JP2011080971A - Ct equipment - Google Patents

Ct equipment Download PDF

Info

Publication number
JP2011080971A
JP2011080971A JP2009248233A JP2009248233A JP2011080971A JP 2011080971 A JP2011080971 A JP 2011080971A JP 2009248233 A JP2009248233 A JP 2009248233A JP 2009248233 A JP2009248233 A JP 2009248233A JP 2011080971 A JP2011080971 A JP 2011080971A
Authority
JP
Japan
Prior art keywords
tube
tube current
ray
distance
tube voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009248233A
Other languages
Japanese (ja)
Inventor
Teruo Yamamoto
輝夫 山本
Junichi Iwazawa
純一 岩澤
Masaji Fujii
正司 藤井
Ryosuke Yamaoka
亮介 山岡
Masami Nagano
雅実 長野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba IT and Control Systems Corp
Original Assignee
Toshiba IT and Control Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba IT and Control Systems Corp filed Critical Toshiba IT and Control Systems Corp
Priority to JP2009248233A priority Critical patent/JP2011080971A/en
Publication of JP2011080971A publication Critical patent/JP2011080971A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a CT equipment capable of readily setting the tube voltage and tube current. <P>SOLUTION: The CT equipment with a reconfiguration section 9f for reconfiguring the cross-sectional-image of an object 5 to be inspected from transmission images detected at a plurality of rotation positions includes an X-ray control unit 8 for controlling the tube voltage and the tube current of an X-ray tube 1 at set values; a shift mechanism 7 for changing the distance between the X-ray tube 1 and an X-ray detector 3 to set; and a photographic condition setting section 9d for setting, when a plurality of combinations of respective references of the tube voltage, the tube current, and the distance are stored and a single combination of the plurality of combinations of a tube voltage Vj, a tube current Ij, and a distance FDDj is selected and a distance FDD is set, the tube voltage V at a tube voltage Vj to change to set the tube current I from the tube current Ij to a value which corresponds to the distance FDDj and the distance FDD set. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、被検体の断面像を撮影するコンピュータ断層撮影装置(以下、CT(Computed Tomography)装置と記載する)に関する。  The present invention relates to a computed tomography apparatus (hereinafter referred to as a CT (Computed Tomography) apparatus) that captures a cross-sectional image of a subject.

回転のみを行う所謂RR(Rotate Rotate)方式(第三世代方式)のCT装置は、放射線源から発生する放射線(X線)を被検体に向けて照射し、被検体を放射線の光軸の方向に対し交差する回転軸で放射線に対して相対的に回転させ、一回転中の所定回転位置ごとに被検体から透過してくる放射線を1次元あるいは2次元の複数検出チャンネルを有する放射線検出器で検出し、この検出器出力から被検体の断面像ないし3次元データを得る(断層撮影する)ものである。  A so-called RR (Rotate Rotate) (third generation) CT apparatus that performs only rotation irradiates a subject with radiation (X-rays) generated from a radiation source, and the subject is in the direction of the optical axis of the radiation. A radiation detector having a plurality of one-dimensional or two-dimensional detection channels that rotate relative to the radiation at a rotation axis that intersects with respect to the radiation and transmits the radiation transmitted from the subject at each predetermined rotational position during one rotation. Detection is performed, and a cross-sectional image or three-dimensional data of the subject is obtained (tomographic imaging) from the detector output.

図4に従来例として、特許文献1に記載されているCT装置の構成を示す(正面図)。X線管101と、ここから発生する角錐状のX線ビーム102を2次元の分解能で検出するX線検出器103が対向して配置され、このX線ビーム102に入るようにテーブル104上に載置された被検体105の透過像(透過データ)を得るようになっている。  FIG. 4 shows a configuration of a CT apparatus described in Patent Document 1 as a conventional example (front view). An X-ray tube 101 and an X-ray detector 103 that detects a pyramid-shaped X-ray beam 102 generated from the X-ray tube 101 with a two-dimensional resolution are arranged to face each other, and are placed on a table 104 so as to enter the X-ray beam 102. A transmission image (transmission data) of the placed subject 105 is obtained.

テーブル104は回転・昇降機構106上に配置され、被検体105の断面像を撮影する時は、テーブル104を回転軸RAに対し回転・昇降機構106により1回転させながら多数の方向について透過像を得る(スキャンと言う)。この多数の透過像を制御処理部107で処理して被検体105の断面像(1枚ないし多数枚)を得る。  The table 104 is disposed on the rotation / elevation mechanism 106, and when taking a cross-sectional image of the subject 105, transmission images are displayed in a number of directions while the table 104 is rotated once by the rotation / elevation mechanism 106 with respect to the rotation axis RA. Get (referred to as scanning). The multiple transmission images are processed by the control processing unit 107 to obtain cross-sectional images (one or many) of the subject 105.

さらに、回転軸RAおよびX線検出器103はシフト機構108によりX線管101のX線焦点Fに近づけあるいは遠ざける(シフトする)ことができ、撮影距離FCD(Focus to rotation Center Distance)と検出距離FDD(Focus to Detector Distance)を変えて、目的に応じて撮影倍率(=FDD/FCD)を変更できるようになっている。  Further, the rotation axis RA and the X-ray detector 103 can be moved closer to or away from (shifted to) the X-ray focal point F of the X-ray tube 101 by the shift mechanism 108, and the imaging distance FCD (Focus to rotation Center Distance) and the detection distance. The imaging magnification (= FDD / FCD) can be changed according to the purpose by changing FDD (Focus to Detector Distance).

また、X線管101の管電圧と管電流はX線制御部109により被検体105に合わせて自由に設定でき、被検体を十分透過する管電圧と、X線検出器103の最大出力(空気部の出力)が飽和しない管電流が設定される。  Further, the tube voltage and tube current of the X-ray tube 101 can be freely set according to the subject 105 by the X-ray control unit 109, the tube voltage that sufficiently passes through the subject, and the maximum output (air) of the X-ray detector 103. The tube current that does not saturate the output is set.

特開2002−62268号公報JP 2002-62268 A

従来のCT装置で、撮影前の撮影条件設定は次のように行っている。  In the conventional CT apparatus, the imaging condition setting before imaging is performed as follows.

まず、被検体105をテーブル104に載置し、X線を放射させ、X線検出器が出力する透過像をリアルタイムで制御処理部107に表示させ、これを目視しながら、被検体105を十分透過する管電圧と、明るさが飽和しない管電流を設定し、透過像が良く見える状態とする。次に、FCDとFDDを調整し、被検体105の所望する部分が所望する撮影倍率でX線検出器103の視野に納まるようにする。  First, the subject 105 is placed on the table 104, X-rays are emitted, and a transmission image output from the X-ray detector is displayed on the control processing unit 107 in real time. The transmitted tube voltage and the tube current that does not saturate the brightness are set so that the transmitted image can be seen well. Next, the FCD and FDD are adjusted so that a desired portion of the subject 105 is within the field of view of the X-ray detector 103 at a desired imaging magnification.

上述した撮影条件設定で、従来のCT装置の第一の問題点は、管電圧設定において、透過像を目視しつつ管電圧と管電流の両方を調整しなければならないことである。  In the above-described imaging condition setting, the first problem of the conventional CT apparatus is that in tube voltage setting, both the tube voltage and the tube current must be adjusted while viewing the transmission image.

また、第二の問題点は、撮影倍率の調整において、FDDの変更に伴って透過像の明るさが変わり、暗すぎたり飽和したりするので、管電流を調整しながら透過像を目視しつつFCDとFDDの調整を行なう必要があり操作が煩わしいことである。  The second problem is that in adjusting the photographing magnification, the brightness of the transmitted image changes with the change of the FDD and becomes too dark or saturated, so that the transmitted image can be visually observed while adjusting the tube current. It is necessary to adjust the FCD and FDD, and the operation is troublesome.

本発明の目的は、管電圧と管電流の設定を容易にしたCT装置を提供することである。  An object of the present invention is to provide a CT apparatus that facilitates the setting of tube voltage and tube current.

上記目的を達成するため、本発明に係る請求項1記載のCT装置は、被検体に向けてX線を放射するX線源と、前記被検体を透過したX線を検出して透過像として出力するX線検出手段と、前記X線と交差する回転軸に対し前記被検体と前記X線とを相対的に回転させる回転手段と、複数の前記回転の位置で検出された透過像から前記被検体の断面像を再構成する再構成手段を有するCT装置において、前記X線源の管電圧と管電流を設定された値に制御するX線制御手段と、前記X線源と前記X線検出手段との距離を変更して設定するシフト機構と、前記管電圧,前記管電流,前記距離それぞれの基準値の組み合わせを複数組記憶し、前記複数組の内の一組である管電圧Vj,管電流Ij,距離FDDjが選択され、かつ前記距離FDDが設定された場合に、管電圧Vを前記管電圧Vjに設定し、管電流Iを前記管電流Ijから前記距離FDDj及び前記設定された距離FDDに応じて変更して設定するX線条件設定手段と、を有することを要旨とする。  In order to achieve the above object, a CT apparatus according to claim 1 of the present invention detects an X-ray source that emits X-rays toward a subject, and detects X-rays transmitted through the subject as a transmission image. X-ray detection means for outputting, rotation means for rotating the subject and the X-ray relatively with respect to a rotation axis intersecting with the X-ray, and the transmission images detected at a plurality of rotation positions. In a CT apparatus having reconstruction means for reconstructing a cross-sectional image of a subject, X-ray control means for controlling the tube voltage and tube current of the X-ray source to set values, the X-ray source, and the X-ray A shift mechanism for changing and setting the distance to the detection means, and a plurality of combinations of reference values of the tube voltage, the tube current, and the distance are stored, and a tube voltage Vj that is one of the plurality of sets is stored. , Tube current Ij, distance FDDj are selected and the distance FDD is X-ray condition setting means for setting the tube voltage V to the tube voltage Vj and changing the tube current I from the tube current Ij according to the distance FDDj and the set distance FDD. The gist is to have.

この構成により、管電圧Vの設定において、基準値Vjを選択するだけで自動的に、管電圧Vと管電流Iが設定され、管電流Iの手動設定が不要である。  With this configuration, in setting the tube voltage V, the tube voltage V and the tube current I are automatically set only by selecting the reference value Vj, and manual setting of the tube current I is unnecessary.

さらに、この構成により、撮影倍率(FCDとFDD)の調整において、FDDの変化に対し、自動的に管電流Iを、IjからFDDj及び設定されたFDDに応じて変更して設定するので、X線検出手段の最大出力を一定に保つことができ、調整が容易である。  Further, according to this configuration, in the adjustment of the photographing magnification (FCD and FDD), the tube current I is automatically changed from Ij to FDDj and the set FDD in response to the change in FDD. The maximum output of the line detection means can be kept constant and adjustment is easy.

本発明に係る請求項2記載のCT装置は、被検体に向けてX線を放射するX線源と、前記被検体を透過したX線を検出して透過像として出力するX線検出手段と、前記X線と交差する回転軸に対し前記被検体と前記X線とを相対的に回転させる回転手段と、複数の前記回転の位置で検出された透過像から前記被検体の断面像を再構成する再構成手段を有するCT装置において、前記X線源の管電圧と管電流を設定された値に制御するX線制御手段と、前記X線源と前記X線検出手段との距離を変更して設定するシフト機構と、前記管電圧,前記管電流,前記距離それぞれが初期値である管電圧Vj,管電流Ij,距離FDDjに設定され、かつ前記初期値の設定の後に前記距離FDDjが距離FDDに変更された場合に、管電圧Vを前記管電圧Vjに設定し、管電流Iを前記管電流Ijから前記距離FDDj及び前記変更された距離FDDに応じて変更して設定するX線条件設定手段と、を有することを要旨とする。  A CT apparatus according to a second aspect of the present invention includes an X-ray source that emits X-rays toward the subject, and an X-ray detection unit that detects the X-rays that have passed through the subject and outputs them as a transmission image. , A rotating means for rotating the subject and the X-ray relative to a rotation axis intersecting the X-ray, and a cross-sectional image of the subject is reproduced from a plurality of transmission images detected at the rotational positions. In a CT apparatus having a reconfiguring means to configure, the X-ray control means for controlling the tube voltage and tube current of the X-ray source to set values, and the distance between the X-ray source and the X-ray detection means is changed. The tube voltage, the tube current, and the distance are set to the initial values of the tube voltage Vj, the tube current Ij, and the distance FDDj, respectively, and the distance FDDj is set after the initial values are set. When the distance FDD is changed, the tube voltage V is changed to the tube voltage. Set vj, is summarized in that with the X-ray condition setting means for setting and change according to the tube current I from the tube current Ij distance FDDj and the changed distance FDD.

この構成により、管電圧と管電流とFDDの初期値設定(Vj,Ij,FDDj)をした後、撮影倍率(FCDとFDD)の調整において、FDDの変化に対し、自動的に管電流Iを、IjからFDDj及び設定されたFDDに応じて変更して設定するので、X線検出手段の最大出力を一定に保つことができ、調整が容易である。  With this configuration, after setting the initial values (Vj, Ij, FDDj) of the tube voltage, tube current, and FDD, the tube current I is automatically adjusted with respect to changes in FDD in the adjustment of the photographing magnification (FCD and FDD). , Ij is changed according to FDDj and the set FDD, so that the maximum output of the X-ray detection means can be kept constant, and adjustment is easy.

本発明に係る請求項3記載のCT装置は、請求項1または請求項2に記載のCT装置において、前記X線条件設定手段は、前記管電流Iを、式1、I=Ij・(FDD/FDDj)で求めた値に変更して設定することを要旨とする。A CT apparatus according to a third aspect of the present invention is the CT apparatus according to the first or second aspect, wherein the X-ray condition setting means calculates the tube current I by the formula 1, I = Ij · (FDD / FDDj) The gist is to change and set the value obtained in 2 .

この構成により、FDDの変化に対し、自動的に管電流Iを、具体的に式1で変更して設定するので、X線検出手段の最大出力を一定に保つことができる。なお、X線検出手段の出力はI/FDDに比例することから、式1のようにIをFDDに比例させて変化させれば出力は一定になる。With this configuration, the tube current I is automatically changed and set according to Formula 1 in response to changes in FDD, so that the maximum output of the X-ray detection means can be kept constant. Since the output of the X-ray detection means is proportional to I / FDD 2 , if I is changed in proportion to FDD 2 as in Equation 1, the output becomes constant.

本発明に係る請求項4記載のCT装置は、請求項3に記載のCT装置において、前記X線条件設定手段は、前記管電圧における前記管電流の下限値を記憶し、前記管電圧Vjにおける管電流下限値IjLを用いて、前記式1で求めた管電流Iが前記管電流下限値IjLより小さい場合、前記管電圧Vを、式2、V=Vj・(I/IjL)1/γで求めた値に設定し、前記管電流Iを式2で求めた管電圧Vにおける管電流下限値に設定することを要旨とする。A CT apparatus according to a fourth aspect of the present invention is the CT apparatus according to the third aspect, wherein the X-ray condition setting means stores a lower limit value of the tube current at the tube voltage, and at the tube voltage Vj. When the tube current I obtained by the equation 1 is smaller than the tube current lower limit value IjL using the tube current lower limit value IjL, the tube voltage V is expressed by the equation 2, V = Vj · (I / IjL) 1 / γ The gist is to set the tube current I to the tube current lower limit value at the tube voltage V obtained by the equation (2).

本発明に係る請求項5記載のCT装置は、請求項3に記載のCT装置において、前記X線条件設定手段は、前記管電圧における前記管電流の上限値を記憶し、前記管電圧Vjにおける管電流上限値IjUを用いて、前記式1で求めた管電流Iが前記管電流上限値IjUより大きい場合、前記管電圧Vを、式3、V=Vj・(I/IjU)1/γで求めた値に設定し、前記管電流Iを式3で求めた管電圧Vにおける管電流上限値に設定することを要旨とする。The CT apparatus according to claim 5 of the present invention is the CT apparatus according to claim 3, wherein the X-ray condition setting means stores an upper limit value of the tube current at the tube voltage, and at the tube voltage Vj. When the tube current I obtained by the above equation 1 using the tube current upper limit value IjU is larger than the tube current upper limit value IjU, the tube voltage V is expressed by the equation 3, V = Vj · (I / IjU) 1 / γ The gist is to set the tube current I to the tube current upper limit value at the tube voltage V obtained by Equation 3.

請求項4,5記載の構成により、撮影倍率(FCDとFDD)の調整において、自動設定する管電流が下限以下、あるいは上限以上となる場合に、管電圧Vを、自動的に式2、あるいは式3により変更して設定することで、X線検出手段の最大出力を一定に保つことができ、調整が容易である。なお、X線検出手段の出力はI・Vγに比例するので、式2,3のようにVを(1/I)1/γに比例させて変化させれば出力は一定になる。According to the configurations of claims 4 and 5, when the tube current to be automatically set is lower than the lower limit or higher than the upper limit in the adjustment of the photographing magnification (FCD and FDD), the tube voltage V is automatically set to the formula 2 or By changing and setting using Equation 3, the maximum output of the X-ray detection means can be kept constant and adjustment is easy. Since the output of the X-ray detection means is proportional to I · V γ , the output becomes constant if V is changed in proportion to (1 / I) 1 / γ as in Equations 2 and 3.

本発明によれば、管電圧と管電流の設定を容易にしたCT装置を提供することができる。  ADVANTAGE OF THE INVENTION According to this invention, the CT apparatus which made easy the setting of a tube voltage and a tube current can be provided.

本発明の第一の実施形態に係るCT装置の構成を示した模式図(正面図)。The schematic diagram (front view) which showed the structure of CT apparatus concerning 1st embodiment of this invention. 第一の実施形態における撮影条件設定(プリセットモード)のフロー図。FIG. 3 is a flowchart of shooting condition setting (preset mode) in the first embodiment. 第一の実施形態における撮影条件設定(手動モード)のフロー図。FIG. 5 is a flowchart of shooting condition setting (manual mode) in the first embodiment. 従来のCT装置の構成を示した模式図(正面図)。The schematic diagram (front view) which showed the structure of the conventional CT apparatus.

以下、図面を参照して、本発明の実施形態を説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(本発明の第一の実施の形態の構成)
以下、本発明の第一の実施形態の構成について図1を参照して説明する。図1は本発明の第一の実施形態に係るCT装置の構成を示した模式図(正面図)である。
(Configuration of the first embodiment of the present invention)
The configuration of the first embodiment of the present invention will be described below with reference to FIG. FIG. 1 is a schematic view (front view) showing the configuration of a CT apparatus according to the first embodiment of the present invention.

X線管(X線源)1と、X線管1のX線焦点Fより放射されたX線の一部である角錐状のX線ビーム(X線)2を2次元の分解能で検出するX線検出器(X線検出手段)3とが対向して配置され、このX線ビーム2に入るようにテーブル4上に載置された被検体5を透過したX線ビーム2がX線検出器3により検出され、透過像(透過データ)として出力される。  An X-ray tube (X-ray source) 1 and a pyramid-shaped X-ray beam (X-ray) 2 that is a part of the X-ray emitted from the X-ray focal point F of the X-ray tube 1 are detected with two-dimensional resolution. An X-ray detector (X-ray detection means) 3 is arranged to face the X-ray beam 2 that has passed through the subject 5 placed on the table 4 so as to enter the X-ray beam 2. Detected by the device 3 and output as a transmission image (transmission data).

テーブル4は回転・昇降機構(回転手段)6上に配置され、回転・昇降機構6によりX線ビーム2の中央のX線光軸Lと垂直に交差する回転軸RAに対して回転されるとともに、回転軸RAと平行なz方向にz移動(昇降)される。  The table 4 is disposed on a rotation / elevation mechanism (rotation means) 6 and is rotated by a rotation / elevation mechanism 6 with respect to a rotation axis RA perpendicular to the central X-ray optical axis L of the X-ray beam 2. The z is moved (lifted / lowered) in the z direction parallel to the rotation axis RA.

さらに、シフト機構7は回転軸RAおよびX線検出器3を位置決めし、撮影距離FCD(Focus to rotation Center Distance)と検出距離FDD(Focus to Detector Distance)(距離)を設定するとともに、回転軸RAおよびX線検出器3をX線管1に近づけあるいは遠ざけて撮影距離FCD、検出距離FDDを変更する。  Further, the shift mechanism 7 positions the rotation axis RA and the X-ray detector 3, sets an imaging distance FCD (Focus to rotation Center Distance) and a detection distance FDD (Focus to Detector Distance) (distance), and rotates the rotation axis RA. Then, the X-ray detector 3 is moved closer to or away from the X-ray tube 1 to change the imaging distance FCD and the detection distance FDD.

ここで、シフト機構7は目的に応じて撮影倍率(=FDD/FCD)を変更するために用いられ、回転・昇降機構6のz移動(昇降)は被検体5の着目部をX線ビーム2の高さに合わせるのに用いられる。また、回転・昇降機構6の回転は断面像を撮影する場合に被検体5をX線ビーム2に対し回転させて、多数の方向について透過像を得るために用いられる。  Here, the shift mechanism 7 is used to change the imaging magnification (= FDD / FCD) according to the purpose, and the z movement (up / down) of the rotation / lifting mechanism 6 moves the target portion of the subject 5 to the X-ray beam 2. Used to adjust to the height of The rotation of the rotation / lifting mechanism 6 is used to obtain a transmission image in a number of directions by rotating the subject 5 with respect to the X-ray beam 2 when taking a cross-sectional image.

シフト機構7は、エンコーダ(図示省略)によりFCDとFDDを測定して出力し、回転・昇降機構6は、同様に、エンコーダ(図示省略)により回転角度φと昇降位置zを測定し出力する。  The shift mechanism 7 measures and outputs FCD and FDD by an encoder (not shown), and the rotation / lifting mechanism 6 similarly measures and outputs the rotation angle φ and the lifting position z by an encoder (not shown).

X線制御部(X線制御手段)8は、X線管1に対し、設定された管電圧と管電流を印加して、X線ビーム2を放射させるようにX線管1を制御する。  The X-ray control unit (X-ray control means) 8 applies the set tube voltage and tube current to the X-ray tube 1 and controls the X-ray tube 1 to emit the X-ray beam 2.

構成要素として、他に、各機構部(回転・昇降機構6、シフト機構7)を制御し、また、X線検出器3からの透過データを処理する制御処理部9、処理結果等を表示する表示部9a等がある。  As other components, each control unit (rotation / lifting mechanism 6 and shift mechanism 7) is controlled, and a control processing unit 9 for processing transmission data from the X-ray detector 3 and processing results are displayed. There is a display unit 9a and the like.

制御処理部9は通常のコンピュータで、CPU、メモリ、ディスク(不揮発メモリ)、表示部9a、入力部(キーボードやマウス等)9b、機構制御ボード、インターフェース、等より成っている。  The control processing unit 9 is a normal computer and includes a CPU, a memory, a disk (nonvolatile memory), a display unit 9a, an input unit (keyboard, mouse, etc.) 9b, a mechanism control board, an interface, and the like.

制御処理部9は、機構制御ボードにより、各機構部6,7が出力する動作位置の信号(FCD,FDD,φ,z)を受けて各機構部6,7を制御して被検体の位置合わせやスキャン(断層撮影走査)等を行わせる他、透過像の収集指令パルス等をX線検出器3に送る(制御する)。  The control processing unit 9 receives the operation position signals (FCD, FDD, φ, z) output from the mechanism units 6 and 7 by the mechanism control board, and controls the mechanism units 6 and 7 to position the subject. In addition to performing alignment, scanning (tomographic scanning), etc., a transmission image collection command pulse or the like is sent (controlled) to the X-ray detector 3.

また、制御処理部9は、撮影条件設定時に、X線検出器3からの透過像を取込み、表示部9aにリアルタイム表示し、断層撮影時には、X線検出器3からの透過像を収集し、記憶し、再構成処理して被検体の断面像を作成し、表示部9aに表示する。  The control processing unit 9 captures a transmission image from the X-ray detector 3 at the time of imaging condition setting and displays it on the display unit 9a in real time, and collects a transmission image from the X-ray detector 3 at the time of tomography. It memorize | stores and reconstructs, produces the cross-sectional image of a test object, and displays it on the display part 9a.

また、制御処理部9は、X線制御部8に指令を出し、管電圧、管電流を設定すると共に、X線の放射、停止の指示を行なう。管電圧、管電流は被検体に合わせて変えることができる。制御処理部9は、設定可能な管電圧と全ての設定可能な管電圧に対する管電流下限値及び管電流上限値を記憶しており、この範囲を超えて設定しないようにしている。  Further, the control processing unit 9 issues a command to the X-ray control unit 8 to set a tube voltage and a tube current, and to instruct X-ray emission and stop. The tube voltage and tube current can be changed according to the subject. The control processing unit 9 stores a settable tube voltage, a tube current lower limit value and a tube current upper limit value for all settable tube voltages, and does not set a value exceeding this range.

図1に示すように、制御処理部9はソフトウエアを読み込んでCPUが機能する機能ブロックとして、予め基準の管電圧・管電流を較正する較正制御部9c、断層撮影前に管電圧・管電流や幾何条件を設定する撮影条件設定部(X線条件設定手段)9d、断層撮影のスキャンをするためのスキャン制御部(スキャン制御手段)9eとスキャンで得られた透過データから断面像を作成する再構成部(再構成手段)9f、等を備えている。  As shown in FIG. 1, the control processing unit 9 reads the software as a functional block for the CPU to function as a calibration control unit 9c that calibrates the standard tube voltage / tube current in advance, and the tube voltage / tube current before tomography. A cross-sectional image is created from transmission data obtained by scanning and an imaging condition setting unit (X-ray condition setting unit) 9d for setting a geometric condition and a scan control unit (scan control unit) 9e for scanning tomography A reconstruction unit (reconstruction means) 9f is provided.

(第一の実施の形態の作用)
図2及び図3を参照して作用を説明する。
(Operation of the first embodiment)
The operation will be described with reference to FIGS.

作用は、
1.管電圧・管電流基準値の較正
2.撮影条件設定(プリセットモードまたは手動モード)
3.断層撮影
の順で行う。ここで、1の較正は予め一度行っておけばよいが、2の設定は断層撮影を行う毎に行うものである。
The action is
1. 1. Calibration of tube voltage and tube current reference values Shooting condition setting (preset mode or manual mode)
3. Perform in order of tomography. Here, calibration of 1 may be performed once in advance, but setting of 2 is performed every time tomography is performed.

<管電圧・管電流基準値の較正>
この較正は、較正制御部9cが、管電圧,管電流,検出距離それぞれのプリセット値(基準値)の組み合わせVj,Ij,FDDjをJ組(j=1,2,……,J)記憶する較正である。ここでVjはjが大きくなるほど大きくなるように任意に設定する。Jは3以上の任意の値である。
<Calibration of tube voltage and tube current reference values>
In this calibration, the calibration control unit 9c stores combinations Vj, Ij, and FDDj of preset values (reference values) of the tube voltage, tube current, and detection distance for J sets (j = 1, 2,..., J). Calibration. Here, Vj is arbitrarily set so as to increase as j increases. J is an arbitrary value of 3 or more.

j番目プリセット値の較正は次のように行う。
まず、操作者は、被検体の無い状態で管電圧をVjに、検出距離を任意の値FDDjに設定し、X線を放射させ、透過像を表示させる。透過像はデジタルのデータであり、明るい(X線量が多い)ほど大きな値で、0から飽和値(AD変換の最大値)までの値を持つ。操作者は、透過像(空気像)の値が、余裕をもって飽和せず、かつ、なるべく大きな値となるように、例えば透過像(空気像)の最大値部分(通常は中央部)の平均値が飽和値の90%となるように、管電流を調整し、この管電流をIjとして、Vj、Ij、FDDjを制御処理部9に記憶させる。ここで、FDDjは、管電流Ijが、Vjにおける設定可能な管電流下限値IjLと管電流上限値IjUの間になるように設定する必要がある。
以下、j=1,2,……,Jで同様に較正を行なう。<>終了
The j-th preset value is calibrated as follows.
First, the operator sets the tube voltage to Vj and the detection distance to an arbitrary value FDDj in the absence of the subject, emits X-rays, and displays a transmission image. The transmission image is digital data. The brighter the image (the larger the X-ray dose), the larger the value, and the value from 0 to the saturation value (the maximum value of AD conversion). The operator, for example, averages the maximum value portion (usually the central portion) of the transmitted image (air image) so that the value of the transmitted image (air image) does not saturate with a margin and becomes as large as possible. Is adjusted to 90% of the saturation value, and the tube current is set as Ij, and Vj, Ij, and FDDj are stored in the control processing unit 9. Here, FDDj needs to be set so that the tube current Ij is between the settable tube current lower limit value IjL and the tube current upper limit value IjU at Vj.
Thereafter, the calibration is similarly performed with j = 1, 2,. <> End

次に、操作者は、撮影条件設定を行うとき、プリセットモードまたは手動モードのどちらか1つを選んで行う。  Next, the operator selects one of the preset mode and the manual mode when setting the shooting conditions.

<撮影条件設定(プリセットモード)>
図2は第一の実施形態における撮影条件設定(プリセットモード)のフロー図である。この設定は、撮影条件設定部9dが行う。
<Shooting condition setting (preset mode)>
FIG. 2 is a flowchart of photographing condition setting (preset mode) in the first embodiment. This setting is performed by the photographing condition setting unit 9d.

ステップS1で、操作者は被検体5をテーブル4に載置し、任意のj番目のプリセット値Vj,Ij,FDDjを選択する。  In step S1, the operator places the subject 5 on the table 4 and selects an arbitrary j-th preset value Vj, Ij, FDDj.

ステップS2で、操作者は適当な検出距離FDDを設定し、撮影条件設定開始の指令を入力する。  In step S2, the operator sets an appropriate detection distance FDD and inputs a command to start shooting condition setting.

ステップS3で、撮影条件設定部9dは、管電圧VをVjに設定し、管電流Iをプリセット値と設定したFDDに応じて、式、
I=Ij・(FDD/FDDj) ………(1)
でIjから変更して設定する。
In step S3, the imaging condition setting unit 9d sets the tube voltage V to Vj and sets the tube current I as a preset value according to the FDD.
I = Ij · (FDD / FDDj) 2 (1)
Change from Ij and set.

ステップS4で、撮影条件設定部9dは、管電流Iが管電圧Vjにおける管電流下限値IjLより小さい場合、管電圧Vを、式、
V=VJ・(I/IjL)1/γ ………(2)
を計算して修正設定し、管電流Iを、求めたVにおける管電流下限値に設定する。ここで、γは2.0乃至2.4の値、例えば2.2を用いる。なお、γの値はX線フィルタの条件(厚みや材質)で最適値が異なる。
In step S4, when the tube current I is smaller than the tube current lower limit value IjL in the tube voltage Vj, the imaging condition setting unit 9d determines the tube voltage V as
V = VJ · (I / IjL) 1 / γ (2)
Is corrected and set, and the tube current I is set to the tube current lower limit value at V obtained. Here, γ uses a value of 2.0 to 2.4, for example, 2.2. The optimum value of γ varies depending on the conditions (thickness and material) of the X-ray filter.

ステップS5で、撮影条件設定部9dは、管電流Iが管電圧Vjにおける管電流上限値IjUより大きい場合、管電圧Vを、式、
V=Vj・(I/IjU)1/γ ………(3)
を計算して修正設定し、管電流Iを、求めたVにおける管電流上限値に設定する。
In step S5, when the tube current I is larger than the tube current upper limit value IjU in the tube voltage Vj, the imaging condition setting unit 9d sets the tube voltage V to the equation:
V = Vj · (I / IjU) 1 / γ (3)
Is calculated and corrected, and the tube current I is set to the obtained tube current upper limit value at V.

ステップS6で、撮影条件設定部9dは、設定したV,IでX線ビーム2を放射させる。  In step S6, the imaging condition setting unit 9d emits the X-ray beam 2 with the set V and I.

ステップS7で、撮影条件設定部9dは、X線検出器3が出力した透過像を取込んで、表示部9aにリアルタイム表示させる。  In step S7, the imaging condition setting unit 9d takes the transmission image output from the X-ray detector 3 and displays it on the display unit 9a in real time.

ステップS8で、操作者は表示された透過像を目視しこれで良いと判定した場合、設定終了を入力する。撮影条件設定部9dは、操作者からの設定終了の指令があるか?を判定し、無い場合、ステップS9に進む。  In step S8, when the operator visually checks the displayed transmission image and determines that this is acceptable, the operator inputs the end of setting. Does the imaging condition setting unit 9d have a setting end command from the operator? If not, the process proceeds to step S9.

ステップS9で、操作者は必要な場合、プリセット番号j,FCD,FDD(,φ,z)を変更する。ここで、適当に設定したj,FCD,FDD(,φ,z)を透過像を目視しながら変更できる。透過像の透過率を上げたい場合jを増やし、FCD,FDDを変えて撮影倍率を変更し、φを変えて透視方向を変え、zを変えて被検体5の着目部をX線ビーム2の高さに合わせる。  In step S9, the operator changes the preset number j, FCD, FDD (, φ, z) if necessary. Here, j, FCD, FDD (, φ, z) set appropriately can be changed while viewing the transmission image. When it is desired to increase the transmittance of the transmission image, j is increased, FCD and FDD are changed, the imaging magnification is changed, φ is changed to change the fluoroscopic direction, z is changed, and the target portion of the subject 5 is moved to the X-ray beam 2. Fit to height.

さらに、ステップS9で修正したj,FCD,FDD(,φ,z)をもってステップS3乃至ステップS7を繰り返し、撮影条件V,I,FCD,FDD(,φ,z)を変更して設定し、この撮影条件での透過像が表示される。  Further, steps S3 to S7 are repeated with j, FCD, FDD (, φ, z) corrected in step S9, and the photographing conditions V, I, FCD, FDD (, φ, z) are changed and set. A transmission image under the shooting conditions is displayed.

ステップS8で、操作者からの設定終了の指令があった場合、撮影条件設定部9dは、そのときの撮影条件V,I,FCD,FDD(,z)を最終撮影条件として記憶し、撮影条件設定(プリセットモード)を終了する。  If there is a setting end command from the operator in step S8, the shooting condition setting unit 9d stores the shooting conditions V, I, FCD, FDD (, z) at that time as the final shooting conditions, and the shooting conditions. Exit settings (preset mode).

以上のフローで、終了指令を入力しない限り、(ステップS9で撮影条件の変更が無い場合でも)ステップS3乃至ステップS9が作るループは高速に繰り返される。従って撮影条件を変更したときそれに追従してリアルタイムで表示される透過像が変化するのでこれを目視しながら撮影条件の設定ができる。<>終了  In the above flow, unless an end command is input, the loop created by steps S3 to S9 is repeated at high speed (even if there is no change in the shooting conditions in step S9). Accordingly, when the shooting condition is changed, the transmitted image displayed in real time changes accordingly, so that the shooting condition can be set while viewing this. <> End

<撮影条件設定(手動モード)>
手動モードは、プリセットモードで管電圧のプリセット値Vjに適当な値が無く、別の管電圧に設定したい場合に用いる。
<Shooting condition setting (manual mode)>
The manual mode is used when the preset value Vj of the tube voltage does not have an appropriate value and it is desired to set another tube voltage in the preset mode.

図3は第一の実施形態における撮影条件設定(手動モード)のフロー図である。この設定は、撮影条件設定部9dが行う。  FIG. 3 is a flowchart of shooting condition setting (manual mode) in the first embodiment. This setting is performed by the photographing condition setting unit 9d.

操作者は被検体5をテーブル4に載置すると、ステップT1で、操作者は適当な任意の初期値Vj,Ij,FDDjを設定する。  When the operator places the subject 5 on the table 4, in step T1, the operator sets appropriate arbitrary initial values Vj, Ij, and FDDj.

ステップT2で、撮影条件設定部9dは、設定したVj,IjでX線ビーム2を放射させる。  In step T2, the imaging condition setting unit 9d radiates the X-ray beam 2 with the set Vj and Ij.

ステップT3で、撮影条件設定部9dは、X線検出器3が出力した透過像を取込んで、表示部9aにリアルタイム表示させる。  In step T3, the imaging condition setting unit 9d takes the transmission image output from the X-ray detector 3 and displays it on the display unit 9a in real time.

ステップT4で、操作者は表示された透過像を目視しこれで良いと判定した場合、初期設定終了を入力する。撮影条件設定部9dは、操作者からの初期設定終了の指令があるか?を判定し、無い場合、ステップT1に進み、ステップT1乃至ステップT3を繰り返す。  In step T4, when the operator visually checks the displayed transmission image and determines that this is acceptable, the operator inputs an end of initial setting. Does the imaging condition setting unit 9d have an initial setting end command from the operator? If not, the process proceeds to step T1, and steps T1 to T3 are repeated.

ステップT4で、操作者からの初期設定終了の指令があった場合、撮影条件設定部9dは、そのときの撮影条件Vj,Ij,FDDjを初期撮影条件としてステップT5に進む。  In step T4, if there is a command to end the initial setting from the operator, the imaging condition setting unit 9d proceeds to step T5 using the imaging conditions Vj, Ij, and FDDj at that time as initial imaging conditions.

ステップT5で、操作者は、FCD,FDD(,φ,z)を変更する。ここで、適当に設定したFCD,FDD(,φ,z)を透過像を目視しながら変更できる。FCD,FDDを変えて撮影倍率を変更し、φを変えて透視方向を変え、zを変えて被検体5の着目部をX線ビーム2の高さに合わせる。  In step T5, the operator changes FCD, FDD (, φ, z). Here, FCD and FDD (, φ, z) set appropriately can be changed while viewing the transmission image. The imaging magnification is changed by changing FCD and FDD, the fluoroscopic direction is changed by changing φ, and z is changed to adjust the target portion of the subject 5 to the height of the X-ray beam 2.

ステップT6で、撮影条件設定部9dは、管電圧VをVjに設定し、管電流Iを、初期値と設定したFDDに応じて式(1)で、Ijから変更して設定する。  In step T6, the imaging condition setting unit 9d sets the tube voltage V to Vj, and sets the tube current I by changing it from Ij in Expression (1) according to the initial value and the set FDD.

ステップT7で、撮影条件設定部9dは、管電流Iが管電圧Vjにおける管電流下限値IjLより小さい場合、管電圧Vを、式(2)を計算して修正設定し、管電流Iを、式(2)で求めたVにおける管電流下限値に設定する。  In step T7, when the tube current I is smaller than the tube current lower limit value IjL in the tube voltage Vj, the imaging condition setting unit 9d corrects and sets the tube voltage V by calculating equation (2). It sets to the tube current lower limit in V calculated | required by Formula (2).

ステップT8で、撮影条件設定部9dは、管電流Iが管電圧Vjにおける管電流上限値IjUより大きい場合、管電圧Vを、式(3)を計算して修正設定し、管電流Iを、式(3)で求めたVにおける管電流上限値に設定する。  In step T8, when the tube current I is larger than the tube current upper limit value IjU in the tube voltage Vj, the imaging condition setting unit 9d corrects and sets the tube voltage V by calculating the equation (3). It sets to the tube current upper limit in V calculated | required by Formula (3).

ステップT9で、撮影条件設定部9dは、設定したV,IでX線ビーム2を放射させる。  In step T9, the imaging condition setting unit 9d emits the X-ray beam 2 with the set V and I.

ステップT10で、撮影条件設定部9dは、X線検出器3が出力した透過像を取込んで、表示部9aにリアルタイム表示させる。  In step T10, the imaging condition setting unit 9d takes the transmission image output from the X-ray detector 3 and displays it on the display unit 9a in real time.

ステップT11で、操作者は表示された透過像を目視しこれで良いと判定した場合、設定終了を入力する。撮影条件設定部9dは、操作者からの設定終了の指令があるか?を判定し、無い場合、ステップT5に進み、ステップT5乃至ステップT10を繰り返す。  In step T11, when the operator visually observes the displayed transmission image and determines that this is acceptable, the operator inputs the end of setting. Does the imaging condition setting unit 9d have a setting end command from the operator? If not, the process proceeds to step T5, and steps T5 to T10 are repeated.

ステップT11で、操作者からの設定終了の指令があった場合、撮影条件設定部9dは、そのときの撮影条件V,I,FCD,FDD(,z)を最終撮影条件として記憶し、撮影条件設定(手動モード)を終了する。  If there is a setting end command from the operator in step T11, the shooting condition setting unit 9d stores the shooting conditions V, I, FCD, FDD (, z) at that time as the final shooting conditions, and the shooting conditions. Exit the setting (manual mode).

以上のフローで、初期設定終了指令を入力しない限り、(ステップT1で初期値の変更が無い場合でも)ステップT1乃至ステップT4が作るループは高速に繰り返される。従って初期値を変更したときそれに追従してリアルタイムで表示される透過像が変化するのでこれを目視しながら初期値の設定ができる。  In the above flow, unless an initial setting end command is input, the loop created by step T1 to step T4 is repeated at high speed (even if the initial value is not changed in step T1). Accordingly, when the initial value is changed, the transmitted image displayed in real time changes accordingly, so that the initial value can be set while viewing this.

また、撮影条件設定終了指令を入力しない限り、(ステップT5でFCD,FDDの変更が無い場合でも)ステップT5乃至ステップT11が作るループは高速に繰り返される。従ってFCD,FDDを変更したときそれに追従してリアルタイムで表示される透過像が変化するのでこれを目視しながらFCD,FDDの設定ができる。<>終了  Further, unless an imaging condition setting end command is input, the loop created by steps T5 to T11 is repeated at high speed (even if FCD and FDD are not changed in step T5). Accordingly, when the FCD and FDD are changed, the transmitted image displayed in real time changes accordingly, so that the FCD and FDD can be set while viewing this. <> End

<断層撮影>
撮影条件設定が終わり、操作者から断層撮影開始の入力があると、スキャン制御部9eは設定した管電圧V、管電流IでX線ビーム2を放射させると共に、回転・昇降機構6によりテーブル4を回転させながら、1回転に亘り一定回転角度毎にX線検出器3から透過像を取込み記憶する。
<Tomography>
When the imaging condition setting is completed and the operator inputs tomographic imaging start, the scan control unit 9e emits the X-ray beam 2 with the set tube voltage V and tube current I, and the table 4 is rotated by the rotation / lifting mechanism 6. , The transmission image is captured from the X-ray detector 3 and stored at every constant rotation angle over one rotation.

引き続き、再構成部9fは取込んで記憶した1回転に亘る透過像から、公知の再構成処理を行って、被検体5の断面像を1枚乃至複数枚再構成し、記憶及び表示を行う。<>終了  Subsequently, the reconstruction unit 9f performs a known reconstruction process from the acquired transmission image for one rotation, reconstructs one or more cross-sectional images of the subject 5, and stores and displays them. . <> End

(第一の実施の形態の効果)
第一の実施形態(プリセットモード)によれば、管電圧Vの設定において、プリセット値Vjを選択するだけで自動的に、予め設定したX線検出器3の最大出力の値(透過像の空気部の値)が、余裕をもって飽和せず、かつ、なるべく大きな値、例えば飽和値の約90%、となるような管電流Ijが設定される。つまり、従来のように管電圧と管電流の2次元的な調整は必要なく、管電圧のみの1次元的調整で済み、管電圧設定が容易である。すなわち、前述した第一の問題点が解決する。
(Effects of the first embodiment)
According to the first embodiment (preset mode), when the tube voltage V is set, the preset maximum output value of the X-ray detector 3 (air of the transmission image) is automatically selected only by selecting the preset value Vj. The tube current Ij is set so that the value of the portion does not saturate with a margin and becomes as large as possible, for example, about 90% of the saturation value. That is, there is no need for two-dimensional adjustment of the tube voltage and tube current as in the prior art, and only one-dimensional adjustment of the tube voltage is required, and tube voltage setting is easy. That is, the first problem described above is solved.

また、第一の実施形態(プリセットモード及び手動モード)によれば、撮影倍率(FCDとFDD)の調整において、FDDの変化に対し、自動的に管電流Iを、式(1)によりFDDの2乗に比例して変化させるので、X線検出器3の最大出力(空気部の出力)を一定に保てる。これは、X線検出器3の出力はI/FDDに比例することから、IをFDDに比例させて変化させれば出力は一定になることから導ける。つまり、撮影倍率(FCDとFDD)の調整をするとき、X線検出器3の最大出力(空気部の出力)を一定に保つように管電流Iを自動設定するので調整が容易である。すなわち、前述した第二の問題点が解決する。Further, according to the first embodiment (preset mode and manual mode), in the adjustment of the photographing magnification (FCD and FDD), the tube current I is automatically calculated with respect to the change of FDD, and the FDD of Formula (1) is calculated. Since it changes in proportion to the square, the maximum output of the X-ray detector 3 (the output of the air portion) can be kept constant. This can be derived from the fact that since the output of the X-ray detector 3 is proportional to I / FDD 2 , the output becomes constant if I is changed in proportion to FDD 2 . That is, when adjusting the imaging magnification (FCD and FDD), the tube current I is automatically set so as to keep the maximum output (the output of the air portion) of the X-ray detector 3 constant, so that the adjustment is easy. That is, the second problem described above is solved.

さらに、第一の実施形態(プリセットモード及び手動モード)によれば、撮影倍率(FCDとFDD)の調整において、自動設定する管電流が下限以下、あるいは上限以上となる場合に、管電圧Vを、式(2)あるいは式(3)により調整することでX線検出器3の最大出力(空気部の出力)を一定に保てる。これは、X線検出器3の出力はI・Vγに比例するので、Vを(1/I)1/γに比例させて変化させれば出力は一定になることから導ける。従って、撮影倍率(FCDとFDD)の調整において、管電流Iが上限あるいは下限を超える場合でも、X線検出器3の最大出力(空気部の出力)を一定に保つように管電圧V、管電圧Iを自動設定するので調整が容易である。Furthermore, according to the first embodiment (preset mode and manual mode), in the adjustment of the photographing magnification (FCD and FDD), the tube voltage V is set when the automatically set tube current is lower than the lower limit or higher than the upper limit. The maximum output of the X-ray detector 3 (the output of the air portion) can be kept constant by adjusting the expression (2) or (3). This can be derived from the fact that since the output of the X-ray detector 3 is proportional to I · V γ , the output becomes constant if V is changed in proportion to (1 / I) 1 / γ . Accordingly, in adjusting the imaging magnification (FCD and FDD), even when the tube current I exceeds the upper limit or the lower limit, the tube voltage V and the tube are maintained so that the maximum output (output of the air portion) of the X-ray detector 3 is kept constant. Adjustment is easy because the voltage I is automatically set.

(第一の実施の形態の変形)
その他、本発明は、上記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変形して実施することが可能である。
(Modification of the first embodiment)
In addition, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention.

例えば、第一の実施形態では、X線ビーム2に対し被検体5を回転させているが、逆に、被検体5を固定し、X線ビーム2を回転軸RAに対し回転させてもよい。この場合は、回転軸RAに対して回転するフレームにX線管1とX線検出器3を固定する。そして、この回転するフレーム上でX線管1とX線検出器3を近づけまた遠ざけるように移動させてFCDとFDDを変化させるようにする。このような場合でも、第一の実施形態の作用と効果はそのまま適用できる。  For example, in the first embodiment, the subject 5 is rotated with respect to the X-ray beam 2, but conversely, the subject 5 may be fixed and the X-ray beam 2 may be rotated with respect to the rotation axis RA. . In this case, the X-ray tube 1 and the X-ray detector 3 are fixed to a frame that rotates about the rotation axis RA. Then, the X-ray tube 1 and the X-ray detector 3 are moved toward and away from the rotating frame to change the FCD and FDD. Even in such a case, the operations and effects of the first embodiment can be applied as they are.

また、第一の実施形態では、1回転のスキャンを行っているが、180°+ファン角以上の回転を行うハーフスキャンや被検体を回転軸に沿って昇降させながら回転を行うヘリカルスキャンを行ってもよい。さらにX線光軸Lと回転軸RAとに直交する方向のテーブル移動(トランスレート)機構を設け、所謂TR(Translate Rotate)方式(第二世代方式)のスキャンをおこなってもよい。  In the first embodiment, one rotation scan is performed. However, a half scan that rotates more than 180 ° + fan angle or a helical scan that rotates while moving the subject up and down along the rotation axis are performed. May be. Further, a table movement (translation) mechanism in a direction orthogonal to the X-ray optical axis L and the rotation axis RA may be provided to perform a so-called TR (Translate Rotate) method (second generation method) scan.

また、第一の実施形態では、回転軸RAはX線光軸Lと垂直に交差しているが、回転軸を垂直から傾斜させた所謂傾斜型CT装置とすることもできる。  In the first embodiment, the rotation axis RA intersects the X-ray optical axis L perpendicularly, but a so-called tilted CT apparatus in which the rotation axis is inclined from the vertical can also be used.

1…X線管、2…X線ビーム、3…X線検出器、4…テーブル、5…被検体、6…回転・昇降機構、7…シフト機構、8…X線制御部、9…制御処理部、9a…表示部、9b…入力部、9c…較正制御部、9d…撮影条件設定部、9e…スキャン制御部、9f…再構成部、
101…X線管、102…X線ビーム、103…X線検出器、104…テーブル、105…被検体、106…回転・昇降機構、107…制御処理部、108…シフト機構、109…X線制御部
DESCRIPTION OF SYMBOLS 1 ... X-ray tube, 2 ... X-ray beam, 3 ... X-ray detector, 4 ... Table, 5 ... Subject, 6 ... Rotation / lifting mechanism, 7 ... Shift mechanism, 8 ... X-ray control part, 9 ... Control Processing unit, 9a ... Display unit, 9b ... Input unit, 9c ... Calibration control unit, 9d ... Imaging condition setting unit, 9e ... Scan control unit, 9f ... Reconstruction unit,
DESCRIPTION OF SYMBOLS 101 ... X-ray tube, 102 ... X-ray beam, 103 ... X-ray detector, 104 ... Table, 105 ... Subject, 106 ... Rotation / lifting mechanism, 107 ... Control processing part, 108 ... Shift mechanism, 109 ... X-ray Control unit

Claims (5)

被検体に向けてX線を放射するX線源と、前記被検体を透過したX線を検出して透過像として出力するX線検出手段と、前記X線と交差する回転軸に対し前記被検体と前記X線とを相対的に回転させる回転手段と、複数の前記回転の位置で検出された透過像から前記被検体の断面像を再構成する再構成手段を有するCT装置において、
前記X線源の管電圧と管電流を設定された値に制御するX線制御手段と、
前記X線源と前記X線検出手段との距離を変更して設定するシフト機構と、
前記管電圧,前記管電流,前記距離それぞれの基準値の組み合わせを複数組記憶し、前記複数組の内の一組である管電圧Vj,管電流Ij,距離FDDjが選択され、かつ前記距離FDDが設定された場合に、管電圧Vを前記管電圧Vjに設定し、管電流Iを前記管電流Ijから前記距離FDDj及び前記設定された距離FDDに応じて変更して設定するX線条件設定手段と、
を有することを特徴とするCT装置。
An X-ray source that emits X-rays toward the subject, X-ray detection means for detecting the X-rays transmitted through the subject and outputting them as a transmission image, and the rotation axis intersecting the X-rays In a CT apparatus comprising: a rotating unit that relatively rotates a specimen and the X-ray; and a reconstructing unit that reconstructs a cross-sectional image of the subject from a plurality of transmission images detected at the rotation positions.
X-ray control means for controlling the tube voltage and tube current of the X-ray source to set values;
A shift mechanism that changes and sets the distance between the X-ray source and the X-ray detection means;
A plurality of combinations of reference values of the tube voltage, the tube current, and the distance are stored, and a tube voltage Vj, a tube current Ij, a distance FDDj, which is one of the plurality of sets, are selected, and the distance FDD is selected. Is set, the tube voltage V is set to the tube voltage Vj, and the tube current I is set by changing the tube current Ij from the tube current Ij according to the distance FDDj and the set distance FDD. Means,
CT apparatus characterized by having.
被検体に向けてX線を放射するX線源と、前記被検体を透過したX線を検出して透過像として出力するX線検出手段と、前記X線と交差する回転軸に対し前記被検体と前記X線とを相対的に回転させる回転手段と、複数の前記回転の位置で検出された透過像から前記被検体の断面像を再構成する再構成手段を有するCT装置において、
前記X線源の管電圧と管電流を設定された値に制御するX線制御手段と、
前記X線源と前記X線検出手段との距離を変更して設定するシフト機構と、
前記管電圧,前記管電流,前記距離それぞれが初期値である管電圧Vj,管電流Ij,距離FDDjに設定され、かつ前記初期値の設定の後に前記距離FDDjが距離FDDに変更された場合に、管電圧Vを前記管電圧Vjに設定し、管電流Iを前記管電流Ijから前記距離FDDj及び前記変更された距離FDDに応じて変更して設定するX線条件設定手段と、
を有することを特徴とするCT装置。
An X-ray source that emits X-rays toward the subject, X-ray detection means for detecting the X-rays transmitted through the subject and outputting them as a transmission image, and the rotation axis intersecting the X-rays In a CT apparatus comprising: a rotating unit that relatively rotates a specimen and the X-ray; and a reconstructing unit that reconstructs a cross-sectional image of the subject from a plurality of transmission images detected at the rotation positions.
X-ray control means for controlling the tube voltage and tube current of the X-ray source to set values;
A shift mechanism that changes and sets the distance between the X-ray source and the X-ray detection means;
When the tube voltage, the tube current, and the distance are set to the initial values of the tube voltage Vj, the tube current Ij, and the distance FDDj, and the distance FDDj is changed to the distance FDD after the initial values are set. X-ray condition setting means for setting the tube voltage V to the tube voltage Vj and changing the tube current I from the tube current Ij according to the distance FDDj and the changed distance FDD;
CT apparatus characterized by having.
請求項1または請求項2に記載のCT装置において、
前記X線条件設定手段は、前記管電流Iを、式1、
I=Ij・(FDD/FDDj)
で求めた値に変更して設定することを特徴とするCT装置。
The CT apparatus according to claim 1 or 2,
The X-ray condition setting means sets the tube current I to Equation 1,
I = Ij · (FDD / FDDj) 2
A CT apparatus characterized in that it is set by changing to the value obtained in (1).
請求項3に記載のCT装置において、
前記X線条件設定手段は、前記管電圧における前記管電流の下限値を記憶し、前記管電圧Vjにおける管電流下限値IjLを用いて、前記式1で求めた管電流Iが前記管電流下限値IjLより小さい場合、前記管電圧Vを、式2、
V=Vj・(I/IjL)1/γ
で求めた値に設定し、前記管電流Iを式2で求めた管電圧Vにおける管電流下限値に設定することを特徴とするCT装置。
The CT apparatus according to claim 3.
The X-ray condition setting means stores the lower limit value of the tube current at the tube voltage, and the tube current I obtained by the equation 1 using the tube current lower limit value IjL at the tube voltage Vj is the tube current lower limit value. When the value is less than IjL, the tube voltage V is expressed by Equation 2,
V = Vj · (I / IjL) 1 / γ
A CT apparatus characterized in that the tube current I is set to the tube current lower limit value at the tube voltage V obtained by the equation (2).
請求項3に記載のCT装置において、
前記X線条件設定手段は、前記管電圧における前記管電流の上限値を記憶し、前記管電圧Vjにおける管電流上限値IjUを用いて、前記式1で求めた管電流Iが前記管電流上限値IjUより大きい場合、前記管電圧Vを、式3、
V=Vj・(I/IjU)1/γ
で求めた値に設定し、前記管電流Iを式3で求めた管電圧Vにおける管電流上限値に設定することを特徴とするCT装置。
The CT apparatus according to claim 3,
The X-ray condition setting means stores an upper limit value of the tube current at the tube voltage, and the tube current I obtained by the equation 1 is calculated as the tube current upper limit value using the tube current upper limit value IjU at the tube voltage Vj. If it is greater than the value IjU, then the tube voltage V is
V = Vj · (I / IjU) 1 / γ
A CT apparatus characterized in that the tube current I is set to the tube current upper limit value at the tube voltage V obtained by the equation (3).
JP2009248233A 2009-10-08 2009-10-08 Ct equipment Pending JP2011080971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009248233A JP2011080971A (en) 2009-10-08 2009-10-08 Ct equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009248233A JP2011080971A (en) 2009-10-08 2009-10-08 Ct equipment

Publications (1)

Publication Number Publication Date
JP2011080971A true JP2011080971A (en) 2011-04-21

Family

ID=44075151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009248233A Pending JP2011080971A (en) 2009-10-08 2009-10-08 Ct equipment

Country Status (1)

Country Link
JP (1) JP2011080971A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102735700A (en) * 2012-06-18 2012-10-17 东营市三英精密工程研究中心 X-ray micro-imaging system
JP2013061280A (en) * 2011-09-14 2013-04-04 Omron Corp X-ray inspection device, control method of x-ray inspection device, program for controlling x-ray inspection device, and computer readable recording medium having the program stored therein
WO2017077627A1 (en) * 2015-11-05 2017-05-11 株式会社島津製作所 Display device and x-ray ct device
JP2019012011A (en) * 2017-06-30 2019-01-24 アンリツインフィビス株式会社 Article inspection device and method for calibrating the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5820117B2 (en) * 1977-04-07 1983-04-21 株式会社日立メデイコ X-ray control device for tomography
JPH0522538B2 (en) * 1983-10-31 1993-03-29 Shimadzu Corp
JPH05145226A (en) * 1991-11-25 1993-06-11 Matsushita Electric Ind Co Ltd X-ray tester for soldered bond
JPH05335094A (en) * 1992-05-31 1993-12-17 Shimadzu Corp X-ray diagnostic device
JPH10201746A (en) * 1997-01-17 1998-08-04 Hitachi Medical Corp X-ray image diagnostic device
JP2008002966A (en) * 2006-06-22 2008-01-10 Shimadzu Corp X-ray tomography imaging photographing apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5820117B2 (en) * 1977-04-07 1983-04-21 株式会社日立メデイコ X-ray control device for tomography
JPH0522538B2 (en) * 1983-10-31 1993-03-29 Shimadzu Corp
JPH05145226A (en) * 1991-11-25 1993-06-11 Matsushita Electric Ind Co Ltd X-ray tester for soldered bond
JPH05335094A (en) * 1992-05-31 1993-12-17 Shimadzu Corp X-ray diagnostic device
JPH10201746A (en) * 1997-01-17 1998-08-04 Hitachi Medical Corp X-ray image diagnostic device
JP2008002966A (en) * 2006-06-22 2008-01-10 Shimadzu Corp X-ray tomography imaging photographing apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013061280A (en) * 2011-09-14 2013-04-04 Omron Corp X-ray inspection device, control method of x-ray inspection device, program for controlling x-ray inspection device, and computer readable recording medium having the program stored therein
CN102735700A (en) * 2012-06-18 2012-10-17 东营市三英精密工程研究中心 X-ray micro-imaging system
WO2017077627A1 (en) * 2015-11-05 2017-05-11 株式会社島津製作所 Display device and x-ray ct device
JPWO2017077627A1 (en) * 2015-11-05 2018-08-16 株式会社島津製作所 Display device and X-ray CT apparatus
US10724971B2 (en) 2015-11-05 2020-07-28 Shimadzu Corporation Display device and x-ray CT device
JP2019012011A (en) * 2017-06-30 2019-01-24 アンリツインフィビス株式会社 Article inspection device and method for calibrating the same

Similar Documents

Publication Publication Date Title
JP5452837B2 (en) Method and system for controlling exposure for medical imaging apparatus
JP6636923B2 (en) X-ray imaging device
JPWO2009020136A1 (en) X-ray CT system
JP4699167B2 (en) X-ray diagnostic imaging equipment
CN1935090A (en) X-ray CT apparatus and method of controlling the same
JP2017148110A (en) Radiation tomographic imaging system and program for controlling the same
JP2018033781A (en) X-ray CT apparatus
US9782138B2 (en) Imaging apparatus and method
JPWO2016199716A1 (en) X-ray CT apparatus and sequential correction parameter determination method
JP2013158431A (en) X-ray diagnostic apparatus
JP2014151198A (en) Automatic field-of-view size calculation constraint
JP5060862B2 (en) Tomography equipment
US20100124312A1 (en) Tomographic image capturing apparatus
JP2011080971A (en) Ct equipment
JP2011220982A (en) Ct device
JP4537037B2 (en) X-ray inspection apparatus and tube voltage / tube current adjustment method thereof
JP2005204810A (en) X-ray imaging apparatus
JP2011019712A (en) X-ray equipment
KR102286358B1 (en) X-ray imaging apparatus
JP4697642B2 (en) CT equipment
JP5049836B2 (en) Radiography method
JP7233865B2 (en) X-ray CT apparatus and correction method
JP2023028846A (en) Radiographic apparatus and control method of radiographic apparatus
Vilar et al. X-ray microtomography system for small and light samples using a flat panel detector
JP2007151849A (en) X-ray ct imaging method and x-ray ct apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140311