WO2010134154A1 - 光通信システムおよび光通信方法 - Google Patents

光通信システムおよび光通信方法 Download PDF

Info

Publication number
WO2010134154A1
WO2010134154A1 PCT/JP2009/059141 JP2009059141W WO2010134154A1 WO 2010134154 A1 WO2010134154 A1 WO 2010134154A1 JP 2009059141 W JP2009059141 W JP 2009059141W WO 2010134154 A1 WO2010134154 A1 WO 2010134154A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
optical communication
optical
interrogator
communication system
Prior art date
Application number
PCT/JP2009/059141
Other languages
English (en)
French (fr)
Inventor
一希 渡邊
定樹 中野
健夫 芝
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2009/059141 priority Critical patent/WO2010134154A1/ja
Priority to JP2011514235A priority patent/JPWO2010134154A1/ja
Publication of WO2010134154A1 publication Critical patent/WO2010134154A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • H04B10/116Visible light communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • H04B10/1143Bidirectional transmission

Definitions

  • the present invention uses a non-contact optical communication device that operates at a voltage generated from light, and uses a light to exchange data between the non-contact optical communication device attached to an article and an interrogator.
  • the present invention relates to an optical communication system.
  • wireless IC tags with built-in IC chips and antennas have been used as devices for digitizing various processes such as article management.
  • This wireless IC tag exchanges information using electromagnetic waves between an interrogator and an IC chip, and holds various data such as holding data transmitted from the interrogator and transmitting data held by the wireless IC tag. Realize the function.
  • a high frequency signal (electromagnetic wave) supplied from an interrogator is received by an antenna, and an internal voltage necessary for the operation of an internal circuit is received from the high frequency signal. Is generated. Furthermore, the high-frequency signal is formed from a carrier wave and an information signal superimposed on the carrier wave, demodulates the information signal superimposed on the carrier wave, executes processing according to the information signal, and superimposes the processing result on the carrier wave. Send data to the instrument.
  • the wireless IC tag system that enables data communication between the interrogator and the wireless IC tag is performed by reading data stored in the wireless IC tag attached to the article from the interrogator and data to the wireless IC tag. Can be written, and therefore, it is used for article management and storage management in a production line, a distribution warehouse, and the like.
  • Typical standards for wireless IC tag systems used for such article management and warehouse management are ISO / IEC-18000-6 and ISO / IEC-15893.
  • ISO / IEC-18000-6 uses a high-frequency signal in a frequency band of 860 MHz to 960 MHz (so-called UHF band) as a carrier signal.
  • UHF band 860 MHz to 960 MHz
  • the amplitude of the carrier signal is partially modulated (amplitude modulation) by downlink communication data.
  • Downlink communication data is encoded by a mirror code using a subcarrier. The data rate does not depend on the carrier signal in the UHF band, and is determined according to the communication speed designated by the interrogator.
  • ISO / IEC-15893 uses a high frequency signal of 13.56 MHz band as a carrier signal.
  • the amplitude of the carrier signal is partially modulated (amplitude modulation) by downlink communication data.
  • Downlink communication data is encoded by a Manchester code or a Manchester code using a subcarrier.
  • the data rate is defined by the frequency obtained by dividing the 13.56 MHz carrier signal.
  • a meandering portion that is a pair of meandering linear conductors extending from the power feeding portion to both sides, and a pair of radiating portions connected to outer ends of the pair of meandering portions
  • the meandering portion comprises a plurality of sides arranged in the longitudinal direction, which is the direction in which the meandering portion extends, and the end portions on the meandering portion side of each radiation portion, and the plurality of sides of the meandering portion
  • a non-power supply RF tag (wireless IC tag) is operated using light such as a visible laser or LED supplied from an interrogator as an energy source, and the interrogator and the non-power supply RF tag exchange data.
  • a technique for expanding the communication distance between the interrogator and the wireless IC tag by using a radio wave such as a microwave is used.
  • Patent Document 3 discloses that digital data decoded from an optical signal is used for an application.
  • the antenna is improved as disclosed in Patent Document 1 or the like.
  • the minimum operating power required for the wireless IC tag to operate needs to be reduced, and the interrogator needs to output a high-frequency signal having as much power as possible.
  • the output power of the interrogator is usually regulated by the Radio Law.
  • the interrogator outputs a high-frequency signal having a large power, so that the communication range between the wireless IC tag and the interrogator can be expanded.
  • communication using the interrogator can be performed. It becomes difficult for the user of the wireless IC tag system to specify the wireless IC tag to be performed.
  • the interrogator Because the wireless IC tag that exists in the range to which the high-frequency signal is supplied responds, the user himself / herself selects the result of the response of the specific wireless IC tag from the results of the response of many wireless IC tags. There is a need to.
  • Data may be acquired from a wireless IC tag adjacent to the wireless IC tag selected by the person.
  • An object of the present invention is to provide a non-contact optical communication system using light that enables a user of the non-contact optical communication system to specify a non-contact optical communication apparatus that exchanges data with an interrogator. There is.
  • the present invention is a non-contact optical communication device system having an interrogator and a non-contact optical communication device.
  • the interrogator has a light emitting device and an imaging device.
  • the non-contact optical communication device includes a light receiving device, a power supply device, a receiving device, a control device, and a display device.
  • the light emitting device in the interrogator emits an optical signal whose light intensity is modulated in accordance with the first information signal.
  • the light receiving device in the non-contact optical communication device receives an optical signal and converts the received optical signal into an electric signal.
  • the power supply device in the non-contact optical communication device generates a power supply voltage for driving the receiving device, the control device, and the display device from the electrical signal.
  • the receiving device in the non-contact optical communication device demodulates the first information signal from the electrical signal.
  • the control device in the non-contact optical communication device performs information processing according to the first information signal, and supplies the processing result to the display device as the second information signal.
  • the display device in the non-contact optical communication device displays the second information signal by a predetermined display method.
  • the user of the non-contact optical communication system can specify the non-contact optical communication apparatus that exchanges data with the interrogator.
  • Embodiment 1 of a non-contact optical communication system It is a basic composition of Embodiment 1 of a non-contact optical communication system. It is a basic circuit block diagram of light-receiving device B5 mounted in non-contact optical communication apparatus B2. It is a basic circuit block diagram of receiving circuit B8 mounted in non-contact optical communication apparatus B2. It is an example of the optical signal L1 output from light-emitting device B2 in the non-contact optical communication system shown in FIG. 1, and the internal waveform of non-contact optical communication device B2. It is a basic circuit block diagram of data display apparatus B10 mounted in non-contact optical communication apparatus B2. It is a basic composition of Embodiment 2 of a non-contact optical communication system. It is a specific usage example of the non-contact optical communication system shown in FIG.
  • non-contact optical communication system It is a specific usage example of the non-contact optical communication system shown in FIG. It is a basic composition of Embodiment 3 of a non-contact optical communication system. It is a basic circuit block diagram of receiving circuit B8 mounted in non-contact optical communication apparatus B2. It is an example of the optical signal L1 output from light-emitting device B2 in the non-contact optical communication system shown in FIG. 9, and the internal waveform of non-contact optical communication device B2. It is the perspective view of non-contact optical communication apparatus B2 which shows Embodiment 4, and its usage example. 10 is an external view of a portable information terminal showing Embodiment 5.
  • FIG. 5 is a specific usage example of the non-contact optical communication system shown in FIG. It is a basic composition of Embodiment 3 of a non-contact optical communication system. It is a basic circuit block diagram of receiving circuit B8 mounted in non-contact optical communication apparatus B2. It is an example of the optical signal L1 output from light-emitting device B2 in the non-contact optical
  • FIG. 1 shows a basic configuration of Embodiment 1 of a non-contact optical communication system using light.
  • B1 is an interrogator and B2 is a non-contact optical communication device (optical ID tag, visible light ID tag).
  • B2 is a non-contact optical communication device (optical ID tag, visible light ID tag).
  • FIG. 1 only one non-contact optical communication device B2 is illustrated, but a plurality of non-contact optical communication devices B2 may exist.
  • the interrogator B1 includes a light emitting device B3 and an imaging device B4.
  • the light emitting device B3 outputs an optical signal L1 modulated according to the information signal S1 from the previous signal processing device. At this time, the optical signal L1 is formed with visible light.
  • the imaging device B4 captures the display signal L2 optically output from the non-contact optical communication device B2, and is connected to the subsequent stage as the response signal S2 transmitted from the non-contact optical communication device B2. Communicate to the signal processor.
  • the signal processing device is a device that performs signal processing under the control of a host system controlled by a user or the like.
  • a command or data to be transmitted to the non-contact optical communication device B2 is generated and output to the light emitting device B3 as an information signal S1, or a response signal S2 transmitted by the imaging device B4
  • the interrogator B1 and the non-contact light are generated by generating a command or data to be transmitted next to the non-contact optical communication device B2 in accordance with the transmission to the host system or the reception data formed by the response signal S2. Communication processing with the communication device B2 is performed.
  • the non-contact optical communication device B2 includes a light receiving device B5, a power supply circuit B6, and an internal circuit B7.
  • the light receiving device B5 receives the optical signal L1 output from the interrogator B1, converts the optical signal L1 into electric signals S3 and S4, and outputs the electric signals S3 and S4 to the power supply circuit B6 and the receiving circuit B8.
  • electric signals S3 and S4 having a large current are output.
  • electrical signals S3 and S4 with a minute current are output.
  • a solar cell or a photodiode which is an element that converts light energy into electric energy, is used as the light receiving device B5.
  • the power supply circuit B6 generates a desired voltage VDD from the electric signal S3 supplied from the light receiving element B5, and supplies it as an operation power supply voltage to the internal circuit B7.
  • the power supply circuit B6 includes a capacitor element that holds the power supply voltage, a regulator circuit that suppresses the power supply voltage to a desired voltage, a charge pump circuit that generates a high voltage from a small voltage, and the like.
  • the internal circuit B7 includes a receiving circuit B8, a control circuit B9, and a data display device B10.
  • the receiving circuit B8 demodulates the information signal superimposed on the electric signal S4 obtained by converting the optical signal L1 received by the light receiving device B5, thereby reproducing the digital signal information signal S5 and supplying it to the control circuit B9.
  • the control circuit B9 performs signal processing on the information signal S5 supplied from the receiving circuit B8, and supplies the processing result to the data display device B10 as a digital signal information signal S6.
  • the data display device B10 outputs the display signal L2 by optically displaying the information signal S6 output from the control circuit B9 by a predetermined display method.
  • the data display device B10 may display the display signal L2 by emitting light, or display the display signal L2 by using (reflecting / transmitting) the optical signal L1 emitted from the interrogator B1. It may be what you do.
  • the information signal displayed by the data display device B10 may be a letter such as an alphabet or a number, or may be a geometric pattern such as a barcode or QR code, and is not particularly limited. In any case, the display signal L2 is formed with visible light.
  • the image display device in which the interrogator B1 is mounted as the display signal L2 output by the data display device B10 mounted in the non-contact optical communication device B2 optically displaying the information signal S6.
  • An image is captured by B4, and the captured image signal is transmitted as a response signal S2 transmitted from the non-contact optical communication device B2 to a signal processing device connected to the subsequent stage.
  • FIG. 2 shows a basic circuit configuration diagram of the light receiving device B5 mounted on the non-contact optical communication device B2.
  • the light receiving device B5 shown in FIG. 2 includes N unit light receiving elements B11 connected in series and M unit light receiving elements B11 connected in series, and generates electric signals S3 and S4.
  • FIG. 2 shows an example in which the electric signals S3 and S4 are generated by connecting the same unit light receiving elements B11 in series, it is also possible to configure them with different unit light receiving elements.
  • the number connected in series may be set according to the voltage level and current supply capability required for the electrical signals S3 and S4, and is not particularly limited. Further, although not shown in FIG. 2, the output current level or the like may be adjusted by connecting the unit light receiving elements B11 in parallel.
  • each unit light receiving element B11 receives the optical signal L1 irradiated by the interrogator B1, and each unit light receiving element B11 can generate a voltage and output desired electrical signals S3 and S4. Become.
  • FIG. 3 shows a basic circuit configuration diagram of the receiving circuit B8 mounted on the non-contact optical communication device B2.
  • the receiving circuit B8 shown in FIG. 3 includes a resistor R1, inverter circuits G1 to G3, a low-pass filter circuit B12, a voltage comparison circuit B13, and a data holding circuit B14.
  • the input signal of the receiving circuit B8 is an electric signal S4 supplied from the light receiving device B5.
  • the electric signal S4 has a large current when the optical signal L1 irradiated to the light receiving device B5 has strong light energy, and the light receiving device When the optical signal L1 irradiated to B5 has weak light energy, the current becomes minute.
  • the electric signal S4 is input to the inverter circuit G1 in a form converted into a voltage signal by the resistor R1.
  • a high level signal “H” is output by the inverter circuits G1 and G2.
  • the inverter circuits G1 and G2 output a low level signal “L”.
  • a change in optical energy of the optical signal L1 is generated as the clock signal S7.
  • the clock signal S7 is input to the inverter circuit G3, and the inverted signal S8 of the clock signal S7 is input to the low-pass filter circuit B12.
  • the low-pass filter circuit B12 includes a resistor R2 and a capacitor C1, and inputs a voltage signal S9 from which a high-frequency component of the inverted signal S8 has been removed to the voltage comparison circuit B13.
  • the voltage comparison circuit B13 outputs a high level signal “H” if the voltage signal S9 output from the low-pass filter circuit B12 is lower than the reference voltage VT. If the voltage signal S9 output from the low-pass filter circuit B12 is higher than the reference voltage VT, the low level signal “L” is output and the detection signal S10 is output.
  • the data holding circuit B14 receives the clock signal S7 generated by the inverter circuits G1 and G2 and the detection signal S10 output from the voltage comparison circuit B13.
  • the detection signal S10 at the time when the clock signal S7 changes from the low level signal “L” to the high level signal “H” is held, the information signal S5 is generated as the signal transmitted from the interrogator B1, and connected to the subsequent stage. To the control circuit B9.
  • the non-contact optical communication device B2 can reproduce the information signal transmitted from the interrogator B1, and the reproduced information signal S5 is supplied to the control circuit B9. Signal processing corresponding to the signal S5 is performed.
  • the information signal S6 generated by the signal processing of the control circuit B9 is supplied to the data display device B10, and the data display device B10 optically displays the information signal S6, thereby outputting the display signal L2.
  • the display signal L2 output when the data display device B10 optically displays the information signal S6 is imaged by the imaging device B4 in which the interrogator B1 is mounted, and the captured image signal is contactlessly communicated.
  • the response signal S2 transmitted from the device B2 is transmitted to the signal processing device connected to the subsequent stage.
  • each unit it is possible to generate a power supply voltage necessary for the operation of the internal circuit B7 of the non-contact optical communication device B2 in which no battery is mounted, by the optical signal L1 output from the interrogator B1.
  • the data communication from the interrogator B1 to the non-contact optical communication device B2 and the data display device B10 enable the data communication from the non-contact optical communication device B2 to the interrogator B1.
  • the optical signal L1 is formed with visible light
  • a user using the non-contact optical communication system confirms in real time that the optical signal L1 is applied to the non-contact optical communication device B2. Therefore, it is possible to prevent unintentional irradiation of the optical signal L1 to the non-contact optical communication device B2.
  • FIG. 4 shows an example of the optical signal L1 output from the light emitting device B3 and the internal waveform of the non-contact optical communication device B2 in the non-contact optical communication system shown in FIG. 4,
  • A is an information signal S1 transmitted by the interrogator B1
  • B is an optical signal L1 output from the light emitting device B3 mounted on the interrogator B1
  • C is generated by the power supply circuit B6.
  • D is a clock signal generated by binarizing the electric signal S4 output from the light receiving device B5 by the inverter circuits G1 and G2.
  • (E) is the inverted signal S8 of the clock signal S7 generated by the inverter circuit G3
  • (F) is the voltage signal S9 from which the high frequency component of the inverted signal S8 has been removed by the low-pass filter circuit B12
  • (G) is the voltage comparison.
  • the information signal transmitted from the interrogator B1 to the non-contact optical communication device B2 is transmitted at a period of 1 bit every time T0.
  • the time during which the optical energy of the optical signal L1 at the time T0 is slightly suppressed is T1.
  • the time during which the optical energy of the optical signal L1 at the time T0 is slightly suppressed is T2. Since the time T2 is sufficiently longer than the time T1, the information signals “1” and “0” are distinguished and transmitted.
  • the means for generating the information signal is not limited.
  • FIG. 5 shows a basic circuit configuration diagram of the data display device B10 mounted on the non-contact optical communication device B2.
  • the data display device B10 includes a plurality of unit display devices B18 (including B18 (a) and B18 (b)) arranged in a matrix, and a data transmission circuit B19 that transmits display data of each unit display device B18.
  • the address selection circuit B20 selects a transmission destination of display data transmitted from the data transmission circuit B19.
  • the address selection circuit B20 and the data transmission circuit B19 operate in conjunction with each other, and the address selection circuit B20 is a circuit that selects a transmission destination of data extracted from the information signal S6 transmitted from the control circuit B9.
  • B19 is a circuit that extracts data for each address from the information signal S6 transmitted from the control circuit B9, outputs data for the address selected by the address selection circuit B20, and transmits display data for each address.
  • the display data is transmitted to the plurality of unit display devices B18 arranged in a matrix by the operations of the address selection circuit B20 and the data transmission circuit B19.
  • the unit display device B18 holds the display data transmitted by the data transmission circuit B19 and the address selection circuit B20 and switches the non-display state B18 (a) and the display state B18 (b) to transmit the display data. Is displayed. By arranging such unit display devices B18 in a matrix, the information signal S6 transmitted from the control circuit B9 is optically displayed.
  • the data display device B10 optically displays the information signal S6 output from the control circuit B9 and outputs the display signal L2.
  • characters such as alphabets and numbers, geometric patterns such as barcodes and QR codes, and the like can be displayed. .
  • FIG. 6 shows a basic configuration of the second embodiment of the non-contact optical communication system using light.
  • the interrogator B1 of FIG. 6 includes an irradiation range control device B15.
  • the irradiation range control device B15 controls the range in which the optical signal L1 output from the light emitting device B3 is irradiated.
  • the irradiation range control device B15 irradiates the optical signal L1 over a wide region or concentrates the optical signal L1 on a narrow region. It has a function to do.
  • FIG. 7 and 8 show specific usage examples of the non-contact optical communication system shown in FIG.
  • the interrogator B1 and the non-contact optical communication device B2 shown in FIG. 6 are simply shown, and a large number of non-contact optical communication devices B2 are arranged adjacent to each other.
  • FIG. 7 shows a state in which a large number of non-contact optical communication devices B2 are irradiated with the optical signal L1.
  • FIG. 8 shows a state where only one non-contact optical communication device B2 selected by the user from among a large number of non-contact optical communication devices B2 is irradiated with the optical signal L1.
  • the interrogator B1 includes an irradiation range control device B15, and has a function that allows the user to control the irradiation range of the optical signal L1 output from the light emitting device B3, so that the user wants to acquire an information signal. It becomes possible to select and operate.
  • the light formed by visible light is controlled by controlling the irradiation range control device B15.
  • the signal L1 is applied to a large number of non-contact optical communication devices B2.
  • Each display signal L2 output by optical display by the non-contact optical communication device B2 is collectively imaged by the imaging device B4 built in the interrogator B1, so that a large number of non-contact optical communication devices B2 It becomes possible to acquire the information signal.
  • the irradiation range control device By controlling B15, only the selected non-contact optical communication device B2 is irradiated with the optical signal L1 formed from visible light.
  • Information from a specific non-contact optical communication device B2 is obtained by imaging the display signal L2 output by optically displaying the non-contact optical communication device B2 with the imaging device B4 built in the interrogator B1. It becomes possible to acquire a signal.
  • non-contact optical communication devices B2 selected by the user.
  • FIG. 9 shows a basic configuration of the third embodiment of the non-contact optical communication system using light.
  • B1 is an interrogator and B2 is a non-contact optical communication device.
  • B2 is a non-contact optical communication device.
  • only one non-contact optical communication device B2 is illustrated, but a plurality of non-contact optical communication devices B2 may exist.
  • the interrogator B1 includes a light emitting device B3 and an imaging device B4.
  • the light emitting device B3 outputs an optical signal L1 modulated according to the information signal S1 to be transmitted.
  • the optical signal L1 is formed with visible light.
  • the imaging device B4 captures the display signal L2 optically output from the non-contact optical communication device B2, and is connected to the subsequent stage as the response signal S2 transmitted from the non-contact optical communication device B2. Communicate to the signal processor.
  • the non-contact optical communication device B2 includes a light receiving device B5, a power supply circuit B6, and an internal circuit B7.
  • the light receiving device B5 is an element that receives the optical signal L1 output from the interrogator B1 and generates electrical energy according to the intensity of light of the optical signal L1, and the generated electrical signals S3 and S4 are transmitted to the power supply circuit B6 and Output to the receiving circuit B8.
  • the electrical signals S3 and S4 output from the light receiving device B5 output a large current when the light energy received by the light receiving device B5 is strong, and a small current when the light energy received by the light receiving device B5 is weak. Is output.
  • a solar cell or a photodiode which is an element that converts light energy into electric energy, is used for the light receiving device B5.
  • the power supply circuit B6 generates a desired voltage VDD from the electric signal S3 supplied from the light receiving element B5, and supplies it as an operation power supply voltage to the internal circuit B7.
  • the power supply circuit B6 includes a capacitor element that holds the power supply voltage, a regulator circuit that suppresses the power supply voltage to a desired voltage, a charge pump circuit that generates a high voltage from a small voltage, and the like.
  • the internal circuit B7 includes a reception circuit B8, a control circuit B9, a data display device B10, and a clock signal generation circuit B16.
  • the receiving circuit B8 demodulates the information signal superimposed on the electric signal S4 obtained by converting the optical signal L1 received by the light receiving device B5, thereby reproducing the digital signal information signal S5 and supplying it to the control circuit B9.
  • the clock signal generation circuit B16 operates with the power supply voltage VDD output from the power supply circuit B6. If the power supply voltage VDD exceeds the voltage necessary for the operation of the clock signal generation circuit B16, the clock signal generation circuit B16 generates the clock signal S11. B8, the control circuit B9, and the data display device B10.
  • the control circuit B9 performs signal processing according to the information signal S5 supplied from the receiving circuit B8, and supplies the processing result to the data display device B10 as a digital signal information signal S6.
  • the data display device B10 outputs a display signal L2 by optically displaying the information signal S6 output from the control circuit B9. At this time, the data display device B10 may output the display signal L2 by emitting light, or output the display signal L2 by using (reflecting / transmitting) the optical signal L1 emitted from the interrogator B1. It may be what you do.
  • the information signal displayed by the data display device B10 may be a letter such as an alphabet or a number, or may be a geometric pattern such as a barcode or QR code, and is not particularly limited.
  • the image display device in which the interrogator B1 is mounted as the display signal L2 output by the data display device B10 mounted in the non-contact optical communication device B2 optically displaying the information signal S6.
  • An image is captured by B4, and the captured image signal is transmitted as a response signal S2 transmitted from the non-contact optical communication device B2 to a signal processing device connected to the subsequent stage.
  • FIG. 10 shows a basic circuit configuration diagram of the receiving circuit B8 mounted on the non-contact optical communication device B2.
  • the receiving circuit B8 shown in FIG. 10 includes a resistor R1, inverter circuits G1 and G2, and a data extraction circuit B17.
  • the input signal of the receiving circuit B8 is an electric signal S4 supplied from the light receiving device B5.
  • the electric signal S4 has a large current when the optical signal L1 irradiated to the light receiving device B5 has strong light energy, and the light receiving device When the optical signal L1 irradiated to B5 has weak light energy, the current becomes minute.
  • this electric signal S4 is converted into a voltage signal by the resistor R1 and input to the inverter circuit G1
  • the inverter circuits G1 and G2 When a high level signal “H” is output by, and the optical signal L1 irradiated to the light receiving device B5 has weak light energy, the inverter circuits G1 and G2 output a low level signal “L”. Thereby, the change of the optical energy which the optical signal L1 has is produced
  • the data extraction circuit B17 receives the detection signal S12 generated by the inverter circuits G1 and G2 and the clock signal S11 supplied from the clock signal generation circuit B16, and the detection signal S12 becomes the high level signal “H” by the clock signal S11. And the period in which the detection signal S12 is the low level signal “L”, the information signal S5 is generated as the signal transmitted from the interrogator B1, and is output to the control circuit B9 connected to the subsequent stage. . In FIG. 11, during the period in which the detection signal S12 (FIG. 11E) is the high level signal “H”, the clock signal S11 (FIG. 11D) changes from the low level signal “L” to the high level signal “H”.
  • the non-contact optical communication device B2 can reproduce the information signal transmitted from the interrogator B1, and the reproduced information signal S5 is supplied to the control circuit B9. Signal processing corresponding to the signal S5 is performed.
  • the information signal S6 generated by the signal processing of the control circuit B9 is supplied to the data display device B10, and the data display device B10 optically displays the information signal S6, thereby outputting the display signal L2.
  • the display signal L2 output when the data display device B10 optically displays the information signal S6 is imaged by the imaging device B4 in which the interrogator B1 is mounted, and the captured image signal is contactlessly communicated.
  • the response signal S2 transmitted from the device B2 is transmitted to the signal processing device connected to the subsequent stage.
  • each unit it is possible to generate a power supply voltage necessary for the operation of the internal circuit B7 of the non-contact optical communication device B2 in which no battery is mounted, by the optical signal L1 output from the interrogator B1.
  • the data communication from the interrogator B1 to the non-contact optical communication device B2 and the data display device B10 enable the data communication from the non-contact optical communication device B2 to the interrogator B1.
  • the optical signal L1 is formed with visible light
  • a user using the non-contact optical communication system confirms in real time that the optical signal L1 is applied to the non-contact optical communication device B2. Therefore, it is possible to prevent unintentional irradiation of the optical signal L1 to the non-contact optical communication device B2.
  • the stable clock signal S11 is supplied to the internal circuit B7 by the clock signal generation circuit B16, it is possible to operate the circuits provided in the non-contact optical communication device B2 in synchronization.
  • FIG. 11 shows an example of the optical signal L1 output from the light-emitting device B3 and the internal waveform of the non-contact optical communication device B2 in the non-contact optical communication system shown in FIG. 9 and FIG.
  • (A) is an information signal S1 transmitted by the interrogator B1
  • (B) is an optical signal L1 output from the light emitting element B3 mounted on the interrogator B1
  • (C) is generated by the power supply circuit B6.
  • D) is the clock signal S11 supplied from the clock signal generation circuit B16
  • (E) is the electric signal S4 output from the light receiving device B5.
  • the information signal transmitted from the interrogator B1 to the non-contact optical communication device B2 is transmitted at a cycle of 1 bit every time T0.
  • the optical energy of the optical signal L1 is increased during the time T0.
  • the optical energy of the optical signal L1 at the time T0 is suppressed to a minute. In this way, information signals “1” and “0” are distinguished and transmitted.
  • the means for generating the information signal is not limited.
  • FIG. 12 shows a perspective view when one of the non-contact optical communication devices B2 shown in the first to third embodiments is formed on a substrate having flexibility (flexibility) and an example of its use.
  • a light receiving device B5, a data display device B10, a power supply circuit B6, and an internal circuit B7 are formed on a flexible substrate U1 (for example, a plastic substrate). Each is connected by wiring formed on the substrate U1.
  • the power supply circuit B6 and the internal circuit B7 are configured by resistors, capacitors, transistors, and the like.
  • the power supply circuit B6 and the internal circuit B7 may be formed on a single semiconductor substrate such as single crystal silicon by a known semiconductor integrated circuit device manufacturing technique. It may be formed of a resistor, a capacitor, a transistor, or the like formed using an organic semiconductor or metal ink.
  • the substrate U1 is considered in consideration of being formed on a flexible substrate U1. Even when the substrate is curved, the semiconductor substrate needs to be sized so as not to break.
  • the light receiving device B5 has a function of receiving the optical signal L1 emitted from the interrogator B1 and converting the optical signal L1 into electrical signals S3 and S4. In order to sufficiently receive the optical signal L1, the light receiving device B5 requires a larger area than the power supply circuit B6 and the internal circuit B7. As shown in FIG. 12, a solar cell element or a photodiode element is formed as the light receiving device B5 on the substrate U1 using an organic semiconductor, metal ink, or the like.
  • the data display device B10 needs to have an area corresponding to the imaging resolution of the imaging device B4 in order to cause the imaging device B4 built in the interrogator B1 to capture the information signal that optically displays data. For this reason, the data display device B10 requires a larger area than the power supply circuit B6 and the internal circuit B7. As shown in FIG. 12, a display device as the data display device B10 is formed on the substrate U1 using an organic semiconductor, metal ink, or the like.
  • the non-contact optical communication device B2 can be formed on the flexible substrate U1, and as shown in FIG. It becomes possible.
  • FIG. 13 shows an external view of an information portable terminal in which any of the interrogators B1 shown in the first to third embodiments is incorporated.
  • (A) is an external view seen from the front surface of the information portable terminal U2
  • (B) is an external view seen from the back surface of the information portable terminal U2.
  • U3 is a case of the information portable terminal U2, and a data input device U4 and a display device U5 are provided on the surface of the case U3 of the information portable terminal U2.
  • a light emitting device B3 and an imaging device B4 constituting the interrogator B1 are provided on the back surface of the housing U3 of the information portable terminal U2.
  • the irradiation range control device B15 shown in the second embodiment.
  • non-contact optical communication for acquiring information by displaying the image information obtained from the imaging device B4 in real time on the display device U5
  • the device B2 and using the irradiation range control device B15 only the selected non-contact optical communication device B2 can be irradiated with the optical signal L1 output from the light emitting device B3.
  • these processes can be executed and the execution contents can be controlled by the data input device U4.
  • the information portable terminal U2 can perform a calculation process using the information signal acquired using the interrogator B1, and can display the calculation result on the display device U5.
  • the display device U5 can display various data processed by the portable information terminal U2.
  • an information signal is acquired from the non-contact optical communication device B2 shown in the first to fourth embodiments using the light emitting device B3 and the imaging device B4, and the obtained information signal is transferred to the portable information device.
  • the terminal U2 By performing calculation processing by the terminal U2 and displaying it on the display device U5, it becomes possible to know the data that the non-contact optical communication device B2 has, and the convenience of the non-contact optical communication system can be improved.
  • the information portable terminal U2 shown in the present embodiment is a general portable information terminal such as a cellular phone, a notebook personal computer (so-called PDA), a notebook personal computer, and an external device connected to the personal computer.
  • the interrogator B1 shown in the first to third embodiments can be incorporated in various information portable terminals.
  • the data transmission method shown in FIGS. 1 to 4 can be used as the data transmission method from the interrogator B1 to the non-contact optical communication device B2. It is also possible to mount a non-volatile memory or the like in the non-contact optical communication device B2 shown in FIG. 1, FIG. 6, and FIG.
  • the display signal L2 output from the non-contact optical communication device B2 does not need to be visible light like the optical signal L1 output from the interrogator B1, and is light that can be imaged by the imaging device B4 built in the interrogator B1. Any signal can be used.
  • the present invention is preferably applied to a non-contact optical communication system or the like that realizes data exchange according to the form of light.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

 高周波信号を用いる無線ICタグシステムでは、無線ICタグシステムの利用者が、質問器から出力される電磁波を視認することができず、多数の無線ICタグの中から選択した特定の無線ICタグのみからデータを取得することが困難であった。搬送波に光(特に、可視光)を用い、光通信装置に電力とデータを送信し、光通信装置が表示する画像等を撮像することでデータを取得する。これにより、光通信システムの利用者自身が光を視認することができるため、多数ある光通信装置の中から、質問器とデータのやり取りを行う光通信装置を特定することが可能になる。

Description

光通信システムおよび光通信方法
 本発明は、光から発電した電圧で動作する非接触光通信装置を用い、物品に貼り付けられた非接触光通信装置と質問器との間で、光を用いてデータのやり取りを行う非接触光通信システムに関するものである。
 近年、ICチップとアンテナを内蔵した無線ICタグは、物品管理等の様々な処理を電子化する装置として利用されている。この無線ICタグは、質問器とICチップとの間で電磁波を用いて情報の交換を行い、質問器から送信されたデータの保持や、無線ICタグが保持しているデータの送信など様々な機能を実現する。
 具体的には、無線ICタグに搭載されたICチップは電池を内蔵しないため、質問器から供給された高周波信号(電磁波)をアンテナで受信し、高周波信号から内部回路の動作に必要な内部電圧を生成する。更に、高周波信号は搬送波と搬送波に重畳される情報信号から形成され、搬送波に重畳された情報信号を復調し、その情報信号に従った処理を実行し、処理結果を搬送波に重畳することで質問器にデータを送信する。
 このような質問器と無線ICタグのデータ通信を可能にする無線ICタグシステムは、質問器から物品に貼り付けられた無線ICタグに保存されているデータの読取りや、無線ICタグへのデータの書込みを行うことが可能であるため、製造ラインや物流倉庫等における物品管理や入出庫管理等に利用される。この物品管理や入出庫管理等に利用される無線ICタグシステムの規格としてISO/IEC-18000-6、ISO/IEC-15693が代表的である。
 ISO/IEC-18000-6では、キャリア信号には860MHz~960MHzの周波数帯域(所謂、UHF帯)の高周波信号を利用する。下り通信方式は、キャリア信号の振幅が部分的に下り通信データによって変調(振幅変調)される。下り通信データは、副搬送波を利用したミラーコード等によって符号化される。また、データレートは、UHF帯のキャリア信号には依存せず、質問器から指定された通信速度に応じて決定される。
 ISO/IEC-15693では、キャリア信号には13.56MHz帯の高周波信号を利用する。下り通信方式は、キャリア信号の振幅が部分的に下り通信データによって変調(振幅変調)される。下り通信データは、マンチェスタコードや副搬送波を利用したマンチェスタコードによって符号化される。また、データレートは、13.56MHzのキャリア信号を分周して得られる周波数によって規定される。
 以上のような無線ICタグシステムにおいて、特許文献1、2のように、無線ICタグに搭載されるアンテナや無線ICタグへの電力供給手段などの様々な視点から、質問器と無線ICタグとの通信範囲を拡大する技術が開示されており、長い通信距離を必要とする物品管理システム等においては好適な技術である。
 特許文献1には、給電部から両側に伸びる1対の蛇行した線状の導体である蛇行部と、前記1対の蛇行部のそれぞれの外側の端部に接続された1対の放射部とを具備し、前記蛇行部は、当該蛇行部の伸びる方向である長手方向に配列された複数の辺を備え、前記各放射部の前記蛇行部側の端部と、前記蛇行部の複数の辺のうちの最も前記放射部側に位置する辺とが対向する部分の、長手方向に垂直な方向の長さが前記放射部の最も幅の広い部分よりも短くすることで、広帯域化と所望の波長帯の放射効率を向上させると共に、放射部の蛇行部側の端部と、蛇行部の複数の辺のうちの最も放射部側に位置する辺とが対向する部分において発生する静電的結合を抑え、所望の波長帯における放射効率の低下を抑えることを可能にするアンテナ技術が開示されている。
 特許文献2には、無電源RFタグ(無線ICタグ)を、質問器から供給される可視のレーザやLED等の光をエネルギー源として動作させると共に、質問器と無電源RFタグがデータのやり取りでマイクロ波等の電波を用いることで、質問器と無線ICタグの通信距離を拡大する技術が開示されている。
 特許文献3には、光学信号から復号したデジタル・データをアプリケーションへ利用することが開示されている。
特開2007-228325号公報 特開2005-198032号公報 特開2004-221924号公報
 上述のように、高周波信号を搬送波として利用する無線ICタグシステムにおいて、質問器と無線ICタグとの通信距離を拡大するためには特許文献1等に開示されているようなアンテナの改善等によって、無線ICタグが動作するために必要な最低動作電力を低減する必要があると共に、質問器は、可能な限り大きな電力を持つ高周波信号を出力する必要がある。但し、質問器の出力電力等は、電波法等によって規定がされているのが通例である。
 このように、質問器が大きな電力を持つ高周波信号を出力することで、無線ICタグと質問器との通信範囲を拡大することが可能になるが、その一方で、質問器を用いて通信を行う無線ICタグを、無線ICタグシステムの利用者が特定することは困難になる。
 つまり、無線ICタグシステムの利用者が、多数存在する無線ICタグの中から特定の無線ICタグを選択し、その無線ICタグが保持しているデータのみを取得したい場合においても、質問器からの高周波信号が供給される範囲に存在する無線ICタグが応答してしまうため、多数の無線ICタグが応答した結果の中から、特定の無線ICタグが応答した結果を、利用者自身が選別する必要がある。
 これに対して、質問器が出力する高周波信号の電力を抑制することが考えられる。しかし、質問器の出力電力や無線ICタグの最低動作電力の性能誤差等を考慮すると、UHF帯等の高周波信号を利用した無線ICタグシステムにおける無線ICタグとの通信範囲は比較的広くなってしまい、利用者が多数の無線ICタグの中から特定の無線ICタグを選択して、その無線ICタグのみとの通信を行うことは困難である。
 また、仮に質問器が出力する高周波信号の電力を所望のレベルに抑制できている場合であっても、利用者が質問器が高周波信号を出力する際の放射特性を把握する必要があり、利用者が選択した無線ICタグに隣接する無線ICタグからデータを取得してしまう可能性がある。
 以上のように、高周波信号を用いる無線ICタグシステムは、無線ICタグシステムの利用者が、特定の無線ICタグのみからデータ取得を行うことが困難であった。これは、電磁波が視認できるものではないため、利用者が特定の無線ICタグにのみ、電磁波を供給することができないことが大きな要因となっている。
 本発明の目的は、非接触光通信システムの利用者自身が、質問器とデータのやり取りを行う非接触光通信装置を特定することを可能にする光を用いた非接触光通信システムを提供することにある。
 また、無線ICタグは、通信特性が劣化するため、金属等に貼り付けるには不向きである。更に、電磁波の使用が制限される医療現場などでは、無線ICタグを使用することができない。本発明の他の目的は、このように無線ICタグの使用に適さない環境下においても使用可能な認識デバイスを提供することにある。
 本願において開示される発明のうち代表的なものの概要を簡単に説明すれば、下記の通りである。すなわち、本発明は、質問器と非接触光通信装置を有する非接触光通信装置システムである。質問器は、発光装置と撮像装置を有する。非接触光通信装置は受光装置と電源装置と受信装置と制御装置と表示装置とを有する。質問器内の発光装置は、第1情報信号に応じて光強度を変調した光信号を照射する。非接触光通信装置内の受光装置は、光信号を受光し、受光した光信号を電気信号へ変換する。非接触光通信装置内の電源装置は、受信装置と制御装置と表示装置を駆動する電源電圧を、電気信号から生成する。非接触光通信装置内の受信装置は、電気信号から第1情報信号を復調する。非接触光通信装置内の制御装置は、第1情報信号に従い情報処理を行い、その処理結果を第2情報信号として表示装置へ供給する。非接触光通信装置内の表示装置は、所定の表示方法により第2情報信号を表示する。
 本願において開示される発明のうち代表的なものによって得られる効果を簡単に説明すれば、下記の通りである。すなわち、本発明によれば、非接触光通信システムの利用者自身が、質問器とデータのやり取りを行う非接触光通信装置を特定することが可能になる。また、無線ICタグの使用に適さない環境下においても使用可能な認識デバイスを提供することが可能になる。
非接触光通信システムの実施の形態1の基本構成である。 非接触光通信装置B2に搭載される受光装置B5の基本的回路構成図である。 非接触光通信装置B2に搭載される受信回路B8の基本的回路構成図である。 図1に示した非接触光通信システムにおける発光装置B2から出力される光信号L1と非接触光通信装置B2の内部波形の一例である。 非接触光通信装置B2に搭載されるデータ表示装置B10の基本的回路構成図である。 非接触光通信システムの実施の形態2の基本構成である。 図6に示した非接触光通信システムの具体的な利用例である。 図6に示した非接触光通信システムの具体的な利用例である。 非接触光通信システムの実施の形態3の基本構成である。 非接触光通信装置B2に搭載される受信回路B8の基本的回路構成図である。 図9に示した非接触光通信システムにおける発光装置B2から出力される光信号L1と非接触光通信装置B2の内部波形の一例である。 実施の形態4を示す非接触光通信装置B2の斜視図とその利用例である。 実施の形態5を示す情報携帯端末の外観図である。
 以下、光を用いた非接触光通信システムについて、添付図面を参照しながら説明する。
 (実施の形態1)
 図1に、光を用いた非接触光通信システムの実施の形態1の基本構成を示す。図1において、B1は質問器、B2は非接触光通信装置(光IDタグ、可視光IDタグ)である。図1では、非接触光通信装置B2を1つのみ図示しているが、非接触光通信装置B2は複数個存在していても構わない。
 質問器B1は、発光装置B3、撮像装置B4を具備する。発光装置B3は、前段の信号処理装置からの情報信号S1に応じて変調された光信号L1を出力する。このとき、光信号L1は可視光で形成される。撮像装置B4は、非接触光通信装置B2から光学的に出力される表示信号L2を撮像し、撮像した画像信号を非接触光通信装置B2から送信された応答信号S2として、後段に接続される信号処理装置に伝達する。信号処置装置は、利用者等によって制御される上位システムからの制御を受けて信号処理を行う装置である。具体例としては、上位システムからの要求によって、非接触光通信装置B2へ送信するコマンドやデータを生成し、情報信号S1として発光装置B3に出力したり、撮像装置B4によって伝達された応答信号S2の上位システムへの伝達や、応答信号S2によって形成される受信データに応じて、次に非接触光通信装置B2へ送信するコマンドやデータを生成したりすることで、質問器B1と非接触光通信装置B2との間の通信処理を行う。
 非接触光通信装置B2は、受光装置B5、電源回路B6、内部回路B7から構成される。受光装置B5は、質問器B1から出力された光信号L1を受け、光信号L1を電気信号S3及びS4へ変換し、電気信号S3及びS4を電源回路B6及び受信回路B8へ出力する。ここで、受光装置B5が受ける光エネルギーが強い場合には、大きな電流の電気信号S3及びS4が出力される。受光装置B5が受ける光エネルギーが微弱な場合には、微小な電流の電気信号S3及びS4が出力される。また、特に限定はされないが、受光装置B5として、光エネルギーを電気エネルギーへ変換する素子である太陽電池やフォトダイオードが利用される。
 電源回路B6は、受光素子B5から供給された電気信号S3から所望の電圧VDDを生成し、内部回路B7に動作電源電圧として供給する。代表的には、電源回路B6には、電源電圧を保持する容量素子や、電源電圧を所望の電圧に抑制するレギュレータ回路、または小さな電圧から高い電圧を生成するチャージポンプ回路等が搭載される。
 内部回路B7は、受信回路B8、制御回路B9、データ表示装置B10を具備する。受信回路B8は、受光装置B5が受けた光信号L1を変換した電気信号S4に重畳された情報信号を復調することでディジタル信号の情報信号S5を再生し、制御回路B9に供給する。制御回路B9は、受信回路B8から供給された情報信号S5について信号処理を行い、その処理結果をディジタル信号の情報信号S6としてデータ表示装置B10に供給する。データ表示装置B10は、制御回路B9から出力される情報信号S6を所定の表示方法により光学的に表示することで、表示信号L2を出力する。このとき、データ表示装置B10は、発光することで表示信号L2を表示しても良いし、質問器B1から照射された光信号L1等を利用(反射・透過)することで表示信号L2を表示するものであっても良い。また、データ表示装置B10が表示する情報信号は、アルファベットや数字等の文字でも良いし、バーコードやQRコードのような幾何学的なパターンでも良く、特に限定されるものではない。いずれの場合であっても、表示信号L2は可視光で形成される。
 以上の動作により、非接触光通信装置B2に搭載されるデータ表示装置B10が情報信号S6を光学的に表示することで出力される表示信号L2を、質問器B1が内部に搭載される撮像装置B4によって撮像し、撮像した画像信号を非接触光通信装置B2から送信された応答信号S2として、後段に接続される信号処理装置に伝達する。
 図2に、非接触光通信装置B2に搭載される受光装置B5の基本的回路構成図を示す。
 図2に示す受光装置B5は、N個が直列接続された単位受光素子B11と、M個が直列接続された単位受光素子B11によって構成され、電気信号S3及びS4を生成する。図2では、同一の単位受光素子B11をそれぞれ直列接続することによって電気信号S3及びS4を生成する例を示しているが、異なった単位受光素子で構成することも可能である。また、直列接続される個数は、電気信号S3及びS4に必要な電圧レベルや電流供給能力に応じて設定すれば良く、特に限定されるものではない。更には、図2では示していないが、単位受光素子B11を並列接続することで、出力電流レベル等を調整しても構わない。
 これにより、質問器B1によって照射された光信号L1をそれぞれの単位受光素子B11が受けることで、各単位受光素子B11が電圧を発生し、所望の電気信号S3及びS4を出力することが可能になる。
 図3に、非接触光通信装置B2に搭載される受信回路B8の基本的回路構成図を示す。図3に示す受信回路B8は、抵抗R1、インバータ回路G1~G3、ローパスフィルタ回路B12、電圧比較回路B13、データ保持回路B14から構成される。受信回路B8の入力信号は、受光装置B5から供給される電気信号S4であり、電気信号S4は、受光装置B5に照射される光信号L1が強い光エネルギーを持つときは電流が大きく、受光装置B5に照射される光信号L1が弱い光エネルギーを持つときは電流が微小になる。この電気信号S4は抵抗R1によって電圧信号に変換された形態で、インバータ回路G1に入力される。受光装置B5に照射される光信号L1が強い光エネルギーを持つときは、インバータ回路G1及びG2によって高レベル信号“H”が出力される。受光装置B5に照射される光信号L1が弱い光エネルギーを持つときは、インバータ回路G1及びG2によって低レベル信号“L”が出力される。これにより、光信号L1が持つ光エネルギーの変化がクロック信号S7として生成される。
 インバータ回路G3にはクロック信号S7が入力され、クロック信号S7の反転信号S8をローパスフィルタ回路B12に入力する。
 ローパスフィルタ回路B12は、抵抗R2及び容量C1によって構成され、反転信号S8の高周波成分を除去した電圧信号S9を電圧比較回路B13に入力する。
 電圧比較回路B13は、ローパスフィルタ回路B12から出力された電圧信号S9が基準電圧VTより低ければ高レベル信号“H”を出力する。ローパスフィルタ回路B12から出力された電圧信号S9が基準電圧VTより高ければ低レベル信号“L”を出力し、検出信号S10を出力する。
 データ保持回路B14には、インバータ回路G1及びG2によって生成されたクロック信号S7と電圧比較回路B13から出力される検出信号S10が入力される。クロック信号S7が低レベル信号“L”から高レベル信号“H”に変化した時点での検出信号S10を保持し、質問器B1から送信された信号として情報信号S5を生成し、後段に接続される制御回路B9へ出力する。
 以上の動作によって、非接触光通信装置B2は質問器B1から送信される情報信号を再生することが可能になり、再生された情報信号S5が、制御回路B9に供給され、制御回路B9は情報信号S5に応じた信号処理を行う。
 更には、制御回路B9の信号処理によって生成される情報信号S6がデータ表示装置B10に供給され、データ表示装置B10が情報信号S6を光学的に表示することで、表示信号L2を出力する。このデータ表示装置B10が情報信号S6を光学的に表示することで出力される表示信号L2を、質問器B1が内部に搭載される撮像装置B4によって撮像し、撮像した画像信号を非接触光通信装置B2から送信された応答信号S2として、後段に接続される信号処理装置に伝達する。
 以上の構成及び各部の動作により、質問器B1から出力された光信号L1によって、電池が搭載されていない非接触光通信装置B2の内部回路B7が動作するために必要な電源電圧の生成を可能にするエネルギーを供給すると共に、質問器B1から非接触光通信装置B2へのデータ通信、及び、データ表示装置B10によって非接触光通信装置B2から質問器B1へのデータ通信が可能になる。
 これにより、光信号L1が可視光で形成されることから、非接触光通信システムを利用する利用者は、光信号L1が非接触光通信装置B2に照射されていることをリアルタイムに確認することができるようになるため、意図しない非接触光通信装置B2への光信号L1の照射を防止することが可能になる。
 図4に、図1に示した非接触光通信システムにおける発光装置B3から出力される光信号L1と非接触光通信装置B2の内部波形の一例を示す。図4において、(A)は質問器B1が送信する情報信号S1、(B)は質問器B1に搭載される発光装置B3から出力される光信号L1であり、(C)は電源回路B6によって電気信号S3を保持や抑制等することで生成された電源電圧VDD、(D)は受光装置B5から出力される電気信号S4をインバータ回路G1及びG2によって2値化することで生成されるクロック信号S7、(E)はインバータ回路G3によって生成されるクロック信号S7の反転信号S8、(F)はローパスフィルタ回路B12によって反転信号S8の高周波成分が除去された電圧信号S9、(G)は電圧比較回路B13によってローパスフィルタ回路B12から出力される電圧信号S9を2値化した検出信号S10、(H)はデータ保持回路B14によって検出信号S10を保持することで生成される情報信号S5(=質問器B1から送信された情報信号S1)を表している。
 また、図4では、質問器B1から非接触光通信装置B2に送信する情報信号は時間T0毎に1ビットの周期で送信する。質問器B1から非接触光通信装置B2に送信する情報信号が“1”の場合には、時間T0における光信号L1が持つ光エネルギーが微小に抑制される時間をT1とする。質問器B1から非接触光通信装置B2に送信する情報信号が“0”の場合には、時間T0における光信号L1が持つ光エネルギーが微小に抑制される時間をT2とする。時間T1よりも時間T2が十分に長いことで、情報信号の“1”と“0”を区別して送信する。勿論、上記情報信号の生成手段については限定されるものではない。
 図5に、非接触光通信装置B2に搭載されるデータ表示装置B10の基本的回路構成図を示す。データ表示装置B10は、マトリックス状に並べられた複数の単位表示装置B18(B18(a)及びB18(b)を含む)と、それぞれの単位表示装置B18の表示データを伝達するデータ伝達回路B19、データ伝達回路B19から伝達される表示データの伝達先を選択するアドレス選択回路B20から構成される。
 アドレス選択回路B20とデータ伝達回路B19は連動して動作し、アドレス選択回路B20は、制御回路B9から伝達された情報信号S6から抽出されたデータの伝達先を選択する回路であり、データ伝達回路B19は、制御回路B9から伝達された情報信号S6からアドレス毎のデータを抽出し、アドレス選択回路B20が選択しているアドレスのデータを出力し、アドレス毎の表示データを伝達する回路である。
 このように、アドレス選択回路B20とデータ伝達回路B19の動作によって、マトリックス状に並べられた複数の単位表示装置B18に、それぞれの表示データが伝達される。
 単位表示装置B18は、データ伝達回路B19及びアドレス選択回路B20によって伝達された表示データを保持すると共に、非表示状態B18(a)と表示状態B18(b)を切替えることで、伝達された表示データを表示する。このような単位表示装置B18をマトリックス状に並べることによって、制御回路B9から伝達された情報信号S6を光学的に表示する。
 以上の動作により、データ表示装置B10は、制御回路B9から出力される情報信号S6を光学的に表示し、表示信号L2を出力する。また、特に限定されるものではないが、複数の単位表示装置B18をマトリックス状に並べることで、アルファベットや数字等の文字、バーコードやQRコードのような幾何学的なパターン等の表示ができる。
 (実施の形態2)
 図6に、光を用いた非接触光通信システムの実施の形態2の基本構成を示す。図6の非接触光通信システムと図1の非接触光通信システムとの違いは、図6の質問器B1では、照射範囲制御装置B15を具備する点である。照射範囲制御装置B15は、発光装置B3が出力する光信号L1が照射される範囲を制御するものであり、光信号L1を広い領域に照射したり、光信号L1を狭い領域に集中して照射したりする機能を有する。
 図7、8に、図6に示した非接触光通信システムの具体的な利用例を示す。図7では、図6に示した質問器B1と非接触光通信装置B2を簡略的に示しており、多数の非接触光通信装置B2が隣接配置されている。図7は多数の非接触光通信装置B2に光信号L1を照射している状態を表している。図8は多数の非接触光通信装置B2の中から利用者が選択した1つの非接触光通信装置B2のみに光信号L1を照射している状態を表している。
 質問器B1に照射範囲制御装置B15を備え、発光装置B3が出力する光信号L1の照射範囲を利用者が制御できる機能を有することで、利用者が情報信号を取得したい非接触光通信装置B2を選択して動作させることが可能になる。
 つまり、図7に示したように、利用者が多数の非接触光通信装置B2からの情報信号を取得したい場合には、照射範囲制御装置B15を制御することにより、可視光で形成される光信号L1を多数の非接触光通信装置B2に照射する。非接触光通信装置B2が光学的に表示することで出力されるそれぞれの表示信号L2を、質問器B1に内蔵される撮像装置B4で一括撮像することで、多数の非接触光通信装置B2からの情報信号を取得することが可能になる。
 逆に、図8に示したように、利用者が多数の非接触光通信装置B2の中から選択した特定の非接触光通信装置B2のみから情報信号を取得したい場合には、照射範囲制御装置B15を制御することにより、可視光から形成される光信号L1を選択した非接触光通信装置B2のみに照射する。その非接触光通信装置B2が光学的に表示することで出力される表示信号L2を、質問器B1に内蔵される撮像装置B4で撮像することで、特定の非接触光通信装置B2からの情報信号を取得することが可能になる。
 これらの効果は、光信号L1が可視光で形成されることから、非接触光通信システムを利用する利用者自身が、光信号L1が非接触光通信装置B2に照射されていることをリアルタイムに確認することができるようになることから得られる効果である。
 また、図7、8では特に示していないが、利用者が選択する非接触光通信装置B2の個数に制約はない。以上の機能を利用すれば、例えば、特定の3つの非接触光通信装置B2からの情報信号を取得すること等も可能である。
 (実施の形態3)
 図9に、光を用いた非接触光通信システムの実施の形態3の基本構成を示す。図9において、B1は質問器、B2は非接触光通信装置である。図9では、非接触光通信装置B2を1つのみ図示しているが、非接触光通信装置B2は複数個存在していても構わない。
 質問器B1は、発光装置B3、撮像装置B4を具備する。発光装置B3は、送信する情報信号S1に応じて変調された光信号L1を出力する。このとき、光信号L1は可視光で形成される。撮像装置B4は、非接触光通信装置B2が光学的に出力される表示信号L2を撮像し、撮像した画像信号を非接触光通信装置B2から送信された応答信号S2として、後段に接続される信号処理装置に伝達する。
 非接触光通信装置B2は、受光装置B5、電源回路B6、内部回路B7から構成される。
 受光装置B5は、質問器B1から出力された光信号L1を受け、光信号L1が持つ光の強度に応じた電気エネルギーを発生する素子であり、発生した電気信号S3及びS4を電源回路B6及び受信回路B8へ出力する。ここで、受光装置B5が出力する電気信号S3及びS4は、受光装置B5が受ける光エネルギーが強い場合には大きな電流が出力され、受光装置B5が受ける光エネルギーが微弱な場合には微小な電流が出力されるものである。また、特に限定はされないが、受光装置B5には、光エネルギーを電気エネルギーに変換する素子である太陽電池やフォトダイオードが利用される。
 電源回路B6は、受光素子B5から供給された電気信号S3から所望の電圧VDDを生成し、内部回路B7に動作電源電圧として供給する。代表的には、電源回路B6には、電源電圧を保持する容量素子や、電源電圧を所望の電圧に抑制するレギュレータ回路、または小さな電圧から高い電圧を生成するチャージポンプ回路等が搭載される。
 内部回路B7は、受信回路B8、制御回路B9、データ表示装置B10、クロック信号発生回路B16を具備する。受信回路B8は、受光装置B5が受けた光信号L1を変換した電気信号S4に重畳された情報信号を復調することでディジタル信号の情報信号S5を再生し、制御回路B9に供給する。クロック信号発生回路B16は、電源回路B6から出力される電源電圧VDDによって動作し、電源電圧VDDがクロック信号発生回路B16の動作に必要な電圧を上回っていればクロック信号S11を生成し、受信回路B8、制御回路B9、データ表示装置B10に供給する。
 制御回路B9は、受信回路B8から供給された情報信号S5に従って信号処理を行い、その処理結果をディジタル信号の情報信号S6としてデータ表示装置B10に供給する。データ表示装置B10は、制御回路B9から出力される情報信号S6を光学的に表示することで、表示信号L2を出力する。このとき、データ表示装置B10は、発光することで表示信号L2を出力しても良いし、質問器B1から照射された光信号L1等を利用(反射・透過)することで表示信号L2を出力するものであっても良い。また、データ表示装置B10が表示する情報信号は、アルファベットや数字等の文字でも良いし、バーコードやQRコードのような幾何学的なパターンでも良く、特に限定されるものではない。
 以上の動作により、非接触光通信装置B2に搭載されるデータ表示装置B10が情報信号S6を光学的に表示することで出力される表示信号L2を、質問器B1が内部に搭載される撮像装置B4によって撮像し、撮像した画像信号を非接触光通信装置B2から送信された応答信号S2として、後段に接続される信号処理装置に伝達する。
 図10に、非接触光通信装置B2に搭載される受信回路B8の基本的回路構成図を示す。図10に示す受信回路B8は、抵抗R1、インバータ回路G1,G2、データ抽出回路B17から構成される。受信回路B8の入力信号は、受光装置B5から供給される電気信号S4であり、電気信号S4は、受光装置B5に照射される光信号L1が強い光エネルギーを持つときは電流が大きく、受光装置B5に照射される光信号L1が弱い光エネルギーを持つときは電流が微小になる。この電気信号S4は抵抗R1によって電圧信号に変換された形態で、インバータ回路G1に入力されるため、受光装置B5に照射される光信号L1が強い光エネルギーを持つときは、インバータ回路G1及びG2によって高レベル信号“H”が出力され、受光装置B5に照射される光信号L1が弱い光エネルギーを持つときは、インバータ回路G1及びG2によって低レベル信号“L”が出力される。これにより、光信号L1が持つ光エネルギーの変化が検出信号S12として生成される。
 データ抽出回路B17は、インバータ回路G1及びG2によって生成された検出信号S12とクロック信号発生回路B16から供給されるクロック信号S11が入力され、クロック信号S11によって、検出信号S12が高レベル信号“H”である期間と検出信号S12が低レベル信号“L”である期間を判定することで、質問器B1から送信された信号として情報信号S5を生成し、後段に接続される制御回路B9へ出力する。図11では、検出信号S12(図11(E))が高レベル信号“H”である期間の間に、クロック信号S11(図11(D))が低レベル信号“L”から高レベル信号“H”へ2回変化したら情報信号の“1”として認識し、検出信号S12が低レベル信号“L”である期間の間に、クロック信号S11が低レベル信号“L”から高レベル信号“H”へ2回変化したら情報信号の“0”として認識する場合を表した。
 以上の動作によって、非接触光通信装置B2は質問器B1から送信される情報信号を再生することが可能になり、再生された情報信号S5が、制御回路B9に供給され、制御回路B9は情報信号S5に応じた信号処理を行う。
 更には、制御回路B9の信号処理によって生成される情報信号S6をデータ表示装置B10に供給し、データ表示装置B10が情報信号S6を光学的に表示することで、表示信号L2を出力する。このデータ表示装置B10が情報信号S6を光学的に表示することで出力される表示信号L2を、質問器B1が内部に搭載される撮像装置B4によって撮像し、撮像した画像信号を非接触光通信装置B2から送信された応答信号S2として、後段に接続される信号処理装置に伝達する。
 以上の構成及び各部の動作により、質問器B1から出力された光信号L1によって、電池が搭載されていない非接触光通信装置B2の内部回路B7が動作するために必要な電源電圧の生成を可能にするエネルギーを供給すると共に、質問器B1から非接触光通信装置B2へのデータ通信、及びデータ表示装置B10によって非接触光通信装置B2から質問器B1へのデータ通信が可能になる。
 これにより、光信号L1が可視光で形成されることから、非接触光通信システムを利用する利用者は、光信号L1が非接触光通信装置B2に照射されていることをリアルタイムに確認することができるようになるため、意図しない非接触光通信装置B2への光信号L1の照射を防止することが可能になる。
 また、クロック信号発生回路B16によって安定したクロック信号S11が内部回路B7に供給されるため、非接触光通信装置B2に具備される回路を同期して動作させることも可能になる。
 図11に、図9および図10に示した非接触光通信システムにおける発光装置B3から出力される光信号L1と非接触光通信装置B2の内部波形の一例を示す。図11において、(A)は質問器B1が送信する情報信号S1、(B)は質問器B1に搭載される発光素子B3から出力される光信号L1であり、(C)は電源回路B6によって電気信号S3を保持や抑制等することで生成された電源電圧VDD、(D)はクロック信号発生回路B16から供給されるクロック信号S11、(E)は受光装置B5から出力される電気信号S4をインバータ回路G1及びG2によって2値化することで生成される検出信号S12、(F)はデータ抽出回路B17によって検出信号S12を保持することで生成される情報信号S5(=質問器B1から送信された情報信号S1)を表している。
 また、図11では、質問器B1から非接触光通信装置B2に送信する情報信号は時間T0毎に1ビットの周期で送信するものとする。質問器B1から非接触光通信装置B2に送信する情報信号が“1”の場合には、時間T0の間、光信号L1が持つ光エネルギーを強くする。質問器B1から非接触光通信装置B2に送信する情報信号が“0”の場合には、時間T0における光信号L1が持つ光エネルギーを微小に抑制する。こうすることにより、情報信号の“1”と“0”を区別して送信する。勿論、上記情報信号の生成手段については限定されるものではない。
 (実施の形態4)
 図12に、実施の形態1~実施の形態3に示した非接触光通信装置B2のいずれかをフレキシブル性(柔軟性)を有する基板上に形成した場合の斜視図とその利用例を示す。
 図12に示す非接触光通信装置B2は、フレキシブル性を有する基板U1(例えば、プラスチック基板)の上に、受光装置B5、データ表示装置B10、電源回路B6及び内部回路B7が形成されており、それぞれが基板U1の上に形成される配線によって接続されている。
 電源回路B6や内部回路B7は、抵抗、容量、トランジスタ等によって構成される。特に限定されるものではないが、電源回路B6や内部回路B7は、公知の半導体集積回路装置の製造技術によって、単結晶シリコン等のような1個の半導体基板上に形成されても良いし、有機半導体や金属インク等を利用して形成される抵抗、容量、トランジスタ等によって形成されても良い。但し、図12に示されるように、電源回路B6や内部回路B7を単結晶シリコンのような半導体基板上に形成する場合は、フレキシブル性を有する基板U1に形成されることを考慮し、基板U1が湾曲された場合においても、半導体基板が割れることのないような大きさとする必要がある。
 受光装置B5は、質問器B1から照射される光信号L1を受け、光信号L1を電気信号S3及びS4に変換する機能を有する。光信号L1を十分に受けるために、受光装置B5は、電源回路B6や内部回路B7に比べて大きな面積が必要になる。図12に示されるように、有機半導体や金属インク等を利用して、基板U1の上に、受光装置B5として太陽電池素子やフォトダイオード素子が形成される。
 データ表示装置B10は、光学的にデータを表示した情報信号を質問器B1に内蔵される撮像装置B4によって撮像させるため、撮像装置B4の撮像解像度に応じた面積が必要になる。このため、データ表示装置B10は、電源回路B6や内部回路B7に比べて大きな面積が必要になる。図12に示されるように、有機半導体や金属インク等を利用して、データ表示装置B10としての表示デバイスが基板U1の上に形成される。
 以上の構成によって、非接触光通信装置B2はフレキシブル性を有する基板U1の上に形成することができるため、図12に示されるように、薬品などが格納されている瓶の曲面にも貼付することが可能になる。
 (実施の形態5)
 図13に、実施の形態1~実施の形態3に示した質問器B1のいずれかが組み込まれた情報携帯端末の外観図を示す。図13において、(A)は情報携帯端末U2の表面から見た外観図、(B)は情報携帯端末U2の裏面から見た外観図を表している。
 図13において、U3は情報携帯端末U2の筐体であり、情報携帯端末U2の筐体U3の表面には、データ入力装置U4と表示装置U5が設けられる。情報携帯端末U2の筐体U3の裏面には、質問器B1を構成する発光装置B3と撮像装置B4が設けられる。勿論、実施の形態2で示した照射範囲制御装置B15を設けることも可能である。
 情報携帯端末U2に内蔵された質問器B1を利用して情報信号を取得する場合、撮像装置B4から得られた画像情報を表示装置U5にリアルタイムに表示することで情報を取得したい非接触光通信装置B2を選択し、照射範囲制御装置B15を利用することで、選択した非接触光通信装置B2のみに発光装置B3から出力される光信号L1を照射することができる。また、これらの処理は、データ入力装置U4によって、その実行や実行内容を制御することができる。
 また、情報携帯端末U2は、質問器B1を利用して取得された情報信号を用いて計算処理を行い、その計算結果を表示装置U5に表示することが可能である。勿論、表示装置U5には、情報携帯端末U2によって処理される様々なデータ等を表示することが可能である。
 以上の構成により、発光装置B3や撮像装置B4を利用して、実施の形態1~実施の形態4に示した非接触光通信装置B2から情報信号を取得し、得られた情報信号を情報携帯端末U2によって計算処理し、表示装置U5に表示することで非接触光通信装置B2が有するデータを知ることが可能になり、非接触光通信システムの利便性を向上させることが可能になる。
 尚、本実施の形態で示した情報携帯端末U2は、携帯電話や手帳タイプのパーソナルコンピュータ(所謂、PDA)、ノート型パーソナルコンピュータ、更にはそれらに接続される外部機器等、情報携帯端末の全般を示すものであり、実施の形態1~実施の形態3に示した質問器B1は様々な情報携帯端末に内蔵することが可能である。
 以上、本発明者よりなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。例えば、図9で示した非接触光通信システムにおいて、質問器B1から非接触光通信装置B2へのデータ送信方法に図1~4で示したデータ送信方法を用いることも可能であるし、図1、図6、図9で示した非接触光通信装置B2に不揮発性メモリ等を搭載することも可能である。また、非接触光通信装置B2が出力する表示信号L2は、質問器B1が出力する光信号L1のように可視光である必要はなく、質問器B1に内蔵される撮像装置B4が撮像できる光信号であれば良い。
 本発明は、光の形態によってデータのやり取りを実現する非接触光通信システム等に適用して好適である。
 B1 質問器
 B2 非接触光通信装置
 B3 発光装置
 B4 撮像装置
 B5 受光装置
 B6 電源回路
 B7 内部回路
 B8 受信回路
 B9 制御回路
 B10 データ表示装置
 B11 単位受光素子
 B12 ローパスフィルタ回路
 B13 電圧比較回路
 B14 データ保持回路
 B15 照射範囲制御装置
 B16 クロック信号発生回路
 B17 データ抽出回路
 B18 単位表示装置
 B19 データ伝達回路
 B20 アドレス選択回路
 C1 容量
 G1~G3 インバータ回路
 L1 光信号
 L2 表示信号
 R1,R2 抵抗
 S1,S5,S6 情報信号
 S2 応答信号
 S3,S4 電気信号
 S7,S11 クロック信号
 S8 反転信号
 S9 電圧信号
 S10,S12 検出信号
 U1 基板
 U2 情報携帯端末
 U3 筐体
 U4 データ入力装置
 U5 表示装置 

Claims (14)

  1.  質問器と、光通信装置を有する光通信システムであって、
     前記質問器は、発光装置と撮像装置を有し、
     前記光通信装置は、受光装置と、電源装置と、受信装置と、制御装置と、表示装置とを有し、
     前記発光装置は、第1情報信号に応じて光強度を変調した光信号を照射し、
     前記撮像装置は、前記表示装置の表示を撮像し、
     前記受光装置は、前記光信号を受光し、受光した前記光信号を電気信号へ変換し、
     前記電源装置は、前記受信装置と前記制御装置と前記表示装置を駆動する電源電圧を、前記電気信号から生成し、
     前記受信装置は、前記電気信号から前記第1情報信号を復調し、
     前記制御装置は、前記第1情報信号に従い情報処理を行い、その処理結果を第2情報信号として前記表示装置へ供給し、
     前記表示装置は、所定の表示方法により前記第2情報信号を表示することを特徴とする光通信システム。
  2.  請求項1に記載の光通信システムにおいて、
     前記質問器は、光照射範囲制御装置を有し、
     前記光照射範囲制御装置は、前記発光装置が照射する光信号の範囲を制御することを特徴とする光通信システム。
  3.  請求項1に記載の光通信システムにおいて、
     前記発光装置は、1周期中における光信号の強弱の時間割合により“1”と“0”を表現し、前記光信号を照射することを特徴とする光通信システム。
  4.  請求項1に記載の光通信システムにおいて、
     前記発光装置は、1周期中における光信号の強弱により“1”と“0”を表現し、前記光信号を照射することを特徴とする光通信システム。
  5.  請求項1に記載の光通信システムにおいて、
     前記光信号は、可視光であることを特徴とする光通信システム。
  6.  請求項1に記載の光通信システムにおいて、
     前記表示装置は、前記第2情報信号を幾何学パターンにより表示することを特徴とする光通信システム。
  7.  請求項1に記載の光通信システムにおいて、
     前記受光装置と前記電源装置と前記受信装置と前記制御装置と前記表示装置は、柔軟性を持つ基板上に形成されることを特徴とする光通信システム。
  8.  発光装置及び撮像装置を有する質問器と、受光装置及び電源装置及び受信装置及び制御装置及び表示装置を有する光通信装置からなる光通信システムにより、前記質問器と前記光通信装置との間で通信を行う通信方法であって、
     前記発光装置により、第1情報信号に応じて光強度を変調した光信号を照射し、
     前記撮像装置により、前記表示装置の表示を撮像し、
     前記受光装置により、前記光信号を受光し、受光した前記光信号を電気信号へ変換し、
     前記電源装置により、前記受信装置と前記制御装置と前記表示装置を駆動する電源電圧を、前記電気信号から生成し、
     前記受信装置により、前記電気信号から前記第1情報信号を復調し、
     前記制御装置により、前記第1情報信号に従い情報処理を行い、その処理結果を第2情報信号として前記表示装置へ供給し、
     前記表示装置により、所定の表示方法により前記第2情報信号を表示することを特徴とする光通信方法。
  9.  請求項8に記載の光通信方法において、
     前記質問器は、光照射範囲制御装置を有し、
     前記光照射範囲制御装置により、前記発光装置が照射する光信号の範囲を制御することを特徴とする光通信方法。
  10.  請求項8に記載の光通信方法において、
     前記発光装置により、1周期中における光信号の強弱の時間割合により“1”と“0”を表現し、前記光信号を照射することを特徴とする光通信方法。
  11.  請求項8に記載の光通信方法において、
     前記発光装置により、1周期中における光信号の強弱により“1”と“0”を表現し、前記光信号を照射することを特徴とする光通信方法。
  12.  請求項8に記載の光通信方法において、
     前記光信号は、可視光であることを特徴とする光通信方法。
  13.  請求項8に記載の光通信方法において、
     前記表示装置は、前記第2情報信号を幾何学パターンにより表示することを特徴とする光通信方法。
  14.  請求項8に記載の光通信方法において、
     前記受光装置と前記電源装置と前記受信装置と前記制御装置と前記表示装置は、柔軟性を持つ基板上に形成されることを特徴とする光通信方法。
     
PCT/JP2009/059141 2009-05-18 2009-05-18 光通信システムおよび光通信方法 WO2010134154A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2009/059141 WO2010134154A1 (ja) 2009-05-18 2009-05-18 光通信システムおよび光通信方法
JP2011514235A JPWO2010134154A1 (ja) 2009-05-18 2009-05-18 光通信システムおよび光通信方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/059141 WO2010134154A1 (ja) 2009-05-18 2009-05-18 光通信システムおよび光通信方法

Publications (1)

Publication Number Publication Date
WO2010134154A1 true WO2010134154A1 (ja) 2010-11-25

Family

ID=43125854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059141 WO2010134154A1 (ja) 2009-05-18 2009-05-18 光通信システムおよび光通信方法

Country Status (2)

Country Link
JP (1) JPWO2010134154A1 (ja)
WO (1) WO2010134154A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014206130A1 (zh) * 2013-06-26 2014-12-31 上海无线通信研究中心 可见光携能通信系统及方法
CN104504422A (zh) * 2014-12-24 2015-04-08 广州极汇信息科技有限公司 基于可见光通信的智能电子货架标签系统及其应用方法
CN104601844A (zh) * 2015-01-12 2015-05-06 苏州佳世达电通有限公司 通信方法及通信设备
FR3013923A1 (fr) * 2013-11-22 2015-05-29 Sunpartner Dispositif optique pour ameliorer le seuil de detection des capteurs d'une lumiere visble codee (vlc)
CN109154998A (zh) * 2016-05-18 2019-01-04 西门子股份公司 优选用于产品的电子标记设备、用于这种标记设备的读取设备和应用程序

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01245791A (ja) * 1988-03-28 1989-09-29 Matsushita Electric Works Ltd 遠隔制御システム
JPH09116473A (ja) * 1995-10-17 1997-05-02 Nippon Telegr & Teleph Corp <Ntt> ワイヤレスタグとそのシステム
JP2001245253A (ja) * 2000-03-01 2001-09-07 Casio Comput Co Ltd 撮像装置
JP2005229253A (ja) * 2004-02-12 2005-08-25 Olympus Corp 空間光伝送装置
WO2006080228A1 (ja) * 2005-01-28 2006-08-03 Access Co., Ltd. 端末装置、光学的読取コード情報提供方法、光学的読取コード生成方法
JP2007105316A (ja) * 2005-10-14 2007-04-26 Konica Minolta Sensing Inc 生体情報測定器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01204536A (ja) * 1988-02-10 1989-08-17 Kubota Ltd Idシステムの双方向通信装置
JP4497603B2 (ja) * 1999-11-05 2010-07-07 株式会社イトーキ 被検索物管理システム用のタグ装置、被検索物管理システム、並びに被検索物管理方法
JP2006085594A (ja) * 2004-09-17 2006-03-30 Nec Corp 可視光情報提供装置、可視光情報読取装置、可視光情報提供システム、可視光情報提供方法及びそのプログラム並びにそのプログラムを記録したコンピュータ可読情報記録媒体
JP2007282045A (ja) * 2006-04-10 2007-10-25 Sony Corp 光通信システム、光idタグ及び情報送信方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01245791A (ja) * 1988-03-28 1989-09-29 Matsushita Electric Works Ltd 遠隔制御システム
JPH09116473A (ja) * 1995-10-17 1997-05-02 Nippon Telegr & Teleph Corp <Ntt> ワイヤレスタグとそのシステム
JP2001245253A (ja) * 2000-03-01 2001-09-07 Casio Comput Co Ltd 撮像装置
JP2005229253A (ja) * 2004-02-12 2005-08-25 Olympus Corp 空間光伝送装置
WO2006080228A1 (ja) * 2005-01-28 2006-08-03 Access Co., Ltd. 端末装置、光学的読取コード情報提供方法、光学的読取コード生成方法
JP2007105316A (ja) * 2005-10-14 2007-04-26 Konica Minolta Sensing Inc 生体情報測定器

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014206130A1 (zh) * 2013-06-26 2014-12-31 上海无线通信研究中心 可见光携能通信系统及方法
FR3013923A1 (fr) * 2013-11-22 2015-05-29 Sunpartner Dispositif optique pour ameliorer le seuil de detection des capteurs d'une lumiere visble codee (vlc)
CN104504422A (zh) * 2014-12-24 2015-04-08 广州极汇信息科技有限公司 基于可见光通信的智能电子货架标签系统及其应用方法
CN104504422B (zh) * 2014-12-24 2017-10-20 广州极汇信息科技有限公司 基于可见光通信的智能电子货架标签系统及其应用方法
CN104601844A (zh) * 2015-01-12 2015-05-06 苏州佳世达电通有限公司 通信方法及通信设备
CN109154998A (zh) * 2016-05-18 2019-01-04 西门子股份公司 优选用于产品的电子标记设备、用于这种标记设备的读取设备和应用程序
US10902305B2 (en) 2016-05-18 2021-01-26 Siemens Aktiengesellschaft Electronic identification device

Also Published As

Publication number Publication date
JPWO2010134154A1 (ja) 2012-11-08

Similar Documents

Publication Publication Date Title
EP2052463B1 (en) Near field rf communicators and near field communications enabled devices
US7994923B2 (en) Non-contact electronic device
US7606451B2 (en) Optical communication system, optical reader, and method of reading information
US7703690B2 (en) Non-contact IC apparatus and control method
JP2009015443A (ja) 無線タグリーダライタ
JP2002183676A (ja) 情報読み取り装置
KR102096681B1 (ko) 통신 장치, 통신 방법, 집적 회로, 및 전자 기기
US20090102120A1 (en) Rfid system capable of detecting rfid tag orientation, an rfid tag thereof, and a puzzle system using the rfid system
WO2010134154A1 (ja) 光通信システムおよび光通信方法
US20060006234A1 (en) Portable terminal system including portable terminal mounting base
US9041515B2 (en) Apparatus comprising display driving integrated circuit and radio-frequency identification reader
JP2009301356A (ja) Rfidタグ
KR101566832B1 (ko) 이중 안테나 구조를 갖는 스마트 카드
CN109787658B (zh) 一种nfc线圈驱动装置、方法及电子设备
JP6458690B2 (ja) Rfid読取装置
JP4200951B2 (ja) 非接触型データキャリア、その端末機器およびアクセスシステム
JP5065385B2 (ja) トランスポンダおよび前記トランスポンダを有するシステム
Evans-Pughe Close encounters of the magnetic kind [near field communications]
JP5109860B2 (ja) 決済装置
JP2003271914A (ja) Icモジュール及びicモジュールを内蔵した非接触情報媒体
Grout et al. RFID enabled sensor system design
JP4766070B2 (ja) 非接触型データキャリアのアクセスシステム
JP2001283164A (ja) 送受信システム、送受信装置、リーダライタシステム、応答装置、非接触icカード、ラベルタグ
JP2010252203A (ja) ループアンテナ及び電子機器
KR100537903B1 (ko) 무전원 정보처리장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09844888

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011514235

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09844888

Country of ref document: EP

Kind code of ref document: A1