WO2010134212A1 - Exhaust purification apparatus for a hybrid vehicle - Google Patents

Exhaust purification apparatus for a hybrid vehicle Download PDF

Info

Publication number
WO2010134212A1
WO2010134212A1 PCT/JP2009/059823 JP2009059823W WO2010134212A1 WO 2010134212 A1 WO2010134212 A1 WO 2010134212A1 JP 2009059823 W JP2009059823 W JP 2009059823W WO 2010134212 A1 WO2010134212 A1 WO 2010134212A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
engine
exhaust gas
storage catalyst
catalyst
Prior art date
Application number
PCT/JP2009/059823
Other languages
French (fr)
Japanese (ja)
Inventor
浅沼孝充
西岡寛真
今井大地
中田有香
梅本寿丈
吉田耕平
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2009/059823 priority Critical patent/WO2010134212A1/en
Publication of WO2010134212A1 publication Critical patent/WO2010134212A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/02Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to oxygen-fed engines
    • F02D21/04Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to oxygen-fed engines with circulation of exhaust gases in closed or semi-closed circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0614Position of fuel or air injector
    • B60W2510/0619Air-fuel ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0616Position of fuel or air injector
    • B60W2710/0622Air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2590/00Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines
    • F01N2590/11Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines for hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to an exhaust emission control device for a hybrid vehicle.
  • the engine output is reduced in order to reduce the NO X amount discharged from the combustion chamber.
  • the vehicle driving force by the electric motor is increased so that the vehicle driving force does not decrease.
  • the vehicle driving force is controlled by an electric motor to a hybrid vehicle that adjusts the NO X adsorption amount to the NO X storage catalyst, thereby adsorbing a large amount of the NO X as possible the NO X storing catalyst I am trying to get it.
  • An object of the present invention is to provide an exhaust purifying apparatus for a hybrid vehicle which can satisfactorily purify NO X when the operation of the engine while the vehicle is driving is resumed.
  • an electric device capable of generating a vehicle driving force separately from a vehicle driving force by the engine and generating electric power by the engine is provided, and the vehicle is driven by one or both of the engine and the electric device.
  • the air-fuel ratio is the stoichiometric air-fuel ratio of the exhaust gas air-fuel ratio of the inflowing exhaust gas when the lean of occluding NO X contained in the exhaust gas inflow or becomes rich place the NO X storing catalyst to release the occluded NO X
  • the NO X discharged from the combustion chamber at this time can be purified well.
  • FIG. 1 is an overall view of an internal combustion engine.
  • FIG. 2 is a view for explaining the NO X absorption action.
  • FIG. 3 is a graph showing the relationship between the NO X storage amount and the NO X storage speed.
  • Figure 4 is a diagram illustrating a map of exhaust amount of NO X.
  • FIGS. 5A and 5B are diagrams for explaining the charge amount SOC of the battery.
  • FIG. 6 is a flowchart for performing operation control.
  • FIG. 7 is a flowchart for performing operation control.
  • FIG. 8 is a diagram showing another embodiment of the electric device.
  • FIG. 1 shows an overall view of a compression ignition type internal combustion engine.
  • 1 is an engine body
  • 2 is a combustion chamber of each cylinder
  • 3 is an electronically controlled fuel injection valve for injecting fuel into each combustion chamber
  • 4 is an intake manifold
  • 5 is an exhaust manifold.
  • the intake manifold 4 is connected to the outlet of the compressor 7a of the exhaust turbocharger 7 via the intake duct 6, and the inlet of the compressor 7a is connected to the air cleaner 9 via the intake air amount detector 8 for detecting the intake air amount.
  • the A throttle valve 10 driven by a step motor is disposed in the intake duct 6, and a cooling device 11 for cooling intake air flowing through the intake duct 6 is disposed around the intake duct 6.
  • a cooling device 11 for cooling intake air flowing through the intake duct 6 is disposed around the intake duct 6.
  • the engine cooling water is guided into the cooling device 11, and the intake air is cooled by the engine cooling water.
  • the exhaust manifold 5 is connected to the inlet of the exhaust turbine 7 b of the exhaust turbocharger 7, and the outlet of the exhaust turbine 7 b is connected to the NO X storage catalyst 13 via the exhaust pipe 12.
  • Temperature sensor 14 for detecting the temperature of the NO X storing catalyst 13 is attached to the the NO X storing catalyst 13.
  • the exhaust manifold 5 and the intake manifold 4 are connected to each other via an exhaust gas recirculation (hereinafter referred to as EGR) passage 15, and an electronically controlled EGR control valve 16 is disposed in the EGR passage 15.
  • EGR exhaust gas recirculation
  • a cooling device 17 for cooling the EGR gas flowing in the EGR passage 15 is disposed around the EGR passage 15.
  • the engine cooling water is guided into the cooling device 17, and the EGR gas is cooled by the engine cooling water.
  • each fuel injection valve 3 is connected to a common rail 19 through a fuel supply pipe 18. Fuel is supplied into the common rail 19 from an electronically controlled fuel pump 20 with variable discharge amount, and the fuel supplied into the common rail 20 is supplied to the fuel injection valve 3 through each fuel supply pipe 18.
  • the transmission 21 is connected to the output shaft of the engine, and the electric motor 23 is connected to the output shaft 22 of the transmission 21. In this case, in the embodiment shown in FIG.
  • a normal stepped automatic transmission having a torque converter is used as the transmission 21.
  • the electric motor 23 connected to the output shaft 22 of the transmission 21 constitutes an electric device that can generate a vehicle driving force separately from the vehicle driving force by the engine and can generate electric power by the engine.
  • the electric motor 23 is mounted on a rotor 24 mounted on the output shaft 22 of the transmission 21 and a plurality of permanent magnets mounted on the outer peripheral surface, and an exciting coil for forming a rotating magnetic field.
  • an AC synchronous motor including the stator 25 The excitation coil of the stator 25 is connected to a motor drive control circuit 26, and this motor drive control circuit 26 is connected to a battery 27 that generates a DC high voltage.
  • the electronic control unit 30 is composed of a digital computer, and is connected to each other by a bidirectional bus 31.
  • Output signals of the intake air amount detector 8 and the temperature sensor 14 are input to the input port 35 via the corresponding AD converters 37 respectively.
  • various signals representing the gear position of the transmission 21 and the rotation speed of the output shaft 22 are input to the input port 35.
  • a load sensor 41 that generates an output voltage proportional to the depression amount L of the accelerator pedal 40 is connected to the accelerator pedal 40, and the output voltage of the load sensor 41 is input to the input port 35 via the corresponding AD converter 37. Is done.
  • a crank angle sensor 36 that generates an output pulse every time the crankshaft rotates, for example, 10 ° is connected to the input port 35.
  • the output port 36 is connected to the fuel injection valve 3, the step motor for driving the throttle valve 10, the EGR control valve 16, the fuel pump 20, the transmission 21, and the motor drive control circuit 26 through corresponding drive circuits 38. .
  • the DC high voltage of the battery 27 is converted into a three-phase alternating current having a frequency fm and a current value Im in the motor drive control circuit 26, and this three-phase alternating current is supplied to the exciting coil of the stator 25.
  • This frequency fm is a frequency necessary for rotating the rotating magnetic field generated by the exciting coil in synchronization with the rotation of the rotor 24, and this frequency fm is calculated by the CPU 34 based on the rotational speed of the output shaft 22.
  • the frequency fm is set as a three-phase AC frequency.
  • the output torque of the electric motor 23 is substantially proportional to the three-phase AC current value Im.
  • the current value Im is calculated by the CPU 34 based on the required output torque of the electric motor 23, and the motor drive control circuit 26 sets the current value Im as a three-phase AC current value. Further, when the electric motor 23 is driven by an external force, the electric motor 23 operates as a generator, and the electric power generated at this time is regenerated in the battery 27. Whether or not the electric motor 23 should be driven by an external force is determined according to the operating state of the engine. When it is determined that the electric motor 23 should be driven by an external force, the electric power generated in the electric motor 23 by the motor control circuit 26 Is regenerated by the battery 27. First, the NO X storage catalyst 13 shown in FIG. 1 will be described.
  • a noble metal catalyst 46 is dispersedly supported on the surface of the catalyst carrier 45, and a layer of NO X absorbent 47 is formed on the surface of the catalyst carrier 45.
  • platinum Pt is used as the noble metal catalyst 46
  • the constituents of the NO X absorbent 47 are, for example, alkali metals such as potassium K, sodium Na, cesium Cs, barium Ba, calcium Ca. At least one selected from alkaline earths such as these, lanthanum La, and rare earths such as yttrium Y is used.
  • the NO X absorbent 47 air absorbs NO X when the lean, the oxygen concentration in the exhaust gas performs the absorbing and releasing action of the NO X that releases NO X absorbed and reduced. That is, the case where barium Ba is used as a component constituting the NO X absorbent 47 will be described as an example.
  • the air-fuel ratio of the exhaust gas is lean, that is, when the oxygen concentration in the exhaust gas is high, it is contained in the exhaust gas. As shown in FIG.
  • NO is oxidized on platinum Pt 46 to become NO 2 , and then absorbed into the NO X absorbent 47 and combined with barium carbonate BaCO 3 to absorb NO X in the form of nitrate ions NO 3 ⁇ . It diffuses into the agent 47. In this way, NO X is absorbed in the NO X absorbent 47.
  • Exhaust oxygen concentration in the gas is NO 2 with high long as the surface of the platinum Pt46 are generated, the NO X absorbent 47 of the NO X absorbing capacity so long as NO 2 not to saturate is absorbed in the NO X absorbent 47 nitrate ions NO 3 - are produced.
  • NO X storing catalyst 13 air-fuel ratio of the exhaust gas flowing into the reaction for the oxygen concentration in the exhaust gas is rich or the stoichiometric air-fuel ratio decreases the reverse (NO 3 - ⁇ NO 2) the process proceeds, the NO X absorbent in the 47 nitrate ions NO 3 and thus - are released from the NO X absorbent 47 in the form of NO 2. Next, the released NO X is reduced by unburned HC and CO contained in the exhaust gas.
  • NO X in the exhaust gas is absorbed into the NO X absorbent 47.
  • the exhaust gas is supplied by supplying additional fuel from the fuel injection valve 3 into the combustion chamber 2 before the absorption capacity of the NO X absorbent 47 is saturated, for example, in the first half of the expansion stroke. of the air-fuel ratio temporarily rich and thereby so that to release NO X from the NO X absorbent 47.
  • FIG. 3 the relationship between the NO X storage speed, i.e.
  • FIG. 3 shows that the amount of NO X that can be stored in the NO X storage catalyst 13 per unit time increases as the NO X storage amount decreases.
  • the NO X storage amount to the NO X storage catalyst 13 is estimated from the map.
  • the vehicle is driven by the electric motor 23 as much as possible as long as the charge amount SOC of the battery 27 is sufficient.
  • a lower limit value SC 1 and the upper limit value SC 2 is set in advance as shown in FIG. 5 (A) as a criterion for determining whether the state of charge SOC of the battery 27 is sufficient, these lower or to drive the vehicle is determined by the value SC 1 and the upper limit value SC of whether the electric motor 23 for driving the vehicle by the engine based on 2.
  • the vehicle driving by the agency from the vehicle drive by an electric motor 23 is started the operation of the engine when the state of charge SOC have been performed driven by the electric motor 23 becomes lower than the lower limit value SC 1 in the embodiment according to the present invention Switched.
  • the electric motor 23 is switched to generate power.
  • different driving methods in accordance with the vehicle driving force that is required when the state of charge SOC of the battery 27 exceeds the upper limit value SC 2 is taken. That is, when the vehicle can be driven only by the electric motor 23 at this time, the operation of the engine is stopped and the driving of the vehicle by the electric motor 23 is started. On the other hand, when the vehicle cannot be driven only by the electric motor 23 at this time, the operation of the engine is continued, and the vehicle is driven by both the engine and the electric motor 23. At this time, the shortage of the vehicle driving force by the electric motor 23 is compensated by the engine.
  • the charge amount SOC is calculated by integrating the charge / discharge current I of the battery 27, for example.
  • FIG. 5B shows an example of a charge amount calculation routine executed by interruption every fixed time.
  • the charge / discharge current I of the battery 27 is added to the charge amount SOC every fixed time. This current value I is positive during charging and negative during discharging.
  • the NO X storage per unit time the NO X storing catalyst 13 as can be seen from Figure 3 the NO X storage amount is large of the catalyst 13 becomes less the amount of NO X can be occluded, at this time was thus the NO X storing catalyst 13 A large amount of NO X will pass through.
  • the reducing amount of NO X slip through the NO X storing catalyst 13 is necessary to reduce the amount of NO X stored in the NO X storing catalyst 13 at the time of restarting operation of the engine. Therefore, in the present invention, when the operation of the engine is stopped and the driving of the vehicle by the electric motor 23 is started, the NO X storage amount stored in the NO X storage catalyst 13 is larger than the predetermined storage amount.
  • NO X storage amount in the NO X storage catalyst 13 becomes zero when the engine is restarted, and thus is discharged from the combustion chamber 2 at this time.
  • NO X is favorably stored in the NO X storage catalyst 13.
  • the air-fuel ratio of the exhaust gas flowing into the NO X storage catalyst 13 is made rich when the NO X storage catalyst 13 is not activated.
  • the NO X storage amount stored in the NO X storage catalyst 13 when the operation of the engine is stopped and the driving of the vehicle by the electric motor 23 is started is based on the predetermined storage amount. perform the action of raising the temperature of the nO X storing catalyst 13 when the number and the nO X storing catalyst 13 also is not activated, the air-fuel ratio of the exhaust gas the nO X storing catalyst 13 flows into the nO X storing catalyst 13 after activation It is made rich to release NO X from the NO X storage catalyst 13.
  • the temperature of the NO X storage catalyst 13 is detected by the temperature sensor 14, the NO X storage amount is larger than a predetermined storage amount, and the NO X storage catalyst 13 temperature the action of raising the temperature of the NO X storage catalyst 13 is performed when a predetermined lower than the activation temperature, the NO X storing catalyst 13 after the temperature of the NO X storing catalyst 13 has reached a predetermined activation temperature
  • the air-fuel ratio of the exhaust gas flowing into the engine is made rich.
  • the operation control routine will be described with reference to FIGS. This routine is executed by interruption every predetermined time. Referring to FIG. 6, the discharge amount of NO X NOXA is calculated from the map shown in FIG. 4, first, at step 50.
  • step 51 this exhausted NO X amount is added to the NO X storage amount ⁇ NOX stored in the NO X storage catalyst 13.
  • step 52 it is judged if the EV travel flag indicating that the vehicle should be traveled by only the electric motor 23 or by both the electric motor 23 and the engine is set. When the EV traveling flag is not set, the routine proceeds to step 53. Charge SOC of step 53 the battery 27 whether exceeds the upper limit value SC 2 is discriminated. The vehicle is driven only by the engine proceeds to step 54 when the SOC ⁇ SC 2. At this time, the electric motor 23 generates a power.
  • the air-fuel ratio of the exhaust gas flowing into the NO X storing catalyst 13 by the rich to release NO X from the NO X storing catalyst 13 when exceeding the allowable value the NO X storage amount ⁇ NOX step 55 is predetermined A NO X release process is performed. If NO X emission process is performed ⁇ NOX is set to zero. On the other hand, it is set EV travel flag proceeds to step 56 when the state of charge SOC is determined to exceed the upper limit value SC 2 in step 53, then the routine proceeds to step 57. When the EV running flag is set, the process jumps from step 52 to step 57 in the next processing cycle.
  • step 57 the state of charge SOC is determined whether it is lower than the lower limit value SC 1 is when SOC ⁇ SC 1 jumps to step 59.
  • EV traveling flag proceeds to step 58 becomes a SOC ⁇ SC 1 is reset, then the routine proceeds to step 59.
  • the routine proceeds from step 52 to step 54 through step 53. Therefore the process proceeds to step 59 after a SOC> SC 2, it until SOC ⁇ SC 1.
  • step 59 it is determined whether or not the vehicle can be driven only by the electric motor 23 from the required vehicle driving force, that is, whether or not the vehicle can be driven only by the electric motor 23.
  • step 60 the routine proceeds to step 60 where the vehicle is driven by the electric motor 23 and the engine. At this time, the shortage of the vehicle driving force by the electric motor 23 is compensated by the output of the engine. Then the air-fuel ratio of the exhaust gas flowing into the NO X storing catalyst 13 by the rich to release NO X from the NO X storing catalyst 13 when exceeding the allowable value the NO X storage amount ⁇ NOX step 61 is predetermined A NO X release process is performed. On the other hand, when it is judged that the vehicle can travel only by the electric motor 23 in step 59 whether less than occluded amount NX of the NO X storage amount ⁇ NOX proceeds to step 62 is predetermined or not.
  • the storage amount NX is an amount the NO X storage speed is very high a fairly small amount, as shown in FIG. Accordingly, when the NO storage amount ⁇ NOX is smaller than the storage amount NX, it is not necessary to release NO X from the NO X storage catalyst 13, so at this time the routine proceeds to step 63 where the engine is stopped and then the routine proceeds to step 67 to proceed to the electric motor 23. Only traveling is performed. At this time, the transmission 21 is in a neutral state.
  • the NO X storage amount ⁇ NOX stored in the NO X storage catalyst 13 when the operation of the engine is stopped and the driving of the vehicle by the electric motor 23 is started is determined in advance.
  • step 62 When the stored amount is smaller than the storage amount NX, the driving of the vehicle by the electric motor 23 is started without making the air-fuel ratio of the exhaust gas flowing into the NO X storage catalyst 13 rich.
  • step 64 when it is determined in step 62 that the NO X storage amount ⁇ NOX is larger than the storage amount NX, the routine proceeds to step 64, where it is determined whether or not the temperature TC of the NO X storage catalyst 13 is lower than the activation temperature T 0.
  • TC ⁇ T 0 that is, when the NO X storage catalyst 13 is activated, the routine proceeds to step 65 where the engine is stopped, and in step 66, NO X release processing is performed when the engine stops.
  • the fuel injection valve 3 toward the combustion chamber 2 is supplied additional fuel in the first half late expansion stroke, the air-fuel ratio of the exhaust gas thereby flowing into the NO X storing catalyst 13 Is made rich.
  • the exhaust gas having a rich air-fuel ratio flows slowly through the NO X storage catalyst 13, so that the NO X release and reduction actions are performed satisfactorily.
  • the routine proceeds to step 67 where the running of the vehicle by the electric motor 23 is started.
  • the routine proceeds to step 68 where temperature increase control of the NO X storage catalyst 13 is performed.
  • the temperature increase control of the NO X storage catalyst 13 is performed, for example, by increasing the engine output and increasing the exhaust gas temperature.
  • the electric motor 23 is used as a generator, and the increase in engine output is consumed by the power generation action of the electric motor 23.
  • the routine proceeds from step 64 to step 65, where the engine is stopped, and in step 66, NO X release processing is performed.
  • the NO X storage amount ⁇ NOX continues to increase while the temperature increase control of the NO X storage catalyst 13 is performed, and when the NO X release process is performed, the increased stored NO X can be reduced. The amount of additional fuel supplied into the combustion chamber 2 is increased.
  • the electric device includes a pair of motor generators 70 and 71 that operate as an electric motor and a generator, and a planetary gear mechanism 72.
  • the planetary gear mechanism 72 includes a sun gear 73, a ring gear 74, a planetary gear 75 disposed between the sun gear 73 and the ring gear 74, and a planetary carrier 76 that carries the planetary gear 75.
  • the sun gear 73 is connected to the rotation shaft 77 of the motor generator 71, and the planetary carrier 76 is connected to the output shaft 78 of the engine 1.
  • the ring gear 74 is connected to a rotating shaft 79 of the motor generator 70 on the one hand, and connected to an output shaft 80 connected to a driving wheel on the other hand via a belt 81. Therefore, it can be seen that when the ring gear 74 rotates, the output shaft 80 is rotated accordingly.
  • the motor generator 70 mainly operates as an electric motor
  • the motor generator 71 mainly operates as a generator
  • the operation of the engine 1 is performed. And the vehicle can be driven by the motor generator 70.
  • the motor generator 70 when the motor generator 70 is rotated, the ring gear 74 is rotated, and the rotational force of the ring gear 74 is transmitted to the output shaft 80 via the belt 81, thereby driving the vehicle.
  • the planetary carrier 76 since the planetary carrier 76 does not rotate at this time, when the ring gear 74 rotates, the sun gear 73 is rotated, and at this time, the motor generator 71 rotates idly.
  • the rotational force of the planetary carrier 76 is added to the rotational force of the ring gear 74. Further, when the vehicle is driven by the engine 1 and power is generated by the motor generator 71, the motor generator 70 idles.

Abstract

A NOX storage catalyst (13) is provided inside the exhaust passage of an engine (1) of a hybrid vehicle that can be driven using an engine (1) and/or an electric motor (23). The NOX storage catalyst (13) absorbs NOX, which is contained in the exhaust, when the air-fuel ratio of the inflowing exhaust gas is lean, and discharges the absorbed NOX when the air-fuel ratio of the inflowing exhaust gas is rich. If the amount of NOX absorbed by the NOX storage catalyst (13) is greater than a predetermined amount when engine operation is stopped and driving using the electric motor is started, NOX is discharged from the NOX storage catalyst (13) by making the air-fuel ratio of the exhaust gas that flows into the NOX storage catalyst (13) rich.

Description

ハイブリッド車両の排気浄化装置Exhaust gas purification device for hybrid vehicle
 本発明はハイブリッド車両の排気浄化装置に関する。 The present invention relates to an exhaust emission control device for a hybrid vehicle.
 機関排気通路内に、流入する排気ガスの空燃比がリーンのときには排気ガス中に含まれるNOを吸蔵し流入する排気ガスの空燃比が理論空燃比又はリッチになると吸蔵したNOを放出するNO浄化触媒を配置し、機関による車両駆動力とは別個に車両駆動力を発生可能でかつ機関により発電可能な電気モータを具備しており、機関低速低負荷領域では予混合燃焼を行わせると共に電気モータにより発電を行い、機関高負荷領域および高速領域では拡散燃焼を行わせると共に電気モータにより車両駆動力の一部を担わせるようにしたハイブリッド車両が公知である(特許文献1を参照)。
 このバイブリッド車両ではNO吸蔵触媒に吸着されているNO吸着量が増大すると燃焼室から排出されるNO量を低下させるために機関出力が低下せしめられる。このとき車両駆動力が低下しないように電気モータによる車両駆動力が高められる。このようにこのハイブリッド車両ではNO吸蔵触媒へのNO吸着量を調整するために電気モータによる車両駆動力が制御されており、それによってNO吸蔵触媒ができる限り多量のNOを吸着しうるようにしている。
When the air-fuel ratio of the exhaust gas flowing into the engine exhaust passage is lean, the NO X contained in the exhaust gas is occluded, and when the air-fuel ratio of the exhaust gas flowing in becomes the stoichiometric air-fuel ratio or rich, the stored NO X is released. An NO X purification catalyst is disposed, and an electric motor capable of generating vehicle driving force separately from the vehicle driving force by the engine and generating electric power by the engine is provided, and premixed combustion is performed in the engine low speed and low load region. In addition, a hybrid vehicle is known in which electric power is generated by an electric motor and diffusion combustion is performed in an engine high load region and a high speed region and a part of vehicle driving force is carried by the electric motor (see Patent Document 1). .
In this hybrid vehicle, when the NO X adsorption amount adsorbed by the NO X storage catalyst increases, the engine output is reduced in order to reduce the NO X amount discharged from the combustion chamber. At this time, the vehicle driving force by the electric motor is increased so that the vehicle driving force does not decrease. Thus is the vehicle driving force is controlled by an electric motor to a hybrid vehicle that adjusts the NO X adsorption amount to the NO X storage catalyst, thereby adsorbing a large amount of the NO X as possible the NO X storing catalyst I am trying to get it.
特開2005−51893号公報JP 2005-51893 A
 ところでこのようなハイブリッド車両において、機関の運転が一旦停止されて車両が電気モータにより駆動された後、車両を再び機関により駆動するために機関の運転が再開された場合、機関の運転が再開された直後では燃焼室から多量のNOが排出される。このときNO吸蔵触媒が既に多量のNOを吸蔵しているとNO吸蔵触媒の新たなNOを吸蔵する能力が低下しているために燃焼室から排出されたNOをNO吸蔵触媒に十分に吸蔵することができないという問題を生ずる。
 しかしながら上述の公知のハイブリッド車両では車両運転中、機関は常時運転されており、車両運転中に機関が停止されることはない。従って上述の公知のハイブリッド車両では車両運転中に機関が停止されることによって生ずる上記問題については当然のことながら何ら考慮が払われていない。
 本発明の目的は、車両運転中に機関の運転が再開されたときにNOを良好に浄化することのできるハイブリッド車両の排気浄化装置を提供することにある。
By the way, in such a hybrid vehicle, after the operation of the engine is temporarily stopped and the vehicle is driven by the electric motor, when the operation of the engine is resumed in order to drive the vehicle again by the engine, the operation of the engine is resumed. Immediately after that, a large amount of NO X is discharged from the combustion chamber. The NO X storage the discharged NO X from the combustion chamber to the time the NO X storage catalyst is already reduced ability to insert a new NO X in the the NO X storage catalyst has occluded a large amount of the NO X This causes a problem that the catalyst cannot be fully occluded.
However, in the known hybrid vehicle described above, the engine is always operated during vehicle operation, and the engine is not stopped during vehicle operation. Therefore, in the above-described known hybrid vehicle, the above-described problem caused by the engine being stopped while the vehicle is operating is naturally not taken into consideration.
An object of the present invention is to provide an exhaust purifying apparatus for a hybrid vehicle which can satisfactorily purify NO X when the operation of the engine while the vehicle is driving is resumed.
 本発明によれば、機関による車両駆動力とは別個に車両駆動力を発生可能でかつ機関により発電可能な電気装置を具備しており、機関および電動装置のいずれか一方又は双方によって車両を駆動可能なハイブリッド車両の排気浄化装置において、機関排気通路内に、流入する排気ガスの空燃比がリーンのときには排気ガス中に含まれるNOを吸蔵し流入する排気ガスの空燃比が理論空燃比又はリッチになると吸蔵したNOを放出するNO吸蔵触媒を配置し、機関の運転を停止して電動装置による車両の駆動を開始するときにNO吸蔵触媒に吸蔵されているNO吸蔵量が予め定められている吸蔵量よりも多いときにはNO吸蔵触媒に流入する排気ガスの空燃比をリッチにしてNO吸蔵触媒からNOを放出させるようにしている。 According to the present invention, an electric device capable of generating a vehicle driving force separately from a vehicle driving force by the engine and generating electric power by the engine is provided, and the vehicle is driven by one or both of the engine and the electric device. in the exhaust purification device possible hybrid vehicle, in the engine exhaust passage, the air-fuel ratio is the stoichiometric air-fuel ratio of the exhaust gas air-fuel ratio of the inflowing exhaust gas when the lean of occluding NO X contained in the exhaust gas inflow or becomes rich place the NO X storing catalyst to release the occluded NO X, is the NO X storage amount stored in the NO X storage catalyst when to stop the operation of the engine starts to drive the vehicle by the electric device so as to release the NO X from the NO X storing catalyst and the air-fuel ratio of the exhaust gas flowing into the NO X storage catalyst rich when more than storage amount is predetermined There.
 機関の運転が再開されたときのNO吸蔵量が低く抑えられているのでこのとき燃焼室から排出されるNOを良好に浄化することができる。 Since the NO X storage amount when the operation of the engine is resumed is kept low, the NO X discharged from the combustion chamber at this time can be purified well.
 図1は内燃機関の全体図である。
 図2はNOの吸収作用を説明するための図である。
 図3はNO吸蔵量をNO吸蔵速度との関係を示す図である。
 図4は排出NO量のマップを示す図である。
 図5(A),(B)はバッテリの充電量SOCを説明するための図である。
 図6は運転制御を行うためのフローチャートである。
 図7は運転制御を行うためのフローチャートである。
 図8は電動装置の別の実施例を示す図である。
FIG. 1 is an overall view of an internal combustion engine.
FIG. 2 is a view for explaining the NO X absorption action.
FIG. 3 is a graph showing the relationship between the NO X storage amount and the NO X storage speed.
Figure 4 is a diagram illustrating a map of exhaust amount of NO X.
FIGS. 5A and 5B are diagrams for explaining the charge amount SOC of the battery.
FIG. 6 is a flowchart for performing operation control.
FIG. 7 is a flowchart for performing operation control.
FIG. 8 is a diagram showing another embodiment of the electric device.
 図1に圧縮着火式内燃機関の全体図を示す。
 図1を参照すると、1は機関本体、2は各気筒の燃焼室、3は各燃焼室2内に夫々燃料を噴射するための電子制御式燃料噴射弁、4は吸気マニホルド、5は排気マニホルドを夫々示す。吸気マニホルド4は吸気ダクト6を介して排気ターボチャージャ7のコンプレッサ7aの出口に連結され、コンプレッサ7aの入口は吸入空気量を検出するための吸入空気量検出器8を介してエアクリーナ9に連結される。吸気ダクト6内にはステップモータにより駆動されるスロットル弁10が配置され、更に吸気ダクト6周りには吸気ダクト6内を流れる吸入空気を冷却するための冷却装置11が配置される。図1に示される実施例では機関冷却水が冷却装置11内に導かれ、機関冷却水によって吸入空気が冷却される。一方、排気マニホルド5は排気ターボチャージャ7の排気タービン7bの入口に連結され、排気タービン7bの出口は排出管12を介してNO吸蔵触媒13に連結される。このNO吸蔵触媒13にはNO吸蔵触媒13の温度を検出するための温度センサ14が取付けられている。
 排気マニホルド5と吸気マニホルド4とは排気ガス再循環(以下、EGRと称す)通路15を介して互いに連結され、EGR通路15内には電子制御式EGR制御弁16が配置される。また、EGR通路15周りにはEGR通路15内を流れるEGRガスを冷却するための冷却装置17が配置される。図1に示される実施例では機関冷却水が冷却装置17内に導かれ、機関冷却水によってEGRガスが冷却される。一方、各燃料噴射弁3は燃料供給管18を介してコモンレール19に連結される。このコモンレール19内へは電子制御式の吐出量可変な燃料ポンプ20から燃料が供給され、コモンレール20内に供給された燃料は各燃料供給管18を介して燃料噴射弁3に供給される。
 一方、図1に示される実施例では機関の出力軸に変速機21が連結され、変速機21の出力軸22に電気モータ23が連結される。この場合、図1に示される実施例では変速機21として、トルクコンバータを具えた通常の有段自動変速機が用いられている。
 また、変速機21の出力軸22に連結された電気モータ23は機関による車両駆動力とは別個に車両駆動力を発生可能でかつ機関により発電可能な電動装置を構成している。図1に示される実施例ではこの電気モータ23は変速機21の出力軸22上に取付けられかつ外周面に複数個の永久磁石を取付けたロータ24と、回転磁界を形成する励磁コイルを巻設したステータ25とを具備した交流同期電動機からなる。ステータ25の励磁コイルはモータ駆動制御回路26に接続され、このモータ駆動制御回路26は直流高電圧を発生するバッテリ27に接続される。
 電子制御ユニット30はデジタルコンピュータからなり、双方向性バス31によって互いに接続されたROM(リードオンリメモリ)32、RAM(ランダムアクセスメモリ)33、CPU(マイクロプロセッサ)34、入力ポート35および出力ポート36を具備する。吸入空気量検出器8および温度センサ14の出力信号は夫々対応するAD変換器37を介して入力ポート35に入力される。また、入力ポート35には変速機21の変速段、および出力軸22の回転数等を表わす種々の信号が入力される。
 一方、アクセルペダル40にはアクセルペダル40の踏込み量Lに比例した出力電圧を発生する負荷センサ41が接続され、負荷センサ41の出力電圧は対応するAD変換器37を介して入力ポート35に入力される。更に入力ポート35にはクランクシャフトが例えば10°回転する毎に出力パルスを発生するクランク角センサ36が接続される。一方、出力ポート36は対応する駆動回路38を介して燃料噴射弁3、スロットル弁10の駆動用ステップモータ、EGR制御弁16、燃料ポンプ20、変速機21およびモータ駆動制御回路26に接続される。
 電気モータ23のステータ25の励磁コイルへの電力の供給が停止されているときにはロータ24は空転している。一方、電気モータ23を駆動せしめるときにはバッテリ27の直流高電圧がモータ駆動制御回路26において周波数がfmで電流値がImの三相交流に変換され、この三相交流がステータ25の励磁コイルに供給される。この周波数fmは励磁コイルにより発生する回転磁界をロータ24の回転に同期して回転させるのに必要な周波数であり、この周波数fmは出力軸22の回転数に基づいてCPU34で算出される。モータ駆動制御回路26ではこの周波数fmが三相交流の周波数とされる。
 一方、電気モータ23の出力トルクは三相交流の電流値Imにほぼ比例する。この電流値Imは電気モータ23の要求出力トルクに基づきCPU34において算出され、モータ駆動制御回路26ではこの電流値Imが三相交流の電流値とされる。
 また、外力により電気モータ23を駆動する状態にすると電気モータ23は発電機として作動し、このとき発生した電力がバッテリ27に回生される。外力により電気モータ23を駆動すべきか否かは機関の運転状態に応じて判断され、外力により電気モータ23を駆動すべきであると判別されたときにはモータ制御回路26により電気モータ23に発生した電力がバッテリ27に回生されるように制御される。
 まず初めに図1に示されるNO吸蔵触媒13について説明すると、このNO吸蔵触媒13の基体上には例えばアルミナからなる触媒担体が担持されており、図2はこの触媒担体45の表面部分の断面を図解的に示している。図2に示されるように触媒担体45の表面上には貴金属触媒46が分散して担持されており、更に触媒担体45の表面上にはNO吸収剤47の層が形成されている。
 本発明による実施例では貴金属触媒46として白金Ptが用いられており、NO吸収剤47を構成する成分としては例えばカリウムK、ナトリウムNa、セシウムCsのようなアルカリ金属、バリウムBa、カルシウムCaのようなアルカリ土類、ランタンLa、イットリウムYのような希土類から選ばれた少なくとも一つが用いられている。
 機関吸気通路、燃焼室2およびNO吸蔵触媒13上流の排気通路内に供給された空気および燃料(炭化水素)の比を排気ガスの空燃比と称すると、NO吸収剤47は排気ガスの空燃比がリーンのときにはNOを吸収し、排気ガス中の酸素濃度が低下すると吸収したNOを放出するNOの吸放出作用を行う。
 即ち、NO吸収剤47を構成する成分としてバリウムBaを用いた場合を例にとって説明すると、排気ガスの空燃比がリーンのとき、即ち排気ガス中の酸素濃度が高いときには排気ガス中に含まれるNOは図2に示されるように白金Pt46上において酸化されてNOとなり、次いでNO吸収剤47内に吸収されて炭酸バリウムBaCOと結合しながら硝酸イオンNO の形でNO吸収剤47内に拡散する。このようにしてNOがNO吸収剤47内に吸収される。排気ガス中の酸素濃度が高い限り白金Pt46の表面でNOが生成され、NO吸収剤47のNO吸収能力が飽和しない限りNOがNO吸収剤47内に吸収されて硝酸イオンNO が生成される。
 これに対し、NO吸蔵触媒13に流入する排気ガスの空燃比がリッチ或いは理論空燃比にされると排気ガス中の酸素濃度が低下するために反応が逆方向(NO →NO)に進み、斯くしてNO吸収剤47内の硝酸イオンNO がNOの形でNO吸収剤47から放出される。次いで放出されたNOは排気ガス中に含まれる未燃HC,COによって還元される。
 このように排気ガスの空燃比がリーンであるとき、即ちリーン空燃比のもとで燃焼が行われているときには排気ガス中のNOがNO吸収剤47内に吸収される。しかしながらリーン空燃比のもとでの燃焼が継続して行われるとその間にNO吸収剤47のNO吸収能力が飽和してしまい、斯くしてNO吸収剤47によりNOを吸収できなくなってしまう。そこで本発明による実施例ではNO吸収剤47の吸収能力が飽和する前に、例えば膨張行程の前半後期に燃焼室2内に向けて燃料噴射弁3から追加の燃料を供給することによって排気ガスの空燃比を一時的にリッチにし、それによってNO吸収剤47からNOを放出させるようにしている。
 一方、図3はNO吸蔵触媒13に吸蔵されたNO吸蔵量とNO吸蔵触媒13へのNO吸蔵速度、即ちNO吸蔵触媒13に単位時間当り吸蔵されるNO量との関係を示している。図3から、NO吸蔵量が少なくなるほど単位時間当りNO吸蔵触媒13に吸蔵することのできるNO量が増大することがわかる。なお、本発明による実施例では燃焼室2から単位時間当り排出される排出NO量NOXAが機関要求トルクTQと機関回転数Nの関数として図4に示すようなマップの形で予めROM32内に記憶されており、このマップからNO吸蔵触媒13へのNO吸蔵量が推定される。
 さて本発明による実施例ではバッテリ27の充電量SOCが充分である限り、できるだけ電気モータ23によって車両を駆動するようにしている。この場合、バッテリ27の充電量SOCが充分であるか否かを判断する基準として図5(A)に示されるように下限値SCと上限値SCとが予め設定されており、これら下限値SCおよび上限値SCに基づいて機関により車両を駆動するのか電気モータ23により車両を駆動するのかが決定される。
 即ち、本発明による実施例では電気モータ23による駆動が行われていて充電量SOCが下限値SCよりも低下したときには機関の運転が開始されて電気モータ23による車両駆動から機関による車両駆動に切換えられる。このときバッテリ27を充電するために電気モータ23は発電作用をなすように切換えられる。
 一方、バッテリ27の充電量SOCが上限値SCを越えたときには要求されている車両駆動力に応じて異なる駆動方法がとられる。即ち、このとき電気モータ23のみによって車両を駆動可能であるときには機関の運転が停止されて電気モータ23による車両の駆動が開始される。これに対し、このとき電気モータ23のみによって車両を駆動可能でないときには機関の運転が続行され、機関および電気モータ23の双方によって車両が駆動される。このときには電気モータ23による車両駆動力の不足分が機関によって補われる。
 なお、充電量SOCは例えばバッテリ27の充放電電流Iを積算することによって算出される。図5(B)は一定時間毎の割込みによって実行される充電量の算出ルーチンの一例を示しており、この例では一定時間毎に充電量SOCにバッテリ27の充放電電流Iが加算される。この電流値Iは充電時はプラスとされ、放電時はマイナスとされる。
 ところで車両運転中に機関の運転が停止され、次いで機関の運転が再開されると前述したように機関の運転再開の直後に多量のNOが燃焼室2から排出される。このときNO吸蔵触媒13のNO吸蔵量が多いと図3からわかるように単位時間当りNO吸蔵触媒13が吸蔵しうるNO量が少なくなり、斯くしてこのときNO吸蔵触媒13を多量のNOがすり抜けることになる。このときNO吸蔵触媒13をすり抜けるNO量を低減させるには機関の運転再開時にNO吸蔵触媒13に吸蔵されているNO量を少なくしておく必要がある。
 そこで本発明では、機関の運転を停止して電気モータ23による車両の駆動を開始するときにNO吸蔵触媒13に吸蔵されているNO吸蔵量が予め定められている吸蔵量よりも多いときにはNO吸蔵触媒13に流入する排気ガスの空燃比をリッチにしてNO吸蔵触媒13からNOを放出させるようにしている。このようにNO吸蔵触媒13からNOを放出させると機関の運転再開時にはNO吸蔵触媒13へのNO吸蔵量は零になっており、斯くしてこのとき燃焼室2から排出されるNOが良好にNO吸蔵触媒13に吸蔵されることになる。
 一方、機関の運転を停止して電気モータ23による車両の駆動を開始するときにNO吸蔵触媒13が活性化していないときにNO吸蔵触媒13に流入する排気ガスの空燃比をリッチにしてもNO吸蔵触媒13から良好にNOが放出されず、このときNOが放出されたとしても放出されたNOが良好に還元されない。
 そこで本発明による実施例では、機関の運転を停止して電気モータ23による車両の駆動を開始するときにNO吸蔵触媒13に吸蔵されているNO吸蔵量が予め定められている吸蔵量よりも多くかつNO吸蔵触媒13が活性化していないときにはNO吸蔵触媒13の昇温作用を行い、NO吸蔵触媒13が活性化した後にNO吸蔵触媒13に流入する排気ガスの空燃比をリッチにしてNO吸蔵触媒13からNOを放出させるようにしている。
 具体的に言うと本発明による実施例ではNO吸蔵触媒13の温度が温度センサ14により検出されており、NO吸蔵量が予め定められている吸蔵量よりも多くかつNO吸蔵触媒13の温度が予め定められた活性化温度よりも低いときにはNO吸蔵触媒13の昇温作用が行われ、NO吸蔵触媒13の温度が予め定められた活性化温度に達した後にNO吸蔵触媒13に流入する排気ガスの空燃比がリッチにされる。
 次に図6および図7を参照しつつ運転制御ルーチンについて説明する。なお、このルーチンは一定時間毎の割込みによって実行される。
 図6を参照すると、まず初めにステップ50において図4に示すマップから排出NO量NOXAが算出される。次いでステップ51ではこの排出NO量がNO吸蔵触媒13に吸蔵されているNO吸蔵量ΣNOXに加算される。次いでステップ52では電気モータ23のみにより、又は電気モータ23と機関の双方により車両を走行すべきであることを示すEV走行フラグがセットされているか否かが判別される。EV走行フラグがセットされていないときにはステップ53に進む。
 ステップ53ではバッテリ27の充電量SOCが上限値SCを越えたか否かが判別される。SOC≦SCのときにはステップ54に進んで車両が機関のみによって駆動される。このとき電気モータ23は発電作用を行う。次いでステップ55ではNO吸蔵量ΣNOXが予め定められた許容値を越えたときにNO吸蔵触媒13に流入する排気ガスの空燃比をリッチにさせてNO吸蔵触媒13からNOを放出させるNO放出処理が行われる。NO放出処理が行われるとΣNOXは零とされる。
 一方、ステップ53において充電量SOCが上限値SCを越えたと判断されたときにはステップ56に進んでEV走行フラグがセットされ、次いでステップ57に進む。EV走行フラグがセットされると次の処理サイクルではステップ52からステップ57にジャンプする。ステップ57では充電量SOCが下限値SCよりも低くなったか否かが判別され、SOC≧SCのときにはステップ59にジャンプする。これに対し、SOC<SCになるとステップ58に進んでEV走行フラグがリセットされ、次いでステップ59に進む。EV走行フラグがリセットされるとステップ52からステップ53を経てステップ54に進む。従ってステップ59に進むのはSOC>SCとなった後、SOC<SCになるまでである。
 ステップ59では要求車両駆動力から電気モータ23のみで車両を駆動しうるか否か、即ち電気モータ23のみで走行が可能か否かが判別される。電気モータ23のみで走行が可能でないときにはステップ60に進んで電気モータ23および機関によって車両が駆動される。このとき電気モータ23による車両駆動力の不足分が機関の出力により補なわれる。次いでステップ61ではNO吸蔵量ΣNOXが予め定められた許容値を越えたときにNO吸蔵触媒13に流入する排気ガスの空燃比をリッチにさせてNO吸蔵触媒13からNOを放出させるNO放出処理が行われる。
 一方、ステップ59において電動モータ23のみで走行が可能であると判別されたときにはステップ62に進んでNO吸蔵量ΣNOXが予め定められている吸蔵量NXよりも少ないか否かが判別される。この吸蔵量NXは図3に示されるようにかなり少量であってNO吸蔵速度が極めて高くなる量である。従ってNO吸蔵量ΣNOXが吸蔵量NXよりも少ないときにはNO吸蔵触媒13からNOを放出させる必要はなく、従ってこのときにはステップ63に進んで機関が停止され、次いでステップ67に進んで電気モータ23のみによる走行が行われる。なお、このとき変速機21はニュートラル状態とされる。
 このように本発明による実施例では、機関の運転を停止して電気モータ23による車両の駆動を開始するときにNO吸蔵触媒13に吸蔵されているNO吸蔵量ΣNOXが予め定められている吸蔵量NXよりも少ないときにはNO吸蔵触媒13に流入する排気ガスの空燃比をリッチにすることなく電気モータ23による車両の駆動が開始される。
 一方、ステップ62においてNO吸蔵量ΣNOXが吸蔵量NXよりも大きいと判別されたときにはステップ64に進んでNO吸蔵触媒13の温度TCが活性化温度Tよりも低いか否かが判別される。TC≧Tのとき、即ちNO吸蔵触媒13が活性化しているときにはステップ65に進んで機関が停止され、ステップ66では機関が停止する際にNOの放出処理が行われる。例えば機関が停止する直前の一定期間、燃料噴射弁3から燃焼室2内に向けて膨張行程の前半後期に追加の燃料が供給され、それによってNO吸蔵触媒13に流入する排気ガスの空燃比がリッチにされる。この場合、リッチ空燃比の排気ガスがNO吸蔵触媒13内をゆっくりと流れるのでNOの放出および還元作用が良好に行われる。次いでステップ67に進んで電気モータ23による車両の走行が開始される。
 一方、ステップ64においてNO吸蔵触媒13の温度TCが活性化温度Tよりも低いと判断されたときにはステップ68に進んでNO吸蔵触媒13の昇温制御が行われる。このときNO吸蔵触媒13の昇温制御は例えば機関出力を増大させて排気ガス温を上昇させることにより行われる。このとき電気モータ23は発電機として使用され、機関出力の増大分が電気モータ23による発電作用によって消費される。
 次いでNO吸蔵触媒13が活性化するとステップ64からステップ65に進んで機関が停止され、ステップ66においてNO放出処理が行われる。NO吸蔵量ΣNOXはNO吸蔵触媒13の昇温制御が行われている間、増大し続けており、NO放出処理が行われる際には増大した全吸蔵NOを還元しうるように燃焼室2内に供給される追加の燃料量が増量される。次いでステップ67に進んで電気モータ23による走行が開始される。
 次に図8を参照しつつ電動装置の別の実施例について説明する。
 図8を参照するとこの実施例では電動装置が、電気モータおよび発電機として作動する一対のモータジェネレータ70,71と遊星歯車機構72とにより構成される。この遊星歯車機構72はサンギア73と、リングギア74と、サンギア73とリングギア74間に配置されたプラネタリギア75と、プラネタリギア75を担持するプラネタリキャリア76とを具備する。サンギア73はモータジェネレータ71の回転軸77に連結され、プラネタリキャリア76は機関1の出力軸78に連結される。
また、リングギア74は一方ではモータジェネレータ70の回転軸79に連結され、他方では駆動輪に連結された出力軸80にベルト81を介して連結される。従ってリングギア74が回転するとそれに伴なって出力軸80が回転せしめられることがわかる。
 この電動装置の詳細な作動については説明を省略するが概略的に言うと、モータジェネレータ70は主に電動モータをして作動し、モータジェネレータ71は主に発電機として作動し、機関1の運転を停止してモータジェネレータ70による車両の駆動が可能である。即ち、モータジェネレータ70が回転せしめられるとリングギア74が回転せしめられ、リングギア74の回転力はベルト81を介して出力軸80に伝達され、それによって車両が駆動せしめられる。一方、このときプラネタリキャリア76は回転しないのでリングギア74が回転するとサンギア73が回転せしめられ、このときモータジェネレータ71は空転する。
 一方、モータジェネレータ70により車両を駆動し、このときの車動駆動力を機関1の出力によって補助する場合には、リングギア74の回転力にプラネタリキャリア76の回転力が重疊される。また、機関1により車両を駆動し、モータジェネレータ71により発電を行うときにはモータジェネレータ70が空転する。
FIG. 1 shows an overall view of a compression ignition type internal combustion engine.
Referring to FIG. 1, 1 is an engine body, 2 is a combustion chamber of each cylinder, 3 is an electronically controlled fuel injection valve for injecting fuel into each combustion chamber 2, 4 is an intake manifold, and 5 is an exhaust manifold. Respectively. The intake manifold 4 is connected to the outlet of the compressor 7a of the exhaust turbocharger 7 via the intake duct 6, and the inlet of the compressor 7a is connected to the air cleaner 9 via the intake air amount detector 8 for detecting the intake air amount. The A throttle valve 10 driven by a step motor is disposed in the intake duct 6, and a cooling device 11 for cooling intake air flowing through the intake duct 6 is disposed around the intake duct 6. In the embodiment shown in FIG. 1, the engine cooling water is guided into the cooling device 11, and the intake air is cooled by the engine cooling water. On the other hand, the exhaust manifold 5 is connected to the inlet of the exhaust turbine 7 b of the exhaust turbocharger 7, and the outlet of the exhaust turbine 7 b is connected to the NO X storage catalyst 13 via the exhaust pipe 12. Temperature sensor 14 for detecting the temperature of the NO X storing catalyst 13 is attached to the the NO X storing catalyst 13.
The exhaust manifold 5 and the intake manifold 4 are connected to each other via an exhaust gas recirculation (hereinafter referred to as EGR) passage 15, and an electronically controlled EGR control valve 16 is disposed in the EGR passage 15. A cooling device 17 for cooling the EGR gas flowing in the EGR passage 15 is disposed around the EGR passage 15. In the embodiment shown in FIG. 1, the engine cooling water is guided into the cooling device 17, and the EGR gas is cooled by the engine cooling water. On the other hand, each fuel injection valve 3 is connected to a common rail 19 through a fuel supply pipe 18. Fuel is supplied into the common rail 19 from an electronically controlled fuel pump 20 with variable discharge amount, and the fuel supplied into the common rail 20 is supplied to the fuel injection valve 3 through each fuel supply pipe 18.
On the other hand, in the embodiment shown in FIG. 1, the transmission 21 is connected to the output shaft of the engine, and the electric motor 23 is connected to the output shaft 22 of the transmission 21. In this case, in the embodiment shown in FIG. 1, a normal stepped automatic transmission having a torque converter is used as the transmission 21.
The electric motor 23 connected to the output shaft 22 of the transmission 21 constitutes an electric device that can generate a vehicle driving force separately from the vehicle driving force by the engine and can generate electric power by the engine. In the embodiment shown in FIG. 1, the electric motor 23 is mounted on a rotor 24 mounted on the output shaft 22 of the transmission 21 and a plurality of permanent magnets mounted on the outer peripheral surface, and an exciting coil for forming a rotating magnetic field. And an AC synchronous motor including the stator 25. The excitation coil of the stator 25 is connected to a motor drive control circuit 26, and this motor drive control circuit 26 is connected to a battery 27 that generates a DC high voltage.
The electronic control unit 30 is composed of a digital computer, and is connected to each other by a bidirectional bus 31. A ROM (read only memory) 32, a RAM (random access memory) 33, a CPU (microprocessor) 34, an input port 35 and an output port 36. It comprises. Output signals of the intake air amount detector 8 and the temperature sensor 14 are input to the input port 35 via the corresponding AD converters 37 respectively. In addition, various signals representing the gear position of the transmission 21 and the rotation speed of the output shaft 22 are input to the input port 35.
On the other hand, a load sensor 41 that generates an output voltage proportional to the depression amount L of the accelerator pedal 40 is connected to the accelerator pedal 40, and the output voltage of the load sensor 41 is input to the input port 35 via the corresponding AD converter 37. Is done. Further, a crank angle sensor 36 that generates an output pulse every time the crankshaft rotates, for example, 10 ° is connected to the input port 35. On the other hand, the output port 36 is connected to the fuel injection valve 3, the step motor for driving the throttle valve 10, the EGR control valve 16, the fuel pump 20, the transmission 21, and the motor drive control circuit 26 through corresponding drive circuits 38. .
When the supply of electric power to the exciting coil of the stator 25 of the electric motor 23 is stopped, the rotor 24 is idling. On the other hand, when the electric motor 23 is driven, the DC high voltage of the battery 27 is converted into a three-phase alternating current having a frequency fm and a current value Im in the motor drive control circuit 26, and this three-phase alternating current is supplied to the exciting coil of the stator 25. Is done. This frequency fm is a frequency necessary for rotating the rotating magnetic field generated by the exciting coil in synchronization with the rotation of the rotor 24, and this frequency fm is calculated by the CPU 34 based on the rotational speed of the output shaft 22. In the motor drive control circuit 26, the frequency fm is set as a three-phase AC frequency.
On the other hand, the output torque of the electric motor 23 is substantially proportional to the three-phase AC current value Im. The current value Im is calculated by the CPU 34 based on the required output torque of the electric motor 23, and the motor drive control circuit 26 sets the current value Im as a three-phase AC current value.
Further, when the electric motor 23 is driven by an external force, the electric motor 23 operates as a generator, and the electric power generated at this time is regenerated in the battery 27. Whether or not the electric motor 23 should be driven by an external force is determined according to the operating state of the engine. When it is determined that the electric motor 23 should be driven by an external force, the electric power generated in the electric motor 23 by the motor control circuit 26 Is regenerated by the battery 27.
First, the NO X storage catalyst 13 shown in FIG. 1 will be described. A catalyst carrier made of alumina, for example, is supported on the base of the NO X storage catalyst 13, and FIG. The cross section of is shown schematically. As shown in FIG. 2, a noble metal catalyst 46 is dispersedly supported on the surface of the catalyst carrier 45, and a layer of NO X absorbent 47 is formed on the surface of the catalyst carrier 45.
In the embodiment according to the present invention, platinum Pt is used as the noble metal catalyst 46, and the constituents of the NO X absorbent 47 are, for example, alkali metals such as potassium K, sodium Na, cesium Cs, barium Ba, calcium Ca. At least one selected from alkaline earths such as these, lanthanum La, and rare earths such as yttrium Y is used.
If the ratio of air and fuel (hydrocarbon) supplied into the exhaust passage upstream of the engine intake passage, the combustion chamber 2 and the NO X storage catalyst 13 is referred to as the air-fuel ratio of the exhaust gas, the NO X absorbent 47 air absorbs NO X when the lean, the oxygen concentration in the exhaust gas performs the absorbing and releasing action of the NO X that releases NO X absorbed and reduced.
That is, the case where barium Ba is used as a component constituting the NO X absorbent 47 will be described as an example. When the air-fuel ratio of the exhaust gas is lean, that is, when the oxygen concentration in the exhaust gas is high, it is contained in the exhaust gas. As shown in FIG. 2, NO is oxidized on platinum Pt 46 to become NO 2 , and then absorbed into the NO X absorbent 47 and combined with barium carbonate BaCO 3 to absorb NO X in the form of nitrate ions NO 3 −. It diffuses into the agent 47. In this way, NO X is absorbed in the NO X absorbent 47. Exhaust oxygen concentration in the gas is NO 2 with high long as the surface of the platinum Pt46 are generated, the NO X absorbent 47 of the NO X absorbing capacity so long as NO 2 not to saturate is absorbed in the NO X absorbent 47 nitrate ions NO 3 - are produced.
In contrast, NO X storing catalyst 13 air-fuel ratio of the exhaust gas flowing into the reaction for the oxygen concentration in the exhaust gas is rich or the stoichiometric air-fuel ratio decreases the reverse (NO 3 - → NO 2) the process proceeds, the NO X absorbent in the 47 nitrate ions NO 3 and thus - are released from the NO X absorbent 47 in the form of NO 2. Next, the released NO X is reduced by unburned HC and CO contained in the exhaust gas.
Thus, when the air-fuel ratio of the exhaust gas is lean, that is, when combustion is performed under the lean air-fuel ratio, NO X in the exhaust gas is absorbed into the NO X absorbent 47. However becomes saturated is NO X absorbing capacity of the NO X absorbent 47 during the combustion of the fuel under a lean air-fuel ratio is continued, no longer able to absorb NO X by the NO X absorbent 47 and thus End up. Therefore, in the embodiment according to the present invention, the exhaust gas is supplied by supplying additional fuel from the fuel injection valve 3 into the combustion chamber 2 before the absorption capacity of the NO X absorbent 47 is saturated, for example, in the first half of the expansion stroke. of the air-fuel ratio temporarily rich and thereby so that to release NO X from the NO X absorbent 47.
On the other hand, FIG. 3 the relationship between the NO X storage speed, i.e. the amount of NO X occluded per unit time in the NO X storing catalyst 13 to the NO X storage amount and the NO X storing catalyst 13, which is occluded in the NO X storing catalyst 13 Is shown. FIG. 3 shows that the amount of NO X that can be stored in the NO X storage catalyst 13 per unit time increases as the NO X storage amount decreases. Incidentally, in advance in the ROM32 in the form of a map as shown in FIG. 4 as a function of the discharge amount of NO X NOXA the engine required torque TQ and the engine rotational speed N to be discharged per time unit from the combustion chamber 2 in the embodiment according to the present invention is stored, the NO X storage amount to the NO X storage catalyst 13 is estimated from the map.
In the embodiment according to the present invention, the vehicle is driven by the electric motor 23 as much as possible as long as the charge amount SOC of the battery 27 is sufficient. In this case, a lower limit value SC 1 and the upper limit value SC 2 is set in advance as shown in FIG. 5 (A) as a criterion for determining whether the state of charge SOC of the battery 27 is sufficient, these lower or to drive the vehicle is determined by the value SC 1 and the upper limit value SC of whether the electric motor 23 for driving the vehicle by the engine based on 2.
In other words, the vehicle driving by the agency from the vehicle drive by an electric motor 23 is started the operation of the engine when the state of charge SOC have been performed driven by the electric motor 23 becomes lower than the lower limit value SC 1 in the embodiment according to the present invention Switched. At this time, in order to charge the battery 27, the electric motor 23 is switched to generate power.
On the other hand, different driving methods in accordance with the vehicle driving force that is required when the state of charge SOC of the battery 27 exceeds the upper limit value SC 2 is taken. That is, when the vehicle can be driven only by the electric motor 23 at this time, the operation of the engine is stopped and the driving of the vehicle by the electric motor 23 is started. On the other hand, when the vehicle cannot be driven only by the electric motor 23 at this time, the operation of the engine is continued, and the vehicle is driven by both the engine and the electric motor 23. At this time, the shortage of the vehicle driving force by the electric motor 23 is compensated by the engine.
The charge amount SOC is calculated by integrating the charge / discharge current I of the battery 27, for example. FIG. 5B shows an example of a charge amount calculation routine executed by interruption every fixed time. In this example, the charge / discharge current I of the battery 27 is added to the charge amount SOC every fixed time. This current value I is positive during charging and negative during discharging.
By the way, when the engine operation is stopped during the vehicle operation and then the engine operation is resumed, a large amount of NO X is discharged from the combustion chamber 2 immediately after the engine operation is resumed as described above. In this case the NO X storage per unit time the NO X storing catalyst 13 as can be seen from Figure 3 the NO X storage amount is large of the catalyst 13 becomes less the amount of NO X can be occluded, at this time was thus the NO X storing catalyst 13 A large amount of NO X will pass through. In this case the reducing amount of NO X slip through the NO X storing catalyst 13 is necessary to reduce the amount of NO X stored in the NO X storing catalyst 13 at the time of restarting operation of the engine.
Therefore, in the present invention, when the operation of the engine is stopped and the driving of the vehicle by the electric motor 23 is started, the NO X storage amount stored in the NO X storage catalyst 13 is larger than the predetermined storage amount. and so as to release the NO X from the NO X storing catalyst 13 and the air-fuel ratio of the exhaust gas flowing into the NO X storing catalyst 13 rich. When NO X is released from the NO X storage catalyst 13 in this way, the NO X storage amount in the NO X storage catalyst 13 becomes zero when the engine is restarted, and thus is discharged from the combustion chamber 2 at this time. NO X is favorably stored in the NO X storage catalyst 13.
On the other hand, when the operation of the engine is stopped and driving of the vehicle by the electric motor 23 is started, the air-fuel ratio of the exhaust gas flowing into the NO X storage catalyst 13 is made rich when the NO X storage catalyst 13 is not activated. also the nO X storing catalyst 13 is not satisfactorily nO X is released from this time nO X even released as being released nO X is not well reduced.
Therefore, in the embodiment according to the present invention, the NO X storage amount stored in the NO X storage catalyst 13 when the operation of the engine is stopped and the driving of the vehicle by the electric motor 23 is started is based on the predetermined storage amount. perform the action of raising the temperature of the nO X storing catalyst 13 when the number and the nO X storing catalyst 13 also is not activated, the air-fuel ratio of the exhaust gas the nO X storing catalyst 13 flows into the nO X storing catalyst 13 after activation It is made rich to release NO X from the NO X storage catalyst 13.
Specifically, in the embodiment according to the present invention, the temperature of the NO X storage catalyst 13 is detected by the temperature sensor 14, the NO X storage amount is larger than a predetermined storage amount, and the NO X storage catalyst 13 temperature the action of raising the temperature of the NO X storage catalyst 13 is performed when a predetermined lower than the activation temperature, the NO X storing catalyst 13 after the temperature of the NO X storing catalyst 13 has reached a predetermined activation temperature The air-fuel ratio of the exhaust gas flowing into the engine is made rich.
Next, the operation control routine will be described with reference to FIGS. This routine is executed by interruption every predetermined time.
Referring to FIG. 6, the discharge amount of NO X NOXA is calculated from the map shown in FIG. 4, first, at step 50. Next, at step 51, this exhausted NO X amount is added to the NO X storage amount ΣNOX stored in the NO X storage catalyst 13. Next, at step 52, it is judged if the EV travel flag indicating that the vehicle should be traveled by only the electric motor 23 or by both the electric motor 23 and the engine is set. When the EV traveling flag is not set, the routine proceeds to step 53.
Charge SOC of step 53 the battery 27 whether exceeds the upper limit value SC 2 is discriminated. The vehicle is driven only by the engine proceeds to step 54 when the SOC ≦ SC 2. At this time, the electric motor 23 generates a power. Then the air-fuel ratio of the exhaust gas flowing into the NO X storing catalyst 13 by the rich to release NO X from the NO X storing catalyst 13 when exceeding the allowable value the NO X storage amount ΣNOX step 55 is predetermined A NO X release process is performed. If NO X emission process is performed ΣNOX is set to zero.
On the other hand, it is set EV travel flag proceeds to step 56 when the state of charge SOC is determined to exceed the upper limit value SC 2 in step 53, then the routine proceeds to step 57. When the EV running flag is set, the process jumps from step 52 to step 57 in the next processing cycle. In step 57 the state of charge SOC is determined whether it is lower than the lower limit value SC 1 is when SOC ≧ SC 1 jumps to step 59. In contrast, EV traveling flag proceeds to step 58 becomes a SOC <SC 1 is reset, then the routine proceeds to step 59. When the EV running flag is reset, the routine proceeds from step 52 to step 54 through step 53. Therefore the process proceeds to step 59 after a SOC> SC 2, it until SOC <SC 1.
In step 59, it is determined whether or not the vehicle can be driven only by the electric motor 23 from the required vehicle driving force, that is, whether or not the vehicle can be driven only by the electric motor 23. When traveling with only the electric motor 23 is not possible, the routine proceeds to step 60 where the vehicle is driven by the electric motor 23 and the engine. At this time, the shortage of the vehicle driving force by the electric motor 23 is compensated by the output of the engine. Then the air-fuel ratio of the exhaust gas flowing into the NO X storing catalyst 13 by the rich to release NO X from the NO X storing catalyst 13 when exceeding the allowable value the NO X storage amount ΣNOX step 61 is predetermined A NO X release process is performed.
On the other hand, when it is judged that the vehicle can travel only by the electric motor 23 in step 59 whether less than occluded amount NX of the NO X storage amount ΣNOX proceeds to step 62 is predetermined or not. The storage amount NX is an amount the NO X storage speed is very high a fairly small amount, as shown in FIG. Accordingly, when the NO storage amount ΣNOX is smaller than the storage amount NX, it is not necessary to release NO X from the NO X storage catalyst 13, so at this time the routine proceeds to step 63 where the engine is stopped and then the routine proceeds to step 67 to proceed to the electric motor 23. Only traveling is performed. At this time, the transmission 21 is in a neutral state.
Thus, in the embodiment according to the present invention, the NO X storage amount ΣNOX stored in the NO X storage catalyst 13 when the operation of the engine is stopped and the driving of the vehicle by the electric motor 23 is started is determined in advance. When the stored amount is smaller than the storage amount NX, the driving of the vehicle by the electric motor 23 is started without making the air-fuel ratio of the exhaust gas flowing into the NO X storage catalyst 13 rich.
On the other hand, when it is determined in step 62 that the NO X storage amount ΣNOX is larger than the storage amount NX, the routine proceeds to step 64, where it is determined whether or not the temperature TC of the NO X storage catalyst 13 is lower than the activation temperature T 0. The When TC ≧ T 0 , that is, when the NO X storage catalyst 13 is activated, the routine proceeds to step 65 where the engine is stopped, and in step 66, NO X release processing is performed when the engine stops. For example a certain period immediately before the engine is stopped, the fuel injection valve 3 toward the combustion chamber 2 is supplied additional fuel in the first half late expansion stroke, the air-fuel ratio of the exhaust gas thereby flowing into the NO X storing catalyst 13 Is made rich. In this case, the exhaust gas having a rich air-fuel ratio flows slowly through the NO X storage catalyst 13, so that the NO X release and reduction actions are performed satisfactorily. Next, the routine proceeds to step 67 where the running of the vehicle by the electric motor 23 is started.
On the other hand, when it is determined in step 64 that the temperature TC of the NO X storage catalyst 13 is lower than the activation temperature T 0 , the routine proceeds to step 68 where temperature increase control of the NO X storage catalyst 13 is performed. At this time, the temperature increase control of the NO X storage catalyst 13 is performed, for example, by increasing the engine output and increasing the exhaust gas temperature. At this time, the electric motor 23 is used as a generator, and the increase in engine output is consumed by the power generation action of the electric motor 23.
Next, when the NO X storage catalyst 13 is activated, the routine proceeds from step 64 to step 65, where the engine is stopped, and in step 66, NO X release processing is performed. The NO X storage amount ΣNOX continues to increase while the temperature increase control of the NO X storage catalyst 13 is performed, and when the NO X release process is performed, the increased stored NO X can be reduced. The amount of additional fuel supplied into the combustion chamber 2 is increased. Next, the routine proceeds to step 67 where traveling by the electric motor 23 is started.
Next, another embodiment of the electric device will be described with reference to FIG.
Referring to FIG. 8, in this embodiment, the electric device includes a pair of motor generators 70 and 71 that operate as an electric motor and a generator, and a planetary gear mechanism 72. The planetary gear mechanism 72 includes a sun gear 73, a ring gear 74, a planetary gear 75 disposed between the sun gear 73 and the ring gear 74, and a planetary carrier 76 that carries the planetary gear 75. The sun gear 73 is connected to the rotation shaft 77 of the motor generator 71, and the planetary carrier 76 is connected to the output shaft 78 of the engine 1.
The ring gear 74 is connected to a rotating shaft 79 of the motor generator 70 on the one hand, and connected to an output shaft 80 connected to a driving wheel on the other hand via a belt 81. Therefore, it can be seen that when the ring gear 74 rotates, the output shaft 80 is rotated accordingly.
Although a detailed description of the operation of the electric device is omitted, generally speaking, the motor generator 70 mainly operates as an electric motor, the motor generator 71 mainly operates as a generator, and the operation of the engine 1 is performed. And the vehicle can be driven by the motor generator 70. That is, when the motor generator 70 is rotated, the ring gear 74 is rotated, and the rotational force of the ring gear 74 is transmitted to the output shaft 80 via the belt 81, thereby driving the vehicle. On the other hand, since the planetary carrier 76 does not rotate at this time, when the ring gear 74 rotates, the sun gear 73 is rotated, and at this time, the motor generator 71 rotates idly.
On the other hand, when the vehicle is driven by the motor generator 70 and the vehicle driving force at this time is assisted by the output of the engine 1, the rotational force of the planetary carrier 76 is added to the rotational force of the ring gear 74. Further, when the vehicle is driven by the engine 1 and power is generated by the motor generator 71, the motor generator 70 idles.
2…燃焼室
4…吸気マニホルド
5…排気マニホルド
13…NO吸蔵触媒
21…変速機
23…電気モータ
27…バッテリ
2 ... Combustion chamber 4 ... Intake manifold 5 ... Exhaust manifold 13 ... NO X storage catalyst 21 ... Transmission 23 ... Electric motor 27 ... Battery

Claims (5)

  1.  機関による車両駆動力とは別個に車両駆動力を発生可能でかつ機関により発電可能な電動装置を具備しており、機関および電動装置のいずれか一方又は双方によって車両を駆動可能なハイブリッド車両の排気浄化装置において、機関排気通路内に、流入する排気ガスの空燃比がリーンのときには排気ガス中に含まれるNOを吸蔵し流入する排気ガスの空燃比が理論空燃比又はリッチになると吸蔵したNOを放出するNO吸蔵触媒を配置し、機関の運転を停止して電動装置による車両の駆動を開始するときにNO吸蔵触媒に吸蔵されているNO吸蔵量が予め定められている吸蔵量よりも多いときにはNO吸蔵触媒に流入する排気ガスの空燃比をリッチにしてNO吸蔵触媒からNOを放出させるようにしたハイブリッド車両の排気浄化装置。 Exhaust of a hybrid vehicle having an electric device capable of generating vehicle driving force separately from the vehicle driving force by the engine and capable of generating electric power by the engine, and capable of driving the vehicle by one or both of the engine and the electric device NO in purifier, into the engine exhaust passage, the air-fuel ratio of the inflowing exhaust gas when the lean occluding the air-fuel ratio of the exhaust gas occluding NO X contained in the exhaust gas flowing becomes the stoichiometric air-fuel ratio or rich occlusion that arranged the NO X storing catalyst to release the X, is the NO X storage amount stored in the NO X storage catalyst when to stop the operation of the engine starts to drive the vehicle by the electric device is predetermined hybrid vehicle when greater than the amount which is adapted to release NO X from the NO X storing catalyst and the air-fuel ratio of the exhaust gas flowing into the NO X storage catalyst rich Exhaust gas purification device of.
  2.  機関の運転を停止して電動装置による車両の駆動を開始するときにNO吸蔵触媒に吸蔵されているNO吸蔵量が予め定められている吸蔵量よりも少ないときにはNO吸蔵触媒に流入する排気ガスの空燃比をリッチにすることなく電動装置による車両の駆動を開始するようにした請求項1に記載のハイブリッド車両の排気浄化装置。 It flows into the NO X storage catalyst when smaller than storage amount the NO X storage amount being occluded is predetermined in the NO X storage catalyst when to stop the operation of the engine starts to drive the vehicle by the electric device The exhaust emission control device for a hybrid vehicle according to claim 1, wherein driving of the vehicle by the electric device is started without making the air-fuel ratio of the exhaust gas rich.
  3.  機関の運転を停止して電動装置による車両の駆動を開始するときにNO吸蔵触媒に吸蔵されているNO吸蔵量が予め定められている吸蔵量よりも多くかつNO吸蔵触媒が活性化していないときにはNO吸蔵触媒の昇温作用を行い、NO吸蔵触媒が活性化した後にNO吸蔵触媒に流入する排気ガスの空燃比をリッチにしてNO吸蔵触媒からNOを放出させるようにした請求項1に記載のハイブリッド車両の排気浄化装置。 Stop operation of the engine the NO X storage catalyst and more than storage amount the NO X storage amount being occluded is predetermined in the NO X storage catalyst at the start of the driving of the vehicle by the electric device is activated perform the action of raising the temperature of the nO X storage catalyst when not, so that the nO X storage catalyst to release nO X fuel ratio from the nO X storage catalyst in the rich exhaust gas flowing into the nO X storage catalyst after activation The exhaust emission control device for a hybrid vehicle according to claim 1.
  4.  上記NO吸蔵触媒の昇温作用は機関出力を増大させて排気ガス温を上昇させることにより行われ、このとき機関出力の増大分を電動装置による発電作用によって消費させるようにした請求項3に記載のハイブリッド車両の排気浄化装置。 The temperature raising action of the NO X storage catalyst is performed by increasing the engine output and raising the exhaust gas temperature, and at this time, the increase in the engine output is consumed by the power generation action by the electric device. An exhaust emission control device for a hybrid vehicle as described.
  5.  上記電動装置に車両駆動用電力を供給しかつ電動装置による発電電力により充電されるバッテリを具備しており、該バッテリの充電量が予め定められた上限値を越えたときに電動装置のみによって車両を駆動可能であるときには機関の運転を停止して発電装置による車両の駆動を開始するようにした請求項1に記載のハイブリッド車両の排気浄化装置。 A vehicle is provided that supplies electric power for driving the vehicle to the electric device and is charged by electric power generated by the electric device, and the vehicle is driven only by the electric device when the charge amount of the battery exceeds a predetermined upper limit value. The exhaust emission control device for a hybrid vehicle according to claim 1, wherein when the vehicle can be driven, the operation of the engine is stopped and the drive of the vehicle by the power generation device is started.
PCT/JP2009/059823 2009-05-22 2009-05-22 Exhaust purification apparatus for a hybrid vehicle WO2010134212A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/059823 WO2010134212A1 (en) 2009-05-22 2009-05-22 Exhaust purification apparatus for a hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/059823 WO2010134212A1 (en) 2009-05-22 2009-05-22 Exhaust purification apparatus for a hybrid vehicle

Publications (1)

Publication Number Publication Date
WO2010134212A1 true WO2010134212A1 (en) 2010-11-25

Family

ID=43125907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059823 WO2010134212A1 (en) 2009-05-22 2009-05-22 Exhaust purification apparatus for a hybrid vehicle

Country Status (1)

Country Link
WO (1) WO2010134212A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114341476A (en) * 2019-08-02 2022-04-12 日产自动车株式会社 Method for controlling internal combustion engine and control device for internal combustion engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000104597A (en) * 1998-09-30 2000-04-11 Honda Motor Co Ltd Exhaust emission control system for internal combustion engine
JP2005006378A (en) * 2003-06-10 2005-01-06 Isuzu Motors Ltd Hybrid engine
JP2006132506A (en) * 2004-11-09 2006-05-25 Toyota Motor Corp Fuel injection controller for internal combustion engine for vehicle
JP2006200362A (en) * 2005-01-17 2006-08-03 Toyota Motor Corp Exhaust emission purification device in hybrid vehicle
JP2008087516A (en) * 2006-09-29 2008-04-17 Toyota Motor Corp Hybrid vehicle and drive control method of the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000104597A (en) * 1998-09-30 2000-04-11 Honda Motor Co Ltd Exhaust emission control system for internal combustion engine
JP2005006378A (en) * 2003-06-10 2005-01-06 Isuzu Motors Ltd Hybrid engine
JP2006132506A (en) * 2004-11-09 2006-05-25 Toyota Motor Corp Fuel injection controller for internal combustion engine for vehicle
JP2006200362A (en) * 2005-01-17 2006-08-03 Toyota Motor Corp Exhaust emission purification device in hybrid vehicle
JP2008087516A (en) * 2006-09-29 2008-04-17 Toyota Motor Corp Hybrid vehicle and drive control method of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114341476A (en) * 2019-08-02 2022-04-12 日产自动车株式会社 Method for controlling internal combustion engine and control device for internal combustion engine
CN114341476B (en) * 2019-08-02 2023-12-26 日产自动车株式会社 Method for controlling internal combustion engine and control device for internal combustion engine

Similar Documents

Publication Publication Date Title
US6672050B2 (en) Exhaust gas purification device of an engine
JP3783712B2 (en) Control method of internal combustion engine in hybrid vehicle
JP2010058746A (en) Control device and control method of hybrid vehicle
JP4172520B2 (en) Exhaust gas purification device for compression ignition type internal combustion engine
JP3512010B2 (en) Control device for in-cylinder injection internal combustion engine
JP4172519B2 (en) Exhaust gas purification device for compression ignition type internal combustion engine
JP5115439B2 (en) Vehicle operation control device
WO2010134212A1 (en) Exhaust purification apparatus for a hybrid vehicle
JP4449511B2 (en) Internal combustion engine
JP4710473B2 (en) Engine fuel injection control device
JP2002195064A (en) Control device for internal combustion engine
JP2010127146A (en) Exhaust emission control device of internal combustion engine
JP2009293572A (en) Exhaust emission control device for internal combustion engine
JP7190048B2 (en) Internal combustion engine control method and internal combustion engine control device
JP2020063711A (en) Hybrid system, control device for hybrid system, and control method for hybrid system
JP2014213715A (en) Vehicle control device and hybrid vehicle with the same, and vehicle control method
JP2004124827A (en) Power output device and hybrid type power output device, and control method thereof, and hybrid vehicle
JP2005233001A (en) Control device for hybrid automobile
JP2006083776A (en) Controller for internal combustion engine
JP3750370B2 (en) Control device for driving device
JP2020066252A (en) Hybrid system, control device of hybrid system, and control method of hybrid system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09844943

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09844943

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP