WO2010133522A1 - Use of aluminosilicate glasses as substrate glasses for photopholtaics - Google Patents

Use of aluminosilicate glasses as substrate glasses for photopholtaics Download PDF

Info

Publication number
WO2010133522A1
WO2010133522A1 PCT/EP2010/056667 EP2010056667W WO2010133522A1 WO 2010133522 A1 WO2010133522 A1 WO 2010133522A1 EP 2010056667 W EP2010056667 W EP 2010056667W WO 2010133522 A1 WO2010133522 A1 WO 2010133522A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
aluminosilicate glass
aluminosilicate
glasses
mol
Prior art date
Application number
PCT/EP2010/056667
Other languages
German (de)
French (fr)
Inventor
Heiko Hessenkemper
Original Assignee
Tu Bergakademie Freiberg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tu Bergakademie Freiberg filed Critical Tu Bergakademie Freiberg
Priority to EP10720751A priority Critical patent/EP2432743A1/en
Publication of WO2010133522A1 publication Critical patent/WO2010133522A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/002Use of waste materials, e.g. slags
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/07Glass compositions containing silica with less than 40% silica by weight containing lead
    • C03C3/072Glass compositions containing silica with less than 40% silica by weight containing lead containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/102Glass compositions containing silica with 40% to 90% silica, by weight containing lead
    • C03C3/105Glass compositions containing silica with 40% to 90% silica, by weight containing lead containing aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices

Definitions

  • This process temperatures can be with the inventive use of alumosilicate to 700 0 C and, depending on glass composition, even increase it, thus completely new process facility, and a process window yield.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

The invention relates to the use of an aluminosilicate glass as the substrate glass for photovoltaics, said glass having a glass composition which is boron-free or low in boron and which - based on the oxide base of the glass composition in mole percent - has an Al2O3 content that is higher than the alkali content R2O.

Description

Verwendung von Alumosilikatgläsern als Substratgläser für die Photovoltaik Use of aluminosilicate glasses as substrate glasses for photovoltaics
Die Erfindung betrifft die Verwendung von Alumosilikatgläsern, insbesondere auf Basis von mineralischen Reststoffen als Substratgläser für die Photovoltaik, insbesondere für die Dünnschichttechnologie bzw. Dünnschichtzellen.The invention relates to the use of aluminosilicate glasses, in particular based on mineral residues as substrate glasses for photovoltaics, in particular for thin-film technology or thin-film cells.
Eine entscheidende Bedeutung für die Photovoltaikindustrie besitzt die Frage der Öko- nomie, da mit einem verbesserten Preis-Leistungsverhältnis die Durchsetzungs- undOf crucial importance to the photovoltaic industry is the question of economics, since with an improved price-performance ratio, the enforcement and implementation of the photovoltaic industry is of crucial importance
Durchdringungsgeschwindigkeit dieser neuen Technologie definiert wird. Hierbei spielen sowohl die Herstellungskosten als auch die Ausbeuten eine wesentliche Rolle. An beidenPenetration rate of this new technology is defined. Here, both the production costs and the yields play an essential role. At both
Problemen kann von Seiten des Werkstoffs Glas eine wesentliche Unterstützung geleistet werden. In bisherigen Projekten (Glasing; Herstellung und Heiß-Kantenveredelung für die energieeffiziente Herstellung von Flachglas für die Solarindustrie) wird daran gearbeitet, die durchschnittlichen Herstellungskosten für einen Quadratmeter Glas auf insgesamt einProblems can be significantly supported by the material glass. In previous projects (glassing, production and hot-edge finishing for the energy-efficient production of flat glass for the solar industry), work is underway to reduce the average production cost for one square meter of glass to a total
Drittel zu reduzieren. Hierzu werden verschiedene Ansätze kombiniert:To reduce thirds. For this purpose different approaches are combined:
Herstellung von deutlich dünnerem, thermisch gehärteten Glas, Ersatz der Floatglastechnologie durch modifizierte Walzglastechnologie sowie Kombination der Formgebung, der Glaskonfektionierung und Kantenbearbeitung im Zustand oberhalb der Transformationstemperatur und die sich daran direkt anschließende Oberflächenveredelung und kombi- nierte thermische Härtung mit erheblichen Herstellungs- und Logistikkosteneinsparungen. Werden heute im Dünnschichtbereich der PV-lndustrie noch bis zu über 15 % der Kosten durch das veredelte Glas definiert, so wird dies bei einer Modulpreissenkung auf ein Drittel, um Netzparität in wenigen Jahren zu erreichen, auf über 50 % Glaskostenanteil ansteigen bei unveränderter heutiger Technologie.Production of significantly thinner, thermally hardened glass, replacement of the float glass technology by modified rolled glass technology as well as combination of the shaping, the glass manufacturing and edge processing in the state above the transformation temperature and the directly following surface refinement and combination ned thermal curing with significant manufacturing and logistics cost savings. Today, in the thin-film segment of the PV industry, up to more than 15% of the costs are defined by the finished glass, with a module price reduction of one third to achieve grid parity in a few years, this will increase to more than 50% of the glass cost with unchanged technology today ,
Die WO 2008/028599 A1 (Schott) offenbart ein Aluminoborosilikatglas (Alumosboratglä- ser) zur Verwendung als Substratglas mit einem niedrigen thermischen Ausdehnungskoeffizienten, das sich auch für die Abscheidung von Silizium über CVD-Prozesse und damit für Anwendungen in der Display- und Photovoltaiktechnologie eignet. Dieses Glas weist eine Zusammensetzung in Gew.% auf Oxidbasis mit 75 - 90 % SiO2 , 2 - 7 % AI2O3 und 8 - 18 % B2O3 sowie weitere fakultative Bestandteile auf und ist bis auf Verunreinigungen alkalifrei. Dieses Glas ist durch hohe Kosten gekennzeichnet, zum einen Rohstoffkosten, insbesondere Bor, und hohe Schmelzkosten sowie Anlagenkosten, da mit kurzen Wannenlaufzeiten zu rechnen ist.WO 2008/028599 A1 (Schott) discloses an aluminoborosilicate glass (aluminosilicate glass) for use as a substrate glass with a low coefficient of thermal expansion, which is also suitable for the deposition of silicon via CVD processes and thus for applications in display and photovoltaic technology , This glass has an oxide-based composition by weight of 75-90% SiO 2 , 2-7% Al 2 O 3 and 8-18% B 2 O 3, and other optional ingredients, and is alkali-free except for impurities. This glass is characterized by high costs, on the one hand raw material costs, in particular boron, and high melting costs as well as plant costs, since short tub run times are to be expected.
Die DE 699 02 839 T2 (ASAHI) beschreibt ein Flach- und Substratglas für die Elektronik mit hoher thermischer Beständigkeit und einem gewöhnlichen Natronkalkglas vergleichbaren Ausdehnungskoeffizienten. Dieses Glas enthält 0,5 - 5 Mol-% B2O3, 50 - 75 Mol-% SiO2, 4 - 20 Mol-% AI2O3, 0 - 0,8 Mol-% BaO und 0 - 13 Mol-% Alkalien R2O.DE 699 02 839 T2 (ASAHI) describes a flat and substrate glass for electronics with high thermal resistance and a conventional soda lime glass comparable expansion coefficient. This glass contains 0.5 to 5 mol% B 2 O 3 , 50 to 75 mol% SiO 2 , 4 to 20 mol% Al 2 O 3 , 0 to 0.8 mol% BaO and 0 to 13 mol -% alkalis R 2 O.
Es ist deshalb Aufgabe der Erfindung, Substratgläser für die Photovoltaik anzugeben, die maßgeblich aus mineralischen Reststoffen herstellbar sind und auch die Wiederverwertung verbrauchter Dünnschichtsolarzellenmodule erlauben.It is therefore an object of the invention to provide substrate glasses for photovoltaic, which are mainly produced from mineral residues and also allow the recycling of spent thin-film solar cell modules.
Erfindungsgemäß wird die Aufgabe durch die Verwendung eines Alumosilikatglases als Substratglas für die Photovoltaik gelöst, das Bor-frei oder Bor-arm ist und bei dem, bezogen auf die Oxidbasis der Glaszusammensetzung in Mol-%, der AI2O3Gehalt größer ist als der Alkaligehalt R2O.According to the invention, the object is achieved by using an aluminosilicate glass as the substrate glass for the photovoltaic, which is boron-free or boron-poor and in which, based on the oxide base of the glass composition in mol%, the Al 2 O 3 content is greater than that Alkali content R 2 O.
Die erfindungsgemäßen Alumosilikatgläser haben eine Transformationstemperatur von 580 0C -850 0C, vorzugsweise zwischen 600 0C -720 0C.The aluminosilicate glasses according to the invention have a transformation temperature of 580 0 C -850 0 C, preferably between 600 0 C -720 0 C.
Der Gesamtalkaliengehalt der erfindungsgemäßen Alumosilikatgläser beträgt 0,1 - 20 Mol-%, vorzugsweise 3 - 9 Mol-%. Der AI2O3 - Gehalt der erfindungsgemäßen Alkalialu- mosilikatgläser ist größer 10 Mol-% und beträgt maximal 30 Mol-%. Nach einer vorteilhaften Ausgestaltung der Erfindung werden Substratgläser mit folgender Zusammensetzung (in Gew.-% auf Oxidbasis) verwendet:The total alkali content of the aluminosilicate glasses according to the invention is 0.1-20 mol%, preferably 3-9 mol%. The Al 2 O 3 content of the alkali metal aluminosilicate glasses according to the invention is greater than 10 mol% and is at most 30 mol%. According to an advantageous embodiment of the invention, substrate glasses having the following composition (in% by weight based on oxide) are used:
SiO2 30 - 80SiO 2 30-80
AI2O3 10 - 30Al 2 O 3 10 - 30
B2O3 0 - 0,5B 2 O 3 0 - 0.5
Fe2O3 0 - 10Fe 2 O 3 0-10
BaO 0 - 0,5BaO 0 - 0.5
CaO 10 - 20CaO 10 - 20
MgO 0 - 5MgO 0 - 5
MnO 0 - 1MnO 0 - 1
P2O5 0 - 1P 2 O 5 0 - 1
TiO2 0 - 2TiO 2 0-2
R2O 3 - 9.R 2 O 3 - 9.
Die erfindungsgemäßen Gläser können ganz oder teilweise aus mineralischen Reststof- fen gewonnen werden, z. B. aus den Rückständen von Müllverbrennungsanlagen, Filterstäuben, Schlacken der Metallherstellung, wobei hier ein zusätzlicher Effekt darin gesehen werden kann, dass auch der Energieinhalt verwendet werden kann, da dem Schmelzprozess flüssige Schlacken von gut 1.300 0C zugefügt werden können.The glasses according to the invention can be obtained wholly or partly from mineral residues, eg. As from the residues of waste incineration plants, filter dusts, slags of metal production, in which case an additional effect can be seen that the energy content can be used as the molten liquid slags of well 1,300 0 C can be added.
Weiter sind Reste aus dem Glasrecycling, Natronlauge aus chemischen Prozessen und zerkleinerte, wieder aufzubereitende ganze Photovoltaikmodule einsetzbar. Auch ist es möglich, komplette Module oder Modulteile als Quelle mineralischer Reststoffe der Glasschmelze zuzuführen. Möglich ist es auch, nichttransparente Alumosilikatgläser zu verwenden. Damit können auch Restgläser oder Restglasabfälle verwendet werden, die färbende Oxidanteile enthalten. Erfindungsgemäß werden Alumosilikatgläser verwendet, die, bezogen auf die Oxidbasis der Glaszusammensetzung in Mol-%, einen Aluminiumgehalt besitzen, der über dem Alkaliengehalt liegt. Durch die damit definierten 4er- und 6erKoordination des Sauerstoffs zum Aluminium werden zusammen mit der festen Einbindung der Alkalien Eigenschaften definiert, die die Halbleitertechnologie im Dünnschichtbereich der Photovoltaik substantiell beeinflussen können. Hierzu gehören die deutlich reduzierte Alkalienmobilität und die möglichen erheblich erhöhten Transformationstemperaturen (z. B. 696 0C gegenüber 560 0C von üblichem Floatglas im Vergleich zu Kalk-Natron-Silikatglas). - A -Furthermore, residues from glass recycling, caustic soda from chemical processes and crushed, reprocessed whole photovoltaic modules can be used. It is also possible to supply complete modules or module parts as a source of mineral residues of the molten glass. It is also possible to use non-transparent aluminosilicate glasses. It is also possible to use residual glasses or residual glass waste containing coloring oxide components. According to the invention aluminosilicate glasses are used, which, based on the oxide base of the glass composition in mol%, have an aluminum content which is above the alkali content. The thus defined 4 and 6 coordination of the oxygen to the aluminum, together with the solid incorporation of the alkalis, defines properties which can substantially influence the semiconductor technology in the thin-film area of photovoltaics. These include the alkali significantly reduced mobility and the possible transformation significantly elevated temperatures (eg. B. 696 0 C to 560 0 C of conventional float glass as compared to soda-lime silicate glass). - A -
Besonders bevorzugt verwendet werden Alumoalkali-Silikatgläser mit einer hohen Trans- formationstemperatur im Bereich von 680 0C bis 710 0C und einem niedrigen Alkaligehalt R2O von 3-5 Mol-% bezogen auf die Oxidbasis.Especially preferred are Alumoalkali-silicate glasses with a high transformation temperature in the range from 680 0 C to 710 0 C and a low alkali content of R 2 O 3-5 mol% based on the oxide basis.
Für die PV-Dünnschichtindustrie ergeben die Eigenschaften der erfindungsgemäßen Alumosilikatgläser erhebliche Optimierungsmöglichkeiten für ihre Prozesse. So lassen sich bei den nun möglichen höheren Prozesstemperaturen erhöhte Sputterraten mit einer höheren elektrischen Ausbeute der Module realisieren. Erreicht wird eine erhöhte Produktivität in Kombination mit höheren Wirkungsgraden. Auch lassen sich darüber hinaus noch weitere Kosteneinsparungen im Bereich der Glasherstellung realisieren. Zwar werden die Schmelzkosten ansteigen, da aber die Rohstoffe aus industriellen Reststoffen gewonnen werden können, fallen nicht nur die Rohstoffkosten komplett weg, es können sogar noch Entsorgungskosten als aktiver Beitrag eingespielt werden.For the PV thin-film industry, the properties of the aluminosilicate glasses according to the invention provide considerable possibilities for optimizing their processes. Thus, at the now possible higher process temperatures, increased sputtering rates can be achieved with a higher electrical yield of the modules. This results in increased productivity in combination with higher efficiencies. In addition, further cost savings can be realized in the field of glass production. Although the melting costs will increase, but since the raw materials can be obtained from industrial residues, not only the raw material costs are completely eliminated, even disposal costs can be recorded as an active contribution.
Da diese Gläser immer einen höheren Eisengehalt haben werden, werden sie als Schwarzgläser bezeichnet. Zur Kostenoptimierung kann darüber hinaus gerade für die Dünnschichttechnologie ein sehr kostengünstiger Recyclingpfad aufgebaut werden, da die Module komplett als Glasmaterial wiederverwertet und eingeschmolzen werden können, zumal sich auch problematische Halbleitermaterialien risikolos in die Glasmatrix bei der Herstellung der Substratgläser einbauen lassen. Auch die Möglichkeit, teilweise flüssige Schlacken mit Temperaturen bis 1.300 0C der Glasschmelze im Prozess zuzu- führen, senkt die sehr hohen Energiekosten, die im Flachglasbereich bis zu 30 % der Gesamtkosten betragen können.Since these glasses will always have a higher iron content, they are referred to as black glasses. To optimize costs, a very cost-effective recycling path can be built especially for the thin-film technology, since the modules can be completely recycled and melted as glass material, especially since even problematic semiconductor materials can be installed without risk in the glass matrix in the production of the substrate glasses. The possibility of partially liquid slags with temperatures up to 1,300 0 C in the molten glass lead attributable process, reduces the very high energy costs, which can be up to 30% of the total in the flat glass area.
Die Erfindung wird nachfolgend anhand mehrerer Ausführungsbeispiele näher beschrieben.The invention will be described in more detail with reference to several embodiments.
Ausführungsbeispiel 1 :Embodiment 1
Aus Restglasabfällen, z. B. aus den Rückständen von Müllverbrennungsanlagen, Filterstäuben, Schlacken der Metallherstellung, Reste aus dem Glasrecycling, Natronlauge aus chemischen Prozessen und zerkleinerte wieder aufzubereitende ganze Photovol- taikmodule wurden in einem Kanthaloofen bei 1.500 0C Gläser mit den in Tab. 1 aufgeführten Zusammensetzung geschmolzen. Tab. 2 zeigt ausgewählte Eigenschaften (Aus- dehnungskoeffizient a, Transformationstemperatur Tg, Dichte p und Liquidustemperatur Tq) weiterer Proben. Tab. 1 : Chemische Zusammensetzung der Proben in Masse %From residual glass waste, z. B. from the residues of waste incineration plants, filter dusts, slags of metal production, residues from glass recycling, caustic soda from chemical processes and shredded to be reprocessed whole photovoltaic taikmodule were melted in a Kanthaloofen at 1,500 0 C glasses with the composition listed in Tab. Tab. 2 shows selected properties (expansion coefficient a, transformation temperature Tg, density p and liquidus temperature T q) of further samples. Tab. 1: Chemical composition of the samples in mass%
Oxide/Probe 1 2 3 4 5Oxides / sample 1 2 3 4 5
SiO2 52,36 44,41 41 ,22 38,16 34,85SiO 2 52.36 44.41 41, 22 38.16 34.85
AI2O3 13,95 15,15 15,67 16,46 16,07AI 2 O 3 13,95 15,15 15,67 16,46 16,07
Fe2O3 2,34 5,00 6,81 8,20 8,00Fe 2 O 3 2.34 5.00 6.81 8.20 8.00
FeO 5,54 4,81 2,41 0,52 0,11FeO 5.54 4.81 2.41 0.52 0.11
TiO2 1 ,14 1 ,29 1 ,38 1 ,21 1 ,10TiO 2 1, 14 1, 29 1, 38 1, 21 1, 10
CaO 14,61 17,88 16,63 15,44 14,09CaO 14.61 17.88 16.63 15.44 14.09
MgO 2,11 2,63 2,37 2,34 2,15MgO 2.11 2.63 2.37 2.34 2.15
K2O 0,91 1 ,11 0,99 0,92 0,87K 2 O 0.91 1, 11 0.99 0.92 0.87
Na2O 4,90 5,06 9,90 14,74 20,21Na 2 O 4,90 5,06 9,90 14,74 20,21
MnO 0,78 0,98 0,90 0,84 0,78MnO 0.78 0.98 0.90 0.84 0.78
P2O5 0,14 0,19 0,25 0,13 0,13P 2 O 5 0.14 0.19 0.25 0.13 0.13
SO3 n.n.b n.n.b, 0,022 0,065 0,093SO 3 nnb nnb, 0.022 0.065 0.093
CdO 0,33 0,30 0,22 0,09 0,03CdO 0.33 0.30 0.22 0.09 0.03
PbO 0,45 0,43 0,41 0,37 0,33PbO 0.45 0.43 0.41 0.37 0.33
Cr2O3 0,47 0,64 0,46 0,64 0,82Cr 2 O 3 0.47 0.64 0.46 0.64 0.82
Summe 100,03 99,89 99,64 100,12 99,63Total 100.03 99.89 99.64 100.12 99.63
Tg 696 674 Tg 696 674
Tab. 2: Ausgewählte Eigenschaften weiterer Proben [Ausdehnungskoeffizient 0, Trans- formationstemperatur Tg, Dichte p und Liquidustemperatur TL,q]Tab. 2: Selected properties of further samples [expansion coefficient 0, transformation temperature Tg, density p and liquidus temperature T L , q ]
Ma. %Ma. %
SiO2 AI2O3 CaO MgO Fe2O3 Alkaα Tg P τLιq lien 10"bK 0C g/crn^ 0C GlasSiO 2 Al 2 O 3 CaO MgO Fe 2 O 3 Alkaα Tg P τ Lιq lien 10 "b K 0 C g / crn ^ 0 C glass
1 46 21 23 2 2 6 7,02 696 2,74 12321 46 21 23 2 2 6 7.02 696 2.74 1232
2 61 10 18 3 3 5 7,07 662 2,65 12302 61 10 18 3 3 5 7.07 662 2.65 1230
3 44 23 22 2 2 7 7,12 688 2,74 11923 44 23 22 2 2 7 7.12 688 2.74 1192
4 49 15 19 7 5 5 6,91 674 2,78 12364 49 15 19 7 5 5 6,91 674 2,78 1236
5 45 16 18 9 6 6 7,14 662 2,83 12575 45 16 18 9 6 6 7,14 662 2,83 1257
6 46 19 15 3 10 7 7,22 655 2,82 12206 46 19 15 3 10 7 7.22 655 2.82 1220
7 53 15 17 8 2 5 7,19 677 2,72 12497 53 15 17 8 2 5 7,19 677 2,72 1249
Ausführungsbeispiel 2:Embodiment 2:
Die Anwendung der CIS-Dünnschichttechnologie ist auf Grund der Transformationstenn- peratur des verwendeten Floatglases gegenwärtig auf etwa 550 0C mit dem Sputtern der Halbleitermaterialien begrenzt, wobei sich damit auch bestimmte Kristallgrößen und damit elektrische Wirkungsgrade ergeben.The application of the CIS thin-film technology is limited due to the Transformationstenn- temperature of the float glass used at present to about 550 0 C with the sputtering of the semiconductor materials, thus, certain crystal sizes and thus electrical efficiencies result.
Diese Prozesstemperaturen lassen sich mit der erfindungsgemäßen Verwendung der Alumosilikatgläser auf 700 0C und, je nach Glaszusammensetzung, sogar darüber erhöhen, womit sich völlig neue Prozessmöglichkeiten und Prozessfenster ergeben. This process temperatures can be with the inventive use of alumosilicate to 700 0 C and, depending on glass composition, even increase it, thus completely new process facility, and a process window yield.

Claims

Patentansprüche claims
1. Verwendung eines Alumosilikatglases als Substratglas für die Photovoltaik, gekennzeichnet durch eine Glaszusammensetzung, die Bor-frei oder Bor-arm ist und bei der - bezogen auf die Oxidbasis der Glaszusammensetzung in Mol-% - der AI2O3 - Gehalt größer ist als der Alkaligehalt R2O.1. Use of an aluminosilicate glass as a substrate glass for photovoltaics, characterized by a glass composition which is boron-free or boron-poor and in which - based on the oxide base of the glass composition in mol% - the Al 2 O 3 - content is greater than the alkali content R 2 O.
2. Verwendung eines Alumosilikatglases nach Anspruch 1 , dadurch gekennzeichnet, dass das Alumosilikatglas eine Transformationstemperatur von 580 0C - 850 0C aufweist.2. Use of an aluminosilicate glass according to claim 1, characterized in that the aluminosilicate glass has a transformation temperature of 580 0 C - 850 0 C.
3. Verwendung eines Alumosilikatglases nach Anspruch 2, dadurch gekennzeichnet, dass das Alumosilikatglas eine Transformationstemperatur von 600 0C - 720 0C aufweist.3. Use of an aluminosilicate glass according to claim 2, characterized in that the aluminosilicate glass has a transformation temperature of 600 0 C - 720 0 C.
4. Verwendung eines Alumosilikatglases nach Anspruch 1 , dadurch gekennzeichnet, dass der Alkaliengehalt R2O 0,1 - 20 Mol"'% betragt.4. Use of an aluminosilicate glass according to claim 1, characterized in that the alkali content R 2 O is 0.1 to 20 mol "'%.
5. Verwendung eines Alumosilikatglases nach Anspruch 1 oder 4, dadurch gekennzeichnet, dass der Alkaliengehalt 3 - 9 Mol-% betragt.5. Use of an aluminosilicate glass according to claim 1 or 4, characterized in that the alkali content amounts to 3 - 9 mol%.
6. Verwendung eines Alumosilikatglases nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Alumosilikatglas folgende Zusammensetzung (in Gew.-%) aufweist:6. Use of an aluminosilicate glass according to one of claims 1 to 3, characterized in that the aluminosilicate glass has the following composition (in% by weight):
SiO2 30 - 80SiO 2 30-80
AI2O3 10 - 30Al 2 O 3 10 - 30
B2O3 0-0,5B 2 O 3 0-0.5
Fe2O3 0-10Fe 2 O 3 0-10
BaG 0-0,5BaG 0-0.5
CaO 10 - 20CaO 10 - 20
MgO 0 - 5MgO 0 - 5
MnO 0-1MnO 0-1
P2O5 0 - 1P 2 O 5 0 - 1
TiO2 0 - 2TiO 2 0-2
R2O 3 - 9 R 2 O 3 - 9
7. Verwendung eines Alumosilikatglases nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Alumosilikatglas vollständig oder partiell aus mineralischen Reststoffen, insbesondere aus Rückständen von Müllverbrennungsanlagen, Filterstäuben oder Schlacken der Metallherstellung, gewonnen wird.7. Use of an aluminosilicate glass according to one of claims 1 to 6, characterized in that the aluminosilicate glass is completely or partially recovered from mineral residues, in particular from residues of waste incineration plants, filter dusts or slags of metal production.
8. Verwendung eines Alumosilikatglases nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Alumosilikatglas vollständig oder partiell aus recyceltem Glas, Natronlauge aus chemischen Prozessen oder zerkleinerten Photovoltaikmodulen gewonnen wird. 8. Use of an aluminosilicate glass according to one of claims 1 to 6, characterized in that the aluminosilicate glass is completely or partially recovered from recycled glass, sodium hydroxide from chemical processes or shredded photovoltaic modules.
PCT/EP2010/056667 2009-05-18 2010-05-14 Use of aluminosilicate glasses as substrate glasses for photopholtaics WO2010133522A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10720751A EP2432743A1 (en) 2009-05-18 2010-05-14 Use of aluminosilicate glasses as substrate glasses for photopholtaics

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009022575A DE102009022575A1 (en) 2009-05-18 2009-05-18 Use of aluminosilicate glasses as substrate glasses for photovoltaics
DE102009022575.7 2009-05-18

Publications (1)

Publication Number Publication Date
WO2010133522A1 true WO2010133522A1 (en) 2010-11-25

Family

ID=42289757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/056667 WO2010133522A1 (en) 2009-05-18 2010-05-14 Use of aluminosilicate glasses as substrate glasses for photopholtaics

Country Status (3)

Country Link
EP (1) EP2432743A1 (en)
DE (1) DE102009022575A1 (en)
WO (1) WO2010133522A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024034546A1 (en) * 2022-08-08 2024-02-15 日本板硝子株式会社 Glass composition, glass fiber, glass filler, glass fiber manufacturing method, and glass filler manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011008138B4 (en) 2011-01-08 2019-06-27 Technische Universität Bergakademie Freiberg Solar thermal flat collector

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1459178A (en) * 1972-11-21 1976-12-22 Dostal K V Glass and glass-ceramics and compositions therefor
US4414013A (en) 1982-04-26 1983-11-08 Connell David A Method of making black glass by utilizing incinerated waste glass
US5854153A (en) * 1997-01-09 1998-12-29 Corning Incorporated Glasses for display panels
EP0939060A1 (en) 1998-02-27 1999-09-01 Asahi Glass Company Ltd. Substrate glass for displays
DE69902839T2 (en) 1998-04-28 2003-05-28 Asahi Glass Co Ltd Flat glass and substrate glass for electronics
WO2008028599A1 (en) 2006-09-04 2008-03-13 Schott Ag Aluminoborosilicate glass for use as substrate glass

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19942259C1 (en) * 1999-09-04 2001-05-17 Schott Glas Alkaline earth aluminum borosilicate glass and its uses
DE10005088C1 (en) * 2000-02-04 2001-03-15 Schott Glas Aluminoborosilicate glass used e.g. as substrate glass in thin layer photovoltaic cells contains oxides of silicon, boron, aluminum, sodium, potassium, calcium, strontium, barium, tin, zirconium, titanium and zinc

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1459178A (en) * 1972-11-21 1976-12-22 Dostal K V Glass and glass-ceramics and compositions therefor
US4414013A (en) 1982-04-26 1983-11-08 Connell David A Method of making black glass by utilizing incinerated waste glass
US5854153A (en) * 1997-01-09 1998-12-29 Corning Incorporated Glasses for display panels
EP0939060A1 (en) 1998-02-27 1999-09-01 Asahi Glass Company Ltd. Substrate glass for displays
DE69902839T2 (en) 1998-04-28 2003-05-28 Asahi Glass Co Ltd Flat glass and substrate glass for electronics
WO2008028599A1 (en) 2006-09-04 2008-03-13 Schott Ag Aluminoborosilicate glass for use as substrate glass

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BERNARDO ET AL: "Sintered glass-ceramics from mixtures of wastes", CERAMICS INTERNATIONAL, ELSEVIER, AMSTERDAM, NL LNKD- DOI:10.1016/J.CERAMINT.2005.07.012, vol. 33, no. 1, 2 November 2006 (2006-11-02), pages 27 - 33, XP005847095, ISSN: 0272-8842 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024034546A1 (en) * 2022-08-08 2024-02-15 日本板硝子株式会社 Glass composition, glass fiber, glass filler, glass fiber manufacturing method, and glass filler manufacturing method

Also Published As

Publication number Publication date
EP2432743A1 (en) 2012-03-28
DE102009022575A1 (en) 2010-11-25

Similar Documents

Publication Publication Date Title
DE102010009585B4 (en) High modulus lithium aluminosilicate glass, process for its preparation and use
US5851939A (en) Alkali-free glass substrate
EP2338847B1 (en) Boron-free glass
DE102015116097B4 (en) Chemically resistant glass and its use
CN101462825B (en) Ultra-white float glass
DE102009038475B4 (en) Use of a glass for glass-metal connections
EP2480508B1 (en) Aluminosilicate glass having high thermal stability and low processing temperature
EP1156989B1 (en) Glass with high proportion of zirconium-oxide and its uses
WO2001056941A1 (en) Alkali-containing aluminum borosilicate glass and utilization thereof
DE112009004439B4 (en) Glass fiber composition
DE19601922C2 (en) Tin and zirconium oxide-containing, alkali-free alkaline earth aluminum-borosilicate glasses and their use
DE102013103033A1 (en) Aluminum silicate glass, useful e.g. for manufacturing mobile phone, includes zirconium dioxide, boron oxide, silica, alumina, sodium oxide, potassium oxide, magnesium oxide, phosphorus pentoxide, barium oxide, strontium oxide, and titania
DE102010006331A1 (en) Aluminosilicate glasses with high thermal resistance, low processing temperature and high crystallization resistance
CN113754275A (en) Radiation-proof glass
EP2432743A1 (en) Use of aluminosilicate glasses as substrate glasses for photopholtaics
CN1200899C (en) Lead-free optical light flintgass
WO1996033954A2 (en) Borosilicate glass
CN107673600B (en) High-light-transmittance and high-infrared-ray-transmittance functional silicate glass, and preparation and application thereof
DE102005058759A1 (en) ceramic
CN1792916A (en) Low barium high refractive index glass
EP4385959A1 (en) Transparent glass ceramic, in particular as a cover pane
DE102022133592A1 (en) Transparent glass ceramic, especially as a cover plate
DE112022004003T5 (en) GLASS SUBSTRATE FOR SPACE-BASED SOLAR POWER GENERATION
Li et al. Minor component study for simulated high-level nuclear waste glasses (Draft)
CN1754850A (en) Optical glass NLaSF016 without arsenic, lead, cadmium and lanthanide series

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10720751

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2010720751

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE