a portion of the region R 12). The half-value width of the diffraction wavelength of the HOE 33 is continuously narrowed from the region R 11 corresponding to the center of the screen toward the region R 13 corresponding to the periphery of the screen (in the order of the regions R 11 , R 12 , and R 13 ). .
 なお、図12のHOE33では、膜厚は領域によらず一定となっているが、例えば作製条件(露光量、露光後の熱処理条件(熱処理温度、熱処理時間))が領域によって異なっていることによって、回折波長の半値幅が領域によって異なっている。例えば、領域R11、R12、R13の順に、露光量を小さくする、熱処理温度を低くする、熱処理時間を短くすることにより、領域R11、R12、R13の順に回折波長の半値幅を連続的に狭くすることが可能である。 In the HOE 33 in FIG. 12, the film thickness is constant regardless of the region. For example, the production conditions (exposure amount, heat treatment conditions after exposure (heat treatment temperature, heat treatment time)) differ depending on the region. The half-value width of the diffraction wavelength differs depending on the region. For example, in the order of region R 11, R 12, R 13, to reduce the amount of exposure, lowering the heat treatment temperature, shortening the heat treatment time, the area R 11, R 12, half-width of the order of the diffraction wavelength of the R 13 Can be narrowed continuously.
 図11の構成では、HOE33の回折波長の半値幅の変化が対称となる対称軸は、HOE33の面内で2本ある(互いに垂直な2本の対称軸S、Sがある)。一方、図12の構成では、HOE33の回折波長の半値幅の変化が対称となる対称軸は、HOE33の面内で無数ある(中心Oを通る無数の対称軸Sがある)。これらの構成では、光学瞳Pの中心に入射する映像光線の波長幅の変化が、2本の対称軸S、Sまたは無数の対称軸Sと画面上で対応する軸(対称軸)に対して対称となる。 In the configuration of FIG. 11, there are two symmetry axes in which the change in the half-value width of the diffraction wavelength of the HOE 33 is symmetrical (there are two symmetry axes S 1 and S 2 perpendicular to each other). On the other hand, in the configuration of FIG. 12, there are innumerable symmetry axes within the plane of the HOE 33 (there are innumerable symmetry axes S passing through the center O) in which the change in the half-value width of the diffraction wavelength of the HOE 33 is symmetric. In these configurations, the change in the wavelength width of the image light beam incident on the center of the optical pupil P changes to the two symmetry axes S 1 and S 2 or the myriad symmetry axes S and the axes (symmetry axes) corresponding to the screen. It becomes symmetrical with respect to it.
 以上のことから、光学瞳Pの中心に入射する映像光線の波長幅の変化は、画面上において少なくとも1本の対称軸に対して対称であれば、HOE33の色分散による横色収差を対称軸に対して対称に低減して高品位な映像表示を実現することができると言える。 From the above, if the change in the wavelength width of the image light incident on the center of the optical pupil P is symmetric with respect to at least one symmetry axis on the screen, the lateral chromatic aberration due to the chromatic dispersion of the HOE 33 is taken as the symmetry axis. On the other hand, it can be said that high-definition video display can be realized by reducing symmetrically.
 (輝度調整フィルタについて)
 ところで、画面周辺の光束に対してHOE33による波長制限を行った場合、画面周辺の映像輝度が低下することが懸念される。そこで、例えば、図1の光源11と照明光学系12のミラー21との間の光路中に、図13に示す輝度調整フィルタ15を配置するようにしてもよい。
(About brightness adjustment filter)
By the way, when the wavelength limitation by the HOE 33 is performed on the luminous flux around the screen, there is a concern that the video luminance around the screen is lowered. Therefore, for example, the luminance adjustment filter 15 shown in FIG. 13 may be arranged in the optical path between the light source 11 of FIG. 1 and the mirror 21 of the illumination optical system 12.
 この輝度調整フィルタ15は、光源11から出射される光の透過率が入射領域ごとに異なる輝度調整素子である。具体的には、輝度調整フィルタ15の中央の領域Tの透過率が最も低く、水平方向の両端部の領域Tの透過率が最も高く、これらの間の領域では透過率が連続的に変化している。なお、図13では、入射領域による透過率の変化をグラデーションで示している。 The brightness adjustment filter 15 is a brightness adjustment element in which the transmittance of light emitted from the light source 11 is different for each incident region. Specifically, the lowest transmittance in the central region T C of the brightness adjusting filter 15, the highest transmittance in the region T E at both ends of the horizontal direction, the transmittance continuously in the region between these It has changed. In FIG. 13, the change in transmittance due to the incident region is shown by gradation.
 光源11からの光のうち、輝度調整フィルタ15の領域Tを透過する光は、HOE33に光束が入射する領域の内、Δθが最小となる位置を含む一部の領域(以降、Δθが最小となる領域と称し、例えば図6の領域Rである。)に入射する一方、輝度調整フィルタ15の領域Tを透過する光は、HOE33においてΔθが最大となる領域(例えば図6の領域R)に入射する。このことから、輝度調整フィルタ15は、HOE33においてΔθが最小となる領域に入射する光束(以下、主要光束とも称する)の透過率が最も低く、HOE33においてΔθが最大となる領域に入射する光束の透過率が最も高く、それらの間で透過率が入射領域によって連続的に変化する構成であると言える。つまり、輝度調整フィルタ15においては、主要光束よりも、その周辺の光束(以下、周辺光束とも称する)の透過率が高い。 Of the light from the light source 11, light transmitted through the region T C of the brightness adjusting filter 15, in a region where the light beam is incident on HOE33, part of the region including the position Δθ is minimized (hereinafter, the minimum Δθ called become regions, such as regions R C of Figure 6. while entering the), light transmitted through the region T E of the brightness adjusting filter 15, the area of the region (e.g., FIG. 6 Δθ in HOE33 is maximum R E ). Therefore, the brightness adjustment filter 15 has the lowest transmittance of the light beam (hereinafter also referred to as a main light beam) that enters the region where Δθ is minimum in the HOE 33 and the light beam that enters the region where Δθ is maximum in the HOE 33. It can be said that the transmissivity is the highest and the transmissivity continuously changes between them depending on the incident region. That is, the luminance adjustment filter 15 has a higher transmittance of the peripheral light beam (hereinafter also referred to as the peripheral light beam) than the main light beam.
 このように、光路中に輝度調整フィルタ15を配置し、輝度調整フィルタ15によって主要光束よりも周辺光束の透過率を相対的に上げることにより、画面全体で輝度ムラの少ない映像表示装置1を実現することができる。 As described above, the luminance adjustment filter 15 is arranged in the optical path, and the luminance adjustment filter 15 relatively increases the transmittance of the peripheral light beam rather than the main light beam, thereby realizing the video display device 1 with less luminance unevenness on the entire screen. can do.
 (実施例および比較例について)
 次に、実施例1および比較例1の映像表示装置における横色収差をシミュレーションした結果について説明する。実施例1の映像表示装置は、本実施形態の映像表示装置1に対応しており、表示素子13の画面中心からの映像光が入射する領域(例えば領域R)よりも、画面周辺からの映像光が入射する領域(例えば領域R)で回折波長の半値幅が狭いHOE33を用いた構成である。一方、比較例1の映像表示装置は、回折波長の半値幅が領域によらず一定である通常のHOEを用いた構成である。なお、実施例1および比較例1の映像表示装置は、HOEが異なる以外は同じ構成とする(例えば観察画角は同じである)。
(Examples and comparative examples)
Next, the result of simulating lateral chromatic aberration in the image display devices of Example 1 and Comparative Example 1 will be described. The video display device of Example 1 corresponds to the video display device 1 of the present embodiment, and is closer to the periphery of the screen than the region (for example, the region RC ) where the image light from the center of the display element 13 is incident. This is a configuration using the HOE 33 in which the half-value width of the diffraction wavelength is narrow in the region where the image light is incident (for example, the region R E ). On the other hand, the video display device of Comparative Example 1 has a configuration using a normal HOE in which the half width of the diffraction wavelength is constant regardless of the region. The video display devices of Example 1 and Comparative Example 1 have the same configuration except that the HOE is different (for example, the observation angle of view is the same).
 図14は、実施例1の映像表示装置における、表示素子13の表示面でのX方向およびY方向の横色収差を示す収差図である。また、図15は、比較例1の映像表示装置における、表示素子の表示面でのX方向およびY方向の横色収差を示す収差図である。なお、図14および図15は、中心波長532nm(G光)に対して±5nmの範囲内の波長に対する横色収差をそれぞれ示している。 FIG. 14 is an aberration diagram showing lateral chromatic aberration in the X direction and the Y direction on the display surface of the display element 13 in the video display apparatus of Example 1. FIG. FIG. 15 is an aberration diagram showing lateral chromatic aberration in the X direction and the Y direction on the display surface of the display element in the video display apparatus of Comparative Example 1. 14 and 15 respectively show lateral chromatic aberration with respect to a wavelength within a range of ± 5 nm with respect to the center wavelength 532 nm (G light).
 なお、図14および図15では、光学瞳Pからの逆トレースにより、光学性能を上記表示面で評価している。したがって、図14および図15の横軸は、光学瞳Pの面内での位置に対応している。また、縦軸は横色収差量を示し、単位はmmとする。 In FIG. 14 and FIG. 15, the optical performance is evaluated on the display surface by reverse tracing from the optical pupil P. Therefore, the horizontal axis in FIGS. 14 and 15 corresponds to the position of the optical pupil P in the plane. The vertical axis indicates the amount of lateral chromatic aberration, and the unit is mm.
 なお、X方向とは、表示素子13の表示面の中心と光学瞳Pの中心とを光学的に結ぶ軸をZ軸(光軸)とし、かつ、表示素子13から光学瞳Pに向かう光路を展開したときに、光軸に垂直で、かつ、矩形の上記表示面の長辺方向に平行な方向であり、瞳位置での左右方向に対応している。一方、Y方向とは、光軸に垂直で、かつ、X方向に垂直な方向であり、瞳位置での上下方向に対応している。なお、各収差図における座標(X,Y)は、表示素子13の表示面におけるローカル座標を示し、「R.F」とは、relative fieldの略であり、瞳位置におけるX方向(左右方向)およびY方向(上下方向)の観察画角に対応している。なお、このような図示の仕方については、後述する実施例および比較例でも同様とする。 Note that the X direction is an optical path from the display element 13 toward the optical pupil P, with the axis optically connecting the center of the display surface of the display element 13 and the center of the optical pupil P as the Z axis (optical axis). When unfolded, the direction is perpendicular to the optical axis and parallel to the long side direction of the rectangular display surface, and corresponds to the left-right direction at the pupil position. On the other hand, the Y direction is a direction perpendicular to the optical axis and perpendicular to the X direction, and corresponds to the vertical direction at the pupil position. Note that the coordinates (X, Y) in each aberration diagram indicate local coordinates on the display surface of the display element 13, and “RF” is an abbreviation for a relative field, and the X direction (left-right direction) at the pupil position. And the viewing angle of view in the Y direction (vertical direction). This way of illustration is the same in the examples and comparative examples described later.
 比較例1では、図15より、画面中心から画面周辺に向かうにしたがって、HOEの色分散により横色収差(倍率色収差)が急激に悪化していることがわかる。特に、X方向の観察画角が大きいため、X方向の画面周辺での横色収差が大きい。これに対して、実施例1では、図14のように、特にX方向の画面周辺での横色収差が抑えられていることが分かる。なお、図14では、HOE33での波長制限により、X方向の画角両端では、532±5nmの両端の波長(537nm、527nm)の光がカットされ、横色収差が低減されている。 In Comparative Example 1, it can be seen from FIG. 15 that the lateral chromatic aberration (magnification chromatic aberration) is abruptly deteriorated due to the chromatic dispersion of the HOE from the center of the screen to the periphery of the screen. In particular, since the viewing angle in the X direction is large, lateral chromatic aberration around the screen in the X direction is large. On the other hand, in Example 1, as shown in FIG. 14, it can be seen that lateral chromatic aberration particularly in the periphery of the screen in the X direction is suppressed. In FIG. 14, due to the wavelength limitation at the HOE 33, light at both ends of the wavelength of 532 ± 5 nm (537 nm, 527 nm) is cut at both ends of the angle of view in the X direction, and lateral chromatic aberration is reduced.
 なお、ここでは、中心波長が532nmのG光についての横色収差を例として示したが、R光やB光の横色収差についても同様の傾向が見られる。つまり、R光やB光についても、画面の端部に向かうにしたがって色分散が増大し、横色収差が悪化する。しかし、HOE33にてR光やB光についての回折波長の半値幅をコントロールすることにより、X方向の画面周辺でのR光やB光についての横色収差も抑えることができる。 Here, the lateral chromatic aberration for the G light having a center wavelength of 532 nm is shown as an example, but the same tendency is observed for the lateral chromatic aberration of the R light and the B light. That is, for R light and B light, chromatic dispersion increases toward the edge of the screen, and lateral chromatic aberration worsens. However, by controlling the half-value width of the diffraction wavelength for R light and B light with the HOE 33, lateral chromatic aberration for R light and B light around the screen in the X direction can also be suppressed.
 (HMDについて)
 次に、本実施形態の映像表示装置1が適用されるHMDについて説明する。図16は、HMDの概略の構成を示す斜視図である。HMDは、上述した映像表示装置1と、支持手段2とで構成されている。
(About HMD)
Next, an HMD to which the video display device 1 of the present embodiment is applied will be described. FIG. 16 is a perspective view showing a schematic configuration of the HMD. The HMD includes the above-described video display device 1 and support means 2.
 映像表示装置1について補足すると、映像表示装置1は、少なくとも光源11および表示素子13(ともに図1参照)を内包する筐体3を有している。この筐体3は、接眼光学系14の一部を保持している。接眼光学系14は、接眼プリズム31および偏向プリズム32の貼り合わせによって構成されており、全体として眼鏡の一方のレンズ(図16では右眼用レンズ)のような形状をしている。また、映像表示装置1は、筐体3を貫通して設けられるケーブル4を介して、光源11および表示素子13に少なくとも駆動電力および映像信号を供給するための回路基板(図示せず)を有している。 Supplementing the video display device 1, the video display device 1 has a housing 3 that includes at least a light source 11 and a display element 13 (both see FIG. 1). The housing 3 holds a part of the eyepiece optical system 14. The eyepiece optical system 14 is configured by bonding an eyepiece prism 31 and a deflection prism 32, and has a shape like one lens of a pair of glasses (lens for right eye in FIG. 16) as a whole. In addition, the video display device 1 has a circuit board (not shown) for supplying at least driving power and a video signal to the light source 11 and the display element 13 via a cable 4 provided through the housing 3. is doing.
 支持手段2は、眼鏡のフレーム(ブリッジ、テンプルを含む)に相当する支持機構であり、映像表示装置1を観察者の眼前(例えば右眼の前)で支持している。また、支持手段2は、観察者の鼻と当接する鼻当て5(右鼻当て5R・左鼻当て5L)と、その鼻当て5を所定の位置で固定する鼻当てロックユニット6とを含んでいる。鼻当てロックユニット6は、ばね性の軸により鼻当て5を保持している。 The support means 2 is a support mechanism corresponding to a spectacle frame (including a bridge and a temple), and supports the video display device 1 in front of the observer's eyes (for example, in front of the right eye). Further, the support means 2 includes a nose pad 5 (right nose pad 5R / left nose pad 5L) that contacts the observer's nose, and a nose pad lock unit 6 that fixes the nose pad 5 at a predetermined position. Yes. The nose pad lock unit 6 holds the nose pad 5 with a spring shaft.
 観察者がHMDを頭部に装着し、表示素子13に映像を表示すると、その映像光が接眼光学系14を介して光学瞳に導かれる。したがって、光学瞳の位置に観察者の瞳を合わせることにより、観察者は、映像表示装置1の表示映像の拡大虚像を観察することができる。また、これと同時に、観察者は、接眼光学系14を介して、外界像をシースルーで観察することができる。 When the observer wears the HMD on the head and displays an image on the display element 13, the image light is guided to the optical pupil via the eyepiece optical system 14. Therefore, by aligning the observer's pupil with the position of the optical pupil, the observer can observe an enlarged virtual image of the display image of the image display device 1. At the same time, the observer can observe the outside world image through the eyepiece optical system 14 in a see-through manner.
 このように、映像表示装置1が支持手段2にて支持されることにより、観察者は映像表示装置1から提供される映像をハンズフリーで長時間安定して観察することができる。なお、映像表示装置1を2つ用いて両眼で映像を観察できるようにしてもよい。この場合は、両方の接眼光学系の間の距離(眼幅距離)を調整するための調整機構(図示せず)を設けることが必要である。 Thus, by supporting the video display device 1 by the support means 2, the observer can observe the video provided from the video display device 1 in a hands-free and stable manner for a long time. In addition, you may enable it to observe an image | video with both eyes using two image display apparatuses 1. FIG. In this case, it is necessary to provide an adjustment mechanism (not shown) for adjusting the distance (eye width distance) between both eyepiece optical systems.
 また、上記した鼻当て5を自由自在に動かすことにより、観察者に対して映像表示装置1の位置を相対的に前後、左右、上下の各方向に調整することができ、これによって、接眼光学系14の光学瞳の位置を、観察者の瞳の位置に配置することができる。位置調整後は、鼻当てロックユニット6によって鼻当て5の位置を固定することにより、光学瞳を良好な位置に固定することができる。 Further, by freely moving the above-described nose pad 5, the position of the image display device 1 can be adjusted relative to the observer in the front and rear, left and right, and up and down directions. The position of the optical pupil of the system 14 can be placed at the position of the observer's pupil. After the position adjustment, the optical pupil can be fixed at a good position by fixing the position of the nose pad 5 by the nose pad lock unit 6.
 以上のことから、鼻当て5および鼻当てロックユニット6は、少なくとも、映像表示装置1の接眼光学系14(または光学瞳)と観察者の瞳との距離を調整する調整機構(第1の調整機構)を構成していると言えるが、第1の調整機構は、映像表示装置1の上下、左右方向の位置を調整するための第2の調整機構と独立して構成されていてもよい。この場合は、各々の位置調整がさらに容易となる。 From the above, the nose pad 5 and the nose pad lock unit 6 at least have an adjustment mechanism (first adjustment) that adjusts the distance between the eyepiece optical system 14 (or optical pupil) of the video display device 1 and the pupil of the observer. The first adjustment mechanism may be configured independently of the second adjustment mechanism for adjusting the vertical and horizontal positions of the video display device 1. In this case, each position adjustment becomes easier.
 〔実施の形態2〕
 本発明のさらに他の実施の形態について、図面に基づいて説明すれば、以下の通りである。なお、説明の便宜上、実施の形態1と同一の構成には同一の部材番号を付記し、その説明を省略する。
[Embodiment 2]
The following will describe still another embodiment of the present invention with reference to the drawings. For convenience of explanation, the same components as those in the first embodiment are denoted by the same member numbers, and the description thereof is omitted.
 (映像表示装置について)
 図17は、本実施形態の映像表示装置1の概略の構成を示す断面図である。本実施形態の映像表示装置1は、表示素子13を照明する光源として光源16を用い、照明光学系12がさらに開口絞り22を有しているが、それ以外の基本的な構成は実施の形態1と同様である。なお、本実施形態の映像表示装置1では、水平方向の観察画角が例えば±6.7°、垂直方向の観察画角が例えば±5°となっている。勿論、本実施形態の映像表示装置1も実施の形態1で説明したHMDに適用することが可能である。
(About video display device)
FIG. 17 is a cross-sectional view showing a schematic configuration of the video display device 1 of the present embodiment. The video display device 1 of the present embodiment uses the light source 16 as a light source for illuminating the display element 13, and the illumination optical system 12 further includes an aperture stop 22, but the other basic configuration is the embodiment. Same as 1. In the video display device 1 of the present embodiment, the horizontal observation field angle is, for example, ± 6.7 °, and the vertical observation field angle is, for example, ± 5 °. Of course, the video display apparatus 1 of the present embodiment can also be applied to the HMD described in the first embodiment.
 光源16から出射された光は、照明光学系12の開口絞り22を通過し、ミラー21によって反射、集光され、ほぼコリメート光となって表示素子13に入射し、そこで変調されて映像光として出射される。表示素子13からの映像光は、実施の形態1と同様の光路で光学瞳Pに向かう。 The light emitted from the light source 16 passes through the aperture stop 22 of the illumination optical system 12, is reflected and collected by the mirror 21, enters the display element 13 as almost collimated light, and is modulated there as image light. Emitted. Video light from the display element 13 travels to the optical pupil P through the same optical path as in the first embodiment.
 本実施形態の光源16は、RGBごとに独立したLEDを組み合わせた白色光源(RGB一体型のLED(3チップin1パッケージ))で構成されている。図18は、光源16の発光特性を示している。同図に示すように、光源16は、光源11のような蛍光タイプに比べて、RGBの全てについて発光ピークの半値幅が狭い特性を有する。特に、Rについては、発光ピークの半値幅が蛍光タイプに比べて十分に狭いので、画面周辺について波長制限をする必要はなく、本実施形態では、BとGについてのみ、画面周辺に向かうにしたがって映像光の波長幅を制限している。以下、詳しく説明する。 The light source 16 of the present embodiment is configured by a white light source (RGB integrated LED (3-chip in 1 package)) in which independent LEDs are combined for each RGB. FIG. 18 shows the light emission characteristics of the light source 16. As shown in the figure, the light source 16 has a characteristic that the half-value width of the emission peak is narrower for all of RGB than the fluorescent type like the light source 11. In particular, for R, since the half-value width of the emission peak is sufficiently narrow compared to the fluorescent type, there is no need to limit the wavelength around the screen. In this embodiment, only B and G are directed toward the screen periphery. The wavelength width of image light is limited. This will be described in detail below.
 (映像光の波長制限について)
 図19は、本実施形態のHOE33の概略の構成を示す平面図である。なお、図19では、膜厚の領域ごとの違いを異なるハッチングで示している。また、図20は、図19のB-B’線上のHOE33のポジションと膜厚との関係を示す説明図である。なお、B-B’線の方向は、膜厚の変化が対称となる対称軸Sに対して垂直な方向(映像表示装置の水平方向)に対応している。
(About wavelength limitation of image light)
FIG. 19 is a plan view showing a schematic configuration of the HOE 33 of the present embodiment. In FIG. 19, the difference in film thickness for each region is indicated by different hatching. FIG. 20 is an explanatory diagram showing the relationship between the position of the HOE 33 on the line BB ′ of FIG. 19 and the film thickness. The direction of the line B-B 'corresponds to the direction perpendicular (horizontal direction of the image display device) with respect to the symmetry axis S 2 of the change in thickness is symmetrical.
 本実施形態のHOE33は、膜厚の変化が対称となる対称軸を1本(対称軸S)のみ有している。HOE33の膜厚は、対称軸Sを含む中央の領域Rから対称軸Sに垂直な方向に離れるにしたがって徐々に狭くなるように段階的に変化している。より具体的には、中央の領域Rで膜厚が最も薄く、対称軸Sからその垂直方向に最も離れた領域Rで膜厚が最も厚く、領域Rと領域Rとの間の領域Rでその間の膜厚となっている(図20参照)。この結果、HOE33の回折波長の半値幅は、図21に示すように、中央の領域Rで最も広く、両端の2つの領域Rで最も狭く、領域Rでそれらの間の半値幅となっている。 The HOE 33 of the present embodiment has only one symmetry axis (symmetric axis S 2 ) in which the change in film thickness is symmetric. HOE33 film thickness is changed stepwise so as to gradually decrease as distance in a direction perpendicular to the axis of symmetry S 2 from the center of the region R 1 that includes an axis of symmetry S 2. More specifically, the central region R 1 has the smallest film thickness, the region R 3 farthest from the axis of symmetry S 2 in the vertical direction has the largest film thickness, and the region R 1 is between the region R 3 and the region R 3. It has become therebetween thickness in the region R 2 (see FIG. 20). As a result, as shown in FIG. 21, the half width of the diffraction wavelength of the HOE 33 is the largest in the center region R 1 , the narrowest in the two regions R 3 at both ends, and the half width between them in the region R 2. It has become.
 なお、領域Rは、表示素子13の画面中心からの映像光が入射する領域であり、両端の2つの領域Rは、表示素子13の(水平方向の)画面周辺からの映像光が入射する領域である。したがって、図21より、HOE33の回折波長の半値幅は、画面中心からの映像光が入射する領域Rから、画面周辺からの映像光が入射する領域Rに向かって徐々に狭くなるように段階的に変化していると言える。 The region R 1 is a region where image light from the screen center of the display element 13 is incident, and the two regions R 3 at both ends are incident with image light from the periphery of the screen (in the horizontal direction) of the display element 13. It is an area to do. Therefore, from FIG. 21, the half width of the diffraction wavelength of the HOE 33 is gradually narrowed from the region R 1 where the image light from the center of the screen is incident toward the region R 3 where the image light from the periphery of the screen is incident. It can be said that it is changing gradually.
 図22は、映像光の画角(例えば水平方向)と、HOE33を介して光学瞳Pの中心に入射する映像光線の波長幅との関係を示している。図21で示したように、HOE33の回折波長の半値幅を、表示素子13の画面中心からの映像光が入射する領域Rよりも、画面周辺からの映像光が入射する領域Rで狭くすることにより、図22に示すように、Δθが最大となる画角(例えば水平方向の左端または右端の画角)からHOE33を介して光学瞳Pの中心に入射する映像光線の波長幅が、Δθが最小となる画角(例えば水平方向の画角0°)から光学瞳Pの中心に入射する映像光線の波長幅よりも狭くなる。これにより、実施の形態1と同様に、色分散の小さい画角では、映像光の波長幅が広いので十分な映像輝度を確保することができ、色分散の大きい画角でのみ映像光の波長幅を狭めて横色収差を補正することができる。 FIG. 22 shows the relationship between the angle of view of the image light (for example, the horizontal direction) and the wavelength width of the image light incident on the center of the optical pupil P via the HOE 33. As shown in FIG. 21, the half-value width of the diffraction wavelength of the HOE 33 is narrower in the region R 3 where the image light from the periphery of the screen is incident than in the region R 1 where the image light from the screen center of the display element 13 is incident. Thus, as shown in FIG. 22, the wavelength width of the image light beam incident on the center of the optical pupil P through the HOE 33 from the angle of view where Δθ is maximum (for example, the angle of view at the left end or the right end in the horizontal direction) is It becomes narrower than the wavelength width of the image light beam incident on the center of the optical pupil P from the angle of view where Δθ is minimized (for example, the angle of view of 0 ° in the horizontal direction). As in the first embodiment, this makes it possible to ensure a sufficient video luminance at the angle of view with small chromatic dispersion since the wavelength width of the image light is wide, and the wavelength of the image light only at the angle of view with large chromatic dispersion. The lateral chromatic aberration can be corrected by narrowing the width.
 特に、本実施形態では、図22に示すように、光学瞳Pの中心に入射する映像光線の波長幅が、Δθが最小となる画角からΔθが最大となる画角に向かって段階的に狭くなっている。例えば、領域R+領域R+領域Rの形状、領域R+領域Rの形状、領域Rの形状、の3つのホログラム感光材料を用意しておき、これらを各領域R、R、Rに対応して重ね合わせることにより、HOE33の膜厚を領域ごとに段階的に変えることができる。このようにHOE33の膜厚を領域ごとに段階的に変えることは容易であり、それゆえ、回折波長の半値幅を領域ごとに段階的に変えて、Δθが最小となる画角からΔθが最大となる画角に向かって映像光線の波長幅を段階的に狭くすることは、例えば上述したように波長幅を連続的に変化させる場合に比べて容易に実現できる。したがって、HOE33の比較的簡単な構成で映像光の波長幅を段階的にコントロールして、上述した効果を得ることができる。 In particular, in this embodiment, as shown in FIG. 22, the wavelength width of the image light incident on the center of the optical pupil P is gradually increased from the angle of view at which Δθ is minimized toward the angle of view at which Δθ is maximized. It is narrower. For example, three hologram photosensitive materials of a region R 1 + region R 2 + region R 3 , a region R 2 + region R 3 , and a region R 3 are prepared, and these are prepared in each region R 1. , R 2 , and R 3 , the thickness of the HOE 33 can be changed step by step for each region. In this way, it is easy to change the thickness of the HOE 33 step by step for each region. Therefore, by changing the half-value width of the diffraction wavelength step by step for each region, Δθ is maximized from the angle of view at which Δθ is minimized. Narrowing the wavelength width of the image light beam stepwise toward the angle of view can be easily realized as compared with the case where the wavelength width is continuously changed as described above, for example. Therefore, the above-described effects can be obtained by controlling the wavelength width of the image light stepwise with a relatively simple configuration of the HOE 33.
 (実施例および比較例について)
 次に、実施例2および比較例2の映像表示装置における横色収差をシミュレーションした結果について説明する。実施例2の映像表示装置は、本実施形態の映像表示装置1に対応しており、表示素子13の画面中心からの映像光が入射する領域(例えば領域R)よりも、画面周辺からの映像光が入射する領域(例えば領域R)で回折波長の半値幅が狭いHOE33を用いた構成である。一方、比較例2の映像表示装置は、回折波長の半値幅が領域によらず一定である通常のHOEを用いた構成である。なお、実施例2および比較例2の映像表示装置は、HOEが異なる以外は同じ構成とする(例えば観察画角は同じである)。
(Examples and comparative examples)
Next, the result of simulating lateral chromatic aberration in the image display devices of Example 2 and Comparative Example 2 will be described. The video display device of Example 2 corresponds to the video display device 1 of the present embodiment, and is closer to the periphery of the screen than the region (for example, region R 1 ) where the image light from the center of the display element 13 is incident. This is a configuration using the HOE 33 in which the half-value width of the diffraction wavelength is narrow in the region where the image light is incident (for example, the region R 3 ). On the other hand, the video display device of Comparative Example 2 has a configuration using a normal HOE in which the half width of the diffraction wavelength is constant regardless of the region. The video display devices of Example 2 and Comparative Example 2 have the same configuration except that the HOE is different (for example, the observation angle of view is the same).
 図23は、実施例2の映像表示装置における、表示素子13の表示面でのX方向およびY方向の横色収差を示す収差図である。また、図24は、比較例2の映像表示装置における、表示素子の表示面でのX方向およびY方向の横色収差を示す収差図である。なお、図23および図24は、中心波長532nm(G光)に対して±5nmの範囲内の波長に対する横色収差をそれぞれ示している。 FIG. 23 is an aberration diagram showing lateral chromatic aberration in the X direction and the Y direction on the display surface of the display element 13 in the video display apparatus of Example 2. FIG. 24 is an aberration diagram showing lateral chromatic aberration in the X direction and Y direction on the display surface of the display element in the video display apparatus of Comparative Example 2. 23 and 24 show lateral chromatic aberration for wavelengths within a range of ± 5 nm with respect to the center wavelength of 532 nm (G light).
 比較例2では、図24より、X方向の画面周辺での横色収差が大きいが、実施例2では、図23のように、X方向の画面周辺での横色収差が抑えられていることが分かる。なお、図23では、HOE33での波長制限により、X方向の画角両端では、532±5nmの両端の波長(537nm、527nm)の光がカットされ、横色収差が低減されている。 In Comparative Example 2, the lateral chromatic aberration around the screen in the X direction is large from FIG. 24, but in Example 2, the lateral chromatic aberration around the screen in the X direction is suppressed as shown in FIG. . In FIG. 23, due to the wavelength limitation at the HOE 33, light at both wavelengths (537 nm, 527 nm) at 532 ± 5 nm is cut at both ends of the angle of view in the X direction, and lateral chromatic aberration is reduced.
 なお、ここでは、中心波長が532nmのG光についての横色収差を例として示したが、B光の横色収差についても同様の傾向が見られる。したがって、HOE33にてB光についても回折波長の半値幅をコントロールすることにより、X方向の画面周辺でのB光についての横色収差も抑えることができる。 Here, the lateral chromatic aberration for the G light having a center wavelength of 532 nm is shown as an example, but the same tendency is observed for the lateral chromatic aberration of the B light. Therefore, the lateral chromatic aberration for the B light around the screen in the X direction can also be suppressed by controlling the half-value width of the diffraction wavelength for the B light by the HOE 33.
 〔実施の形態3〕
 本発明のさらに他の実施の形態について、図面に基づいて以下に説明する。なお、説明の便宜上、実施の形態1、2と同一の構成には同一の部材番号を付記し、その説明を省略する。
[Embodiment 3]
Still another embodiment of the present invention will be described below with reference to the drawings. For convenience of explanation, the same components as those in Embodiments 1 and 2 are denoted by the same member numbers, and the description thereof is omitted.
 (映像表示装置およびHUDについて)
 図25は、本実施形態の映像表示装置1およびそれを備えたHUDの概略の構成を示す断面図である。本実施形態の映像表示装置1は、表示素子13を照明する光源として光源17を用い、照明光学系12として照明レンズ23を用い、表示素子13の照明光路中(本実施形態では照明レンズ23と表示素子13との間)に波長制限フィルタ18を配置し、接眼光学系14の代わりに観察光学系19を用いて構成されている。本実施形態のHUDは、このような構成の映像表示装置1を備え、観察光学系19の後述するHOE34が、観察者の視界内に配置される基板としてのウィンドシールド35に保持されている構成である。
(About video display device and HUD)
FIG. 25 is a cross-sectional view illustrating a schematic configuration of the video display device 1 of the present embodiment and a HUD including the same. The video display device 1 of the present embodiment uses a light source 17 as a light source for illuminating the display element 13, uses an illumination lens 23 as the illumination optical system 12, and is in the illumination optical path of the display element 13 (in this embodiment, the illumination lens 23 and A wavelength limiting filter 18 is disposed between the display element 13 and an observation optical system 19 instead of the eyepiece optical system 14. The HUD of the present embodiment includes the video display device 1 having such a configuration, and a configuration in which a later-described HOE 34 of the observation optical system 19 is held by a windshield 35 as a substrate disposed in the field of view of the observer. It is.
 光源17は、単色光(例えば中心波長532nmのG光)を発光する高輝度LEDで構成されている。波長制限フィルタ18は、光源17から出射される光の波長幅を制限する波長制限素子(バンドパスフィルタ)であるが、その詳細については後述する。 The light source 17 is composed of a high-intensity LED that emits monochromatic light (for example, G light having a center wavelength of 532 nm). The wavelength limiting filter 18 is a wavelength limiting element (bandpass filter) that limits the wavelength width of the light emitted from the light source 17, and details thereof will be described later.
 観察光学系19は、HOE34と、そのHOE34が形成される基板としてのウィンドシールド35とで構成されている。HOE34は、Gの波長領域にのみ回折ピーク波長(例えば532nm)を有する体積位相型で反射型のHOEで構成されているが、BやRの波長領域にも回折ピーク波長を有していてもよい。また、本実施形態では、HOE34の回折波長の半値幅は、表示素子13からの映像光の入射領域によらずほぼ一定(例えば10nm)となっている。ウィンドシールド35は、例えば車両、船舶、鉄道、航空機などの輸送手段における運転席前面のフロントガラスに相当する。 The observation optical system 19 includes an HOE 34 and a windshield 35 as a substrate on which the HOE 34 is formed. The HOE 34 is composed of a volume phase type reflection type HOE having a diffraction peak wavelength (for example, 532 nm) only in the G wavelength region, but may have a diffraction peak wavelength also in the B or R wavelength region. Good. In the present embodiment, the half-value width of the diffraction wavelength of the HOE 34 is substantially constant (for example, 10 nm) regardless of the incident region of the image light from the display element 13. The windshield 35 corresponds to a windshield in front of the driver's seat in a transportation means such as a vehicle, a ship, a railroad, and an aircraft.
 上記の構成によれば、光源17から出射される光は、照明レンズ23で集光され、波長制限フィルタ18を透過して表示素子13に入射する。表示素子13にて画像データに応じて変調された光(映像光)は、HOE34に入射し、そこで回折反射されて光学瞳に導かれる。光学瞳の位置では、観察者は、表示素子13にて表示された映像の拡大虚像を観察できると同時に、HOE34およびウィンドシールド35を介して外界を観察することができる。 According to the above configuration, the light emitted from the light source 17 is collected by the illumination lens 23, passes through the wavelength limiting filter 18, and enters the display element 13. Light (video light) modulated in accordance with image data by the display element 13 enters the HOE 34, where it is diffracted and reflected and guided to the optical pupil. At the position of the optical pupil, the observer can observe the magnified virtual image of the image displayed on the display element 13 and can observe the outside world through the HOE 34 and the windshield 35.
 なお、ウィンドシールド35とは別体の基板にHOE34を保持し、上記基板を観察者の視界内に配置することによってHUDを構成してもよい。この場合は、プロンプタのような原稿表示装置としてHUDを機能させることができる。 It should be noted that the HUD may be configured by holding the HOE 34 on a substrate separate from the windshield 35 and placing the substrate in the field of view of the observer. In this case, the HUD can function as a document display device such as a prompter.
 (映像光の波長制限について)
 ところで、HUDもHMDと同様に、映像を背景(外界)に重ねて観察可能なシースルーディスプレイである。HUDでは、映像光と外界光とを重ね合わせるコンバイナとして上記のHOE34が用いられているが、HOE34が基板(ウインドシールド35)にほぼ平行に配置されることが多いので、基板の表面反射を考慮する必要がある。つまり、画面中心の光線がHOE34でほぼ正反射するように光学系を設定すると、HOE34にて回折される光と基板の表面で反射される光との角度ズレが小さいために、基板の表面反射による像がゴーストとして観察されることになる。
(About wavelength limitation of image light)
By the way, the HUD is a see-through display that can be observed by superimposing an image on the background (outside) as in the case of the HMD. In the HUD, the above-described HOE 34 is used as a combiner for superimposing image light and external light. However, since the HOE 34 is often arranged almost in parallel with the substrate (windshield 35), the surface reflection of the substrate is taken into consideration. There is a need to. In other words, if the optical system is set so that the light beam at the center of the screen is substantially regularly reflected by the HOE 34, the angle deviation between the light diffracted by the HOE 34 and the light reflected by the surface of the substrate is small, and thus the surface reflection of the substrate. The image by is observed as a ghost.
 このようなゴースト像の観察を回避するためには、HOE34での回折角度が全ての像高に対して、正反射角度からずれるように設定する必要がある。本実施形態では、表示素子13からの画面中心主光線がHOE34に入射する角度を45.5°とし、画面中心主光線がHOE34で回折された後の射出角度を30°とし、上下方向の観察画角を5.4°、水平方向の観察画角を7.2°とすることにより、基板の表面反射による光を、観察領域外へ反射させている。 In order to avoid the observation of such a ghost image, it is necessary to set the diffraction angle at the HOE 34 to deviate from the regular reflection angle with respect to all image heights. In this embodiment, the angle at which the screen center chief ray from the display element 13 is incident on the HOE 34 is 45.5 °, and the exit angle after the screen center chief ray is diffracted by the HOE 34 is 30 °. By setting the angle of view to 5.4 ° and the horizontal observation angle of view to 7.2 °, the light reflected by the surface of the substrate is reflected outside the observation region.
 しかし、上記のように画面中心主光線についてのHOE34での入射角度と回折角度との差が大きい、すなわち、正反射角度と回折角度との差が大きく、しかも、画面下端とHOE34で対応する領域(画面下端の映像光が入射する領域)から、画面上端とHOE34で対応する領域(画面上端の映像光が入射する領域)に向かって、徐々に回折角度が正反射角度からずれていくため、画面下端から画面上端に向かって横色収差が大きくなる。 However, as described above, the difference between the incident angle and the diffraction angle at the HOE 34 with respect to the center principal ray of the screen is large, that is, the difference between the regular reflection angle and the diffraction angle is large, and the region corresponding to the bottom edge of the screen and the HOE 34 Since the diffraction angle gradually shifts from the regular reflection angle from the (region where the image light is incident at the lower end of the screen) toward the region corresponding to the upper end of the screen and the HOE 34 (region where the image light is incident at the upper end of the screen), Lateral chromatic aberration increases from the lower end of the screen toward the upper end of the screen.
 そこで、本実施形態では、光路中に波長制限フィルタ18を挿入することで、上記の横色収差を補正するようにしている。以下、波長制限フィルタ18の詳細について説明する。 Therefore, in this embodiment, the lateral chromatic aberration is corrected by inserting the wavelength limiting filter 18 in the optical path. Details of the wavelength limiting filter 18 will be described below.
 なお、以下では、画面下端とHOE34で対応する領域では、回折角度と正反射角度との角度ズレΔθが最も小さいことから、上記領域をΔθが最小となる領域とも称する。また、画面上端とHOE34で対応する領域では、回折角度と正反射角度との角度ズレΔθが最も大きいことから、上記領域をΔθが最大となる領域とも称する。また、説明の便宜上、画面下端から画面上端に向かう方向に対応する方向を第1の方向とし、第1の方向に垂直な方向を第2の方向とする。 In the following, since the angle deviation Δθ between the diffraction angle and the regular reflection angle is the smallest in the region corresponding to the lower end of the screen and the HOE 34, the region is also referred to as a region where Δθ is minimized. Further, in the area corresponding to the upper end of the screen and the HOE 34, the angle deviation Δθ between the diffraction angle and the regular reflection angle is the largest, so the area is also referred to as the area where Δθ is the maximum. For convenience of explanation, the direction corresponding to the direction from the lower end of the screen toward the upper end of the screen is defined as the first direction, and the direction perpendicular to the first direction is defined as the second direction.
 図26は、波長制限フィルタ18の概略の構成を示す平面図である。波長制限フィルタ18は、第1の領域18a、第2の領域18b、第3の領域18cおよび第4の領域18dを有して構成されている。第1の領域18a~第4の領域18dは、第1の方向にこの順で並んでおり、第2の方向には、第1の方向に平行な対称軸Sに対して対称となる形状で形成されている。また、第1の領域18a、第3の領域18cおよび第4の領域18dは、いずれも矩形形状であり、第3の領域18cと第4の領域18dの大きさはほぼ同じとなっている。また、第1の領域18aの第2の方向の幅が他の領域よりも若干狭いため、第2の領域18bは、第3の領域18cおよび第4の領域18dと第2の方向の幅が同じで、かつ、第1の領域18aの1つの長辺および2つの短辺と接する形状で形成されている。これにより、全体として矩形形状の波長制限フィルタ18が構成されている。 FIG. 26 is a plan view showing a schematic configuration of the wavelength limiting filter 18. The wavelength limiting filter 18 includes a first region 18a, a second region 18b, a third region 18c, and a fourth region 18d. The first region 18a ~ fourth region 18d are aligned in this order in a first direction, the second direction, shape which is symmetrical with respect to symmetry axis parallel S W in a first direction It is formed with. The first region 18a, the third region 18c, and the fourth region 18d are all rectangular, and the sizes of the third region 18c and the fourth region 18d are substantially the same. In addition, since the width of the first region 18a in the second direction is slightly narrower than the other regions, the second region 18b has a width in the second direction from the third region 18c and the fourth region 18d. It is the same and is formed in the shape which touches one long side and two short sides of the 1st field 18a. Thereby, the rectangular wavelength limiting filter 18 is formed as a whole.
 また、波長制限フィルタ18においては、透過光の波長幅を領域ごとに異ならせている。例えば、第1の領域18a、第2の領域18b、第3の領域18cおよび第4の領域18dの透過光の波長幅は、それぞれ、10nm(中心波長532nmに対して±5nm)、8nm(中心波長532nmに対して±4nm)、6.5nm(中心波長532nmに対して±3.25nm)、5nm(中心波長532nmに対して±2.5nm)である。つまり、本実施形態では、画面下端とHOE34で対応する領域から、画面上端とHOE34で対応する領域に向かって、徐々に回折角度が正反射角度からずれていくので、波長制限フィルタ18において画面下端に対応する領域(例えば第1の領域18a)では透過光の波長幅が10nmと最も広く、波長制限フィルタ18において画面上端に対応する領域(例えば第4の領域18d)では透過光の波長幅が5nmと最も狭くなっている。 Further, in the wavelength limiting filter 18, the wavelength width of the transmitted light is varied for each region. For example, the wavelength widths of the transmitted light in the first region 18a, the second region 18b, the third region 18c, and the fourth region 18d are 10 nm (± 5 nm with respect to the center wavelength of 532 nm) and 8 nm (center), respectively. The wavelength is ± 4 nm for the wavelength of 532 nm, 6.5 nm (± 3.25 nm for the center wavelength of 532 nm), and 5 nm (± 2.5 nm for the center wavelength of 532 nm). That is, in this embodiment, the diffraction angle gradually deviates from the regular reflection angle from the region corresponding to the lower end of the screen to the region corresponding to the upper end of the screen and to the region corresponding to HOE 34. In the region corresponding to (for example, the first region 18a), the wavelength width of transmitted light is as wide as 10 nm. In the wavelength limiting filter 18, the region corresponding to the upper end of the screen (for example, the fourth region 18d) has a wavelength width of transmitted light. It is as narrow as 5 nm.
 このような波長制限フィルタ18の構成により、光源17から出射された光は、波長制限フィルタ18の第1の領域18a~第4の領域18dに入射する。このうち、第1の領域18aを透過した光は、最も広い波長幅(例えば10nm)で表示素子13に入射し、そこで変調された後、HOE34にてΔθが最小となる領域に主要光束として入射し、Δθが最小となる回折角度で回折されて光学瞳に導かれる。一方、第2の領域18b~第4の領域18dを透過した光は、各領域にて上記波長幅よりも狭い波長幅(例えば8nm、6.5nm、5nm)で表示素子13に周辺光束として入射し、そこで変調された後、HOE34で回折されて光学瞳に導かれる。 With this configuration of the wavelength limiting filter 18, the light emitted from the light source 17 is incident on the first region 18 a to the fourth region 18 d of the wavelength limiting filter 18. Of these, the light transmitted through the first region 18a is incident on the display element 13 with the widest wavelength width (for example, 10 nm), modulated there, and then incident on the HOE 34 as the main light flux in the region where Δθ is minimized. Then, it is diffracted at a diffraction angle that minimizes Δθ and guided to the optical pupil. On the other hand, the light transmitted through the second region 18b to the fourth region 18d enters the display element 13 as a peripheral light flux with a wavelength width narrower than the above wavelength width (for example, 8 nm, 6.5 nm, 5 nm) in each region. Then, after being modulated there, it is diffracted by the HOE 34 and guided to the optical pupil.
 ここで、図27は、映像光の画角(例えば上下方向)と、光学瞳の中心に入射する映像光線の波長幅との関係を示している。上記の波長制限フィルタ18を光路中に挿入することにより、光学瞳に入射する映像光の波長幅は、画面下端よりも画面上端で制限される(狭くなる)。 Here, FIG. 27 shows the relationship between the angle of view of the image light (for example, the vertical direction) and the wavelength width of the image light incident on the center of the optical pupil. By inserting the wavelength limiting filter 18 in the optical path, the wavelength width of the image light incident on the optical pupil is limited (narrower) at the upper end of the screen than at the lower end of the screen.
 このように波長制限フィルタ18を用いた場合でも、Δθが最大となる画角から光学瞳中心に入射する映像光線(例えば画面上端の映像光線)の波長幅が、Δθが最小となる画角から光学瞳中心に入射する映像光線(例えば画面下端の映像光線)の波長幅よりも狭くなる。これにより、色分散の小さい画角では、映像光の波長幅が広いので十分な映像輝度を確保することができ、色分散の大きい画角でのみ映像光の波長幅を狭めて横色収差を補正することができる。したがって、波長制限フィルタ18を用いた場合でも、全体として明るく映像品位の高い映像表示装置を実現することができる。 Thus, even when the wavelength limiting filter 18 is used, the wavelength width of the image light ray (for example, the image light beam at the upper end of the screen) incident on the center of the optical pupil from the angle of view where Δθ is maximum is from the angle of view where Δθ is minimum. It becomes narrower than the wavelength width of the image light (for example, the image light at the lower end of the screen) incident on the center of the optical pupil. As a result, the image light has a wide wavelength width at an angle of view with small chromatic dispersion, so that sufficient image brightness can be ensured, and the wavelength width of the image light is narrowed only at an angle of view with large chromatic dispersion to correct lateral chromatic aberration. can do. Therefore, even when the wavelength limiting filter 18 is used, it is possible to realize a video display device that is bright overall and has high video quality.
 また、波長制限フィルタ18の第1の領域18a~第4の領域18dを透過した光は、全てHOE34に入射し、そこで回折反射されて光学瞳に導かれることから、本実施形態の波長制限フィルタ18は、HOE34においてΔθが最小となる領域に入射する主要光束の光路と、その周辺光束の光路との両方にまたがって配置されていると言える。実施の形態1、2のようにHOE33によって波長制限を行う場合、HOE33の作製時、すなわち、ホログラム感光材料の露光時に、安定した回折効率または回折波長幅のコントロールが必要になり、露光工程が複雑になる。しかし、本実施形態のように波長制限フィルタ18を用い、これを主要光束と周辺光束の両方の光路に配置することにより、主要光束と周辺光束とで波長幅を容易にコントロールすることができる。 In addition, since all the light transmitted through the first region 18a to the fourth region 18d of the wavelength limiting filter 18 is incident on the HOE 34 and is diffracted and reflected there, the light is guided to the optical pupil. 18 can be said to be disposed across both the optical path of the main light beam incident on the region where Δθ is minimum in the HOE 34 and the optical path of the peripheral light beam. When the wavelength is limited by the HOE 33 as in the first and second embodiments, it is necessary to control the stable diffraction efficiency or diffraction wavelength width at the time of manufacturing the HOE 33, that is, at the exposure of the hologram photosensitive material, and the exposure process is complicated. become. However, by using the wavelength limiting filter 18 as in the present embodiment and arranging it in the optical paths of both the main light beam and the peripheral light beam, the wavelength width can be easily controlled by the main light beam and the peripheral light beam.
 また、波長制限フィルタ18は、光束が通過する領域(第1の領域18a~第4の領域18d)によって制限する波長幅が異なるので、Δθに応じた領域ごとの波長幅コントロールが可能である。特に、第1の領域18a~第4の領域18dによって、HOE34においてΔθが最小となる領域に入射する主要光束の波長幅よりも周辺光束の波長幅を狭くすることにより、主要光束によって表示される画面領域(例えば画面下端)については映像輝度を確保しつつ、周辺光束によって表示される画面領域(例えば画面上端)については横色収差を補正することができる。 Further, the wavelength limiting filter 18 has different wavelength widths depending on the region through which the light beam passes (the first region 18a to the fourth region 18d). Therefore, the wavelength width control for each region according to Δθ is possible. In particular, the first region 18a to the fourth region 18d are displayed by the main light beam by making the wavelength width of the peripheral light beam narrower than the wavelength width of the main light beam incident on the region where Δθ is minimum in the HOE 34. The lateral chromatic aberration can be corrected for the screen area (for example, the upper end of the screen) displayed by the peripheral luminous flux while ensuring the image brightness for the screen area (for example, the lower end of the screen).
 ところで、図28は、波長制限フィルタ18の他の構成を示す平面図である。同図に示すように、波長制限フィルタ18は、第3の領域18cおよび第4の領域18dのみで構成されてもよい。つまり、波長制限フィルタ18は、HOE34においてΔθが最小となる領域に入射する主要光束の光路中には配置されず、周辺光束の光路中にのみ配置される構成であってもよい。この場合は、主要光束の波長幅よりも周辺光束の波長幅を容易にかつ確実に狭くできるとともに、主要光束については波長幅を制限しないので、主要光束によって表示される画面領域(例えば画面下端)の映像輝度を十分に確保することができる。なお、周辺光束によって表示される画面領域(例えば画面上端)について横色収差を補正できる点は、図26の構成と同様である。 Incidentally, FIG. 28 is a plan view showing another configuration of the wavelength limiting filter 18. As shown in the figure, the wavelength limiting filter 18 may be configured by only the third region 18c and the fourth region 18d. That is, the wavelength limiting filter 18 may be configured not to be disposed in the optical path of the main light flux that enters the region where Δθ is minimum in the HOE 34 but to be disposed only in the optical path of the peripheral light flux. In this case, the wavelength width of the peripheral light beam can be easily and surely narrower than the wavelength width of the main light beam, and the wavelength width of the main light beam is not limited, so that the screen area displayed by the main light beam (for example, the lower end of the screen) It is possible to ensure sufficient video brightness. It is to be noted that the lateral chromatic aberration can be corrected for the screen area (for example, the upper end of the screen) displayed by the peripheral light beam, as in the configuration of FIG.
 なお、以上では、波長制限フィルタ18における透過光の波長幅の制限を、第1の領域18aから第4の領域18dに向かって段階的に行っているが、連続的に行ってもよい。また、波長制限フィルタ18において透過光の波長幅を制限する領域の数は、上記の4つ(図26参照)や2つ(図28参照)に限定されない。 In the above, the wavelength width of the transmitted light in the wavelength limiting filter 18 is limited stepwise from the first region 18a toward the fourth region 18d, but may be continuously performed. Further, the number of regions for limiting the wavelength width of transmitted light in the wavelength limiting filter 18 is not limited to the above four (see FIG. 26) or two (see FIG. 28).
 なお、本実施形態では、単色光(G光)の波長幅を波長制限フィルタ18によって制限する構成について説明したが、例えば、照明系の中にカラーHOEからなるフィルタを配置し、これを波長制限素子として使用することにより、複数の波長に対して波長幅を制限する構成とすることも可能である。 In the present embodiment, the configuration in which the wavelength width of the monochromatic light (G light) is limited by the wavelength limiting filter 18 has been described. For example, a filter made of a color HOE is arranged in the illumination system, and the wavelength limitation is performed. By using it as an element, it is possible to adopt a configuration in which the wavelength width is limited with respect to a plurality of wavelengths.
 (実施例および比較例について)
 次に、実施例3および比較例3の映像表示装置における横色収差をシミュレーションした結果について説明する。実施例3の映像表示装置は、本実施形態の映像表示装置1に対応しており、図26の波長制限フィルタ18を用いた構成である。一方、比較例3の映像表示装置は、実施例3の映像表示装置1から上記の波長制限フィルタ18を除いた構成である。なお、実施例3および比較例3で観察画角は同じとする。
(Examples and comparative examples)
Next, the result of simulating lateral chromatic aberration in the image display devices of Example 3 and Comparative Example 3 will be described. The video display apparatus of Example 3 corresponds to the video display apparatus 1 of the present embodiment, and has a configuration using the wavelength limiting filter 18 of FIG. On the other hand, the video display device of Comparative Example 3 has a configuration in which the wavelength limiting filter 18 is removed from the video display device 1 of Example 3. The viewing angle of view is the same in Example 3 and Comparative Example 3.
 図29は、実施例3の映像表示装置における、表示素子13の表示面でのX方向およびY方向の横色収差を示す収差図である。また、図30は、比較例3の映像表示装置における、表示素子の表示面でのX方向およびY方向の横色収差を示す収差図である。なお、図29および図30は、中心波長532nm(G光)に対して±4nmの範囲内の波長に対する横色収差をそれぞれ示している。 FIG. 29 is an aberration diagram showing lateral chromatic aberration in the X direction and Y direction on the display surface of the display element 13 in the video display apparatus of Example 3. FIG. 30 is an aberration diagram showing lateral chromatic aberration in the X direction and Y direction on the display surface of the display element in the video display apparatus of Comparative Example 3. 29 and 30 respectively show lateral chromatic aberration with respect to a wavelength within a range of ± 4 nm with respect to the center wavelength of 532 nm (G light).
 比較例3では、図30より、画面の上下方向、すなわちY方向で、画面下端から画面上端に向かって横色収差が徐々に大きくなっていることが分かる。これに対して、実施例3では、図29に示すように、特にY方向の画面上端での横色収差が抑えられているとともに、X方向でも画面周辺での横色収差が抑えられていることが分かる。なお、図29では、波長制限フィルタ18での波長制限により、Y方向の画面上端に対応する画角では、528~530nm、534~536nmの波長の光がカットされ、横色収差が低減されている。 In Comparative Example 3, it can be seen from FIG. 30 that the lateral chromatic aberration gradually increases from the lower end of the screen toward the upper end of the screen in the vertical direction of the screen, that is, in the Y direction. On the other hand, in Example 3, as shown in FIG. 29, the lateral chromatic aberration at the upper end of the screen in the Y direction is particularly suppressed, and the lateral chromatic aberration around the screen is also suppressed in the X direction. I understand. In FIG. 29, due to the wavelength limitation by the wavelength limiting filter 18, light having wavelengths of 528 to 530 nm and 534 to 536 nm are cut at the angle of view corresponding to the upper end of the screen in the Y direction, and lateral chromatic aberration is reduced. .
 〔補足〕
 観察画面内における映像波長半値幅の最大値をΔλRmax(mm)とし、映像波長半値幅の最小値をΔλRmin(mm)とすると、ΔλRmin/ΔλRmaxは、以下の条件式を満足することが望ましい。
[Supplement]
It is desirable that ΔλRmin / ΔλRmax satisfy the following conditional expression, where ΔλRmax (mm) is the maximum value of the half-width of the image wavelength in the observation screen and ΔλRmin (mm) is the minimum value of the half-width of the image wavelength.
   0.25<ΔλRmin/ΔλRmax<0.75
 ΔλRmin/ΔλRmaxが大きいと、波長半値幅の差が小さく、横色収差の収差量の差も小さいために、横色収差の補正の効果が小さい。一方、ΔλRmin/ΔλRmaxが小さいと、例えば画面周辺の映像光の半値幅が狭くなりすぎて画面周辺の映像輝度が低下し(画面周辺が暗くなり)、結果として映像品位が低下する。上記の条件式を満足することにより、画面内での輝度差を大きくすることなく横色収差の発生を抑えることができ、良好な映像が得られる。ちなみに、実施例1、2、3におけるΔλRmin/ΔλRmaxの値は、それぞれ0.5、0.7、0.3であり、上記の条件式を満足している。
0.25 <ΔλRmin / ΔλRmax <0.75
When ΔλRmin / ΔλRmax is large, the difference in half-wave width is small and the difference in the amount of lateral chromatic aberration is also small, so the effect of correcting lateral chromatic aberration is small. On the other hand, if ΔλRmin / ΔλRmax is small, for example, the half-value width of the image light around the screen becomes too narrow, and the image brightness around the screen decreases (the screen periphery becomes dark), resulting in a decrease in image quality. By satisfying the above conditional expression, the occurrence of lateral chromatic aberration can be suppressed without increasing the luminance difference in the screen, and a good image can be obtained. Incidentally, the values of ΔλRmin / ΔλRmax in Examples 1, 2, and 3 are 0.5, 0.7, and 0.3, respectively, which satisfy the above conditional expression.
 なお、各実施の形態で説明した構成を適宜組み合わせて映像表示装置1やHMD、HUDを構成することも勿論可能である。 Of course, the video display device 1, the HMD, and the HUD can be configured by appropriately combining the configurations described in the embodiments.
 本発明の映像表示装置は、例えばHMDやHUDに利用可能である。 The video display device of the present invention can be used for HMD and HUD, for example.
 1 映像表示装置
 2 支持手段
 11、16、17 光源
 13 表示素子
 14 接眼光学系(観察光学系)
 15 輝度調整フィルタ(輝度調整素子)
 18 波長制限フィルタ(波長制限素子)
 31d 面(基板面)
 33、34 HOE
 35 ウィンドシールド(基板)
 P 光学瞳
DESCRIPTION OF SYMBOLS 1 Image display apparatus 2 Support means 11, 16, 17 Light source 13 Display element 14 Eyepiece optical system (observation optical system)
15 Brightness adjustment filter (Brightness adjustment element)
18 Wavelength limiting filter (wavelength limiting element)
31d surface (substrate surface)
33, 34 HOE
35 Windshield (substrate)
P Optical pupil

Claims (13)

  1.  光源と、
     前記光源からの光を変調して映像を表示する表示素子と、
     前記表示素子からの映像光を光学瞳に導く観察光学系と、を備えた映像表示装置であって、
     前記光源から出射される光は、少なくとも1つの発光ピーク波長と、その発光ピーク波長を含む少なくとも1つの発光波長領域とを有し、
     前記観察光学系は、前記発光波長領域に対応する少なくとも1つの波長領域において1つの回折ピーク波長を有し、かつ、前記表示素子からの映像光を前記光学瞳の方向に回折反射する、反射型で体積位相型のホログラム光学素子を有し、
     前記ホログラム光学素子の反射光学パワーは、前記ホログラム光学素子が形成されている基板面の反射光学パワーと異なり、
     前記表示素子から出射されて前記ホログラム光学素子に入射する映像光線が前記ホログラム光学素子で回折されて前記光学瞳の中心に向かうときの回折角度と、前記映像光線の前記基板面での正反射角度との差の絶対値をΔθとおくと、
     少なくとも1つの発光波長領域において、前記Δθが最大となる画角から前記光学瞳の中心に入射する映像光線の波長幅が、前記Δθが最小となる画角から前記光学瞳の中心に入射する映像光線の波長幅よりも狭いことを特徴とする映像表示装置。
    A light source;
    A display element that displays light by modulating light from the light source;
    An image display device comprising: an observation optical system that guides image light from the display element to an optical pupil;
    The light emitted from the light source has at least one emission peak wavelength and at least one emission wavelength region including the emission peak wavelength;
    The observation optical system has one diffraction peak wavelength in at least one wavelength region corresponding to the emission wavelength region, and diffractively reflects image light from the display element in the direction of the optical pupil. And having a volume phase hologram optical element,
    The reflection optical power of the hologram optical element is different from the reflection optical power of the substrate surface on which the hologram optical element is formed,
    A diffraction angle when an image light beam emitted from the display element and incident on the hologram optical element is diffracted by the hologram optical element toward the center of the optical pupil, and a regular reflection angle of the image light beam on the substrate surface If the absolute value of the difference is Δθ,
    In at least one emission wavelength region, an image light having a wavelength width of an image ray incident on the center of the optical pupil from the angle of view at which Δθ is maximum, and an image of light incident on the center of the optical pupil from an angle of view at which Δθ is minimum An image display device characterized by being narrower than the wavelength width of light rays.
  2.  前記ホログラム光学素子の回折波長の半値幅は、前記Δθが最小となる画角の光が入射する領域よりも、前記Δθが最大となる画角の光が入射する領域で狭いことを特徴とする請求項1に記載の映像表示装置。 The half width of the diffraction wavelength of the hologram optical element is narrower in a region where light having an angle of view where Δθ is maximum is narrower than a region where light having an angle of view where Δθ is minimum is incident. The video display device according to claim 1.
  3.  前記ホログラム光学素子をなす膜の厚みは、前記Δθが最小となる画角の光が入射する領域よりも、前記Δθが最大となる画角の光が入射する領域が厚いことを特徴とする請求項2に記載の映像表示装置。 The thickness of the film constituting the hologram optical element is characterized in that a region where light having an angle of view at which Δθ is maximum is thicker than a region where light having an angle of view at which Δθ is minimum. Item 3. The video display device according to Item 2.
  4.  前記ホログラム光学素子をなす膜は、ホログラム感光材料を露光して形成されるものであり、
     膜厚が一定で、前記表示素子の前記Δθが最小となる画角の光が入射する領域よりも、前記Δθが最大となる画角の光が入射する領域で、露光量を小さくする、熱処理温度を低くする、又は、熱処理温度を短くすることの少なくとも1つを行うことにより形成されていることを特徴とする請求項2に記載の映像表示装置。
    The film forming the hologram optical element is formed by exposing a hologram photosensitive material,
    A heat treatment that reduces the exposure amount in a region where light having an angle of view at which Δθ is maximum is incident, compared to a region in which light having an angle of view at which Δθ is minimum is incident, with a constant film thickness. The image display device according to claim 2, wherein the image display device is formed by performing at least one of lowering a temperature or shortening a heat treatment temperature.
  5.  前記光源から出射される光の波長幅を制限する波長制限素子をさらに備え、
     前記波長制限素子は、前記ホログラム光学素子に光束が入射する領域の内、前記Δθが最小となる位置を含む一部の領域に入射する光束の周辺光束の光路中にのみ配置されていることを特徴とする請求項1に記載の映像表示装置。
    A wavelength limiting element for limiting the wavelength width of the light emitted from the light source;
    The wavelength limiting element is disposed only in an optical path of a peripheral light beam of a light beam incident on a part of the region including a position where Δθ is minimum in a region where the light beam is incident on the hologram optical element. The video display device according to claim 1, wherein
  6.  前記光源から出射される光の波長幅を制限する波長制限素子をさらに備え、
     前記波長制限素子は、前記ホログラム光学素子に光束が入射する領域の内、前記Δθが最小となる位置を含む一部の領域に入射する光束の光路と、その周辺光束の光路との両方にまたがって配置されており、前記Δθが最小となる位置を含む一部の領域に入射する光束の波長幅よりも、前記周辺光束の波長幅を狭くすることを特徴とする請求項1に記載の映像表示装置。
    A wavelength limiting element for limiting the wavelength width of the light emitted from the light source;
    The wavelength limiting element spans both the optical path of the light beam incident on a part of the region including the position where Δθ is minimum and the optical path of the peripheral light beam in the region where the light beam is incident on the hologram optical element. 2. The image according to claim 1, wherein a wavelength width of the peripheral light beam is made narrower than a wavelength width of a light beam incident on a partial region including a position where the Δθ is minimum. Display device.
  7.  前記光学瞳中心に入射する映像光線の波長幅は、前記Δθが最小となる画角から前記Δθが最大となる画角に向かって段階的に狭くなることを特徴とする請求項1から6のいずれかに記載の映像表示装置。 7. The wavelength width of the image light beam incident on the center of the optical pupil is gradually reduced from an angle of view at which Δθ is minimized toward an angle of view at which Δθ is maximized. The video display apparatus in any one.
  8.  前記光学瞳中心に入射する映像光線の波長幅は、前記Δθが最小となる画角から前記Δθが最大となる画角に向かって連続的に狭くなることを特徴とする請求項1から6のいずれかに記載の映像表示装置。 The wavelength width of the image light beam incident on the optical pupil center is continuously narrowed from an angle of view where the Δθ is minimized toward an angle of view where the Δθ is maximized. The video display apparatus in any one.
  9.  前記光源の全ての発光波長領域において、前記光学瞳の中心に入射する映像光のうちで前記表示素子の画面周辺からの映像光の波長幅が、画面中心からの映像光の波長幅よりも狭いことを特徴とする請求項1から8のいずれかに記載の映像表示装置。 In all emission wavelength regions of the light source, among the image light incident on the center of the optical pupil, the wavelength width of the image light from the periphery of the screen of the display element is narrower than the wavelength width of the image light from the center of the screen. The video display device according to claim 1, wherein the video display device is a video display device.
  10.  前記光学瞳の中心に入射する映像光線の波長幅の変化が、画面上において少なくとも1本の対称軸に対して対称であることを特徴とする請求項1から9のいずれかに記載の映像表示装置。 10. The image display according to claim 1, wherein the change in the wavelength width of the image light incident on the center of the optical pupil is symmetric with respect to at least one symmetry axis on the screen. apparatus.
  11.  前記光源から出射される光の透過率が入射領域ごとに異なる輝度調整素子をさらに備え、
     前記輝度調整素子において、前記ホログラム光学素子に光束が入射する領域の内、前記Δθが最小となる位置を含む一部の領域に入射する光束の透過率よりも、その周辺の光束の透過率が高いことを特徴とする請求項1から10のいずれかに記載の映像表示装置。
    Further comprising a luminance adjusting element in which the transmittance of light emitted from the light source is different for each incident region;
    In the brightness adjusting element, the transmittance of the light beam in the vicinity thereof is higher than the transmittance of the light beam incident on a part of the region including the position where Δθ is minimum in the region where the light beam is incident on the hologram optical element. The video display device according to claim 1, wherein the video display device is high.
  12.  請求項1から11のいずれかに記載の映像表示装置と、
     前記映像表示装置を観察者の眼前で支持する支持手段と、を備えていることを特徴とするヘッドマウントディスプレイ。
    The video display device according to any one of claims 1 to 11,
    And a support means for supporting the video display device in front of the observer's eyes.
  13.  請求項1から11のいずれかに記載の映像表示装置を備え、
     前記映像表示装置の前記ホログラム光学素子が、観察者の視界内に配置される基板に保持されていることを特徴とするヘッドアップディスプレイ。
    A video display device according to any one of claims 1 to 11, comprising:
    The head-up display, wherein the hologram optical element of the video display device is held on a substrate arranged in the field of view of an observer.
PCT/JP2010/054207 2009-04-24 2010-03-12 Image display apparatus, head-mounted display, and head-up display WO2010122854A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-106845 2009-04-24
JP2009106845 2009-04-24

Publications (1)

Publication Number Publication Date
WO2010122854A1 true WO2010122854A1 (en) 2010-10-28

Family

ID=43010977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/054207 WO2010122854A1 (en) 2009-04-24 2010-03-12 Image display apparatus, head-mounted display, and head-up display

Country Status (1)

Country Link
WO (1) WO2010122854A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012163659A (en) * 2011-02-04 2012-08-30 Seiko Epson Corp Virtual image display device
JP2015127828A (en) * 2015-03-13 2015-07-09 セイコーエプソン株式会社 Virtual image display device
WO2023010743A1 (en) * 2021-08-05 2023-02-09 苏州苏大维格科技集团股份有限公司 Augmented reality head-up display apparatus, vehicle, and optical waveguide preparation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0981020A (en) * 1995-09-18 1997-03-28 Denso Corp Hologram for display and its production
JPH09113995A (en) * 1995-10-23 1997-05-02 Denso Corp Display device
JP2000267042A (en) * 1999-03-17 2000-09-29 Fuji Xerox Co Ltd Head-mounted type video display device
JP2002311381A (en) * 2001-04-19 2002-10-23 Canon Inc Picture display device and picture display system
JP2003140079A (en) * 2001-10-30 2003-05-14 Nikon Corp Image combiner and image display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0981020A (en) * 1995-09-18 1997-03-28 Denso Corp Hologram for display and its production
JPH09113995A (en) * 1995-10-23 1997-05-02 Denso Corp Display device
JP2000267042A (en) * 1999-03-17 2000-09-29 Fuji Xerox Co Ltd Head-mounted type video display device
JP2002311381A (en) * 2001-04-19 2002-10-23 Canon Inc Picture display device and picture display system
JP2003140079A (en) * 2001-10-30 2003-05-14 Nikon Corp Image combiner and image display device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012163659A (en) * 2011-02-04 2012-08-30 Seiko Epson Corp Virtual image display device
JP2015127828A (en) * 2015-03-13 2015-07-09 セイコーエプソン株式会社 Virtual image display device
WO2023010743A1 (en) * 2021-08-05 2023-02-09 苏州苏大维格科技集团股份有限公司 Augmented reality head-up display apparatus, vehicle, and optical waveguide preparation method

Similar Documents

Publication Publication Date Title
JP5250853B2 (en) Video display device and head mounted display
US7835050B2 (en) Optical holographic device with a hologram optical element on an area smaller than an irradiation area, holographic image display device and head mounted display with a hologram optical element on an area smaller than an irradiation area
JP5534009B2 (en) Video display device, head-mounted display, and head-up display
CN105929535B (en) Image display device
JP5732808B2 (en) Virtual image display device
WO2011121949A1 (en) See-through display
WO2010061835A1 (en) Image display device and head-mounted display
JP2007333952A (en) Video display apparatus and head mount display
JP5286638B2 (en) Video display device and head mounted display
JP2010256631A (en) Hologram optical element
US20100066926A1 (en) Image display apparatus and head-mounted display
JP4492536B2 (en) Image combiner and image display device
US20220011589A1 (en) Display device
JP2010271526A (en) Video display device, head mounted display, and head-up display
JP2010262232A (en) Apparatus for displaying video image and head-mounted display
JP2007052086A (en) Image display apparatus and head mount display
JP4797531B2 (en) Video display device
WO2011001787A1 (en) Video display device, hmd, and hud
WO2010122854A1 (en) Image display apparatus, head-mounted display, and head-up display
JP2006349719A (en) Video display device and head mount display
WO2010044356A1 (en) Image display device and head-mount display
JP2008216852A (en) Video display device and head-mounted display
JP2010072151A (en) Video display apparatus and head mount display
JP5315974B2 (en) Optical path combiner, video display device, and head mounted display
JP2009157026A (en) Image display device and head mounted display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10766913

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10766913

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP