WO2010134295A1 - Method of removing the foil shadow of a synchronisation type grid, and radiation image pickup device employing the same - Google Patents

Method of removing the foil shadow of a synchronisation type grid, and radiation image pickup device employing the same Download PDF

Info

Publication number
WO2010134295A1
WO2010134295A1 PCT/JP2010/003221 JP2010003221W WO2010134295A1 WO 2010134295 A1 WO2010134295 A1 WO 2010134295A1 JP 2010003221 W JP2010003221 W JP 2010003221W WO 2010134295 A1 WO2010134295 A1 WO 2010134295A1
Authority
WO
WIPO (PCT)
Prior art keywords
foil shadow
image
grid
foil
shadow
Prior art date
Application number
PCT/JP2010/003221
Other languages
French (fr)
Japanese (ja)
Inventor
藤田明徳
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to US13/321,624 priority Critical patent/US8559754B2/en
Priority to JP2011514318A priority patent/JP5278544B2/en
Priority to CN201080022446.4A priority patent/CN102438526B/en
Publication of WO2010134295A1 publication Critical patent/WO2010134295A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/42Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4291Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis the detector being combined with a grid or grating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • A61B6/4435Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure
    • A61B6/4441Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure the rigid structure being a C-arm or U-arm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5217Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data extracting a diagnostic or physiological parameter from medical diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5252Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data removing objects from field of view, e.g. removing patient table from a CT image
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/40Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for generating radiation specially adapted for radiation diagnosis
    • A61B6/4021Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for generating radiation specially adapted for radiation diagnosis involving movement of the focal spot

Definitions

  • the present invention relates to a synchronous grid foil shadow removing method for removing scattered radiation of a radiographic apparatus and a radiographic apparatus using the same, and more particularly to a synchronous grid foil shadow removing method using image processing and the same.
  • the present invention relates to a radiation imaging apparatus.
  • X-ray imaging apparatuses are equipped with a grid to reduce image quality degradation due to scattered X-rays.
  • a grid is used, a fine vertical pattern due to the shadow of the grid foil is superimposed on the captured image.
  • FPD Full Panel Detector
  • FPD provides improved spatial resolution and X-ray sensitivity of captured images, and its use is rapidly increasing.
  • the grid foil shadow becomes clearer, which becomes a hindrance when reading a captured image.
  • Patent Document 1 discloses a method of removing by image processing using frequency conversion.
  • Patent Document 2 discloses a synchronous grid for FPD. As shown in FIG. 23, the synchronous grid 43 is arranged so that each flat surface of the grid foil 43 a is inclined along a straight line 42 connecting the focal point F of the X-ray source 41 and the X-ray detection surface of the FPD 44. Has been. That is, the grid foil 43a is inclined so as to directly follow the X-ray.
  • the synchronous grid 43 is configured by arranging the grid foil 43 a so that the grid foil shadow is reflected in the center of the detection pixel 47 of the FPD 44. In this way, the positions of the grid foil 43a and the detection pixels 47 are arranged in synchronization. Since the scattered X-rays 45 can be absorbed by the grid foil 43a, noise due to the scattered X-rays 45 can be removed. Further, unlike the conventional grid, the synchronous grid 43 does not use a spacer such as graphite between the grid foils 43a, so that the direct X-ray 46 is not absorbed and the detection efficiency of the direct X-ray 46 is increased. Can do.
  • the grid foil of the synchronous grid has the same grid ratio although the interval of the grid foil is different from the grid foil of the conventional asynchronous grid.
  • the grid foil gap Gp is longer than that of the asynchronous grid.
  • the height A of the grid foil in the direction along the incident direction of the straight X-ray is higher in the synchronous grid than in the asynchronous grid.
  • the grid ratio A / Gp of the synchronous grid can be set equal to the grid ratio of the asynchronous grid.
  • the noise removal performance of the scattered X-rays 45 can be made the same by increasing the height A of the grid foil. it can.
  • the synchronous grid has a slight distortion of the linear grid foil and a slight shift of the arrangement position due to the production of the grid foil and the structural reason for aligning the grid foil.
  • the foil shadow of the synchronous grid is easily affected by the distortion of the grid foil. Due to the distortion and displacement of the grid foil, the grid foil shadow is also distorted. As a result, the measurement value of the foil shadow varies for each grid foil shadow line, and the grid foil shadow is shaded. Thus, even if frequency conversion is used to remove the grid foil shadow, the grid foil shadow of the vertical pattern cannot be sufficiently removed. Artifacts also appear due to grid foil shadows that could not be removed.
  • the present invention has been made in view of such circumstances, and it is possible to remove the noise caused by the distortion of the grid foil of the synchronous grid, and the foil shadow removal method of the synchronous grid and the foil shadow removal of the synchronous grid.
  • An object is to provide an apparatus.
  • the present invention has the following configuration. That is, the first invention relates to a grid foil shadow removal method for a radiographic apparatus having a synchronous grid in which grid foils are arranged at regular intervals so that the grid foil shadow is reflected in the center of a pixel for detecting radiation.
  • An approximate fluoroscopic image calculation step for obtaining an approximate fluoroscopic image by extracting a detection signal value of a pixel not affected by the grid foil shadow and performing an interpolation process, and a difference between the fluoroscopic image and the approximate fluoroscopic image
  • a grid foil shadow image calculating step for obtaining a grid foil shadow image and calculating a foil shadow standard image for obtaining a foil shadow standard image by averaging the grid foil shadow image in a length direction of the grid foil shadow; and And a foil shadow removing step of removing the grid foil shadow from the fluoroscopic image based on the foil shadow standard image.
  • an approximate perspective image calculation is performed in a grid foil shadow removal method of a radiation imaging apparatus including a synchronous grid in which grid foils are arranged at regular intervals so that the grid foil shadow is reflected in the center of a pixel for detecting radiation.
  • an approximate perspective image is obtained by extracting a detection signal of pixels not affected by the grid foil shadow from the perspective image and performing an interpolation process.
  • a grid foil shadow image is obtained by obtaining a difference between the perspective image and the approximate perspective image.
  • the foil shadow standard image is obtained by averaging the grid foil shadow image in the length direction of the grid foil shadow in the foil shadow standard image calculating step.
  • the grid foil shadow is removed from the fluoroscopic image based on the foil shadow standard image.
  • each grid foil Since the grid foil is arranged by being pulled in the foil direction, the change of the grid foil shadow in the length direction of the grid foil is relatively small. On the other hand, each grid foil has an error due to a shape or twist, and a minute arrangement direction or position error. Even if there is non-uniformity in the size of the grid foil shadow for each grid foil, the grid foil shadow is averaged in the length direction of the grid foil shadow, and the grid foil is obtained from the perspective image based on the averaged foil shadow standard image. Remove shadows. By performing the averaging, it is possible to remove amplifier noise, quantum noise, and the like that are randomly mixed for each pixel. In addition, an interpolation error included in calculating the approximate fluoroscopic image can be removed. As described above, since the spacer is not sandwiched between the grid foils, it is possible to remove the grid foil shadows without causing artifacts even in a synchronous grid in which it is difficult to accurately arrange the grid foils.
  • the foil shadow removal step removes the grid foil shadow from the fluoroscopic image based on a difference between the fluoroscopic image and the foil shadow standard image. By subtracting the foil shadow standard image from the fluoroscopic image, the grid foil shadow can be easily removed from the fluoroscopic image.
  • the foil shadow standard image averaged by the foil shadow standard image calculating step is extracted for each row, and is extracted for each number of pixels within a predetermined interval where the grid foil is arranged, and row data is created.
  • the foil shadow removal step obtains a difference between the fluoroscopic image and the smoothed foil shadow standard image and removes the grid foil shadow from the fluoroscopic image.
  • the foil shadow removing step calculates an error component image calculating step for obtaining an error component image by calculating a difference between the grid foil shadow image and the foil shadow standard image, and calculating a difference between the fluoroscopic image and the error component image.
  • a foil shadow distortion removed image calculating step for obtaining a foil shadow distortion removed image and a frequency conversion processing step for performing a frequency conversion process on the foil shadow distortion removed image to remove the grid foil shadow may be provided.
  • the error component image is obtained by obtaining the difference between the grid foil shadow image and the foil shadow standard image in the error component image calculation step.
  • the foil shadow distortion removed image calculation step a difference between the fluoroscopic image and the error component image is obtained to obtain a foil shadow distortion removed image.
  • frequency conversion processing step frequency conversion processing is performed on the foil shadow distortion-removed image to remove grid foil shadows.
  • the foil shadow standard image averaged by the foil shadow standard image calculating step is extracted for each row, and is extracted for each number of pixels within a predetermined interval where the grid foil is arranged, and row data is created.
  • the error component image calculation step obtains a pixel component image by obtaining a difference between the grid foil shadow image and the smoothed foil shadow standard image.
  • the normal correction mode in which the movement of the foil shadow between the pixels is not corrected or the special correction mode in which the movement of the foil shadow between the pixels is corrected is selected based on the set SID amount and the movement amount of the C-arm.
  • the approximate fluoroscopic image calculation step detects all pixels other than the pixels arranged in advance so that the grid foil shadow is reflected.
  • the signal is extracted and interpolation processing is performed, and the special correction mode is selected in the image processing mode selection step, the approximate perspective image calculation step is performed between the grid foils where the foil shadow does not appear even if the foil shadow moves. It is preferable to perform an interpolation process by extracting a detection signal of a pixel located at the center of the pixel.
  • the normal correction mode is selected when the foil shadow does not move across the pixels due to the SID amount input and the movement amount of the C-shaped arm, and the foil shadow is When moving across pixels, the special correction mode for correcting the movement of the foil shadow between the pixels is selected.
  • the approximate perspective image calculation step detects all pixels other than the pixels previously arranged so that the grid foil shadow is reflected as pixels not affected by the grid foil shadow. The signal is extracted and interpolation processing is performed.
  • the special correction mode is selected, the pixel located at the center between the grid foils where the foil shadow does not appear even if the foil shadow moves is regarded as a pixel not affected by the grid foil shadow. The detection signal is extracted and interpolation processing is performed.
  • the approximate perspective image can be calculated by appropriately performing the interpolation process.
  • radiation irradiating means for irradiating a subject with radiation radiation detecting means for arranging pixels for detecting radiation transmitted through the subject in a two-dimensional array, and grid foil Interpolation is performed by extracting a set of pixels that are not affected by the grid foil shadow from a synchronous grid arranged at regular intervals so that the shadow is reflected in the center of the pixel and a fluoroscopic image detected through the subject.
  • An approximate perspective image calculation unit that calculates an approximate perspective image
  • a grid foil shadow image calculation unit that obtains a grid foil shadow image by obtaining a difference between the perspective image and the approximate perspective image
  • a grid foil shadow image A foil shadow standard image calculating unit for obtaining a grid foil shadow standard image by averaging in the length direction of the foil shadow, and removing the grid foil shadow from the fluoroscopic image based on the grid foil shadow standard image Characterized in that a foil shadow removed image calculating unit for obtaining a subtracted image.
  • the radiation is irradiated to the subject by the radiation irradiating means, and the radiation that has passed through the subject is detected by the radiation detecting means in which the pixels for detecting the radiation are arranged in a two-dimensional array,
  • the synchronous grid is arranged at regular intervals so that the grid foil shadow is reflected in the center of the pixel.
  • the approximate fluoroscopic image calculation unit calculates an approximate fluoroscopic image by extracting a pixel set that is not affected by the grid foil shadow from the fluoroscopic image detected through the subject and performing an interpolation process.
  • the grid foil shadow image calculation unit obtains a grid foil shadow image by obtaining a difference between the perspective image and the approximate perspective image.
  • the foil shadow standard image calculation unit obtains a grid foil shadow standard image by averaging the grid foil shadow image in the length direction of the grid foil shadow.
  • the foil shadow removed image calculation unit obtains a foil shadow removed image by removing the grid foil shadow from the fluoroscopic image based on the grid foil shadow standard image.
  • the grid foil shadow is averaged in the length direction of the grid foil shadow, and the grid foil shadow is removed from the fluoroscopic image based on the averaged foil shadow standard image. Even if there is non-uniformity in the size of the grid foil shadow for each grid foil, the grid foil shadow is averaged in the length direction of the grid foil shadow, and the grid foil is obtained from the perspective image based on the averaged foil shadow standard image. Remove shadows. By performing averaging, it is possible to remove amplifier noise, quantum noise, and the like that are randomly mixed for each pixel. In addition, an interpolation error included in calculating the approximate fluoroscopic image can be removed. Even in a synchronous grid in which it is difficult to accurately arrange the grid foil, the grid foil shadow can be removed without causing artifacts.
  • the foil shadow removal image calculation unit obtains the foil shadow removal image based on a difference between the fluoroscopic image and the grid foil shadow standard image. According to this configuration, the foil shadow removed image can be easily obtained by subtracting the foil shadow standard image from the fluoroscopic image.
  • the foil shadow removal image calculation unit obtains an error component image by obtaining a difference between the grid foil shadow image and the grid foil shadow standard image, the perspective image, and the error component image.
  • a foil shadow distortion-removed image calculating unit that obtains a foil shadow distortion-removed image by obtaining a difference between them, and a frequency conversion processing unit that performs a frequency conversion process on the foil shadow distortion-removed image to remove a grid foil shadow.
  • the error component image calculation unit obtains an error component image by obtaining a difference between the grid foil shadow image and the grid foil shadow standard image.
  • the foil shadow distortion removed image calculating unit obtains a foil shadow distortion removed image by obtaining a difference between the fluoroscopic image and the error component image.
  • the frequency conversion processing unit performs frequency conversion processing on the corrected perspective image to remove the grid foil shadow. As a result, even if the grid foil shadow is not uniform, the grid foil shadow is averaged in the length direction of the grid foil shadow, and the error component image that is the difference between the averaged foil shadow standard image and the foil shadow image is seen through. By removing from the image, it is possible to obtain a perspective image having a uniform grid foil shadow, and to remove the remaining grid foil shadow by subjecting this perspective image to frequency conversion processing. Even in a synchronous grid in which it is difficult to uniformly form the shape and arrangement of each grid foil, the frequency conversion process can be performed to remove the grid foil shadow.
  • an input unit for inputting and setting the SID amount and the movement amount of the C-type arm, and a correction for selecting either the normal correction mode or the special correction mode based on the set and inputted SID amount and the movement amount of the C-type arm.
  • a mode selection unit and when the normal correction mode is selected as the correction mode, the approximate fluoroscopic image calculation unit extracts detection signal values of all pixels other than pixels arranged in advance so that a grid foil shadow is reflected.
  • the special correction mode is selected as the correction mode, the detection signal value of the pixel located at the center between the grid foils where the foil shadow does not appear even if the foil shadow moves is interpolated. It is preferable to carry out the treatment.
  • the SID amount and the C-arm movement amount are input and set at the input unit.
  • the correction mode selection unit either the normal correction mode or the special correction mode is selected based on the set and input SID amount and the C-arm movement amount.
  • the normal correction mode is selected as the correction mode
  • the approximate fluoroscopic image calculation unit extracts the detection signal values of all the pixels other than the pixels previously arranged so that the grid foil shadow is reflected, and performs the interpolation process.
  • the special correction mode is selected as the correction mode, the detection signal value of the pixel located at the center between the grid foils where the foil shadow does not appear even if the foil shadow moves is extracted and interpolation processing is performed.
  • the approximate perspective image can be calculated by appropriately performing the interpolation process.
  • the foil shadow standard image calculated by the foil shadow standard image calculation unit is extracted and divided for each number of pixels in which the grid foil is arranged at regular intervals for each row, and the row data is created. It is preferable to provide a smoothing unit that smoothes data and replaces the original foil shadow standard image.
  • the smoothing unit extracts and divides the foil shadow standard image calculated by the foil shadow standard image calculation unit for each number of pixels within a predetermined interval in which the grid foil is arranged for each row.
  • Line data is created, and the line data is smoothed and replaced with the original foil shadow standard image. Accordingly, it is possible to divide line data having a relatively large change into a plurality of smooth line data.
  • the foil shadow standard image that cannot be smoothed in the row direction can be smoothed for each row data divided by the number of pixels in which the grid foil is arranged at a constant interval. In this way, by correcting the variation for each grid foil shadow, a foil shadow standard image in which amplifier noise and quantum noise are further suppressed can be calculated.
  • the synchronous grid and the radiation detector are arranged in advance so that a grid foil shadow is reflected every four pixels.
  • the synchronous grid and the radiation detector are arranged so that the grid foil shadow is projected every four pixels in advance.
  • the synchronous grid foil shadow removing method and the synchronous grid foil shadow removing method capable of removing noise caused by the distortion of the grid foil of the synchronous grid and A synchronous grid foil shadow removing apparatus can be provided.
  • 1 is an overall view of an X-ray fluoroscopic apparatus according to an embodiment. It is a schematic sectional drawing of the grid of the X-ray fluoroscopic apparatus which concerns on an Example. It is a perspective view of the grid foil of the X-ray fluoroscopic apparatus which concerns on an Example. It is a schematic sectional drawing of the grid and FPD of the X-ray fluoroscopic apparatus which concerns on an Example. It is explanatory drawing of SID of the X-ray fluoroscopic apparatus which concerns on an Example. 1 is a schematic view of an X-ray fluoroscopic apparatus according to an embodiment. It is explanatory drawing explaining the movement of the X-ray focus of the X-ray fluoroscopic apparatus which concerns on an Example.
  • FIG. 3 is a block diagram illustrating a configuration of an image processing unit according to the first embodiment. It is explanatory drawing which shows the pixel of FPD on which the foil shadow based on an Example was reflected. It is explanatory drawing which shows the pixel of FPD on which the foil shadow based on an Example was reflected. It is explanatory drawing which shows the detection value of the pixel in which the foil shadow which concerns on an Example is reflected.
  • FIG. 10 is a block diagram illustrating a configuration of an image processing unit according to a second embodiment. It is a flowchart figure which shows the flow of the foil shadow correction process which concerns on Example 2.
  • FIG. 10 is a block diagram illustrating a configuration of an image processing unit according to a third embodiment.
  • FIG. 10 is an explanatory diagram illustrating image processing according to a third embodiment. It is a flowchart figure which shows the flow of the foil shadow correction process which concerns on Example 3.
  • FIG. FIG. 10 is a block diagram illustrating a configuration of an image processing unit according to a second embodiment. It is a flowchart figure which shows the flow of the foil shadow correction process which concerns on Example 2.
  • FIG. FIG. 10 is a block diagram illustrating a configuration of an image processing unit according to a third embodiment.
  • FIG. 10 is an explanatory diagram illustrating image processing according to a third embodiment. It is a flowchart figure which shows the flow of the foil shadow correction process which concerns on Example 3.
  • FIG. 10 is a block diagram illustrating a configuration of an image processing unit according to a fourth embodiment. It is a flowchart figure which shows the flow of the foil shadow correction process which concerns on Example 4.
  • FIG. It is a schematic sectional drawing of the grid of the X-ray fluoroscopic apparatus which concerns on a prior art example. It is a schematic sectional drawing of the grid of the X-ray fluoroscopic apparatus which concerns on a prior art example.
  • FIG. 1 is an overall view of the X-ray fluoroscopic apparatus
  • FIG. 2 is a schematic sectional view of a grid
  • FIG. 3 is a perspective view of a grid foil
  • FIG. 4 is a schematic sectional view of a grid and an FPD.
  • an X-ray fluoroscopic apparatus 1 includes an X-ray tube 2 that irradiates a subject M with X-rays, and a synchronous grid that removes scattered X-rays transmitted through the subject M. 3 and a flat detector (flat panel detector: hereinafter referred to as FPD) 4 for detecting transmitted X-rays from which scattered X-rays have been removed.
  • the X-ray tube 2, the synchronous grid 3 and the FPD 4 are attached to both ends of the C-type arm 5 so as to face each other.
  • the C-type arm 5 is moved by a C-type arm moving mechanism 6, and the movement amount of the C-type arm moving mechanism 6 is controlled by a C-type arm movement control unit 7.
  • the X-ray tube 2 corresponds to the radiation irradiation means in the present invention
  • the FPD 4 corresponds to the radiation detection means in the present invention.
  • the C-arm 5 is configured to be vertically movable (R1) with respect to the top plate 8 on which the subject M is placed. Further, the arm support 9 that supports the C-shaped arm 5 is attached to be rotatable (R2) around a vertical axis. The C-arm 5 is rotatable around a horizontal axis (R3) and is attached to the arm support 9 so as to be movable in an arcuate shape (R4). Further, in order to adjust the SID (Source Image Distance) that is the distance between the X-ray tube 2 and the synchronous grid 3 and the FPD 4, the C-type arm moving mechanism 6 causes the synchronous grid 3 and the FPD 4 to move in the vertical direction (R5). It is movable.
  • SID Source Image Distance
  • the X-ray fluoroscopic apparatus 1 also receives an X-ray tube control unit 10 that controls a tube voltage and a tube current output to the X-ray tube 2 and an analog X-ray detection signal output from the FPD 4.
  • An A / D converter 11 that converts a digital X-ray detection signal, an image processing unit 12 that performs various image processing from the digital X-ray detection signal, a main control unit 13 that supervises these components,
  • the main control unit 13 includes a central processing unit (CPU).
  • the input unit 14 includes a pointing device represented by a mouse, a keyboard, a joystick, a trackball, a touch panel, and the like. The photographer can set and input the amount of movement of the SID and the C-type arm through the input unit 14.
  • Examples of the monitor 15 include a liquid crystal display device or a CRT display, and examples of the storage unit 16 include a hard disk and a memory.
  • the synchronous grid 3 is disposed so as to cover the X-ray detection surface of the FPD 4.
  • the synchronous grid 3 includes a grid foil 3a that absorbs strip-shaped X-rays extending in the longitudinal (Y) direction.
  • Each flat surface of the grid foil 3 a is disposed so as to be inclined along a straight line connecting the focal point F of the X-ray source of the X-ray tube 2 and the X-ray detection surface of the FPD 4. That is, the grid foil 3a is inclined so as to follow the direct transmission X-ray Dx.
  • the synchronous grid 3 is an array of grid foils 3 a so that a grid foil shadow (hereinafter simply referred to as a foil shadow) is reflected in the center of the X-ray detection pixel DU of the FPD 4.
  • the grid foils 3a are arranged at predetermined intervals in the lateral (X) direction, and the arrangement pitch Gp is 400 ⁇ m in the first embodiment.
  • This arrangement pitch Gp is appropriately designed in synchronization with the width W DU of the X-ray detection pixel DU of the FPD 4. That is, the foil shadow of the grid foil 3a is arranged at a predetermined pixel interval on the X-ray detection pixel DU at the C-arm standard position in the reference SID.
  • the width W DU of the X-ray detection pixel DU is 100 ⁇ m, a foil shadow is projected at a ratio of one in four in the horizontal direction with respect to the X-ray detection pixel DU.
  • the grid foil 3a is made of a simple substance such as molybdenum, tungsten, lead, or tantalum, or an alloy containing these as a main component.
  • this metal it is preferable to select a material having a large atomic number and a large X-ray absorption, and usually has a thickness of 20 to 50 ⁇ m.
  • the grid foil 3a is manufactured by rolling, cutting, or the like.
  • it is a heavy metal or an alloy of heavy metals as described above, it is very difficult to strictly determine the shape uniformity such as the thickness and width of the grid foil 3a. is there. This non-uniformity of the shape of the grid foil 3a causes variations in the detected value of the foil shadow.
  • 2000 ⁇ 2000 X-ray detection pixels DU that convert X-rays into charge signals are arranged in a two-dimensional array.
  • the X-ray detection pixel DU includes an X-ray detection element that generates a charge signal when irradiated with X-rays.
  • SID is a perpendicular distance between the focal point of the X-ray source in the X-ray tube 2 and the FPD 4. If the SID is short, an enlarged fluoroscopic image of the subject M can be obtained, and if the SID is long, a wide-angle fluoroscopic image of the subject M can be obtained. In other words, the perspective image can be adjusted by adjusting the SID.
  • the case where the SID is 1000 mm is set as the reference SID.
  • the grid foil 3a and the FPD 4 are positioned so that the foil shadow of the synchronous grid 3 is projected on the X-ray detection pixel of the FPD 4 in a ratio of one to four in the horizontal direction. It is matched.
  • the C-arm standard position is a three-dimensionally determined positional relationship with respect to the bed, the top plate 8 and the examination room as shown in FIG. This is the default position. This position is a standard position where it is considered that there is no deflection of the C-type arm 5 in order to align the synchronous grid 3 and the FPD 4 at this position.
  • the movement of the foil shadow also occurs when the C-arm 5 is moved such as turning.
  • the C-arm 5 is turned as shown in FIG. 6, deflection is inevitably generated in the C-arm 5 due to the rigidity of the C-arm 5. Due to this deflection, when the X-ray focal point of the X-ray tube 2 moves, the foil shadow also slightly moves in the reference SID.
  • the amount of movement of the X-ray focal point due to the deflection of the C-arm 5 is at most about 2 mm. For example, as shown in FIG.
  • the foil shadow is set so that the foil shadow is positioned at the center of the pixel when the X-ray tube focus is not moved in the reference SID. There is a margin of 35 ⁇ m from the shadow to the adjacent pixel. However, as described above, when the foil shadow moves by 40 ⁇ m, as shown in FIG. 9, the foil shadow protrudes from the pixel arranged so that the foil shadow is projected in advance to the adjacent pixel.
  • the image processing unit 5 performs foil shadow correction suitable for each case.
  • FIG. 10 is a block diagram illustrating a configuration of the image processing unit.
  • the image processing unit 5 includes a LOG conversion unit 17 that performs LOG conversion on the digital X-ray detection signal converted by the A / D converter 11, and an image that stores several LOG-converted X-ray detection signals for several sheets.
  • correction mode selection unit 19 for selecting a foil shadow correction mode based on the SID amount set in the input unit 14 or the movement amount of the C-type arm 5, and the X-ray detection image stored in the image memory unit 18
  • a first approximate fluoroscopic image calculation unit 20 and a second approximate fluoroscopic image calculation unit 21 that select a set of pixels not affected by the foil shadow and calculate an approximate fluoroscopic image of the subject M, and an X-ray detection image and an approximation
  • a foil shadow image calculation unit 22 that calculates a grid foil shadow image based on a difference from the perspective image, a foil shadow standard image calculation unit 23 that calculates a grid foil shadow standard image by averaging the grid foil shadow image, and an image memory Part 18
  • a subtracting unit 24 for calculating a foil shadow removed X-ray detection image by calculating a difference between the stored X-ray detection image and the grid shadow standard image.
  • the LOG converter 17 performs LOG conversion on the digital X-ray detection signal converted by the A / D converter 11. As a result, the X-ray detection signal can be calculated as a linear sum, and subsequent calculations can be simplified.
  • the image memory unit 18 stores a number of X-ray detection images composed of X-ray detection signals that have been LOG-converted by the LOG conversion unit 17.
  • the image memory unit 18 also functions as a buffer.
  • the correction mode selection unit 19 selects the normal correction mode or the special correction mode as the foil shadow correction mode. This selection is performed based on the SID amount input and set in the input unit 14 sent via the main control unit 13 and the movement amount of the C-type arm 5.
  • the amount of movement is the amount of movement of the C-arm 5 from the C-arm standard position.
  • the normal correction mode is a correction mode that is selected when the SID is the reference SID and the movement of the foil shadow due to the deflection of the C-arm 5 can be ignored. That is, this is a correction mode in the case where the foil shadow is not projected from the pixels arranged in advance so that the foil shadow is projected.
  • a pixel arranged in advance so that a foil shadow is reflected is P 4n + 1 in the row direction, that is, the horizontal direction (where n is an integer of 0 or more), it is represented by P 4n + 1 every four pixels. A foil shadow is always projected on the pixel.
  • foil shadow correction is performed using a pixel set obtained by extracting the pixels P 4n + 2, P 4n + 3, and P 4n + 4, which are three pixel sets between the foil shadows. This correction method is the normal correction mode.
  • the special correction mode when the SID is moved from the reference SID or when the focus of the X-ray tube is moved by the deflection of the C-arm 5, a pixel that is arranged in advance so as to show a foil shadow is projected to the adjacent pixel.
  • This is a correction method in the case where the image is reflected up to. Assuming that a pixel pre-arranged so that a foil shadow is reflected is P 4n + 1 in the horizontal direction (where n is an integer of 0 or more), the foil shadow is a pixel due to SID movement or deflection of the C-arm 5 as shown in FIG. Move from the top of P 4n + 1 .
  • the foil shadow 29 is reflected across the pixel P 4n + 1 and the horizontally adjacent pixel P 4n + 2 . Further, the foil shadow 30 has completely moved from the element P 4 (n + 1) +1 to the pixel P 4n + 4 . Thus, it is pixel P4n + 3 located in the center between the pixels previously arrange
  • the first approximate fluoroscopic image calculation unit 20 includes pixels P 4n + 2 that are not affected by the foil shadow from the X-ray detection image stored in the image memory unit 18 .
  • a pixel set from which P 4n + 3 and P 4n + 4 are extracted is selected to calculate a first approximate fluoroscopic image of the subject M.
  • all the pixels other than the pixel P 4n + 1 in which the foil shadow is predetermined are selected.
  • ( ⁇ mark) is a value that is reduced by about 20% as shown in FIG. 13B from the X-ray detection signal values ( ⁇ mark and ⁇ mark) in other pixels.
  • the pixel P on which the foil shadow of the grid foil 3a is projected is the same as described above.
  • the X-ray detection signal value ( ⁇ mark) at 4n + 1 is a value that is lower than the X-ray detection signal values ( ⁇ mark and ⁇ mark) at other pixels as shown in FIG. Therefore, a pixel set obtained by extracting the pixels P 4n + 2, P 4n + 3, and P 4n + 4 which are not affected by the foil shadow is selected, and the grid is determined from the X-ray detection signal values ( ⁇ mark and ⁇ mark) of these pixel sets.
  • the X-ray detection signal value ( ⁇ mark) at the pixel P 4n + 1 where the foil shadow of the foil 3a is reflected is interpolated.
  • the fluoroscopic image of the subject M can be accurately estimated by cubic interpolation such as quadratic interpolation or cubic spline method.
  • a first approximate image that is a fluoroscopic image estimated in this way can be calculated.
  • the first approximate image calculated by the interpolation includes an interpolation error.
  • the second approximate fluoroscopic image calculation unit 21 selects a pixel set that is not affected by the foil shadow from the X-ray detection image stored in the image memory unit 18. Then, the second approximate fluoroscopic image of the subject M is calculated.
  • the foil shadow may also be moved to the pixel P 4n + 2 or P 4 (n ⁇ 1) +4 adjacent to the pixel P 4n + 1 on which the foil shadow of the grid foil 3a is projected.
  • the second approximate fluoroscopic image calculation unit 21 selects pixel sets obtained by extracting the pixels P 4n + 3 in which the foil shadow does not appear even if the foil shadow moves due to the movement of the SID or the C-type arm 5, and these pixel sets From the X-ray detection signal value ( ⁇ mark), the X-ray detection signal value ( ⁇ in the pixel P 4n + 1 in which the foil shadow of the grid foil 3a is reflected and the pixel P 4n + 2 or P 4n + 4 to which the foil shadow may move. Interpolate marks and ⁇ marks).
  • This interpolation method can accurately estimate a fluoroscopic image of the subject M by cubic interpolation such as a cubic spline method.
  • a second approximate image that is a perspective image estimated in this manner can be calculated.
  • the second approximate image calculated by interpolation includes an interpolation error.
  • the first approximate fluoroscopic image calculation unit and the second approximate fluoroscopic image calculation unit correspond to the approximate fluoroscopic image calculation unit in the present invention.
  • the foil shadow image calculation unit 22 calculates a grid foil shadow image based on the difference between the X-ray detection image and the approximate fluoroscopic image. That is, since an image composed of X-ray detection signals corresponding to the amount of foil shadows superimposed and reduced is calculated, a grid foil shadow image that is an image representing only the foil shadows can be obtained. Since the foil shadow is formed in the vertical direction along the grid foil 3a, the grid foil shadow image is also image data in which detection values are arranged in the vertical direction. Since the grid foil shadow image is calculated based on the approximate perspective image including the interpolation error, the grid foil shadow image also includes the interpolation error.
  • the foil shadow standard image calculation unit 23 calculates a grid foil shadow standard image by averaging the grid foil shadow images in which the detection values are arranged in the vertical direction in the vertical direction. That is, as shown in FIGS. 11 and 12, correction is performed by averaging variations in the detected value of the foil shadow caused by the nonuniformity of the shape of the foil shadow. For example, the average value of the detection values (pixel values) of the detection pixels in the upper and lower 30 pixels of the correction target pixel is calculated, and this average value is replaced with the pixel value of the correction target pixel.
  • a grid foil shadow standard image can be calculated by performing this process for all detection pixels. Further, by averaging the grid foil shadow image in the longitudinal direction, that is, the length direction of the foil shadow, the interpolation error included in the grid foil shadow image can be removed.
  • the subtraction unit 24 calculates a foil shadow removal perspective image based on the difference between the X-ray detection image stored in the image memory unit 18 and the grid foil shadow standard image. By removing the standardized foil shadow from the X-ray detection image, a fluoroscopic image of the subject from which the influence of the interpolation error has been removed can be acquired.
  • the subtraction unit 24 corresponds to the foil shadow removal image calculation unit in the present invention.
  • the fluoroscopic image of the subject from which the foil shadow has been removed by the subtracting unit 24 is displayed on the monitor 15 or stored in the storage unit 16 via the main control unit 13.
  • the photographer sets the SID amount and the movement amount of the C-arm 5 in the input unit 14. Accordingly, the main control unit 13 transfers the set SID amount and the movement amount of the C-type arm 5 to the C-type arm movement control unit 7.
  • the C-type arm movement control unit 7 causes the C-type arm moving mechanism 6 to move the C-type arm 5 by reflecting the set amounts.
  • the main control unit 13 controls the X-ray tube control unit 10 and the FPD 4.
  • the X-ray tube control unit 10 applies a tube voltage or a tube current to the X-ray tube 2 based on an instruction from the main control unit 13, and the subject M is irradiated with X-rays from the X-ray tube 2.
  • the X-rays transmitted through the subject M are removed from the scattered grid 3 by the synchronous grid 3, enter the FPD 4, and are detected by the X-ray detection pixel DU.
  • the X-ray detection signal detected by the X-ray detection pixel DU is converted from analog to digital by the A / D converter 11.
  • the X-ray detection signal converted to digital is transferred to the image processing unit 12 and is LOG converted by the LOG conversion unit 17.
  • the LOG-converted X-ray detection signal is stored as an X-ray detection image in the image memory unit 18.
  • the foil shadow is corrected according to the flowchart shown in FIG.
  • the normal photographing means a case where the SID is the reference SID and the deflection of the C-arm 5 does not affect the foil shadow.
  • the reference SID is 1000 mm in the first embodiment, but may be set as appropriate.
  • Step S1 correction mode selection
  • the SID amount set by the photographer in the input unit 14 and the movement setting amount of the C-arm 5 are sent to the correction mode selection unit 19 in the image processing unit 5 via the main control unit 13.
  • the correction mode selection unit 19 selects the normal correction mode or the special correction mode.
  • the normal correction mode is selected when the SID amount and the movement amount of the C-arm 5 do not affect the foil shadow, that is, when the SID amount and the movement of the C-shaped arm 5 are not included in the pixels set so that the foil shadow is projected in advance.
  • the special correction mode is selected.
  • Step S2 first approximate fluoroscopic image calculation
  • the first approximate fluoroscopic image calculation unit 20 selects a pixel set obtained by extracting three detection pixels between the foil shadows in which the foil shadow is not reflected. Further, the first approximate fluoroscopic image obtained by seeing through the subject M is calculated by interpolating the detection values of the detection pixels not selected from the pixel values of the pixel set.
  • Step S2 ′ second approximate fluoroscopic image calculation
  • the second approximate perspective image calculation unit 21 selects a pixel set obtained by extracting the detection pixel at the center between the foil shadows where the foil shadow is not reflected. Further, the second approximate fluoroscopic image obtained by seeing through the subject M is calculated by interpolating the detection values of the detection pixels not selected from the pixel values of the pixel set.
  • Step S3 (calculate foil shadow image)
  • the foil shadow image calculation unit 22 the X-ray detection image stored in the image memory unit 18, the approximate fluoroscopic image calculated by the first approximate fluoroscopic image calculation unit 20 or the second approximate fluoroscopic image calculation unit 21, and A grid foil shadow image is calculated from the difference between the two. That is, since an image consisting only of the X-ray detection signal from the detection pixel that becomes the shadow of the foil shadow is calculated, a grid foil shadow image can be obtained.
  • Step S4 (calculate foil shadow standard image)
  • the foil shadow standard image calculation unit 23 calculates the grid foil shadow standard image by averaging the grid foil shadow images in which the detection values are arranged in the vertical direction in the vertical direction. Since each grid foil 3a is pulled and held in the vertical direction, that is, the foil direction, the change of the foil shadow in the length direction of the grid foil 3a is relatively small. Amplifier noise and quantum noise can be corrected by averaging the foil shadows. For example, an average value of detection values of detection pixels of several tens of pixels above and below the pixel to be corrected is calculated, and this average value is replaced with a pixel value to be corrected. A grid foil shadow standard image is calculated by performing this process for all the detection pixels.
  • Step S5 calculate foil shadow removal image
  • the subtraction unit 24 calculates a foil shadow removal perspective image by subtracting the X-ray detection image from the grid foil shadow standard image.
  • a fluoroscopic image of the subject from which the foil shadow has been removed can be acquired.
  • the fluoroscopic image of the subject from which the foil shadow has been removed by the subtraction unit 24 is displayed on the monitor 15 or stored in the storage unit 16 via the main control unit 13.
  • the interpolation error included in calculating the approximate fluoroscopic image by averaging the foil shadow image reflected in the X-ray detection pixel DU in the vertical direction is possible to obtain a highly accurate foil shadow image from which amplifier noise and quantum noise have been removed.
  • the foil shadow of the synchronous grid can be removed from the fluoroscopic image without causing artifacts to appear.
  • the foil shadow does not appear. Since the foil shadow image is obtained by approximating the fluoroscopic image by interpolation from the pixel set obtained by extracting the pixels for which the image has been determined, the foil shadow can be accurately removed. Thus, even when the X-ray tube focal point is accompanied by a minute uncontrollable movement, the foil shadow can be sufficiently removed. As a result, both the case where the foil shadow does not move across the pixels and the case where the foil shadow moves can be appropriately interpolated, and the X-ray sensitivity is about 20% higher than that of the conventional grid. Due to the effect of the grid, an image that exceeds the signal-to-noise ratio can be acquired.
  • the synchronous grid 3 and the radiation detector (FPD4) are arranged so that the foil shadows are projected in advance every four pixels, they are arranged so that the grid foils are projected in advance even if the foil shadows move. Since the movement of the foil shadow falls within the pixels on both sides of the pixel, a pixel in which the foil shadow is not necessarily reflected can be configured.
  • FIG. 16 is a block diagram illustrating a configuration of an image processing unit according to the second embodiment
  • FIG. 17 is a flowchart illustrating a flow of foil shadow correction processing according to the second embodiment.
  • FIG. 16 and FIG. 17 since the part shown with the code
  • the subtracting unit of the first embodiment is changed. Therefore, the structure of the X-ray fluoroscopic apparatus other than that described here is the same as that of the first embodiment.
  • the feature of Example 2 is that the foil shadow is removed by frequency conversion.
  • the image processing unit 25 includes a LOG conversion unit 17, an image memory unit 18, a correction mode selection unit 19, a first approximate perspective image calculation unit 20, a second approximate perspective image calculation unit 21, a foil shadow image calculation unit 22, and a foil shadow standard.
  • a foil shadow removal image calculation unit 33 is provided that removes the grid foil shadow from the perspective image based on the grid foil shadow standard image to obtain a foil shadow removal image.
  • the foil shadow removal image calculation unit 33 includes an error component image calculation unit 34 that calculates an error component image based on the difference between the grid foil shadow image and the grid foil shadow standard image, and an X-ray detection stored in the image memory unit 18.
  • a foil shadow distortion removal image calculation unit 35 that calculates a foil shadow distortion removal image from which the foil shadow distortion has been removed by the difference between the image and the error component image, and the foil shadow distortion removal image by performing frequency conversion processing on the foil shadow distortion removal image.
  • a frequency conversion processing unit 36 for calculating a removal X-ray detection image.
  • the error component image calculation unit 34 calculates an error component image based on the difference between the grid foil shadow image and the grid foil shadow standard image. That is, it is possible to calculate the variation of the foil shadow based on the nonuniform shape for each grid foil 3a with reference to the ideal foil shadow image in the grid foil shadow image.
  • the foil shadow distortion-removed image calculation unit 35 calculates a foil shadow distortion-removed image from which the foil shadow distortion has been removed by the difference between the X-ray detection image stored in the image memory unit 18 and the error component image. Thereby, the variation in the detected value of the foil shadow due to the shape distortion of each grid foil 3a is corrected. That is, it can be said that all the foil shadows in the foil shadow distortion-removed image are ideal grid foil shadows, and the foil shadow sizes are uniform.
  • the frequency conversion processing unit 36 performs a frequency conversion process on the foil shadow distortion removed image to calculate a foil shadow removed fluoroscopic image. Since the foil shadow distortion-removed image is an image in which a foil shadow whose variation is corrected is superimposed on the fluoroscopic image of the subject, the foil shadow can be removed by performing a frequency conversion process. Thus, a fluoroscopic image of the subject from which the foil shadow has been removed can be acquired.
  • the fluoroscopic image of the subject from which the foil shadow has been removed by the frequency conversion processing unit 36 is displayed on the monitor 15 or stored in the storage unit 16 via the main control unit 13.
  • Steps S01 to S04 are the same as those in the first embodiment, and a description thereof will be omitted.
  • Step S15 error component image calculation
  • the error component image calculation unit 34 calculates an error component image based on the difference between the grid foil shadow image and the grid foil shadow standard image. That is, the variation of the foil shadow for each grid foil 3a with respect to the ideal foil shadow image in the grid foil shadow image is calculated.
  • Step S16 (calculate foil shadow distortion removed image)
  • the foil shadow distortion removed image calculation unit 35 calculates a foil shadow distortion removed image from which the foil shadow distortion has been removed based on the difference between the X-ray detection image stored in the image memory unit 18 and the error component image. Thereby, the variation in the detected value of the foil shadow due to the distortion of the grid foil 3a is corrected.
  • Step S17 The frequency conversion processing unit 36 performs a frequency conversion process on the foil shadow distortion-removed image to calculate a foil shadow removal perspective image.
  • the foil shadow distortion-removed image is an image obtained by superimposing a uniform foil shadow whose variation is corrected on the fluoroscopic image of the subject. Therefore, the foil shadow can be removed by performing a frequency conversion process. Thus, a fluoroscopic image of the subject from which the foil shadow has been removed can be acquired.
  • the foil shadow image reflected on the X-ray detection pixel DU is averaged in the vertical direction, so that the amplifier noise and the quantum noise are removed and the accuracy is high.
  • a foil shadow image can be obtained.
  • the error component image which is the difference between the foil shadow image and the averaged foil shadow standard image, is differentiated from the fluoroscopic image by the foil shadow distortion removal image calculation unit 35, the foil shadows of all the grid foils 3a are uniform, The foil shadow can be removed by frequency conversion. Thus, the foil shadow of the synchronous grid can be removed without causing an artifact to appear.
  • FIG. 18 is a block diagram illustrating a configuration of an image processing unit according to the third embodiment.
  • FIG. 19 is an explanatory diagram illustrating image processing according to the third embodiment.
  • FIG. 20 illustrates foil shadow correction processing according to the third embodiment. It is a flowchart figure which shows a flow. 18, 19, and 20, the portions denoted by the same reference numerals as those of the first embodiment have the same configuration as that of the first embodiment, and thus the description thereof is omitted here.
  • the calculation of the grid foil shadow standard image of the first embodiment is changed. Therefore, the structure of the X-ray fluoroscopic apparatus other than that described here is the same as that of the first embodiment.
  • the standardization of the foil shadow averaged the pixel values in the vertical direction may be extracted every four pixels, and the extracted image data may be smoothed.
  • the foil shadow standard image averaged in the vertical direction by the foil shadow standard image calculation unit 23 is converted into a constant by the smoothing unit 37, this time with the grid foil 3 a arranged in the horizontal direction.
  • Each pixel in each row is extracted every four pixels, which is the number of pixels corresponding to the length of the gap (Gp). That is, as shown in FIG. 19A, by extracting pixels every four pixels in each row, row data in which pixel values are picked up for every four pixels is created.
  • pixel values in the r-th row of the foil shadow standard image are Pr, 1, Pr, 2, Pr, 3,...
  • the pixel values in the r-th row are extracted every four pixels and shown in FIG.
  • row data divided into four rows of r row-A, r row-B, r row-C, and r row-D are created.
  • the image data of r-row-A, r-row-B, r-row-C, and r-row-D are every four pixel values of the original r-row image data.
  • the original row data has relatively large fluctuations, but the four new row data (r row-A, r row-B, r row-C, r row-D) have smooth values with little fluctuation.
  • the four row data having pixel values are smoothed for every four pixels.
  • the smoothing step of step S21 is performed after the foil shadow standard image calculating step of step S4.
  • the smoothing step four row data are generated by extracting pixel values from the foil shadow standard image every four pixels within a predetermined interval in which the grid foil is arranged for each row, and each row data is smoothed. . Further, the four smoothed line data are replaced with the original foil shadow standard image. In addition, when the pixel in the fixed space
  • FIG. 21 is a block diagram illustrating a configuration of an image processing unit according to the fourth embodiment
  • FIG. 22 is a flowchart illustrating a flow of foil shadow correction processing according to the fourth embodiment.
  • 21 and FIG. 22 the parts denoted by the same reference numerals as those shown in the first to third embodiments have the same configuration as that of the first to third embodiments, and thus the description thereof is omitted here.
  • the calculation of the grid foil shadow standard image of the second embodiment is changed. Therefore, the structure of the X-ray fluoroscopic apparatus other than that described here is the same as that of the second embodiment.
  • Example 2 the standardization of foil shadows averaged the pixel values in the vertical direction.
  • the pixel values in the horizontal direction which is the row direction, may be extracted every four pixels, and the extracted image data may be smoothed.
  • the foil shadow standard image averaged in the vertical direction by the foil shadow standard image calculation unit 23 is converted into a constant by the smoothing unit 31 and the grid foil 3 a in the horizontal direction.
  • Each pixel in each row is extracted every four pixels within the interval. That is, as shown in FIG. 19, by extracting pixels every four pixels in each row, row data in which pixel values are picked up for every four pixels is created.
  • the original line data has relatively large fluctuations, but the four new line data have smooth values with little fluctuation.
  • the four row data having pixel values are smoothed for every four pixels.
  • the smoothing step of step S31 is performed after the foil shadow standard image calculating step of step S4.
  • the smoothing step four row data are generated by extracting pixel values from the foil shadow standard image every four pixels within a predetermined interval in which the grid foil is arranged for each row, and each row data is smoothed. . Further, the four smoothed line data are replaced with the original foil shadow standard image. In addition, when the pixel in the fixed space
  • the present invention is not limited to the above embodiment, and can be modified as follows.
  • one grid foil 3a is arranged for four pixels, but the present invention is not limited to this.
  • one pixel set to reflect a foil shadow two pixels that the foil shadow may move, and one pixel that does not move the foil shadow at all.
  • the present invention is not limited to this, and based on 8 pixels, 2 pixels set so that a foil shadow may appear, 4 pixels that the foil shadow may move, and 2 pixels that have no movement of the foil shadow may be used.
  • the foil shadow correction mode can be further subdivided according to the amount of movement of the SID and the amount of movement of the C-arm 5, and the approximation accuracy of the approximate fluoroscopic image can be improved.
  • the basic pixels are not limited to 4 pixels and 8 pixels, and may be 4 pixels or more. It is sufficient that there are four or more pixels and there is a pixel that is not affected by the movement of the foil shadow between the grid foils 3a.
  • the detected digital X-ray detection signal is LOG-converted. However, if there is a margin in the arithmetic processing, the calculation may be performed without performing the LOG-conversion.
  • the correction mode selection unit 19 determines whether the first approximate image calculation or the second approximate image calculation is performed based on the SID amount set and input to the input unit 14 and the movement amount of the C-arm 5.
  • the automatic selection is performed, a configuration in which the operator can select which correction mode by the input unit 14 may be used. It is also possible to always calculate and use the second approximate image without selecting the correction mode.
  • both values are changed in advance, an image is taken without placing the subject M on the top 8, and selected from the pattern of foil shadows. It is only necessary to determine the correction mode to be performed.
  • pixels that are not affected by the foil shadow are extracted based on the arrangement of the pixels arranged so that the foil shadow is projected in advance.
  • a pixel set that is not affected by other foil shadows may be extracted by detecting pixels in which the foil shadows are reflected. In this way, a pixel in which a foil shadow is reflected by image processing may be detected, and switching between the normal correction mode and the special correction mode may be performed based on the result.
  • the special correction mode a pixel set obtained by extracting pixels adjacent to the pixel in which the center of the foil shadow is reflected may be employed.

Abstract

The grid foil shadow of a synchronisation type grid can be removed in the following way: an approximate transmission image is found by extracting from a transmission image the detection signal of pixels unaffected by the grid foil shadow and performing interpolation processing (S2 or S2'); a grid foil shadow image is found by finding the difference between the transmission image and the approximate transmission image (S3); a foil shadow reference image is found by averaging the grid foil shadow image in the length direction of the grid foil shadow (S4); and the grid foil shadow is removed by finding the difference between the transmission image and the foil shadow reference image (S5).

Description

同期型グリッドの箔影除去方法およびそれを用いた放射線撮影装置Synchronous grid foil shadow removal method and radiation imaging apparatus using the same
 本発明は、放射線撮影装置の散乱放射線を除去する同期型グリッドの箔影除去方法およびそれを用いた放射線撮影装置に係り、特に、画像処理による同期型グリッドの箔影除去方法およびそれを用いた放射線撮影装置に関する。 The present invention relates to a synchronous grid foil shadow removing method for removing scattered radiation of a radiographic apparatus and a radiographic apparatus using the same, and more particularly to a synchronous grid foil shadow removing method using image processing and the same. The present invention relates to a radiation imaging apparatus.
 従来、X線撮影装置には、散乱X線による画質低下を低減するためにグリッドを備えている。しかし、グリッドを用いた場合、グリッド箔の影による細かな縦状のパターンが撮影画像に重畳される。 Conventionally, X-ray imaging apparatuses are equipped with a grid to reduce image quality degradation due to scattered X-rays. However, when a grid is used, a fine vertical pattern due to the shadow of the grid foil is superimposed on the captured image.
 また、近年、X線検出器としてFPD(Flat Panel Detector)が汎用されている。FPDは、撮影画像の空間分解能およびX線感度向上をもたらし、その利用が急速に増加している。しかしながら、X線検出器の空間分解能およびX線感度が向上するほどグリッド箔影が鮮明になり、撮影画像を読影する際の邪魔となる。このグリッド箔影を除去するために、周波数変換を利用して画像処理にて除去する方法が特許文献1に開示されている。 In recent years, FPD (Flat Panel Detector) is widely used as an X-ray detector. FPD provides improved spatial resolution and X-ray sensitivity of captured images, and its use is rapidly increasing. However, as the spatial resolution and X-ray sensitivity of the X-ray detector are improved, the grid foil shadow becomes clearer, which becomes a hindrance when reading a captured image. In order to remove this grid foil shadow, Patent Document 1 discloses a method of removing by image processing using frequency conversion.
 一方、FPDに対して、同期型グリッドが特許文献2に開示されている。図23に示すように、同期型グリッド43は、グリッド箔43aのそれぞれの平坦面がX線源41の焦点FとFPD44のX線検出面とを結ぶ直線42に沿うように傾斜するように配置されている。すなわち、グリッド箔43aは直接X線に沿うように傾斜されている。 On the other hand, Patent Document 2 discloses a synchronous grid for FPD. As shown in FIG. 23, the synchronous grid 43 is arranged so that each flat surface of the grid foil 43 a is inclined along a straight line 42 connecting the focal point F of the X-ray source 41 and the X-ray detection surface of the FPD 44. Has been. That is, the grid foil 43a is inclined so as to directly follow the X-ray.
 また、同期型グリッド43は、図24に示すように、グリッド箔影がFPD44の検出画素47の中央に映るようにグリッド箔43aを配列したものである。このように、グリッド箔43aと検出画素47との位置が同期して配置されている。このグリッド箔43aにより散乱X線45を吸収することができるので、散乱X線45によるノイズを除去することができる。また、同期型グリッド43は従来型グリッドと異なり、グリッド箔43aの間にグラファイト等のスペーサを使用しないので、直接X線46が吸収されることなく、直接X線46の検出効率を増加することができる。 Further, as shown in FIG. 24, the synchronous grid 43 is configured by arranging the grid foil 43 a so that the grid foil shadow is reflected in the center of the detection pixel 47 of the FPD 44. In this way, the positions of the grid foil 43a and the detection pixels 47 are arranged in synchronization. Since the scattered X-rays 45 can be absorbed by the grid foil 43a, noise due to the scattered X-rays 45 can be removed. Further, unlike the conventional grid, the synchronous grid 43 does not use a spacer such as graphite between the grid foils 43a, so that the direct X-ray 46 is not absorbed and the detection efficiency of the direct X-ray 46 is increased. Can do.
 同期型グリッドのグリッド箔は、従来の非同期型グリッドのグリッド箔に対してグリッド箔の間隔が異なるにもかかわらずグリッド比が同じである。同期型グリッドでは、グリッド箔の間隔Gpが、非同期型グリッドのものよりも長い。しかし、直線X線の入射方向に沿う方向のグリッド箔の高さAは同期型グリッドの方が非同期型グリッドのものよりも高い。こうすることで同期型グリッドのグリッド比A/Gpは非同期型グリッドのグリッド比と等しく設定することができる。このように、同期型グリッドにおけるグリッド箔Gpの間隔が従来のものよりも長くても、グリッド箔の高さAを高くすることで、散乱X線45のノイズ除去の性能を同じにすることができる。 The grid foil of the synchronous grid has the same grid ratio although the interval of the grid foil is different from the grid foil of the conventional asynchronous grid. In the synchronous grid, the grid foil gap Gp is longer than that of the asynchronous grid. However, the height A of the grid foil in the direction along the incident direction of the straight X-ray is higher in the synchronous grid than in the asynchronous grid. By doing so, the grid ratio A / Gp of the synchronous grid can be set equal to the grid ratio of the asynchronous grid. As described above, even when the interval between the grid foils Gp in the synchronous grid is longer than that of the conventional one, the noise removal performance of the scattered X-rays 45 can be made the same by increasing the height A of the grid foil. it can.
特開2000-83951号公報JP 2000-83951 A 特開2002-257939号公報JP 2002-257939 A
 しかしながら、同期型グリッドは、グリッド箔の製作上およびグリッド箔を整列する構造上の理由のために直線状のグリッド箔の若干の歪みや配列位置の微小なずれを持つ。また、同期型グリッドのグリッド箔の高さAは非同期型グリッドのものよりも高いので、同期型グリッドの箔影はグリッド箔の歪みの影響を受けやすい。このグリッド箔の歪みや位置ずれを起因として、グリッド箔影にも歪みが生じる。この結果、グリッド箔影の筋ごとに箔影の測定値にバラツキが生じ、グリッド箔影に濃淡が生じる。これより、グリッド箔影を除去するのに周波数変換を利用しても、縦状パターンのグリッド箔影を十分に除去することができない。また、除去しきれなかったグリッド箔影を原因としてアーチファクトも出現する。 However, the synchronous grid has a slight distortion of the linear grid foil and a slight shift of the arrangement position due to the production of the grid foil and the structural reason for aligning the grid foil. Moreover, since the height A of the grid foil of the synchronous grid is higher than that of the asynchronous grid, the foil shadow of the synchronous grid is easily affected by the distortion of the grid foil. Due to the distortion and displacement of the grid foil, the grid foil shadow is also distorted. As a result, the measurement value of the foil shadow varies for each grid foil shadow line, and the grid foil shadow is shaded. Thus, even if frequency conversion is used to remove the grid foil shadow, the grid foil shadow of the vertical pattern cannot be sufficiently removed. Artifacts also appear due to grid foil shadows that could not be removed.
 また、C型アームX線撮影装置では、C型アームの両端に大重量のX線管とFPDが搭載されている。これより、C型アームの旋回等の移動にともない、C型アームの微小なたわみが発生し、FPDに対するX線管焦点の位置が少し(最大でも2mm程度)移動する。X線管焦点が移動すると、FPD上のグリッド箔影も移動するのでグリッド箔影を十分に除去できない。 Also, in the C-arm X-ray imaging apparatus, heavy-weight X-ray tubes and FPDs are mounted on both ends of the C-arm. As a result, as the C-arm moves such as turning, a slight deflection of the C-arm occurs, and the position of the focal point of the X-ray tube with respect to the FPD slightly moves (about 2 mm at the maximum). When the X-ray tube focus moves, the grid foil shadow on the FPD also moves, so the grid foil shadow cannot be removed sufficiently.
 本発明は、このような事情に鑑みてなされたものであって、同期型グリッドのグリッド箔の歪みによるノイズを除去することができる同期型グリッドの箔影除去方法および同期型グリッドの箔影除去装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and it is possible to remove the noise caused by the distortion of the grid foil of the synchronous grid, and the foil shadow removal method of the synchronous grid and the foil shadow removal of the synchronous grid. An object is to provide an apparatus.
 本発明は、このような目的を達成するために、次のような構成をとる。
 すなわち、第1の発明は、グリッド箔影が放射線を検出する画素の中央に映るようにグリッド箔を一定間隔に配置した同期型グリッドを備えた放射線撮影装置のグリッド箔影除去方法において、透視画像から前記グリッド箔影の影響を受けていない画素の検出信号値を抽出して補間処理を実施することで近似透視画像を求める近似透視画像算出ステップと、前記透視画像と前記近似透視画像との差を求めてグリッド箔影画像を求めるグリッド箔影画像算出ステップと、前記グリッド箔影画像を前記グリッド箔影の長さ方向に平均化して箔影標準画像を求める箔影標準画像算出ステップと、前記箔影標準画像を基に、前記透視画像から前記グリッド箔影を除去する箔影除去ステップとを備えたことを特徴とする。
In order to achieve such an object, the present invention has the following configuration.
That is, the first invention relates to a grid foil shadow removal method for a radiographic apparatus having a synchronous grid in which grid foils are arranged at regular intervals so that the grid foil shadow is reflected in the center of a pixel for detecting radiation. An approximate fluoroscopic image calculation step for obtaining an approximate fluoroscopic image by extracting a detection signal value of a pixel not affected by the grid foil shadow and performing an interpolation process, and a difference between the fluoroscopic image and the approximate fluoroscopic image A grid foil shadow image calculating step for obtaining a grid foil shadow image and calculating a foil shadow standard image for obtaining a foil shadow standard image by averaging the grid foil shadow image in a length direction of the grid foil shadow; and And a foil shadow removing step of removing the grid foil shadow from the fluoroscopic image based on the foil shadow standard image.
 上記構成によれば、グリッド箔影が放射線を検出する画素の中央に映るようにグリッド箔を一定間隔に配置した同期型グリッドを備えた放射線撮影装置のグリッド箔影除去方法において、近似透視画像算出ステップにより、透視画像からグリッド箔影の影響を受けていない画素の検出信号を抽出して補間処理を実施することで近似透視画像を求める。次に、グリッド箔影画像算出ステップにより、透視画像と近似透視画像との差を求めることでグリッド箔影画像を求める。さらに、箔影標準画像算出ステップにより、グリッド箔影画像をグリッド箔影の長さ方向に平均化して箔影標準画像を求める。そして、箔影除去ステップにより、箔影標準画像を基に、透視画像からグリッド箔影を除去する。 According to the above configuration, an approximate perspective image calculation is performed in a grid foil shadow removal method of a radiation imaging apparatus including a synchronous grid in which grid foils are arranged at regular intervals so that the grid foil shadow is reflected in the center of a pixel for detecting radiation. In step, an approximate perspective image is obtained by extracting a detection signal of pixels not affected by the grid foil shadow from the perspective image and performing an interpolation process. Next, in the grid foil shadow image calculation step, a grid foil shadow image is obtained by obtaining a difference between the perspective image and the approximate perspective image. Further, the foil shadow standard image is obtained by averaging the grid foil shadow image in the length direction of the grid foil shadow in the foil shadow standard image calculating step. In the foil shadow removal step, the grid foil shadow is removed from the fluoroscopic image based on the foil shadow standard image.
 グリッド箔は箔方向に引っ張られて配列されているために、グリッド箔の長さ方向のグリッド箔影の変化は比較的少ない。一方、グリッド箔ごとには形状や捩れによる誤差や微小な配列方向や位置誤差を持つ。グリッド箔ごとにグリッド箔影の大きさに不均一が存在しても、グリッド箔影をグリッド箔影の長さ方向に平均化して、平均化した箔影標準画像を基に透視画像からグリッド箔影を除去する。平均化を行うことで画素ごとにランダムに混入するアンプノイズや量子ノイズ等も除去できる。また、近似透視画像を算出する際に含まれる補間誤差も除去することができる。上述したように、グリッド箔の間にスペーサを挟まないので、特にグリッド箔を正確に配列することが難しい同期型グリッドにおいても、アーチファクトを出現させることなく、グリッド箔影を除去することができる。 Since the grid foil is arranged by being pulled in the foil direction, the change of the grid foil shadow in the length direction of the grid foil is relatively small. On the other hand, each grid foil has an error due to a shape or twist, and a minute arrangement direction or position error. Even if there is non-uniformity in the size of the grid foil shadow for each grid foil, the grid foil shadow is averaged in the length direction of the grid foil shadow, and the grid foil is obtained from the perspective image based on the averaged foil shadow standard image. Remove shadows. By performing the averaging, it is possible to remove amplifier noise, quantum noise, and the like that are randomly mixed for each pixel. In addition, an interpolation error included in calculating the approximate fluoroscopic image can be removed. As described above, since the spacer is not sandwiched between the grid foils, it is possible to remove the grid foil shadows without causing artifacts even in a synchronous grid in which it is difficult to accurately arrange the grid foils.
 また、前記箔影除去ステップは、前記透視画像と前記箔影標準画像との差分により前記透視画像から前記グリッド箔影を除去することが好ましい。透視画像から箔影標準画像を差し引くことで透視画像からグリッド箔影を簡易に除去することができる。 Further, it is preferable that the foil shadow removal step removes the grid foil shadow from the fluoroscopic image based on a difference between the fluoroscopic image and the foil shadow standard image. By subtracting the foil shadow standard image from the fluoroscopic image, the grid foil shadow can be easily removed from the fluoroscopic image.
 また、前記箔影標準画像算出ステップにより平均化された箔影標準画像を、行ごとに、前記グリッド箔が配置された一定間隔内にある画素数ごとに抽出して分割した行データを作成し、前記行データを平滑化して元の前記箔影標準画像と置き換える平滑化ステップを備え、前記箔影除去ステップは、前記透視画像と平滑化された前記箔影標準画像との差分により前記透視画像からグリッド箔影を除去することが好ましい。 Further, the foil shadow standard image averaged by the foil shadow standard image calculating step is extracted for each row, and is extracted for each number of pixels within a predetermined interval where the grid foil is arranged, and row data is created. A smoothing step of smoothing the row data and replacing the original foil shadow standard image, wherein the foil shadow removal step includes the difference between the fluoroscopic image and the smoothed foil shadow standard image. It is preferable to remove the grid foil shadow from the surface.
 上記構成によれば、箔影標準画像算出ステップにより平均化された箔影標準画像を、行ごとに、グリッド箔が配置された一定間隔内にある画素数ごとに抽出して分割した行データを作成し、この行データを平滑化して元の箔影標準画像と置き換える平滑化ステップを備えるので、行方向には平滑化できなかった箔影標準画像を、グリッド箔の間で配置された画素の数だけ分割された行データごとに平滑化することができる。これより、アンプノイズや量子ノイズをさらに除去することもできる。また、箔影除去ステップは、透視画像と平滑化された箔影標準画像との差を求めて透視画像からグリッド箔影を除去する。 According to the above configuration, the row shadow data obtained by extracting and dividing the foil shadow standard image averaged by the foil shadow standard image calculating step for each row and for each number of pixels within a predetermined interval where the grid foil is arranged. Since it has a smoothing step to create and smooth this row data and replace it with the original foil shadow standard image, the foil shadow standard image that could not be smoothed in the row direction is stored in the pixels arranged between the grid foils. Smoothing can be performed for each row data divided by the number. Thus, amplifier noise and quantum noise can be further removed. The foil shadow removal step obtains a difference between the fluoroscopic image and the smoothed foil shadow standard image and removes the grid foil shadow from the fluoroscopic image.
 また、前記箔影除去ステップは、前記グリッド箔影画像と前記箔影標準画像との差を求めて誤差成分画像を求める誤差成分画像算出ステップと、前記透視画像と前記誤差成分画像との差を求めて箔影歪み除去画像を求める箔影歪み除去画像算出ステップと、前記箔影歪み除去画像に周波数変換処理を施して前記グリッド箔影を除去する周波数変換処理ステップとを備えてもよい。 Further, the foil shadow removing step calculates an error component image calculating step for obtaining an error component image by calculating a difference between the grid foil shadow image and the foil shadow standard image, and calculating a difference between the fluoroscopic image and the error component image. A foil shadow distortion removed image calculating step for obtaining a foil shadow distortion removed image and a frequency conversion processing step for performing a frequency conversion process on the foil shadow distortion removed image to remove the grid foil shadow may be provided.
 上記構成によれば、誤差成分画像算出ステップにより、グリッド箔影画像と箔影標準画像との差を求めて誤差成分画像を求める。箔影歪み除去画像算出ステップにより、透視画像と誤差成分画像との差を求めて箔影歪み除去画像を求める。周波数変換処理ステップにより、箔影歪み除去画像に周波数変換処理を施してグリッド箔影を除去する。平均化した箔影標準画像と箔影画像との差である誤差成分画像を透視画像から除去することによりグリッド箔ごとの誤差成分が除かれるので、残ったグリッド箔影は周波数変換処理を施すことで除去することができる。グリッド箔を正確に配列することが難しい同期型グリッドにおいても、グリッド箔影を除去するのに周波数変換処理を実施することができる。 According to the above configuration, the error component image is obtained by obtaining the difference between the grid foil shadow image and the foil shadow standard image in the error component image calculation step. In the foil shadow distortion removed image calculation step, a difference between the fluoroscopic image and the error component image is obtained to obtain a foil shadow distortion removed image. In the frequency conversion processing step, frequency conversion processing is performed on the foil shadow distortion-removed image to remove grid foil shadows. By removing the error component image that is the difference between the averaged foil shadow standard image and the foil shadow image from the fluoroscopic image, the error component for each grid foil is removed, so the remaining grid foil shadow is subjected to frequency conversion processing. Can be removed. Even in a synchronous grid in which it is difficult to accurately arrange the grid foils, the frequency conversion process can be performed to remove the grid foil shadows.
 また、前記箔影標準画像算出ステップにより平均化された箔影標準画像を、行ごとに、前記グリッド箔が配置された一定間隔内にある画素数ごとに抽出して分割した行データを作成し、前記行データを平滑化して元の前記箔影標準画像と置き換える平滑化ステップを備え、前記誤差成分画像算出ステップは、前記グリッド箔影画像と平滑化された前記箔影標準画像との差を求めて誤差成分画像を求めてもよい。 Further, the foil shadow standard image averaged by the foil shadow standard image calculating step is extracted for each row, and is extracted for each number of pixels within a predetermined interval where the grid foil is arranged, and row data is created. A smoothing step of smoothing the row data and replacing the original foil shadow standard image, wherein the error component image calculating step calculates a difference between the grid foil shadow image and the smoothed foil shadow standard image. Then, an error component image may be obtained.
 上記構成によれば、箔影標準画像算出ステップにより平均化された箔影標準画像を、行ごとに、グリッド箔が配置された一定間隔内にある画素数ごとに抽出して分割した行データを作成し、この行データを平滑化して元の箔影標準画像と置き換える平滑化ステップを備えるので、行方向には平滑化できなかった箔影標準画像を、グリッド箔の間で配置された画素の数だけ分割された行データごとに平滑化することができる。これより、アンプノイズや量子ノイズをさらに除去することもできる。また、誤差成分画像算出ステップは、グリッド箔影画像と平滑化された箔影標準画像との差を求めて画素成分画像を求める。 According to the above configuration, the row shadow data obtained by extracting and dividing the foil shadow standard image averaged by the foil shadow standard image calculating step for each row and for each number of pixels within a predetermined interval where the grid foil is arranged. Since it has a smoothing step to create and smooth this row data and replace it with the original foil shadow standard image, the foil shadow standard image that could not be smoothed in the row direction is stored in the pixels arranged between the grid foils. Smoothing can be performed for each row data divided by the number. Thus, amplifier noise and quantum noise can be further removed. The error component image calculation step obtains a pixel component image by obtaining a difference between the grid foil shadow image and the smoothed foil shadow standard image.
 また、設定入力されたSID量およびC型アームの移動量より、画素間の箔影の移動を補正しない通常補正モードまたは画素間の箔影の移動を補正する特殊補正モードのいずれかを選択する画像処理モード選択ステップと、前記画像処理モード選択ステップにより通常補正モードが選択された場合、前記近似透視画像算出ステップは、予めグリッド箔影が映るように配置された画素以外の全ての画素の検出信号を抽出して補間処理を実施し、前記画像処理モード選択ステップにより特殊補正モードが選択された場合、前記近似透視画像算出ステップは、箔影が移動しても箔影が映らないグリッド箔間の中央に位置する画素の検出信号を抽出して補間処理を実施することが好ましい。 Further, either the normal correction mode in which the movement of the foil shadow between the pixels is not corrected or the special correction mode in which the movement of the foil shadow between the pixels is corrected is selected based on the set SID amount and the movement amount of the C-arm. When the normal correction mode is selected in the image processing mode selection step and the image processing mode selection step, the approximate fluoroscopic image calculation step detects all pixels other than the pixels arranged in advance so that the grid foil shadow is reflected. When the signal is extracted and interpolation processing is performed, and the special correction mode is selected in the image processing mode selection step, the approximate perspective image calculation step is performed between the grid foils where the foil shadow does not appear even if the foil shadow moves. It is preferable to perform an interpolation process by extracting a detection signal of a pixel located at the center of the pixel.
 上記構成によれば、画像処理モード選択ステップにより、設定入力されたSID量およびC型アームの移動量により、箔影が画素を跨いで移動しない場合には通常補正モードが選択され、箔影が画素を跨いで移動する場合には、画素間の箔影の移動を補正する特殊補正モードが選択される。通常補正モードが選択された場合、近似透視画像算出ステップは、予めグリッド箔影が映るように配置された画素以外の全ての画素をグリッド箔影の影響を受けていない画素としてこれらの画素の検出信号を抽出して補間処理を実施する。これに対して、特殊補正モードが選択された場合、箔影が移動しても箔影が映らないグリッド箔間の中央に位置する画素をグリッド箔影の影響を受けていない画素としてこれらの画素の検出信号を抽出して補間処理を実施する。これより、箔影が画素を跨いで移動しない場合も、移動する場合にも、適切に補間処理を実施して近似透視画像を算出することができる。 According to the above configuration, in the image processing mode selection step, the normal correction mode is selected when the foil shadow does not move across the pixels due to the SID amount input and the movement amount of the C-shaped arm, and the foil shadow is When moving across pixels, the special correction mode for correcting the movement of the foil shadow between the pixels is selected. When the normal correction mode is selected, the approximate perspective image calculation step detects all pixels other than the pixels previously arranged so that the grid foil shadow is reflected as pixels not affected by the grid foil shadow. The signal is extracted and interpolation processing is performed. On the other hand, when the special correction mode is selected, the pixel located at the center between the grid foils where the foil shadow does not appear even if the foil shadow moves is regarded as a pixel not affected by the grid foil shadow. The detection signal is extracted and interpolation processing is performed. Thus, even when the foil shadow does not move across the pixels or when it moves, the approximate perspective image can be calculated by appropriately performing the interpolation process.
 また、第2の発明は、放射線撮影装置において、被検体に放射線を照射する放射線照射手段と、被検体を透過した放射線を検出する画素を2次元アレイ状に配置した放射線検出手段と、グリッド箔影が前記画素の中央に映るように一定間隔に配置された同期型グリッドと、被検体を透過して検出した透視画像からグリッド箔影の影響を受けていない画素集合を抽出して補間処理を施して近似透視画像を算出する近似透視画像算出部と、前記透視画像と前記近似透視画像との差を求めてグリッド箔影画像を求めるグリッド箔影画像算出部と、前記グリッド箔影画像をグリッド箔影の長さ方向に平均化してグリッド箔影標準画像を求める箔影標準画像算出部と、前記グリッド箔影標準画像を基に前記透視画像から前記グリッド箔影を除去して箔影除去画像を求める箔影除去画像算出部とを備えたことを特徴とする。 According to a second aspect of the present invention, in the radiation imaging apparatus, radiation irradiating means for irradiating a subject with radiation, radiation detecting means for arranging pixels for detecting radiation transmitted through the subject in a two-dimensional array, and grid foil Interpolation is performed by extracting a set of pixels that are not affected by the grid foil shadow from a synchronous grid arranged at regular intervals so that the shadow is reflected in the center of the pixel and a fluoroscopic image detected through the subject. An approximate perspective image calculation unit that calculates an approximate perspective image, a grid foil shadow image calculation unit that obtains a grid foil shadow image by obtaining a difference between the perspective image and the approximate perspective image, and a grid foil shadow image A foil shadow standard image calculating unit for obtaining a grid foil shadow standard image by averaging in the length direction of the foil shadow, and removing the grid foil shadow from the fluoroscopic image based on the grid foil shadow standard image Characterized in that a foil shadow removed image calculating unit for obtaining a subtracted image.
 上記構成によれば、放射線撮影装置において、放射線照射手段により被検体に放射線を照射し、放射線を検出する画素を2次元アレイ状に配置した放射線検出手段により被検体を透過した放射線を検出し、同期型グリッドはグリッド箔影が画素の中央に映るように一定間隔に配置されている。近似透視画像算出部では、被検体を透過して検出した透視画像からグリッド箔影の影響を受けていない画素集合を抽出して補間処理を施して近似透視画像を算出する。グリッド箔影画像算出部では、透視画像と近似透視画像との差を求めてグリッド箔影画像を求める。箔影標準画像算出部では、グリッド箔影画像をグリッド箔影の長さ方向に平均化してグリッド箔影標準画像を求める。箔影除去画像算出部では、グリッド箔影標準画像を基に透視画像からグリッド箔影を除去して箔影除去画像を求める。 According to the above configuration, in the radiographic apparatus, the radiation is irradiated to the subject by the radiation irradiating means, and the radiation that has passed through the subject is detected by the radiation detecting means in which the pixels for detecting the radiation are arranged in a two-dimensional array, The synchronous grid is arranged at regular intervals so that the grid foil shadow is reflected in the center of the pixel. The approximate fluoroscopic image calculation unit calculates an approximate fluoroscopic image by extracting a pixel set that is not affected by the grid foil shadow from the fluoroscopic image detected through the subject and performing an interpolation process. The grid foil shadow image calculation unit obtains a grid foil shadow image by obtaining a difference between the perspective image and the approximate perspective image. The foil shadow standard image calculation unit obtains a grid foil shadow standard image by averaging the grid foil shadow image in the length direction of the grid foil shadow. The foil shadow removed image calculation unit obtains a foil shadow removed image by removing the grid foil shadow from the fluoroscopic image based on the grid foil shadow standard image.
 これより、グリッド箔影が均一でなくても、グリッド箔影をグリッド箔影の長さ方向に平均化して、平均化した箔影標準画像を基に透視画像からグリッド箔影を除去する。グリッド箔ごとにグリッド箔影の大きさに不均一が存在しても、グリッド箔影をグリッド箔影の長さ方向に平均化して、平均化した箔影標準画像を基に透視画像からグリッド箔影を除去する。平均を行うことで画素ごとにランダムに混入するアンプノイズや量子ノイズ等も除去できる。また、近似透視画像を算出する際に含まれる補間誤差も除去することができる。グリッド箔を正確に配列することが難しい同期型グリッドにおいても、アーチファクトを出現させることなく、グリッド箔影を除去することができる。 From this, even if the grid foil shadow is not uniform, the grid foil shadow is averaged in the length direction of the grid foil shadow, and the grid foil shadow is removed from the fluoroscopic image based on the averaged foil shadow standard image. Even if there is non-uniformity in the size of the grid foil shadow for each grid foil, the grid foil shadow is averaged in the length direction of the grid foil shadow, and the grid foil is obtained from the perspective image based on the averaged foil shadow standard image. Remove shadows. By performing averaging, it is possible to remove amplifier noise, quantum noise, and the like that are randomly mixed for each pixel. In addition, an interpolation error included in calculating the approximate fluoroscopic image can be removed. Even in a synchronous grid in which it is difficult to accurately arrange the grid foil, the grid foil shadow can be removed without causing artifacts.
 また、前記箔影除去画像算出部は、前記透視画像と前記グリッド箔影標準画像との差分により前記箔影除去画像を求めることが好ましい。この構成によれば、透視画像から箔影標準画像を差し引くことで簡易に箔影除去画像を求めることができる。 Moreover, it is preferable that the foil shadow removal image calculation unit obtains the foil shadow removal image based on a difference between the fluoroscopic image and the grid foil shadow standard image. According to this configuration, the foil shadow removed image can be easily obtained by subtracting the foil shadow standard image from the fluoroscopic image.
 また、前記箔影除去画像算出部は、前記グリッド箔影画像と前記グリッド箔影標準画像との差を求めて誤差成分画像を求める誤差成分画像算出部と、前記透視画像と前記誤差成分画像との差を求めて箔影歪み除去画像を求める箔影歪み除去画像算出部と、前記箔影歪み除去画像に周波数変換処理を施してグリッド箔影を除去する周波数変換処理部とを備えてもよい。 Further, the foil shadow removal image calculation unit obtains an error component image by obtaining a difference between the grid foil shadow image and the grid foil shadow standard image, the perspective image, and the error component image. A foil shadow distortion-removed image calculating unit that obtains a foil shadow distortion-removed image by obtaining a difference between them, and a frequency conversion processing unit that performs a frequency conversion process on the foil shadow distortion-removed image to remove a grid foil shadow. .
 誤差成分画像算出部では、グリッド箔影画像とグリッド箔影標準画像との差を求めて誤差成分画像を求める。箔影歪み除去画像算出部では、透視画像と誤差成分画像との差を求めて箔影歪み除去画像を求める。周波数変換処理部では、補正透視画像に周波数変換処理を施してグリッド箔影を除去する。これより、グリッド箔影が均一でなくても、グリッド箔影をグリッド箔影の長さ方向に平均化して、平均化した箔影標準画像と箔影画像との差である誤差成分画像を透視画像から除去することにより、均一なグリッド箔影を持つ透視画像を得て、この透視画像に周波数変換処理を施すことで残ったグリッド箔影を除去することができる。グリッド箔ごとの形状や配列を均一に形成することが困難な同期型グリッドにおいても、グリッド箔影を除去するのに周波数変換処理を実施することができる。 The error component image calculation unit obtains an error component image by obtaining a difference between the grid foil shadow image and the grid foil shadow standard image. The foil shadow distortion removed image calculating unit obtains a foil shadow distortion removed image by obtaining a difference between the fluoroscopic image and the error component image. The frequency conversion processing unit performs frequency conversion processing on the corrected perspective image to remove the grid foil shadow. As a result, even if the grid foil shadow is not uniform, the grid foil shadow is averaged in the length direction of the grid foil shadow, and the error component image that is the difference between the averaged foil shadow standard image and the foil shadow image is seen through. By removing from the image, it is possible to obtain a perspective image having a uniform grid foil shadow, and to remove the remaining grid foil shadow by subjecting this perspective image to frequency conversion processing. Even in a synchronous grid in which it is difficult to uniformly form the shape and arrangement of each grid foil, the frequency conversion process can be performed to remove the grid foil shadow.
 また、SID量およびC型アームの移動量を入力設定する入力部と、設定入力されたSID量およびC型アームの移動量より通常補正モードまたは特殊補正モードのいずれかの補正モードを選択する補正モード選択部とを備え、前記近似透視画像算出部は、前記補正モードが通常補正モードを選択した場合、予めグリッド箔影が映るように配置された画素以外の全ての画素の検出信号値を抽出して補間処理を実施し、前記補正モードが特殊補正モードを選択した場合、箔影が移動しても箔影が映らないグリッド箔間の中央に位置する画素の検出信号値を抽出して補間処理を実施することが好ましい。 Further, an input unit for inputting and setting the SID amount and the movement amount of the C-type arm, and a correction for selecting either the normal correction mode or the special correction mode based on the set and inputted SID amount and the movement amount of the C-type arm. A mode selection unit, and when the normal correction mode is selected as the correction mode, the approximate fluoroscopic image calculation unit extracts detection signal values of all pixels other than pixels arranged in advance so that a grid foil shadow is reflected. When the special correction mode is selected as the correction mode, the detection signal value of the pixel located at the center between the grid foils where the foil shadow does not appear even if the foil shadow moves is interpolated. It is preferable to carry out the treatment.
 上記構成によれば、入力部にて、SID量およびC型アームの移動量が入力設定される。補正モード選択部では、設定入力されたSID量およびC型アームの移動量より通常補正モードまたは特殊補正モードのいずれかの補正モードを選択する。近似透視画像算出部は、補正モードとして通常補正モードを選択した場合、予めグリッド箔影が映るように配置された画素以外の全ての画素の検出信号値を抽出して補間処理を実施する。また、補正モードとして特殊補正モードを選択した場合、箔影が移動しても箔影が映らないグリッド箔間の中央に位置する画素の検出信号値を抽出して補間処理を実施する。これより、箔影が画素を跨いで移動しない場合も、移動する場合にも、適切に補間処理を実施して近似透視画像を算出することができる。 According to the above configuration, the SID amount and the C-arm movement amount are input and set at the input unit. In the correction mode selection unit, either the normal correction mode or the special correction mode is selected based on the set and input SID amount and the C-arm movement amount. When the normal correction mode is selected as the correction mode, the approximate fluoroscopic image calculation unit extracts the detection signal values of all the pixels other than the pixels previously arranged so that the grid foil shadow is reflected, and performs the interpolation process. When the special correction mode is selected as the correction mode, the detection signal value of the pixel located at the center between the grid foils where the foil shadow does not appear even if the foil shadow moves is extracted and interpolation processing is performed. Thus, even when the foil shadow does not move across the pixels or when it moves, the approximate perspective image can be calculated by appropriately performing the interpolation process.
 また、前記箔影標準画像算出部にて算出された箔影標準画像を、行ごとに前記グリッド箔が一定間隔で配置された画素数ごとに抽出して分割した行データを作成し、前記行データを平滑化して元の箔影標準画像と置き換える平滑化部を備えることが好ましい。 Further, the foil shadow standard image calculated by the foil shadow standard image calculation unit is extracted and divided for each number of pixels in which the grid foil is arranged at regular intervals for each row, and the row data is created. It is preferable to provide a smoothing unit that smoothes data and replaces the original foil shadow standard image.
 上記構成によれば、平滑部にて、箔影標準画像算出部にて算出された箔影標準画像を、行ごとにグリッド箔が配置された一定間隔内にある画素数ごとに抽出して分割した行データを作成し、この行データを平滑化して元の箔影標準画像と置き換える。これより、比較的変化の大きな行データを複数の滑らかな行データに分割することができる。この結果、行方向には平滑化できなかった箔影標準画像を、グリッド箔が一定間隔で配置された画素の数だけ分割された行データごとに平滑化することができる。このように、グリッド箔影ごとのばらつきに対して補正を加えることで、アンプノイズや量子ノイズをさらに抑制した箔影標準画像を算出できる。 According to the above configuration, the smoothing unit extracts and divides the foil shadow standard image calculated by the foil shadow standard image calculation unit for each number of pixels within a predetermined interval in which the grid foil is arranged for each row. Line data is created, and the line data is smoothed and replaced with the original foil shadow standard image. Accordingly, it is possible to divide line data having a relatively large change into a plurality of smooth line data. As a result, the foil shadow standard image that cannot be smoothed in the row direction can be smoothed for each row data divided by the number of pixels in which the grid foil is arranged at a constant interval. In this way, by correcting the variation for each grid foil shadow, a foil shadow standard image in which amplifier noise and quantum noise are further suppressed can be calculated.
 また、前記同期型グリッドと前記放射線検出器とは、グリッド箔影が4画素おきに映るように予め配置されていることが好ましい。この構成によれば、同期型グリッドおよび放射線検出器とが、グリッド箔影が予め4画素おきに映るように配置されている。これより、グリッド箔影が移動しても、予めグリッド箔が映るように配置された画素の両隣の画素内でグリッド箔影の移動が収まるので、グリッド箔影が必ず映らない画素を構成することができる。 Further, it is preferable that the synchronous grid and the radiation detector are arranged in advance so that a grid foil shadow is reflected every four pixels. According to this configuration, the synchronous grid and the radiation detector are arranged so that the grid foil shadow is projected every four pixels in advance. As a result, even if the grid foil shadow moves, the movement of the grid foil shadow can be accommodated in the pixels adjacent to the pixels that are arranged so that the grid foil is reflected in advance. Can do.
 本発明に係る同期型グリッドの箔影除去方法および同期型グリッドの箔影除去装置によれば、同期型グリッドのグリッド箔の歪みによるノイズを除去することができる同期型グリッドの箔影除去方法および同期型グリッドの箔影除去装置を提供することができる。 According to the synchronous grid foil shadow removing method and synchronous grid foil shadow removing apparatus according to the present invention, the synchronous grid foil shadow removing method and the synchronous grid foil shadow removing method capable of removing noise caused by the distortion of the grid foil of the synchronous grid and A synchronous grid foil shadow removing apparatus can be provided.
実施例に係るX線透視撮影装置の全体図である。1 is an overall view of an X-ray fluoroscopic apparatus according to an embodiment. 実施例に係るX線透視撮影装置のグリッドの概略断面図である。It is a schematic sectional drawing of the grid of the X-ray fluoroscopic apparatus which concerns on an Example. 実施例に係るX線透視撮影装置のグリッド箔の斜視図である。It is a perspective view of the grid foil of the X-ray fluoroscopic apparatus which concerns on an Example. 実施例に係るX線透視撮影装置のグリッドおよびFPDの概略断面図である。It is a schematic sectional drawing of the grid and FPD of the X-ray fluoroscopic apparatus which concerns on an Example. 実施例に係るX線透視撮影装置のSIDの説明図である。It is explanatory drawing of SID of the X-ray fluoroscopic apparatus which concerns on an Example. 実施例に係るX線透視撮影装置の概略図である。1 is a schematic view of an X-ray fluoroscopic apparatus according to an embodiment. 実施例に係るX線透視撮影装置のX線焦点の移動を説明する説明図である。It is explanatory drawing explaining the movement of the X-ray focus of the X-ray fluoroscopic apparatus which concerns on an Example. 実施例に係るX線透視撮影装置のX線焦点の移動を説明する説明図である。It is explanatory drawing explaining the movement of the X-ray focus of the X-ray fluoroscopic apparatus which concerns on an Example. 実施例に係るFPDの画素上の箔影の移動を説明する説明図である。It is explanatory drawing explaining the movement of the foil shadow on the pixel of FPD which concerns on an Example. 実施例1に係る画像処理部の構成を示すブロック図である。FIG. 3 is a block diagram illustrating a configuration of an image processing unit according to the first embodiment. 実施例に係る箔影が映されたFPDの画素を示す説明図である。It is explanatory drawing which shows the pixel of FPD on which the foil shadow based on an Example was reflected. 実施例に係る箔影が映されたFPDの画素を示す説明図である。It is explanatory drawing which shows the pixel of FPD on which the foil shadow based on an Example was reflected. 実施例に係る箔影が映る画素の検出値を示す説明図である。It is explanatory drawing which shows the detection value of the pixel in which the foil shadow which concerns on an Example is reflected. 実施例に係る箔影が映る画素の検出値を示す説明図である。It is explanatory drawing which shows the detection value of the pixel in which the foil shadow which concerns on an Example is reflected. 実施例1に係る箔影補正処理の流れを示すフローチャート図である。It is a flowchart figure which shows the flow of the foil shadow correction process which concerns on Example 1. FIG. 実施例2に係る画像処理部の構成を示すブロック図である。FIG. 10 is a block diagram illustrating a configuration of an image processing unit according to a second embodiment. 実施例2に係る箔影補正処理の流れを示すフローチャート図である。It is a flowchart figure which shows the flow of the foil shadow correction process which concerns on Example 2. FIG. 実施例3に係る画像処理部の構成を示すブロック図である。FIG. 10 is a block diagram illustrating a configuration of an image processing unit according to a third embodiment. 実施例3に係る画像処理を示す説明図である。FIG. 10 is an explanatory diagram illustrating image processing according to a third embodiment. 実施例3に係る箔影補正処理の流れを示すフローチャート図である。It is a flowchart figure which shows the flow of the foil shadow correction process which concerns on Example 3. FIG. 実施例4に係る画像処理部の構成を示すブロック図である。FIG. 10 is a block diagram illustrating a configuration of an image processing unit according to a fourth embodiment. 実施例4に係る箔影補正処理の流れを示すフローチャート図である。It is a flowchart figure which shows the flow of the foil shadow correction process which concerns on Example 4. FIG. 従来例に係るX線透視撮影装置のグリッドの概略断面図である。It is a schematic sectional drawing of the grid of the X-ray fluoroscopic apparatus which concerns on a prior art example. 従来例に係るX線透視撮影装置のグリッドの概略断面図である。It is a schematic sectional drawing of the grid of the X-ray fluoroscopic apparatus which concerns on a prior art example.
 1 … X線撮影装置
 2 … X線管
 3 … 同期型グリッド
 4 … FPD
 5 … C型アーム
 12 … 画像処理部 
 19 … 補正モード選択部
 20 … 第1近似画像算出部
 21 … 第2近似画像算出部
 22 … 箔影画像算出部
 23 … 箔影標準画像算出部
 24 … 減算部
 33 … 箔影除去画像算出部
 34 … 誤差成分画像算出部
 35 … 箔影歪み除去画像算出部
 36 … 周波数変換処理部
 31 … 平滑部
 37 … 平滑部
 DU … X線検出画素
DESCRIPTION OF SYMBOLS 1 ... X-ray imaging apparatus 2 ... X-ray tube 3 ... Synchronous grid 4 ... FPD
5 ... C-type arm 12 ... Image processing section
DESCRIPTION OF SYMBOLS 19 ... Correction mode selection part 20 ... 1st approximate image calculation part 21 ... 2nd approximate image calculation part 22 ... Foil shadow image calculation part 23 ... Foil shadow standard image calculation part 24 ... Subtraction part 33 ... Foil shadow removal image calculation part 34 ... Error component image calculation unit 35 ... Foil shadow distortion removed image calculation unit 36 ... Frequency conversion processing unit 31 ... Smoothing unit 37 ... Smoothing unit DU ... X-ray detection pixel
 以下、図面を参照して本発明の実施例1を説明する。
 図1はX線透視撮影装置の全体図であり、図2はグリッドの概略断面図であり、図3はグリッド箔の斜視図であり、図4はグリッドおよびFPDの概略断面図である。
Embodiment 1 of the present invention will be described below with reference to the drawings.
1 is an overall view of the X-ray fluoroscopic apparatus, FIG. 2 is a schematic sectional view of a grid, FIG. 3 is a perspective view of a grid foil, and FIG. 4 is a schematic sectional view of a grid and an FPD.
 図1に示すように、X線透視撮影装置1には、被検体MにX線を照射するX線管2と、被検体Mを透過した透過X線の散乱X線を除去する同期型グリッド3と、散乱X線が除去された透過X線を検出する平面検出器(フラットパネルディテクタ:以後FPDと称す)4とが備えられている。X線管2と同期型グリッド3およびFPD4とは、互いに対向配置するようにC型アーム5の両端に取り付けられている。このC型アーム5は、C型アーム移動機構6により移動させられ、C型アーム移動機構6の移動量はC型アーム移動制御部7により制御される。X線管2は本発明における放射線照射手段に相当し、FPD4は本発明における放射線検出手段に相当する。 As shown in FIG. 1, an X-ray fluoroscopic apparatus 1 includes an X-ray tube 2 that irradiates a subject M with X-rays, and a synchronous grid that removes scattered X-rays transmitted through the subject M. 3 and a flat detector (flat panel detector: hereinafter referred to as FPD) 4 for detecting transmitted X-rays from which scattered X-rays have been removed. The X-ray tube 2, the synchronous grid 3 and the FPD 4 are attached to both ends of the C-type arm 5 so as to face each other. The C-type arm 5 is moved by a C-type arm moving mechanism 6, and the movement amount of the C-type arm moving mechanism 6 is controlled by a C-type arm movement control unit 7. The X-ray tube 2 corresponds to the radiation irradiation means in the present invention, and the FPD 4 corresponds to the radiation detection means in the present invention.
 C型アーム5は、被検体Mが載置されている天板8に対して、鉛直方向に昇降可能(R1)に構成されている。さらに、C型アーム5を支持するアーム支持体9は、鉛直方向の軸心周りに回転可能(R2)に取り付けられている。また、C型アーム5は、水平方向の軸心周りに回転可能(R3)であって、アーム支持体9に対して円弧状(R4)に移動可能に取り付けられている。さらに、X線管2と同期型グリッド3およびFPD4との距離であるSID(Source Image Distance)を調節するために、C型アーム移動機構6により同期型グリッド3およびFPD4は鉛直方向(R5)に移動可能である。 The C-arm 5 is configured to be vertically movable (R1) with respect to the top plate 8 on which the subject M is placed. Further, the arm support 9 that supports the C-shaped arm 5 is attached to be rotatable (R2) around a vertical axis. The C-arm 5 is rotatable around a horizontal axis (R3) and is attached to the arm support 9 so as to be movable in an arcuate shape (R4). Further, in order to adjust the SID (Source Image Distance) that is the distance between the X-ray tube 2 and the synchronous grid 3 and the FPD 4, the C-type arm moving mechanism 6 causes the synchronous grid 3 and the FPD 4 to move in the vertical direction (R5). It is movable.
 また、X線透視撮影装置1には、他にも、X線管2に出力する管電圧や管電流を制御するX線管制御部10や、FPD4から出力されるアナログのX線検出信号をデジタルのX線検出信号に変換するA/D変換器11と、デジタルのX線検出信号から種々の画像処理を行う画像処理部12と、これらの各構成部を統括する主制御部13と、撮影者が様々な入力設定を行う入力部14と、X線診断操作画面および画像処理されたX線透過画像などを表示するモニタ15と、X線透過画像や他の撮影データを保管する記憶部16などを備えている。 In addition, the X-ray fluoroscopic apparatus 1 also receives an X-ray tube control unit 10 that controls a tube voltage and a tube current output to the X-ray tube 2 and an analog X-ray detection signal output from the FPD 4. An A / D converter 11 that converts a digital X-ray detection signal, an image processing unit 12 that performs various image processing from the digital X-ray detection signal, a main control unit 13 that supervises these components, An input unit 14 in which a photographer performs various input settings, a monitor 15 that displays an X-ray diagnostic operation screen and an image-processed X-ray transmission image, and a storage unit that stores an X-ray transmission image and other imaging data 16 etc. are provided.
 主制御部13は、中央演算処理装置(CPU)などで構成されている。また、入力部14は、マウスやキーボードやジョイスティックやトラックボールやタッチパネルなどに代表されるポインティングデバイスで構成されている。撮影者は、SIDやC型アームの移動量を入力部14により設定入力することができる。モニタ15として、たとえば、液晶表示装置またはCRTディスプレイが挙げられ、記憶部16としてはハードディスクやメモリが挙げられる。 The main control unit 13 includes a central processing unit (CPU). The input unit 14 includes a pointing device represented by a mouse, a keyboard, a joystick, a trackball, a touch panel, and the like. The photographer can set and input the amount of movement of the SID and the C-type arm through the input unit 14. Examples of the monitor 15 include a liquid crystal display device or a CRT display, and examples of the storage unit 16 include a hard disk and a memory.
 同期型グリッド3は、図2および図3に示すように、FPD4のX線検出面を覆うように配置されている。また、同期型グリッド3は縦(Y)方向に延伸した短冊状のX線を吸収するグリッド箔3aを備えている。グリッド箔3aのそれぞれの平坦面が、X線管2のX線源の焦点FとFPD4のX線検出面とを結ぶ直線に沿うように傾斜するように配置されている。すなわち、グリッド箔3aは直接透過X線Dxに沿うように傾斜されている。また、同期型グリッド3は、グリッド箔影(以後単に箔影と称す)がFPD4のX線検出画素DUの中央に映るようにグリッド箔3aを配列したものである。 As shown in FIGS. 2 and 3, the synchronous grid 3 is disposed so as to cover the X-ray detection surface of the FPD 4. The synchronous grid 3 includes a grid foil 3a that absorbs strip-shaped X-rays extending in the longitudinal (Y) direction. Each flat surface of the grid foil 3 a is disposed so as to be inclined along a straight line connecting the focal point F of the X-ray source of the X-ray tube 2 and the X-ray detection surface of the FPD 4. That is, the grid foil 3a is inclined so as to follow the direct transmission X-ray Dx. The synchronous grid 3 is an array of grid foils 3 a so that a grid foil shadow (hereinafter simply referred to as a foil shadow) is reflected in the center of the X-ray detection pixel DU of the FPD 4.
 図3および図4に示すように、グリッド箔3aは横(X)方向に所定間隔をあけて配列されており、配列ピッチGpは、実施例1では400μmである。この配列ピッチGpは、FPD4のX線検出画素DUの幅WDUと同期して適宜設計される。すなわち、基準SIDにおけるC型アーム標準位置においてグリッド箔3aの箔影がX線検出画素DU上に予め決められた画素間隔で映されるように配置されている。実施例1においては、X線検出画素DUの幅WDUが100μmであるので、X線検出画素DUに対して横方向に4個に1個の割合で箔影が映される。 As shown in FIGS. 3 and 4, the grid foils 3a are arranged at predetermined intervals in the lateral (X) direction, and the arrangement pitch Gp is 400 μm in the first embodiment. This arrangement pitch Gp is appropriately designed in synchronization with the width W DU of the X-ray detection pixel DU of the FPD 4. That is, the foil shadow of the grid foil 3a is arranged at a predetermined pixel interval on the X-ray detection pixel DU at the C-arm standard position in the reference SID. In the first embodiment, since the width W DU of the X-ray detection pixel DU is 100 μm, a foil shadow is projected at a ratio of one in four in the horizontal direction with respect to the X-ray detection pixel DU.
 グリッド箔3aは、モリブデン、タングステン、鉛、タンタル等の単体、あるいはこれらを主成分とする合金から形成されている。この金属は、原子番号が大きくX線吸収の大きい材料を選択することが好ましく、通常20~50μmの厚みである。また、グリッド箔3aは圧延や切断等により製作されるが、前述した通り重金属あるいは重金属の合金であるので、グリッド箔3aの厚みや幅などの形状均一性を厳密に求めることは非常に困難である。このグリッド箔3aの形状の不均一性が箔影の検出値にバラツキを生じさせる原因となる。 The grid foil 3a is made of a simple substance such as molybdenum, tungsten, lead, or tantalum, or an alloy containing these as a main component. For this metal, it is preferable to select a material having a large atomic number and a large X-ray absorption, and usually has a thickness of 20 to 50 μm. The grid foil 3a is manufactured by rolling, cutting, or the like. However, since it is a heavy metal or an alloy of heavy metals as described above, it is very difficult to strictly determine the shape uniformity such as the thickness and width of the grid foil 3a. is there. This non-uniformity of the shape of the grid foil 3a causes variations in the detected value of the foil shadow.
 FPD4には、X線を電荷信号へ変換するX線検出画素DUが二次元アレイ状に例えば2000×2000個配置されている。X線検出画素DUはX線が照射されると電荷信号を発生するX線検出素子からなる。 In the FPD 4, for example, 2000 × 2000 X-ray detection pixels DU that convert X-rays into charge signals are arranged in a two-dimensional array. The X-ray detection pixel DU includes an X-ray detection element that generates a charge signal when irradiated with X-rays.
 また、SIDとは、X線管2内のX線源の焦点とFPD4との垂線距離のことである。SIDが短いと被検体Mの拡大透視画像を得ることができ、SIDが長いと被検体Mの広角透視画像を得ることができる。つまり、SIDを調整することで、透視画像のズーム調整をすることができる。実施例1では、SIDが1000mmの場合を基準SIDとして設定している。この基準SID時のC型アーム標準位置において、同期型グリッド3の箔影がFPD4のX線検出画素上に横方向に4個に1個の割合で映るようにグリッド箔3aとFPD4とが位置合わせされている。また、C型アーム標準位置とは、図1のようにC型アーム5がベッドおよび天板8や検査室に対して3次元的に決まった位置関係にあり、検査のたびにC型アーム5の初期設定の位置となる。この位置において同期型グリッド3とFPD4との位置合わせを行うために、C型アーム5のたわみが無いと考えられる標準位置である。 SID is a perpendicular distance between the focal point of the X-ray source in the X-ray tube 2 and the FPD 4. If the SID is short, an enlarged fluoroscopic image of the subject M can be obtained, and if the SID is long, a wide-angle fluoroscopic image of the subject M can be obtained. In other words, the perspective image can be adjusted by adjusting the SID. In the first embodiment, the case where the SID is 1000 mm is set as the reference SID. At the standard position of the C-arm at the time of the reference SID, the grid foil 3a and the FPD 4 are positioned so that the foil shadow of the synchronous grid 3 is projected on the X-ray detection pixel of the FPD 4 in a ratio of one to four in the horizontal direction. It is matched. Also, the C-arm standard position is a three-dimensionally determined positional relationship with respect to the bed, the top plate 8 and the examination room as shown in FIG. This is the default position. This position is a standard position where it is considered that there is no deflection of the C-type arm 5 in order to align the synchronous grid 3 and the FPD 4 at this position.
 このSIDを変化させるとX線検出面上の箔影が移動する。図5に示すように、例えば、基準SIDよりもSIDを延伸した場合、FPD4の中央部の箔影はあまり影響を受けないが、FPD4の側端部に近づくにつれ箔影はFPD4の内側へ移動する。また逆に、基準SIDよりもSIDを短くした場合、箔影はFPD4の外側へ移動する。 ¡When this SID is changed, the foil shadow on the X-ray detection surface moves. As shown in FIG. 5, for example, when the SID is extended beyond the reference SID, the foil shadow at the center of the FPD 4 is not significantly affected, but the foil shadow moves to the inside of the FPD 4 as it approaches the side edge of the FPD 4. To do. Conversely, if the SID is shorter than the reference SID, the foil shadow moves to the outside of the FPD 4.
 箔影の移動は、C型アーム5を旋回等の移動をさせた時にも発生する。図6に示すようにC型アーム5を旋回させると、C型アーム5の剛性よりたわみがC型アーム5に必然的に発生する。このたわみにより、X線管2のX線焦点が移動すると、基準SIDにおいても箔影が微小に移動する。C型アーム5のたわみによるX線焦点の移動量は最大でも2mm程度である。例えば、図7に示すように、X線管2内のX線焦点Fが微小に移動すると、X線焦点FとFPD4の検出面とを結ぶ直線とグリッド箔3aの平坦面の傾斜角度とが一致しなくなる。これより、箔影がX線検出面上を微小に移動する。箔影の移動量は、図8に示すように、SIDが1000mmであり、同期型グリッド3とFPD4との距離が20mmの場合、X線管2の焦点Fから同期型グリッド3までの距離と、同期型グリッド3からFPD4までの距離の比は、約50:1である。これより、X線源が2mm移動した場合、FPD4の検出面ではグリッド箔3aの箔影は約40μm移動する。 The movement of the foil shadow also occurs when the C-arm 5 is moved such as turning. When the C-arm 5 is turned as shown in FIG. 6, deflection is inevitably generated in the C-arm 5 due to the rigidity of the C-arm 5. Due to this deflection, when the X-ray focal point of the X-ray tube 2 moves, the foil shadow also slightly moves in the reference SID. The amount of movement of the X-ray focal point due to the deflection of the C-arm 5 is at most about 2 mm. For example, as shown in FIG. 7, when the X-ray focal point F in the X-ray tube 2 moves slightly, the straight line connecting the X-ray focal point F and the detection surface of the FPD 4 and the inclination angle of the flat surface of the grid foil 3a It will not match. As a result, the foil shadow moves minutely on the X-ray detection surface. As shown in FIG. 8, when the SID is 1000 mm and the distance between the synchronous grid 3 and the FPD 4 is 20 mm, the movement amount of the foil shadow is the distance from the focal point F of the X-ray tube 2 to the synchronous grid 3 The ratio of the distance from the synchronous grid 3 to the FPD 4 is about 50: 1. Thus, when the X-ray source moves 2 mm, the foil shadow of the grid foil 3 a moves about 40 μm on the detection surface of the FPD 4.
 グリッド箔3aの厚みを30μmとし、箔影の幅も30μmとすると、基準SIDにおいてX線管焦点が移動していない場合、箔影が画素の中央に位置するように設定されているので、箔影から隣の画素まで35μmの余裕がある。しかし、上記のように、箔影が40μm移動すると、図9に示すように、箔影が予め映されるように配置された画素から隣の画素へ箔影がはみ出す。 When the thickness of the grid foil 3a is 30 μm and the width of the foil shadow is 30 μm, the foil shadow is set so that the foil shadow is positioned at the center of the pixel when the X-ray tube focus is not moved in the reference SID. There is a margin of 35 μm from the shadow to the adjacent pixel. However, as described above, when the foil shadow moves by 40 μm, as shown in FIG. 9, the foil shadow protrudes from the pixel arranged so that the foil shadow is projected in advance to the adjacent pixel.
 このように、箔影が予め映るように同期された画素内にある場合と、箔影が画素を跨ぐ場合または同期された画素の隣の画素に完全に移動する場合との2通りが生じ得る。そこで、それぞれの場合に適した箔影補正を画像処理部5にて実施する。 In this way, there are two possible cases: when the foil shadow is in the synchronized pixel so that it is reflected in advance, and when the foil shadow straddles the pixel or moves completely to the pixel next to the synchronized pixel. . Therefore, the image processing unit 5 performs foil shadow correction suitable for each case.
 次に図10を参照する。図10は、画像処理部の構成を示すブロック図である。画像処理部5には、A/D変換器11により変換されたデジタルのX線検出信号をLOG変換するLOG変換部17と、LOG変換されたX線検出信号をいくつかの枚数分保管する画像メモリ部18と、入力部14に設定されたSID量またはC型アーム5の移動量より箔影の補正モードを選択する補正モード選択部19と、画像メモリ部18に保管されたX線検出画像から箔影の影響を受けていない画素集合を選出して被検体Mの近似透視画像を算出する第1近似透視画像算出部20および第2近似透視画像算出部21と、X線検出画像と近似透視画像との差分によりグリッド箔影画像を算出する箔影画像算出部22と、グリッド箔影画像を平均化することでグリッド箔影標準画像を算出する箔影標準画像算出部23と、画像メモリ部18に保管されたX線検出画像とグリッド箔影標準画像との差分を演算して箔影除去X線検出画像を算出する減算部24とを備えている。 Next, refer to FIG. FIG. 10 is a block diagram illustrating a configuration of the image processing unit. The image processing unit 5 includes a LOG conversion unit 17 that performs LOG conversion on the digital X-ray detection signal converted by the A / D converter 11, and an image that stores several LOG-converted X-ray detection signals for several sheets. Memory unit 18, correction mode selection unit 19 for selecting a foil shadow correction mode based on the SID amount set in the input unit 14 or the movement amount of the C-type arm 5, and the X-ray detection image stored in the image memory unit 18 A first approximate fluoroscopic image calculation unit 20 and a second approximate fluoroscopic image calculation unit 21 that select a set of pixels not affected by the foil shadow and calculate an approximate fluoroscopic image of the subject M, and an X-ray detection image and an approximation A foil shadow image calculation unit 22 that calculates a grid foil shadow image based on a difference from the perspective image, a foil shadow standard image calculation unit 23 that calculates a grid foil shadow standard image by averaging the grid foil shadow image, and an image memory Part 18 And a subtracting unit 24 for calculating a foil shadow removed X-ray detection image by calculating a difference between the stored X-ray detection image and the grid shadow standard image.
 LOG変換部17は、A/D変換器11により変換されたデジタルのX線検出信号をLOG変換する。これにより、X線検出信号を線形和で演算することができるので、後の演算を簡易にすることができる。 The LOG converter 17 performs LOG conversion on the digital X-ray detection signal converted by the A / D converter 11. As a result, the X-ray detection signal can be calculated as a linear sum, and subsequent calculations can be simplified.
 画像メモリ部18は、LOG変換部17にてLOG変換されたX線検出信号より構成されるX線検出画像をいくつかの枚数分保管する。画像メモリ部18は、バッファとしても機能している。 The image memory unit 18 stores a number of X-ray detection images composed of X-ray detection signals that have been LOG-converted by the LOG conversion unit 17. The image memory unit 18 also functions as a buffer.
 補正モード選択部19は、箔影の補正モードとして通常補正モードか特殊補正モードかを選択する。この選択は、主制御部13を介して送られる入力部14に入力設定されたSID量およびC型アーム5の移動量を基に実施される。ここで、移動量とはC型アーム5のC型アーム標準位置からの移動量である。 The correction mode selection unit 19 selects the normal correction mode or the special correction mode as the foil shadow correction mode. This selection is performed based on the SID amount input and set in the input unit 14 sent via the main control unit 13 and the movement amount of the C-type arm 5. Here, the amount of movement is the amount of movement of the C-arm 5 from the C-arm standard position.
 通常補正モードとは、SIDが基準SIDであり、C型アーム5のたわみによる箔影の移動も無視できる場合に選択する補正モードである。つまり、箔影が映されるように予め配置された画素から、箔影がはみでない場合における補正モードである。図11に示すように、箔影が映されるように予め配置された画素を行方向つまり横方向にP4n+1(但しnは0以上の整数)とすると、4画素置きにP4n+1で表わされる画素上には必ず箔影が映し出される。また、グリッド箔3aの形状が厳密に均一ではなく、グリッド箔3aの配列にも微小なずれがあるので、箔影27や箔影28に示すように、箔影の幅にバラつきが発生する。しかしながら、画素P4n+1以外の横隣りのP4n+2、4n+3、およびP4n+4で表わされる画素上には箔影が映らない。そこで、箔影間の3つの画素集合である画素P4n+2、4n+3、およびP4n+4を抽出した画素集合を用いて箔影補正をする。この補正方法が通常補正モードである。 The normal correction mode is a correction mode that is selected when the SID is the reference SID and the movement of the foil shadow due to the deflection of the C-arm 5 can be ignored. That is, this is a correction mode in the case where the foil shadow is not projected from the pixels arranged in advance so that the foil shadow is projected. As shown in FIG. 11, if a pixel arranged in advance so that a foil shadow is reflected is P 4n + 1 in the row direction, that is, the horizontal direction (where n is an integer of 0 or more), it is represented by P 4n + 1 every four pixels. A foil shadow is always projected on the pixel. Further, since the shape of the grid foil 3a is not strictly uniform and the arrangement of the grid foil 3a is also slightly shifted, the width of the foil shadow varies as shown by the foil shadow 27 and the foil shadow 28. However, a foil shadow is not reflected on the pixels represented by P 4n + 2, P 4n + 3, and P 4n + 4 next to the pixel other than the pixel P 4n + 1 . Therefore, foil shadow correction is performed using a pixel set obtained by extracting the pixels P 4n + 2, P 4n + 3, and P 4n + 4, which are three pixel sets between the foil shadows. This correction method is the normal correction mode.
 特殊補正モードとは、SIDを基準SIDから移動させた場合やC型アーム5のたわみによりX線管焦点が移動した場合に、箔影が映るように予め配置された画素をはみ出して隣の画素にまで映る場合における補正方法である。箔影が映るように予め配置された画素を横方向にP4n+1(但しnは0以上の整数)とすると、図12に示すように、SID移動やC型アーム5のたわみにより箔影が画素P4n+1上から移動する。例えば、箔影29は、画素P4n+1と横隣りの画素P4n+2とにまたがって映っている。また、箔影30は、素P4(n+1)+1上から画素P4n+4上に完全に移動している。このように、40μm程度の移動で箔影が確実に映らないのは、箔影が映るように予め配置された画素間の中央に位置する画素P4n+3である。そこで、箔影が予め映されるように配置された画素間の中央に位置する画素P4n+3を抽出した画素集合を用いて箔影補正をする。この補正方法が特殊補正モードである。 In the special correction mode, when the SID is moved from the reference SID or when the focus of the X-ray tube is moved by the deflection of the C-arm 5, a pixel that is arranged in advance so as to show a foil shadow is projected to the adjacent pixel. This is a correction method in the case where the image is reflected up to. Assuming that a pixel pre-arranged so that a foil shadow is reflected is P 4n + 1 in the horizontal direction (where n is an integer of 0 or more), the foil shadow is a pixel due to SID movement or deflection of the C-arm 5 as shown in FIG. Move from the top of P 4n + 1 . For example, the foil shadow 29 is reflected across the pixel P 4n + 1 and the horizontally adjacent pixel P 4n + 2 . Further, the foil shadow 30 has completely moved from the element P 4 (n + 1) +1 to the pixel P 4n + 4 . Thus, it is pixel P4n + 3 located in the center between the pixels previously arrange | positioned so that a foil shadow may not be reflected by movement of about 40 micrometers reliably. Therefore, the foil shadow correction is performed using a pixel set obtained by extracting the pixel P 4n + 3 located at the center between the pixels arranged so that the foil shadow is projected in advance. This correction method is a special correction mode.
 第1近似透視画像算出部20は、補正モード選択部19が通常補正モードを選択した場合に、画像メモリ部18に保管されたX線検出画像から箔影の影響を受けていない画素P4n+2、4n+3、およびP4n+4を抽出した画素集合を選出して被検体Mの第1近似透視画像を算出する。このように、箔影の影響を受けていない画素集合の選出は、箔影が映されることが予め決められている画素P4n+1以外の全ての画素を選出する。 When the correction mode selection unit 19 selects the normal correction mode, the first approximate fluoroscopic image calculation unit 20 includes pixels P 4n + 2 that are not affected by the foil shadow from the X-ray detection image stored in the image memory unit 18 . A pixel set from which P 4n + 3 and P 4n + 4 are extracted is selected to calculate a first approximate fluoroscopic image of the subject M. As described above, in selecting a pixel set that is not affected by the foil shadow, all the pixels other than the pixel P 4n + 1 in which the foil shadow is predetermined are selected.
 図13(a)に示すように、被検体Mを天板8に載置しないでX線撮影を実施した場合、グリッド箔3aの箔影が映される画素P4n+1でのX線検出信号値(●印)は、他の画素でのX線検出信号値(△印および□印)よりも図13(b)に示すように約20%ほど低減した値である。 As shown in FIG. 13A, when X-ray imaging is performed without placing the subject M on the top board 8, the X-ray detection signal value at the pixel P 4n + 1 where the foil shadow of the grid foil 3a is projected. (● mark) is a value that is reduced by about 20% as shown in FIG. 13B from the X-ray detection signal values (Δ mark and □ mark) in other pixels.
 次に、図14(a)に示すように、被検体Mを天板8に載置してX線撮影を実施した場合、上記と同様に、グリッド箔3aの箔影が映される画素P4n+1でのX線検出信号値(●印)は、図14(b)に示すように他の画素でのX線検出信号値(△印および□印)よりも低減した値である。そこで、箔影の影響を受けていない画素P4n+2、4n+3、およびP4n+4を抽出した画素集合を選出して、これらの画素集合のX線検出信号値(△印および□印)より、グリッド箔3aの箔影が映される画素P4n+1でのX線検出信号値(●印)を補間する。この補間方法は、2次補間又はキュービック・スプライン法など3次補間により精度よく被検体Mの透視画像を推定することができる。このようにして推定された透視画像である第1次近似画像を算出することができる。補間により算出された第1次近似画像には、補間誤差が含まれる。 Next, as shown in FIG. 14A, when the subject M is placed on the top board 8 and X-ray imaging is performed, the pixel P on which the foil shadow of the grid foil 3a is projected is the same as described above. The X-ray detection signal value (● mark) at 4n + 1 is a value that is lower than the X-ray detection signal values (Δ mark and □ mark) at other pixels as shown in FIG. Therefore, a pixel set obtained by extracting the pixels P 4n + 2, P 4n + 3, and P 4n + 4 which are not affected by the foil shadow is selected, and the grid is determined from the X-ray detection signal values (Δ mark and □ mark) of these pixel sets. The X-ray detection signal value (● mark) at the pixel P 4n + 1 where the foil shadow of the foil 3a is reflected is interpolated. In this interpolation method, the fluoroscopic image of the subject M can be accurately estimated by cubic interpolation such as quadratic interpolation or cubic spline method. A first approximate image that is a fluoroscopic image estimated in this way can be calculated. The first approximate image calculated by the interpolation includes an interpolation error.
 第2近似透視画像算出部21は、補正モード選択部19が特殊補正モードを選択した場合に、画像メモリ部18に保管されたX線検出画像から箔影の影響を受けていない画素集合を選出して被検体Mの第2近似透視画像を算出する。特殊補正モードでは、グリッド箔3aの箔影が映される画素P4n+1の両隣の画素P4n+2またはP4(n-1)+4にも箔影が移動している可能性がある。そこで、第2近似透視画像算出部21は、SIDやC型アーム5の移動により箔影が移動しても箔影が映らない画素P4n+3を抽出した画素集合を選出して、これらの画素集合のX線検出信号値(△印)より、グリッド箔3aの箔影が映される画素P4n+1および、箔影が移動するかもしれない画素P4n+2またはP4n+4でのX線検出信号値(●印および□印)を補間する。この補間方法は、キュービック・スプライン法など3次補間により精度よく被検体Mの透視画像を推定することができる。このようにして推定された透視画像である第2次近似画像を算出することができる。補間により算出された第2次近似画像には、補間誤差が含まれる。 When the correction mode selection unit 19 selects the special correction mode, the second approximate fluoroscopic image calculation unit 21 selects a pixel set that is not affected by the foil shadow from the X-ray detection image stored in the image memory unit 18. Then, the second approximate fluoroscopic image of the subject M is calculated. In the special correction mode, the foil shadow may also be moved to the pixel P 4n + 2 or P 4 (n−1) +4 adjacent to the pixel P 4n + 1 on which the foil shadow of the grid foil 3a is projected. Therefore, the second approximate fluoroscopic image calculation unit 21 selects pixel sets obtained by extracting the pixels P 4n + 3 in which the foil shadow does not appear even if the foil shadow moves due to the movement of the SID or the C-type arm 5, and these pixel sets From the X-ray detection signal value (Δ mark), the X-ray detection signal value (● in the pixel P 4n + 1 in which the foil shadow of the grid foil 3a is reflected and the pixel P 4n + 2 or P 4n + 4 to which the foil shadow may move. Interpolate marks and □ marks). This interpolation method can accurately estimate a fluoroscopic image of the subject M by cubic interpolation such as a cubic spline method. A second approximate image that is a perspective image estimated in this manner can be calculated. The second approximate image calculated by interpolation includes an interpolation error.
 なお、第1近似透視画像と第2近似透視画像との両方を指す場合には、単に近似透視画像と記載する。また、第1近似透視画像算出部および第2近似透視画像算出部は、本発明における近似透視画像算出部に相当する。 In addition, when referring to both a 1st approximate fluoroscopic image and a 2nd approximate fluoroscopic image, it describes only as an approximate fluoroscopic image. The first approximate fluoroscopic image calculation unit and the second approximate fluoroscopic image calculation unit correspond to the approximate fluoroscopic image calculation unit in the present invention.
 箔影画像算出部22は、X線検出画像と近似透視画像との差分によりグリッド箔影画像を算出する。つまり、箔影が重畳して減少した分のX線検出信号からなる画像を算出するので、箔影のみを表す画像であるグリッド箔影画像を得ることができる。箔影がグリッド箔3aに沿って縦方向に形成されるので、グリッド箔影画像も縦方向に検出値が並ぶ画像データである。グリッド箔影画像は補間誤差を含む近似透視画像を基に算出しているので、グリッド箔影画像にも補間誤差が含まれる。 The foil shadow image calculation unit 22 calculates a grid foil shadow image based on the difference between the X-ray detection image and the approximate fluoroscopic image. That is, since an image composed of X-ray detection signals corresponding to the amount of foil shadows superimposed and reduced is calculated, a grid foil shadow image that is an image representing only the foil shadows can be obtained. Since the foil shadow is formed in the vertical direction along the grid foil 3a, the grid foil shadow image is also image data in which detection values are arranged in the vertical direction. Since the grid foil shadow image is calculated based on the approximate perspective image including the interpolation error, the grid foil shadow image also includes the interpolation error.
 箔影標準画像算出部23は、縦方向に検出値が並ぶグリッド箔影画像を縦方向に平均化することでグリッド箔影標準画像を算出する。すなわち、図11や図12に示すように、箔影の形状不均一性に起因する箔影の検出値のバラつきを平均化することにより補正する。例えば、補正対象となる画素の上下30画素における検出画素の検出値(画素値)の平均値を算出し、この平均値を補正対象となる画素の画素値と置き換える。この処理を全検出画素を対象として実施することで、グリッド箔影標準画像を算出することができる。また、グリッド箔影画像を箔影の長手方向つまり長さ方向に平均化することで、グリッド箔影画像に含まれる補間誤差を除去することができる。 The foil shadow standard image calculation unit 23 calculates a grid foil shadow standard image by averaging the grid foil shadow images in which the detection values are arranged in the vertical direction in the vertical direction. That is, as shown in FIGS. 11 and 12, correction is performed by averaging variations in the detected value of the foil shadow caused by the nonuniformity of the shape of the foil shadow. For example, the average value of the detection values (pixel values) of the detection pixels in the upper and lower 30 pixels of the correction target pixel is calculated, and this average value is replaced with the pixel value of the correction target pixel. A grid foil shadow standard image can be calculated by performing this process for all detection pixels. Further, by averaging the grid foil shadow image in the longitudinal direction, that is, the length direction of the foil shadow, the interpolation error included in the grid foil shadow image can be removed.
 減算部24は、画像メモリ部18に保管されたX線検出画像とグリッド箔影標準画像との差分により箔影除去透視画像を算出する。X線検出画像から標準化された箔影を除去することで、補間誤差の影響を除去した被検体の透視画像を取得することができる。減算部24は本発明における箔影除去画像算出部に相当する。 The subtraction unit 24 calculates a foil shadow removal perspective image based on the difference between the X-ray detection image stored in the image memory unit 18 and the grid foil shadow standard image. By removing the standardized foil shadow from the X-ray detection image, a fluoroscopic image of the subject from which the influence of the interpolation error has been removed can be acquired. The subtraction unit 24 corresponds to the foil shadow removal image calculation unit in the present invention.
 減算部24により箔影が除去された被検体の透視画像は主制御部13を介して、モニタ15に表示されるか記憶部16に保管される。 The fluoroscopic image of the subject from which the foil shadow has been removed by the subtracting unit 24 is displayed on the monitor 15 or stored in the storage unit 16 via the main control unit 13.
 次に、実施例1によりX線透視撮影が実施される場合の動作を説明する。 Next, the operation when X-ray fluoroscopic imaging is performed according to the first embodiment will be described.
 まず、撮影者は入力部14にSID量およびC型アーム5の移動量を設定する。これより、主制御部13は設定されたSID量およびC型アーム5の移動量をC型アーム移動制御部7へ転送する。C型アーム移動制御部7はC型アーム移動機構6にそれぞれの設定量を反映してC型アーム5を移動させる。次に、入力部14にX線撮影の開始の指示がされると、主制御部13は、X線管制御部10とFPD4を制御する。X線管制御部10は、主制御部13からの指示に基づいてX線管2に管電圧や管電流を印加して、X線管2からX線が被検体Mに照射される。被検体Mを透過したX線は同期型グリッド3にて散乱X線が除去させられ、FPD4に入射してX線検出画素DUにて検出される。X線検出画素DUにて検出されたX線検出信号はA/D変換器11にてアナログからデジタルへ変換される。デジタルへ変換されたX線検出信号は、画像処理部12へ転送されLOG変換部17にてLOG変換される。LOG変換されたX線検出信号は、画像メモリ部18にてX線検出画像として保管される。 First, the photographer sets the SID amount and the movement amount of the C-arm 5 in the input unit 14. Accordingly, the main control unit 13 transfers the set SID amount and the movement amount of the C-type arm 5 to the C-type arm movement control unit 7. The C-type arm movement control unit 7 causes the C-type arm moving mechanism 6 to move the C-type arm 5 by reflecting the set amounts. Next, when an instruction to start X-ray imaging is given to the input unit 14, the main control unit 13 controls the X-ray tube control unit 10 and the FPD 4. The X-ray tube control unit 10 applies a tube voltage or a tube current to the X-ray tube 2 based on an instruction from the main control unit 13, and the subject M is irradiated with X-rays from the X-ray tube 2. The X-rays transmitted through the subject M are removed from the scattered grid 3 by the synchronous grid 3, enter the FPD 4, and are detected by the X-ray detection pixel DU. The X-ray detection signal detected by the X-ray detection pixel DU is converted from analog to digital by the A / D converter 11. The X-ray detection signal converted to digital is transferred to the image processing unit 12 and is LOG converted by the LOG conversion unit 17. The LOG-converted X-ray detection signal is stored as an X-ray detection image in the image memory unit 18.
 次に、図15に示すフローチャートに従って箔影の補正がなされる。なお、通常撮影時には通常補正モードで箔影が補正される。ここで通常撮影とは、SIDが基準SIDであり、C型アーム5のたわみが箔影に影響しない場合をいう。基準SIDは実施例1では1000mmであるが、適宜設定してもよい。SIDを基準SIDより移動する場合、およびC型アームのたわみが無視できない場合では特殊補正モードで箔影が補正される。 Next, the foil shadow is corrected according to the flowchart shown in FIG. Note that the foil shadow is corrected in the normal correction mode during normal shooting. Here, the normal photographing means a case where the SID is the reference SID and the deflection of the C-arm 5 does not affect the foil shadow. The reference SID is 1000 mm in the first embodiment, but may be set as appropriate. When the SID is moved from the reference SID and when the deflection of the C-arm cannot be ignored, the foil shadow is corrected in the special correction mode.
 ステップS1(補正モード選択)
 撮影者が入力部14に設定したSID量、およびC型アーム5の移動設定量が主制御部13を介して、画像処理部5内の補正モード選択部19に送られる。これらの情報により、補正モード選択部19は通常補正モードか特殊補正モードかを選択する。SID量およびC型アーム5の移動量が箔影に影響しない場合、つまり箔影が予め映るように設定された画素からはみでない場合には通常補正モードを選択する。また、SID量およびC型アーム5の移動量が箔影に影響する場合、つまり箔影が予め映るように設定された画素からはみでる場合には特殊補正モードを選択する。
Step S1 (correction mode selection)
The SID amount set by the photographer in the input unit 14 and the movement setting amount of the C-arm 5 are sent to the correction mode selection unit 19 in the image processing unit 5 via the main control unit 13. Based on these pieces of information, the correction mode selection unit 19 selects the normal correction mode or the special correction mode. The normal correction mode is selected when the SID amount and the movement amount of the C-arm 5 do not affect the foil shadow, that is, when the SID amount and the movement of the C-shaped arm 5 are not included in the pixels set so that the foil shadow is projected in advance. Further, when the SID amount and the movement amount of the C-shaped arm 5 affect the foil shadow, that is, when it protrudes from a pixel set so that the foil shadow is projected in advance, the special correction mode is selected.
 ステップS2(第1近似透視画像算出)
 ステップS1にて通常補正モードが選択された場合、第1近似透視画像算出部20は箔影が映らない箔影間の3つの検出画素を抽出した画素集合を選出する。さらに、この画素集合の画素値から選出しなかった検出画素の検出値を補間し、被検体Mを透視した第1近似透視画像を算出する。
Step S2 (first approximate fluoroscopic image calculation)
When the normal correction mode is selected in step S1, the first approximate fluoroscopic image calculation unit 20 selects a pixel set obtained by extracting three detection pixels between the foil shadows in which the foil shadow is not reflected. Further, the first approximate fluoroscopic image obtained by seeing through the subject M is calculated by interpolating the detection values of the detection pixels not selected from the pixel values of the pixel set.
 ステップS2’(第2近似透視画像算出)
 ステップS1にて特殊補正モードが選択された場合、第2近似透視画像算出部21は箔影が映らない箔影間の中央の検出画素を抽出した画素集合を選出する。さらに、この画素集合の画素値から選出しなかった検出画素の検出値を補間し、被検体Mを透視した第2近似透視画像を算出する。
Step S2 ′ (second approximate fluoroscopic image calculation)
When the special correction mode is selected in step S1, the second approximate perspective image calculation unit 21 selects a pixel set obtained by extracting the detection pixel at the center between the foil shadows where the foil shadow is not reflected. Further, the second approximate fluoroscopic image obtained by seeing through the subject M is calculated by interpolating the detection values of the detection pixels not selected from the pixel values of the pixel set.
 ステップS3(箔影画像算出)
 箔影画像算出部22にて、画像メモリ部18に保管されているX線検出画像と、第1近似透視画像算出部20または第2近似透視画像算出部21にて算出された近似透視画像との差分によりグリッド箔影画像を算出する。つまり、箔影の影となった検出画素からのX線検出信号のみからなる画像を算出するので、グリッド箔影画像を得ることができる。
Step S3 (calculate foil shadow image)
In the foil shadow image calculation unit 22, the X-ray detection image stored in the image memory unit 18, the approximate fluoroscopic image calculated by the first approximate fluoroscopic image calculation unit 20 or the second approximate fluoroscopic image calculation unit 21, and A grid foil shadow image is calculated from the difference between the two. That is, since an image consisting only of the X-ray detection signal from the detection pixel that becomes the shadow of the foil shadow is calculated, a grid foil shadow image can be obtained.
 ステップS4(箔影標準画像算出)
 箔影標準画像算出部23にて、縦方向に検出値が並ぶグリッド箔影画像を縦方向に平均化することでグリッド箔影標準画像を算出する。それぞれのグリッド箔3aは縦方向つまり箔方向に引っ張られて保持されているので、グリッド箔3aの長さ方向の箔影の変化は比較的少ない。箔影を平均化することによりアンプノイズや量子ノイズを補正できる。例えば、補正対象となる画素の上下数十画素の検出画素の検出値の平均値を算出し、この平均値を補正対象となる画素値と置き換える。この処理を全検出画素を対象として実施することで、グリッド箔影標準画像を算出する。
Step S4 (calculate foil shadow standard image)
The foil shadow standard image calculation unit 23 calculates the grid foil shadow standard image by averaging the grid foil shadow images in which the detection values are arranged in the vertical direction in the vertical direction. Since each grid foil 3a is pulled and held in the vertical direction, that is, the foil direction, the change of the foil shadow in the length direction of the grid foil 3a is relatively small. Amplifier noise and quantum noise can be corrected by averaging the foil shadows. For example, an average value of detection values of detection pixels of several tens of pixels above and below the pixel to be corrected is calculated, and this average value is replaced with a pixel value to be corrected. A grid foil shadow standard image is calculated by performing this process for all the detection pixels.
 ステップS5(箔影除去画像算出)
 減算部24にて、X線検出画像とグリッド箔影標準画像との差分することで箔影除去透視画像を算出する。これより、箔影が除去された被検体の透視画像を取得することができる。減算部24により箔影が除去された被検体の透視画像は主制御部13を介して、モニタ15に表示されるか記憶部16に保管される。
Step S5 (calculate foil shadow removal image)
The subtraction unit 24 calculates a foil shadow removal perspective image by subtracting the X-ray detection image from the grid foil shadow standard image. Thus, a fluoroscopic image of the subject from which the foil shadow has been removed can be acquired. The fluoroscopic image of the subject from which the foil shadow has been removed by the subtraction unit 24 is displayed on the monitor 15 or stored in the storage unit 16 via the main control unit 13.
 このように、実施例1のX線透視撮影装置1によれば、X線検出画素DUに映る箔影画像を縦方向に平均化することで、近似透視画像を算出する際に含まれる補間誤差を除去することができ、さらには、アンプノイズや量子ノイズを除去した精度の良い箔影の画像を得ることができる。これより、アーチファクトを出現させることなく、透視画像から同期型グリッドの箔影を除去することができる。 As described above, according to the X-ray fluoroscopic imaging apparatus 1 of the first embodiment, the interpolation error included in calculating the approximate fluoroscopic image by averaging the foil shadow image reflected in the X-ray detection pixel DU in the vertical direction. Furthermore, it is possible to obtain a highly accurate foil shadow image from which amplifier noise and quantum noise have been removed. As a result, the foil shadow of the synchronous grid can be removed from the fluoroscopic image without causing artifacts to appear.
 さらに、SIDやC型アーム5を移動させた場合などに、箔影が映るように予め配置したX線検出画素DUから隣の検出画素に箔影が移動する場合でも、箔影が映らないことが確定している画素を抽出した画素集合から、透視画像を補間により近似することで、箔影画像を求めるので、精度よく箔影を除去することができる。このように、X線管焦点の微小な制御できない移動が伴う場合にも、十分に箔影を除去することができる。これより、箔影が画素を跨いで移動しない場合も、移動する場合にも、適切に補間処理を実施することができ、さらに、従来型グリッドに対して直接X線感度が20%程度高い同期型グリッドの効果によって、信号ノイズ比に勝る画像を取得することができる。 Furthermore, when the SID or the C-arm 5 is moved, even when the foil shadow moves from the X-ray detection pixel DU arranged in advance so that the foil shadow is reflected to the adjacent detection pixel, the foil shadow does not appear. Since the foil shadow image is obtained by approximating the fluoroscopic image by interpolation from the pixel set obtained by extracting the pixels for which the image has been determined, the foil shadow can be accurately removed. Thus, even when the X-ray tube focal point is accompanied by a minute uncontrollable movement, the foil shadow can be sufficiently removed. As a result, both the case where the foil shadow does not move across the pixels and the case where the foil shadow moves can be appropriately interpolated, and the X-ray sensitivity is about 20% higher than that of the conventional grid. Due to the effect of the grid, an image that exceeds the signal-to-noise ratio can be acquired.
 また、同期型グリッド3および放射線検出器(FPD4)が、箔影が予め4画素おきに映るように配置されているので、箔影が移動しても、予めグリッド箔が映るように配置された画素の両隣の画素内で箔影の移動が収まるので、箔影が必ず映らない画素を構成することができる。 Further, since the synchronous grid 3 and the radiation detector (FPD4) are arranged so that the foil shadows are projected in advance every four pixels, they are arranged so that the grid foils are projected in advance even if the foil shadows move. Since the movement of the foil shadow falls within the pixels on both sides of the pixel, a pixel in which the foil shadow is not necessarily reflected can be configured.
 次に、図16および図17を参照して、本発明の実施例2を説明する。図16は実施例2に係る画像処理部の構成を示すブロック図であり、図17は実施例2に係る箔影補正処理の流れを示すフローチャート図である。図16および図17において、実施例1に示した符号と同一の符号で示した部分は、実施例1と同様の構成であるのでここでの説明は省略する。実施例2は、実施例1の減算部を変更したものである。よって、ここで記載した以外のX線透視撮影装置の構造は実施例1と同様である。 Next, Embodiment 2 of the present invention will be described with reference to FIG. 16 and FIG. FIG. 16 is a block diagram illustrating a configuration of an image processing unit according to the second embodiment, and FIG. 17 is a flowchart illustrating a flow of foil shadow correction processing according to the second embodiment. In FIG. 16 and FIG. 17, since the part shown with the code | symbol same as the code | symbol shown in Example 1 is the structure similar to Example 1, description here is abbreviate | omitted. In the second embodiment, the subtracting unit of the first embodiment is changed. Therefore, the structure of the X-ray fluoroscopic apparatus other than that described here is the same as that of the first embodiment.
 実施例2の特徴は、箔影を周波数変換により除去する点である。画像処理部25は、LOG変換部17、画像メモリ部18、補正モード選択部19、第1近似透視画像算出部20、第2近似透視画像算出部21、箔影画像算出部22、箔影標準画像算出部23に加えて、グリッド箔影標準画像を基に透視画像からグリッド箔影を除去して箔影除去画像を求める箔影除去画像算出部33を備える。 The feature of Example 2 is that the foil shadow is removed by frequency conversion. The image processing unit 25 includes a LOG conversion unit 17, an image memory unit 18, a correction mode selection unit 19, a first approximate perspective image calculation unit 20, a second approximate perspective image calculation unit 21, a foil shadow image calculation unit 22, and a foil shadow standard. In addition to the image calculation unit 23, a foil shadow removal image calculation unit 33 is provided that removes the grid foil shadow from the perspective image based on the grid foil shadow standard image to obtain a foil shadow removal image.
 また、箔影除去画像算出部33は、グリッド箔影画像とグリッド箔影標準画像との差分により誤差成分画像を算出する誤差成分画像算出部34と、画像メモリ部18に保管されたX線検出画像と誤差成分画像との差分により箔影の歪みが除去された箔影歪み除去画像を算出する箔影歪み除去画像算出部35と、箔影歪み除去画像に周波数変換処理を施すことで箔影除去X線検出画像を算出する周波数変換処理部36とを有する。 The foil shadow removal image calculation unit 33 includes an error component image calculation unit 34 that calculates an error component image based on the difference between the grid foil shadow image and the grid foil shadow standard image, and an X-ray detection stored in the image memory unit 18. A foil shadow distortion removal image calculation unit 35 that calculates a foil shadow distortion removal image from which the foil shadow distortion has been removed by the difference between the image and the error component image, and the foil shadow distortion removal image by performing frequency conversion processing on the foil shadow distortion removal image. And a frequency conversion processing unit 36 for calculating a removal X-ray detection image.
 誤差成分画像算出部34は、グリッド箔影画像とグリッド箔影標準画像との差分により誤差成分画像を算出する。つまり、グリッド箔影画像における理想的な箔影画像を基準としてグリッド箔3aごとの形状不均一に基づく箔影のバラツキを算出することができる。 The error component image calculation unit 34 calculates an error component image based on the difference between the grid foil shadow image and the grid foil shadow standard image. That is, it is possible to calculate the variation of the foil shadow based on the nonuniform shape for each grid foil 3a with reference to the ideal foil shadow image in the grid foil shadow image.
 箔影歪み除去画像算出部35は、画像メモリ部18に保管されたX線検出画像と誤差成分画像との差分により箔影の歪みが除去された箔影歪み除去画像を算出する。これにより、グリッド箔3aごとの形状歪みによる箔影の検出値のバラツキが補正される。すなわち、箔影歪み除去画像での全ての箔影は理想的なグリッド箔の影であり、箔影の大きさも均一であると言える。 The foil shadow distortion-removed image calculation unit 35 calculates a foil shadow distortion-removed image from which the foil shadow distortion has been removed by the difference between the X-ray detection image stored in the image memory unit 18 and the error component image. Thereby, the variation in the detected value of the foil shadow due to the shape distortion of each grid foil 3a is corrected. That is, it can be said that all the foil shadows in the foil shadow distortion-removed image are ideal grid foil shadows, and the foil shadow sizes are uniform.
 周波数変換処理部36は、箔影歪み除去画像に周波数変換処理を施すことで箔影除去透視画像を算出する。箔影歪み除去画像は、被検体の透視像にバラツキが補正された箔影が重畳した画像であるので、周波数変換処理を施すことで、箔影を除去することができる。これより、箔影が除去された被検体の透視画像を取得することができる。 The frequency conversion processing unit 36 performs a frequency conversion process on the foil shadow distortion removed image to calculate a foil shadow removed fluoroscopic image. Since the foil shadow distortion-removed image is an image in which a foil shadow whose variation is corrected is superimposed on the fluoroscopic image of the subject, the foil shadow can be removed by performing a frequency conversion process. Thus, a fluoroscopic image of the subject from which the foil shadow has been removed can be acquired.
 周波数変換処理部36により箔影が除去された被検体の透視画像は主制御部13を介して、モニタ15に表示されるか記憶部16に保管される。 The fluoroscopic image of the subject from which the foil shadow has been removed by the frequency conversion processing unit 36 is displayed on the monitor 15 or stored in the storage unit 16 via the main control unit 13.
 次に、実施例2によりX線透視撮影が実施される場合の動作を説明する。ステップS01からステップS04までは、実施例1と同様であるので説明を省略する。 Next, the operation when X-ray fluoroscopic imaging is performed according to the second embodiment will be described. Steps S01 to S04 are the same as those in the first embodiment, and a description thereof will be omitted.
 ステップS15(誤差成分画像算出)
 誤差成分画像算出部34にて、グリッド箔影画像とグリッド箔影標準画像との差分により誤差成分画像を算出する。つまり、グリッド箔影画像における理想的な箔影画像を基準としたグリッド箔3aごとの箔影のバラツキを算出する。
Step S15 (error component image calculation)
The error component image calculation unit 34 calculates an error component image based on the difference between the grid foil shadow image and the grid foil shadow standard image. That is, the variation of the foil shadow for each grid foil 3a with respect to the ideal foil shadow image in the grid foil shadow image is calculated.
 ステップS16(箔影歪み除去画像算出)
 箔影歪み除去画像算出部35にて、画像メモリ部18に保管されたX線検出画像と誤差成分画像との差分により箔影の歪みが除去された箔影歪み除去画像を算出する。これにより、グリッド箔3aの歪みによる箔影の検出値のバラツキが補正される。
Step S16 (calculate foil shadow distortion removed image)
The foil shadow distortion removed image calculation unit 35 calculates a foil shadow distortion removed image from which the foil shadow distortion has been removed based on the difference between the X-ray detection image stored in the image memory unit 18 and the error component image. Thereby, the variation in the detected value of the foil shadow due to the distortion of the grid foil 3a is corrected.
 ステップS17(周波数変換処理)
 周波数変換処理部36にて、箔影歪み除去画像に周波数変換処理を施すことで箔影除去透視画像を算出する。箔影歪み除去画像は、被検体の透視像にバラツキが補正された均一な箔影が重畳した画像であるので、周波数変換処理を施すことで、箔影を除去することができる。これより、箔影が除去された被検体の透視画像を取得することができる。
Step S17 (frequency conversion process)
The frequency conversion processing unit 36 performs a frequency conversion process on the foil shadow distortion-removed image to calculate a foil shadow removal perspective image. The foil shadow distortion-removed image is an image obtained by superimposing a uniform foil shadow whose variation is corrected on the fluoroscopic image of the subject. Therefore, the foil shadow can be removed by performing a frequency conversion process. Thus, a fluoroscopic image of the subject from which the foil shadow has been removed can be acquired.
 このように、実施例2のX線透視撮影装置1によれば、X線検出画素DUに映る箔影画像を縦方向に平均化することで、アンプノイズや量子ノイズを除去して精度の良い箔影の画像を得ることができる。さらに、箔影画像と平均化した箔影標準画像との差である誤差成分画像を箔影歪み除去画像算出部35により透視画像から差分するので、全てのグリッド箔3aの箔影は均一となり、周波数変換により箔影を除去することができる。これより、アーチファクトを出現させることなく、同期型グリッドの箔影を除去することができる。 As described above, according to the X-ray fluoroscopic imaging apparatus 1 of the second embodiment, the foil shadow image reflected on the X-ray detection pixel DU is averaged in the vertical direction, so that the amplifier noise and the quantum noise are removed and the accuracy is high. A foil shadow image can be obtained. Furthermore, since the error component image, which is the difference between the foil shadow image and the averaged foil shadow standard image, is differentiated from the fluoroscopic image by the foil shadow distortion removal image calculation unit 35, the foil shadows of all the grid foils 3a are uniform, The foil shadow can be removed by frequency conversion. Thus, the foil shadow of the synchronous grid can be removed without causing an artifact to appear.
 次に、図18、図19および図20を参照して、本発明の実施例3を説明する。図18は実施例3に係る画像処理部の構成を示すブロック図であり、図19は実施例3に係る画像処理を示す説明図であり、図20は実施例3に係る箔影補正処理の流れを示すフローチャート図である。図18、図19および図20において、実施例1に示した符号と同一の符号で示した部分は、実施例1と同様の構成であるのでここでの説明は省略する。実施例3は、実施例1のグリッド箔影標準画像の算出を変更したものである。よって、ここで記載した以外のX線透視撮影装置の構造は実施例1と同様である。 Next, Embodiment 3 of the present invention will be described with reference to FIG. 18, FIG. 19, and FIG. 18 is a block diagram illustrating a configuration of an image processing unit according to the third embodiment. FIG. 19 is an explanatory diagram illustrating image processing according to the third embodiment. FIG. 20 illustrates foil shadow correction processing according to the third embodiment. It is a flowchart figure which shows a flow. 18, 19, and 20, the portions denoted by the same reference numerals as those of the first embodiment have the same configuration as that of the first embodiment, and thus the description thereof is omitted here. In the third embodiment, the calculation of the grid foil shadow standard image of the first embodiment is changed. Therefore, the structure of the X-ray fluoroscopic apparatus other than that described here is the same as that of the first embodiment.
 上述した実施例1では、箔影の標準化は縦方向の画素値を平均化していた。これに、行方向である横方向の画素値を4画素おきにそれぞれ抽出して、抽出したそれぞれの画像データを平滑化してもよい。例えば、図18に示すように、箔影標準画像算出部23により縦方向の平均化がされた箔影標準画像を、平滑部37にて、今度は横方向にグリッド箔3aが配置された一定間隔(Gp)の長さに相当する画素の数である4画素おきに各行のそれぞれの画素を抽出する。つまり、図19(a)に示すように、各行において4画素おきに画素を抽出することで、4画素ごとに画素値を拾った行データが作成される。 In Example 1 described above, the standardization of the foil shadow averaged the pixel values in the vertical direction. Alternatively, the pixel values in the horizontal direction, which is the row direction, may be extracted every four pixels, and the extracted image data may be smoothed. For example, as shown in FIG. 18, the foil shadow standard image averaged in the vertical direction by the foil shadow standard image calculation unit 23 is converted into a constant by the smoothing unit 37, this time with the grid foil 3 a arranged in the horizontal direction. Each pixel in each row is extracted every four pixels, which is the number of pixels corresponding to the length of the gap (Gp). That is, as shown in FIG. 19A, by extracting pixels every four pixels in each row, row data in which pixel values are picked up for every four pixels is created.
 図19(b)を参照してさらに具体的に説明する。箔影標準画像のr行目の画素値がPr,1、Pr,2、Pr,3、…である場合、r行目の画素値を4画素おきに抽出して図19(c)に示すように、r行-A、r行-B、r行-C、r行-Dの4つに分割した行データを作成する。r行-A、r行-B、r行-C、r行-Dのそれぞれの画像データは、もとのr行目の画像データの4つおきの画素値である。 More specific description will be given with reference to FIG. When the pixel values in the r-th row of the foil shadow standard image are Pr, 1, Pr, 2, Pr, 3,..., The pixel values in the r-th row are extracted every four pixels and shown in FIG. Thus, row data divided into four rows of r row-A, r row-B, r row-C, and r row-D are created. The image data of r-row-A, r-row-B, r-row-C, and r-row-D are every four pixel values of the original r-row image data.
 元の行データは比較的大きな変動を持つが、4つの新しい行データ(r行-A、r行-B、r行-C、r行-D)は変動の少ない滑らかな値を持つ。この4画素ごとに画素値のとんだ4つの行データを平滑化する。さらに、平滑化した4つの行データ(r行-A、r行-B、r行-C、r行-D)をもとの箔影標準画像データと置き代えることで、そのままでは横方向には平滑化できなかった透視画像から、アンプノイズや量子ノイズを除去することができる。またこの処理ステップは、図20に示すように、ステップS4の箔影標準画像算出ステップの後に、ステップS21の平滑化ステップが実施される。 The original row data has relatively large fluctuations, but the four new row data (r row-A, r row-B, r row-C, r row-D) have smooth values with little fluctuation. The four row data having pixel values are smoothed for every four pixels. Furthermore, by replacing the four smoothed row data (r row-A, r row-B, r row-C, r row-D) with the original foil shadow standard image data, Can remove amplifier noise and quantum noise from a fluoroscopic image that cannot be smoothed. In addition, in this processing step, as shown in FIG. 20, the smoothing step of step S21 is performed after the foil shadow standard image calculating step of step S4.
 平滑化ステップは、箔影標準画像を行ごとにグリッド箔が配置された一定間隔内にある4画素おきに画素値を抽出して4つの行データを作成し、それぞれの行データを平滑化する。さらに、平滑化した4つの行データを元の箔影標準画像と置き換える。なお、グリッド箔3aが配置された一定間隔内にある画素が4画素以上の画素数に設定されている場合は、その設定された画素数ごとの行データが作成され、平滑化される。 In the smoothing step, four row data are generated by extracting pixel values from the foil shadow standard image every four pixels within a predetermined interval in which the grid foil is arranged for each row, and each row data is smoothed. . Further, the four smoothed line data are replaced with the original foil shadow standard image. In addition, when the pixel in the fixed space | interval with which the grid foil 3a is arrange | positioned is set to the pixel number of 4 pixels or more, the row data for every set pixel number are created, and it smoothes.
 次に、図21および図22を参照して、本発明の実施例4を説明する。図21は実施例4に係る画像処理部の構成を示すブロック図であり、図22は実施例4に係る箔影補正処理の流れを示すフローチャート図である。図21および図22において、実施例1から実施例3に示した符号と同一の符号で示した部分は、実施例1から実施例3と同様の構成であるのでここでの説明は省略する。実施例4は、実施例2のグリッド箔影標準画像の算出を変更したものである。よって、ここで記載した以外のX線透視撮影装置の構造は実施例2と同様である。 Next, Embodiment 4 of the present invention will be described with reference to FIGS. FIG. 21 is a block diagram illustrating a configuration of an image processing unit according to the fourth embodiment, and FIG. 22 is a flowchart illustrating a flow of foil shadow correction processing according to the fourth embodiment. 21 and FIG. 22, the parts denoted by the same reference numerals as those shown in the first to third embodiments have the same configuration as that of the first to third embodiments, and thus the description thereof is omitted here. In the fourth embodiment, the calculation of the grid foil shadow standard image of the second embodiment is changed. Therefore, the structure of the X-ray fluoroscopic apparatus other than that described here is the same as that of the second embodiment.
 上述した実施例2では、箔影の標準化は縦方向の画素値を平均化していた。これに、行方向である横方向の画素値を4画素おきにそれぞれ抽出して、抽出したそれぞれの画像データを平滑化してもよい。例えば、図21に示すように、箔影標準画像算出部23により縦方向の平均化がされた箔影標準画像を、平滑部31にて、今度は横方向にグリッド箔3aが配置された一定間隔内にある4画素おきに各行のそれぞれの画素を抽出する。つまり、図19に示すように、各行において4画素おきに画素を抽出することで、4画素ごとに画素値を拾った行データが作成される。 In Example 2 described above, the standardization of foil shadows averaged the pixel values in the vertical direction. Alternatively, the pixel values in the horizontal direction, which is the row direction, may be extracted every four pixels, and the extracted image data may be smoothed. For example, as shown in FIG. 21, the foil shadow standard image averaged in the vertical direction by the foil shadow standard image calculation unit 23 is converted into a constant by the smoothing unit 31 and the grid foil 3 a in the horizontal direction. Each pixel in each row is extracted every four pixels within the interval. That is, as shown in FIG. 19, by extracting pixels every four pixels in each row, row data in which pixel values are picked up for every four pixels is created.
 元の行データは比較的大きな変動を持つが、4つの新しい行データは変動の少ない滑らかな値を持つ。この4画素ごとに画素値のとんだ4つの行データを平滑化する。さらに、平滑化した4つの行データをもとの箔影標準画像データと置き代えることで、そのままでは横方向には平滑化できなかった透視画像から、アンプノイズや量子ノイズを除去することができる。またこの処理ステップは、図22に示すように、ステップS4の箔影標準画像算出ステップの後に、ステップS31の平滑化ステップが実施される。 The original line data has relatively large fluctuations, but the four new line data have smooth values with little fluctuation. The four row data having pixel values are smoothed for every four pixels. Furthermore, by replacing the four smoothed line data with the original foil shadow standard image data, it is possible to remove amplifier noise and quantum noise from a fluoroscopic image that cannot be smoothed in the horizontal direction as it is. . Also, in this processing step, as shown in FIG. 22, the smoothing step of step S31 is performed after the foil shadow standard image calculating step of step S4.
 平滑化ステップは、箔影標準画像を行ごとにグリッド箔が配置された一定間隔内にある4画素おきに画素値を抽出して4つの行データを作成し、それぞれの行データを平滑化する。さらに、平滑化した4つの行データを元の箔影標準画像と置き換える。なお、グリッド箔3aが配置された一定間隔内にある画素が4画素以上の画素数に設定されている場合は、その設定された画素数ごとの行データが作成され、平滑化される。 In the smoothing step, four row data are generated by extracting pixel values from the foil shadow standard image every four pixels within a predetermined interval in which the grid foil is arranged for each row, and each row data is smoothed. . Further, the four smoothed line data are replaced with the original foil shadow standard image. In addition, when the pixel in the fixed space | interval with which the grid foil 3a is arrange | positioned is set to the pixel number of 4 pixels or more, the row data for every set pixel number are created, and it smoothes.
 本発明は、上記実施形態に限られることはなく、下記のように変形実施することができる。 The present invention is not limited to the above embodiment, and can be modified as follows.
 (1)上述した実施例では、画素4つに対してグリッド箔3aが1枚配置されていたが、これに限らない。実施例では、4画素を基本として、箔影が映るように設定した1画素と、箔影が移動するかもしれない2画素と、箔影の移動が全く無い1画素としていた。これに限らず、8画素を基本として、箔影が映るように設定した2画素と、箔影が移動するかもしれない4画素と、箔影の移動が全く無い2画素としてもよい。これより、SIDの移動量やC型アーム5の移動量に合わせて、箔影の補正モードをより細分化することができ、近似透視画像の近似精度を向上させることができる。また、基本とする画素は4画素、8画素に限られず、4画素以上であればよい。画素が4つ以上であり、グリッド箔3a間に箔影の移動の影響を受けない画素が存在すればよい。 (1) In the embodiment described above, one grid foil 3a is arranged for four pixels, but the present invention is not limited to this. In the embodiment, on the basis of four pixels, one pixel set to reflect a foil shadow, two pixels that the foil shadow may move, and one pixel that does not move the foil shadow at all. However, the present invention is not limited to this, and based on 8 pixels, 2 pixels set so that a foil shadow may appear, 4 pixels that the foil shadow may move, and 2 pixels that have no movement of the foil shadow may be used. Thus, the foil shadow correction mode can be further subdivided according to the amount of movement of the SID and the amount of movement of the C-arm 5, and the approximation accuracy of the approximate fluoroscopic image can be improved. The basic pixels are not limited to 4 pixels and 8 pixels, and may be 4 pixels or more. It is sufficient that there are four or more pixels and there is a pixel that is not affected by the movement of the foil shadow between the grid foils 3a.
 (2)上述した実施例では、検出したデジタルのX線検出信号をLOG変換していたが、演算処理に余裕がある場合は、LOG変換することなく演算してもよい。 (2) In the above-described embodiment, the detected digital X-ray detection signal is LOG-converted. However, if there is a margin in the arithmetic processing, the calculation may be performed without performing the LOG-conversion.
 (3)上述した実施例では、入力部14に設定入力されたSID量およびC型アーム5の移動量から、補正モード選択部19にて、第1近似画像算出か第2近似画像算出かを自動的に選択していたが、操作者が入力部14にてどちらの補正モードかを選択できる構成でもよい。また、補正モードの選択を省略して、常に第2近似画像を算出して使用することもできる。SID量およびC型アーム5の移動量から補正モードを選択する方法としては、予め両方の値を変化させ、被検体Mを天板8に載置しないで撮影を行い、箔影のパターンより選択する補正モードを決めておけば良い。 (3) In the embodiment described above, the correction mode selection unit 19 determines whether the first approximate image calculation or the second approximate image calculation is performed based on the SID amount set and input to the input unit 14 and the movement amount of the C-arm 5. Although the automatic selection is performed, a configuration in which the operator can select which correction mode by the input unit 14 may be used. It is also possible to always calculate and use the second approximate image without selecting the correction mode. As a method of selecting the correction mode from the SID amount and the movement amount of the C-shaped arm 5, both values are changed in advance, an image is taken without placing the subject M on the top 8, and selected from the pattern of foil shadows. It is only necessary to determine the correction mode to be performed.
 (4)上述した実施例では、箔影が予め映されるように配置された画素の配列を基準に、箔影の影響を受けない画素の抽出を実施していたが、画像処理によって実際に箔影が映されている画素を検出することで、それ以外の箔影の影響を受けない画素集合を抽出してもよい。このように画像処理によって箔影が映されている画素を検出して、その結果により通常補正モードと特殊補正モードとの切り換えを行っても良い。特殊補正モードの場合は、箔影の中心が映った画素の2つ隣の画素を抽出した画素集合を採用すればよい。 (4) In the above-described embodiment, pixels that are not affected by the foil shadow are extracted based on the arrangement of the pixels arranged so that the foil shadow is projected in advance. A pixel set that is not affected by other foil shadows may be extracted by detecting pixels in which the foil shadows are reflected. In this way, a pixel in which a foil shadow is reflected by image processing may be detected, and switching between the normal correction mode and the special correction mode may be performed based on the result. In the case of the special correction mode, a pixel set obtained by extracting pixels adjacent to the pixel in which the center of the foil shadow is reflected may be employed.

Claims (12)

  1.  グリッド箔影が放射線を検出する画素の中央に映るようにグリッド箔を一定間隔に配置した同期型グリッドを備えた放射線撮影装置のグリッド箔影除去方法において、
     透視画像から前記グリッド箔影の影響を受けていない画素の検出信号値を抽出して補間処理を実施することで近似透視画像を求める近似透視画像算出ステップと、
     前記透視画像と前記近似透視画像との差を求めてグリッド箔影画像を求めるグリッド箔影画像算出ステップと、
     前記グリッド箔影画像を前記グリッド箔影の長さ方向に平均化して箔影標準画像を求める箔影標準画像算出ステップと、
     前記箔影標準画像を基に、前記透視画像から前記グリッド箔影を除去する箔影除去ステップと
     を備えたことを特徴とするグリッド箔影除去方法。
    In the grid foil shadow removal method of the radiation imaging apparatus including the synchronous grid in which the grid foil is arranged at a constant interval so that the grid foil shadow is reflected in the center of the pixel detecting the radiation,
    An approximate perspective image calculation step for obtaining an approximate perspective image by extracting a detection signal value of a pixel not affected by the grid foil shadow from the perspective image and performing an interpolation process;
    A grid foil shadow image calculating step for obtaining a grid foil shadow image by obtaining a difference between the perspective image and the approximate perspective image;
    Foil shadow standard image calculation step for obtaining the foil shadow standard image by averaging the grid foil shadow image in the length direction of the grid foil shadow;
    And a foil shadow removal step of removing the grid foil shadow from the fluoroscopic image based on the foil shadow standard image.
  2.  請求項1に記載のグリッド箔影除去方法において、
     前記箔影除去ステップは、前記透視画像と前記箔影標準画像との差分により前記透視画像から前記グリッド箔影を除去する
     ことを特徴とするグリッド箔影除去方法。
    In the grid foil shadow removal method of Claim 1,
    The method of removing a foil foil shadow includes removing the grid foil shadow from the fluoroscopic image based on a difference between the fluoroscopic image and the foil shadow standard image.
  3.  請求項2に記載のグリッド箔影除去方法において、
     前記箔影標準画像算出ステップにより平均化された箔影標準画像を、行ごとに、前記グリッド箔が配置された一定間隔内にある画素数ごとに抽出して分割した行データを作成し、前記行データを平滑化して元の前記箔影標準画像と置き換える平滑化ステップを備え、
     前記箔影除去ステップは、前記透視画像と平滑化された前記箔影標準画像とのとの差分により前記透視画像からグリッド箔影を除去する
     ことを特徴とするグリッド箔影除去方法。
    In the grid foil shadow removal method of Claim 2,
    Foil shadow standard image averaged by the foil shadow standard image calculation step, for each row, to create a row data divided by extracting and dividing for each number of pixels within a certain interval where the grid foil is disposed, A smoothing step of smoothing the line data to replace the original foil shadow standard image,
    The foil shadow removal step of removing the grid foil shadow from the fluoroscopic image based on a difference between the fluoroscopic image and the smoothed foil shadow standard image.
  4.  請求項1に記載のグリッド箔影除去方法において、前記箔影除去ステップは、
     前記グリッド箔影画像と前記箔影標準画像との差を求めて誤差成分画像を求める誤差成分画像算出ステップと、
     前記透視画像と前記誤差成分画像との差を求めて箔影歪み除去画像を求める箔影歪み除去画像算出ステップと、
     前記箔影歪み除去画像に周波数変換処理を施して前記グリッド箔影を除去する周波数変換処理ステップと
     を備えたことを特徴とするグリッド箔影除去方法。
    The grid foil shadow removal method according to claim 1, wherein the foil shadow removal step comprises:
    An error component image calculation step for obtaining an error component image by obtaining a difference between the grid foil shadow image and the foil shadow standard image;
    Foil shadow distortion removed image calculation step for obtaining a difference between the perspective image and the error component image to obtain a foil shadow distortion removed image;
    A frequency foil processing step of performing a frequency conversion process on the foil shadow distortion-removed image to remove the grid foil shadow, and a grid foil shadow removal method.
  5.  請求項4に記載のグリッド箔影除去方法において、
     前記箔影標準画像算出ステップにより平均化された箔影標準画像を、行ごとに、前記グリッド箔が配置された一定間隔内にある画素数ごとに抽出して分割した行データを作成し、前記行データを平滑化して元の前記箔影標準画像と置き換える平滑化ステップを備え、
     前記誤差成分画像算出ステップは、前記グリッド箔影画像と平滑化された前記箔影標準画像との差を求めて誤差成分画像を求める
     ことを特徴とするグリッド箔影除去方法。
    In the grid foil shadow removal method of Claim 4,
    Foil shadow standard image averaged by the foil shadow standard image calculation step, for each row, to create a row data divided by extracting and dividing for each number of pixels within a certain interval where the grid foil is disposed, A smoothing step of smoothing the line data to replace the original foil shadow standard image,
    The method of calculating a grid foil shadow, wherein the error component image calculation step calculates an error component image by calculating a difference between the grid foil shadow image and the smoothed foil shadow standard image.
  6.  請求項1から5いずれか1つに記載のグリッド箔影除去方法において、
     設定入力されたSID量およびC型アームの移動量より、画素間の箔影の移動を補正しない通常補正モードまたは画素間の箔影の移動を補正する特殊補正モードのいずれかを選択する画像処理モード選択ステップと、
     前記画像処理モード選択ステップにより通常補正モードが選択された場合、前記近似透視画像算出ステップは、予めグリッド箔影が映るように配置された画素以外の全ての画素の検出信号値を抽出して補間処理を実施し、
     前記画像処理モード選択ステップにより特殊補正モードが選択された場合、前記近似透視画像算出ステップは、箔影が移動しても箔影が映らないグリッド箔間の中央に位置する画素の検出信号値を抽出して補間処理を実施する
     ことを特徴とするグリッド箔影除去方法。
    In the grid foil shadow removal method according to any one of claims 1 to 5,
    Image processing for selecting either the normal correction mode in which the movement of the foil shadow between the pixels is not corrected or the special correction mode in which the movement of the foil shadow between the pixels is corrected based on the input SID amount and the movement amount of the C-shaped arm A mode selection step;
    When the normal correction mode is selected in the image processing mode selection step, the approximate perspective image calculation step extracts and interpolates the detection signal values of all the pixels other than the pixels arranged in advance so that the grid foil shadow is reflected. Process,
    When the special correction mode is selected in the image processing mode selection step, the approximate perspective image calculation step calculates the detection signal value of the pixel located at the center between the grid foils where the foil shadow does not appear even if the foil shadow moves. A grid foil shadow removal method characterized by extracting and performing interpolation processing.
  7.  放射線撮影装置において、
     被検体に放射線を照射する放射線照射手段と、
     被検体を透過した放射線を検出する画素を2次元アレイ状に配置した放射線検出手段と、
     グリッド箔影が前記画素の中央に映るように一定間隔に配置された同期型グリッドと、
     被検体を透過して検出した透視画像からグリッド箔影の影響を受けていない画素集合を抽出して補間処理を施して近似透視画像を算出する近似透視画像算出部と、
     前記透視画像と前記近似透視画像との差を求めてグリッド箔影画像を求めるグリッド箔影画像算出部と、
     前記グリッド箔影画像をグリッド箔影の長さ方向に平均化してグリッド箔影標準画像を求める箔影標準画像算出部と、
     前記グリッド箔影標準画像を基に前記透視画像から前記グリッド箔影を除去して箔影除去画像を求める箔影除去画像算出部と
     を備えたことを特徴とする放射線撮影装置。
    In radiography equipment,
    Radiation irradiation means for irradiating the subject with radiation;
    Radiation detecting means in which pixels for detecting radiation transmitted through the subject are arranged in a two-dimensional array;
    A synchronous grid arranged at regular intervals so that a grid foil shadow is reflected in the center of the pixel;
    An approximate fluoroscopic image calculation unit that extracts a set of pixels that are not affected by the grid foil shadow from a fluoroscopic image detected through the subject and performs an interpolation process to calculate an approximate fluoroscopic image;
    A grid foil shadow image calculation unit for obtaining a grid foil shadow image by obtaining a difference between the perspective image and the approximate perspective image;
    A foil shadow standard image calculating unit that averages the grid foil shadow image in the length direction of the grid foil shadow to obtain a grid foil shadow standard image;
    A radiation imaging apparatus comprising: a foil shadow removal image calculation unit that obtains a foil shadow removal image by removing the grid foil shadow from the fluoroscopic image based on the grid foil shadow standard image.
  8.  請求項7に記載の放射線撮影装置において、
     前記箔影除去画像算出部は、前記透視画像と前記グリッド箔影標準画像との差分により前記箔影除去画像を求める
     ことを特徴とする放射線撮影装置。
    The radiation imaging apparatus according to claim 7,
    The radiographic apparatus according to claim 1, wherein the foil shadow removal image calculation unit obtains the foil shadow removal image based on a difference between the fluoroscopic image and the grid foil shadow standard image.
  9.  請求項7に記載の放射線撮影装置において、
     前記箔影除去画像算出部は、
     前記グリッド箔影画像と前記グリッド箔影標準画像との差を求めて誤差成分画像を求める誤差成分画像算出部と、
     前記透視画像と前記誤差成分画像との差を求めて箔影歪み除去画像を求める箔影歪み除去画像算出部と、
     前記箔影歪み除去画像に周波数変換処理を施してグリッド箔影を除去する周波数変換処理部と
     を備えたことを特徴とする放射線撮影装置。
    The radiation imaging apparatus according to claim 7,
    The foil shadow removal image calculation unit,
    An error component image calculation unit for obtaining an error component image by obtaining a difference between the grid foil shadow image and the grid foil shadow standard image;
    A foil shadow distortion removed image calculating unit for obtaining a difference between the perspective image and the error component image to obtain a foil shadow distortion removed image;
    A radiation imaging apparatus comprising: a frequency conversion processing unit that performs frequency conversion processing on the foil shadow distortion-removed image to remove grid foil shadows.
  10.  請求項7から9のいずれか1つに記載の放射線撮影装置において、
     SID量およびC型アームの移動量を入力設定する入力部と、
     設定入力されたSID量およびC型アームの移動量より通常補正モードまたは特殊補正モードのいずれかの補正モードを選択する補正モード選択部とを備え、
     前記近似透視画像算出部は、前記補正モードが通常補正モードを選択した場合、予めグリッド箔影が映るように配置された画素以外の全ての画素の検出信号値を抽出して補間処理を実施し、前記補正モードが特殊補正モードを選択した場合、箔影が移動しても箔影が映らないグリッド箔間の中央に位置する画素の検出信号値を抽出して補間処理を実施する
     ことを特徴とする放射線撮影装置。
    The radiographic apparatus according to any one of claims 7 to 9,
    An input unit for inputting and setting the SID amount and the movement amount of the C-shaped arm;
    A correction mode selection unit that selects either the normal correction mode or the special correction mode based on the input SID amount and the movement amount of the C-arm,
    When the normal correction mode is selected as the correction mode, the approximate perspective image calculation unit extracts the detection signal values of all the pixels other than the pixels previously arranged so that the grid foil shadow is reflected, and performs an interpolation process. When the special correction mode is selected as the correction mode, the detection signal value of the pixel located at the center between the grid foils where the foil shadow does not appear even if the foil shadow moves is extracted and interpolation processing is performed. Radiation imaging device.
  11.  請求項7から10のいずれか1つに記載の放射線撮影装置において、
     前記箔影標準画像算出部にて算出された箔影標準画像を、行ごとに、前記グリッド箔が配置された一定間隔内にある画素数ごとに抽出して分割した行データを作成し、前記行データを平滑化して元の箔影標準画像と置き換える平滑化部
     を備えたことを特徴とする放射線撮影装置。
    The radiographic apparatus according to any one of claims 7 to 10,
    The foil shadow standard image calculated by the foil shadow standard image calculation unit is created for each row, creating row data divided by extracting for each number of pixels within a predetermined interval where the grid foil is arranged, and A radiation imaging apparatus comprising a smoothing unit that smoothes line data and replaces the original foil shadow standard image.
  12.  請求項7から11のいずれか1つに記載の放射線撮影装置において、
     前記同期型グリッドと前記放射線検出器とは、グリッド箔影が4画素おきに映るように予め配置されている
     ことを特徴とする放射線撮影装置。
    The radiation imaging apparatus according to any one of claims 7 to 11,
    The radiographic apparatus according to claim 1, wherein the synchronous grid and the radiation detector are arranged in advance so that a grid foil shadow is reflected every four pixels.
PCT/JP2010/003221 2009-05-22 2010-05-12 Method of removing the foil shadow of a synchronisation type grid, and radiation image pickup device employing the same WO2010134295A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/321,624 US8559754B2 (en) 2009-05-22 2010-05-12 Method of removing foil shadows of a synchronous grid, and a radiographic apparatus using the same
JP2011514318A JP5278544B2 (en) 2009-05-22 2010-05-12 Synchronous grid foil shadow removal method and radiation imaging apparatus using the same
CN201080022446.4A CN102438526B (en) 2009-05-22 2010-05-12 Method of removing the foil shadow of a synchronisation type grid, and radiation image pickup device employing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009124466 2009-05-22
JP2009-124466 2009-05-22

Publications (1)

Publication Number Publication Date
WO2010134295A1 true WO2010134295A1 (en) 2010-11-25

Family

ID=43125988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003221 WO2010134295A1 (en) 2009-05-22 2010-05-12 Method of removing the foil shadow of a synchronisation type grid, and radiation image pickup device employing the same

Country Status (4)

Country Link
US (1) US8559754B2 (en)
JP (1) JP5278544B2 (en)
CN (1) CN102438526B (en)
WO (1) WO2010134295A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102525512A (en) * 2010-12-13 2012-07-04 株式会社岛津制作所 Method of removing foil shadows of a synchronous grid, and a radiographic apparatus
WO2013140445A1 (en) * 2012-03-21 2013-09-26 株式会社島津製作所 Radiographic apparatus
JP2014042559A (en) * 2012-08-24 2014-03-13 Shimadzu Corp Method for removing radiation grid foil shadow and radiographic apparatus
JP2014131545A (en) * 2013-01-07 2014-07-17 Shimadzu Corp Radiographic apparatus
JP2017035204A (en) * 2015-08-07 2017-02-16 株式会社島津製作所 Image processing method and fluoroscopic apparatus
JP2021519133A (en) * 2018-03-27 2021-08-10 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Devices, systems and methods for controlling the position of the scattered radiation removal grid in an X-ray image acquisition system.

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011088265B4 (en) * 2011-12-12 2017-10-19 Siemens Healthcare Gmbh Method for correcting image artifacts due to a scattered radiation grid
JP2016220934A (en) * 2015-05-29 2016-12-28 キヤノン株式会社 Image processing device, image processing system, image processing method, and program
CN105832359B (en) * 2016-03-22 2018-10-19 广州七喜医疗设备有限公司 A kind of method of adaptive x-ray grid grid shadow removal
WO2018193576A1 (en) * 2017-04-20 2018-10-25 株式会社島津製作所 Radiographic image processing apparatus and radiographic image processing method
JP7317639B2 (en) * 2019-09-05 2023-07-31 富士フイルムヘルスケア株式会社 Radiation image processing system and image processing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002257939A (en) * 2001-03-06 2002-09-11 Shimadzu Corp Two-dimensional radiation detector, method of manufacturing it, and method of correcting it
JP2002330343A (en) * 2001-05-01 2002-11-15 Canon Inc Radiation image processing unit, image processing system, radiation image processing method, recording medium, and program
JP2003150954A (en) * 2001-11-14 2003-05-23 Fuji Photo Film Co Ltd Cyclic pattern restraining processing method and device
WO2007139115A1 (en) * 2006-05-31 2007-12-06 Shimadzu Corporation Radiation image pick-up device
JP2008220657A (en) * 2007-03-13 2008-09-25 Shimadzu Corp Radiographic apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000083951A (en) 1998-09-11 2000-03-28 Canon Inc X-ray radiographic device and grid device
US7239908B1 (en) * 1998-09-14 2007-07-03 The Board Of Trustees Of The Leland Stanford Junior University Assessing the condition of a joint and devising treatment
JP3608448B2 (en) * 1999-08-31 2005-01-12 株式会社日立製作所 Treatment device
EP2284795A2 (en) * 2001-03-08 2011-02-16 Universite Joseph Fourier Quantitative analysis, visualization and motion correction in dynamic processes
US7496619B2 (en) * 2002-06-18 2009-02-24 Vanderbilt University System and methods of nonuniform data sampling and data reconstruction in shift invariant and wavelet spaces
WO2005001500A1 (en) * 2003-06-27 2005-01-06 976076 Alberta Inc. Synthetic aperture mri
JP5482640B2 (en) * 2010-12-13 2014-05-07 株式会社島津製作所 Synchronous grid foil shadow removal method and radiation imaging apparatus using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002257939A (en) * 2001-03-06 2002-09-11 Shimadzu Corp Two-dimensional radiation detector, method of manufacturing it, and method of correcting it
JP2002330343A (en) * 2001-05-01 2002-11-15 Canon Inc Radiation image processing unit, image processing system, radiation image processing method, recording medium, and program
JP2003150954A (en) * 2001-11-14 2003-05-23 Fuji Photo Film Co Ltd Cyclic pattern restraining processing method and device
WO2007139115A1 (en) * 2006-05-31 2007-12-06 Shimadzu Corporation Radiation image pick-up device
JP2008220657A (en) * 2007-03-13 2008-09-25 Shimadzu Corp Radiographic apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102525512A (en) * 2010-12-13 2012-07-04 株式会社岛津制作所 Method of removing foil shadows of a synchronous grid, and a radiographic apparatus
US8737568B2 (en) 2010-12-13 2014-05-27 Shimadzu Corporation Method of removing foil shadows of a synchronous grid, and a radiographic apparatus using the same
WO2013140445A1 (en) * 2012-03-21 2013-09-26 株式会社島津製作所 Radiographic apparatus
JPWO2013140445A1 (en) * 2012-03-21 2015-08-03 株式会社島津製作所 Radiography equipment
US9480452B2 (en) 2012-03-21 2016-11-01 Shimadzu Corporation Radiographic apparatus including a bending constant calculating device and a twisting constant calculation device
JP2014042559A (en) * 2012-08-24 2014-03-13 Shimadzu Corp Method for removing radiation grid foil shadow and radiographic apparatus
JP2014131545A (en) * 2013-01-07 2014-07-17 Shimadzu Corp Radiographic apparatus
JP2017035204A (en) * 2015-08-07 2017-02-16 株式会社島津製作所 Image processing method and fluoroscopic apparatus
JP2021519133A (en) * 2018-03-27 2021-08-10 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Devices, systems and methods for controlling the position of the scattered radiation removal grid in an X-ray image acquisition system.

Also Published As

Publication number Publication date
CN102438526B (en) 2014-05-28
CN102438526A (en) 2012-05-02
US20120063699A1 (en) 2012-03-15
JPWO2010134295A1 (en) 2012-11-08
JP5278544B2 (en) 2013-09-04
US8559754B2 (en) 2013-10-15

Similar Documents

Publication Publication Date Title
JP5278544B2 (en) Synchronous grid foil shadow removal method and radiation imaging apparatus using the same
WO2013005833A1 (en) X-ray imaging device and calibration method therefor
JP6187298B2 (en) X-ray imaging system and image processing method
JP5407774B2 (en) Radiography equipment
JP6369206B2 (en) X-ray imaging system and image processing apparatus
US20110274252A1 (en) Radiographic apparatus
US20040264635A1 (en) System and method for scanning an object in tomosynthesis applications
US8983029B2 (en) Radiographic apparatus and method for the same
JP4408664B2 (en) Cone beam X-ray CT apparatus and phantom used therefor
JP2013013651A (en) X-ray imaging device and calibration method therefor
JP6394082B2 (en) X-ray inspection equipment
JP2011019712A (en) X-ray equipment
JP5884680B2 (en) Foil shadow removal method of radiation grid and radiation imaging apparatus using the same
JP6451400B2 (en) Image processing system and image processing apparatus
JP5482640B2 (en) Synchronous grid foil shadow removal method and radiation imaging apparatus using the same
JP5239585B2 (en) X-ray imaging device
JP2017189240A (en) X-ray detector and X-ray diagnostic apparatus
CN110987979A (en) X-ray imaging apparatus
JP2011080971A (en) Ct equipment
JP6413685B2 (en) X-ray imaging system
JP6365746B2 (en) Image processing apparatus, X-ray imaging system, and image processing method
JP2017006595A (en) Image processing apparatus, tomographic image generation system, and program
JP5334657B2 (en) Radiation image processing apparatus and method, and program
JP2012055606A (en) X-ray ct device
JP5365475B2 (en) Radiation imaging device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080022446.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10777534

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011514318

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13321624

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10777534

Country of ref document: EP

Kind code of ref document: A1