WO2010134278A1 - Anterior ocular segment observation device - Google Patents

Anterior ocular segment observation device Download PDF

Info

Publication number
WO2010134278A1
WO2010134278A1 PCT/JP2010/003164 JP2010003164W WO2010134278A1 WO 2010134278 A1 WO2010134278 A1 WO 2010134278A1 JP 2010003164 W JP2010003164 W JP 2010003164W WO 2010134278 A1 WO2010134278 A1 WO 2010134278A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
corneal endothelium
image
abnormality
corneal
Prior art date
Application number
PCT/JP2010/003164
Other languages
French (fr)
Japanese (ja)
Inventor
弓掛和彦
Original Assignee
株式会社トプコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トプコン filed Critical 株式会社トプコン
Publication of WO2010134278A1 publication Critical patent/WO2010134278A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/102Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for optical coherence tomography [OCT]

Definitions

  • the present invention relates to an anterior ocular segment observation apparatus that forms an image of the anterior ocular segment of an eye to be examined using optical coherence tomography (Optical Coherence Tomography).
  • optical image measurement technology that forms an image of the surface and inside of an object to be measured using light has attracted attention. Since the optical image measurement technique does not have invasiveness to the human body unlike conventional X-ray CT, it is expected to be applied particularly in the medical field. Among them, the application in the ophthalmology field has made remarkable progress along with dentistry and dermatology.
  • optical coherence tomography optical coherence tomography method: OCT.
  • OCT optical coherence tomography method
  • OCT apparatus As an apparatus (OCT apparatus) using OCT, for example, there is one described in Patent Document 1.
  • the OCT apparatus generates interference light by superimposing light (signal light) passing through the cornea (signal light) and light passing through the reference object (reference light), and forms an image of the cornea based on the detection result of the interference light To do.
  • the image obtained in this way is an image of a cross section substantially orthogonal to the traveling direction of the signal light.
  • Such a method is called a full-field type or an en-face type.
  • the full field type OCT apparatus is characterized by being able to acquire high magnification and high resolution images.
  • the cornea has a five-layer structure including a corneal epithelium, a Bowman layer (Bowman film), a corneal stroma layer, a Desme membrane, and a corneal endothelium in order from the surface side.
  • a slit lamp slit lamp microscope
  • a specular microscope As other devices capable of observing the fine structure of the cornea, a slit lamp (slit lamp microscope) and a specular microscope are known.
  • a slit lamp is a device that acquires an image of a corneal cross section by irradiating slit light to a cornea and cutting out a part of the cornea as an optical slice. It is also used for observation of corneal endothelial cells.
  • the specular microscope is an apparatus derived from a slit lamp, for example, as shown in Patent Document 3, and includes an optical system for observing a specular reflection image of slit light at a higher magnification than the slit lamp, and observes the corneal endothelium. Suitable for In clinical settings, a specular microscope is used to measure the density, size, size variation, etc. of corneal endothelial cells.
  • the cornea maintains transparency by adjusting the amount of water by the pumping function of corneal endothelial cells, that is, the function of discharging the water in the cornea to the anterior chamber.
  • corneal endothelial cells are not regenerated in vivo, and cells lost due to injury or the like are complemented by deformation and expansion of surrounding cells, so the number of corneal endothelial cells may gradually decrease with age.
  • the cell density is usually reduced to about 2500 to 3000 cells / mm 2 and the pump function is weakened, resulting in corneal edema and turbidity. It is known that edema tends to occur when the cell density is less than 1000 cells / mm 2, and turbidity easily occurs when the cell density is less than 500 cells / mm 2 .
  • the only way to deal with corneal turbidity is to deal with corneal transplantation.
  • corneal endothelial cells are originally hexagonal, but it is known that the number of hexagonal cells decreases due to deformation and expansion accompanying cell loss.
  • corneal endothelial cells may be accelerated by wearing contact lenses.
  • observation of corneal endothelial cells over time is very important.
  • the Descemet's membrane located in front of the corneal endothelium is linear ABZ (Antient Banded Zone) with a high electron density in the front-rear direction (depth direction) and PNBZ (homogeneous electron density) in the electron microscope findings. It is divided into “Positioner Non-Banded Zone”.
  • the thickness of ABZ is almost constant (about 3 ⁇ m) throughout its lifetime.
  • PNBZ Planar Non-Banded Zone
  • the thickness of the Descemet's membrane is changed by PNBZ produced by the corneal endothelium (increases to about 6 ⁇ m at the age of 60). It can be judged whether it is natural or not.
  • graft rejection to corneal endothelial cells and adhesion of specific deposits observed in corneal endotheliitis may be observed.
  • a non-invasive (or minimally invasive) biopsy with a light burden on the patient can be adopted. In general, identifying the cause of a disease is extremely important in treatment.
  • PCL Portion Collagenous Layer
  • ridges, lines, maps, etc. are known to be observed in many diseases, but with specular microscopes, a specular image of slit light is observed. Therefore, when there is a three-dimensional structural abnormality such as a Descemet's wrinkle or a droplet cornea, specularly reflected light (light reflected in a direction different from the illumination light) may not be detected. As a result, an image in which the undetected portion is blacked out (that is, there is no information) is obtained. Therefore, at present, it is only possible to observe the state of the cells depicted in the image of the detectable part and the size and distribution of the black part.
  • the slit lamp also detects the light reflected in the direction different from the illumination light, and the same problem occurs.
  • specular microscopes and slit lamps are configured to detect light reflected in a different direction from the illumination light, so that the parts present at different positions in the depth direction (different depth positions) are orthogonal to the depth direction (horizontal).
  • the image is observed in a direction shifted.
  • the amount of reflected light is proportional to the difference in refractive index between the front and back of the reflecting surface, the amount of reflected light is reduced and the image may become unclear.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an anterior ocular segment observation apparatus that enables detailed observation of the state of the anterior ocular segment, particularly the corneal endothelium and its vicinity. It is to provide.
  • the invention according to claim 1 divides a light beam into signal light and reference light, and the signal light passing through the anterior eye part of the eye to be examined and the reference light path are used.
  • An optical system that generates and detects interference light by superimposing reference light, a changing unit that changes the optical path length of the reference light and / or the optical path length of the signal light, and the optical path length is changed by the changing unit
  • forming means for forming a three-dimensional image of the anterior segment based on the interference light detected by the optical system, and analyzing the formed three-dimensional image to form a corneal endothelium of the anterior segment.
  • This is an anterior ocular segment observation device.
  • the invention according to claim 2 is the anterior ocular segment observation device according to claim 1, wherein the specifying unit analyzes a tomogram in a predetermined cross section of the three-dimensional image to obtain the corneal endothelium. An area is specified.
  • the invention according to claim 3 is the anterior ocular segment observation device according to claim 1, wherein the specifying unit is configured to input the signal light to the anterior segment based on the three-dimensional image.
  • a tomographic image forming means for forming a tomographic image in a cross-section parallel to the corneal endothelium, and analyzing the pixel values of the pixels constituting the formed tomographic image to identify the corneal endothelium region.
  • the invention according to claim 4 is the anterior ocular segment observation device according to claim 3, wherein the determination unit is configured to determine a boundary of the corneal endothelium based on a pixel value of a pixel constituting the image region.
  • Boundary region specifying means for specifying a boundary region in the tomographic image corresponding to a plane is included, and the abnormality is determined based on the shape of the specified boundary region.
  • the invention according to claim 5 is the anterior ocular segment observation device according to claim 4, wherein the determination unit analyzes an arrangement of pixels constituting the boundary region and performs unevenness on the boundary surface. And an irregularity detecting means for detecting the abnormality, and determining the abnormality based on the detected irregularity.
  • the invention according to claim 6 is the anterior ocular segment observation device according to claim 3, wherein the determining means is configured to determine the anterior segment of the anterior segment based on the pixel values of the pixels constituting the image region.
  • the invention according to claim 7 is the anterior ocular segment observation device according to claim 3, wherein when it is determined that an abnormality of the corneal endothelium exists, the determination means configures the image region.
  • An image region in the tomographic image corresponding to the PNBZ layer of the Descemet's membrane of the anterior ocular segment is determined based on the pixel value of the pixel to be obtained, the thickness of the specified image region is determined, and the determined thickness And determining whether the abnormality is congenital or acquired based on the above.
  • the invention according to claim 8 is the anterior ocular segment observation device according to claim 1, wherein the specifying unit is configured to input the signal light to the anterior segment based on the three-dimensional image.
  • a tomographic image forming means for forming a tomographic image in a cross section orthogonal to the corneal endothelium, and analyzing the pixel values of the pixels constituting the formed tomographic image to identify the corneal endothelium region.
  • the invention according to claim 9 is the anterior ocular segment observation device according to claim 8, wherein the determination means configures the corneal endothelium based on a pixel value of a pixel constituting the image region.
  • Cell region specifying means for specifying a plurality of cell regions in the corneal endothelial region corresponding to the corneal endothelial cells to be performed, and evaluation means for obtaining evaluation information on the state of the corneal endothelial cells based on the specified cell regions And determining the abnormality based on the obtained evaluation information.
  • the invention according to claim 10 is the anterior ocular segment observation device according to claim 9, wherein the evaluation means uses the cell density, the maximum cell area, the minimum cell area, and the average cell area as the evaluation information. And at least one of an area standard deviation, a cell area variation coefficient, a hexagonal cell region appearance rate, and a cell area histogram.
  • the invention according to claim 11 is the anterior ocular segment observation device according to claim 1, wherein the determination means includes storage means for storing a determination result of the abnormality of the corneal endothelium, and the eye to be examined A new abnormality determination result is compared with the stored past determination result, and aging information of the corneal endothelium is obtained based on the comparison result.
  • the invention according to claim 12 is the anterior ocular segment observation device according to claim 1, wherein the determination means includes storage means for previously storing disease information that associates a disease name with an abnormality of the corneal endothelium. A disease name corresponding to the determination result of the abnormality of the corneal endothelium is specified based on the disease information.
  • the invention according to claim 13 divides a light beam into signal light and reference light, and superimposes the signal light passing through the anterior eye portion of the eye to be examined and the reference light passing through the reference light path.
  • An optical system that generates and detects interference light, a changing unit that changes an optical path length of the reference light and / or an optical path length of the signal light, and a detection that is performed by the optical system while changing the optical path length by the changing unit.
  • Forming means for forming a three-dimensional image of the anterior segment based on the interference light, and analyzing a tomographic image at each of a plurality of cross sections of the formed three-dimensional image, so that the cornea of the anterior segment Identifying means for identifying a corneal endothelium region corresponding to the endothelium, and determining an abnormality of the corneal endothelium by analyzing the image region including the identified corneal endothelium region and its neighboring region for each of the plurality of tomographic images Determination means and the plurality Display means for displaying a tomographic image is determined as the abnormal among the tomographic image, an eye observation apparatus before, characterized in that it comprises a.
  • the anterior ocular segment observation apparatus performs measurement while changing the optical path length of reference light or signal light to form a three-dimensional image of the anterior ocular segment, and uses full-field type OCT. is there. Furthermore, the anterior ocular segment observation device according to the present invention analyzes the formed three-dimensional image to identify the corneal endothelium region, and analyzes the image region including the corneal endothelium region and its neighboring region to analyze abnormalities of the corneal endothelium. Determine.
  • the present invention since full-field type OCT is used, there is no problem with specular reflection light such as a specular microscope, and therefore there is no inconvenience that a part of an image is blacked out.
  • specular microscope unlike the specular microscope, etc., it is configured to detect reflected light that travels in the direction opposite to the illumination light irradiation direction, so that parts existing at different depth positions are observed to be shifted in the horizontal direction. There is no inconvenience.
  • the abnormality of the corneal endothelium is determined by analyzing the image area including the corneal endothelium region corresponding to the corneal endothelium of the anterior eye portion and the vicinity thereof, so that the abnormality of the corneal endothelium is determined.
  • the anterior ocular segment observation apparatus identifies a corneal endothelium region by analyzing tomographic images at each of a plurality of cross sections of a three-dimensional image of the anterior ocular segment formed using full-field type OCT. Then, for each tomographic image, an image region including the corneal endothelium region and its neighboring region is analyzed to determine abnormality of the corneal endothelium, and a tomographic image determined to be abnormal among a plurality of tomographic images is displayed. It is configured.
  • the examiner mainly observes the site determined to be abnormal.
  • it is possible to improve the accuracy and efficiency of anterior segment observation. Therefore, according to the present invention, it is possible to observe in detail the state of the anterior segment of the eye to be examined, particularly the state of the corneal endothelium and its vicinity.
  • This anterior ocular segment observation apparatus is used for observing the anterior ocular segment of a subject's eye with cell-level resolution.
  • this anterior ocular segment observation apparatus is used for observing the corneal endothelium and the vicinity thereof (Desme's membrane, anterior chamber, etc.). As this vicinity, a range necessary for treating the corneal endothelium can be appropriately set.
  • the anterior segment represents the region from the cornea to the front of the lens.
  • the anterior ocular segment observation apparatus can also acquire an image of a site (rear eye segment) behind the front surface of the crystalline lens by moving the reference mirror as described later.
  • FIG. 1 An example of the configuration of the anterior segment observation apparatus according to this embodiment is shown in FIG.
  • the anterior ocular segment observation apparatus 100 is a full-field type OCT apparatus similar to the apparatus described in Patent Document 1.
  • a full-field type OCT apparatus irradiates a cornea with signal light having a predetermined beam diameter, and detects interference light obtained by causing the signal light passing through the cornea and reference light to interfere with each other with a two-dimensional photosensor array.
  • a device for acquiring a two-dimensional image of the cornea region corresponding to the beam diameter of the signal light irradiates a cornea with signal light having a predetermined beam diameter, and detects interference light obtained by causing the signal light passing through the cornea and reference light to interfere with each other with a two-dimensional photosensor array.
  • Full-field OCT devices are compared with anterior segment observation devices (slit lamps, specular microscopes, etc.) other than OCT devices, and other types of OCT devices (time domain type, Fourier domain type, swept source type, etc.). High resolution.
  • the eye E is arranged in a state suitable for measurement.
  • the eye E is a living eye, jelly, liquid, or the like for reducing the change in the refractive index at the boundary can be applied to the eye E.
  • the eye E is an isolated eye, the eye E can be placed in a liquid immersion state in order to reduce the change in the refractive index at the boundary.
  • the anterior ocular segment observation apparatus 100 includes a light source unit 1.
  • the light source unit 1 outputs a non-polarized broadband light M.
  • the light source unit 1 includes a halogen lamp, an optical fiber bundle that guides light output from the halogen lamp, and a Kohler illumination optical system for uniformly illuminating the irradiation field of the output light. And so on.
  • the non-polarized broadband light M output from the light source unit 1 has a predetermined beam diameter.
  • the light source is not limited to the halogen lamp, and may be any light source that outputs non-polarized broadband light.
  • an arbitrary thermal light source a light source based on black body radiation
  • the light source may be a laser light source that outputs broadband light with random polarization.
  • non-polarized light means a polarization state including linearly polarized light, circularly polarized light, and elliptically polarized light.
  • Random polarization means a polarization state having two linearly polarized light components orthogonal to each other and the power of each linearly polarized light component changes randomly in time (see, for example, JP-A-7-92656).
  • non-polarized light will be described in detail, but in the case of random polarized light, the same effect can be obtained with the same configuration.
  • the broadband light M output from the light source unit 1 includes light of various bands.
  • the filter 2 is a filter that transmits only a predetermined band of the non-polarized broadband light M.
  • the band to be transmitted is determined by the resolution, measurement depth, and the like, and is set to a band having a center wavelength of about 760 nm and a wavelength width of about 100 nm, for example.
  • an image with a resolution of about 2 ⁇ m can be acquired in each of the depth direction of the eye E (z direction shown in FIG. 1) and the direction orthogonal to the depth direction (horizontal direction).
  • the light transmitted through the filter 2 is also referred to as broadband light M.
  • the ⁇ z direction may be referred to as a forward direction
  • the + z direction may be referred to as a backward direction.
  • the non-polarized broadband light M transmitted through the filter 2 is divided into two by a beam splitter 3 such as a half mirror. That is, the reflected light from the beam splitter 3 forms the signal light S, and the light transmitted through the beam splitter 3 forms the reference light R.
  • the signal light S is focused on the eye E by the objective lens 11 while maintaining the non-polarized state.
  • the signal light S is applied to the cornea Ec with a predetermined beam diameter.
  • the incident direction of the signal light LS with respect to the eye E is the + z direction (depth direction).
  • the signal light LS irradiated to the eye E is reflected and scattered on the surface and inside of the eye E. This reflected light or scattered light returns to the beam splitter 3 via the objective lens 11.
  • the non-polarized reference light R generated by the beam splitter 3 passes through the wave plate ( ⁇ / 4 plate) 4 and the polarizing plate 5 and is reflected by the reflection mirror 6. Further, the reference light R passes through the glass plate 7 and is focused on the reflecting surface of the reference mirror 9 by the objective lens 8. The reference light R reflected by the reference mirror 9 returns to the beam splitter 3 via the same optical path in the reverse direction.
  • the reference light R which was initially unpolarized, is converted into circularly polarized light by passing through the wave plate 4 and the polarizing plate 5 twice.
  • the glass plate 7 is a dispersion correction optical element that minimizes the influence of dispersion that occurs in the optical path of the signal light S and the optical path of the reference light R (both arms of the interferometer).
  • the reference mirror 9 is movable by the reference mirror moving mechanism 10 in the traveling direction of the reference light R, that is, in the direction orthogonal to the reflecting surface of the reference mirror 9 (in the direction of a double-sided arrow in FIG. 1).
  • the reference mirror moving mechanism 10 includes drive means such as a piezo element and a pulse motor.
  • the optical path length of the reference light R (reference optical path length) is changed by moving the reference mirror 9 in this way.
  • the reference optical path length is a reciprocal distance between the beam splitter 3 and the reference mirror 9.
  • images at various depth positions of the cornea Ec can be selectively acquired. That is, the interference light L includes the shape information of the site at the depth position of the cornea Ec where the optical path length of the signal light S (signal optical path length) is equal to the reference optical path length, and the interference light L is detected and detected at the depth position. An image is formed.
  • the reference mirror moving mechanism 10 is an example of the “changing unit” in the present invention.
  • the reference optical path length is changed.
  • the signal optical path length may be changed.
  • a mechanism capable of changing the distance between the apparatus optical system and the eye E is provided. Examples of this mechanism include a stage that moves the apparatus optical system in the z direction and a stage that moves the eye E in the z direction. It is also possible to apply a configuration in which both the reference optical path length and the signal optical path length can be changed.
  • the signal light S that has passed through the eye E and the reference light R that has passed through the reference mirror 9 are superimposed by the beam splitter 3 to generate interference light L.
  • the interference light L includes an S-polarized component and a P-polarized component.
  • the interferometer including the light source unit 1, the beam splitter 3, the objective lens 8, the reference mirror 9, the objective lens 11 and the like, and the CCDs 16 and 17 constitute an example of the “optical system” of the present invention.
  • the interference light L generated by the beam splitter 3 passes through the aperture stop 12 and becomes focused light by the imaging lens (group) 13.
  • the S-polarized component L1 of the interference light L that has become focused light is reflected by the polarization beam splitter 14 and detected by a CCD (image sensor) 16.
  • the P-polarized light component L2 of the interference light L passes through the polarization beam splitter 14, is reflected by the reflection mirror 15, and is detected by the CCD (image sensor) 17.
  • Each CCD 16, 17 has a two-dimensional light receiving surface.
  • the S-polarized component L1 and the P-polarized component L2 are applied to the light receiving surfaces of the CCDs 16 and 17 with a predetermined beam diameter, respectively.
  • the CCD 16 that has detected the S-polarized component L1 sends a detection signal to the computer 20.
  • the CCD 17 that has detected the P-polarized component L ⁇ b> 2 sends a detection signal to the computer 20.
  • the detection signal C B outputted from the CCD17 has a phase difference of 90 degrees can be expressed by the following equation.
  • each detection signal C A , C B includes a background light component (non-interference component, DC component) I s (x, y) + I r (x, y). Furthermore, the detection signal C A comprises an interfering component (AC component) consisting of cos component, the detection signal C B includes the interference component (AC component) consisting sin component.
  • AC component interfering component
  • each of the detection signals C A and C B has only the space (the x direction and the y direction orthogonal to the z direction) as variables, and the time is a variable. Not including as. That is, the interference signal according to the present embodiment includes only a spatial change.
  • FIG. 1 [Control system configuration] The configuration of the control system of the anterior segment observation apparatus 100 will be described.
  • 2A and 2B show an example of the configuration of the control system of the anterior segment observation apparatus 100.
  • FIG. 1
  • the computer 20 includes a control unit 21, a display unit 22, an operation unit 23, and a signal processing unit 24.
  • the control unit 21 controls each unit of the anterior segment observation apparatus 100. For example, the control unit 21 performs control of turning on / off the light source unit 1, controlling the reference mirror moving mechanism 10, controlling the exposure time of the CCDs 16 and 17, and controlling display processing by the display unit 22.
  • the control unit 21 includes a microprocessor such as a CPU and a storage device such as a RAM, a ROM, and a hard disk drive.
  • a computer program (not shown) for device control is stored in advance in the ROM and hard disk drive. The above control by the control unit 21 is executed by the microprocessor operating according to this computer program.
  • control unit 21 may include a communication device for performing data communication with an external device.
  • Communication devices include LAN cards and modems.
  • the control part 21 can acquire various information from an external database, or can register information in a database.
  • information can be acquired from an ophthalmic apparatus such as an examination apparatus, or information can be transmitted to the ophthalmic apparatus.
  • the display unit 22 is controlled by the control unit 21 to display various information.
  • the display unit 22 includes an arbitrary display device such as an LCD or a CRT display.
  • the operation unit 23 is used by an operator to operate the anterior ocular segment observation apparatus 100 and input various kinds of information.
  • the operation unit 23 includes an arbitrary operation device and an input device such as a mouse, a keyboard, a joystick, a trackball, and a dedicated control panel.
  • the signal processing unit 24 executes various signal processing and image processing.
  • the signal processing unit 24 includes a microprocessor such as a CPU, a RAM, a ROM, a hard disk drive, and the like.
  • a computer program for causing the microprocessor to execute various processes described later is stored in advance in the ROM and the hard disk drive.
  • the signal processing unit 24 includes an image forming unit 241, an image region specifying unit 242, a storage unit 244, and an abnormality determination unit 246.
  • the image forming unit 241 forms horizontal images at various depth positions of the anterior segment of the eye E based on the detection signals C A and C B output from the CCDs 16 and 17. Furthermore, the image forming unit 241 forms a three-dimensional image of the anterior segment based on these horizontal images.
  • the image forming unit 241 is an example of the “forming unit” in the present invention.
  • the control unit 21 turns on the light source unit 1.
  • the light source unit 1 is turned on and the continuous light of the broadband light M is output.
  • control unit 21 controls the reference mirror moving mechanism 10 to set the optical path length of the reference light R to the first optical path length.
  • the control unit 21 controls the exposure time of the CCDs 16 and 17.
  • the CCDs 16 and 17 output interference light detection signals C A and C B , respectively.
  • control unit 21 controls the reference mirror moving mechanism 10 to switch the optical path length of the reference light R to the second optical path length.
  • the control unit 21 controls the exposure times of the CCDs 16 and 17 to output new detection signals C A ′ and C B ′.
  • the first optical path length and the second optical path length are such that the detection signal C A and the detection signal C A ′ have a phase difference of 180 degrees ( ⁇ ), and the detection signal C B and the detection signal C B. Is set in advance so as to be a distance interval having a phase difference of 180 degrees ( ⁇ ). Since the detection signals C A and C B have a phase difference of 90 degrees, the four detection signals C A , C B , C A ′, and C B ′ for each phase difference of 90 degrees are obtained by the pair of measurements described above. Will be obtained.
  • the image forming unit 241 adds the detection signals C A and C A ′ (phase difference 180 degrees) and divides the sum by 2 to obtain the background light component I s (x, y) + I r (x, y ) Is calculated. This calculation process may be performed using the detection signals C B and C B ′ (phase difference 180 degrees).
  • the image forming unit 241 obtains an interference component (cos component, sin component) by dividing the background light component I s (x, y) + I r (x, y) from the detection signals C A and C B. Then, the image forming unit 241 forms an image in a cross section in the xy direction (horizontal direction) by calculating the square sum of the interference components of the detection signals C A and C B. This process may be performed using the detection signals C A ′ and C B ′ (phase difference 180 degrees).
  • the control unit 21 sequentially performs the above-described pair of measurements while sequentially changing the optical path length of the reference light R, thereby sequentially obtaining xy cross-sectional images (horizontal tomographic images) at various depth positions of the anterior segment.
  • xy cross-sectional images horizontal tomographic images
  • horizontal tomographic images of the Descemet's membrane and corneal endothelium are acquired.
  • control unit 21 controls the CCDs 16 and 17 to output detection signals at a predetermined frame rate and at the same timing, and also refers to the frame rate and the exposure timing of each CCD 16 and 17.
  • the change timing of the optical path length of the light R is synchronized.
  • each CCD 16, 17 it is desirable to set the exposure time of each CCD 16, 17 to be shorter than the frame interval (the reciprocal of the frame rate).
  • the frame rate of the CCDs 16 and 17 is set to 30 f / s, and the exposure time is set to about 30 to 50 ⁇ s.
  • the broadband light M having a center wavelength of about 760 nm and a wavelength width of about 100 nm, an image with a resolution of about several ⁇ m can be acquired.
  • the horizontal tomographic image of the anterior segment acquired in this way is stored in the storage unit 244, for example. Further, the control unit 21 causes the display unit 22 to display a horizontal tomographic image in response to an operation using the operation unit 23, for example.
  • the image forming unit 241 performs a known complement process for complementing pixels between adjacent horizontal tomographic images, thereby performing a three-dimensional image (such as volume data). Called). Volume data is image data defined by voxels that are three-dimensional pixels. This three-dimensional image is acquired for a region in the cornea including the corneal endothelium and the vicinity thereof (Desme's membrane, anterior chamber, etc.).
  • the image forming unit 241 selects voxels located in the cross section along the depth direction from the volume data, and forms a tomographic image (vertical tomographic image) along the depth direction based on these voxels.
  • volume data it is also possible to form a three-dimensional image (called stack data or the like) obtained by arranging a plurality of horizontal tomographic images in one three-dimensional coordinate system.
  • a vertical tomographic image can be formed based on the stack data.
  • the cross-sectional position in the depth direction in the three-dimensional image can be automatically designated, or the cross-sectional position can be designated manually by the operator.
  • the cross-sectional positions can be set at predetermined intervals. It is also possible to automatically set a cross-sectional position designated in the past. Further, a predetermined cross-sectional position (for example, a cross-section passing through the corneal apex) may be automatically set.
  • a pseudo three-dimensional image obtained by rendering volume data is displayed on the display unit 22, and the cross-sectional position is displayed on the pseudo three-dimensional image using the operation unit 23. Can be configured to set.
  • a vertical tomographic image having a cross section orthogonal to the horizontal tomographic image that is formed first it is also possible to form a tomographic image that intersects the horizontal tomographic image at an arbitrary angle. For example, it is possible to form a tomographic image along the radial direction of the cornea Ec. It is also possible to form a horizontal tomographic image at a depth position between adjacent horizontal tomographic images formed first based on the complemented voxels in the volume data.
  • a pixel (voxel, pixel) on the two-dimensional cross section is selected, and the selected pixel is moved along the two-dimensional cross section.
  • a tomographic image is formed by arranging. By such processing, a tomographic image corresponding to an arbitrary cross section of the anterior segment can be formed. Note that the processing for forming a tomographic image from the three-dimensional image as described above is executed by the tomographic image forming unit 243 of the image region specifying unit 242.
  • the image region specifying unit 242 analyzes the three-dimensional image formed by the image forming unit 241 and specifies a corneal endothelium region corresponding to the corneal endothelium of the anterior eye portion of the eye E to be examined.
  • the specified corneal endothelium region only needs to include at least a part of the corneal endothelium of the anterior segment. Note that an image region (near region) corresponding to the Descemet's membrane or the anterior chamber is located near the corneal endothelium region in the three-dimensional image.
  • the image area specifying unit 242 may specify, for example, an image area (including a corneal endothelium area and a neighboring area) set in advance according to a site where the abnormality determination process is performed.
  • an image area including a corneal endothelium area and a neighboring area
  • the image region specifying unit 242 specifies an image region in a range corresponding to the specified portion.
  • the image area specifying unit 242 is an example of the “specifying unit” of the present invention.
  • the image area specifying unit 242 can also specify a target image area by analyzing the 3D image (volume data or stack data) itself, or a tomographic image (vertical tomographic image or horizontal tomographic image) based on the 3D image.
  • the target image area can also be specified by analyzing. It is also possible to specify a target image region by analyzing a horizontal tomographic image that is the basis of a three-dimensional image.
  • a target image region can be obtained by designating a cross section of the three-dimensional image region.
  • a tomographic image in a cross section in an arbitrary direction can be analyzed to specify a target image region.
  • the target image region includes a corneal endothelium region corresponding to the corneal endothelium. Therefore, it is necessary to specify the corneal endothelium region in the analysis target image.
  • a method of specifying a corneal endothelium region based on a positional relationship with a characteristic part of the anterior segment examples include the corneal surface, the corneal back surface, the front lens surface, and the iris.
  • information that records the standard positional relationship (distance, direction) between the feature region and the corneal endothelium is stored in the storage unit 244 in advance, and the feature region in the image is specified. Then, it is possible to specify the corneal endothelium region in the image based on this characteristic part, the above information, and the measurement magnification (depending on the refractive power of the lens such as the objective lens).
  • the corneal endothelial cell is a monolayer cell located in the deepest part of the cornea.
  • Corneal endothelial cells are uniformly arranged in a paving stone shape.
  • the shape of corneal endothelial cells is generally a 5-7 heptagon, and most are hexagons.
  • Corneal endothelial cells usually have a diameter of about 20 ⁇ m and an area of about 300 to 350 ⁇ m 2 .
  • the image area specifying unit 242 first extracts an image area (cell area) of a cell depicted in the tomographic image based on the pixel values of the pixels constituting the tomographic image (horizontal tomographic image).
  • a cell boundary region has high luminance, and a cell internal region has low luminance. This is due to the fact that the scattering at the cell boundary region is larger than the scattering at the inner region.
  • the image region specifying unit 242 performs threshold processing based on such characteristics to specify an image region corresponding to a cell boundary region, and thereby extracts a cell region.
  • the process of extracting a cell region is not limited to the above example, and any known technique for extracting a predetermined image region in an image can be applied.
  • any known technique for extracting a predetermined image region in an image can be applied.
  • binarization processing or filter processing can be used.
  • the pixel value is a luminance value in the case of a monochrome image and an RGB value in the case of a color image.
  • An image acquired by the OCT apparatus is generally a monochrome image.
  • a pseudo color image may be formed based on the distribution of luminance values.
  • the image region specifying unit 242 analyzes the cell region extracted by the above processing, and generates cell information indicating the form (size or shape) of the cell region.
  • the cell size is calculated with reference to the measurement magnification of the image.
  • the measurement magnification is set at the time of image acquisition. If the magnification is known, a scale of distance (unit distance) and a pixel interval in the image can be acquired. The diameter and circumference of the cell region can be easily calculated based on the unit distance and the pixel interval.
  • the area of the cell region is obtained by counting the number of pixels included in the unit area to obtain the unit area pixel number, and counting the number of pixels in the cell region. It can be calculated by dividing. It is also possible to obtain the area by performing a normal integration operation.
  • the shape of the cell region can be specified based on the arrangement of pixels constituting the image region corresponding to the boundary region of the cell specified in the above processing.
  • the shape of a cell (such as a cross-sectional shape in the horizontal direction) can be obtained based on this wire model by creating a wire model by thinning an image region corresponding to a cell boundary region, for example.
  • a wire model generally includes a boundary region of a plurality of cells.
  • the boundary area of a single cell can be specified by searching a loop-shaped image area that does not include a part of the wire model inside.
  • the shape can be determined by, for example, calculating a differential coefficient at each position on the loop-shaped image region, or using a pattern matching process or the like.
  • each specified cell region is a substantially hexagonal shape (for example, with a template image having a hexagonal shape).
  • the substantially hexagonal cell region is present in a predetermined ratio or more, it is determined that the tomographic image is an image of the corneal endothelium.
  • a statistical value (average value or the like) of the size of the specified cell region is obtained, and it may be determined whether the average value is within a predetermined range (preset based on the size). It is possible to specify an image area. In addition, even if it is determined by pattern matching or the like whether the plurality of specified cell regions have a characteristic arrangement of corneal endothelium (a cobblestone-like substantially uniform arrangement), the target image area can be specified. Is possible.
  • the image region specifying unit 242 performs the above-described processing on each of a plurality of horizontal tomographic images having different depth positions, and determines whether each horizontal tomographic image is a corneal endothelium image.
  • a group of horizontal tomographic images determined as images of the corneal endothelium corresponds to the corneal endothelium region.
  • the horizontal tomographic image existing in front ( ⁇ z direction) of the corneal endothelium region is a neighborhood region corresponding to the front side vicinity (Desme membrane etc.) of the corneal endothelium.
  • the horizontal tomographic image existing behind the corneal endothelium region is a neighborhood region corresponding to the posterior vicinity of the corneal endothelium (such as the anterior chamber).
  • the depth range (z coordinate value) of the corneal endothelium region is obtained. Based on this z coordinate value, it is possible to specify a corneal endothelium region in a vertical tomographic image or a three-dimensional image.
  • a corneal endothelium region or the like can be specified by analyzing a vertical tomographic image or a three-dimensional image.
  • a corneal endothelium region by analyzing a three-dimensional aspect (volume, shape, arrangement, etc.) of a cell region in a three-dimensional image based on pixel values.
  • the corneal endothelium region As for the vertical tomographic image, it is possible to specify the corneal endothelium region by analyzing the two-dimensional aspect (cross-sectional area, shape, arrangement, etc.) of the cell region based on the pixel value. Further, the pixel values of the pixels constituting the vertical tomographic image are analyzed, and the boundary region between the layers is specified by obtaining adjacent pixels whose pixel values change rapidly. Thereby, a boundary region between the corneal endothelium region and the image region corresponding to the Descemet's membrane, a boundary region between the corneal endothelium region and the image region corresponding to the anterior chamber, and the like are specified. Note that which layer is the corneal endothelium region can be determined based on the aforementioned cell information. It is also possible to specify a corneal endothelium region by storing a range of pixel values peculiar to the corneal endothelium region in advance and specifying a pixel group having a pixel value included in
  • the storage unit 244 stores various types of information.
  • the storage unit 244 is an example of the “storage unit” in the present invention.
  • the information stored in the storage unit 244 includes the image formed by the image forming unit 241, the image region specified by the image region specifying unit 242 (its coordinate values and the image itself), and the tomographic image forming unit 243. There are tomographic images, subject information (medical chart information, etc.).
  • the disease information 245 is stored in the storage unit 244 in advance.
  • the disease information 245 is information that associates a disease name with an abnormality of the corneal endothelium.
  • An example of the disease information 245 is shown in FIG.
  • the disease information 245 associates findings (abnormalities in morphology) of various parts of the anterior segment with disease names.
  • the disease information 245 of FIG. 3 there are columns indicating the tendency of findings (for example, “light”, “irregular”, etc.), but in actual disease information, these columns include partial thresholds and allowable values. Numerical information such as range is recorded. Such numerical information is preset based on, for example, statistical values (average value, standard deviation, etc.) of many findings acquired clinically.
  • the following columns are provided as the target sites of the findings: “endothelial cells” representing corneal endothelial cells; “endothelial front” representing the front surface of the corneal endothelium (boundary surface with the Descemet's membrane)
  • the “rear endothelium” representing the posterior surface of the corneal endothelium (interface with the anterior chamber); the “endothelial thickness” representing the thickness of the corneal endothelium; the “Desme membrane”; the “Desme film thickness” representing the thickness of the Desme membrane; “Cornea thickness” representing the thickness of the cornea Ec.
  • a column of “binocular / unicular” indicating whether each disease generally occurs in both eyes or one eye is provided.
  • the columns provided in the findings are not limited to the above.
  • other parts of the anterior segment (corner angle, etc.), genetic information (name of disease affected by parent, etc.), subject information (gender, age, medical history, medication history, presence / absence of wearing contact lenses, etc.) ) And the like, it is possible to set columns appropriately according to the disease name to be identified.
  • the following columns are provided for disease names: “droplet cornea”; “Fuchs” representing Fuchs corneal endothelial dystrophy; “CHED” representing congenital hereditary corneal endothelial dystrophy; “PPCD” representing “Position Corneal Vessel” “PCV”; “IEC” representing iris-corneal endothelial syndrome; “trauma at delivery”; “congenital glaucoma”.
  • the column provided for the disease name is not limited to the above, and any disease name related to the anterior segment (particularly the corneal endothelium) can be provided.
  • the cell density of corneal endothelial cells is 5000 to 6000 cells / mm 2 at the time of birth and about 3000 cells / mm 2 at the age of 2 years.
  • the cell density is about 3000 cells / mm 2
  • the coefficient of variation (CV value) is around 0.25
  • the appearance ratio of hexagonal cells (hexagon cell rate) is 65 to 70%.
  • the cell density is about 2500 cells / mm 2
  • the CV value is around 0.30
  • the hexagonal cell rate is around 60%.
  • these values are significantly different in long-term contact lens wearers compared to healthy people of the same age.
  • CV value and a hexagonal cell rate have a correlation with the function of a corneal endothelium.
  • corneal turbidity is considered to occur due to malfunction when the cell density is 500 cells / mm 2 or less.
  • the only treatment for turbidity is corneal transplantation.
  • the thickness of ABZ is about 3 ⁇ m and does not change throughout life.
  • PNBZ increases in thickness with age (for example, approximately 6 ⁇ m at 60 years old), which is thought to be produced by the endothelium after the embryonic period.
  • the corneal endothelium is observed as a smooth surface with a slightly steeper curvature than the corneal epithelium.
  • the surface of the corneal endothelium is irregular, or when adhesion of precipitate (rear deposits) or iris pigment (iris pigment) is recognized, it is considered that there is some cause for damaging the corneal endothelium.
  • PCV is also an important finding.
  • Surface irregularities can be determined from, for example, the amount of displacement from the base curve of the surface.
  • the base curve will be described with reference to FIG.
  • the surface of the corneal endothelium anterior surface or posterior surface
  • the surface U shown in FIG. 4 has irregular portions V such as irregularities and wrinkles.
  • the base curve BC is an estimation of the original shape (smooth arc shape) of the surface U, that is, the shape when the irregular portion V does not exist.
  • the base curve BC is set, for example, as follows: By analyzing the pixel values of the pixels constituting the tomographic image as described above, the boundary region (plane U) between the corneal endothelium region and its neighboring region is determined. Extracting; calculating a differential coefficient (primary differential, secondary differential, etc.) at each point of the surface U; obtaining a feature point (vertex, inflection point, etc.) on the surface U based on the calculated differential coefficient; An irregular portion V is identified based on the number and position of these feature points; an arcuate region is obtained by extending a smooth arc-shaped portion excluding the identified irregular portion V. This arcuate region is the base curve BC.
  • the method of obtaining the base curve BC is not limited to the above, and for example, by pattern matching or difference processing between a template image imitating the original cross-sectional shape of the surface U and an image of the surface U extracted from the tomographic image. It is also possible to obtain the base curve BC.
  • the base curve BC can be obtained in the same manner for irregularities caused by the presence of deposits.
  • the Desme membrane is often accompanied by an abnormality. Therefore, in diagnosis of the corneal endothelium, it is important to refer to not only the corneal endothelium itself but also the state of the Desme membrane. In particular, the presence or absence of wrinkles of Descemet's membrane, retrocorneal membrane (a membrane material on the back surface), guttata (spots) or the like is important. These abnormalities can be detected by the amount of displacement from the base curve of the front and back surfaces of the Descemet's membrane and corneal endothelium.
  • corneal endothelium In the diagnosis of corneal endothelium, unilateral or bilateral abnormalities are important information. In general, in the case of a binocular abnormality, primary is strongly suspected, and in the case of a secondary disease, it is mostly a unilateral abnormality.
  • corneal parenchymal lesions and inflammation of the anterior chamber is also important information.
  • corneal parenchymal edema or anterior chamber inflammation there are suspicions of primary minor cases, in particular, corneal corneal, Fuchs corneal endothelial dystrophy, posterior polymorphic dystrophy, and Posterior Corneal Vesicle.
  • Droplet cornea is a primary and binocular disease, such as the local accumulation of collagen-like substances between the Descemet's membrane and the corneal endothelium (frontal corneal endothelium) and the ridge-like projections on the posterior surface of the corneal endothelium. Findings are seen. In addition, corneal endothelial cells are often irregularly shaped, and large and small (variation in size) are observed. On the other hand, the corneal thickness and the number of corneal endothelial cells (cell density) are often normal.
  • Fuchs corneal endothelial dystrophy is a primary, binocular, autosomal dominant hereditary disease that is common in middle-aged women. Connective tissue of about 4-5 ⁇ m is produced in corneal endothelial cells, and the thickness of the Descemet's membrane increases (about 8-10 ⁇ m). Observations include the following: Spider-like protrusions into the anterior chamber; layered rods; rods in layered connective tissue; layered bonds without rods Organization. Atheromatous processes become thin and irregular by squeezing corneal endothelial cells.
  • Congenital hereditary corneal endothelial dystrophy is a primary disease, and in its findings, a beaded white line is seen in the posterior Descemet's membrane and corneal endothelial cells.
  • the corneal endothelium there are a portion where the cell is deficient and a portion which is thinned and contains pigment granules and looks like corneal epithelial cells.
  • Such an abnormality can be grasped, for example, by measuring a displacement amount or thickness from the base curve of the front and back surfaces of the Descemet's membrane or corneal endothelium.
  • the anterior ocular segment observation apparatus 100 unlike a specular microscope, it is possible to distinguish between a defect and a protrusion.
  • Posterior polymorphic dystrophy is a primary and binocular disease. About 2 to 20 blister-like small circular lesions are gathered, and a grayish white circle halo surrounds them. In addition, there are cases where blisters are not obvious and map-like lesions and dense grayish white turbidity occur, and there are wide undulated strip-like lesions and thickening of the Descemet's membrane. Such an abnormality can be grasped by measuring the amount of displacement and the thickness of the Descemet's membrane and corneal endothelium from the front and back base curves.
  • Posture Corneal Vesicle is a primary and unilateral disease that is usually asymptomatic and often found by ophthalmic medical examination. Findings include vesicles and band-like lesions on the posterior surface of the Descemet's membrane and corneal endothelium. Most zonal lesions run horizontally. Such an abnormality can be grasped by measuring the amount of displacement and the thickness of the Descemet's membrane and corneal endothelium from the front and back base curves.
  • Iris-corneal endothelial syndrome is a disease which is primary and unilateral and has abnormalities in the corneal endothelium, anterior chamber corner and iris.
  • the findings include degeneration of corneal endothelial cells, a decrease in the number of corneal endothelium, and a loss of corneal endothelium, and a thick layered tissue (PCL) of collagen-like substance produced from the corneal endothelial cells is observed on the rear surface of the Descemet's membrane.
  • PCL thick layered tissue
  • Delivery trauma is a secondary disease that results in rupture of the Descemet's membrane and corneal endothelium due to pressure on the cornea during delivery. As a finding, rupture of a strip-like desme film that runs linearly is observed. Such findings are similar to those of congenital glaucoma, but in congenital glaucoma, rupture of the Descemet's membrane is binocular and not linear.
  • the disease information 245 is set based on the findings of various diseases as described above. At that time, as described above, a displacement amount from the base curve, a threshold value such as a thickness, and an allowable range are determined and recorded in the disease information 245. In addition, a lesion mode (description mode in an image) based on the above findings is determined and recorded in the disease information 245. In the disease information 245 shown in FIG. 3, “irregular, large / small, normal number of cells” and the like are recorded in the columns corresponding to “droplet cornea” and “endothelial cells”.
  • the abnormality determining unit 246 analyzes the image region specified by the image region specifying unit 242, and determines an abnormality of the corneal endothelium. This process may determine whether or not there is an abnormality, or may determine the degree of abnormality.
  • the abnormality determination unit 246 and the storage unit 244 constitute an example of the “determination unit” of the present invention.
  • the abnormality determination unit 246 includes a boundary region specifying unit 247, a base curve specifying unit 248, a boundary shape analyzing unit 249, a layer region specifying unit 250, a layer region analyzing unit 251, a cell region specifying unit 252, a cell state analyzing unit 253, A change analysis unit 254 and a disease specifying unit 255 are included.
  • the boundary region specifying unit 247 specifies a boundary region in each vertical tomographic image corresponding to the boundary surface of the corneal endothelium of the cornea Ec.
  • the boundary area specifying unit 247 is an example of the “boundary area specifying means” of the present invention.
  • the boundary region specifying unit 247 analyzes the pixel values of the pixels constituting the image region including the corneal endothelium region specified by the image region specifying unit 242 and its neighboring region. In this analysis processing, for example, by using the analysis result described above by the image region specifying unit 242, an image region (endothelial front boundary) corresponding to the front surface of the corneal endothelium (boundary surface with the Descemet's membrane) in each vertical tomographic image. Region) or an image region (endothelial posterior boundary region) corresponding to the posterior surface (boundary surface with the anterior chamber) is specified.
  • both the endothelial front boundary region and the endothelial rear boundary region may be specified, or only one of them may be specified.
  • the specified boundary region is set in advance according to, for example, an abnormality detection target. Moreover, you may make it specify both or one side always.
  • the base curve specifying unit 248 and the boundary shape analyzing unit 249 determine abnormality of the boundary region based on the shape of the boundary region specified by the boundary region specifying unit 247. An example of this abnormality determination process will be described.
  • the base curve specifying unit 248 determines the base curve BC based on the surface U.
  • the process for obtaining the base curve BC has been described above.
  • the boundary shape analysis unit 249 detects the unevenness (irregular portion V) of the surface U with respect to the base curve BC.
  • the base curve specifying unit 248 and the boundary shape analyzing unit 249 constitute an example of the “unevenness detecting unit” of the present invention.
  • the boundary shape analysis unit 249 obtains a displacement amount of the irregular portion V with respect to the base curve BC.
  • This displacement amount is, for example, an irregular portion V with respect to the base curve BC, such as a maximum separation distance between the base curve BC and the irregular portion V, a width of the irregular portion V, an area of an image region surrounded by the base curve BC and the irregular portion V, and the like. This is a physical quantity that characterizes the displacement of.
  • the boundary shape analysis unit 249 determines whether the amount of displacement is within a predetermined allowable range. The boundary shape analysis unit 249 determines that the boundary region has no abnormality if the displacement amount is within the allowable range, and determines that there is an abnormality if the amount of displacement is outside the allowable range.
  • the boundary shape analysis unit 249 can determine the degree of abnormality in the boundary region based on the absolute value of the displacement amount, the displacement of the displacement amount with respect to a predetermined allowable range or threshold value, and the like.
  • the layer region specifying unit 250 and the layer region analyzing unit 251 Based on the thickness of the layer region in each vertical tomographic image corresponding to the predetermined layer, the abnormality of the predetermined layer and further the abnormality of the corneal endothelium are determined.
  • the abnormality of the layer region is related to the abnormality of the corneal endothelium.
  • the layer region specifying unit 250 specifies a layer region in each vertical tomographic image corresponding to a predetermined layer of the anterior segment.
  • the layer region specifying unit 250 is an example of the “layer region specifying unit” of the present invention.
  • the layer region identifying unit 250 analyzes the pixel values of the pixels constituting the image region including the corneal endothelium region identified by the image region identifying unit 242 and its neighboring region. Do. In this analysis processing, for example, by using the analysis result described above by the image region specifying unit 242, a layer region corresponding to a corneal endothelium region and a Descemet's membrane (all layers, ABZ layer, PNBZ layer) in each vertical tomographic image. , Layer regions such as the cornea (all layers) are identified. The layer region is specified, for example, by specifying its front and back surfaces.
  • a layer region corresponding to one layer may be specified, or a layer region corresponding to each of two or more layers may be specified.
  • the specified layer region is set in advance according to, for example, an abnormality detection target. Further, the predetermined layer region may be always specified.
  • the layer region analysis unit 251 obtains the thickness of the identified layer region.
  • the thickness of the layer region can be calculated based on, for example, the interval between adjacent pixels based on the OCT image measurement magnification obtained in advance and the number of pixels between the front surface and the rear surface of the layer region. It is also possible to obtain the thickness by calculating the difference between the depth position of the front boundary and the depth position of the rear boundary of the layer region. Further, the difference between the position of the reference mirror 9 when the horizontal tomographic image including the pixels on the front boundary is acquired and the position of the reference mirror 9 when the horizontal tomographic image including the pixels on the rear boundary is acquired is calculated. By doing so, the thickness of the layer region can also be obtained.
  • the layer region analysis unit 251 determines whether the obtained layer region thickness is within a predetermined allowable range. Then, the layer region analysis unit 251 determines that the predetermined layer (and thus the corneal endothelium) has no abnormality if the thickness is within the allowable range, and determines that there is an abnormality if the thickness is outside the allowable range.
  • the layer region analysis unit 251 can also determine the degree of abnormality in the predetermined layer based on the absolute value of the thickness, the deviation of the thickness with respect to a predetermined allowable range or threshold value, and the like.
  • the cell region specifying unit 242 When the corneal endothelium region is specified by the image region specifying unit 242 for each of a plurality of tomographic images (particularly horizontal tomographic images), the cell region specifying unit 252 and the cell state analyzing unit 253 detect abnormalities of the corneal endothelium (cells). judge.
  • the cell region specifying unit 252 analyzes the pixel values of the pixels that form the image region including the corneal endothelium region specified by the image region specifying unit 242 and its neighboring regions, and configures the corneal endothelium of the eye E to be examined. A plurality of cell regions in the corneal endothelial region corresponding to the corneal endothelial cell to be identified are specified. This process can be executed in the same manner as the cell area extraction process described above by the image area specifying unit 242. In addition, when the cell region has already been extracted by the image region specifying unit 242, the cell region specifying unit 252 can use the result of this extraction processing.
  • the cell area specifying unit 252 is an example of the “cell area specifying means” of the present invention.
  • the cell state analyzing unit 253 analyzes the state of the corneal endothelial cell based on the plurality of cell regions specified by the cell region specifying unit 252 and thereby determines the abnormality of the corneal endothelium.
  • an example of the abnormality determination process will be described.
  • the cell state analyzing unit 253 first obtains evaluation information on the state of the corneal endothelial cell based on the plurality of cell regions specified by the cell region specifying unit 252. In this processing, for example, evaluation information similar to that of the specular microscope, that is, cell density, maximum cell area, minimum cell area, average cell area, standard deviation of area, coefficient of variation of cell area, appearance rate of hexagonal cell region A histogram of the cell area is required.
  • the cell density represents the number of cell regions included in a predetermined area (1 mm 2 ).
  • the cell density can be set based on a plurality of specified cell regions and an image region of a predetermined area in a horizontal tomogram (magnification). ).
  • the maximum cell area represents the maximum value of the areas of the plurality of specified cell regions, and can be obtained, for example, by calculating the area of each cell region and comparing the size.
  • the minimum cell area represents the minimum value of the areas of the plurality of specified cell regions, and can be obtained in the same manner as the maximum cell area, for example.
  • the average cell area is an average value of the areas of a plurality of specified cell regions, and can be calculated by a normal statistical calculation.
  • the area standard deviation is a standard deviation of areas of a plurality of specified cell regions, and can be calculated by a normal sugar solution calculation.
  • the variation coefficient of the cell area is a statistic (the CV value described above) indicating a relative error with respect to the average cell area, and is obtained by dividing the area standard deviation by the average cell area.
  • the appearance rate of the hexagonal cell region is the aforementioned hexagonal cell rate. For example, it is determined whether each identified cell region is a hexagonal shape, and the number of the cell regions determined to be hexagonal shapes is divided by the total number. Can be calculated.
  • the cell area histogram is information representing the frequency of each cell area and can be obtained by normal statistical calculation.
  • Such a cell state analysis unit 253 constitutes an example of the “evaluation means” of the present invention.
  • the cell state analysis unit 253 determines the abnormality of the corneal endothelium based on the calculated evaluation information. Therefore, for example, an allowable range for each piece of evaluation information is set in advance (stored in the storage unit 244), and the cell state analysis unit 253 determines that each piece of evaluation information obtained based on a plurality of cell regions It is determined whether it is included in the allowable range. When it is determined that it is included, it is determined that there is no abnormality, and when it is determined that it is not included, it is determined that there is an abnormality. It is also possible to determine the degree of abnormality based on the deviation of the evaluation information with respect to the allowable range.
  • the determination result obtained by the abnormality determination unit 246 is stored in the storage unit 244 in association with, for example, a patient ID, left and right eye information, and examination date information.
  • the left and right eye information is information for identifying whether the eye to be examined is the left eye or the right eye.
  • Whether the eye E to be examined is the left eye or the right eye may be manually input by an operator, for example, or when the apparatus optical system moves on the stage, the optical system You may determine automatically based on the position of the left-right direction.
  • the patient ID may be manually input by an operator or may be automatically acquired with reference to the subject's electronic medical record, for example.
  • the inspection date information may be manually input by an operator or may be automatically acquired with reference to the timekeeping function of the computer 20, for example.
  • the temporal change analysis unit 254 searches the storage unit 244 for past determination results of the eye E. In this search process, for example, the temporal change analysis unit 254 selects a determination result related to the subject by collating the patient ID, and determines the determination result of the eye E from the selected determination results based on the left and right eye information. select.
  • the temporal change analysis unit 254 selects the determination result obtained in the previous examination based on the examination date / time information from the selected judgment result of the eye E.
  • the latest date / time is specified from the examination date / time information associated with the past determination result of the eye E, and the determination result associated with the examination date / time information representing the latest date / time is selected. Is.
  • the selected determination result is not limited to that of the previous inspection, and may be any past determination result. It is also possible to select two or more determination results.
  • the temporal change analysis unit 254 compares the new abnormality determination result obtained in this examination with the past determination result retrieved from the storage unit 244, and based on the result, the corneal endothelium of the eye E to be examined is compared. Find time-varying information.
  • the time-dependent change information is information representing a time-dependent change in the state of the corneal endothelium (for example, the presence / absence or degree of abnormality).
  • the process for obtaining the temporal change information is executed as follows, for example.
  • the temporal change analysis unit 254 obtains, for example, a new change in the determination result with respect to the past determination result and uses it as the temporal change information.
  • the temporal change analysis unit 254 creates, for example, a graph representing the temporal changes of a plurality of past determination results and new determination results, and uses them as the temporal change information. . It is also possible to designate an arbitrary region in each OCT image to be analyzed for change over time based on positional information such as an abnormal part and to calculate the amount of change over time of various parameters in the specified region. At this time, a temporal change amount may be obtained for the entire measurement region of the OCT image by sequentially designating a region of a predetermined unit size set in advance for each OCT image. Furthermore, displaying information (such as a message) that calls attention when the calculated amount of change over time is equal to or greater than a predetermined threshold may lead to early detection of an abnormality.
  • position information indicating the position
  • information indicating the position
  • position information it is possible to compare the same parts as described above, and it is possible to detect a change in the degree of abnormality, a movement of a place, and the like. Further, by comparing such identical parts, a newly appearing abnormality can be detected, or the disappearance of an abnormality existing in the past can be detected, so that more detailed abnormality detection can be performed.
  • the disease information 245 is stored in the storage unit 244 in advance (see FIG. 3). Based on the disease information 245, the disease identification unit 255 identifies a disease name corresponding to the determination result of the abnormality of the corneal endothelium.
  • the specified disease name is a candidate for a disease that is suspected of having the eye E to be examined.
  • the disease information 245 is information that associates a disease name with an abnormality of the corneal endothelium.
  • the abnormality determination unit 246 determines whether or not there are various abnormalities of the corneal endothelium.
  • the abnormality determination unit 246 includes an abnormality of the corneal endothelial cell, an abnormality of the front or rear surface of the corneal endothelium, an abnormality of the thickness of the corneal endothelium (endothelium thickness), an abnormality of the Desme film, and a thickness of the Desme film (Desme film thickness).
  • Abnormalities, corneal thickness (corneal film thickness) abnormality, and the like are determined. It is also possible to determine whether the abnormality is binocular or unilateral by examining both eyes of the subject.
  • the disease identification unit 255 collates the abnormality determination result by the abnormality determination unit 246 with the findings corresponding to each disease name in the disease information 245, and determines the disease name that may cause the corneal endothelium of the eye E to be affected. Identify.
  • the disease name may be specified when determination results for all findings are applicable, or the disease name may be specified when determination results for some findings are applicable.
  • findings corresponding to the droplet cornea include binocular, irregular corneal endothelial cells, collagen-like substances on the front surface of the corneal endothelium, ridges on the posterior surface of the corneal endothelium, and normal corneal thickness.
  • “droplet cornea” can be specified as a disease name that may be affected.
  • “droplet cornea” may be specified as a disease name that may be affected.
  • the control unit 21 causes the display unit 22 to display the determination result by the abnormality determination unit 246. At this time, items determined to be abnormal and their contents may be individually displayed. It is also possible to display an anterior image (tomographic image, three-dimensional image, etc.) of the eye E. In particular, together with the abnormality determination result, the image used for the abnormality determination can be displayed. It is also possible to display abnormal time-dependent information, the specified disease name, and the like. The doctor makes the final diagnosis, and the displayed information has the meaning of diagnosis support.
  • the anterior ocular segment observation apparatus 100 forms a three-dimensional image of the anterior ocular segment of the eye E using full field type OCT. Further, the anterior ocular segment observation apparatus 100 analyzes the formed three-dimensional image, identifies a corneal endothelium region corresponding to the corneal endothelium of the anterior ocular segment, and includes an image including the identified corneal endothelium region and its neighboring region. The region is analyzed to determine abnormalities of the corneal endothelium.
  • the types of abnormalities determined by the anterior ocular segment observation apparatus 100 include abnormalities at the interface of the corneal endothelium, abnormalities in the corneal layer, abnormalities in corneal endothelial cells, and the like. Further, according to the anterior ocular segment observation apparatus 100, it is also possible to obtain information on temporal changes in abnormalities of the corneal endothelium, and specify a disease name that may cause the eye E to be affected based on the abnormality determination result. You can also.
  • the anterior ocular segment observation device 100 unlike a specular microscope, etc., it is configured to detect reflected light that travels in a direction opposite to the direction of illumination light irradiation, so that parts existing at different depth positions are shifted in the horizontal direction. There is no inconvenience of being observed.
  • the anterior ocular segment observation apparatus 100 it is possible to determine abnormality of the corneal endothelium based on the image area including the corneal endothelium area and its vicinity area. Therefore, it is possible to automatically determine the presence or absence and degree of abnormality of the corneal endothelium, and it is possible to improve the accuracy of the anterior ocular segment observation and the efficiency.
  • an anterior ocular segment observation apparatus 100 detailed observation of the state of the anterior segment of the eye E, particularly the corneal endothelium and the vicinity thereof (Desme's membrane, anterior chamber, etc.) is possible.
  • the PNBZ layer of the Descemet's membrane can be used to determine whether the abnormality (disease) of the corneal endothelium is congenital or acquired. An example of this determination process will be described.
  • thickness threshold information for distinguishing between congenital and acquired is created in advance and stored in the storage unit 244. This threshold information can be created based on a large number of clinical data, for example.
  • the abnormality determination unit 246 analyzes the pixel values of the pixels constituting the image region including the corneal endothelium region specified by the image region specifying unit 242 and generates the PNBZ layer. An image region in each corresponding tomographic image is specified. Further, the abnormality determination unit 246 obtains the thickness of the image area corresponding to the PNBZ layer, and determines whether the abnormality is congenital or acquired based on the thickness. This determination process is executed by comparing the obtained thickness with threshold information.
  • the anterior ocular segment observation apparatus may be configured to determine an abnormality of the corneal endothelium for each of the tomographic images in a plurality of cross sections of the three-dimensional image and display the tomographic image determined to be abnormal.
  • a three-dimensional image of the anterior segment is formed by the same optical system, changing means, and forming means as in the above embodiment.
  • the specifying means of this modification forms tomographic images (horizontal tomographic images and vertical tomographic images) at a plurality of cross sections of this three-dimensional image in the same manner as the image region specifying unit 242 of the above embodiment. Furthermore, this specifying means performs an analysis process similar to that of the image region specifying unit 242 to each tomographic image, and specifies a corneal endothelium region corresponding to the corneal endothelium.
  • the determination means of the present invention determines an abnormality of the corneal endothelium by analyzing an image region including the specified corneal endothelium region and its neighboring region for each tomographic image. This process is executed in the same manner as the abnormality determination unit 246 of the above embodiment.
  • the plurality of tomographic images are divided into a group of tomographic images determined to be abnormal and a group of tomographic images not determined to be abnormal.
  • This grouping may be performed on the basis of the presence or absence of abnormality, or may be performed on the basis of the degree of abnormality. That is, the former is divided into a group of tomographic images determined to have an abnormality and a group of tomographic images determined to have no abnormality, and the latter is determined to have an abnormality exceeding a predetermined degree.
  • the tomographic image group is divided into a group of tomographic images determined to have an abnormality of a predetermined level or less (including those determined to have no abnormality).
  • the group of tomographic images determined to be abnormal is displayed on the display means.
  • This display means is the same as the display unit 22 in the above embodiment.
  • the tomographic images belonging to the group are displayed on the display means by the same microprocessor as the control unit 21.
  • all tomographic images determined to be abnormal may be displayed at a time, or a part (one or more) of tomographic images may be displayed.
  • thumbnails of all tomographic images may be created and displayed.
  • the tomographic images may be sequentially switched and displayed in a slide show format, or the tomographic images may be switched and displayed in accordance with an operator instruction (using the operation unit 23).
  • the corneal endothelium is determined to be abnormal for a plurality of tomographic images, and the tomographic image determined to be abnormal is displayed, so that the examiner is determined to have an abnormality. Can focus on the affected area. Thereby, it is possible to improve the accuracy and efficiency of anterior segment observation.
  • detailed observation of the state of the anterior segment of the eye to be examined, particularly the corneal endothelium and the vicinity thereof, is possible.
  • the configuration capable of determining the abnormality of the boundary surface of the corneal endothelium, the abnormality of the corneal layer, and the abnormality of the corneal endothelial cell has been described. However, at least one of these abnormalities can be determined. It is also possible.
  • the conventional technique could not identify the type of deposit by image observation, so a predetermined treatment instrument was inserted into the eyeball, and the deposit was collected from the anterior chamber. Were cultured and observed with an optical microscope or the like. Such a method places a heavy burden on the patient, and it takes a long time to specify the type.
  • the anterior ocular segment observation device it is possible to solve such a problem. Therefore, for each type of deposit, the fine structure of the deposit (features such as shape, size, and arrangement in the OCT image) and the accumulation mode of the deposit are converted into data in advance and stored as deposit information.
  • This deposit information is information that associates the type of deposit with the fine structure and accumulation mode of the deposit.
  • a three-dimensional image of the anterior segment of the eye to be examined is acquired, an image area corresponding to the posterior corneal surface (rear corneal endothelium) is specified in the three-dimensional image, and this image area corresponds to a deposit. It is determined whether there is an image area (deposition object area) to be performed. This determination process is executed by the method using the base curve described in the above embodiment, for example.
  • the pixel values of the pixels included in the deposit area are analyzed to determine the fine structure and accumulation mode of the deposit, and the type of deposit based on the fine structure and the deposit information Is identified.
  • the type of deposit can be specified by image observation, so that the burden on the patient can be greatly reduced and the type of deposit can be specified in a short time.
  • the anterior ocular segment observation apparatus can be configured to display a tomographic image determined to be abnormal among tomographic images in a plurality of cross sections of a three-dimensional image.
  • the anterior ocular segment observation apparatus according to this modification forms, for example, a three-dimensional image of the anterior ocular segment in the same manner as in the above embodiment.
  • the anterior ocular segment observation apparatus identifies a corneal endothelium region by analyzing tomographic images at a plurality of cross sections of the three-dimensional image of the anterior ocular segment. This process is executed, for example, in the same manner as the image area specifying unit 242 of the above embodiment.
  • the anterior ocular segment observation apparatus determines an abnormality of the corneal endothelium by analyzing the image region including the specified corneal endothelium region and its neighboring region for each tomographic image of the three-dimensional image. This process is executed, for example, in the same manner as the abnormality determination unit 246 of the above embodiment.
  • the anterior ocular segment observation apparatus displays a tomographic image determined to be abnormal among the plurality of tomographic images. These tomographic images are displayed on the display unit 22 by the control unit 21, for example.
  • the corneal endothelium is determined to be abnormal for a plurality of tomographic images, and the tomographic images determined to be abnormal are displayed. It is possible to focus on the site determined to be present, thereby improving the accuracy of the anterior ocular segment observation and improving the efficiency. Therefore, according to this modification, detailed observation of the state of the anterior eye portion of the eye to be examined, particularly the corneal endothelium and its vicinity is possible.
  • the polarization characteristic of the reference light R is converted.
  • the polarization characteristic of the signal light S may be converted.
  • a wavelength plate, a polarizing plate, and a glass plate are provided on the optical path of the signal light S.
  • the polarization characteristics are converted using the wave plate and the polarizing plate, but any optical element capable of converting the polarization characteristics can be used.
  • the reference light R is converted into circularly polarized light.
  • the reference light R or the signal light S can be converted into arbitrary polarization characteristics (linearly polarized light, elliptically polarized light). is there.
  • the dispersion generated in both arms of the interferometer is corrected using a glass plate, but a dispersion correcting optical element such as an optical element of any form capable of correcting the dispersion is applied. Is also possible.
  • the interference light L is detected using the CCDs 16 and 17, but an arbitrary two-dimensional photosensor array such as a CMOS can be applied instead of the CCD.
  • the continuous light of the broadband light is used and the exposure time of the CCDs 16 and 17 is shortened to deal with the movement of the eye E.
  • the present invention is limited to such a configuration. It is not a thing.
  • an optical chopper is disposed on the optical path of broadband light (continuous light), the broadband light is periodically blocked by the optical chopper to generate pulsed broadband light, and each pulse is detected by the CCDs 16 and 17. You may do it.
  • the broadband light blocking period by the optical chopper is about 1 ms, which is longer than the exposure time (about 30 to 50 ⁇ s). Therefore, it is desirable to control the exposure time when the eye E moves quickly.
  • a wide-band light composed of flash light may be output using a light source such as a xenon lamp, and each flash light may be detected by the CCDs 16 and 17.
  • two detection signals C A and C B (C A ′ and C B ′) having a phase difference of 90 degrees are acquired by one measurement.
  • / 2 plates may be used to acquire two detection signals with a phase difference of 180 degrees.
  • the first optical path length and the second optical path length of the reference light R are such that the detection signal obtained by the first detection process and the detection signal obtained by the second detection process have a phase difference of 90 degrees.
  • the distance is set in advance so as to be a proper distance interval. Thereby, four detection signals for every 90 degrees of phase difference can be acquired.
  • the optical image measurement apparatus provided with the Michelson interferometer has been described, but other interferometers such as a Mach-Zehnder type can naturally be employed.
  • the degree of freedom in device design can be increased, the device can be made compact, or the arrangement of objects to be measured The degree of freedom can be increased.
  • the anterior ocular segment observation device may be an arbitrary combination of the configurations of the above-described embodiments and modifications. By combining these configurations, an anterior ocular segment observation apparatus having at least an operation / effect combining the operations / effects peculiar to each configuration is formed.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

Disclosed is an anterior ocular segment observation device for observing the state of a corneal endothelium in detail. The anterior ocular segment observation device (100) creates a three-dimensional image of the anterior ocular segment of an eye to be examined using an OCT of full-field type. An image region identifying unit (242) analyzes the three-dimensional image and identifies the corneal endothelium region corresponding to the corneal endothelium of the anterior ocular segment. An abnormality determining unit (246) analyzes an image region including the corneal endothelium region and a region around the corneal endothelium and determines whether or not there is an abnormality of the boundary surface of the corneal endothelium, the layers within the cornea, and corneal endothelium cells as an abnormality of the corneal endothelium. A storage unit (244) stores the result of the abnormality determination therein, and the abnormality determining unit (246) compares the new result of the abnormality determination about the eye to be examined with the past result of the determination stored in the storage unit (244) and obtains temporal variation information relating to the corneal endothelium. The storage unit (244) stores disease information (245) therein in advance, and the abnormality determining unit (246) identifies the name of the disease corresponding to the result of the abnormality determination on the basis of the disease information (245).

Description

前眼部観察装置Anterior segment observation device
 この発明は、光コヒーレンストモグラフィ(Optical Coherence Tomography)を用いて被検眼の前眼部の画像を形成する前眼部観察装置に関する。 The present invention relates to an anterior ocular segment observation apparatus that forms an image of the anterior ocular segment of an eye to be examined using optical coherence tomography (Optical Coherence Tomography).
 近年、光を用いて被測定物体の表面や内部の画像を形成する光画像計測技術が注目を集めている。光画像計測技術は、従来からのX線CTのような人体への侵襲性を持たないことから、特に医療分野において応用の展開が期待されている。なかでも、眼科分野における応用は、歯科や皮膚科と並んで進展が著しい。 In recent years, optical image measurement technology that forms an image of the surface and inside of an object to be measured using light has attracted attention. Since the optical image measurement technique does not have invasiveness to the human body unlike conventional X-ray CT, it is expected to be applied particularly in the medical field. Among them, the application in the ophthalmology field has made remarkable progress along with dentistry and dermatology.
 光画像計測技術の代表的な手法として、光コヒーレンストモグラフィ(光干渉断層画像化法:OCT)と呼ばれる手法がある。この手法によれば、干渉計を用いているために、高分解能で高感度の計測が可能となる。また、広帯域の微弱な光を照明光として用いることから、被検体に対する安全性が高いという利点もある。 As a representative technique of optical image measurement technology, there is a technique called optical coherence tomography (optical coherence tomography method: OCT). According to this method, since an interferometer is used, measurement with high resolution and high sensitivity is possible. In addition, since weak broadband light is used as illumination light, there is also an advantage that safety to the subject is high.
 OCTを利用した装置(OCT装置)としては、たとえば特許文献1に記載されたものがある。このOCT装置は、角膜を経由した光(信号光)と参照物体を経由した光(参照光)とを重畳させて干渉光を生成し、この干渉光の検出結果に基づいて角膜の画像を形成する。これにより得られる画像は、信号光の進行方向に対して略直交する断面の画像である。このような手法は、フルフィールド(full-field)タイプ或いはエンフェイス(en-face)タイプなどと呼ばれる。 As an apparatus (OCT apparatus) using OCT, for example, there is one described in Patent Document 1. The OCT apparatus generates interference light by superimposing light (signal light) passing through the cornea (signal light) and light passing through the reference object (reference light), and forms an image of the cornea based on the detection result of the interference light To do. The image obtained in this way is an image of a cross section substantially orthogonal to the traveling direction of the signal light. Such a method is called a full-field type or an en-face type.
 フルフィールドタイプのOCT装置は、高倍率かつ高分解能の画像を取得できるという特徴がある。これを前眼部観察に適用すると、たとえば角膜の微細構造(細胞等)を観察することが可能である。なお、角膜は、表面側から順に、角膜上皮、ボーマン層(ボーマン膜)、角膜実質層、デスメ膜及び角膜内皮からなる5層構造を有する。 The full field type OCT apparatus is characterized by being able to acquire high magnification and high resolution images. When this is applied to the anterior ocular segment observation, it is possible to observe, for example, the corneal microstructure (cells, etc.). The cornea has a five-layer structure including a corneal epithelium, a Bowman layer (Bowman film), a corneal stroma layer, a Desme membrane, and a corneal endothelium in order from the surface side.
 角膜の微細構造を観察可能な他の装置としては、スリットランプ(細隙灯顕微鏡)やスペキュラーマイクロスコープが知られている。 As other devices capable of observing the fine structure of the cornea, a slit lamp (slit lamp microscope) and a specular microscope are known.
 スリットランプは、たとえば特許文献2に示すように、スリット光を角膜に照射して角膜の一部を光切片として切り取ることにより、角膜断面の画像を取得する装置であり、角膜各部の観察や病変の観察のほか、角膜内皮細胞の観察にも用いられる。 For example, as shown in Patent Document 2, a slit lamp is a device that acquires an image of a corneal cross section by irradiating slit light to a cornea and cutting out a part of the cornea as an optical slice. It is also used for observation of corneal endothelial cells.
 スペキュラーマイクロスコープは、たとえば特許文献3に示すように、スリットランプから派生した装置であり、スリットランプよりも高倍率でスリット光の正反射像を観察するための光学系を備え、角膜内皮の観察に適している。臨床現場では、スペキュラーマイクロスコープは、角膜内皮細胞の密度、大きさ、大きさのばらつきなどの測定に用いられている。 The specular microscope is an apparatus derived from a slit lamp, for example, as shown in Patent Document 3, and includes an optical system for observing a specular reflection image of slit light at a higher magnification than the slit lamp, and observes the corneal endothelium. Suitable for In clinical settings, a specular microscope is used to measure the density, size, size variation, etc. of corneal endothelial cells.
 ここで、角膜(特に角膜内皮及びその近傍部位)について説明する。角膜は、角膜内皮細胞のポンプ機能、すなわち角膜内の水分を前房に排出する機能などにより水分量を調整することで透明性を維持している。 Here, the cornea (particularly the corneal endothelium and the vicinity thereof) will be described. The cornea maintains transparency by adjusting the amount of water by the pumping function of corneal endothelial cells, that is, the function of discharging the water in the cornea to the anterior chamber.
 しかし、角膜内皮細胞は生体内では再生されず、傷病などで損失した細胞は周辺の細胞が変形、拡大することで補完されるため、角膜内皮細胞の数は加齢によって徐々に減少することが知られている。水疱性角膜症などでは、通常2500~3000個/mm程度の細胞密度が減少してポンプ機能が弱化し、角膜浮腫を生じて混濁してしまう。細胞密度が1000個/mm未満となると浮腫が生じやすくなり、500個/mm未満となると混濁が生じやすくなることが知られている。角膜に混濁が生じると、角膜移植しか対処法がないのが現状である。また、角膜内皮細胞は元来六角形状であるが、細胞の損失に伴う変形、拡大により六角形状の細胞の数も減っていくことが知られている。 However, corneal endothelial cells are not regenerated in vivo, and cells lost due to injury or the like are complemented by deformation and expansion of surrounding cells, so the number of corneal endothelial cells may gradually decrease with age. Are known. In bullous keratopathy and the like, the cell density is usually reduced to about 2500 to 3000 cells / mm 2 and the pump function is weakened, resulting in corneal edema and turbidity. It is known that edema tends to occur when the cell density is less than 1000 cells / mm 2, and turbidity easily occurs when the cell density is less than 500 cells / mm 2 . The only way to deal with corneal turbidity is to deal with corneal transplantation. In addition, corneal endothelial cells are originally hexagonal, but it is known that the number of hexagonal cells decreases due to deformation and expansion accompanying cell loss.
 更に、コンタクトレンズの装用により角膜内皮細胞の減少が加速する場合があることも知られている。このように、角膜の診療においては、角膜内皮細胞の経時的な観察が非常に重要である。 Furthermore, it is also known that the decrease of corneal endothelial cells may be accelerated by wearing contact lenses. Thus, in corneal medical care, observation of corneal endothelial cells over time is very important.
 また、角膜内皮の疾患については、その前後の部位の状態の観察も重要である。たとえば、角膜内皮の前面に位置するデスメ膜は、電子顕微鏡での所見では、前後方向(深度方向)に電子密度の高い線状のABZ(Anterior Banded Zone)と、均質な電子密度を持つPNBZ(Posterior Non-Banded Zone)とに分けられる。ABZの厚さは生涯を通じてほぼ一定(3μm程度)である。また、角膜内皮によって産生されるPNBZによってデスメ膜の厚さが変化することが知られており(60歳で6μm程度に増加)、デスメ膜の状態を観察することで、疾患が先天性か後天性か判断することができる。 Also, for corneal endothelium diseases, it is also important to observe the state of the sites before and after that. For example, the Descemet's membrane located in front of the corneal endothelium is linear ABZ (Antient Banded Zone) with a high electron density in the front-rear direction (depth direction) and PNBZ (homogeneous electron density) in the electron microscope findings. It is divided into “Positioner Non-Banded Zone”. The thickness of ABZ is almost constant (about 3 μm) throughout its lifetime. In addition, it is known that the thickness of the Descemet's membrane is changed by PNBZ produced by the corneal endothelium (increases to about 6 μm at the age of 60). It can be judged whether it is natural or not.
 また、角膜内皮の後面においては、角膜内皮細胞に対する移植片の拒絶反応や、角膜内皮炎などで見られる特異的な沈着物の付着が観察されることがある。沈着物については、その種類が特定できれば患者への負担が軽い非侵襲(又は低侵襲)な生体検査を採用できる。一般に、疾患の原因特定は、治療において極めて重要である。 Also, on the posterior surface of the corneal endothelium, graft rejection to corneal endothelial cells and adhesion of specific deposits observed in corneal endotheliitis may be observed. As for the deposit, if the type can be specified, a non-invasive (or minimally invasive) biopsy with a light burden on the patient can be adopted. In general, identifying the cause of a disease is extremely important in treatment.
 また、滴状角膜では、デスメ膜と角膜内皮細胞との間に、PCL(Posterior Collagenous Layer)と呼ばれるコラーゲン様の物質が局所的に蓄積し、角膜後面に疣状の突起として観察される。 In the cornea, a collagen-like substance called PCL (Position Collagenous Layer) accumulates locally between the Descemet's membrane and corneal endothelial cells, and is observed as a hook-like projection on the posterior surface of the cornea.
特開2009-22502号公報JP 2009-22502 A 特開2008-259544号公報JP 2008-259544 A 特開平7-79923号公報Japanese Unexamined Patent Publication No. 7-79923
 上記のように、多くの疾患で疣状、線状、地図状等の形状の隆起物が観察されることが知られているが、スペキュラーマイクロスコープでは、スリット光の正反射像を観察することから、デスメ膜の皺襞や滴状角膜のような3次元的な構造異常が存在する場合には正反射光(照明光と異なる方向に反射される光)を検出できないことがある。そうすると、検出されなかった部分が黒く抜けた(つまり情報が無い)画像が得られてしまう。そのため、現状では、検出可能な部分の画像に描写された細胞の状態と、黒く抜けた部分の大きさや分布とを観察できるだけである。スリットランプについても、照明光と異なる方向に反射された光を検出するので、同様の問題が生じる。 As mentioned above, ridges, lines, maps, etc. are known to be observed in many diseases, but with specular microscopes, a specular image of slit light is observed. Therefore, when there is a three-dimensional structural abnormality such as a Descemet's wrinkle or a droplet cornea, specularly reflected light (light reflected in a direction different from the illumination light) may not be detected. As a result, an image in which the undetected portion is blacked out (that is, there is no information) is obtained. Therefore, at present, it is only possible to observe the state of the cells depicted in the image of the detectable part and the size and distribution of the black part. The slit lamp also detects the light reflected in the direction different from the illumination light, and the same problem occurs.
 また、スペキュラーマイクロスコープやスリットランプでは、照明光と異なる方向に反射された光を検出する構成なので、深度方向の異なる位置(異なる深度位置)に存在する部位が、深度方向に直交する方向(水平方向)にずれて観察されるという問題もある。また、反射光の光量は反射面前後の屈折率の差に比例するので、反射光の光量が小さくなって画像が不明瞭になることがある。 In addition, specular microscopes and slit lamps are configured to detect light reflected in a different direction from the illumination light, so that the parts present at different positions in the depth direction (different depth positions) are orthogonal to the depth direction (horizontal There is also a problem that the image is observed in a direction shifted. In addition, since the amount of reflected light is proportional to the difference in refractive index between the front and back of the reflecting surface, the amount of reflected light is reduced and the image may become unclear.
 この発明は、以上のような問題を解決するためになされたもので、その目的は、前眼部、特に角膜内皮及びその近傍部位の状態の詳細な観察を可能にする前眼部観察装置を提供することにある。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an anterior ocular segment observation apparatus that enables detailed observation of the state of the anterior ocular segment, particularly the corneal endothelium and its vicinity. It is to provide.
 上記の課題を解決するために、請求項1に記載の発明は、光ビームを信号光と参照光とに分割し、被検眼の前眼部を経由した前記信号光と参照光路を経由した前記参照光とを重畳させて干渉光を生成して検出する光学系と、前記参照光の光路長及び/又は前記信号光の光路長を変更する変更手段と、前記変更手段により前記光路長を変更しつつ前記光学系により検出された前記干渉光に基づいて前記前眼部の3次元画像を形成する形成手段と、前記形成された3次元画像を解析して、前記前眼部の角膜内皮に対応する角膜内皮領域を特定する特定手段と、前記特定された角膜内皮領域及びその近傍領域を含む画像領域を解析して、前記角膜内皮の異常を判定する判定手段と、を備えることを特徴とする前眼部観察装置である。 In order to solve the above-described problem, the invention according to claim 1 divides a light beam into signal light and reference light, and the signal light passing through the anterior eye part of the eye to be examined and the reference light path are used. An optical system that generates and detects interference light by superimposing reference light, a changing unit that changes the optical path length of the reference light and / or the optical path length of the signal light, and the optical path length is changed by the changing unit And forming means for forming a three-dimensional image of the anterior segment based on the interference light detected by the optical system, and analyzing the formed three-dimensional image to form a corneal endothelium of the anterior segment. A specifying unit for specifying a corresponding corneal endothelium region; and a determination unit for analyzing the image region including the specified corneal endothelium region and its neighboring region to determine abnormality of the corneal endothelium. This is an anterior ocular segment observation device.
 また、請求項2に記載の発明は、請求項1に記載の前眼部観察装置であって、前記特定手段は、前記3次元画像の所定の断面における断層像を解析して、前記角膜内皮領域の特定を行う、ことを特徴とする。 The invention according to claim 2 is the anterior ocular segment observation device according to claim 1, wherein the specifying unit analyzes a tomogram in a predetermined cross section of the three-dimensional image to obtain the corneal endothelium. An area is specified.
 また、請求項3に記載の発明は、請求項1に記載の前眼部観察装置であって、前記特定手段は、前記3次元画像に基づいて、前記前眼部に対する前記信号光の入射方向に平行な断面における断層像を形成する断層像形成手段を含み、該形成された断層像を構成する画素の画素値を解析して前記角膜内皮領域の特定を行う、ことを特徴とする。 The invention according to claim 3 is the anterior ocular segment observation device according to claim 1, wherein the specifying unit is configured to input the signal light to the anterior segment based on the three-dimensional image. Including a tomographic image forming means for forming a tomographic image in a cross-section parallel to the corneal endothelium, and analyzing the pixel values of the pixels constituting the formed tomographic image to identify the corneal endothelium region.
 また、請求項4に記載の発明は、請求項3に記載の前眼部観察装置であって、前記判定手段は、前記画像領域を構成する画素の画素値に基づいて、前記角膜内皮の境界面に対応する前記断層像中の境界領域を特定する境界領域特定手段を含み、該特定された境界領域の形状に基づいて前記異常の判定を行う、ことを特徴とする。 Further, the invention according to claim 4 is the anterior ocular segment observation device according to claim 3, wherein the determination unit is configured to determine a boundary of the corneal endothelium based on a pixel value of a pixel constituting the image region. Boundary region specifying means for specifying a boundary region in the tomographic image corresponding to a plane is included, and the abnormality is determined based on the shape of the specified boundary region.
 また、請求項5に記載の発明は、請求項4に記載の前眼部観察装置であって、前記判定手段は、前記境界領域を構成する画素の配列を解析して、前記境界面における凹凸を検出する凹凸検出手段を含み、前記検出された凹凸に基づいて前記異常の判定を行う、ことを特徴とする。 The invention according to claim 5 is the anterior ocular segment observation device according to claim 4, wherein the determination unit analyzes an arrangement of pixels constituting the boundary region and performs unevenness on the boundary surface. And an irregularity detecting means for detecting the abnormality, and determining the abnormality based on the detected irregularity.
 また、請求項6に記載の発明は、請求項3に記載の前眼部観察装置であって、前記判定手段は、前記画像領域を構成する画素の画素値に基づいて、前記前眼部の所定の層に対応する前記断層像中の層領域を特定する層領域特定手段を含み、該特定された層領域の厚さを求め、前記厚さに基づいて前記異常の判定を行う、ことを特徴とする。 The invention according to claim 6 is the anterior ocular segment observation device according to claim 3, wherein the determining means is configured to determine the anterior segment of the anterior segment based on the pixel values of the pixels constituting the image region. Including a layer region specifying means for specifying a layer region in the tomographic image corresponding to a predetermined layer, obtaining a thickness of the specified layer region, and determining the abnormality based on the thickness. Features.
 また、請求項7に記載の発明は、請求項3に記載の前眼部観察装置であって、前記角膜内皮の異常が存在すると判定されたときに、前記判定手段は、前記画像領域を構成する画素の画素値に基づいて、前記前眼部のデスメ膜のPNBZ層に対応する前記断層像中の画像領域を特定し、該特定された画像領域の厚さを求め、前記求められた厚さに基づいて当該異常が先天性か後天性かを判定する、ことを特徴とする。 The invention according to claim 7 is the anterior ocular segment observation device according to claim 3, wherein when it is determined that an abnormality of the corneal endothelium exists, the determination means configures the image region. An image region in the tomographic image corresponding to the PNBZ layer of the Descemet's membrane of the anterior ocular segment is determined based on the pixel value of the pixel to be obtained, the thickness of the specified image region is determined, and the determined thickness And determining whether the abnormality is congenital or acquired based on the above.
 また、請求項8に記載の発明は、請求項1に記載の前眼部観察装置であって、前記特定手段は、前記3次元画像に基づいて、前記前眼部に対する前記信号光の入射方向に直交する断面における断層像を形成する断層像形成手段を含み、該形成された断層像を構成する画素の画素値を解析して前記角膜内皮領域の特定を行う、ことを特徴とする。 The invention according to claim 8 is the anterior ocular segment observation device according to claim 1, wherein the specifying unit is configured to input the signal light to the anterior segment based on the three-dimensional image. Including a tomographic image forming means for forming a tomographic image in a cross section orthogonal to the corneal endothelium, and analyzing the pixel values of the pixels constituting the formed tomographic image to identify the corneal endothelium region.
 また、請求項9に記載の発明は、請求項8に記載の前眼部観察装置であって、前記判定手段は、前記画像領域を構成する画素の画素値に基づいて、前記角膜内皮を構成する角膜内皮細胞に対応する前記角膜内皮領域中の複数の細胞領域を特定する細胞領域特定手段と、該特定された複数の細胞領域に基づいて前記角膜内皮細胞の状態の評価情報を求める評価手段とを含み、前記求められた評価情報に基づいて前記異常の判定を行う、ことを特徴とする。 The invention according to claim 9 is the anterior ocular segment observation device according to claim 8, wherein the determination means configures the corneal endothelium based on a pixel value of a pixel constituting the image region. Cell region specifying means for specifying a plurality of cell regions in the corneal endothelial region corresponding to the corneal endothelial cells to be performed, and evaluation means for obtaining evaluation information on the state of the corneal endothelial cells based on the specified cell regions And determining the abnormality based on the obtained evaluation information.
 また、請求項10に記載の発明は、請求項9に記載の前眼部観察装置であって、前記評価手段は、前記評価情報として、細胞密度、最大細胞面積、最小細胞面積、平均細胞面積、面積標準偏差、細胞面積の変動係数、六角形状の細胞領域の出現率、及び、細胞面積のヒストグラムのうちの少なくとも一つを求める、ことを特徴とする。 The invention according to claim 10 is the anterior ocular segment observation device according to claim 9, wherein the evaluation means uses the cell density, the maximum cell area, the minimum cell area, and the average cell area as the evaluation information. And at least one of an area standard deviation, a cell area variation coefficient, a hexagonal cell region appearance rate, and a cell area histogram.
 また、請求項11に記載の発明は、請求項1に記載の前眼部観察装置であって、前記判定手段は、前記角膜内皮の異常の判定結果を記憶する記憶手段を含み、当該被検眼についての新たな異常の判定結果と前記記憶された過去の判定結果とを比較し、当該比較結果に基づいて前記角膜内皮の経時変化情報を求める、ことを特徴とする。 The invention according to claim 11 is the anterior ocular segment observation device according to claim 1, wherein the determination means includes storage means for storing a determination result of the abnormality of the corneal endothelium, and the eye to be examined A new abnormality determination result is compared with the stored past determination result, and aging information of the corneal endothelium is obtained based on the comparison result.
 また、請求項12に記載の発明は、請求項1に記載の前眼部観察装置であって、前記判定手段は、疾患名と角膜内皮の異常とを対応付ける疾患情報を予め記憶する記憶手段を含み、前記疾患情報に基づいて前記角膜内皮の異常の判定結果に対応する疾患名を特定する、ことを特徴とする。 The invention according to claim 12 is the anterior ocular segment observation device according to claim 1, wherein the determination means includes storage means for previously storing disease information that associates a disease name with an abnormality of the corneal endothelium. A disease name corresponding to the determination result of the abnormality of the corneal endothelium is specified based on the disease information.
 また、請求項13に記載の発明は、光ビームを信号光と参照光とに分割し、被検眼の前眼部を経由した前記信号光と参照光路を経由した前記参照光とを重畳させて干渉光を生成して検出する光学系と、前記参照光の光路長及び/又は前記信号光の光路長を変更する変更手段と、前記変更手段により前記光路長を変更しつつ前記光学系により検出された前記干渉光に基づいて前記前眼部の3次元画像を形成する形成手段と、前記形成された3次元画像の複数の断面のそれぞれにおける断層像を解析して、前記前眼部の角膜内皮に対応する角膜内皮領域を特定する特定手段と、前記複数の断層像のそれぞれについて、前記特定された角膜内皮領域及びその近傍領域を含む画像領域を解析して前記角膜内皮の異常を判定する判定手段と、前記複数の断層像のうち前記異常と判定された断層像を表示する表示手段と、を備えることを特徴とする前眼部観察装置である。 The invention according to claim 13 divides a light beam into signal light and reference light, and superimposes the signal light passing through the anterior eye portion of the eye to be examined and the reference light passing through the reference light path. An optical system that generates and detects interference light, a changing unit that changes an optical path length of the reference light and / or an optical path length of the signal light, and a detection that is performed by the optical system while changing the optical path length by the changing unit. Forming means for forming a three-dimensional image of the anterior segment based on the interference light, and analyzing a tomographic image at each of a plurality of cross sections of the formed three-dimensional image, so that the cornea of the anterior segment Identifying means for identifying a corneal endothelium region corresponding to the endothelium, and determining an abnormality of the corneal endothelium by analyzing the image region including the identified corneal endothelium region and its neighboring region for each of the plurality of tomographic images Determination means and the plurality Display means for displaying a tomographic image is determined as the abnormal among the tomographic image, an eye observation apparatus before, characterized in that it comprises a.
 この発明に係る前眼部観察装置は、参照光や信号光の光路長を変更しつつ計測を行って前眼部の3次元画像を形成するもので、フルフィールドタイプのOCTを利用したものである。更に、この発明に係る前眼部観察装置は、形成された3次元画像を解析して角膜内皮領域を特定し、この角膜内皮領域及びその近傍領域を含む画像領域を解析して角膜内皮の異常を判定する。 The anterior ocular segment observation apparatus according to the present invention performs measurement while changing the optical path length of reference light or signal light to form a three-dimensional image of the anterior ocular segment, and uses full-field type OCT. is there. Furthermore, the anterior ocular segment observation device according to the present invention analyzes the formed three-dimensional image to identify the corneal endothelium region, and analyzes the image region including the corneal endothelium region and its neighboring region to analyze abnormalities of the corneal endothelium. Determine.
 この発明によれば、フルフィールドタイプのOCTを利用しているので、スペキュラーマイクロスコープ等のような正反射光に関する問題がなく、したがって画像の一部が黒く抜けてしまうという不都合がない。また、この発明によれば、スペキュラーマイクロスコープ等と異なり、照明光の照射方向と逆方向に進む反射光を検出する構成なので、異なる深度位置に存在する部位が水平方向にずれて観察されるという不都合がない。更に、この発明によれば、前眼部の角膜内皮に対応する角膜内皮領域及びその近傍領域を含む画像領域を解析して角膜内皮の異常判定を行うようになっているので、角膜内皮の異常を自動で判定でき、前眼部観察の確度や効率の向上を図ることが可能である。したがって、この発明によれば、被検眼の前眼部、特に角膜内皮及びその近傍部位の状態の詳細な観察が可能である。 According to the present invention, since full-field type OCT is used, there is no problem with specular reflection light such as a specular microscope, and therefore there is no inconvenience that a part of an image is blacked out. In addition, according to the present invention, unlike the specular microscope, etc., it is configured to detect reflected light that travels in the direction opposite to the illumination light irradiation direction, so that parts existing at different depth positions are observed to be shifted in the horizontal direction. There is no inconvenience. Further, according to the present invention, the abnormality of the corneal endothelium is determined by analyzing the image area including the corneal endothelium region corresponding to the corneal endothelium of the anterior eye portion and the vicinity thereof, so that the abnormality of the corneal endothelium is determined. Can be automatically determined, and the accuracy and efficiency of observation of the anterior segment can be improved. Therefore, according to the present invention, it is possible to observe in detail the state of the anterior segment of the eye to be examined, particularly the state of the corneal endothelium and its vicinity.
 また、この発明に係る前眼部観察装置は、フルフィールドタイプのOCTを利用して形成された前眼部の3次元画像の複数の断面のそれぞれにおける断層像を解析して角膜内皮領域を特定し、各断層像について、角膜内皮領域及びその近傍領域を含む画像領域を解析して角膜内皮の異常を判定し、更に、複数の断層像のうち異常と判定された断層像を表示するように構成されている。 In addition, the anterior ocular segment observation apparatus according to the present invention identifies a corneal endothelium region by analyzing tomographic images at each of a plurality of cross sections of a three-dimensional image of the anterior ocular segment formed using full-field type OCT. Then, for each tomographic image, an image region including the corneal endothelium region and its neighboring region is analyzed to determine abnormality of the corneal endothelium, and a tomographic image determined to be abnormal among a plurality of tomographic images is displayed. It is configured.
 この発明によれば、正反射光に関する問題によって画像の一部が黒く抜けてしまうという不都合がなく、異なる深度位置に存在する部位が水平方向にずれて観察されるという不都合がない。更に、複数の断層像について角膜内皮の異常判定を行い、異常と判定された断層像を表示するように構成されているので、検者は、異常が存在すると判定された部位を重点的に観察でき、それにより、前眼部観察の確度や効率の向上を図ることが可能である。したがって、この発明によれば、被検眼の前眼部、特に角膜内皮及びその近傍部位の状態の詳細な観察が可能である。 According to the present invention, there is no inconvenience that a part of an image is blackened out due to a problem with specular reflection light, and there is no inconvenience that parts existing at different depth positions are observed while being shifted in the horizontal direction. Furthermore, since the corneal endothelium is determined to be abnormal for a plurality of tomographic images, and the tomographic image determined to be abnormal is displayed, the examiner mainly observes the site determined to be abnormal. Thus, it is possible to improve the accuracy and efficiency of anterior segment observation. Therefore, according to the present invention, it is possible to observe in detail the state of the anterior segment of the eye to be examined, particularly the state of the corneal endothelium and its vicinity.
この発明に係る前眼部観察装置の実施の形態の全体構成の一例を表す概略図である。It is the schematic showing an example of the whole structure of embodiment of the anterior ocular segment observation apparatus concerning this invention. この発明に係る前眼部観察装置の実施の形態の制御系の構成の一例を表す概略ブロック図である。It is a schematic block diagram showing an example of the structure of the control system of embodiment of the anterior ocular segment observation apparatus concerning this invention. この発明に係る前眼部観察装置の実施の形態の制御系の構成の一例を表す概略ブロック図である。It is a schematic block diagram showing an example of the structure of the control system of embodiment of the anterior ocular segment observation apparatus concerning this invention. この発明に係る前眼部観察装置の実施の形態の制御系の構成の一例を表す概略図である。It is the schematic showing an example of a structure of the control system of embodiment of the anterior ocular segment observation apparatus concerning this invention. この発明に係る前眼部観察装置の実施の形態を説明するための概略図である。It is the schematic for demonstrating embodiment of the anterior ocular segment observation apparatus concerning this invention.
 この発明に係る前眼部観察装置の実施形態の一例を説明する。この前眼部観察装置は、被検眼の前眼部を細胞レベルの分解能で観察するために使用される。特に、この前眼部観察装置は、角膜内皮及びその近傍部位(デスメ膜、前房など)の観察に用いられる。この近傍部位としては、角膜内皮を診療するために必要な範囲を適宜に設定可能である。 An example of an embodiment of the anterior ocular segment observation device according to the present invention will be described. This anterior ocular segment observation apparatus is used for observing the anterior ocular segment of a subject's eye with cell-level resolution. In particular, this anterior ocular segment observation apparatus is used for observing the corneal endothelium and the vicinity thereof (Desme's membrane, anterior chamber, etc.). As this vicinity, a range necessary for treating the corneal endothelium can be appropriately set.
 なお、前眼部とは角膜から水晶体前面までの間の部位を表す。ただし、前眼部観察装置は、後述のように参照鏡を移動させることで、水晶体前面よりも後方の部位(後眼部)の画像を取得することも可能である。 The anterior segment represents the region from the cornea to the front of the lens. However, the anterior ocular segment observation apparatus can also acquire an image of a site (rear eye segment) behind the front surface of the crystalline lens by moving the reference mirror as described later.
[構成]
 この実施形態に係る前眼部観察装置の構成の一例を図1に示す。前眼部観察装置100は、特許文献1に記載の装置と同様のフルフィールドタイプのOCT装置である。
[Constitution]
An example of the configuration of the anterior segment observation apparatus according to this embodiment is shown in FIG. The anterior ocular segment observation apparatus 100 is a full-field type OCT apparatus similar to the apparatus described in Patent Document 1.
 フルフィールドタイプのOCT装置は、所定のビーム径を有する信号光を角膜に照射し、角膜を経由した信号光と参照光とを干渉させて得られる干渉光を2次元光センサアレイで検出することにより、信号光のビーム径に応じた角膜の領域の2次元画像を取得する装置である。 A full-field type OCT apparatus irradiates a cornea with signal light having a predetermined beam diameter, and detects interference light obtained by causing the signal light passing through the cornea and reference light to interfere with each other with a two-dimensional photosensor array. Thus, a device for acquiring a two-dimensional image of the cornea region corresponding to the beam diameter of the signal light.
 フルフィールド型のOCT装置は、OCT装置以外の前眼部観察装置(スリットランプ、スペキュラーマイクロスコープなど)や、他タイプのOCT装置(タイムドメイン型、フーリエドメイン型、スウェプトソース型など)と比較して高い分解能を有する。 Full-field OCT devices are compared with anterior segment observation devices (slit lamps, specular microscopes, etc.) other than OCT devices, and other types of OCT devices (time domain type, Fourier domain type, swept source type, etc.). High resolution.
 被検眼Eは、計測に適した状態で配設される。たとえば、被検眼Eが生体眼である場合、境界での屈折率の変化を小さくするためのゼリーや液体などを被検眼Eに適用することができる。また、同様の作用を有するアタッチメントを生体眼に装着して計測を行うようにしてもよい。他方、被検眼Eが摘出眼である場合には、境界における屈折率の変化を小さくするために被検眼Eを液浸状態で配設することができる。 The eye E is arranged in a state suitable for measurement. For example, when the eye E is a living eye, jelly, liquid, or the like for reducing the change in the refractive index at the boundary can be applied to the eye E. Moreover, you may make it measure by mounting | wearing the living eye with the attachment which has the same effect | action. On the other hand, when the eye E is an isolated eye, the eye E can be placed in a liquid immersion state in order to reduce the change in the refractive index at the boundary.
 前眼部観察装置100は光源ユニット1を備えている。光源ユニット1は、無偏光の広帯域光Mを出力する。なお、図示は省略するが、光源ユニット1は、ハロゲンランプとともに、ハロゲンランプから出力された光を導光する光ファイババンドルや、出力光の照射野を一様に照明するためのケーラー照明光学系などを含んで構成される。光源ユニット1から出力される無偏光の広帯域光Mは、所定のビーム径を有している。 The anterior ocular segment observation apparatus 100 includes a light source unit 1. The light source unit 1 outputs a non-polarized broadband light M. Although not shown, the light source unit 1 includes a halogen lamp, an optical fiber bundle that guides light output from the halogen lamp, and a Kohler illumination optical system for uniformly illuminating the irradiation field of the output light. And so on. The non-polarized broadband light M output from the light source unit 1 has a predetermined beam diameter.
 なお、光源はハロゲンランプには限定されず、無偏光の広帯域光を出力する任意の光源であってよい。たとえば、キセノンランプ等の任意の熱光源(黒体輻射に基づく光源)を適用できる。また、光源は、ランダム偏光の広帯域光を出力するレーザ光源であってもよい。ここで、無偏光とは、直線偏光の光と円偏光の光と楕円偏光の光とを含む偏光状態を意味する。また、ランダム偏光とは、互いに直交する2つの直線偏光成分を有し、各直線偏光成分のパワーが時間的にランダムに変化する偏光状態を意味する(たとえば特開平7-92656号公報参照)。以下、無偏光の場合についてのみ詳しく説明するが、ランダム偏光の場合も同様の構成で同様の作用効果を得ることができる。 The light source is not limited to the halogen lamp, and may be any light source that outputs non-polarized broadband light. For example, an arbitrary thermal light source (a light source based on black body radiation) such as a xenon lamp can be applied. The light source may be a laser light source that outputs broadband light with random polarization. Here, non-polarized light means a polarization state including linearly polarized light, circularly polarized light, and elliptically polarized light. Random polarization means a polarization state having two linearly polarized light components orthogonal to each other and the power of each linearly polarized light component changes randomly in time (see, for example, JP-A-7-92656). Hereinafter, only the case of non-polarized light will be described in detail, but in the case of random polarized light, the same effect can be obtained with the same configuration.
 さて、光源ユニット1から出力された広帯域光Mは、様々な帯域の光を含んでいる。フィルタ2は、無偏光の広帯域光Mの所定帯域のみを透過させるフィルタである。透過させる帯域は、分解能や計測深度等によって決定され、たとえば中心波長760nm程度で100nm程度の波長幅の帯域に設定される。この場合、被検眼Eの深度方向(図1に示すz方向)及びそれに直交する方向(水平方向)について、それぞれ2μm程度の分解能の画像を取得できる。なお、フィルタ2を透過した光を同じく広帯域光Mと呼ぶことにする。また、この明細書において、-z方向を前方向と、+z方向を後方向とそれぞれ称することがある。 Now, the broadband light M output from the light source unit 1 includes light of various bands. The filter 2 is a filter that transmits only a predetermined band of the non-polarized broadband light M. The band to be transmitted is determined by the resolution, measurement depth, and the like, and is set to a band having a center wavelength of about 760 nm and a wavelength width of about 100 nm, for example. In this case, an image with a resolution of about 2 μm can be acquired in each of the depth direction of the eye E (z direction shown in FIG. 1) and the direction orthogonal to the depth direction (horizontal direction). The light transmitted through the filter 2 is also referred to as broadband light M. In this specification, the −z direction may be referred to as a forward direction, and the + z direction may be referred to as a backward direction.
 フィルタ2を透過した無偏光の広帯域光Mは、ハーフミラー等のビームスプリッタ3によって二分割される。すなわち、ビームスプリッタ3による反射光は信号光Sを形成し、ビームスプリッタ3を透過した光は参照光Rを形成する。 The non-polarized broadband light M transmitted through the filter 2 is divided into two by a beam splitter 3 such as a half mirror. That is, the reflected light from the beam splitter 3 forms the signal light S, and the light transmitted through the beam splitter 3 forms the reference light R.
 信号光Sは、無偏光状態を保ったまま対物レンズ11により被検眼Eに合焦される。信号光Sは、所定のビーム径で角膜Ecに照射される。このとき、被検眼Eに対する信号光LSの入射方向は、+z方向(深度方向)である。被検眼Eに照射された信号光LSは、被検眼Eの表面や内部にて反射、散乱される。この反射光や散乱光は、対物レンズ11を経由してビームスプリッタ3に戻ってくる。 The signal light S is focused on the eye E by the objective lens 11 while maintaining the non-polarized state. The signal light S is applied to the cornea Ec with a predetermined beam diameter. At this time, the incident direction of the signal light LS with respect to the eye E is the + z direction (depth direction). The signal light LS irradiated to the eye E is reflected and scattered on the surface and inside of the eye E. This reflected light or scattered light returns to the beam splitter 3 via the objective lens 11.
 一方、ビームスプリッタ3により生成された無偏光の参照光Rは、波長板(λ/4板)4と偏光板5を通過し、反射ミラー6にて反射される。更に、参照光Rは、ガラス板7を通過し、対物レンズ8によって参照鏡9の反射面に合焦される。参照鏡9により反射された参照光Rは、同じ光路を逆向きに経由してビームスプリッタ3に戻ってくる。 On the other hand, the non-polarized reference light R generated by the beam splitter 3 passes through the wave plate (λ / 4 plate) 4 and the polarizing plate 5 and is reflected by the reflection mirror 6. Further, the reference light R passes through the glass plate 7 and is focused on the reflecting surface of the reference mirror 9 by the objective lens 8. The reference light R reflected by the reference mirror 9 returns to the beam splitter 3 via the same optical path in the reverse direction.
 このとき、当初は無偏光であった参照光Rは、波長板4と偏光板5を二回経由することにより円偏光に変換される。ガラス板7は、信号光Sの光路及び参照光Rの光路(干渉計の両アーム)にて発生する分散の影響を最小にする分散補正光学素子である。 At this time, the reference light R, which was initially unpolarized, is converted into circularly polarized light by passing through the wave plate 4 and the polarizing plate 5 twice. The glass plate 7 is a dispersion correction optical element that minimizes the influence of dispersion that occurs in the optical path of the signal light S and the optical path of the reference light R (both arms of the interferometer).
 参照鏡9は、参照鏡移動機構10によって参照光Rの進行方向、すなわち参照鏡9の反射面に直交する方向(図1の両側矢印方向)に移動可能とされている。参照鏡移動機構10は、たとえばピエゾ素子やパルスモータ等の駆動手段を含んで構成される。 The reference mirror 9 is movable by the reference mirror moving mechanism 10 in the traveling direction of the reference light R, that is, in the direction orthogonal to the reflecting surface of the reference mirror 9 (in the direction of a double-sided arrow in FIG. 1). The reference mirror moving mechanism 10 includes drive means such as a piezo element and a pulse motor.
 このように参照鏡9を移動させることにより参照光Rの光路長(参照光路長)が変更される。参照光路長は、ビームスプリッタ3と参照鏡9との間の往復距離である。参照光路長を変更することにより、角膜Ecの様々な深度位置の画像を選択的に取得することができる。すなわち、干渉光Lは、信号光Sの光路長(信号光路長)が参照光路長と等しくなる角膜Ecの深度位置の部位の形態情報を含み、この干渉光Lを検出して当該深度位置における画像が形成される。参照鏡移動機構10は、この発明の「変更手段」の一例である。 The optical path length of the reference light R (reference optical path length) is changed by moving the reference mirror 9 in this way. The reference optical path length is a reciprocal distance between the beam splitter 3 and the reference mirror 9. By changing the reference optical path length, images at various depth positions of the cornea Ec can be selectively acquired. That is, the interference light L includes the shape information of the site at the depth position of the cornea Ec where the optical path length of the signal light S (signal optical path length) is equal to the reference optical path length, and the interference light L is detected and detected at the depth position. An image is formed. The reference mirror moving mechanism 10 is an example of the “changing unit” in the present invention.
 なお、この実施形態では、参照光路長を変更するようになっているが、信号光路長を変更するように構成することもできる。その場合、装置光学系と被検眼Eとの間隔を変更可能な機構を設ける。この機構の例としては、装置光学系をz方向に移動させるステージや、被検眼Eをz方向に移動させるステージなどがある。また、参照光路長と信号光路長の双方を変更可能な構成を適用することも可能である。 In this embodiment, the reference optical path length is changed. However, the signal optical path length may be changed. In that case, a mechanism capable of changing the distance between the apparatus optical system and the eye E is provided. Examples of this mechanism include a stage that moves the apparatus optical system in the z direction and a stage that moves the eye E in the z direction. It is also possible to apply a configuration in which both the reference optical path length and the signal optical path length can be changed.
 被検眼Eを経由した信号光Sと、参照鏡9を経由した参照光Rは、ビームスプリッタ3により重畳されて干渉光Lを生成する。干渉光LはS偏光成分とP偏光成分とを含んでいる。光源ユニット1、ビームスプリッタ3、対物レンズ8、参照鏡9、対物レンズ11等
を含む干渉計と、CCD16、17とは、この発明の「光学系」の一例を構成している。
The signal light S that has passed through the eye E and the reference light R that has passed through the reference mirror 9 are superimposed by the beam splitter 3 to generate interference light L. The interference light L includes an S-polarized component and a P-polarized component. The interferometer including the light source unit 1, the beam splitter 3, the objective lens 8, the reference mirror 9, the objective lens 11 and the like, and the CCDs 16 and 17 constitute an example of the “optical system” of the present invention.
 ビームスプリッタ3によって生成された干渉光Lは、開口絞り12を経由し、結像レンズ(群)13によって集束光となる。集束光となった干渉光LのS偏光成分L1は、偏光ビームスプリッタ14により反射されてCCD(イメージセンサ)16により検出される。一方、干渉光LのP偏光成分L2は、偏光ビームスプリッタ14を透過し、反射ミラー15により反射されてCCD(イメージセンサ)17により検出される。 The interference light L generated by the beam splitter 3 passes through the aperture stop 12 and becomes focused light by the imaging lens (group) 13. The S-polarized component L1 of the interference light L that has become focused light is reflected by the polarization beam splitter 14 and detected by a CCD (image sensor) 16. On the other hand, the P-polarized light component L2 of the interference light L passes through the polarization beam splitter 14, is reflected by the reflection mirror 15, and is detected by the CCD (image sensor) 17.
 各CCD16、17は、2次元の受光面を有している。S偏光成分L1とP偏光成分L2は、それぞれ、所定のビーム径を持ってCCD16、17の受光面に照射される。 Each CCD 16, 17 has a two-dimensional light receiving surface. The S-polarized component L1 and the P-polarized component L2 are applied to the light receiving surfaces of the CCDs 16 and 17 with a predetermined beam diameter, respectively.
 S偏光成分L1を検出したCCD16は、検出信号をコンピュータ20に送る。同様に、P偏光成分L2を検出したCCD17は、検出信号をコンピュータ20に送る。 The CCD 16 that has detected the S-polarized component L1 sends a detection signal to the computer 20. Similarly, the CCD 17 that has detected the P-polarized component L <b> 2 sends a detection signal to the computer 20.
 なお、干渉光Lの元になる参照光Rは円偏光であり信号光Sは無偏光であるから、S偏光成分L1とP偏光成分L2は90度(π/2)の位相差を有している。したがって、CCD16から出力される検出信号Cと、CCD17から出力される検出信号Cは、90度の位相差を有しており、次式のように表すことができる。 Since the reference light R that is the source of the interference light L is circularly polarized and the signal light S is non-polarized, the S-polarized component L1 and the P-polarized component L2 have a phase difference of 90 degrees (π / 2). ing. Therefore, a detection signal C A output from the CCD 16, the detection signal C B outputted from the CCD17 has a phase difference of 90 degrees can be expressed by the following equation.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、(x、y)は、水平方向に設定された任意の2次元座標系における座標を表す。I(x、y)は信号光Sの強度を表し、I(x、y)は参照光Rの強度を表している。また、Δφ(x、y)は初期位相差を表している。また、各検出信号C、Cは、背景光成分(非干渉成分、直流成分)I(x、y)+I(x、y)を含む。更に、検出信号Cはcos成分からなる干渉成分(交流成分)を含み、検出信号Cはsin成分からなる干渉成分(交流成分)を含んでいる。 Here, (x, y) represents coordinates in an arbitrary two-dimensional coordinate system set in the horizontal direction. I s (x, y) represents the intensity of the signal light S, and I r (x, y) represents the intensity of the reference light R. Δφ (x, y) represents the initial phase difference. Each detection signal C A , C B includes a background light component (non-interference component, DC component) I s (x, y) + I r (x, y). Furthermore, the detection signal C A comprises an interfering component (AC component) consisting of cos component, the detection signal C B includes the interference component (AC component) consisting sin component.
 なお、式(1)、(2)から分かるように、各検出信号C、Cは、空間(z方向に直交するx方向、y方向)のみを変数とするものであり、時間を変数として含んでいない。すなわち、本実施形態に係る干渉信号は、空間的変化のみを含むものである。 As can be seen from the equations (1) and (2), each of the detection signals C A and C B has only the space (the x direction and the y direction orthogonal to the z direction) as variables, and the time is a variable. Not including as. That is, the interference signal according to the present embodiment includes only a spatial change.
〔制御系の構成〕
 前眼部観察装置100の制御系の構成を説明する。図2A、Bは、前眼部観察装置100の制御系の構成の一例を表している。
[Control system configuration]
The configuration of the control system of the anterior segment observation apparatus 100 will be described. 2A and 2B show an example of the configuration of the control system of the anterior segment observation apparatus 100. FIG.
 コンピュータ20は、制御部21、表示部22、操作部23及び信号処理部24を備えている。 The computer 20 includes a control unit 21, a display unit 22, an operation unit 23, and a signal processing unit 24.
(制御部)
 制御部21は、前眼部観察装置100の各部を制御する。たとえば、制御部21は、光源ユニット1の点灯/消灯の制御、参照鏡移動機構10の制御、CCD16、17の露光時間の制御、表示部22による表示処理の制御などを行う。
(Control part)
The control unit 21 controls each unit of the anterior segment observation apparatus 100. For example, the control unit 21 performs control of turning on / off the light source unit 1, controlling the reference mirror moving mechanism 10, controlling the exposure time of the CCDs 16 and 17, and controlling display processing by the display unit 22.
 制御部21は、CPU等のマイクロプロセッサ、及び、RAM、ROM、ハードディスクドライブ等の記憶装置を含んで構成される。ROMやハードディスクドライブには、装置制御用のコンピュータプログラム(図示せず)が予め記憶されている。制御部21による上記の制御は、このコンピュータプログラムにしたがってマイクロプロセッサが動作することで実行される。 The control unit 21 includes a microprocessor such as a CPU and a storage device such as a RAM, a ROM, and a hard disk drive. A computer program (not shown) for device control is stored in advance in the ROM and hard disk drive. The above control by the control unit 21 is executed by the microprocessor operating according to this computer program.
 また、制御部21は、外部装置との間でデータ通信を行うための通信機器を備えていてもよい。通信機器としては、LANカードやモデムなどがある。それにより、制御部21は、外部のデータベースから各種の情報を取得したり、データベースに情報を登録させたりすることができる。また、検査装置等の眼科装置から情報を取得したり、眼科装置に情報を送信したりすることができる。 Further, the control unit 21 may include a communication device for performing data communication with an external device. Communication devices include LAN cards and modems. Thereby, the control part 21 can acquire various information from an external database, or can register information in a database. In addition, information can be acquired from an ophthalmic apparatus such as an examination apparatus, or information can be transmitted to the ophthalmic apparatus.
(表示部)
 表示部22は、制御部21により制御されて各種の情報を表示する。表示部22は、LCDやCRTディスプレイ等の任意の表示デバイスを含んで構成される。
(Display section)
The display unit 22 is controlled by the control unit 21 to display various information. The display unit 22 includes an arbitrary display device such as an LCD or a CRT display.
(操作部)
 操作部23は、オペレータが前眼部観察装置100を操作したり、各種の情報を入力したりするために用いられる。操作部23は、マウス、キーボード、ジョイスティック、トラックボール、専用のコントロールパネル等の任意の操作デバイスや入力デバイスを含んで構成される。
(Operation section)
The operation unit 23 is used by an operator to operate the anterior ocular segment observation apparatus 100 and input various kinds of information. The operation unit 23 includes an arbitrary operation device and an input device such as a mouse, a keyboard, a joystick, a trackball, and a dedicated control panel.
(信号処理部)
 信号処理部24は各種の信号処理や画像処理を実行する。信号処理部24は、CPU等のマイクロプロセッサ、RAM、ROM、ハードディスクドライブ等を含んで構成される。ROMやハードディスクドライブには、後述の各種処理をマイクロプロセッサに実行させるためのコンピュータプログラムが予め記憶されている。信号処理部24には、画像形成部241、画像領域特定部242、記憶部244及び異常判定部246が設けられている。
(Signal processing part)
The signal processing unit 24 executes various signal processing and image processing. The signal processing unit 24 includes a microprocessor such as a CPU, a RAM, a ROM, a hard disk drive, and the like. A computer program for causing the microprocessor to execute various processes described later is stored in advance in the ROM and the hard disk drive. The signal processing unit 24 includes an image forming unit 241, an image region specifying unit 242, a storage unit 244, and an abnormality determination unit 246.
(画像形成部)
 画像形成部241は、CCD16、17から出力された検出信号C、Cに基づいて、被検眼Eの前眼部の様々な深度位置における水平方向の画像を形成する。更に、画像形成部241は、これら水平方向の画像に基づいて前眼部の3次元画像を形成する。画像形成部241は、この発明の「形成手段」の一例である。
(Image forming part)
The image forming unit 241 forms horizontal images at various depth positions of the anterior segment of the eye E based on the detection signals C A and C B output from the CCDs 16 and 17. Furthermore, the image forming unit 241 forms a three-dimensional image of the anterior segment based on these horizontal images. The image forming unit 241 is an example of the “forming unit” in the present invention.
 ここで、前眼部の画像を形成する処理の具体例を説明する。オペレータが操作部23を用いて所定の計測開始操作を行うと、制御部21は、光源ユニット1を点灯させる。この動作例では、光源ユニット1を点灯させた状態にして、広帯域光Mの連続光を出力する。 Here, a specific example of processing for forming an anterior eye image will be described. When the operator performs a predetermined measurement start operation using the operation unit 23, the control unit 21 turns on the light source unit 1. In this operation example, the light source unit 1 is turned on and the continuous light of the broadband light M is output.
 次に、制御部21は、参照鏡移動機構10を制御して参照光Rの光路長を第1の光路長に設定する。制御部21は、各CCD16、17の露光時間を制御する。CCD16、17は、それぞれ、干渉光検出信号C、Cを出力する。 Next, the control unit 21 controls the reference mirror moving mechanism 10 to set the optical path length of the reference light R to the first optical path length. The control unit 21 controls the exposure time of the CCDs 16 and 17. The CCDs 16 and 17 output interference light detection signals C A and C B , respectively.
 続いて、制御部21は、参照鏡移動機構10を制御して参照光Rの光路長を第2の光路長に切り替える。制御部21は、各CCD16、17の露光時間を制御して新たな検出信号C′、C′を出力させる。 Subsequently, the control unit 21 controls the reference mirror moving mechanism 10 to switch the optical path length of the reference light R to the second optical path length. The control unit 21 controls the exposure times of the CCDs 16 and 17 to output new detection signals C A ′ and C B ′.
 ここで、第1の光路長と第2の光路長は、検出信号Cと検出信号C′とが位相差180度(π)を有し、かつ、検出信号Cと検出信号C′とが位相差180度(π)を有するような距離間隔となるように予め設定されている。なお、検出信号C、Cは位相差90度を有しているので、上記の一対の計測によって位相差90度ごとの4つの検出信号C、C、C′、C′が得られることになる。 Here, the first optical path length and the second optical path length are such that the detection signal C A and the detection signal C A ′ have a phase difference of 180 degrees (π), and the detection signal C B and the detection signal C B. Is set in advance so as to be a distance interval having a phase difference of 180 degrees (π). Since the detection signals C A and C B have a phase difference of 90 degrees, the four detection signals C A , C B , C A ′, and C B ′ for each phase difference of 90 degrees are obtained by the pair of measurements described above. Will be obtained.
 画像形成部241は、検出信号C、C′(位相差180度)を加算し、その和を2で除算することにより、背景光成分I(x、y)+I(x、y)を演算する。この演算処理は、検出信号C、C′(位相差180度)を用いて行ってもよい。 The image forming unit 241 adds the detection signals C A and C A ′ (phase difference 180 degrees) and divides the sum by 2 to obtain the background light component I s (x, y) + I r (x, y ) Is calculated. This calculation process may be performed using the detection signals C B and C B ′ (phase difference 180 degrees).
 更に、画像形成部241は、背景光成分I(x、y)+I(x、y)を各検出信号C、Cから除算して干渉成分(cos成分、sin成分)を求める。そして、画像形成部241は、各検出信号C、Cの干渉成分の二乗和を演算することによりxy方向(水平方向)の断面における画像を形成する。なお、この処理は、検出信号C′、C′(位相差180度)を用いて行ってもよい。 Further, the image forming unit 241 obtains an interference component (cos component, sin component) by dividing the background light component I s (x, y) + I r (x, y) from the detection signals C A and C B. Then, the image forming unit 241 forms an image in a cross section in the xy direction (horizontal direction) by calculating the square sum of the interference components of the detection signals C A and C B. This process may be performed using the detection signals C A ′ and C B ′ (phase difference 180 degrees).
 制御部21は、参照光Rの光路長を順次に変更しながら上記の一対の計測を反復実施させることにより、前眼部の様々な深度位置におけるxy断面の画像(水平断層像)を順次に形成する。この実施形態では、特に、デスメ膜と角膜内皮の水平断層像を取得する。 The control unit 21 sequentially performs the above-described pair of measurements while sequentially changing the optical path length of the reference light R, thereby sequentially obtaining xy cross-sectional images (horizontal tomographic images) at various depth positions of the anterior segment. Form. In this embodiment, in particular, horizontal tomographic images of the Descemet's membrane and corneal endothelium are acquired.
 なお、この処理において、制御部21は、CCD16、17を所定のフレームレートでかつ同じタイミングで検出信号を出力するように制御するとともに、このフレームレートと、各CCD16、17の露光タイミングと、参照光Rの光路長の変更タイミングとを同期させる。 In this process, the control unit 21 controls the CCDs 16 and 17 to output detection signals at a predetermined frame rate and at the same timing, and also refers to the frame rate and the exposure timing of each CCD 16 and 17. The change timing of the optical path length of the light R is synchronized.
 このとき、各CCD16、17の露光時間を、フレーム間隔(フレームレートの逆数)よりも短く設定することが望ましい。たとえば、CCD16、17のフレームレートは30f/sに設定され、露光時間は30~50μs程度に設定される。 At this time, it is desirable to set the exposure time of each CCD 16, 17 to be shorter than the frame interval (the reciprocal of the frame rate). For example, the frame rate of the CCDs 16 and 17 is set to 30 f / s, and the exposure time is set to about 30 to 50 μs.
 また、中心波長760nm程度で波長幅100nm程度の広帯域光Mを用いることにより、数μm程度の分解能の画像を取得することができる。たとえば、広帯域光Mの波長をガウス型と仮定し、被検眼Eの屈折率をn=1.33としたときの分解能の理論値は約1.8μmとなる。 Further, by using the broadband light M having a center wavelength of about 760 nm and a wavelength width of about 100 nm, an image with a resolution of about several μm can be acquired. For example, assuming that the wavelength of the broadband light M is Gaussian and the refractive index of the eye E is n = 1.33, the theoretical value of resolution is about 1.8 μm.
 このようにして取得された前眼部の水平断層像は、たとえば記憶部244に記憶される。また、制御部21は、たとえば操作部23を用いた操作に応じて、水平断層像を表示部22に表示させる。 The horizontal tomographic image of the anterior segment acquired in this way is stored in the storage unit 244, for example. Further, the control unit 21 causes the display unit 22 to display a horizontal tomographic image in response to an operation using the operation unit 23, for example.
 深度位置の異なる複数の水平断層像が得られた場合、画像形成部241は、隣接する水平断層像の間の画素を補完する公知の補完処理を実行することにより3次元画像(ボリュームデータなどと呼ばれる)を形成する。ボリュームデータは、3次元的な画素であるボクセルにより定義される画像データである。この3次元画像は、角膜内皮及びその近傍部位(デスメ膜、前房など)を含む角膜内の領域について取得される。 When a plurality of horizontal tomographic images having different depth positions are obtained, the image forming unit 241 performs a known complement process for complementing pixels between adjacent horizontal tomographic images, thereby performing a three-dimensional image (such as volume data). Called). Volume data is image data defined by voxels that are three-dimensional pixels. This three-dimensional image is acquired for a region in the cornea including the corneal endothelium and the vicinity thereof (Desme's membrane, anterior chamber, etc.).
 また、画像形成部241は、深度方向に沿った断面に位置するボクセルをボリュームデータから選択し、これらのボクセルに基づいて、深度方向に沿った断層像(垂直断層像)を形成する。 Also, the image forming unit 241 selects voxels located in the cross section along the depth direction from the volume data, and forms a tomographic image (vertical tomographic image) along the depth direction based on these voxels.
 また、ボリュームデータの代わりに、複数の水平断層像を一つの3次元座標系に配置して得られる3次元画像(スタックデータなどと呼ばれる)を形成することも可能である。そして、このスタックデータに基づいて垂直断層像を形成することができる。 Also, instead of volume data, it is also possible to form a three-dimensional image (called stack data or the like) obtained by arranging a plurality of horizontal tomographic images in one three-dimensional coordinate system. A vertical tomographic image can be formed based on the stack data.
 なお、3次元画像における深度方向の断面位置を自動的に指定することもできるし、オペレータが手作業で断面位置を指定することもできる。前者の場合の例としては、所定間隔で断面位置を設定することができる。また、過去に指定された断面位置を自動的に設定することもできる。また、所定の断面位置(たとえば角膜頂点を通過する断面など)を自動的に設定するようにしてもよい。一方、後者の場合の例としては、たとえばボリュームデータをレンダリングして得られる擬似的な3次元画像を表示部22に表示させ、この擬似的な3次元画像上に操作部23を用いて断面位置を設定するように構成できる。 Note that the cross-sectional position in the depth direction in the three-dimensional image can be automatically designated, or the cross-sectional position can be designated manually by the operator. As an example of the former case, the cross-sectional positions can be set at predetermined intervals. It is also possible to automatically set a cross-sectional position designated in the past. Further, a predetermined cross-sectional position (for example, a cross-section passing through the corneal apex) may be automatically set. On the other hand, as an example of the latter case, for example, a pseudo three-dimensional image obtained by rendering volume data is displayed on the display unit 22, and the cross-sectional position is displayed on the pseudo three-dimensional image using the operation unit 23. Can be configured to set.
 なお、最初に形成される水平断層像に直交する断面を有する垂直断層像を形成する代わりに、水平断層像に対して任意の角度で交差する断層像を形成することも可能である。たとえば、角膜Ecの径方向に沿った断層像を形成することも可能である。また、ボリュームデータにおける補完されたボクセルに基づいて、最初に形成された隣接する水平断層像の間の深度位置における水平断層像を形成することも可能である。 It should be noted that instead of forming a vertical tomographic image having a cross section orthogonal to the horizontal tomographic image that is formed first, it is also possible to form a tomographic image that intersects the horizontal tomographic image at an arbitrary angle. For example, it is possible to form a tomographic image along the radial direction of the cornea Ec. It is also possible to form a horizontal tomographic image at a depth position between adjacent horizontal tomographic images formed first based on the complemented voxels in the volume data.
 すなわち、ボリュームデータやスタックデータ等の3次元画像に対して断面位置が指定されると、この2次元断面上の画素(ボクセル、ピクセル)を選択し、選択された画素を2次元断面に沿って配列することによって断層像が形成される。このような処理により、前眼部の任意の断面に対応する断層像を形成することが可能となる。なお、以上に説明したような3次元画像から断層像を形成する処理は、画像領域特定部242の断層像形成部243によって実行される。 That is, when a cross-sectional position is specified for a three-dimensional image such as volume data or stack data, a pixel (voxel, pixel) on the two-dimensional cross section is selected, and the selected pixel is moved along the two-dimensional cross section. A tomographic image is formed by arranging. By such processing, a tomographic image corresponding to an arbitrary cross section of the anterior segment can be formed. Note that the processing for forming a tomographic image from the three-dimensional image as described above is executed by the tomographic image forming unit 243 of the image region specifying unit 242.
(画像領域特定部)
 画像領域特定部242は、画像形成部241により形成された3次元画像を解析して、被検眼Eの前眼部の角膜内皮に対応する角膜内皮領域を特定する。なお、特定される角膜内皮領域は、前眼部の角膜内皮の少なくとも一部を含んでいればよい。なお、3次元画像における角膜内皮領域の近傍には、デスメ膜や前房に相当する画像領域(近傍領域)がそんざいする。
(Image area identification part)
The image region specifying unit 242 analyzes the three-dimensional image formed by the image forming unit 241 and specifies a corneal endothelium region corresponding to the corneal endothelium of the anterior eye portion of the eye E to be examined. The specified corneal endothelium region only needs to include at least a part of the corneal endothelium of the anterior segment. Note that an image region (near region) corresponding to the Descemet's membrane or the anterior chamber is located near the corneal endothelium region in the three-dimensional image.
 画像領域特定部242は、たとえば、異常判定処理が実施される部位に応じて事前に設定された画像領域(角膜内皮領域及び近傍領域を含む)を特定するようにしてもよい。具体例として、異常判定処理の対象となる前眼部の部位が予め指定されると(自動又は手動)、画像領域特定部242は、指定された部位に対応する範囲の画像領域を特定する。画像領域特定部242は、この発明の「特定手段」の一例である。 The image area specifying unit 242 may specify, for example, an image area (including a corneal endothelium area and a neighboring area) set in advance according to a site where the abnormality determination process is performed. As a specific example, when a part of the anterior segment that is the target of the abnormality determination process is specified in advance (automatic or manual), the image region specifying unit 242 specifies an image region in a range corresponding to the specified portion. The image area specifying unit 242 is an example of the “specifying unit” of the present invention.
 画像領域特定部242は、3次元画像(ボリュームデータやスタックデータ)自体を解析して目的の画像領域を特定することもできるし、3次元画像に基づく断層像(垂直断層像や水平断層像)を解析して目的の画像領域を特定することもできる。また、3次元画像の基になる水平断層像を解析して目的の画像領域を特定することも可能である。 The image area specifying unit 242 can also specify a target image area by analyzing the 3D image (volume data or stack data) itself, or a tomographic image (vertical tomographic image or horizontal tomographic image) based on the 3D image. The target image area can also be specified by analyzing. It is also possible to specify a target image region by analyzing a horizontal tomographic image that is the basis of a three-dimensional image.
 なお、3次元画像を解析して3次元の画像領域を特定する場合には、この3次元画像領域の断面を指定して目的の画像領域を求めることができる。また、垂直断層像や水平断層像だけでなく、任意方向の断面における断層像を解析して目的の画像領域を特定することも可能である。 Note that, when a three-dimensional image region is specified by analyzing a three-dimensional image, a target image region can be obtained by designating a cross section of the three-dimensional image region. In addition to a vertical tomographic image and a horizontal tomographic image, a tomographic image in a cross section in an arbitrary direction can be analyzed to specify a target image region.
 以下、画像領域特定部242の処理の具体例を説明する。前述のように、目的となる画像領域は、角膜内皮に対応する角膜内皮領域を含む。よって、解析対象の画像中における角膜内皮領域を特定する必要がある。 Hereinafter, a specific example of the processing of the image area specifying unit 242 will be described. As described above, the target image region includes a corneal endothelium region corresponding to the corneal endothelium. Therefore, it is necessary to specify the corneal endothelium region in the analysis target image.
 この処理の例として、前眼部の特徴部位との間の位置関係に基づいて角膜内皮領域を特定する方法がある。この特徴部位としては、角膜表面、角膜裏面、水晶体前面、虹彩などがある。この処理例を適用する場合、特徴部位と角膜内皮との間の標準的な位置関係(距離、方向)を記録した情報を予め記憶部244に記憶しておくとともに、画像中における特徴部位を特定し、この特徴部位と上記情報と計測倍率(対物レンズ等のレンズの屈折力による)とに基づいて当該画像中における角膜内皮領域を特定することが可能である。 As an example of this process, there is a method of specifying a corneal endothelium region based on a positional relationship with a characteristic part of the anterior segment. Examples of the characteristic portion include the corneal surface, the corneal back surface, the front lens surface, and the iris. When applying this processing example, information that records the standard positional relationship (distance, direction) between the feature region and the corneal endothelium is stored in the storage unit 244 in advance, and the feature region in the image is specified. Then, it is possible to specify the corneal endothelium region in the image based on this characteristic part, the above information, and the measurement magnification (depending on the refractive power of the lens such as the objective lens).
 また、解析対象の画像を構成する画素を解析することにより細胞等の微細構造を把握し、この微細構造に基づいて角膜内皮領域を特定することも可能である。 It is also possible to grasp the fine structure of cells and the like by analyzing the pixels constituting the image to be analyzed, and specify the corneal endothelium region based on this fine structure.
 この処理の例を説明する。ところで、角膜内皮細胞は、角膜の最深部に位置する単層の細胞である。角膜内皮細胞は、敷石状に均一に配列している。角膜内皮細胞の形状は、一般に5~7角形、多くが六角形である。角膜内皮細胞は、通常、20μm程度の直径を有し、300~350μm程度の面積を有する。 An example of this processing will be described. By the way, the corneal endothelial cell is a monolayer cell located in the deepest part of the cornea. Corneal endothelial cells are uniformly arranged in a paving stone shape. The shape of corneal endothelial cells is generally a 5-7 heptagon, and most are hexagons. Corneal endothelial cells usually have a diameter of about 20 μm and an area of about 300 to 350 μm 2 .
 画像領域特定部242は、まず、断層像(水平断層像)を構成する画素の画素値に基づいて、この断層像に描写された細胞の画像領域(細胞領域)を抽出する。一般に、フルフィールドタイプのOCTを適用して取得された画像においては、細胞の境界領域が高い輝度を有し、細胞の内部領域が低い輝度を有する。これは、細胞の境界領域での散乱が内部領域での散乱よりも大きいことに起因する。画像領域特定部242は、このような特性に基づいて閾値処理を行うことで細胞の境界領域に相当する画像領域を特定し、それにより細胞領域を抽出する。 The image area specifying unit 242 first extracts an image area (cell area) of a cell depicted in the tomographic image based on the pixel values of the pixels constituting the tomographic image (horizontal tomographic image). In general, in an image acquired by applying full-field type OCT, a cell boundary region has high luminance, and a cell internal region has low luminance. This is due to the fact that the scattering at the cell boundary region is larger than the scattering at the inner region. The image region specifying unit 242 performs threshold processing based on such characteristics to specify an image region corresponding to a cell boundary region, and thereby extracts a cell region.
 なお、細胞領域を抽出する処理は、上記の例に限定されるものではなく、画像中の所定の画像領域を抽出するための任意の公知技術を適用することが可能である。たとえば二値化処理やフィルタ処理などを用いることができる。 Note that the process of extracting a cell region is not limited to the above example, and any known technique for extracting a predetermined image region in an image can be applied. For example, binarization processing or filter processing can be used.
 画素値は、モノクロ画像の場合には輝度値であり、カラー画像の場合にはRGB値である。OCT装置で取得される画像は一般にモノクロ画像である。なお、輝度値の分布に基づいて擬似的なカラー画像を形成する場合もある。 The pixel value is a luminance value in the case of a monochrome image and an RGB value in the case of a color image. An image acquired by the OCT apparatus is generally a monochrome image. A pseudo color image may be formed based on the distribution of luminance values.
 続いて、画像領域特定部242は、上記の処理で抽出された細胞領域を解析して、細胞領域の形態(サイズや形状)を表す細胞情報を生成する。細胞のサイズは、画像の計測倍率を参照して算出される。計測倍率は画像取得時に設定される。倍率が既知であると、画像中の距離の尺度(単位距離)や画素間隔を取得できる。細胞領域の径や周は、単位距離や画素間隔に基づいて容易に算出できる。また、細胞領域の面積は、たとえば単位面積に含まれる画素数をカウントして単位面積画素数を取得しておくとともに、細胞領域内の画素数をカウントし、この画素数を単位面積画素数で除算することにより算出できる。また、通常の積分演算を行って面積を求めることも可能である。 Subsequently, the image region specifying unit 242 analyzes the cell region extracted by the above processing, and generates cell information indicating the form (size or shape) of the cell region. The cell size is calculated with reference to the measurement magnification of the image. The measurement magnification is set at the time of image acquisition. If the magnification is known, a scale of distance (unit distance) and a pixel interval in the image can be acquired. The diameter and circumference of the cell region can be easily calculated based on the unit distance and the pixel interval. In addition, for example, the area of the cell region is obtained by counting the number of pixels included in the unit area to obtain the unit area pixel number, and counting the number of pixels in the cell region. It can be calculated by dividing. It is also possible to obtain the area by performing a normal integration operation.
 また、細胞領域の形状は、上記処理において特定された細胞の境界領域に相当する画像領域を構成する画素の配列に基づいて特定することが可能である。また、細胞の形状(水平方向の断面形状など)は、たとえば、細胞の境界領域に相当する画像領域を細線化してワイヤモデルを作成し、このワイヤモデルに基づいて求めることができる。なお、このようなワイヤモデルは、一般に、複数の細胞の境界領域を含んでいる。単一の細胞の境界領域は、内部にワイヤモデルの一部を含まないループ状の画像領域を探索することで特定可能である。 Further, the shape of the cell region can be specified based on the arrangement of pixels constituting the image region corresponding to the boundary region of the cell specified in the above processing. In addition, the shape of a cell (such as a cross-sectional shape in the horizontal direction) can be obtained based on this wire model by creating a wire model by thinning an image region corresponding to a cell boundary region, for example. Note that such a wire model generally includes a boundary region of a plurality of cells. The boundary area of a single cell can be specified by searching a loop-shaped image area that does not include a part of the wire model inside.
 また、形状の決定は、たとえば、ループ状の画像領域上の各位置における微分係数を演算して行うこともできるし、パターンマッチング処理などを用いて行うこともできる。 Further, the shape can be determined by, for example, calculating a differential coefficient at each position on the loop-shaped image region, or using a pattern matching process or the like.
 水平断層像に描写された細胞が角膜内皮細胞であるか否かを判断する場合、たとえば、特定された各細胞領域の形状が略六角形であるか判断し(たとえば六角形状のテンプレート画像との画像相関処理による)、略六角形の細胞領域が所定比率以上存在する場合に、当該断層像は角膜内皮の画像であると判断する。このような処理により角膜内皮領域を含む画像領域を特定することが可能である。 When determining whether or not the cell depicted in the horizontal tomographic image is a corneal endothelial cell, for example, it is determined whether or not the shape of each specified cell region is a substantially hexagonal shape (for example, with a template image having a hexagonal shape). When the substantially hexagonal cell region is present in a predetermined ratio or more, it is determined that the tomographic image is an image of the corneal endothelium. By such processing, it is possible to specify an image region including a corneal endothelium region.
 また、特定された細胞領域のサイズの統計値(平均値等)を求め、この平均値が所定範囲(上記サイズを基に予め設定される)内であるか判断するようにしても、目的の画像領域を特定することが可能である。また、特定された複数の細胞領域が角膜内皮の特徴的な配列(敷石状の略均一な配列)であるかをパターンマッチング等によって判断するようにしても、目的の画像領域を特定することが可能である。 Further, a statistical value (average value or the like) of the size of the specified cell region is obtained, and it may be determined whether the average value is within a predetermined range (preset based on the size). It is possible to specify an image area. In addition, even if it is determined by pattern matching or the like whether the plurality of specified cell regions have a characteristic arrangement of corneal endothelium (a cobblestone-like substantially uniform arrangement), the target image area can be specified. Is possible.
 画像領域特定部242は、深度位置の異なる複数の水平断層像のそれぞれに対して上記の処理を実行し、各水平断層像が角膜内皮の画像であるか否か判断する。角膜内皮の画像と判定された水平断層像の群が角膜内皮領域に相当する。また、角膜内皮領域の前方(-z方向)に存在する水平断層像は、角膜内皮の前側近傍(デスメ膜等)に相当する近傍領域である。また、角膜内皮領域の後方に存在する水平断層像は、角膜内皮の後側近傍(前房等)に相当する近傍領域である。 The image region specifying unit 242 performs the above-described processing on each of a plurality of horizontal tomographic images having different depth positions, and determines whether each horizontal tomographic image is a corneal endothelium image. A group of horizontal tomographic images determined as images of the corneal endothelium corresponds to the corneal endothelium region. Further, the horizontal tomographic image existing in front (−z direction) of the corneal endothelium region is a neighborhood region corresponding to the front side vicinity (Desme membrane etc.) of the corneal endothelium. Further, the horizontal tomographic image existing behind the corneal endothelium region is a neighborhood region corresponding to the posterior vicinity of the corneal endothelium (such as the anterior chamber).
 このように水平断層像に基づいて角膜内皮領域や近傍領域が特定されると、角膜内皮領域の深さの範囲(z座標値)が得られる。このz座標値に基づいて、垂直断層像や3次元画像における角膜内皮領域を特定することが可能である。 Thus, when the corneal endothelium region and the vicinity region are specified based on the horizontal tomographic image, the depth range (z coordinate value) of the corneal endothelium region is obtained. Based on this z coordinate value, it is possible to specify a corneal endothelium region in a vertical tomographic image or a three-dimensional image.
 上記の例では、水平断層像の場合について特に詳しく説明したが、垂直断層像や3次元画像を解析して角膜内皮領域などを特定することが可能である。たとえば3次元画像における細胞領域の3次元的な態様(体積、形状、配列等)を画素値に基づいて解析することにより角膜内皮領域を特定することが可能である。 In the above example, the case of a horizontal tomographic image has been described in detail. However, a corneal endothelium region or the like can be specified by analyzing a vertical tomographic image or a three-dimensional image. For example, it is possible to specify a corneal endothelium region by analyzing a three-dimensional aspect (volume, shape, arrangement, etc.) of a cell region in a three-dimensional image based on pixel values.
 垂直断層像についても、細胞領域の2次元的な態様(断面積、形状、配列等)を画素値に基づいて解析することにより角膜内皮領域を特定することが可能である。また、垂直断層像を構成する画素の画素値を解析し、画素値が急激に変化する隣接する画素を求めることにより層と層との境界領域を特定する。それにより、角膜内皮領域とデスメ膜に相当する画像領域との境界領域や、角膜内皮領域と前房に相当する画像領域との境界領域などが特定される。なお、どの層が角膜内皮領域であるかは、前述の細胞情報に基づいて判別することができる。また、角膜内皮領域に特有の画素値の範囲を予め記憶しておき、この範囲に含まれる画素値を有する画素群を特定することで角膜内皮領域を特定することも可能である。 As for the vertical tomographic image, it is possible to specify the corneal endothelium region by analyzing the two-dimensional aspect (cross-sectional area, shape, arrangement, etc.) of the cell region based on the pixel value. Further, the pixel values of the pixels constituting the vertical tomographic image are analyzed, and the boundary region between the layers is specified by obtaining adjacent pixels whose pixel values change rapidly. Thereby, a boundary region between the corneal endothelium region and the image region corresponding to the Descemet's membrane, a boundary region between the corneal endothelium region and the image region corresponding to the anterior chamber, and the like are specified. Note that which layer is the corneal endothelium region can be determined based on the aforementioned cell information. It is also possible to specify a corneal endothelium region by storing a range of pixel values peculiar to the corneal endothelium region in advance and specifying a pixel group having a pixel value included in this range.
(記憶部)
 記憶部244は各種の情報を記憶する。記憶部244は、この発明の「記憶手段」の一例である。記憶部244に記憶される情報としては、画像形成部241により形成された画像、画像領域特定部242により特定された画像領域(その座標値や画像自体)、断層像形成部243により形成された断層像、被検者情報(カルテ情報等)などがある。
(Memory part)
The storage unit 244 stores various types of information. The storage unit 244 is an example of the “storage unit” in the present invention. The information stored in the storage unit 244 includes the image formed by the image forming unit 241, the image region specified by the image region specifying unit 242 (its coordinate values and the image itself), and the tomographic image forming unit 243. There are tomographic images, subject information (medical chart information, etc.).
 また、記憶部244には疾患情報245が予め記憶される。疾患情報245は、疾患名と角膜内皮の異常とを対応付ける情報である。疾患情報245の例を図3に示す。疾患情報245は、前眼部の様々な部位の所見(形態の異常)と疾患名とを対応付けている。 In addition, the disease information 245 is stored in the storage unit 244 in advance. The disease information 245 is information that associates a disease name with an abnormality of the corneal endothelium. An example of the disease information 245 is shown in FIG. The disease information 245 associates findings (abnormalities in morphology) of various parts of the anterior segment with disease names.
 なお、図3の疾患情報245においては所見の傾向(たとえば「薄い」、「不整」など)が示されている欄があるが、実際の疾患情報においては、これらの欄には部分閾値や許容範囲等の数値情報が記録される。このような数値情報は、たとえば、臨床的に取得された多数の所見の統計値(平均値、標準偏差等)に基づいて予め設定される。 In the disease information 245 of FIG. 3, there are columns indicating the tendency of findings (for example, “light”, “irregular”, etc.), but in actual disease information, these columns include partial thresholds and allowable values. Numerical information such as range is recorded. Such numerical information is preset based on, for example, statistical values (average value, standard deviation, etc.) of many findings acquired clinically.
 また、細胞変性等の病変や、コラーゲン様物質等の特定物質の存在に関する所見については、画像における病変や特定物質の描写態様(画素値、サイズ、個数、密度等)が記録される。 In addition, regarding the findings regarding the presence of a specific substance such as a cellular degeneration or a collagen-like substance, the description of the lesion or the specific substance in the image (pixel value, size, number, density, etc.) is recorded.
 疾患情報245に記録される所見としては、たとえば真鍋禮三他監修「角膜クリニック 第二版」(医学書院、2003年)のほか、各種文献を参照することが可能である。また、新たな研究結果や論文等を参照して疾患情報245を適宜に更新することが可能である。 As findings recorded in the disease information 245, for example, it is possible to refer to various documents in addition to “Corner Clinic 2nd Edition” (Medical Shoin, 2003) supervised by Shinzo Manabe et al. In addition, it is possible to update the disease information 245 appropriately with reference to new research results and papers.
 疾患情報245には、所見の対象部位として次のような欄が設けられている:角膜内皮細胞を表す「内皮細胞」;角膜内皮の前面(デスメ膜との境界面)を表す「内皮前面」;角膜内皮の後面(前房との境界面)を表す「内皮後面」;角膜内皮の厚さを表す「内皮厚」;「デスメ膜」;デスメ膜の厚さを表す「デスメ膜厚」;角膜Ecの厚さを表す「角膜厚」。更に、所見として、各疾患が一般的に両眼に生じるか一方の眼に発生するかを表す「両眼性/片眼性」の欄が設けられている。 In the disease information 245, the following columns are provided as the target sites of the findings: “endothelial cells” representing corneal endothelial cells; “endothelial front” representing the front surface of the corneal endothelium (boundary surface with the Descemet's membrane) The “rear endothelium” representing the posterior surface of the corneal endothelium (interface with the anterior chamber); the “endothelial thickness” representing the thickness of the corneal endothelium; the “Desme membrane”; the “Desme film thickness” representing the thickness of the Desme membrane; “Cornea thickness” representing the thickness of the cornea Ec. Furthermore, as a finding, a column of “binocular / unicular” indicating whether each disease generally occurs in both eyes or one eye is provided.
 なお、所見に設けられる欄は上記のものには限定されない。たとえば、前眼部の他の部位(隅角等)や、遺伝情報(親等が罹患している疾患名)、被検者情報(性別、年齢、病歴、投薬履歴、コンタクトレンズの装用の有無等)など、特定対象となる疾患名などに応じて適宜に欄を設定することが可能である。 Note that the columns provided in the findings are not limited to the above. For example, other parts of the anterior segment (corner angle, etc.), genetic information (name of disease affected by parent, etc.), subject information (gender, age, medical history, medication history, presence / absence of wearing contact lenses, etc.) ) And the like, it is possible to set columns appropriately according to the disease name to be identified.
 また、疾患名としては次の欄が設けられている:「滴状角膜」;Fuchs角膜内皮ジストロフィを表す「Fuchs」;先天性遺伝性角膜内皮ジストロフィを表す「CHED」;後部多形性ジストロフィを表す「PPCD」;Posterior Corneal Vesicleを表す「PCV」;虹彩角膜内皮症候群を表す「IEC」;「分娩時外傷」;「先天性緑内障」。なお、疾患名に設けられる欄は上記のものには限定されず、前眼部(特に角膜内皮)に関連する任意の疾患名を設けることが可能である。 In addition, the following columns are provided for disease names: “droplet cornea”; “Fuchs” representing Fuchs corneal endothelial dystrophy; “CHED” representing congenital hereditary corneal endothelial dystrophy; “PPCD” representing “Position Corneal Vessel” “PCV”; “IEC” representing iris-corneal endothelial syndrome; “trauma at delivery”; “congenital glaucoma”. The column provided for the disease name is not limited to the above, and any disease name related to the anterior segment (particularly the corneal endothelium) can be provided.
 ここで、角膜内皮やデスメ膜について簡単に説明するとともに、上記の各疾患について簡単に説明する。なお、各疾患名に対応付けられる所見は、以下の説明や臨床結果などに基づくものである。 Here, while briefly explaining the corneal endothelium and Descemet's membrane, each of the above diseases will be explained briefly. The findings associated with each disease name are based on the following explanation and clinical results.
 角膜内皮細胞の細胞密度は、出生時には5000~6000個/mm、生後2年で約3000個/mmである。20歳代では、細胞密度約3000個/mm、変動係数(coefficient of variation;CV値)0.25前後、六角形状の細胞の出現比率(六角細胞率)65~70%である。70歳代では、細胞密度約2500個/mm、CV値0.30前後、六角細胞率60%前後である。また、これらの値は、コンタクトレンズの長期装用者においては、同年代の健常者に比べて有意な差が認められる。また、CV値や六角細胞率は角膜内皮の機能と相関があると考えられている。また、細胞密度500個/mm以下になると機能不全によって角膜混濁が起こると考えられている。現在では、混濁に対する治療方法は角膜移植しかない。 The cell density of corneal endothelial cells is 5000 to 6000 cells / mm 2 at the time of birth and about 3000 cells / mm 2 at the age of 2 years. In the twenties, the cell density is about 3000 cells / mm 2 , the coefficient of variation (CV value) is around 0.25, and the appearance ratio of hexagonal cells (hexagon cell rate) is 65 to 70%. In the 70s, the cell density is about 2500 cells / mm 2 , the CV value is around 0.30, and the hexagonal cell rate is around 60%. In addition, these values are significantly different in long-term contact lens wearers compared to healthy people of the same age. Moreover, it is thought that CV value and a hexagonal cell rate have a correlation with the function of a corneal endothelium. In addition, corneal turbidity is considered to occur due to malfunction when the cell density is 500 cells / mm 2 or less. At present, the only treatment for turbidity is corneal transplantation.
 デスメ膜については次のようなことが知られている。まず、ABZの厚さは約3μmであり、生涯を通じて変化しない。一方、PNBZは加齢と共に厚さが増加し(たとえば60歳でおよそ6μm)、これは胎生期以後の内皮が産生したと考えられている。ABZとPNBZの異常を判定することで、角膜内皮の異常が先天的なものか後天的なものか推定できる。この推定処理は、たとえば、層の凹凸や断裂等の形態異常(不整)がどちらの層まで及んでいるか判断することにより実施できる。 The following is known about the Desme membrane. First, the thickness of ABZ is about 3 μm and does not change throughout life. On the other hand, PNBZ increases in thickness with age (for example, approximately 6 μm at 60 years old), which is thought to be produced by the endothelium after the embryonic period. By determining the abnormality of ABZ and PNBZ, it can be estimated whether the abnormality of the corneal endothelium is congenital or acquired. This estimation process can be carried out, for example, by determining to which layer the morphological abnormality (irregularity) such as unevenness or tearing of the layer extends.
 臨床所見について説明する。垂直断層像で観察すると、角膜内皮は角膜上皮よりも曲率がやや急な滑らかな面として観察される。また、角膜内皮の面が不整な場合、或いは、precipitate(後面沈着物)やiris pigment(虹彩色素)の付着を認めた場合には、角膜内皮に障害を及ぼす何らかの原因があると考えられる。このとき、PCVなども重要な所見である。 Explain clinical findings. When observed with a vertical tomographic image, the corneal endothelium is observed as a smooth surface with a slightly steeper curvature than the corneal epithelium. In addition, when the surface of the corneal endothelium is irregular, or when adhesion of precipitate (rear deposits) or iris pigment (iris pigment) is recognized, it is considered that there is some cause for damaging the corneal endothelium. At this time, PCV is also an important finding.
 面の不整は、たとえば、当該面のベースカーブからの変位量から判断できる。ベースカーブについて図4を参照して説明する。角膜内皮の面(前面又は後面)は、本来、垂直断層像において滑らかな弧を描くように描写される。一方、図4に示す面Uは、凹凸や皺襞等の不整部分Vを有する。ベースカーブBCは、面Uの本来の形状(滑らかな弧状)、つまり不整部分Vが存在しなかった場合の形状を推定したものである。 Surface irregularities can be determined from, for example, the amount of displacement from the base curve of the surface. The base curve will be described with reference to FIG. The surface of the corneal endothelium (anterior surface or posterior surface) is originally drawn to create a smooth arc in a vertical tomogram. On the other hand, the surface U shown in FIG. 4 has irregular portions V such as irregularities and wrinkles. The base curve BC is an estimation of the original shape (smooth arc shape) of the surface U, that is, the shape when the irregular portion V does not exist.
 ベースカーブBCは、たとえば次のようにして設定される:前述のように断層像を構成する画素の画素値を解析することで、角膜内皮領域とその近傍領域との境界領域(面U)を抽出する;この面Uの各点における微分係数(1次微分や2次微分等)を算出する;算出された微分係数に基づいて面Uにおける特徴点(頂点や変曲点等)を求める;これら特徴点の個数や位置に基づいて不整部分Vを特定する;特定された不整部分Vを除く滑らかな弧状部分を延長して弧状領域を求める。この弧状領域がベースカーブBCとなる。 The base curve BC is set, for example, as follows: By analyzing the pixel values of the pixels constituting the tomographic image as described above, the boundary region (plane U) between the corneal endothelium region and its neighboring region is determined. Extracting; calculating a differential coefficient (primary differential, secondary differential, etc.) at each point of the surface U; obtaining a feature point (vertex, inflection point, etc.) on the surface U based on the calculated differential coefficient; An irregular portion V is identified based on the number and position of these feature points; an arcuate region is obtained by extending a smooth arc-shaped portion excluding the identified irregular portion V. This arcuate region is the base curve BC.
 ベースカーブBCの求め方は上記のものには限定されず、たとえば、面Uの本来の断面形状を模したテンプレート画像と、断層像から抽出された面Uの画像とのパターンマッチングや差分処理によってベースカーブBCを求めることも可能である。沈着物が存在する場合などによる不整についても同様にしてベースカーブBCを求めることができる。 The method of obtaining the base curve BC is not limited to the above, and for example, by pattern matching or difference processing between a template image imitating the original cross-sectional shape of the surface U and an image of the surface U extracted from the tomographic image. It is also possible to obtain the base curve BC. The base curve BC can be obtained in the same manner for irregularities caused by the presence of deposits.
 また、3次元画像に描写された面Uの2次元的な画像(曲面画像)の不整やベースカーブBCを求める場合についても、同様の処理、すなわち、2次元的なテンプレート画像を用いたり、2次元的な微分係数を用いたりすることが可能である。また、角膜内皮の面以外の面についても、同様の処理によって不正やベースカーブを求めることが可能である。 Also, when obtaining an irregularity of the two-dimensional image (curved surface image) of the surface U depicted in the three-dimensional image and the base curve BC, the same processing, that is, using a two-dimensional template image, 2 It is possible to use a dimensional differential coefficient. In addition, fraud and base curves can be obtained for surfaces other than the corneal endothelium by the same process.
 また、角膜内皮に異常が存在するときにはデスメ膜にも異常が伴うことが多いため、角膜内皮の診断においては、角膜内皮自体だけでなくデスメ膜の状態も併せて参照することが重要である。特に、デスメ膜の皺襞や、retrocorneal membrane(後面の膜状物質)や、guttata(斑紋)などの有無は重要である。これらの異常は、デスメ膜や角膜内皮の前後面のベースカーブからの変位量で検出できる。 In addition, when there is an abnormality in the corneal endothelium, the Desme membrane is often accompanied by an abnormality. Therefore, in diagnosis of the corneal endothelium, it is important to refer to not only the corneal endothelium itself but also the state of the Desme membrane. In particular, the presence or absence of wrinkles of Descemet's membrane, retrocorneal membrane (a membrane material on the back surface), guttata (spots) or the like is important. These abnormalities can be detected by the amount of displacement from the base curve of the front and back surfaces of the Descemet's membrane and corneal endothelium.
 角膜内皮の診断においては、片眼性の異常か両眼性の異常かも重要な情報である。一般に、両眼性の異常の場合には原発性が強く疑われ、二次的な疾患の場合には片眼性の異常であることがほとんどである。 In the diagnosis of corneal endothelium, unilateral or bilateral abnormalities are important information. In general, in the case of a binocular abnormality, primary is strongly suspected, and in the case of a secondary disease, it is mostly a unilateral abnormality.
 また、角膜実質の病変や前房の炎症などの有無も重要な情報である。角膜実質の浮腫や前房の炎症を伴わない場合、原発性の軽症例、特に、滴状角膜、Fuchs角膜内皮ジストロフィ、後部多形性ジストロフィ、Posterior Corneal Vesicleなどの疑いがある。 Also, the presence or absence of corneal parenchymal lesions and inflammation of the anterior chamber is also important information. In the absence of corneal parenchymal edema or anterior chamber inflammation, there are suspicions of primary minor cases, in particular, corneal corneal, Fuchs corneal endothelial dystrophy, posterior polymorphic dystrophy, and Posterior Corneal Vesicle.
 滴状角膜は、原発性で両眼性の疾患であり、デスメ膜と角膜内皮との間(角膜内皮前面)におけるコラーゲン様物質の局所的な蓄積や、角膜内皮後面における疣状の突起などの所見が見られる。また、角膜内皮細胞はしばしば不整形を呈し、大小不同(大きさのばらつき)が認められる。一方、角膜厚や角膜内皮細胞数(細胞密度)は正常であることが多い。 Droplet cornea is a primary and binocular disease, such as the local accumulation of collagen-like substances between the Descemet's membrane and the corneal endothelium (frontal corneal endothelium) and the ridge-like projections on the posterior surface of the corneal endothelium. Findings are seen. In addition, corneal endothelial cells are often irregularly shaped, and large and small (variation in size) are observed. On the other hand, the corneal thickness and the number of corneal endothelial cells (cell density) are often normal.
 Fuchs角膜内皮ジストロフィは、原発性、両眼性、常染色体優性遺伝性の疾患であり、中年女性に多くみられる。角膜内皮細胞に4~5μm程度の結合組織が産出し、デスメ膜は厚さを増す(8~10μm程度)。所見としては、次のようなものが見られる:前房内への疣状の突出;重層の疣状物;重層化した結合組織内の疣状物;疣状物が認められない重層の結合組織。疣状突起は角膜内皮細胞を圧迫して薄くなり不整となる。これは、デスメ膜や角膜内皮の前後面の不整や、デスメ膜や角膜内皮の厚さによって把握できる。また、角膜内皮細胞の大小不同が顕著となり、本来の六角形状が失われることから、変動係数や六角細胞率などによって異常を判定することも可能である。 Fuchs corneal endothelial dystrophy is a primary, binocular, autosomal dominant hereditary disease that is common in middle-aged women. Connective tissue of about 4-5 μm is produced in corneal endothelial cells, and the thickness of the Descemet's membrane increases (about 8-10 μm). Observations include the following: Spider-like protrusions into the anterior chamber; layered rods; rods in layered connective tissue; layered bonds without rods Organization. Atheromatous processes become thin and irregular by squeezing corneal endothelial cells. This can be grasped by irregularities in the front and back surfaces of the Descemet's membrane and corneal endothelium and the thickness of the Descemet's membrane and corneal endothelium. In addition, since the size of corneal endothelial cells becomes remarkable and the original hexagonal shape is lost, it is possible to determine an abnormality based on the coefficient of variation, the hexagonal cell rate, and the like.
 先天性遺伝性角膜内皮ジストロフィは原発性の疾患であり、その所見では、デスメ膜後部と角膜内皮細胞に数珠球様の白色線がみられる。また、角膜内皮においては、細胞が欠損している部分と、菲薄化して色素顆粒を含んで角膜上皮細胞のようにみられる部分とが見られる。このような異常は、たとえば、デスメ膜や角膜内皮の前後面のベースカーブからの変位量や厚さを計測することにより把握できる。なお、前眼部観察装置100によれば、スペキュラーマイクロスコープと異なり、欠損と突出の区別が可能である。 Congenital hereditary corneal endothelial dystrophy is a primary disease, and in its findings, a beaded white line is seen in the posterior Descemet's membrane and corneal endothelial cells. In the corneal endothelium, there are a portion where the cell is deficient and a portion which is thinned and contains pigment granules and looks like corneal epithelial cells. Such an abnormality can be grasped, for example, by measuring a displacement amount or thickness from the base curve of the front and back surfaces of the Descemet's membrane or corneal endothelium. In addition, according to the anterior ocular segment observation apparatus 100, unlike a specular microscope, it is possible to distinguish between a defect and a protrusion.
 後部多形性ジストロフィは、原発性かつ両眼性の疾患であり、2~20個程度の水疱様の小さい円形病変が集合し、その周りを灰白色の円ハローが取り囲むような所見が見られる。なお、水疱が明らかでなく地図状病変と密な灰白色の混濁が生じる場合や、波打った広い帯状の病変とデスメ膜の肥厚がみられる症例もある。このような異常は、デスメ膜や角膜内皮の前後面のベースカーブからの変位量や厚さを計測することで把握できる。 Posterior polymorphic dystrophy is a primary and binocular disease. About 2 to 20 blister-like small circular lesions are gathered, and a grayish white circle halo surrounds them. In addition, there are cases where blisters are not obvious and map-like lesions and dense grayish white turbidity occur, and there are wide undulated strip-like lesions and thickening of the Descemet's membrane. Such an abnormality can be grasped by measuring the amount of displacement and the thickness of the Descemet's membrane and corneal endothelium from the front and back base curves.
 Posterior Corneal Vesicleは、原発性かつ片眼性の疾患であり、通常は無症状で眼科健診により偶然発見されることが多い。所見としては、デスメ膜及び角膜内皮の後面に小水疱や帯状の病変が認められる。帯状病変は大部分が水平に走行する。このような異常は、デスメ膜や角膜内皮の前後面のベースカーブからの変位量や厚さを計測することで把握できる。 Posture Corneal Vesicle is a primary and unilateral disease that is usually asymptomatic and often found by ophthalmic medical examination. Findings include vesicles and band-like lesions on the posterior surface of the Descemet's membrane and corneal endothelium. Most zonal lesions run horizontally. Such an abnormality can be grasped by measuring the amount of displacement and the thickness of the Descemet's membrane and corneal endothelium from the front and back base curves.
 虹彩角膜内皮症候群は、原発性かつ片眼性であり、角膜内皮、前房隅角、虹彩に異常を認める疾患である。所見としては、角膜内皮細胞の変性、数の減少、角膜内皮の欠損が認められ、デスメ膜の後面に角膜内皮細胞から産出されたコラーゲン様物質の厚い層状の組織(PCL)が認められる。このような異常は、デスメ膜や角膜内皮の前後面のベースカーブからの変位量や厚さを計測することで把握できる。 Iris-corneal endothelial syndrome is a disease which is primary and unilateral and has abnormalities in the corneal endothelium, anterior chamber corner and iris. The findings include degeneration of corneal endothelial cells, a decrease in the number of corneal endothelium, and a loss of corneal endothelium, and a thick layered tissue (PCL) of collagen-like substance produced from the corneal endothelial cells is observed on the rear surface of the Descemet's membrane. Such an abnormality can be grasped by measuring the amount of displacement and the thickness of the Descemet's membrane and corneal endothelium from the front and back base curves.
 分娩時外傷は、二次性の疾患であり、分娩時の角膜への圧迫によってデスメ膜と角膜内皮の破裂が生じたものである。所見としては、直線的に走行する帯状のデスメ膜の破裂が認められる。なお、このような所見は先天性緑内障と類似であるが、先天性緑内障ではデスメ膜の破裂が両眼性で直線的ないことから判別可能である。 Delivery trauma is a secondary disease that results in rupture of the Descemet's membrane and corneal endothelium due to pressure on the cornea during delivery. As a finding, rupture of a strip-like desme film that runs linearly is observed. Such findings are similar to those of congenital glaucoma, but in congenital glaucoma, rupture of the Descemet's membrane is binocular and not linear.
 疾患情報245は、上記のような各種疾患の所見に基づいて設定される。その際、前述のように、ベースカーブからの変位量や、厚さなどの閾値や許容範囲が決定されて疾患情報245に記録される。また、上記のような所見に基づく病変の態様(画像における描写態様)が決定されて疾患情報245に記録される。なお、図3に示す疾患情報245において、「滴状角膜」及び「内皮細胞」に対応する欄には「不整形、大小不同、細胞数正常」などと記録される。また、「Fuchs」及び「内皮細胞」に対応する欄には「結合組織(4~5μm)、重層疣状物、重層組織、六角細胞率低い」などと記録される。また、「Fuchs」及び「デスメ膜厚」に対応する欄には「肥厚(8~10μm)」などと記録される。また、「CHED」及び「内皮細胞」に対応する欄には「欠損部分有り、色素顆粒により上皮細胞様の所見部分有り」などと記録される。また、「CHED」及び「デスメ膜」に対応する欄には「後部に数珠状の白色線」などと記録される。また、「PPCD」及び「内皮細胞」に対応する欄には「不明瞭な複数の水疱状病変、地図状病変、混濁、帯状病変」などと記録される。また、「PCV」及び「内皮後面」に対応する欄と、「PCV」及び「デスメ膜」に対応する欄には、それぞれ「水疱状病変、帯状病変」などと記録される。また、「IEC」及び「内皮細胞」に対応する欄には「細胞の変性、数減少、欠損」などと記録される。また、「IEC」及び「デスメ膜」に対応する欄には「後面にPCL(コラーゲン様物質)」などと記録される。また、「分娩時外傷」及び「デスメ膜」に対応する欄には「破裂(直線、帯状)」などと記録される。また、「先天性緑内障」及び「デスメ膜」に対応する欄には「破裂(非直線)」などと記録される。 The disease information 245 is set based on the findings of various diseases as described above. At that time, as described above, a displacement amount from the base curve, a threshold value such as a thickness, and an allowable range are determined and recorded in the disease information 245. In addition, a lesion mode (description mode in an image) based on the above findings is determined and recorded in the disease information 245. In the disease information 245 shown in FIG. 3, “irregular, large / small, normal number of cells” and the like are recorded in the columns corresponding to “droplet cornea” and “endothelial cells”. In the columns corresponding to “Fuchs” and “endothelial cells”, “connective tissue (4 to 5 μm), stratified rod, stratified tissue, hexagonal cell rate is low” and the like are recorded. In the column corresponding to “Fuchs” and “Desme film thickness”, “thickening (8 to 10 μm)” or the like is recorded. In the column corresponding to “CHED” and “endothelial cell”, “there is a defective part, and there are epithelial cell-like findings due to pigment granules” and the like are recorded. In the column corresponding to “CHED” and “Desme film”, “beaded bead-like white line” is recorded. In the column corresponding to “PPCD” and “endothelial cells”, “unclear bullous lesions, map-like lesions, turbidity, zonal lesions” and the like are recorded. In the column corresponding to “PCV” and “back surface of endothelium” and the column corresponding to “PCV” and “Desme membrane”, “bullous lesion, band lesion” and the like are recorded, respectively. In the column corresponding to “IEC” and “endothelial cell”, “cell degeneration, number reduction, defect” and the like are recorded. Further, “PCL (collagen-like substance)” is recorded in the column corresponding to “IEC” and “Desme membrane”. In the column corresponding to “trauma during delivery” and “desme membrane”, “rupture (straight, strip)” or the like is recorded. In the column corresponding to “congenital glaucoma” and “desme membrane”, “rupture (non-linear)” or the like is recorded.
(異常判定部)
 異常判定部246は、画像領域特定部242により特定された画像領域を解析して、角膜内皮の異常を判定する。この処理は、異常の有無を判定するものであってもよいし、異常の程度を判定するものであってもよい。異常判定部246は、記憶部244とともに、この発明の「判定手段」の一例を構成する。
(Abnormality judgment unit)
The abnormality determining unit 246 analyzes the image region specified by the image region specifying unit 242, and determines an abnormality of the corneal endothelium. This process may determine whether or not there is an abnormality, or may determine the degree of abnormality. The abnormality determination unit 246 and the storage unit 244 constitute an example of the “determination unit” of the present invention.
 異常判定部246には、境界領域特定部247、ベースカーブ特定部248、境界形状解析部249、層領域特定部250、層領域解析部251、細胞領域特定部252、細胞状態解析部253、経時変化解析部254及び疾患特定部255を含んで構成される。 The abnormality determination unit 246 includes a boundary region specifying unit 247, a base curve specifying unit 248, a boundary shape analyzing unit 249, a layer region specifying unit 250, a layer region analyzing unit 251, a cell region specifying unit 252, a cell state analyzing unit 253, A change analysis unit 254 and a disease specifying unit 255 are included.
(境界領域特定部、ベースカーブ特定部、境界形状解析部)
 複数の断層像(特に垂直断層像)について角膜内皮領域が画像領域特定部242によりそれぞれ特定されたときに、境界領域特定部247、ベースカーブ特定部248及び境界形状解析部249は、各垂直断層像に基づいて角膜内皮の異常を判定する。以下、この判定処理について説明する。
(Boundary area identification part, base curve identification part, boundary shape analysis part)
When the corneal endothelium region is specified by the image region specifying unit 242 for a plurality of tomographic images (particularly vertical tomographic images), the boundary region specifying unit 247, the base curve specifying unit 248, and the boundary shape analyzing unit 249 Abnormality of the corneal endothelium is determined based on the image. Hereinafter, this determination process will be described.
 境界領域特定部247は、角膜Ecの角膜内皮の境界面に対応する各垂直断層像中の境界領域を特定する。境界領域特定部247は、この発明の「境界領域特定手段」の一例である。 The boundary region specifying unit 247 specifies a boundary region in each vertical tomographic image corresponding to the boundary surface of the corneal endothelium of the cornea Ec. The boundary area specifying unit 247 is an example of the “boundary area specifying means” of the present invention.
 境界領域を特定するために、境界領域特定部247は、画像領域特定部242により特定された角膜内皮領域及びその近傍領域を含む画像領域を構成する画素の画素値を解析する。この解析処理では、たとえば、画像領域特定部242による前述の解析結果を利用することにより、各垂直断層像における、角膜内皮の前面(デスメ膜との境界面)に対応する画像領域(内皮前面境界領域)や、後面(前房との境界面)に対応する画像領域(内皮後面境界領域)が特定される。 In order to specify the boundary region, the boundary region specifying unit 247 analyzes the pixel values of the pixels constituting the image region including the corneal endothelium region specified by the image region specifying unit 242 and its neighboring region. In this analysis processing, for example, by using the analysis result described above by the image region specifying unit 242, an image region (endothelial front boundary) corresponding to the front surface of the corneal endothelium (boundary surface with the Descemet's membrane) in each vertical tomographic image. Region) or an image region (endothelial posterior boundary region) corresponding to the posterior surface (boundary surface with the anterior chamber) is specified.
 このとき、内皮前面境界領域と内皮後面境界領域の双方を特定してもよいし、一方のみを特定してもよい。特定される境界領域は、たとえば異常の検出対象に応じて事前に設定される。また、常に双方又は一方を特定するようにしてもよい。 At this time, both the endothelial front boundary region and the endothelial rear boundary region may be specified, or only one of them may be specified. The specified boundary region is set in advance according to, for example, an abnormality detection target. Moreover, you may make it specify both or one side always.
 ベースカーブ特定部248と境界形状解析部249は、境界領域特定部247により特定された境界領域の形状に基づいて、当該境界領域の異常を判定する。この異常判定処理の例を説明する。 The base curve specifying unit 248 and the boundary shape analyzing unit 249 determine abnormality of the boundary region based on the shape of the boundary region specified by the boundary region specifying unit 247. An example of this abnormality determination process will be described.
 境界領域として図4に示すような面Uが特定された場合、ベースカーブ特定部248は、面Uに基づいてベースカーブBCを求める。ベースカーブBCを求める処理については前述した。境界形状解析部249は、ベースカーブBCに対する面Uの凹凸(不整部分V)を検出する。ベースカーブ特定部248と境界形状解析部249は、この発明の「凹凸検出手段」の一例を構成する。 When the surface U as shown in FIG. 4 is specified as the boundary region, the base curve specifying unit 248 determines the base curve BC based on the surface U. The process for obtaining the base curve BC has been described above. The boundary shape analysis unit 249 detects the unevenness (irregular portion V) of the surface U with respect to the base curve BC. The base curve specifying unit 248 and the boundary shape analyzing unit 249 constitute an example of the “unevenness detecting unit” of the present invention.
 更に、境界形状解析部249は、ベースカーブBCに対する不整部分Vの変位量を求める。この変位量は、たとえば、ベースカーブBCと不整部分Vとの最大離間距離、不整部分Vの幅、ベースカーブBCと不整部分Vとに囲まれる画像領域の面積など、ベースカーブBCに対する不整部分Vの変位を特徴づける物理量である。 Further, the boundary shape analysis unit 249 obtains a displacement amount of the irregular portion V with respect to the base curve BC. This displacement amount is, for example, an irregular portion V with respect to the base curve BC, such as a maximum separation distance between the base curve BC and the irregular portion V, a width of the irregular portion V, an area of an image region surrounded by the base curve BC and the irregular portion V, and the like. This is a physical quantity that characterizes the displacement of.
 境界形状解析部249は、この変位量が所定の許容範囲内であるか判断する。そして、境界形状解析部249は、変位量が許容範囲内であれば当該境界領域は異常無しと判定し、許容範囲外であれば異常有りと判定する。 The boundary shape analysis unit 249 determines whether the amount of displacement is within a predetermined allowable range. The boundary shape analysis unit 249 determines that the boundary region has no abnormality if the displacement amount is within the allowable range, and determines that there is an abnormality if the amount of displacement is outside the allowable range.
 また、境界形状解析部249は、変位量の絶対値や、所定の許容範囲や閾値に対する変位量のズレなどに基づいて、当該境界領域における異常の程度を判定することも可能である。 Also, the boundary shape analysis unit 249 can determine the degree of abnormality in the boundary region based on the absolute value of the displacement amount, the displacement of the displacement amount with respect to a predetermined allowable range or threshold value, and the like.
(層領域特定部、層領域解析部)
 複数の断層像(特に垂直断層像)のそれぞれについて角膜内皮領域が画像領域特定部242により特定されたときに、層領域特定部250と層領域解析部251は、被検眼Eの前眼部の所定の層に対応する各垂直断層像中の層領域の厚さに基づいて、当該所定の層の異常、更には角膜内皮の異常を判定する。ここで、層領域の異常は、角膜内皮の異常に関連するものとされている。
(Layer region identification part, Layer region analysis part)
When the corneal endothelium region is specified by the image region specifying unit 242 for each of a plurality of tomographic images (particularly vertical tomographic images), the layer region specifying unit 250 and the layer region analyzing unit 251 Based on the thickness of the layer region in each vertical tomographic image corresponding to the predetermined layer, the abnormality of the predetermined layer and further the abnormality of the corneal endothelium are determined. Here, the abnormality of the layer region is related to the abnormality of the corneal endothelium.
 この異常判定を行うために、層領域特定部250は、前眼部の所定の層に対応する各垂直断層像中の層領域を特定する。層領域特定部250は、この発明の「層領域特定手段」の一例である。 In order to perform this abnormality determination, the layer region specifying unit 250 specifies a layer region in each vertical tomographic image corresponding to a predetermined layer of the anterior segment. The layer region specifying unit 250 is an example of the “layer region specifying unit” of the present invention.
 垂直断層像中の層領域を特定するために、層領域特定部250は、画像領域特定部242により特定された角膜内皮領域及びその近傍領域を含む画像領域を構成する画素の画素値の解析を行う。この解析処理では、たとえば、画像領域特定部242による前述の解析結果を利用することにより、各垂直断層像における、角膜内皮領域、デスメ膜(全層、ABZ層、PNBZ層)に対応する層領域、角膜(全層)などの層領域が特定される。層領域は、たとえば、その前面と後面とを特定することによって特定される。 In order to identify the layer region in the vertical tomographic image, the layer region identifying unit 250 analyzes the pixel values of the pixels constituting the image region including the corneal endothelium region identified by the image region identifying unit 242 and its neighboring region. Do. In this analysis processing, for example, by using the analysis result described above by the image region specifying unit 242, a layer region corresponding to a corneal endothelium region and a Descemet's membrane (all layers, ABZ layer, PNBZ layer) in each vertical tomographic image. , Layer regions such as the cornea (all layers) are identified. The layer region is specified, for example, by specifying its front and back surfaces.
 このとき、一つの層に対応する層領域を特定してもよいし、二つ以上の層のそれぞれに対応する層領域を特定してもよい。特定される層領域は、たとえば異常の検出対象に応じて事前に設定される。また、所定の層領域を常に特定するようにしてもよい。 At this time, a layer region corresponding to one layer may be specified, or a layer region corresponding to each of two or more layers may be specified. The specified layer region is set in advance according to, for example, an abnormality detection target. Further, the predetermined layer region may be always specified.
 層領域解析部251は、特定された層領域の厚さを求める。層領域の厚さは、たとえば、事前に求められたOCT画像の計測倍率に基づく隣接画素の間隔と、層領域の前面と後面との間の画素数とに基づいて算出できる。また、層領域の前側境界の深度位置と後側境界の深度位置との差を算出することで厚さを求めることも可能である。また、前側境界上の画素を含む水平断層像を取得したときの参照鏡9の位置と、後側境界上の画素を含む水平断層像を取得したときの参照鏡9の位置との差を算出することで層領域の厚さを求めることもできる。 The layer region analysis unit 251 obtains the thickness of the identified layer region. The thickness of the layer region can be calculated based on, for example, the interval between adjacent pixels based on the OCT image measurement magnification obtained in advance and the number of pixels between the front surface and the rear surface of the layer region. It is also possible to obtain the thickness by calculating the difference between the depth position of the front boundary and the depth position of the rear boundary of the layer region. Further, the difference between the position of the reference mirror 9 when the horizontal tomographic image including the pixels on the front boundary is acquired and the position of the reference mirror 9 when the horizontal tomographic image including the pixels on the rear boundary is acquired is calculated. By doing so, the thickness of the layer region can also be obtained.
 更に、層領域解析部251は、求められた層領域の厚さが所定の許容範囲内であるか判断する。そして、層領域解析部251は、厚さが許容範囲内であれば当該所定の層(ひいては角膜内皮)は異常無しと判定し、許容範囲外であれば異常有りと判定する。 Furthermore, the layer region analysis unit 251 determines whether the obtained layer region thickness is within a predetermined allowable range. Then, the layer region analysis unit 251 determines that the predetermined layer (and thus the corneal endothelium) has no abnormality if the thickness is within the allowable range, and determines that there is an abnormality if the thickness is outside the allowable range.
 また、層領域解析部251は、厚さの絶対値や、所定の許容範囲や閾値に対する厚さのズレなどに基づいて、当該所定の層における異常の程度を判定することも可能である。 Further, the layer region analysis unit 251 can also determine the degree of abnormality in the predetermined layer based on the absolute value of the thickness, the deviation of the thickness with respect to a predetermined allowable range or threshold value, and the like.
(細胞領域特定部、細胞状態解析部)
 複数の断層像(特に水平断層像)のそれぞれについて角膜内皮領域が画像領域特定部242により特定されたときに、細胞領域特定部252と細胞状態解析部253は、角膜内皮(細胞)の異常を判定する。
(Cell area identification part, cell state analysis part)
When the corneal endothelium region is specified by the image region specifying unit 242 for each of a plurality of tomographic images (particularly horizontal tomographic images), the cell region specifying unit 252 and the cell state analyzing unit 253 detect abnormalities of the corneal endothelium (cells). judge.
 そのために、細胞領域特定部252は、画像領域特定部242により特定された角膜内皮領域及びその近傍領域を含む画像領域を構成する画素の画素値を解析して、被検眼Eの角膜内皮を構成する角膜内皮細胞に対応する当該角膜内皮領域中の複数の細胞領域を特定する。この処理は、画像領域特定部242による前述の細胞領域の抽出処理と同様にして実行できる。なお、画像領域特定部242によって既に細胞領域が抽出されている場合、細胞領域特定部252は、この抽出処理の結果を利用することが可能である。細胞領域特定部252は、この発明の「細胞領域特定手段」の一例である。 For this purpose, the cell region specifying unit 252 analyzes the pixel values of the pixels that form the image region including the corneal endothelium region specified by the image region specifying unit 242 and its neighboring regions, and configures the corneal endothelium of the eye E to be examined. A plurality of cell regions in the corneal endothelial region corresponding to the corneal endothelial cell to be identified are specified. This process can be executed in the same manner as the cell area extraction process described above by the image area specifying unit 242. In addition, when the cell region has already been extracted by the image region specifying unit 242, the cell region specifying unit 252 can use the result of this extraction processing. The cell area specifying unit 252 is an example of the “cell area specifying means” of the present invention.
 細胞状態解析部253は、細胞領域特定部252により特定された複数の細胞領域に基づいて角膜内皮細胞の状態を解析し、それにより角膜内皮の異常を判定する。以下、この異常判定処理の例を説明する。 The cell state analyzing unit 253 analyzes the state of the corneal endothelial cell based on the plurality of cell regions specified by the cell region specifying unit 252 and thereby determines the abnormality of the corneal endothelium. Hereinafter, an example of the abnormality determination process will be described.
 細胞状態解析部253は、まず、細胞領域特定部252により特定された複数の細胞領域に基づいて角膜内皮細胞の状態の評価情報を求める。この処理では、たとえば、スペキュラーマイクロスコープと同様の評価情報、すなわち、細胞密度、最大細胞面積、最小細胞面積、平均細胞面積、面積標準偏差、細胞面積の変動係数、六角形状の細胞領域の出現率、細胞面積のヒストグラムなどが求められる。 The cell state analyzing unit 253 first obtains evaluation information on the state of the corneal endothelial cell based on the plurality of cell regions specified by the cell region specifying unit 252. In this processing, for example, evaluation information similar to that of the specular microscope, that is, cell density, maximum cell area, minimum cell area, average cell area, standard deviation of area, coefficient of variation of cell area, appearance rate of hexagonal cell region A histogram of the cell area is required.
 細胞密度は、所定面積(1mm)に含まれる細胞領域の個数を表すもので、たとえば、特定された複数の細胞領域と、水平断層像中における所定面積の画像領域(倍率を基に設定できる)とに基づいて算出できる。 The cell density represents the number of cell regions included in a predetermined area (1 mm 2 ). For example, the cell density can be set based on a plurality of specified cell regions and an image region of a predetermined area in a horizontal tomogram (magnification). ).
 最大細胞面積は、特定された複数の細胞領域の面積のうちの最大値を表すもので、たとえば、各細胞領域の面積を算出して大小比較を行うことで求められる。 The maximum cell area represents the maximum value of the areas of the plurality of specified cell regions, and can be obtained, for example, by calculating the area of each cell region and comparing the size.
 最小細胞面積は、特定された複数の細胞領域の面積のうちの最小値を表すもので、たとえば最大細胞面積と同様にして求めることができる。 The minimum cell area represents the minimum value of the areas of the plurality of specified cell regions, and can be obtained in the same manner as the maximum cell area, for example.
 平均細胞面積は、特定された複数の細胞領域の面積の平均値であり、通常の統計演算により算出できる。 The average cell area is an average value of the areas of a plurality of specified cell regions, and can be calculated by a normal statistical calculation.
 面積標準偏差は、特定された複数の細胞領域の面積の標準偏差であり、通常の糖液演算により算出できる。 The area standard deviation is a standard deviation of areas of a plurality of specified cell regions, and can be calculated by a normal sugar solution calculation.
 細胞面積の変動係数は、平均細胞面積に対する相対誤差を表す統計量(前述のCV値)であり、面積標準偏差を平均細胞面積で除算することで得られる。 The variation coefficient of the cell area is a statistic (the CV value described above) indicating a relative error with respect to the average cell area, and is obtained by dividing the area standard deviation by the average cell area.
 六角形状の細胞領域の出現率は、前述の六角細胞率であり、たとえば、特定された各細胞領域が六角形状であるか判断し、六角形状と判断された細胞領域の個数を総数で除算することで算出できる。 The appearance rate of the hexagonal cell region is the aforementioned hexagonal cell rate. For example, it is determined whether each identified cell region is a hexagonal shape, and the number of the cell regions determined to be hexagonal shapes is divided by the total number. Can be calculated.
 細胞面積のヒストグラムは、細胞面積毎の頻度を表す情報であり、通常の統計演算により求めることができる。 The cell area histogram is information representing the frequency of each cell area and can be obtained by normal statistical calculation.
 なお、実際の検査においては、疾患の種類などに応じて、上記の評価情報のうちの少なくとも一つが求められる。また、上記以外の種類の評価情報を求めることも可能である。このような細胞状態解析部253は、この発明の「評価手段」の一例を構成する。 In an actual examination, at least one of the above evaluation information is required according to the type of disease. It is also possible to obtain other types of evaluation information. Such a cell state analysis unit 253 constitutes an example of the “evaluation means” of the present invention.
 更に、細胞状態解析部253は、演算された評価情報に基づいて角膜内皮の異常の判定を行う。そのために、たとえば、各評価情報についての許容範囲を予め設定しておき(記憶部244に記憶される)、細胞状態解析部253は、複数の細胞領域に基づいて求められた各評価情報が当該許容範囲に含まれるか否か判断し、含まれると判断された場合に異常無しと判定し、含まれないと判断された場合に異常有りと判定する。また、許容範囲に対する評価情報のズレなどに基づいて、異常の程度を判定することも可能である。 Furthermore, the cell state analysis unit 253 determines the abnormality of the corneal endothelium based on the calculated evaluation information. Therefore, for example, an allowable range for each piece of evaluation information is set in advance (stored in the storage unit 244), and the cell state analysis unit 253 determines that each piece of evaluation information obtained based on a plurality of cell regions It is determined whether it is included in the allowable range. When it is determined that it is included, it is determined that there is no abnormality, and when it is determined that it is not included, it is determined that there is an abnormality. It is also possible to determine the degree of abnormality based on the deviation of the evaluation information with respect to the allowable range.
(経時変化解析部)
 異常判定部246により得られた判定結果は、たとえば患者IDや左右眼情報や検査日時情報に関連付けられて記憶部244に記憶される。ここで、左右眼情報とは、被検眼が左眼であるか右眼であるか識別する情報である。
(Aging analysis unit)
The determination result obtained by the abnormality determination unit 246 is stored in the storage unit 244 in association with, for example, a patient ID, left and right eye information, and examination date information. Here, the left and right eye information is information for identifying whether the eye to be examined is the left eye or the right eye.
 なお、被検眼Eが左眼であるか右眼であるか(左右眼情報)は、たとえば、オペレータが手入力してもよいし、装置光学系がステージ上を移動する場合などには光学系の左右方向の位置に基づいて自動判定してもよい。また、患者IDについては、たとえば、オペレータが手入力してもよいし、当該被検者の電子カルテを参照して自動取得してもよい。また、検査日時情報については、たとえば、オペレータが手入力してもよいし、コンピュータ20の計時機能を参照して自動取得してもよい。 Whether the eye E to be examined is the left eye or the right eye (right and left eye information) may be manually input by an operator, for example, or when the apparatus optical system moves on the stage, the optical system You may determine automatically based on the position of the left-right direction. The patient ID may be manually input by an operator or may be automatically acquired with reference to the subject's electronic medical record, for example. The inspection date information may be manually input by an operator or may be automatically acquired with reference to the timekeeping function of the computer 20, for example.
 被検眼Eについて角膜内皮の異常の判定がなされると、経時変化解析部254は、この被検眼Eの過去の判定結果を記憶部244から検索する。この検索処理において経時変化解析部254は、たとえば、患者IDを照合して当該被検者に関する判定結果を選択し、選択された判定結果のうちから左右眼情報により当該被検眼Eの判定結果を選択する。 When the abnormality of the corneal endothelium is determined for the eye E, the temporal change analysis unit 254 searches the storage unit 244 for past determination results of the eye E. In this search process, for example, the temporal change analysis unit 254 selects a determination result related to the subject by collating the patient ID, and determines the determination result of the eye E from the selected determination results based on the left and right eye information. select.
 更に、経時変化解析部254は、選択された当該被検眼Eの判定結果のうちから、検査日時情報に基づいて前回の検査で得られた判定結果を選択する。この処理は、たとえば、当該被検眼Eの過去の判定結果に関連付けられた検査日時情報のうちから最新の日時を特定し、この最新の日時を表す検査日時情報に関連付けられた判定結果を選択するものである。 Furthermore, the temporal change analysis unit 254 selects the determination result obtained in the previous examination based on the examination date / time information from the selected judgment result of the eye E. In this process, for example, the latest date / time is specified from the examination date / time information associated with the past determination result of the eye E, and the determination result associated with the examination date / time information representing the latest date / time is selected. Is.
 なお、選択される判定結果は、前回の検査のものに限定されるものではなく、過去の任意の判定結果であればよい。また、二つ以上の判定結果を選択することも可能である。 It should be noted that the selected determination result is not limited to that of the previous inspection, and may be any past determination result. It is also possible to select two or more determination results.
 経時変化解析部254は、今回の検査で得られた新たな異常の判定結果と、記憶部244から検索された過去の判定結果とを比較し、その結果に基づいて被検眼Eの角膜内皮の経時変化情報を求める。経時変化情報とは、角膜内皮の状態(たとえば異常の有無や程度)の経時変化を表す情報である。経時変化情報を求める処理は、たとえば次のようにして実行される。 The temporal change analysis unit 254 compares the new abnormality determination result obtained in this examination with the past determination result retrieved from the storage unit 244, and based on the result, the corneal endothelium of the eye E to be examined is compared. Find time-varying information. The time-dependent change information is information representing a time-dependent change in the state of the corneal endothelium (for example, the presence / absence or degree of abnormality). The process for obtaining the temporal change information is executed as follows, for example.
 過去の判定結果が一つ検索された場合、経時変化解析部254は、たとえば、過去の判定結果に対する新たな判定結果の変化を求めて経時変化情報とする。 When one past determination result is retrieved, the temporal change analysis unit 254 obtains, for example, a new change in the determination result with respect to the past determination result and uses it as the temporal change information.
 また、過去の判定結果が二つ以上検索された場合、経時変化解析部254は、たとえば、過去の複数の判定結果及び新たな判定結果の経時変化を表すグラフを作成して経時変化情報とする。また、経時変化の解析対象となる各OCT画像中の任意領域を、異常部位等の位置情報に基づいて指定し、この指定領域における各種パラメータの経時変化量を算出することも可能である。このとき、予め設定された所定の単位サイズの領域を各OCT画像毎に順次に指定することで、OCT画像の計測領域全体について経時変化量を求めるようにしてもよい。更に、算出された経時変化量が所定閾値以上である場合に注意を促す情報(メッセージ等)を表示することで、異常の早期発見に繋がる可能性もある。 Further, when two or more past determination results are retrieved, the temporal change analysis unit 254 creates, for example, a graph representing the temporal changes of a plurality of past determination results and new determination results, and uses them as the temporal change information. . It is also possible to designate an arbitrary region in each OCT image to be analyzed for change over time based on positional information such as an abnormal part and to calculate the amount of change over time of various parameters in the specified region. At this time, a temporal change amount may be obtained for the entire measurement region of the OCT image by sequentially designating a region of a predetermined unit size set in advance for each OCT image. Furthermore, displaying information (such as a message) that calls attention when the calculated amount of change over time is equal to or greater than a predetermined threshold may lead to early detection of an abnormality.
 なお、前述のように、検出された異常部位に対して、その位置を表す情報(位置情報)を付与できる。この位置情報を参照することで、上記のような同一部位の比較が可能となり、異常の程度の変化や場所の移動などを検出できる。また、このような同一部位の比較を行うことにより、新規に出現した異常を検出したり、過去に存在した異常の消失を検出したりでき、より詳細な異常検出が可能となる。 As described above, information (position information) indicating the position can be given to the detected abnormal part. By referring to this position information, it is possible to compare the same parts as described above, and it is possible to detect a change in the degree of abnormality, a movement of a place, and the like. Further, by comparing such identical parts, a newly appearing abnormality can be detected, or the disappearance of an abnormality existing in the past can be detected, so that more detailed abnormality detection can be performed.
(疾患特定部)
 前述のように、記憶部244には疾患情報245が予め記憶されている(図3を参照)。疾患特定部255は、疾患情報245に基づいて、角膜内皮の異常の判定結果に対応する疾患名を特定する。特定される疾患名は、あくまでも、被検眼Eが罹患している疑いのある疾患の候補である。
(Disease Identification Department)
As described above, the disease information 245 is stored in the storage unit 244 in advance (see FIG. 3). Based on the disease information 245, the disease identification unit 255 identifies a disease name corresponding to the determination result of the abnormality of the corneal endothelium. The specified disease name is a candidate for a disease that is suspected of having the eye E to be examined.
 疾患特定部255が実行する処理の例を説明する。疾患情報245は、疾患名と角膜内皮の異常とを対応付ける情報である。異常判定部246は、上記のように、角膜内皮の各種の異常の有無や程度を判定する。たとえば、異常判定部246は、角膜内皮細胞の異常、角膜内皮の前面や後面の異常、角膜内皮の厚さ(内皮厚)の異常、デスメ膜の異常、デスメ膜の厚さ(デスメ膜厚)の異常、角膜の厚さ(角膜厚)の異常などを判定する。また、被検者の両眼をそれぞれ検査することにより、異常が両眼性か片眼性か判定することも可能である。 An example of processing executed by the disease identification unit 255 will be described. The disease information 245 is information that associates a disease name with an abnormality of the corneal endothelium. As described above, the abnormality determination unit 246 determines whether or not there are various abnormalities of the corneal endothelium. For example, the abnormality determination unit 246 includes an abnormality of the corneal endothelial cell, an abnormality of the front or rear surface of the corneal endothelium, an abnormality of the thickness of the corneal endothelium (endothelium thickness), an abnormality of the Desme film, and a thickness of the Desme film (Desme film thickness). Abnormalities, corneal thickness (corneal film thickness) abnormality, and the like are determined. It is also possible to determine whether the abnormality is binocular or unilateral by examining both eyes of the subject.
 疾患特定部255は、異常判定部246による異常の判定結果を、疾患情報245の各疾患名に対応する所見と照合して、被検眼Eの角膜内皮が罹患しているおそれがある疾患名を特定する。 The disease identification unit 255 collates the abnormality determination result by the abnormality determination unit 246 with the findings corresponding to each disease name in the disease information 245, and determines the disease name that may cause the corneal endothelium of the eye E to be affected. Identify.
 このとき、全ての所見に対する判定結果が該当する場合に当該疾患名を特定するようにしてもよいし、一部の所見に対する判定結果が該当する場合に当該疾患名を特定するようにしてもよい。 At this time, the disease name may be specified when determination results for all findings are applicable, or the disease name may be specified when determination results for some findings are applicable. .
 たとえば、滴状角膜に対応する所見には、両眼性、角膜内皮細胞の不整等、角膜内皮前面のコラーゲン様物質、角膜内皮後面の疣状突起、及び、正常な角膜厚がある。このとき、これら全てに該当する判定結果が得られた場合に、罹患のおそれがある疾患名として「滴状角膜」を特定するように構成できる。また、これら所見のうちの一部のみに該当する判定結果が得られた場合に、罹患のおそれがある疾患名として「滴状角膜」を特定するように構成することも可能である。 For example, findings corresponding to the droplet cornea include binocular, irregular corneal endothelial cells, collagen-like substances on the front surface of the corneal endothelium, ridges on the posterior surface of the corneal endothelium, and normal corneal thickness. At this time, when determination results corresponding to all of these are obtained, “droplet cornea” can be specified as a disease name that may be affected. In addition, when a determination result corresponding to only a part of these findings is obtained, “droplet cornea” may be specified as a disease name that may be affected.
 また、ある疾患名に対応する複数の所見のうちの幾つの所見に該当する判定結果が得られたかによって、罹患の可能性を判定することが可能である。たとえば、滴状角膜に対応する所見のうちの1つ又は2つに該当する判定結果が得られた場合には「罹患の可能性が低い」と判定し、3つに該当する判定結果が得られた場合には「罹患の可能性が中程度」と判定し、4つ又は5つに該当する判定結果が得られた場合には「罹患の可能性が高い」と判定することができる。また、複数の所見のそれぞれに重み付けし、その重みの合計値によって罹患の可能性を判定することが可能である。 In addition, it is possible to determine the possibility of morbidity depending on how many findings among a plurality of findings corresponding to a certain disease name are obtained. For example, when a determination result corresponding to one or two of the findings corresponding to the keratoconus is obtained, it is determined that “the possibility of morbidity is low”, and a determination result corresponding to three is obtained. If it is determined that the possibility of morbidity is moderate, and if a determination result corresponding to four or five is obtained, it can be determined that the possibility of morbidity is high. It is also possible to weight each finding and determine the possibility of morbidity by the total value of the weights.
 制御部21は、異常判定部246による判定結果を表示部22に表示させる。このとき、異常と判定された項目やその内容を個別に表示するようにしてもよい。また、被検眼Eの前眼部の画像(断層像、3次元画像等)を表示させることも可能である。特に、異常の判定結果とともに、その異常判定に用いられた画像を表示させることができる。また、異常の経時変化情報や、特定された疾患名などを表示させることも可能である。なお、最終的な診断を下すのは医師であり、表示される情報は診断支援という意味合いを持つ。 The control unit 21 causes the display unit 22 to display the determination result by the abnormality determination unit 246. At this time, items determined to be abnormal and their contents may be individually displayed. It is also possible to display an anterior image (tomographic image, three-dimensional image, etc.) of the eye E. In particular, together with the abnormality determination result, the image used for the abnormality determination can be displayed. It is also possible to display abnormal time-dependent information, the specified disease name, and the like. The doctor makes the final diagnosis, and the displayed information has the meaning of diagnosis support.
[作用・効果]
 以上のように構成された前眼部観察装置100の作用及び効果を説明する。
[Action / Effect]
The operation and effect of the anterior segment observation apparatus 100 configured as described above will be described.
 前眼部観察装置100は、フルフィールドタイプのOCTを利用して、被検眼Eの前眼部の3次元画像を形成する。更に、前眼部観察装置100は、形成された3次元画像を解析して、前眼部の角膜内皮に対応する角膜内皮領域を特定し、特定された角膜内皮領域及びその近傍領域を含む画像領域を解析して角膜内皮の異常を判定する。 The anterior ocular segment observation apparatus 100 forms a three-dimensional image of the anterior ocular segment of the eye E using full field type OCT. Further, the anterior ocular segment observation apparatus 100 analyzes the formed three-dimensional image, identifies a corneal endothelium region corresponding to the corneal endothelium of the anterior ocular segment, and includes an image including the identified corneal endothelium region and its neighboring region. The region is analyzed to determine abnormalities of the corneal endothelium.
 前眼部観察装置100により判定される異常の種類としては、角膜内皮の境界面の異常、角膜の層の異常、角膜内皮細胞の異常などがある。また、前眼部観察装置100によれば、角膜内皮の異常の経時変化情報を求めることもできるし、異常の判定結果に基づいて被検眼Eが罹患しているおそれのある疾患名を特定することもできる。 The types of abnormalities determined by the anterior ocular segment observation apparatus 100 include abnormalities at the interface of the corneal endothelium, abnormalities in the corneal layer, abnormalities in corneal endothelial cells, and the like. Further, according to the anterior ocular segment observation apparatus 100, it is also possible to obtain information on temporal changes in abnormalities of the corneal endothelium, and specify a disease name that may cause the eye E to be affected based on the abnormality determination result. You can also.
 このような前眼部観察装置100によれば、フルフィールドタイプのOCTを利用しているので、スペキュラーマイクロスコープ等のような正反射光に関する問題がなく、したがって画像の一部が黒く抜けてしまうという不都合がない。 According to such an anterior ocular segment observation apparatus 100, since full-field type OCT is used, there is no problem with specular reflection light like a specular microscope or the like, and therefore a part of the image falls out black. There is no inconvenience.
 また、前眼部観察装置100によれば、スペキュラーマイクロスコープ等と異なり、照明光の照射方向と逆方向に進む反射光を検出する構成なので、異なる深度位置に存在する部位が水平方向にずれて観察されるという不都合がない。 In addition, according to the anterior ocular segment observation device 100, unlike a specular microscope, etc., it is configured to detect reflected light that travels in a direction opposite to the direction of illumination light irradiation, so that parts existing at different depth positions are shifted in the horizontal direction. There is no inconvenience of being observed.
 更に、前眼部観察装置100によれば、角膜内皮領域及びその近傍領域を含む画像領域に基づいて角膜内皮の異常判定を行うことが可能である。したがって、角膜内皮の異常の有無や程度を自動で判定でき、前眼部観察の確度の向上や効率の向上などを図ることが可能である。 Furthermore, according to the anterior ocular segment observation apparatus 100, it is possible to determine abnormality of the corneal endothelium based on the image area including the corneal endothelium area and its vicinity area. Therefore, it is possible to automatically determine the presence or absence and degree of abnormality of the corneal endothelium, and it is possible to improve the accuracy of the anterior ocular segment observation and the efficiency.
 このような前眼部観察装置100によれば、被検眼Eの前眼部、特に角膜内皮及びその近傍部位(デスメ膜、前房等)の状態の詳細な観察が可能である。 According to such an anterior ocular segment observation apparatus 100, detailed observation of the state of the anterior segment of the eye E, particularly the corneal endothelium and the vicinity thereof (Desme's membrane, anterior chamber, etc.) is possible.
[変形例]
 以上で説明した内容は、この発明に係る前眼部観察装置の一例に過ぎない。この発明を実施しようとする者は、この発明の要旨の範囲内における任意の変形を施すことが可能である。
[Modification]
The content described above is merely an example of the anterior segment observation apparatus according to the present invention. A person who intends to implement the present invention can make arbitrary modifications within the scope of the gist of the present invention.
 前述のように、デスメ膜のPNBZ層は、角膜内皮の異常(疾患)が先天性であるか後天性であるかの判定に利用可能である。この判定処理の例を説明する。 As described above, the PNBZ layer of the Descemet's membrane can be used to determine whether the abnormality (disease) of the corneal endothelium is congenital or acquired. An example of this determination process will be described.
 各異常(疾患名)について、先天性と後天性とを区別するための厚さの閾値情報を事前に作成して記憶部244に記憶させる。この閾値情報は、たとえば、多数の臨床データに基づいて作成することが可能である。 For each abnormality (disease name), thickness threshold information for distinguishing between congenital and acquired is created in advance and stored in the storage unit 244. This threshold information can be created based on a large number of clinical data, for example.
 角膜内皮の異常が存在すると判定されたときに、異常判定部246は、画像領域特定部242により特定された角膜内皮領域を含む画像領域を構成する画素の画素値を解析して、PNBZ層に対応する各断層像中の画像領域を特定する。更に、異常判定部246は、このPNBZ層に対応する画像領域の厚さを求め、この厚さに基づいて当該異常が先天性か後天性かを判定する。この判定処理は、求められた厚さと閾値情報とを比較することにより実行される。 When it is determined that an abnormality of the corneal endothelium exists, the abnormality determination unit 246 analyzes the pixel values of the pixels constituting the image region including the corneal endothelium region specified by the image region specifying unit 242 and generates the PNBZ layer. An image region in each corresponding tomographic image is specified. Further, the abnormality determination unit 246 obtains the thickness of the image area corresponding to the PNBZ layer, and determines whether the abnormality is congenital or acquired based on the thickness. This determination process is executed by comparing the obtained thickness with threshold information.
 この変形例によれば、発見された異常が先天性か後天性かを自動で推定できるので、前眼部観察の確度の向上や効率の向上などを図ることができ、角膜内皮及びその近傍部位の状態の詳細な観察が可能となる。なお、取得された先天性か後天性かの判定結果を、上記の実施形態における各種処理(たとえば疾患名を特定する処理)に利用することが可能である。 According to this modification, it is possible to automatically estimate whether the detected abnormality is congenital or acquired, so that it is possible to improve the accuracy of the anterior segment observation, improve the efficiency, etc. Detailed observation of the state is possible. In addition, it is possible to use the acquired determination result of congenital or acquired for various processes (for example, the process which specifies a disease name) in said embodiment.
 この発明に係る前眼部観察装置は、3次元画像の複数の断面における断層像のそれぞれについて角膜内皮の異常を判定し、異常と判定された断層像を表示させる構成であってもよい。 The anterior ocular segment observation apparatus according to the present invention may be configured to determine an abnormality of the corneal endothelium for each of the tomographic images in a plurality of cross sections of the three-dimensional image and display the tomographic image determined to be abnormal.
 この変形例では、上記実施形態と同様の光学系、変更手段及び形成手段によって前眼部の3次元画像を形成する。 In this modification, a three-dimensional image of the anterior segment is formed by the same optical system, changing means, and forming means as in the above embodiment.
 この変形例の特定手段は、上記実施形態の画像領域特定部242と同様にして、この3次元画像の複数の断面における断層像(水平断層像や垂直断層像)を形成する。更に、この特定手段は、画像領域特定部242と同様の解析処理を各断層像に施して、角膜内皮に対応する角膜内皮領域を特定する。 The specifying means of this modification forms tomographic images (horizontal tomographic images and vertical tomographic images) at a plurality of cross sections of this three-dimensional image in the same manner as the image region specifying unit 242 of the above embodiment. Furthermore, this specifying means performs an analysis process similar to that of the image region specifying unit 242 to each tomographic image, and specifies a corneal endothelium region corresponding to the corneal endothelium.
 この発明の判定手段は、これら各断層像について、特定された角膜内皮領域及びその近傍領域を含む画像領域を解析して角膜内皮の異常を判定する。この処理は、上記実施形態の異常判定部246と同様にして実行される。 The determination means of the present invention determines an abnormality of the corneal endothelium by analyzing an image region including the specified corneal endothelium region and its neighboring region for each tomographic image. This process is executed in the same manner as the abnormality determination unit 246 of the above embodiment.
 それにより、上記複数の断層像は、異常と判定された断層像のグループと、異常と判定されなかった断層像のグループとに分けられる。このグループ分けは、異常の有無を基準として実行してもよいし、異常の程度を基準として実行してもよい。すなわち、前者においては、異常が有ると判定された断層像のグループと、異常が無いと判定された断層像のグループとに分けられ、後者においては、所定の程度を超える異常を有すると判定された断層像のグループと、所定の程度以下の異常を有すると判定された断層像(異常無しと判定されたものも含む)のグループとに分けられることになる。 Thereby, the plurality of tomographic images are divided into a group of tomographic images determined to be abnormal and a group of tomographic images not determined to be abnormal. This grouping may be performed on the basis of the presence or absence of abnormality, or may be performed on the basis of the degree of abnormality. That is, the former is divided into a group of tomographic images determined to have an abnormality and a group of tomographic images determined to have no abnormality, and the latter is determined to have an abnormality exceeding a predetermined degree. The tomographic image group is divided into a group of tomographic images determined to have an abnormality of a predetermined level or less (including those determined to have no abnormality).
 異常と判定された断層像のグループは表示手段に表示される。この表示手段は、上記の実施形態における表示部22と同様である。当該グループに属する断層像は、制御部21と同様のマイクロプロセッサによって表示手段に表示される。 The group of tomographic images determined to be abnormal is displayed on the display means. This display means is the same as the display unit 22 in the above embodiment. The tomographic images belonging to the group are displayed on the display means by the same microprocessor as the control unit 21.
 このとき、異常と判定された全ての断層像を一度に表示させてもよいし、その一部(一つ以上)の断層像を表示させてもよい。前者の場合、全ての断層像のそれぞれのサムネイルを作成して表示させるようにしてもよい。後者の場合、スライドショー形式で順次に断層像を切り替え表示させてもよいし、オペレータの指示(操作部23を用いる)に応じて断層像を切り替え表示させてもよい。 At this time, all tomographic images determined to be abnormal may be displayed at a time, or a part (one or more) of tomographic images may be displayed. In the former case, thumbnails of all tomographic images may be created and displayed. In the latter case, the tomographic images may be sequentially switched and displayed in a slide show format, or the tomographic images may be switched and displayed in accordance with an operator instruction (using the operation unit 23).
 この変形例によれば、上記の実施形態と同様に、正反射光に関する問題によって画像の一部が黒く抜けてしまうという不都合がなく、異なる深度位置に存在する部位が水平方向にずれて観察されるという不都合がない。 According to this modification, similarly to the above-described embodiment, there is no inconvenience that a part of the image is blackened out due to a problem with specular reflection light, and parts existing at different depth positions are observed shifted in the horizontal direction. There is no inconvenience.
 更に、この変形例によれば、複数の断層像について角膜内皮の異常判定を行い、異常と判定された断層像を表示するように構成されているので、検者は、異常が存在すると判定された部位を重点的に観察できる。それにより、前眼部観察の確度や効率の向上を図ることが可能である。このように、この変形例によれば、被検眼の前眼部、特に角膜内皮及びその近傍部位の状態の詳細な観察が可能である。 Furthermore, according to this modified example, the corneal endothelium is determined to be abnormal for a plurality of tomographic images, and the tomographic image determined to be abnormal is displayed, so that the examiner is determined to have an abnormality. Can focus on the affected area. Thereby, it is possible to improve the accuracy and efficiency of anterior segment observation. Thus, according to this modification, detailed observation of the state of the anterior segment of the eye to be examined, particularly the corneal endothelium and the vicinity thereof, is possible.
 上記の実施形態では、角膜内皮の境界面の異常、角膜の層の異常、及び角膜内皮細胞の異常を判定可能な構成を説明したが、これらのうちの少なくとも一つの異常を判定可能に構成することも可能である。 In the above-described embodiment, the configuration capable of determining the abnormality of the boundary surface of the corneal endothelium, the abnormality of the corneal layer, and the abnormality of the corneal endothelial cell has been described. However, at least one of these abnormalities can be determined. It is also possible.
 また、上記の実施形態では、角膜内皮の異常の経時変化情報を求めたり、被検眼が罹患しているおそれのある疾患名を特定したりすることが可能であるが、これらの処理の一方のみを実行可能に構成することもできるし、これらの処理の双方を実行しない構成を採用することもできる。 Further, in the above-described embodiment, it is possible to obtain time-dependent change information of corneal endothelium abnormality or to specify a disease name that may cause the subject eye, but only one of these processes Can be configured to be executable, or a configuration that does not execute both of these processes can be employed.
 また、角膜後面に沈着物が蓄積する異常について、従来の技術では画像観察によって沈着物の種類を特定できなかったため、所定の処置具を眼球に挿入して前房から沈着物を採取し、それを培養して光学顕微鏡等で観察していた。このような手法は、患者に与える負担も大きく、種類特定までに長い時間を要していた。 In addition, regarding abnormalities in which deposits accumulate on the posterior surface of the cornea, the conventional technique could not identify the type of deposit by image observation, so a predetermined treatment instrument was inserted into the eyeball, and the deposit was collected from the anterior chamber. Were cultured and observed with an optical microscope or the like. Such a method places a heavy burden on the patient, and it takes a long time to specify the type.
 この発明に係る前眼部観察装置によれば、このような問題を解決することが可能である。そのために、沈着物の種類毎に、沈着物の微細構造(OCT画像における形状やサイズや配列等の特徴)や、沈着物の蓄積態様を予めデータ化し、沈着物情報として記憶しておく。この沈着物情報は、沈着物の種類と、沈着物の微細構造や蓄積態様とを対応付ける情報である。 According to the anterior ocular segment observation device according to the present invention, it is possible to solve such a problem. Therefore, for each type of deposit, the fine structure of the deposit (features such as shape, size, and arrangement in the OCT image) and the accumulation mode of the deposit are converted into data in advance and stored as deposit information. This deposit information is information that associates the type of deposit with the fine structure and accumulation mode of the deposit.
 そして、実際の検査において、被検眼の前眼部の3次元画像を取得し、この3次元画像において角膜後面(角膜内皮後面)に相当する画像領域を特定し、この画像領域に沈着物に相当する画像領域(沈着物領域)が存在するか判定する。この判定処理は、たとえば、上記実施形態で説明したベースカーブを用いた手法で実行される。 In an actual examination, a three-dimensional image of the anterior segment of the eye to be examined is acquired, an image area corresponding to the posterior corneal surface (rear corneal endothelium) is specified in the three-dimensional image, and this image area corresponds to a deposit. It is determined whether there is an image area (deposition object area) to be performed. This determination process is executed by the method using the base curve described in the above embodiment, for example.
 沈着物領域が存在する場合、この沈着物領域に含まれる画素の画素値を解析して沈着物の微細構造や蓄積態様を求め、この微細構造等と沈着物情報とに基づいて沈着物の種類を特定する。 If there is a deposit area, the pixel values of the pixels included in the deposit area are analyzed to determine the fine structure and accumulation mode of the deposit, and the type of deposit based on the fine structure and the deposit information Is identified.
 このような処理を実行することにより、画像観察によって沈着物の種類を特定できるので、患者に与える負担を大幅に低減できるとともに、沈着物の種類特定を短時間で行うことが可能となる。 By executing such processing, the type of deposit can be specified by image observation, so that the burden on the patient can be greatly reduced and the type of deposit can be specified in a short time.
 3次元画像の複数の断面における断層像のうち、異常と判定された断層像を表示するように前眼部観察装置を構成することが可能である。この変形例に係る前眼部観察装置は、たとえば、上記の実施形態と同様にして前眼部の3次元画像を形成する。 The anterior ocular segment observation apparatus can be configured to display a tomographic image determined to be abnormal among tomographic images in a plurality of cross sections of a three-dimensional image. The anterior ocular segment observation apparatus according to this modification forms, for example, a three-dimensional image of the anterior ocular segment in the same manner as in the above embodiment.
 次に、この変形例に係る前眼部観察装置は、この前眼部の3次元画像の複数の断面における断層像を解析して角膜内皮領域を特定する。この処理は、たとえば、上記実施形態の画像領域特定部242と同様にして実行される。 Next, the anterior ocular segment observation apparatus according to this modified example identifies a corneal endothelium region by analyzing tomographic images at a plurality of cross sections of the three-dimensional image of the anterior ocular segment. This process is executed, for example, in the same manner as the image area specifying unit 242 of the above embodiment.
 続いて、この変形例に係る前眼部観察装置は、3次元画像の各断層像について、特定された角膜内皮領域及びその近傍領域を含む画像領域を解析して角膜内皮の異常を判定する。この処理は、たとえば、上記実施形態の異常判定部246と同様にして実行される。 Subsequently, the anterior ocular segment observation apparatus according to this modification determines an abnormality of the corneal endothelium by analyzing the image region including the specified corneal endothelium region and its neighboring region for each tomographic image of the three-dimensional image. This process is executed, for example, in the same manner as the abnormality determination unit 246 of the above embodiment.
 更に、この変形例に係る前眼部観察装置は、上記複数の断層像のうち、異常と判定された断層像を表示する。これら断層像は、たとえば、制御部21によって表示部22に表示される。 Furthermore, the anterior ocular segment observation apparatus according to this modification displays a tomographic image determined to be abnormal among the plurality of tomographic images. These tomographic images are displayed on the display unit 22 by the control unit 21, for example.
 このような変形例によれば、フルフィールドタイプのOCTを利用しているので正反射光に関する問題がなく、画像の一部が黒く抜けてしまうという不都合がない。また、この変形例によれば、照明光の照射方向と逆方向に進む反射光を検出する構成なので、異なる深度位置に存在する部位が水平方向にずれて観察されるという不都合がない。更に、この変形例によれば、複数の断層像について角膜内皮の異常判定を行い、異常と判定された断層像を表示するように構成されているので、検者(医師等)は、異常が存在すると判定された部位を重点的に観察でき、それにより、前眼部観察の確度の向上や効率の向上などを図ることが可能である。したがって、この変形例によれば、被検眼の前眼部、特に角膜内皮及びその近傍部位の状態の詳細な観察が可能である。 According to such a modification, since full-field type OCT is used, there is no problem with specular reflection light, and there is no inconvenience that part of the image is blackened out. Moreover, according to this modification, since the reflected light that travels in the direction opposite to the illumination light irradiation direction is detected, there is no inconvenience that parts existing at different depth positions are observed shifted in the horizontal direction. Further, according to this modified example, the corneal endothelium is determined to be abnormal for a plurality of tomographic images, and the tomographic images determined to be abnormal are displayed. It is possible to focus on the site determined to be present, thereby improving the accuracy of the anterior ocular segment observation and improving the efficiency. Therefore, according to this modification, detailed observation of the state of the anterior eye portion of the eye to be examined, particularly the corneal endothelium and its vicinity is possible.
 上記の実施形態では、参照光Rの偏光特性を変換するようになっているが、信号光Sの偏光特性を変換するようにしてもよい。その場合、信号光Sの光路上に波長板、偏光板、ガラス板を設ける。 In the above embodiment, the polarization characteristic of the reference light R is converted. However, the polarization characteristic of the signal light S may be converted. In that case, a wavelength plate, a polarizing plate, and a glass plate are provided on the optical path of the signal light S.
 上記の実施形態では、波長板と偏光板を用いて偏光特性の変換を行っているが、偏光特性を変換可能な任意の光学素子を用いることが可能である。また、上述の構成では、参照光Rを円偏光に変換しているが、参照光R又は信号光Sを任意の偏光特性(直線偏光、楕円偏光)に変換するように構成することも可能である。 In the above-described embodiment, the polarization characteristics are converted using the wave plate and the polarizing plate, but any optical element capable of converting the polarization characteristics can be used. In the above configuration, the reference light R is converted into circularly polarized light. However, the reference light R or the signal light S can be converted into arbitrary polarization characteristics (linearly polarized light, elliptically polarized light). is there.
 上記の実施形態では、ガラス板を用いて干渉計の両アームにて発生する分散を補正しているが、分散の補正が可能な任意の形態の光学素子等の分散補正光学素子を適用することも可能である。 In the above embodiment, the dispersion generated in both arms of the interferometer is corrected using a glass plate, but a dispersion correcting optical element such as an optical element of any form capable of correcting the dispersion is applied. Is also possible.
 上記の実施形態では、CCD16、17を用いて干渉光Lを検出しているが、たとえばCMOS等の任意の2次元光センサアレイをCCDの代わりに適用できる。 In the above embodiment, the interference light L is detected using the CCDs 16 and 17, but an arbitrary two-dimensional photosensor array such as a CMOS can be applied instead of the CCD.
 上記の実施形態では、広帯域光の連続光を用いるとともに、CCD16、17の露光時間を短時間にすることで、被検眼Eの動きなどに対処しているが、このような構成に限定されるものではない。 In the above embodiment, the continuous light of the broadband light is used and the exposure time of the CCDs 16 and 17 is shortened to deal with the movement of the eye E. However, the present invention is limited to such a configuration. It is not a thing.
 たとえば、広帯域光(連続光)の光路上に光チョッパを配設し、この光チョッパによって広帯域光を周期的に遮断してパルス状の広帯域光を生成し、各パルスをCCD16、17で検出するようにしてもよい。 For example, an optical chopper is disposed on the optical path of broadband light (continuous light), the broadband light is periodically blocked by the optical chopper to generate pulsed broadband light, and each pulse is detected by the CCDs 16 and 17. You may do it.
 なお、光チョッパによる広帯域光の遮断周期は1ms程度であり、露光時間(30~50μs程度)と比べて長い。したがって、被検眼Eの動きが速い場合などには露光時間を制御することが望ましい。 It should be noted that the broadband light blocking period by the optical chopper is about 1 ms, which is longer than the exposure time (about 30 to 50 μs). Therefore, it is desirable to control the exposure time when the eye E moves quickly.
 また、たとえばキセノンランプ等の光源を用いてフラッシュ光からなる広帯域光を出力し、各フラッシュ光をCCD16、17で検出するように構成してもよい。 Further, for example, a wide-band light composed of flash light may be output using a light source such as a xenon lamp, and each flash light may be detected by the CCDs 16 and 17.
 また、上記の実施形態では、位相差90度の2つの検出信号C、C(C′、C′)一度の計測で取得するようになっているが、たとえば波長板4としてλ/2板を用いて位相差180度の2つの検出信号を取得するようにしてもよい。この場合、参照光Rの第1の光路長と第2の光路長は、第1の検出処理により得られる検出信号と第2の検出処理において得られる検出信号とが位相差90度を有するような距離間隔となるようにあらかじめ設定される。それにより、位相差90度ごとの4つの検出信号を取得することができる。 In the above-described embodiment, two detection signals C A and C B (C A ′ and C B ′) having a phase difference of 90 degrees are acquired by one measurement. / 2 plates may be used to acquire two detection signals with a phase difference of 180 degrees. In this case, the first optical path length and the second optical path length of the reference light R are such that the detection signal obtained by the first detection process and the detection signal obtained by the second detection process have a phase difference of 90 degrees. The distance is set in advance so as to be a proper distance interval. Thereby, four detection signals for every 90 degrees of phase difference can be acquired.
 以上の実施形態等においては、マイケルソン型の干渉計を備えた光画像計測装置について説明したが、例えばマッハツェンダー型などその他の干渉計を採用することも当然に可能である。 In the above embodiments and the like, the optical image measurement apparatus provided with the Michelson interferometer has been described, but other interferometers such as a Mach-Zehnder type can naturally be employed.
 また、干渉計の一部に光ファイバ(バンドル)を設けて導光部材として用いることにより、装置設計上の自由度を高めたり、装置のコンパクト化を図ったり、あるいは、被測定物体の配置の自由度を高めたりすることができる。 In addition, by providing an optical fiber (bundle) in a part of the interferometer and using it as a light guide member, the degree of freedom in device design can be increased, the device can be made compact, or the arrangement of objects to be measured The degree of freedom can be increased.
 この発明に係る前眼部観察装置は、以上に説明した実施形態や変形例の構成を任意に組み合わせたものであってもよい。これらの構成の組み合わせにより、各構成に特有の作用・効果を組み合わせた作用・効果を少なくとも有する前眼部観察装置が形成される。 The anterior ocular segment observation device according to the present invention may be an arbitrary combination of the configurations of the above-described embodiments and modifications. By combining these configurations, an anterior ocular segment observation apparatus having at least an operation / effect combining the operations / effects peculiar to each configuration is formed.
100 前眼部観察装置
1 光源ユニット
2 フィルタ
3 ビームスプリッタ
4 波長板
5 偏光板
6、15 反射ミラー
7 ガラス板
8、11 対物レンズ
9 参照鏡
10 参照鏡移動機構
12 開口絞り
13 結像レンズ
14 偏光ビームスプリッタ
16、17 CCD
20 コンピュータ
21 制御部
22 表示部
23 操作部
24 信号処理部
241 画像形成部
242 画像領域特定部
243 断層像形成部
244 記憶部
245 疾患情報
246 異常判定部
247 境界領域特定部
248 ベースカーブ特定部
249 境界形状解析部
250 層領域特定部
251 層領域解析部
252 細胞領域特定部
253 細胞状態解析部
254 経時変化解析部
255 疾患特定部
DESCRIPTION OF SYMBOLS 100 Anterior ocular segment observation apparatus 1 Light source unit 2 Filter 3 Beam splitter 4 Wavelength plate 5 Polarizing plate 6, 15 Reflection mirror 7 Glass plate 8, 11 Objective lens 9 Reference mirror 10 Reference mirror moving mechanism 12 Aperture stop 13 Imaging lens 14 Polarization Beam splitter 16, 17 CCD
20 Computer 21 Control unit 22 Display unit 23 Operation unit 24 Signal processing unit 241 Image forming unit 242 Image region specifying unit 243 Tomographic image forming unit 244 Storage unit 245 Disease information 246 Abnormality determining unit 247 Boundary region specifying unit 248 Base curve specifying unit 249 Boundary shape analysis unit 250 Layer region specifying unit 251 Layer region analyzing unit 252 Cell region specifying unit 253 Cell state analyzing unit 254 Time course analysis unit 255 Disease specifying unit

Claims (13)

  1.  光ビームを信号光と参照光とに分割し、被検眼の前眼部を経由した前記信号光と参照光路を経由した前記参照光とを重畳させて干渉光を生成して検出する光学系と、
     前記参照光の光路長及び/又は前記信号光の光路長を変更する変更手段と、
     前記変更手段により前記光路長を変更しつつ前記光学系により検出された前記干渉光に基づいて前記前眼部の3次元画像を形成する形成手段と、
     前記形成された3次元画像を解析して、前記前眼部の角膜内皮に対応する角膜内皮領域を特定する特定手段と、
     前記特定された角膜内皮領域及びその近傍領域を含む画像領域を解析して、前記角膜内皮の異常を判定する判定手段と、
     を備えることを特徴とする前眼部観察装置。
    An optical system that splits a light beam into signal light and reference light, and generates and detects interference light by superimposing the signal light passing through the anterior segment of the eye to be examined and the reference light passing through the reference optical path; ,
    Changing means for changing the optical path length of the reference light and / or the optical path length of the signal light;
    Forming means for forming a three-dimensional image of the anterior segment based on the interference light detected by the optical system while changing the optical path length by the changing means;
    A specifying unit for analyzing the formed three-dimensional image and specifying a corneal endothelium region corresponding to the corneal endothelium of the anterior segment;
    Analyzing the image region including the identified corneal endothelium region and its vicinity region, and determining means for determining abnormality of the corneal endothelium,
    An anterior ocular segment observation device comprising:
  2.  前記特定手段は、前記3次元画像の所定の断面における断層像を解析して、前記角膜内皮領域の特定を行う、
     ことを特徴とする請求項1に記載の前眼部観察装置。
    The specifying means analyzes a tomographic image at a predetermined cross section of the three-dimensional image, and specifies the corneal endothelium region.
    The anterior ocular segment observation apparatus according to claim 1.
  3.  前記特定手段は、前記3次元画像に基づいて、前記前眼部に対する前記信号光の入射方向に平行な断面における断層像を形成する断層像形成手段を含み、該形成された断層像を構成する画素の画素値を解析して前記角膜内皮領域の特定を行う、
     ことを特徴とする請求項1に記載の前眼部観察装置。
    The specifying means includes tomographic image forming means for forming a tomographic image in a cross section parallel to the incident direction of the signal light with respect to the anterior ocular segment based on the three-dimensional image, and constitutes the formed tomographic image Analyzing the pixel value of the pixel to identify the corneal endothelium region;
    The anterior ocular segment observation apparatus according to claim 1.
  4.  前記判定手段は、前記画像領域を構成する画素の画素値に基づいて、前記角膜内皮の境界面に対応する前記断層像中の境界領域を特定する境界領域特定手段を含み、該特定された境界領域の形状に基づいて前記異常の判定を行う、
     ことを特徴とする請求項3に記載の前眼部観察装置。
    The determination means includes boundary area specifying means for specifying a boundary area in the tomographic image corresponding to a boundary surface of the corneal endothelium based on a pixel value of a pixel constituting the image area, and the specified boundary Determining the abnormality based on the shape of the region;
    The anterior ocular segment observation apparatus according to claim 3.
  5.  前記判定手段は、前記境界領域を構成する画素の配列を解析して、前記境界面における凹凸を検出する凹凸検出手段を含み、前記検出された凹凸に基づいて前記異常の判定を行う、
     ことを特徴とする請求項4に記載の前眼部観察装置。
    The determination unit includes an unevenness detection unit that analyzes an array of pixels constituting the boundary region and detects unevenness on the boundary surface, and determines the abnormality based on the detected unevenness.
    The anterior ocular segment observation apparatus according to claim 4.
  6.  前記判定手段は、前記画像領域を構成する画素の画素値に基づいて、前記前眼部の所定の層に対応する前記断層像中の層領域を特定する層領域特定手段を含み、該特定された層領域の厚さを求め、前記厚さに基づいて前記異常の判定を行う、
     ことを特徴とする請求項3に記載の前眼部観察装置。
    The determination unit includes a layer region specifying unit that specifies a layer region in the tomographic image corresponding to a predetermined layer of the anterior segment based on a pixel value of a pixel constituting the image region. Determining the thickness of the layer region, and determining the abnormality based on the thickness,
    The anterior ocular segment observation apparatus according to claim 3.
  7.  前記角膜内皮の異常が存在すると判定されたときに、前記判定手段は、前記画像領域を構成する画素の画素値に基づいて、前記前眼部のデスメ膜のPNBZ層に対応する前記断層像中の画像領域を特定し、該特定された画像領域の厚さを求め、前記求められた厚さに基づいて当該異常が先天性か後天性かを判定する、
     ことを特徴とする請求項3に記載の前眼部観察装置。
    When it is determined that an abnormality of the corneal endothelium is present, the determining means determines whether the tomographic image corresponding to the PNBZ layer of the Descemet's membrane of the anterior eye part is based on the pixel values of the pixels constituting the image region. Identifying the image area, determining the thickness of the specified image area, and determining whether the abnormality is congenital or acquired based on the determined thickness,
    The anterior ocular segment observation apparatus according to claim 3.
  8.  前記特定手段は、前記3次元画像に基づいて、前記前眼部に対する前記信号光の入射方向に直交する断面における断層像を形成する断層像形成手段を含み、該形成された断層像を構成する画素の画素値を解析して前記角膜内皮領域の特定を行う、
     ことを特徴とする請求項1に記載の前眼部観察装置。
    The specifying unit includes a tomographic image forming unit that forms a tomographic image in a cross section orthogonal to the incident direction of the signal light with respect to the anterior segment based on the three-dimensional image, and configures the formed tomographic image Analyzing the pixel value of the pixel to identify the corneal endothelium region;
    The anterior ocular segment observation apparatus according to claim 1.
  9.  前記判定手段は、前記画像領域を構成する画素の画素値に基づいて、前記角膜内皮を構成する角膜内皮細胞に対応する前記角膜内皮領域中の複数の細胞領域を特定する細胞領域特定手段と、該特定された複数の細胞領域に基づいて前記角膜内皮細胞の状態の評価情報を求める評価手段とを含み、前記求められた評価情報に基づいて前記異常の判定を行う、
     ことを特徴とする請求項8に記載の前眼部観察装置。
    The determination means, based on pixel values of pixels constituting the image area, cell area identification means for identifying a plurality of cell areas in the corneal endothelial area corresponding to the corneal endothelial cells constituting the corneal endothelium; Evaluation means for obtaining evaluation information of the state of the corneal endothelial cell based on the plurality of specified cell regions, and determining the abnormality based on the obtained evaluation information,
    The anterior ocular segment observation apparatus according to claim 8.
  10.  前記評価手段は、前記評価情報として、細胞密度、最大細胞面積、最小細胞面積、平均細胞面積、面積標準偏差、細胞面積の変動係数、六角形状の細胞領域の出現率、及び、細胞面積のヒストグラムのうちの少なくとも一つを求める、
     ことを特徴とする請求項9に記載の前眼部観察装置。
    The evaluation means includes, as the evaluation information, a cell density, a maximum cell area, a minimum cell area, an average cell area, an area standard deviation, a cell area variation coefficient, an appearance rate of a hexagonal cell region, and a cell area histogram. Ask for at least one of
    The anterior ocular segment observation apparatus according to claim 9.
  11.  前記判定手段は、前記角膜内皮の異常の判定結果を記憶する記憶手段を含み、当該被検眼についての新たな異常の判定結果と前記記憶された過去の判定結果とを比較し、当該比較結果に基づいて前記角膜内皮の経時変化情報を求める、
     ことを特徴とする請求項1に記載の前眼部観察装置。
    The determination unit includes a storage unit that stores a determination result of the abnormality of the corneal endothelium, compares a determination result of a new abnormality for the eye to be examined with the stored determination result of the past, and the comparison result Based on aging information of the corneal endothelium based on,
    The anterior ocular segment observation apparatus according to claim 1.
  12.  前記判定手段は、疾患名と角膜内皮の異常とを対応付ける疾患情報を予め記憶する記憶手段を含み、前記疾患情報に基づいて前記角膜内皮の異常の判定結果に対応する疾患名を特定する、
     ことを特徴とする請求項1に記載の前眼部観察装置。
    The determination unit includes a storage unit that stores in advance disease information that associates a disease name with an abnormality of the corneal endothelium, and identifies a disease name corresponding to the determination result of the abnormality of the corneal endothelium based on the disease information.
    The anterior ocular segment observation apparatus according to claim 1.
  13.  光ビームを信号光と参照光とに分割し、被検眼の前眼部を経由した前記信号光と参照光路を経由した前記参照光とを重畳させて干渉光を生成して検出する光学系と、
     前記参照光の光路長及び/又は前記信号光の光路長を変更する変更手段と、
     前記変更手段により前記光路長を変更しつつ前記光学系により検出された前記干渉光に基づいて前記前眼部の3次元画像を形成する形成手段と、
     前記形成された3次元画像の複数の断面における断層像を解析して、前記前眼部の角膜内皮に対応する角膜内皮領域を特定する特定手段と、
     前記複数の断層像のそれぞれについて、前記特定された角膜内皮領域及びその近傍領域を含む画像領域を解析して、前記角膜内皮の異常を判定する判定手段と、
     前記複数の断層像のうち前記異常と判定された断層像を表示する表示手段と、
     を備えることを特徴とする前眼部観察装置。
    An optical system that splits a light beam into signal light and reference light, and generates and detects interference light by superimposing the signal light passing through the anterior segment of the eye to be examined and the reference light passing through the reference optical path; ,
    Changing means for changing the optical path length of the reference light and / or the optical path length of the signal light;
    Forming means for forming a three-dimensional image of the anterior segment based on the interference light detected by the optical system while changing the optical path length by the changing means;
    Analysis means for analyzing tomograms in a plurality of cross sections of the formed three-dimensional image, and specifying means for specifying a corneal endothelium region corresponding to the corneal endothelium of the anterior segment;
    For each of the plurality of tomographic images, a determination unit that analyzes the image region including the identified corneal endothelium region and a region near the corneal endothelium region to determine abnormality of the corneal endothelium;
    Display means for displaying the tomographic image determined to be abnormal among the plurality of tomographic images;
    An anterior ocular segment observation device comprising:
PCT/JP2010/003164 2009-05-20 2010-05-10 Anterior ocular segment observation device WO2010134278A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-122450 2009-05-20
JP2009122450A JP5486215B2 (en) 2009-05-20 2009-05-20 Anterior segment observation device

Publications (1)

Publication Number Publication Date
WO2010134278A1 true WO2010134278A1 (en) 2010-11-25

Family

ID=43125972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003164 WO2010134278A1 (en) 2009-05-20 2010-05-10 Anterior ocular segment observation device

Country Status (2)

Country Link
JP (1) JP5486215B2 (en)
WO (1) WO2010134278A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013075160A (en) * 2011-09-29 2013-04-25 Oculus Optikgeraete Gmbh Ophthalmological analysis method
WO2015171566A1 (en) * 2014-05-06 2015-11-12 Oregon Health & Science University Aqueous cell differentiation in anterior uveitis using optical coherence tomography
JP2016214312A (en) * 2015-05-14 2016-12-22 キヤノン株式会社 Image processing device, image processing method, and program
JP2019202229A (en) * 2019-09-06 2019-11-28 キヤノン株式会社 Image processing device, image processing method, and program

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5790002B2 (en) * 2011-02-04 2015-10-07 株式会社ニデック Ophthalmic imaging equipment
JP5792977B2 (en) * 2011-03-31 2015-10-14 キヤノン株式会社 Image processing apparatus, image processing method, ophthalmic apparatus, and medical system
JP5953666B2 (en) * 2011-07-27 2016-07-20 株式会社ニデック Fundus photographing apparatus, fundus analysis method, and fundus analysis program
JP5956812B2 (en) * 2012-04-11 2016-07-27 株式会社トーメーコーポレーション Ophthalmic equipment
US9955865B2 (en) 2013-04-11 2018-05-01 Novartis Ag Method and system to detect ophthalmic tissue structure and pathologies
US10161855B2 (en) 2014-10-16 2018-12-25 National Institute Of Advanced Industrial Science And Technology Optical tomographic imaging method, optical tomographic imaging apparatus, and program
JP6616673B2 (en) * 2015-11-27 2019-12-04 株式会社トプコン Corneal inspection device
JP6714273B2 (en) * 2016-06-17 2020-06-24 学校法人同志社 Corneal endothelial cell quality evaluation support system
JP6910935B2 (en) * 2017-11-24 2021-07-28 株式会社トプコン Ophthalmology information processing equipment, ophthalmology system, ophthalmology information processing method, and program
JP7288276B2 (en) * 2019-04-19 2023-06-07 学校法人東京女子医科大学 Ophthalmic device and its control method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009011088A1 (en) * 2007-07-19 2009-01-22 Kabushiki Kaisha Topcon Cornea observation device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009011088A1 (en) * 2007-07-19 2009-01-22 Kabushiki Kaisha Topcon Cornea observation device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013075160A (en) * 2011-09-29 2013-04-25 Oculus Optikgeraete Gmbh Ophthalmological analysis method
WO2015171566A1 (en) * 2014-05-06 2015-11-12 Oregon Health & Science University Aqueous cell differentiation in anterior uveitis using optical coherence tomography
US9918627B2 (en) 2014-05-06 2018-03-20 David Huang Aqueous cell differentiation in anterior uveitis using optical coherence tomography
JP2016214312A (en) * 2015-05-14 2016-12-22 キヤノン株式会社 Image processing device, image processing method, and program
US10349826B2 (en) 2015-05-14 2019-07-16 Canon Kabushiki Kaisha Image processing apparatus, image processing method, and storage medium
JP2019202229A (en) * 2019-09-06 2019-11-28 キヤノン株式会社 Image processing device, image processing method, and program

Also Published As

Publication number Publication date
JP5486215B2 (en) 2014-05-07
JP2010268916A (en) 2010-12-02

Similar Documents

Publication Publication Date Title
JP5486215B2 (en) Anterior segment observation device
JP5160826B2 (en) Corneal observation device
US9232889B2 (en) Method and apparatus for ocular surface imaging
Kocaoglu et al. Imaging retinal nerve fiber bundles using optical coherence tomography with adaptive optics
US9918634B2 (en) Systems and methods for improved ophthalmic imaging
US9098742B2 (en) Image processing apparatus and image processing method
JP6843521B2 (en) Image processing device and image processing method
EP2243420A1 (en) Method for determining exudates in the retina
EP2786699B1 (en) Ophthalmologic apparatus
US9241622B2 (en) Method for ocular surface imaging
JP6685706B2 (en) Image processing apparatus and image processing method
JP2008264137A (en) Cornea observation apparatus
JP2020506743A (en) Methods and systems for three-dimensional thickness mapping of corneal microlayers and corneal diagnostics
JP2021525578A (en) Devices and methods for in vivo measurement of corneal biomechanical responses
JP6940349B2 (en) Ophthalmic equipment
AU2010302593A1 (en) Diagnostic method and apparatus for predicting potential preserved visual acuity
JP2022040372A (en) Ophthalmologic apparatus
JP2023009257A (en) Ophthalmologic information processing apparatus, ophthalmologic imaging apparatus, ophthalmologic information processing method, and program
JP2004508085A (en) Method and apparatus for early detection and classification of retinal lesions
JP2019042172A (en) Ophthalmologic apparatus and cataract evaluation program
JP6849776B2 (en) Information processing device and information processing method
JP6169375B2 (en) Ophthalmological measurement method, ophthalmic measurement device, and test substance evaluation method
JP2017140316A (en) Image processing apparatus, image processing method, and program therefor
Bocheux et al. Objective and quantitative analysis of corneal transparency with clinical spectral-domain optical coherence tomography
JP2018047084A (en) Ophthalmologic examination apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10777518

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10777518

Country of ref document: EP

Kind code of ref document: A1