WO2010131338A1 - Laser ranging method and laser ranging device - Google Patents

Laser ranging method and laser ranging device Download PDF

Info

Publication number
WO2010131338A1
WO2010131338A1 PCT/JP2009/058895 JP2009058895W WO2010131338A1 WO 2010131338 A1 WO2010131338 A1 WO 2010131338A1 JP 2009058895 W JP2009058895 W JP 2009058895W WO 2010131338 A1 WO2010131338 A1 WO 2010131338A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
laser
measurement
distance
measurement light
Prior art date
Application number
PCT/JP2009/058895
Other languages
French (fr)
Japanese (ja)
Inventor
直行 古山
Original Assignee
Koyama Naoyuki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyama Naoyuki filed Critical Koyama Naoyuki
Priority to PCT/JP2009/058895 priority Critical patent/WO2010131338A1/en
Publication of WO2010131338A1 publication Critical patent/WO2010131338A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated

Definitions

  • the present invention relates to a laser distance measuring method and a laser distance measuring apparatus that perform distance measurement between measurement points of an object to be measured using interference of laser light.
  • the laser light is divided into reference light and measurement light, and the optical path difference between the reference light and measurement light reflected by the object to be measured is obtained. Measure the distance to the object to be measured.
  • the distance measurement accuracy is far from the wavelength level of the laser light, that is, the order of nm (nanometer).
  • Patent Document 1 the inventor of the present application uses a plurality of laser beams having different wavelengths, and further changes the optical path difference so as to utilize the coherence characteristic of the laser beams.
  • inventions related to a laser distance measuring method and a laser distance measuring apparatus for performing the laser distance measuring method have been made.
  • the distance to the object to be measured can be measured with high accuracy, but the object to be measured is more practical than the distance to the object to be measured in practical use. It is often useful to measure the distance between these two measurement points, and further improvements are desired in this regard. Also, when measuring the distance between two measurement points of the object to be measured, it is better to measure the distance to the two measurement points at the same time than measuring the two measurement points of the object to be measured individually. It is preferable in terms of measurement accuracy. Furthermore, the invention disclosed in [Patent Document 1] requires a mechanism for mechanically changing the optical path difference of the reference light or the measurement light, and the apparatus scale is relatively large. desired.
  • the present invention has been made in view of the above circumstances, and without using a mechanical movement mechanism for the optical path system, the measurement light is simultaneously irradiated to each of the two measurement points, and interference light between the measurement lights is used. It is an object of the present invention to provide a laser distance measuring method and a laser distance measuring apparatus that measure the distance between measurement points with high accuracy.
  • the present invention (1) In a laser distance measuring method in which laser light is reflected at a measurement point of the object to be measured 6 and a distance to the measurement point is measured, Laser irradiation is performed while continuously changing the frequency of the laser beam, and the laser beam is divided into a first measurement beam and a second measurement beam, and then the first measurement beam is subjected to the first measurement of the object 6 to be measured.
  • the second measurement light is reflected at the point S1 at the second measurement point S2 of the object 6 to be measured, and the first measurement light reflected at the first measurement point S1 and the second measurement light reflected at the second measurement point S2 are used.
  • the above problem is solved by providing a laser distance measuring method characterized by comprising: (2) Laser irradiation means 10 having a function of varying the frequency of the laser light to be output, laser light information acquisition means 26 for acquiring the amount of change in the frequency of the laser light emitted from the laser irradiation means 10, and the laser irradiation means
  • the measurement light dividing unit 15 that divides the laser light emitted from 10 into a first measurement light and a second measurement light, and the first measurement light and the measurement object 6 reflected at the first measurement
  • the intensity data of the interference light generated by the first measurement light reflected at the first measurement point S1 and the second measurement light reflected at the second measurement point S2 when irradiation is performed corresponds to the amount of change in the frequency of the laser light.
  • An acquisition step to acquire A conversion step of Fourier-transforming the intensity data obtained in the acquisition step to acquire a period of interference fringes of interference light generated by the first measurement light and the second measurement light; A laser ranging, wherein a calculation step of calculating a distance L from the first measurement point S1 to the second measurement point S2 based on an interference fringe period of the predetermined interference light obtained in the conversion step is performed.
  • the laser irradiation unit 10 emits a laser beam having a specific frequency, and an optical comb generator that uses the laser beam emitted from the laser irradiation unit 10a as a plurality of laser beams having a predetermined frequency interval. 10b and an optical frequency modulator 10c for modulating the frequency interval of the optical comb generator 10b within a predetermined range.
  • the optical bandpass filters BPF1 to BPF5 that transmit only the laser light within a predetermined frequency range of the laser light emitted from the laser irradiation means 10 are provided on the optical path of the laser light (3)
  • the above-mentioned problems are solved by providing the laser distance measuring devices 50b to 50e.
  • the optical path length of the first measurement light and the optical path length of the second measurement light inside the apparatus are equalized.
  • the optical path length of the first measurement light and the optical path length of the second measurement light in the apparatus are equalized.
  • the optical path length of the first measurement light and the optical path length of the second measurement light in the apparatus are equal to each other.
  • the distance between two measurement points can be measured with high accuracy without using a mechanical movement mechanism for the optical path system.
  • a laser distance measuring device 50 includes a laser irradiation means 10 capable of changing the frequency of emitted laser light within a predetermined range, and the laser irradiation means 10 emits light.
  • a laser beam information acquisition unit 26 that acquires the amount of change in the frequency of the laser beam to be output and outputs it to the calculation unit 20, and a measurement that divides the laser beam emitted from the laser irradiation unit 10 into a first measurement beam and a second measurement beam
  • the light splitting unit 15, the first measurement light reflected at the first measurement point S 1 of the object to be measured 6 and the second measurement light reflected at the second measurement point S 2 of the object to be measured 6 are received and received.
  • the light receiving unit 18 Based on the light receiving unit 18 that outputs a signal corresponding to the intensity to the arithmetic unit 20, the amount of change in the frequency of the laser light from the laser light information acquisition unit 26, and the signal from the light receiving unit 18, Calculation unit 2 for calculating the distance L between the measurement point S2 And, the has.
  • the broken line in FIG. 1 shows the optical path of a laser beam.
  • a well-known wavelength tunable laser can be used as the laser irradiation means 10 of the laser range finder 50 of the first embodiment.
  • the optical path difference acquisition method described below is basically the same as the laser distance measuring method according to the present invention and the operation of the laser distance measuring apparatus 50 of the first embodiment.
  • the following optical path difference acquisition method is suitable for the laser distance measuring apparatus according to the present invention, but this method is not necessarily used. Further, the optical path difference need not be acquired for each measurement, and may be recorded at the time of shipment of the laser distance measuring device and recorded in a memory or the like.
  • a flat plate 7 having a smooth surface is installed so that the first measurement light and the second measurement light are vertically irradiated on the smooth surface.
  • the laser irradiation means 10 emits laser light.
  • the laser irradiation means 10 can change the wavelength of the emitted laser light within a predetermined range. At this time, the wavelength of the laser light changes continuously within the predetermined range.
  • the laser light emitted from the laser irradiation means 10 is divided into two by the beam splitter 4 provided on the optical path of the laser light, one is irradiated to the laser light information acquisition means 26, and the other is the measurement light dividing section 15. Irradiated to the side.
  • the laser beam information acquisition unit 26 acquires the frequency of the laser beam emitted from the laser irradiation unit 10 and outputs it to the calculation unit 20.
  • the laser light information acquisition means 26 a known wavelength meter or frequency meter can be used. In the case where the laser beam information acquisition unit 26 measures the wavelength of the laser beam, the measured wavelength is converted into a frequency and output to the computing unit 20.
  • the laser beam information acquisition unit 26 acquires a wavelength control signal from a wavelength control controller that controls the wavelength of the laser beam emitted from the laser irradiation unit 10, and acquires the frequency of the laser beam based on the wavelength control signal. However, it may be output to the calculation unit 20.
  • the laser beam information acquisition means 26 it is not necessary to irradiate the laser beam information acquisition means 26 with the laser beam using the beam splitter 4. Further, when a frequency meter is used for the laser beam information acquisition unit 26, a known frequency counter that acquires the frequency of the laser beam by causing the laser beam incident on the laser beam information acquisition unit 26 to interfere with the optical comb laser is used. preferable.
  • the laser light irradiated to the measurement light splitting unit 15 side passes through the beam splitter 12 and travels to the measurement light splitting unit 15.
  • the laser beam directed to the measurement light splitting unit 15 is divided into two by the measurement light splitting unit 15, and one is irradiated as the first measurement light to the first measurement point S ⁇ b> 1 of the flat plate 7 from the emission port 16 a.
  • the other is reflected by the mirror 8 as the second measurement light and is irradiated to the second measurement point S2 of the flat plate 7 from the emission port 16b.
  • a half mirror having a spectral ratio of 50:50 may be used, or a beam splitter having a different spectral ratio, for example, 60:40, 70:30, 80:20, or the like may be used. .
  • the first measurement light applied to the first measurement point S1 is reflected at the first measurement point S1, passes through the measurement light splitting unit 15, is reflected by the beam splitter 12, and reaches the light receiving unit 18.
  • the second measurement light applied to the second measurement point S2 is reflected by the second measurement point S2, and then reflected by the mirror 8, the measurement light splitting unit 15, and the beam splitter 12, and reaches the light receiving unit 18. Therefore, the light received by the light receiving unit 18 becomes interference light between the first measurement light and the second measurement light. Then, the light receiving unit 18 converts the intensity of the interference light into an electric signal and outputs it to the calculation unit 20 as intensity data.
  • the calculation unit 20 acquires the intensity data of the interference light from the light receiving unit 18 in correspondence with the amount of change in frequency from the laser light information acquisition unit 26.
  • the calculation unit 20 performs a Fourier transform based on the amount of change in frequency on the acquired intensity data. Thereby, the amplitude I S12 , period T S12 , and phase ⁇ S12 of the interference light are acquired.
  • the wavelength ⁇ becomes equal to the optical path difference (2 ⁇ Ld) between the first measurement light and the second measurement light inside the apparatus. Accordingly, at this time, the first measurement light and the second measurement light are intensified, and the interference light has a bright peak.
  • the wavelength ⁇ is equal to 1 ⁇ 2 of the optical path difference (2 ⁇ Ld) between the first measurement light and the second measurement light.
  • the first measurement light and the second measurement light of the laser light are intensified, and the interference light has a bright peak.
  • the frequency f of the laser light becomes 900 MHz and 1.2 GHz
  • the first measurement light and the second measurement light of the laser light are intensified and the interference light takes a bright peak. Therefore, in this case, the interference light has a bright peak every 300 MHz, and the interference fringe spacing is 300 MHz.
  • the fringe spacing of the interference fringes corresponds to the interference light period T S12 obtained by Fourier transform.
  • the calculation unit 20 selects a predetermined period T S12 of the interference light (in this example, the interference light itself) from the period of the interference fringes of the interference light obtained in the conversion step, and the expression (1) above.
  • a distance Ld that is 1 ⁇ 2 of the optical path difference between the first measurement light and the second measurement light inside the apparatus is calculated. Then, the value of the distance Ld is recorded in a memory or the like in the calculation unit 20 (not shown).
  • the laser distance measuring method according to the present invention and the operation at the time of distance measurement for the object 6 of the laser distance measuring apparatus 50 of the first embodiment will be described.
  • the laser distance measuring method according to the present invention and the operation of the laser distance measuring device 50 according to the first embodiment during distance measurement with respect to the measurement object 6 are the optical paths of the first measurement light and the second measurement light. Since it is equivalent to the method of acquiring the difference, a part of the description is omitted for the overlapping part.
  • the DUT 6 is placed at a predetermined position.
  • the first measurement light emitted from the laser distance measuring device 50 is applied to the first measurement surface of the device under test 6 and the second measurement light is applied to the second measurement surface of the device under test 6.
  • the laser irradiation means 10 emits laser light so that its wavelength continuously changes within a predetermined range.
  • the calculating part 20 performs an acquisition step and a conversion step similarly.
  • the calculation unit 20 calculates 1 / of the optical path difference inside the apparatus by the following calculation formula (2) similar to the calculation formula (1) for the interference light period T S12 obtained in the conversion step.
  • a value (distance L ′) that is 1 ⁇ 2 of the optical path difference between the first measurement light and the second measurement light after including the value of 2 (distance Ld) is calculated.
  • L ′ c / T S12 / 2 (2)
  • the distance L ′ here is, as shown in FIG. 1A, when the second measurement point S2 is farther from the laser distance measuring device 50 than the first measurement point S1.
  • L ′ Ld + L
  • L ′ Ld ⁇ L.
  • the distance L is the distance from the first measurement point S1 to the second measurement point S2.
  • the calculation unit 20 calculates the distance L from the first measurement point S1 to the second measurement point S2 by subtracting the distance Ld acquired in advance from the distance L ′ and taking the absolute value thereof. Thereby, the distance L between the first measurement point S1 and the second measurement point S2 can be calculated with high accuracy.
  • the laser distance measuring device 50a of the second embodiment according to the present invention is mainly different from the laser distance measuring device 50 of the first embodiment in the configuration of the laser irradiation means 10 and the laser light information acquisition means 26. .
  • the laser irradiating means 10 of the laser distance measuring device 50a includes a laser irradiating device 10a that emits a laser beam having a specific frequency, and a laser beam emitted from the laser irradiating device 10a.
  • the optical comb generator 10b generates a plurality of laser beams having a predetermined frequency interval, and the optical frequency modulator 10c modulates the frequency interval of the optical comb generator 10b within a predetermined range.
  • the laser beam information acquisition unit 26 of the laser range finder 50a acquires the amount of change in the frequency of the laser beam emitted from the laser irradiation unit 10 from the value of the modulation frequency from the optical frequency modulator 10c. The result is output to the calculation unit 20.
  • the optical path difference acquisition method described below is basically the same as the laser distance measuring method according to the present invention and the operation of the laser distance measuring device 50a of the second embodiment.
  • the following optical path difference acquisition method is suitable for the laser distance measuring apparatus according to the present invention, but this method is not necessarily used. Further, the optical path difference need not be acquired for each measurement, and may be recorded at the time of shipment of the laser distance measuring device and recorded in a memory or the like.
  • a flat plate 7 having a smooth surface is installed so that the first measurement light and the second measurement light are vertically irradiated on the smooth surface.
  • the laser irradiation device 10a constituting the laser irradiation unit 10 emits a laser beam of a specific frequency f 0 to the optical comb generator 10b.
  • Optical comb generator 10b in response to the modulation frequency input from the optical frequency modulator 10c, in terms of generating the plurality of light Komureza light equal frequency intervals above and below the center frequency f 0, the laser light of frequency f 0
  • the measurement light splitting unit 15 is irradiated.
  • laser light emitted from the optical comb generator 10b includes a laser beam LZ 0 frequency f 0, as a light Komureza light, the frequency f 0 + d ( the frequency f 1. a laser beam LZ 1 in), and the laser beam LZ 2 frequency f 0 + 2d (. to frequency f 2), ⁇ ⁇ ⁇ , the frequency f 0 + nd of (. to frequency f n) a laser beam LZ n, and the laser beam LZ -1 frequency f 0 -d (. to frequency f -1), and the laser beam LZ -2 frequency f 0 -2d (.
  • the frequency f of the laser beam LZ ⁇ 1 .
  • the optical frequency modulator 10 c outputs the value of the modulation frequency to the laser light information acquisition unit 26.
  • the laser beams LZ ⁇ n to LZ 0 to LZ n emitted from the optical comb generator 10b are collectively referred to as laser light LZ
  • the optical comb laser light and laser light LZ ⁇ n emitted from the optical comb generator 10b are collectively referred to as laser beam LZ (n).
  • laser beam LZ (n) To LZ ⁇ 1 and laser beams LZ 1 to LZ n are collectively referred to as laser beam LZ (n).
  • the laser beam information acquisition unit 26 determines the amount of change in the frequency of the first-stage optical comb laser beam (laser beams LZ 1 , LZ ⁇ 1 ) from the modulation frequency value from the optical frequency modulator 10 c, that is, the value of ⁇ described above. Is output to the calculation unit 20.
  • the laser light LZ emitted from the laser irradiation means 10 passes through the beam splitter 12 and travels toward the measurement light splitting unit 15.
  • the laser beam LZ directed to the measurement beam splitting unit 15 is divided into two by the measurement beam splitting unit 15 and one is irradiated as the first measurement beam to the first measurement point S1 of the flat plate 7 from the emission port 16a.
  • the other is reflected by the mirror 8 as the second measurement light and is irradiated to the second measurement point S2 of the flat plate 7 from the emission port 16b.
  • the first measurement light is reflected at the first measurement point S1, and then reaches the light receiving unit 18 along the same optical path as described above. Further, after the second measurement light is reflected at the second measurement point S2, it reaches the light receiving unit 18 along the same optical path as described above. Therefore, the light received by the light receiving unit 18 is an interference light in which a plurality of interference lights generated by interference between the first measurement light of the laser light LZ and the second measurement light of the laser light LZ are combined. Then, the light receiving unit 18 converts the intensity of the interference light into an electric signal and outputs it to the arithmetic unit 20 as intensity data.
  • the intensity data of the interference light includes the intensity of the interference light between the first measurement light and the second measurement light of optical comb laser lights (for example, laser light LZ 1 and laser light LZ 2 ) having different numbers of stages.
  • the intensity of the interference light of the optical comb laser beams having different numbers of stages becomes a beat (beat) and appears in the interference light, and this beat is averaged within the measurement time, and finally becomes background noise with a constant intensity.
  • the calculation unit 20 acquires the intensity data of the interference light from the light receiving unit 18 corresponding to the amount of change in the frequency from the laser light information acquisition unit 26.
  • the arithmetic unit 20 performs Fourier transform on the intensity data of the interference light corresponding to the frequency change amount.
  • the amplitude of the interference light, the period, as a phase, the interference light of the first measuring light of the laser beam LZ 1 and the second measuring light of the laser beam LZ 1 amplitude I S12 (1), the period T S12 (1) , Phase ⁇ S12 (1) is acquired.
  • the interference light amplitude I S12 of the first measuring light of the laser beam LZ 2 and the second measuring light of the laser beam LZ 2 (2), the period T S12 (2), the phase phi S12 (2) is obtained .
  • the first measuring beam and the interference light amplitude I S12 of the second measuring light of the laser beam LZ n (n), the period T S12 (n), the phase phi S12 (n) is obtained for the laser beam LZ n .
  • the amplitude I S12 (-1) of the first measuring beam and the interference light of the second measuring light of the laser beam LZ -1 laser beam LZ -1, period T S12 (-1), the phase phi S12 (-1 ) Is acquired.
  • the first measuring beam and the amplitude I S12 of the second measurement light and the interference light of the laser beam LZ -2 of the laser beam LZ -2 (-2), the period T S12 (-2), the phase phi S12 (-2 ) Is acquired.
  • the background noise due to the interference light of the optical comb laser beams having different numbers of stages is a constant intensity averaged within the measurement time, and thus becomes a constant by Fourier transform. Further, since the frequency of the laser beam LZ 0 is constant without affecting the modulation frequency of the optical frequency modulator 10c, which also becomes constant by the Fourier transform.
  • the frequency of the laser beam LZ n in the positive direction of the number of light Komureza light changes in the increasing direction by the modulation frequency of the optical frequency modulator 10c
  • the frequency of the laser beam LZ -n negative direction of the number of stages of optical Komureza light It changes in a decreasing direction depending on the modulation frequency of the optical frequency modulator 10c.
  • the fringe intervals (cycles) of the interference light of the optical comb laser beams (laser beam LZ n and laser beam LZ ⁇ n ) having the same number of positive and negative stages obtained by the Fourier transform are equal.
  • the period T S12 (1) period T S12 (-1 )
  • the period T S12 of the interference light of the laser beam LZ -n (-n) period T S12 (-n) .
  • T S12 (1) T S12 ( ⁇ 1)
  • T S12 (2) T S12 ( ⁇ 2)
  • T S12 ( ⁇ 2) T S12 ( ⁇ 2)
  • T S12 (n) T S12 ( ⁇ n)
  • T S12 (1) , T S12 (1) / 2,..., T S12 (1) / n (n 1, 2, 3,... N). It becomes a series.
  • the computing unit 20 selects a period T S12 (n) of interference light by a predetermined laser beam LZ n from the period of interference fringes of interference light constituting the interference light obtained in the conversion step.
  • the interference light cycle T S12 (n) is preferably selected from the interference light of the laser light LZ 1 or the laser light LZ ⁇ 1 .
  • the cycle T S12 (n) of the interference light of each laser beam LZ (n) obtained in the conversion step is a series of cycle T S12 (1) / n.
  • T S12 (n) is selected in the sequence of cycle T S12 (1) / n, that is, the cycle of the interference light by the laser beam LZ n (laser beam LZ ⁇ n ) having n stages.
  • the period T S12 (1) a distance Ld, which is a half value of the optical path difference between the first measurement light and the second measurement light in the apparatus, is calculated by the same equation as the above (1).
  • the operation of the laser distance measuring method according to the present invention and the distance measuring operation of the laser distance measuring apparatus 50a of the second embodiment with respect to the object 6 to be measured will be described.
  • the laser distance measuring method according to the present invention and the laser distance measuring device 50a of the second embodiment at the time of distance measurement with respect to the object to be measured 6 are the same as the first measuring light and the second light inside the device. Since this method is equivalent to the method for obtaining the optical path difference of the measurement light, a part of the description is omitted for the overlapping portions.
  • the DUT 6 is placed at a predetermined position.
  • the first measurement light emitted from the laser distance measuring device 50 a is applied to the first measurement surface of the device under test 6 and the second measurement light is applied to the second measurement surface of the device under test 6.
  • the laser irradiation means 10 emits laser light so that its wavelength continuously changes within a predetermined range.
  • the calculating part 20 performs an acquisition step and a conversion step similarly.
  • the first measurement light is reflected at the first measurement point S1 of the device under test 6 and the second measurement light is reflected at the second measurement point S2 of the device under test 6.
  • the light receiving unit 18 receives the first measurement light reflected at the first measurement point S1 of the object 6 to be measured and the second measurement light reflected at the second measurement point S2 of the object 6 to be measured.
  • the calculation unit 20 selects, as a calculation step, a period T S12 (n) of interference light by a predetermined laser beam LZ n from the period of interference fringes of interference light constituting the interference light obtained in the conversion step. . Then, when the laser beam LZ 1 or the laser beam LZ ⁇ 1 is selected, the value (distance) of a half of the optical path difference between the first measurement light and the second measurement light by the same formula as the above (2). L ′) is calculated.
  • the calculation formula in the case of selected ones of the laser beam LZ n or laser beam LZ -n is (2) as well as the following calculation formula (2) ', optical paths of the first measuring beam and the second measuring beam A half value of the difference (distance L ′) is calculated.
  • L ′ c / ( TS12 (n) ⁇
  • the distance L ′ obtained here includes a value (distance Ld) that is 1 ⁇ 2 of the optical path difference inside the apparatus.
  • the calculation unit 20 calculates the distance L from the first measurement point S1 to the second measurement point S2 by subtracting the distance Ld acquired in advance from the distance L ′ and taking the absolute value thereof. Thereby, the distance L between the first measurement point S1 and the second measurement point S2 can be calculated with high accuracy.
  • the optical paths of the first measurement light and the second measurement light in the laser distance measuring devices 50 and 50a according to the present invention may be as shown in FIG. In FIG. 3, only the optical paths of the first measurement light and the second measurement light are shown in a simplified manner.
  • a modification of the laser distance measuring devices 50 and 50a shown in FIG. 3A is an example in which the reflected light of the beam splitter 12 is used as measurement light.
  • the laser distance measuring devices 50 and 50a have the first measurement light and the second measurement light by the measurement light dividing unit 15 and the mirror 8 without using the beam splitter 12. It is the example which comprised the optical path with light.
  • the laser distance measuring device 50 a transmits only laser light within a predetermined frequency range on the optical path of laser light emitted from the laser irradiation means 10.
  • a third embodiment of the laser range finder 50b may be provided with a known optical bandpass filter.
  • laser beam LZ 1 be installed in a laser distance measuring device 50b, the optical bandpass filter and the laser irradiation means 10 On the optical path between the beam splitter 12 (optical bandpass filter BPF1 in FIG. 4) or on the optical path between the beam splitter 12 and the light receiving unit 18 (optical bandpass filter BPF2 in FIG. 4), or the beam splitter It is provided on the optical path (optical bandpass filter BPF3 in FIG. 4) between the 12 and the measuring light splitting unit 15, the light receiving portion 18 for receiving only the interference light by the laser beam LZ 1, the optical comb generator
  • the load on the processing of the calculation unit 20 can be reduced while using the stable laser beam by 10b.
  • a first measuring light receiving unit 18 receives the to those of only the laser beam LZ 1 Therefore, similarly, it is possible to reduce the load on the processing of the arithmetic unit 20 while using the stable laser light from the optical comb generator 10b.
  • the second measuring light received in the light receiving portion 18 includes only the laser beam LZ 1 Similarly, it is possible to reduce the load on the processing of the arithmetic unit 20 while using stable laser light from the optical comb generator 10b.
  • the optical bandpass filter transmits a plurality of optical comb laser beams
  • the number of laser beams received by the light receiving unit 18 is significantly reduced compared to when no optical bandpass filter is installed.
  • the load on the processing of the unit 20 is greatly reduced.
  • the configuration of the laser distance measuring device 50b can be applied to a modification of the laser distance measuring device 50a shown in FIG.
  • the laser distance measuring devices 50, 50a, 50b of the first to third embodiments according to the present invention are on the optical path of the first measuring light as shown in the laser distance measuring device 50c of the fourth embodiment in FIG.
  • the mirror 8a and the mirror 8b may be installed on the mirror 8a, and the distance from the reflection point of the mirror 8a to the reflection point of the mirror 8b may be equal to the distance Ld from the division point of the measurement light dividing unit 15 to the reflection point of the mirror 8.
  • . 5 shows an example in which the configuration of the fourth embodiment is applied to the laser distance measuring device 50a of the second embodiment. However, the configuration can be applied to a modification of the laser distance measuring devices 50 and 50a shown in FIG. Is possible.
  • the optical path difference between the first measurement light and the second measurement light in the device is eliminated, and the optical path length of the first measurement light in the device and the second The optical path length of the measurement light can be made equal. Therefore, in the laser range finder 50c of the fourth embodiment, there is no need to obtain the optical path difference inside the device between the first measurement light and the second measurement light and to perform the subtraction process of the distance Ld from the distance L ′.
  • the distance measurement procedure for the distance L can be simplified.
  • the laser distance measuring devices 50, 50a, 50b, and 50c according to the present invention can also be applied to a laser distance measuring device including a reference mirror 14 as shown in FIG. In FIG. 6, only the optical path of the laser beam is shown in a simplified manner.
  • the light received by the light receiving unit 18 is a reference mirror in addition to the interference light between the first measurement light and the second measurement light.
  • the light receiving unit 18 converts the intensity of the interference light, which is the combination of the three interference lights, into an electrical signal, and outputs the electrical signal to the calculation unit 20.
  • the calculation unit 20 performs an acquisition step and a conversion step, and performs a Fourier transform based on the amount of change in frequency on the acquired intensity data.
  • the amplitude I S12 , period T S12 , and phase ⁇ S12 of the interference light between the first measurement light and the second measurement light the amplitude I S1 , period T S1 , phase ⁇ S1 of the first interference light, The amplitude I S2 , period T S2 , and phase ⁇ S2 of the second interference light are acquired.
  • the first measurement light and the second measurement light are obtained by further dividing the laser light split by the beam splitter 12 by the measurement light splitting unit 15, the spectral ratio of the beam splitter 12 and the measurement light splitting unit 15.
  • Is 50:50 that is, a half mirror
  • the intensity (amplitude) I S12 is smaller than the amplitude I S1 of the first interference light and the amplitude I S2 of the second interference light.
  • the calculation unit 20 calculates, as calculation steps, the amplitude I S12 of the interference light between the first measurement light and the second measurement light obtained in the conversion step, the amplitude I S1 of the first interference light, and the amplitude I of the second interference light.
  • the period T S12 of the interference light between the first measurement light and the second measurement light is discriminated by comparing with S2 and selecting the period having the minimum amplitude, and based on this period T S12 , the formula (2) To calculate the distance L ′.
  • the calculation unit 20 calculates the distance L from the first measurement point S1 to the second measurement point S2 by subtracting the distance Ld acquired in advance from the distance L ′ and taking the absolute value thereof.
  • the amplitude I S12 , the amplitude I S1 , and the amplitude I S2 differ depending on the spectral ratio. If the amplitude I S12 of the interference light with the light, the amplitude I S1 of the first interference light, and the amplitude I S2 of the second interference light are acquired in advance, the first measurement light and the second light are obtained from the value of the amplitude I S12 .
  • the period T S12 of the interference light with the measurement light can be directly selected.
  • a rough value of the distance L (distance L ′′) and the positional relationship between the first measurement point S1 and the second measurement point S2 are acquired in advance, and a rough distance Ld + distance L ′′ is obtained from these values.
  • the period T S12 and the period T obtained in the conversion step are calculated.
  • the distance L ′ is calculated by the expression (2) for each of S1 and the period T S2, the distance L ′ that approximates the value of the rough distance Ld + distance L ′′ is selected, and the selected distance L ′
  • the distance L from the first measurement point S1 to the second measurement point S2 may be calculated by subtracting the distance Ld from the absolute value and taking the absolute value thereof.
  • the laser irradiation means 10 shown in FIG. 6 is a laser distance measuring device 50a including a laser irradiation device 10a, an optical comb generator 10b, and an optical frequency modulator 10c
  • the light received by the light receiving unit 18 is In addition to the interference light in which a plurality of interference lights generated by the interference of the first measurement light of the laser light LZ and the second measurement light of the laser light LZ are combined, the reference light of the laser light LZ
  • the intensity data of the interference light includes optical comb lasers having different levels of the interference light between the reference light and the first measurement light of the optical comb laser light having different stages (for example, the laser light LZ 1 and the laser light LZ 2 ).
  • the intensity of the interference light between the reference light of the light and the second measurement light, the intensity of the interference light between the first measurement light and the second measurement light of the optical comb laser light having a different number of stages, and the first measurement light of the optical comb laser light having a different number of stages are also included.
  • the intensity of the interference light of the optical comb laser beams having different stages becomes a beat and appears in the interference light, and this beat is averaged within the measurement time and finally becomes a background noise with a constant intensity.
  • the calculation unit 20 performs an acquisition step and a conversion step, and performs a Fourier transform based on the amount of change in frequency on the acquired intensity data.
  • the amplitude of the interference light of the first measuring beam and the second measuring beam periodically, as a phase, the interference light of the first measuring light of the laser beam LZ 1 and the second measuring light of the laser beam LZ 1 amplitude I S12 (1) , period T S12 (1) , and phase ⁇ S12 (1) are acquired.
  • the interference light amplitude I S12 of the first measuring light of the laser beam LZ 2 and the second measuring light of the laser beam LZ 2 (2), the period T S12 (2), the phase phi S12 (2) is obtained .
  • the first measuring beam and the interference light amplitude I S12 of the second measuring light of the laser beam LZ n (n), the period T S12 (n), the phase phi S12 (n) is obtained for the laser beam LZ n .
  • the amplitude I S12 (-1) of the first measuring beam and the interference light of the second measuring light of the laser beam LZ -1 laser beam LZ -1, period T S12 (-1), the phase phi S12 (-1 ) Is acquired.
  • the first measuring beam and the amplitude I S12 of the second measurement light and the interference light of the laser beam LZ -2 of the laser beam LZ -2 (-2), the period T S12 (-2), the phase phi S12 (-2 ) Is acquired.
  • the amplitude of the first interference light periodically, as phase, amplitude I S1 of the interference light of the reference light laser beam LZ 1 and the first measuring beam of the laser beam LZ 1 (1), the period T S1 (1), The phase ⁇ S1 (1) is acquired.
  • the amplitude I S1 of the interference light of the first measuring beam of the reference beam laser beam LZ 2 and the laser beam LZ 2 (2), the period T S1 (2), the phase ⁇ S1 (2) is obtained.
  • the amplitude I S1 of the interference light of the first measuring beam of the reference beam and the laser beam LZ n of the laser beam LZ n (n), the period T S1 (n), the phase ⁇ S1 (n) is obtained.
  • the amplitude I S1 of the first measurement light and the interference light of the reference beam and the laser beam LZ -1 of the laser beam LZ -1 (-1), the period T S1 (-1), the phase phi S1 is (-1) To be acquired.
  • the amplitude I S1 of the reference light and the interference light of the laser beam first measuring light LZ -2 laser beam LZ -2 (-2), the period T S1 (-2), the phase phi S1 is (-2) To be acquired.
  • the interference light amplitude I S1 of the first measuring light of the laser beam LZ -n of the reference beam and the laser beam LZ -n (-n), the period T S1 (-n), the phase phi S1 is (-n) To be acquired.
  • the phase ⁇ S2 (1) is acquired.
  • the amplitude I S2 of the interference light of the reference light laser beam LZ 2 and the second measuring light of the laser beam LZ 2 (2), the period T S2 (2), the phase phi S2 (2) is obtained.
  • the amplitude I S2 of the second measurement light and the interference light of the reference beam and the laser beam LZ n of the laser beam LZ n (n), the period T S2 (n), the phase ⁇ S2 (n) is obtained.
  • the amplitude I S2 of the second measurement light and the interference light and the reference light and the laser beam LZ -1 of the laser beam LZ -1 (-1), the period T S2 (-1), the phase phi S2 is (-1) To be acquired.
  • the amplitude I S2 of the reference light and the interference light of the second measuring light of the laser beam LZ -2 laser beam LZ -2 (-2), the period T S2 (-2), the phase phi S2 is (-2) To be acquired.
  • the amplitude I S2 of the interference light of the second measuring light of the laser beam LZ -n of the reference beam and the laser beam LZ -n (-n), the period T S2 (-n), the phase ⁇ S2 (-n) is To be acquired.
  • the background noise due to the interference light of the optical comb laser beams having different numbers of stages is a constant intensity averaged within the measurement time, and thus becomes a constant by Fourier transform. Further, since the frequency of the laser beam LZ 0 is constant without affecting the modulation frequency of the optical frequency modulator 10c, which also becomes constant by the Fourier transform.
  • the first measurement light and the second measurement light are obtained by further dividing the laser light divided by the beam splitter 12 by the measurement light dividing unit 15.
  • the amplitude I S12 (1) ( ⁇ amplitude I S12 ( ⁇ 1) ) and amplitude I S1 (1) ( ⁇ Amplitude I S1 (-1) ) are those of amplitude I S12 (1) ( ⁇ Amplitude I S12 (-1) ) as the first interference It becomes smaller than the amplitudes I S1 (1) ( ⁇ amplitude I S1 ( ⁇ 1) ) and the amplitude I S2 (1) ( ⁇ amplitude I S2 ( ⁇ 1) ) of the light and the second interference light.
  • the calculation unit 20 calculates, as calculation steps, the amplitude I S12 (1) ( ⁇ amplitude I S12 ( ⁇ 1) ) of the interference light obtained in the conversion step and the amplitude I S1 (1) ( ⁇ amplitude of the first interference light.
  • I S1 ( ⁇ 1) ) and the amplitude I S2 (1) ( ⁇ amplitude I S2 ( ⁇ 1) ) of the second interference light are compared, and the series of the period T having the minimum amplitude is selected.
  • the sequence of the period T S12 (n) of the interference light between the first measurement light and the second measurement light sequence of the period T S12 (1) / n) is determined.
  • the calculating part 20 calculates distance L from 1st measurement point S1 to 2nd measurement point S2 by subtracting distance Ld acquired beforehand from distance L ', and taking the absolute value.
  • the amplitude I S12 (1) ( ⁇ amplitude I S12 ( ⁇ 1) ) and amplitude I S1 (1) are determined depending on the spectral ratio. Since ( ⁇ amplitude I S1 ( ⁇ 1) ) and amplitude I S2 (1) ( ⁇ amplitude I S2 ( ⁇ 1) ) are different, the amplitude I S12 (1 of the interference light between the first measurement light and the second measurement light is different. ) , The amplitude I S1 (1) of the first interference light, and the amplitude I S2 (1) of the second interference light are obtained in advance, the first measurement light and the first interference light from the value of this amplitude I S12 (1) . The period T S12 (n) of the interference light with the two measurement lights can be directly selected.
  • a rough value of the distance L (distance L ′′) and the positional relationship between the first measurement point S1 and the second measurement point S2 are acquired in advance, and a rough distance Ld + distance L ′′ is obtained from these values.
  • the period T S12 (n) obtained in the conversion step is calculated.
  • the distance L ′ is calculated by the expression (2) or (2) ′ for each of the periods T S1 (n) and T S2 (n) , and approximates the value of the rough distance Ld + distance L ′′.
  • the distance L ′ from the first measurement point S1 to the second measurement point S2 is calculated by subtracting the distance Ld from the selected distance L ′ and taking the absolute value thereof. good.
  • a laser range finder 50d according to a fifth embodiment of the present invention will be described with reference to FIG. In FIG. 7, only the optical path of the laser beam is shown in a simplified manner.
  • a laser distance measuring device 50d according to the fifth embodiment of the present invention shown in FIG. 7 includes a beam splitter 12a instead of the mirror 8 of the laser distance measuring devices 50 and 50a.
  • a beam splitter 12 b is installed on the optical path between the beam splitter 12 and the light receiving unit 18. Then, the distance from the dividing point of the beam splitter 12 to the reflecting point of the beam splitter 12b is made equal to the distance Ld from the dividing point of the measuring beam dividing unit 15 to the reflecting point of the beam splitter 12a.
  • the light received by the light receiving unit 18 follows the optical path 1 of the beam splitter 12 ⁇ the measurement light dividing unit 15 ⁇ the first measurement point S 1 ⁇ the measurement light dividing unit 15 ⁇ the beam splitter 12 ⁇ the beam splitter 12 b ⁇ the light receiving unit 18.
  • the first measurement light, the beam splitter 12 ⁇ the measurement light splitting unit 15 ⁇ the beam splitter 12a ⁇ the second measurement point S2, the beam splitter 12a ⁇ the beam splitter 12b ⁇ the second measurement light that follows the optical path 2 of the light receiving unit 18, and the beam splitter 12 ⁇ measurement beam splitting unit 15 ⁇ beam splitter 12a ⁇ second measurement point S2 ⁇ beam splitter 12a ⁇ measurement beam splitting unit 15 ⁇ beam splitter 12 ⁇ beam splitter 12b ⁇ second measurement light ′ following the optical path 3 of the light receiving unit 18 , become.
  • a distance from the measurement light dividing unit 15 to the first measurement point S1 is a distance L1
  • from the beam splitter 12a When the distance to the second measurement point S2 is a distance L2, the optical path length of the optical path 1 that is the first measurement light is 2La + 2L1 + Ld + Lb
  • the optical path length of the optical path 2 that is the second measurement light is 2La + Ld + 2L2 + Lb
  • the optical path length of the optical path 3 which is the second measurement light ′ is 2La + 3Ld + 2L2 + Lb
  • the optical path difference between the optical path 1 as the first measurement light and the optical path 2 as the second measurement light is 2
  • is equal to the distance L from the first measurement point S1 to the second measurement point S2. Therefore, the optical path difference between the optical path 1 and the optical path 2 is twice the distance L. It becomes.
  • the light receiving unit 18 receives the first measurement light in the optical path 1, the second measurement light in the optical path 2, and the second measurement light ′ in the optical path 3, and interference light between the first measurement light and the second measurement light. Then, the intensity of the interference light of the interference light between the first measurement light and the second measurement light ′ and the interference light between the second measurement light and the second measurement light ′ is converted into an electric signal as intensity data. The result is output to the calculation unit 20.
  • the calculation unit 20 performs an acquisition step and a conversion step, and performs a Fourier transform based on the amount of change in frequency on the acquired intensity data.
  • the amplitude I S12 , the period T S12 , the phase ⁇ S12 of the interference light between the first measurement light and the second measurement light, and the first measurement light Interference light amplitude I S12 ′ with second measurement light ′, period T S12 ′, phase ⁇ S12 ′, interference light amplitude I S22 ′ between second measurement light and second measurement light ′, period T S22 ′ , Phase ⁇ S22 ′ is acquired.
  • the beam splitters 12, 12a, 12b since the second measurement light ′ passes through the beam splitters 12, 12a, 12b and the measurement light splitting unit 15 more times than the first measurement light and the second measurement light, the beam splitters 12, 12a, 12b, measurement
  • the intensity is lower than that of the first measurement light and the second measurement light. Therefore, the amplitude I S12 ′ of the interference light between the first measurement light and the second measurement light ′ and the amplitude I S22 ′ of the interference light between the second measurement light and the second measurement light ′ are the first measurement light and the second measurement light. This is smaller than the amplitude IS12 of the interference light with the measurement light.
  • the calculation unit 20 calculates, as the calculation step, the amplitude IS12 of the interference light between the first measurement light and the second measurement light obtained in the conversion step and the amplitude of the interference light between the first measurement light and the second measurement light ′.
  • the first measurement light and the second measurement light are selected by comparing the amplitude I S22 ′ of the interference light between the I S12 ′ and the second measurement light and the second measurement light ′, and selecting the period having the maximum amplitude.
  • the interference light period T S12 is discriminated, and the distance L ′ is calculated by the expression (2) with respect to the period T S12 . Since this distance L ′ is 2L, which is the optical path difference between the first measurement light and the second measurement light, the calculation unit 20 takes the half of the distance L ′ to obtain the second from the first measurement point S1. A distance L to the measurement point S2 is calculated.
  • the amplitude I S12 , the amplitude I S12 ′, and the amplitude I S22 ′ differ depending on the spectral ratio. If the values of S12 , amplitude I S12 ′, and amplitude I S22 ′ are acquired in advance, the amplitude I S12 can be discriminated, and the period T S12 of the interference light between the first measurement light and the second measurement light is directly selected. Can do.
  • a rough value (distance L ′′) of the distance L is acquired in advance, and the expression (2) is obtained for each of the period T S12 , the period T S12 ′, and the period T S22 ′ obtained in the conversion step.
  • To calculate the distance L ′ select a distance L ′ that approximates the approximate distance L ′′, and take 1/2 of the selected distance L ′ to perform the second measurement from the first measurement point S1.
  • the distance L to the point S2 may be calculated.
  • the period of the interference light obtained in the conversion step is the first measurement.
  • the beam splitters 12, 12a, 12b, and the measurement light splitting unit 15 have a spectral ratio of 50:50, the first measurement light and the second measurement light corresponding to the maximum period T of each series.
  • the amplitude I S22 (1) ′ is the maximum of the amplitude I S12 (1) of the interference light between the first measurement light and the second measurement light.
  • the calculation unit 20 determines the cycle T S12 (n) of the interference light between the first measurement light and the second measurement light by selecting the sequence of the cycle T having the maximum amplitude as the calculation step, and the cycle T After selecting a predetermined cycle T S12 (n) from the sequence of S12 (n) ( sequence of cycle T S12 (1) / n), the distance L ′ is calculated by the above formula (2) or (2) ′. calculate. And the calculating part 20 calculates the distance L from 1st measurement point S1 to 2nd measurement point S2 by taking 1/2 of distance L '.
  • the period T S12 (n) of the interference light between the measurement light and the second measurement light can be directly selected.
  • a rough value (distance L ′′) of the distance L is acquired in advance, the sequence of the period T S12 (1) / n obtained in the conversion step, the first measurement light, and the second measurement light ′.
  • a predetermined period T S12 ( from the series of interference light periods T S12 (1) '/ n and the interference light period T S22 (1) ' / n between the second measurement light and the second measurement light ' n) , cycle T S12 (n) ', cycle T S22 (n) ' are selected, and distance L 'is calculated by the formula (2) or (2)' for each of the selected cycles T.
  • the distance L ′ closest to the value of the distance L ′′ is selected, and the distance L from the first measurement point S1 to the second measurement point S2 is calculated by taking 1/2 of the selected distance L ′. May be.
  • the term of the optical path difference (distance Ld) inside the device between the first measurement light and the second measurement light is canceled, so that the laser of the fourth embodiment Similar to the configuration of the distance measuring device 50c, it is not necessary to obtain the optical path difference between the first measurement light and the second measurement light inside the device and to subtract the distance Ld from the distance L ′.
  • the distance procedure can be simplified. Further, since the distance Ld is canceled, the influence of the “swing” of the vibration frequency of the laser beam in the laser irradiation means 10 can be reduced.
  • the measurement beam splitting unit 15 is installed at the position of the beam splitter 12 of the laser range finders 50 and 50a. Further, the mirror 8 is installed on the reflected light side of the measurement light splitting unit 15. Further, a beam splitter 12c is installed on the optical path of the first measurement light reflected by the mirror 8. Furthermore, the beam splitter 12 a is installed at a position equal to the distance from the reflection point of the mirror 8 to the beam splitter 12 c on the optical path of the transmitted light of the measurement light splitting unit 15.
  • the light received by the light receiving unit 18 is the optical path 1 of the measurement light dividing unit 15 ⁇ mirror 8 ⁇ beam splitter 12 c ⁇ first measurement point S 1 ⁇ beam splitter 12 c ⁇ mirror 8 ⁇ measurement light dividing unit 15 ⁇ light receiving unit 18.
  • the distance from the beam splitter 12a to the second measurement point S1 is the distance Ld
  • the distance from the beam splitter 12c to the first measurement point S1 is the distance L1
  • the optical path length of the optical path 1 that is the first measurement light is 2Ld + 2La + 2L1 + Lb
  • the optical path length of the optical path 2 which is the second measurement light ′ is 2La + 2L2 + 2Ld + Lb.
  • optical path length of the optical path 3 which is the second measurement light ′′ is 2Ld + 2La + 2L2 + Lb
  • optical path length of the optical path 4 which is the second measurement light ''' is 2La + 2L2 + Lb
  • optical path length of the optical path 5 which is the second measurement light '''' is 4Ld + 2La + 2L2 + Lb
  • the light receiving unit 18 includes the first measurement light in the optical path 1, the second measurement light ′ in the optical path 2, the second measurement light ′′ in the optical path 3, the second measurement light ′ ′′ in the optical path 4, and the optical path 5.
  • the second measurement light '' '' is received.
  • the second measurement light 'on the optical path 2 and the second measurement light' on the optical path 3 have the same optical path length, their periods and phases are also equal. Therefore, the second measurement light 'on the optical path 2 and the second measurement light' on the optical path 3 can be combined and regarded as one second measurement light.
  • the intensity of the second measurement light is the sum of the intensity of the second measurement light ′ and the intensity of the second measurement light ′′.
  • the interference light received by the light receiving unit 18 is interference light between the first measurement light and the second measurement light, interference light between the first measurement light and the second measurement light '' ', the first measurement light and the second measurement light.
  • the light receiving unit 18 converts the intensity of the interference light combined with the interference light into an electrical signal and outputs the electrical signal to the arithmetic unit 20 as intensity data.
  • the calculation unit 20 performs an acquisition step and a conversion step, and performs a Fourier transform based on the amount of change in frequency on the acquired intensity data. Thereby, each amplitude, period, and phase of the interference light received by the light receiving unit 18 are acquired.
  • a known wavelength tunable laser is used as the laser irradiation means 10 will be described.
  • the laser irradiation means 10 includes a laser irradiation apparatus 10a, an optical comb generator 10b, and an optical frequency modulator 10c. The basic operation is equivalent.
  • the arithmetic unit 20 subtracts the 2Ld value from the remaining three distances L ′ to obtain an absolute value, the obtained values are
  • the amplitude I of each interference light differs depending on the spectral ratio. Then, based on the amplitude, the period T S12 of the interference light of the first measurement light and the second measurement light is selected, and the distance L ′ is obtained by the expression (2), and then the distance L ′ is taken to obtain the distance L. You may ask.
  • a rough value (distance L ′′) of the distance L is acquired in advance, the distance L ′ closest to the value twice the distance L ′′ is selected, and 1/2 of the distance L ′ is taken.
  • the distance L from the first measurement point S1 to the second measurement point S2 may be calculated.
  • the laser ranging device 50e of the sixth embodiment obtains the optical path difference inside the device between the first measuring light and the second measuring light, and from the distance L ′.
  • the distance Ld subtraction process need not be performed, and the distance L distance measurement procedure can be simplified. Further, since the distance Ld is canceled, the influence of the “swing” of the vibration frequency of the laser beam in the laser irradiation means 10 can be reduced.
  • the optical comb generator 10b When the laser irradiation device 10a, the optical comb generator 10b, and the optical frequency modulator 10c are used as the laser irradiation means 10 of the laser ranging device 50d of the fifth embodiment and the laser ranging device 50e of the sixth embodiment,
  • the optical comb generator 10b can stabilize the operation. It is possible to reduce the load on the processing of the arithmetic unit 20 while using laser light.
  • the first laser light is changed after changing the frequency of the laser light emitted from the laser irradiation means 10 within a predetermined range.
  • the measurement light and the second measurement light are divided, and the first measurement light is irradiated to the first measurement point S1 of the object 6 to be measured and the second measurement light is simultaneously irradiated to the second measurement point S2 of the object 6 to be measured.
  • a distance L from the first measurement point S1 to the second measurement point S2 is calculated based on the period of the interference fringes of the interference light between the first measurement light and the second measurement light.
  • the distance L between the first measurement point S1 and the second measurement point S2 can be measured with high accuracy without using a mechanical movement mechanism for the optical path system. Therefore, the apparatus scale of the laser distance measuring device can be made relatively small, and the first measurement point S1 is more practical than the distance L1 to the first measurement point S1 or the distance L2 to the second measurement point S2. The distance L between the second measurement points S2 can be measured with high accuracy.
  • the laser distance measuring devices 50 and 50a to 50e described above are examples suitable for the present invention, the configuration of each part of the laser light information acquisition means 26 and the laser distance measuring device, and each optical path in the laser distance measuring device. These can be implemented with modifications without departing from the scope of the present invention.
  • Laser irradiation means 10a Laser irradiation apparatus 10b Optical comb generator 10c Optical frequency modulator 15 Measurement light splitting section 18 Light receiving section 20 Calculation section 26 Laser light information acquisition means 50, 50a to 50e Laser ranging apparatus BPF1 to BPF5 optical bandpass filter S1 first measurement point S2 second measurement point L1 distance (to the first measurement point) L2 distance (to the second measurement point) distance L (between the first and second measurement points)

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

Provided are a laser ranging method and a laser ranging device for simultaneously irradiating two measurement points with measurement light beams, respectively, without using a mechanical movement mechanism for an optical path system and measuring the distance between the measurement points with high precision by using interference light between the measurement light beams. According to the laser ranging method and the laser ranging device, the frequency of laser light emitted from a laser irradiation means (10) is changed within a predetermined range, and a first measurement point (S1) of an object to be measured (6) and a second measurement point (S2) of the object to be measured (6) are simultaneously irradiated with a first measurement light beam and a second measurement light beam, respectively.  A distance (L) from the first measurement point (S1) to the second measurement point (S2) is calculated on the basis of the period of interference fringes of interference light between the first measurement light beam and the second measurement light beam.  Consequently, the distance (L) between the first measurement point (S1) and the second measurement point (S2) can be measured with high precision without using the mechanical movement mechanism for the optical path system.

Description

レーザ測距方法及びレーザ測距装置Laser distance measuring method and laser distance measuring apparatus
 本発明は、レーザ光の干渉を用いて被測定物の測定点間の測距を行うレーザ測距方法及びレーザ測距装置に関するものである。 The present invention relates to a laser distance measuring method and a laser distance measuring apparatus that perform distance measurement between measurement points of an object to be measured using interference of laser light.
 従来のレーザ光を用いたレーザ測距方法は、例えばレーザ光を参照光と測定光とに分割し、その参照光と被測定物で反射された測定光との時間差から両者の光路差を求めることで被測定物までの距離を測定する。このような参照光と測定光との時間差から測距を行う従来のレーザ測距方法では、その測距精度はレーザ光の波長レベル、即ちnm(ナノメートル)オーダーには遠く及ばない。 In a conventional laser distance measuring method using laser light, for example, the laser light is divided into reference light and measurement light, and the optical path difference between the reference light and measurement light reflected by the object to be measured is obtained. Measure the distance to the object to be measured. In the conventional laser distance measuring method that performs distance measurement based on the time difference between the reference light and the measurement light, the distance measurement accuracy is far from the wavelength level of the laser light, that is, the order of nm (nanometer).
 そこで本願発明者は下記[特許文献1]に示すように、波長の異なる複数のレーザ光を用い、さらにその光路差を変化させることでレーザ光の特徴である可干渉性を利用した高精度のレーザ測距方法及びそのレーザ測距方法を行うレーザ測距装置に関する発明を行った。 Therefore, as shown in [Patent Document 1] below, the inventor of the present application uses a plurality of laser beams having different wavelengths, and further changes the optical path difference so as to utilize the coherence characteristic of the laser beams. Inventions related to a laser distance measuring method and a laser distance measuring apparatus for performing the laser distance measuring method have been made.
国際公報第2008/099788号パンフレットInternational Publication No. 2008/099788 Pamphlet
 [特許文献1]に開示された発明により被測定物までの距離を高精度に測距することが可能となったが、実用に際しては被測定物までの距離を測距するよりも被測定物の2つの測定点間の距離を測距する方が有用である場合が多く、この点に関して更なる改善が望まれる。また、被測定物の2つの測定点間の距離を測距する場合、被測定物の2つの測定点を個々に測距するよりも、同時に2つの測定点までの距離を測距した方が測定精度上好ましい。さらに、[特許文献1]に開示された発明は、参照光もしくは測定光の光路差を機械的に変化させる機構が必要であり装置規模が比較的大きいことから、この点に関しても更なる改善が望まれる。 According to the invention disclosed in [Patent Document 1], the distance to the object to be measured can be measured with high accuracy, but the object to be measured is more practical than the distance to the object to be measured in practical use. It is often useful to measure the distance between these two measurement points, and further improvements are desired in this regard. Also, when measuring the distance between two measurement points of the object to be measured, it is better to measure the distance to the two measurement points at the same time than measuring the two measurement points of the object to be measured individually. It is preferable in terms of measurement accuracy. Furthermore, the invention disclosed in [Patent Document 1] requires a mechanism for mechanically changing the optical path difference of the reference light or the measurement light, and the apparatus scale is relatively large. desired.
 本発明は上記事情に鑑みてなされたものであり、光路系に対する機械的な移動機構を用いずに2つの測定点に測定光をそれぞれ同時に照射して、その測定光同士の干渉光を利用して測定点間の距離を高精度に測距するレーザ測距方法及びレーザ測距装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and without using a mechanical movement mechanism for the optical path system, the measurement light is simultaneously irradiated to each of the two measurement points, and interference light between the measurement lights is used. It is an object of the present invention to provide a laser distance measuring method and a laser distance measuring apparatus that measure the distance between measurement points with high accuracy.
 本発明は、
(1)レーザ光を被測定物6の測定点で反射させて測定点までの距離を測距するレーザ測距方法において、
レーザ光の周波数を連続的に変化させながらレーザ照射を行い、当該レーザ光を第1測定光と第2測定光とに2分割した上で、第1測定光を被測定物6の第1測定点S1で第2測定光を被測定物6の第2測定点S2でそれぞれ反射させ、第1測定点S1で反射した第1測定光と第2測定点S2で反射した第2測定光とによって生じる干渉光の強度データをレーザ光の周波数の変化量と対応して取得する取得ステップと、
取得ステップで得られた強度データをフーリエ変換して、第1測定光と第2測定光とによって生じる干渉光の干渉縞の周期を取得する変換ステップと、
変換ステップで得られた所定の干渉光の干渉縞の周期に基づいて第1測定点S1から第2測定点S2までの距離Lを算出する算出ステップと、
を有することを特徴とするレーザ測距方法を提供することにより、上記課題を解決する。
(2)出力するレーザ光に対する周波数可変機能を備えたレーザ照射手段10と、当該レーザ照射手段10から出射するレーザ光の周波数の変化量を取得するレーザ光情報取得手段26と、前記レーザ照射手段10から出射したレーザ光を第1測定光と第2測定光とに2分割する測定光分割部15と、被測定物6の第1測定点S1で反射した第1測定光と被測定物6の第2測定点S2で反射した第2測定光とを受光して受光した光の強度に応じた信号を出力する受光部18と、前記レーザ光情報取得手段26からの周波数の変化量と前記受光部18からの信号とが入力する演算部20と、を備え、
当該演算部20が、レーザ光情報取得手段26からのレーザ光の周波数の変化量と受光部18からの信号とに基づいて、レーザ照射手段10がレーザ光の周波数を連続的に変化させながらレーザ照射を行ったときに第1測定点S1で反射した第1測定光と第2測定点S2で反射した第2測定光とによって生じる干渉光の強度データをレーザ光の周波数の変化量と対応して取得する取得ステップと、
取得ステップで得られた強度データをフーリエ変換して、第1測定光と第2測定光とによって生じる干渉光の干渉縞の周期を取得する変換ステップと、
変換ステップで得られた所定の干渉光の干渉縞の周期に基づいて第1測定点S1から第2測定点S2までの距離Lを算出する算出ステップと、を行うことを特徴とするレーザ測距装置50、50a~50eを提供することにより、上記課題を解決する。
(3)レーザ照射手段10が、特定の周波数のレーザ光を出射するレーザ照射装置10aと、当該レーザ照射装置10aから出射したレーザ光を所定の周波数間隔の複数のレーザ光とする光コム発生器10bと、当該光コム発生器10bの周波数間隔を所定の範囲内で変調する光周波数変調器10cと、から構成されることを特徴とする上記(2)記載のレーザ測距装置50a~50eを提供することにより、上記課題を解決する。
(4)レーザ照射手段10から出射するレーザ光のうち所定の周波数範囲内のレーザ光のみを透過する光バンドパスフィルタBPF1~BPF5をレーザ光の光路上に設けたことを特徴とする上記(3)記載のレーザ測距装置50b~50eを提供することにより、上記課題を解決する。
(5)装置内部における第1測定光の光路長と第2測定光の光路長とを等しくすることを特徴とする上記(2)に記載のレーザ測距装置50cを提供することにより、上記課題を解決する。
(6)装置内部における第1測定光の光路長と第2測定光の光路長とを等しくすることを特徴とする上記(3)に記載のレーザ測距装置50cを提供することにより、上記課題を解決する。
(7)装置内部における第1測定光の光路長と第2測定光の光路長とを等しくすることを特徴とする上記(4)に記載のレーザ測距装置50cを提供することにより、上記課題を解決する。
The present invention
(1) In a laser distance measuring method in which laser light is reflected at a measurement point of the object to be measured 6 and a distance to the measurement point is measured,
Laser irradiation is performed while continuously changing the frequency of the laser beam, and the laser beam is divided into a first measurement beam and a second measurement beam, and then the first measurement beam is subjected to the first measurement of the object 6 to be measured. The second measurement light is reflected at the point S1 at the second measurement point S2 of the object 6 to be measured, and the first measurement light reflected at the first measurement point S1 and the second measurement light reflected at the second measurement point S2 are used. An acquisition step of acquiring the intensity data of the generated interference light in correspondence with the amount of change in the frequency of the laser beam;
A conversion step of Fourier-transforming the intensity data obtained in the acquisition step to acquire a period of interference fringes of interference light generated by the first measurement light and the second measurement light;
A calculation step for calculating a distance L from the first measurement point S1 to the second measurement point S2 based on the period of the interference fringes of the predetermined interference light obtained in the conversion step;
The above problem is solved by providing a laser distance measuring method characterized by comprising:
(2) Laser irradiation means 10 having a function of varying the frequency of the laser light to be output, laser light information acquisition means 26 for acquiring the amount of change in the frequency of the laser light emitted from the laser irradiation means 10, and the laser irradiation means The measurement light dividing unit 15 that divides the laser light emitted from 10 into a first measurement light and a second measurement light, and the first measurement light and the measurement object 6 reflected at the first measurement point S1 of the measurement object 6 Receiving the second measurement light reflected at the second measurement point S2 and outputting a signal according to the intensity of the received light, the amount of change in frequency from the laser light information acquisition means 26, and A calculation unit 20 that receives a signal from the light receiving unit 18;
Based on the amount of change in the frequency of the laser beam from the laser beam information acquisition unit 26 and the signal from the light receiving unit 18, the calculation unit 20 causes the laser irradiation unit 10 to change the laser beam frequency continuously. The intensity data of the interference light generated by the first measurement light reflected at the first measurement point S1 and the second measurement light reflected at the second measurement point S2 when irradiation is performed corresponds to the amount of change in the frequency of the laser light. An acquisition step to acquire,
A conversion step of Fourier-transforming the intensity data obtained in the acquisition step to acquire a period of interference fringes of interference light generated by the first measurement light and the second measurement light;
A laser ranging, wherein a calculation step of calculating a distance L from the first measurement point S1 to the second measurement point S2 based on an interference fringe period of the predetermined interference light obtained in the conversion step is performed. The above problems are solved by providing the devices 50 and 50a to 50e.
(3) The laser irradiation unit 10 emits a laser beam having a specific frequency, and an optical comb generator that uses the laser beam emitted from the laser irradiation unit 10a as a plurality of laser beams having a predetermined frequency interval. 10b and an optical frequency modulator 10c for modulating the frequency interval of the optical comb generator 10b within a predetermined range. By providing, the above-mentioned problems are solved.
(4) The optical bandpass filters BPF1 to BPF5 that transmit only the laser light within a predetermined frequency range of the laser light emitted from the laser irradiation means 10 are provided on the optical path of the laser light (3) The above-mentioned problems are solved by providing the laser distance measuring devices 50b to 50e.
(5) By providing the laser distance measuring device 50c according to the above (2), the optical path length of the first measurement light and the optical path length of the second measurement light inside the apparatus are equalized. To solve.
(6) By providing the laser distance measuring device 50c according to the above (3), the optical path length of the first measurement light and the optical path length of the second measurement light in the apparatus are equalized. To solve.
(7) By providing the laser distance measuring device 50c according to the above (4), the optical path length of the first measurement light and the optical path length of the second measurement light in the apparatus are equal to each other. To solve.
 本発明に係るレーザ測距方法及びレーザ測距装置によれば、光路系に対する機械的な移動機構を用いることなく2つの測定点間の距離を高精度に測距することができる。 According to the laser distance measuring method and the laser distance measuring apparatus according to the present invention, the distance between two measurement points can be measured with high accuracy without using a mechanical movement mechanism for the optical path system.
本発明に係る第1の形態のレーザ測距装置の概略構成を示す図である。It is a figure which shows schematic structure of the laser ranging apparatus of the 1st form which concerns on this invention. 本発明に係る第2の形態のレーザ測距装置の概略構成を示す図である。It is a figure which shows schematic structure of the laser ranging apparatus of the 2nd form which concerns on this invention. 本発明に係るレーザ測距装置の変形例の光路を示す図である。It is a figure which shows the optical path of the modification of the laser distance measuring device which concerns on this invention. 本発明に係る第3の形態のレーザ測距装置の概略構成を示す図である。It is a figure which shows schematic structure of the laser ranging apparatus of the 3rd form which concerns on this invention. 本発明に係る第4の形態のレーザ測距装置の概略構成を示す図である。It is a figure which shows schematic structure of the laser ranging apparatus of the 4th form which concerns on this invention. 本発明に係るレーザ測距装置に参照ミラーを設けた例を示す図である。It is a figure which shows the example which provided the reference mirror in the laser ranging apparatus which concerns on this invention. 本発明に係る第5の形態のレーザ測距装置の光路を示す図である。It is a figure which shows the optical path of the laser ranging apparatus of the 5th form which concerns on this invention. 本発明に係る第6の形態のレーザ測距装置の光路を示す図である。It is a figure which shows the optical path of the laser range finder of the 6th form which concerns on this invention.
 本発明に係るレーザ測距方法及びレーザ測距装置の実施の形態について図面に基づいて説明する。 Embodiments of a laser distance measuring method and a laser distance measuring apparatus according to the present invention will be described with reference to the drawings.
 図1に示す本発明に係る第1の形態のレーザ測距装置50は、出射するレーザ光の周波数を所定の範囲内で変化させることが可能なレーザ照射手段10と、レーザ照射手段10から出射するレーザ光の周波数の変化量を取得し演算部20に出力するレーザ光情報取得手段26と、レーザ照射手段10から出射したレーザ光を第1測定光と第2測定光とに2分割する測定光分割部15と、被測定物6の第1測定点S1で反射した第1測定光と被測定物6の第2測定点S2で反射した第2測定光とを受光して受光した光の強度に応じた信号を演算部20に出力する受光部18と、レーザ光情報取得手段26からのレーザ光の周波数の変化量と受光部18からの信号に基づいて第1測定点S1と第2測定点S2との間の距離Lを算出する演算部20と、を有している。尚、図1中の破線はレーザ光の光路を示す。 A laser distance measuring device 50 according to the first embodiment of the present invention shown in FIG. 1 includes a laser irradiation means 10 capable of changing the frequency of emitted laser light within a predetermined range, and the laser irradiation means 10 emits light. A laser beam information acquisition unit 26 that acquires the amount of change in the frequency of the laser beam to be output and outputs it to the calculation unit 20, and a measurement that divides the laser beam emitted from the laser irradiation unit 10 into a first measurement beam and a second measurement beam The light splitting unit 15, the first measurement light reflected at the first measurement point S 1 of the object to be measured 6 and the second measurement light reflected at the second measurement point S 2 of the object to be measured 6 are received and received. Based on the light receiving unit 18 that outputs a signal corresponding to the intensity to the arithmetic unit 20, the amount of change in the frequency of the laser light from the laser light information acquisition unit 26, and the signal from the light receiving unit 18, Calculation unit 2 for calculating the distance L between the measurement point S2 And, the has. In addition, the broken line in FIG. 1 shows the optical path of a laser beam.
 第1の形態のレーザ測距装置50のレーザ照射手段10としては周知の波長可変レーザを用いることができる。 As the laser irradiation means 10 of the laser range finder 50 of the first embodiment, a well-known wavelength tunable laser can be used.
 先ず、図1aを用いて第1測定光と第2測定光との装置内部における光路差を取得する方法を説明する。尚、以下に示す光路差の取得方法は、基本的に本発明に係るレーザ測距方法及び第1の形態のレーザ測距装置50の動作と同等である。また、以下に示す光路差の取得方法は本発明に係るレーザ測距装置に好適なものであるが、必ずしもこの方法を用いる必要は無い。さらに、光路差の取得は測定毎に行う必要は無く、レーザ測距装置の出荷時等に行ってメモリ等に記録しておいても良い。 First, a method for obtaining the optical path difference in the apparatus between the first measurement light and the second measurement light will be described with reference to FIG. The optical path difference acquisition method described below is basically the same as the laser distance measuring method according to the present invention and the operation of the laser distance measuring apparatus 50 of the first embodiment. The following optical path difference acquisition method is suitable for the laser distance measuring apparatus according to the present invention, but this method is not necessarily used. Further, the optical path difference need not be acquired for each measurement, and may be recorded at the time of shipment of the laser distance measuring device and recorded in a memory or the like.
 先ず、図1aに示すように、表面が平滑な平板7をその平滑面に第1測定光及び第2測定光が垂直に照射されるように設置する。 First, as shown in FIG. 1a, a flat plate 7 having a smooth surface is installed so that the first measurement light and the second measurement light are vertically irradiated on the smooth surface.
 次に、レーザ照射手段10はレーザ光を出射する。前述のようにレーザ照射手段10は出射するレーザ光の波長を所定の範囲内で変化させることが可能であり、このときのレーザ光の照射はその波長が所定の範囲内を連続的に変化するように行う。そして、レーザ照射手段10から出射したレーザ光は当該レーザ光の光路上に設けられたビームスプリッタ4で2分割されて、一方はレーザ光情報取得手段26に照射され、他方は測定光分割部15側に照射される。 Next, the laser irradiation means 10 emits laser light. As described above, the laser irradiation means 10 can change the wavelength of the emitted laser light within a predetermined range. At this time, the wavelength of the laser light changes continuously within the predetermined range. Do as follows. The laser light emitted from the laser irradiation means 10 is divided into two by the beam splitter 4 provided on the optical path of the laser light, one is irradiated to the laser light information acquisition means 26, and the other is the measurement light dividing section 15. Irradiated to the side.
 レーザ光情報取得手段26はレーザ照射手段10から出射したレーザ光の周波数を取得して演算部20に出力する。レーザ光情報取得手段26は周知の波長計もしくは周波数計を用いることができる。尚、レーザ光情報取得手段26がレーザ光の波長を計測するものの場合には、計測した波長を周波数に変換して演算部20に出力する。また、レーザ光情報取得手段26は、レーザ照射手段10から出射するレーザ光の波長を制御する波長制御コントローラからの波長制御信号を取得して、その波長制御信号に基づいてレーザ光の周波数を取得し演算部20に出力するようにしても良い。この場合、ビームスプリッタ4を用いてレーザ光情報取得手段26にレーザ光を照射する必要はない。さらに、レーザ光情報取得手段26に周波数計を用いる場合には、レーザ光情報取得手段26に入射したレーザ光と光コムレーザとを干渉させレーザ光の周波数を取得する周知の周波数カウンタを用いることが好ましい。 The laser beam information acquisition unit 26 acquires the frequency of the laser beam emitted from the laser irradiation unit 10 and outputs it to the calculation unit 20. As the laser light information acquisition means 26, a known wavelength meter or frequency meter can be used. In the case where the laser beam information acquisition unit 26 measures the wavelength of the laser beam, the measured wavelength is converted into a frequency and output to the computing unit 20. The laser beam information acquisition unit 26 acquires a wavelength control signal from a wavelength control controller that controls the wavelength of the laser beam emitted from the laser irradiation unit 10, and acquires the frequency of the laser beam based on the wavelength control signal. However, it may be output to the calculation unit 20. In this case, it is not necessary to irradiate the laser beam information acquisition means 26 with the laser beam using the beam splitter 4. Further, when a frequency meter is used for the laser beam information acquisition unit 26, a known frequency counter that acquires the frequency of the laser beam by causing the laser beam incident on the laser beam information acquisition unit 26 to interfere with the optical comb laser is used. preferable.
 測定光分割部15側に照射されたレーザ光は、ビームスプリッタ12を透過して測定光分割部15に向かう。測定光分割部15に向かったレーザ光は、測定光分割部15にて2分割され一方は第1測定光として出射口16aから平板7の第1測定点S1に照射される。また、他方は第2測定光としてミラー8で反射され出射口16bから平板7の第2測定点S2に照射される。測定光分割部15としては、分光比が50:50のハーフミラーを用いても良いし、分光比が異なる例えば60:40、70:30、80:20、等のビームスプリッタを用いても良い。 The laser light irradiated to the measurement light splitting unit 15 side passes through the beam splitter 12 and travels to the measurement light splitting unit 15. The laser beam directed to the measurement light splitting unit 15 is divided into two by the measurement light splitting unit 15, and one is irradiated as the first measurement light to the first measurement point S <b> 1 of the flat plate 7 from the emission port 16 a. On the other hand, the other is reflected by the mirror 8 as the second measurement light and is irradiated to the second measurement point S2 of the flat plate 7 from the emission port 16b. As the measurement light splitting unit 15, a half mirror having a spectral ratio of 50:50 may be used, or a beam splitter having a different spectral ratio, for example, 60:40, 70:30, 80:20, or the like may be used. .
 第1測定点S1に照射された第1測定光は、第1測定点S1で反射された後、測定光分割部15を透過してビームスプリッタ12で反射され受光部18に到達する。また、第2測定点S2に照射された第2測定光は、第2測定点S2で反射された後、ミラー8、測定光分割部15、ビームスプリッタ12で反射され受光部18に到達する。よって、受光部18が受光する光は、第1測定光と第2測定光との干渉光となる。そして、受光部18はこの干渉光の強度を電気信号に変換し強度データとして演算部20に出力する。 The first measurement light applied to the first measurement point S1 is reflected at the first measurement point S1, passes through the measurement light splitting unit 15, is reflected by the beam splitter 12, and reaches the light receiving unit 18. The second measurement light applied to the second measurement point S2 is reflected by the second measurement point S2, and then reflected by the mirror 8, the measurement light splitting unit 15, and the beam splitter 12, and reaches the light receiving unit 18. Therefore, the light received by the light receiving unit 18 becomes interference light between the first measurement light and the second measurement light. Then, the light receiving unit 18 converts the intensity of the interference light into an electric signal and outputs it to the calculation unit 20 as intensity data.
 演算部20は取得ステップとして、受光部18からの干渉光の強度データを、レーザ光情報取得手段26からの周波数の変化量と対応して取得する。 As the acquisition step, the calculation unit 20 acquires the intensity data of the interference light from the light receiving unit 18 in correspondence with the amount of change in frequency from the laser light information acquisition unit 26.
 次に、演算部20は変換ステップとして、取得した強度データに対して周波数の変化量に基づくフーリエ変換を行う。これにより、干渉光の振幅IS12、周期TS12、位相φS12が取得される。 Next, as a conversion step, the calculation unit 20 performs a Fourier transform based on the amount of change in frequency on the acquired intensity data. Thereby, the amplitude I S12 , period T S12 , and phase φ S12 of the interference light are acquired.
 ここで、レーザ測距装置50における測定光分割部15の分割点からミラー8の反射点までの距離Ldを仮にLd=0.5mとすると、現段階では第1測定点S1と第2測定点S2とは等距離にあるから第1測定光と第2測定光との光路差は2×Ld=1mとなる。そして、仮にレーザ光の周波数fをf=300MHz(周波数f=300MHzはもはや光とは呼べないが、ここでは本願発明の原理を説明するために便宜的にf=300MHzとした。)とすると、レーザ光の波長λは
λ=c/f(c:光速3×10m/s)となり、よって、
λ=(3×10)/(300×10)=1m となり、
波長λが装置内部における第1測定光と第2測定光との光路差(2×Ld)と等しくなる。従ってこのとき、第1測定光と第2測定光とは強め合いその干渉光は明部のピークをとる。
Here, if the distance Ld from the dividing point of the measuring beam dividing unit 15 to the reflecting point of the mirror 8 in the laser distance measuring device 50 is Ld = 0.5 m, at this stage, the first measuring point S1 and the second measuring point are used. Since S2 is equidistant, the optical path difference between the first measurement light and the second measurement light is 2 × Ld = 1 m. Assuming that the frequency f of the laser beam is f = 300 MHz (the frequency f = 300 MHz is no longer called light, but here f = 300 MHz is used for convenience in explaining the principle of the present invention). The wavelength λ of the laser light is λ = c / f (c: speed of light 3 × 10 8 m / s).
λ = (3 × 10 8 ) / (300 × 10 6 ) = 1 m
The wavelength λ becomes equal to the optical path difference (2 × Ld) between the first measurement light and the second measurement light inside the apparatus. Accordingly, at this time, the first measurement light and the second measurement light are intensified, and the interference light has a bright peak.
 また、レーザ光の周波数fが変化してf=600MHzとなった時には、
λ=(3×10)/(600×10)=0.5m となり、
波長λが第1測定光と第2測定光との光路差(2×Ld)の1/2と等しくなる。従ってこのときも、レーザ光の第1測定光と第2測定光とは強め合いその干渉光は明部のピークをとる。同様に、レーザ光の周波数fが900MHz、1.2GHzとなった時に、レーザ光の第1測定光と第2測定光とは強め合いその干渉光は明部のピークをとる。よってこの場合、干渉光は300MHz毎に明部のピークをとり、その干渉縞の縞間隔は300MHzとなる。そして、この干渉縞の縞間隔は即ちフーリエ変換で得られた干渉光の周期TS12に相当する。
Also, when the frequency f of the laser light changes and f = 600 MHz,
λ = (3 × 10 8 ) / (600 × 10 6 ) = 0.5 m
The wavelength λ is equal to ½ of the optical path difference (2 × Ld) between the first measurement light and the second measurement light. Accordingly, at this time also, the first measurement light and the second measurement light of the laser light are intensified, and the interference light has a bright peak. Similarly, when the frequency f of the laser light becomes 900 MHz and 1.2 GHz, the first measurement light and the second measurement light of the laser light are intensified and the interference light takes a bright peak. Therefore, in this case, the interference light has a bright peak every 300 MHz, and the interference fringe spacing is 300 MHz. The fringe spacing of the interference fringes corresponds to the interference light period T S12 obtained by Fourier transform.
 従って、第1測定光と第2測定光との光路差の1/2である距離Ldは以下の算出式で表すことができる。
2×Ld=c/TS12 よって、
Ld=c/TS12/2・・・(1)
尚、周期TS12はフーリエ変換により得られるものであるから、実際にレーザ光の周波数fを300MHzから600MHzへ変化させずとも、周期TS12を得ることができる。
Therefore, the distance Ld that is ½ of the optical path difference between the first measurement light and the second measurement light can be expressed by the following calculation formula.
2 × Ld = c / T S12
Ld = c / T S12 / 2 (1)
Note that since the period T S12 is obtained by Fourier transform, the period T S12 can be obtained without actually changing the frequency f of the laser light from 300 MHz to 600 MHz.
 よって、演算部20は、変換ステップで得られた干渉光の干渉縞の周期のうち所定の干渉光(本例においては干渉光そのもの)の周期TS12を選択し、上記(1)の式により装置内部における第1測定光と第2測定光との光路差の1/2である距離Ldを算出する。そして、この距離Ldの値を図示していない演算部20内のメモリ等に記録する。 Therefore, the calculation unit 20 selects a predetermined period T S12 of the interference light (in this example, the interference light itself) from the period of the interference fringes of the interference light obtained in the conversion step, and the expression (1) above. A distance Ld that is ½ of the optical path difference between the first measurement light and the second measurement light inside the apparatus is calculated. Then, the value of the distance Ld is recorded in a memory or the like in the calculation unit 20 (not shown).
 次に、本発明に係るレーザ測距方法及び第1の形態のレーザ測距装置50の被測定物6に対する測距時の動作を説明する。尚、前述のように本発明に係るレーザ測距方法及び第1の形態のレーザ測距装置50の測定物6に対する測距時の動作は、上記の第1測定光と第2測定光の光路差を取得する方法と同等であるため、重複する部分に関しては説明を一部省略する。 Next, the laser distance measuring method according to the present invention and the operation at the time of distance measurement for the object 6 of the laser distance measuring apparatus 50 of the first embodiment will be described. As described above, the laser distance measuring method according to the present invention and the operation of the laser distance measuring device 50 according to the first embodiment during distance measurement with respect to the measurement object 6 are the optical paths of the first measurement light and the second measurement light. Since it is equivalent to the method of acquiring the difference, a part of the description is omitted for the overlapping part.
 先ず、図1bに示すように、被測定物6を所定の位置に配置する。このとき、レーザ測距装置50から出射する第1測定光が被測定物6の第1測定面に、第2測定光が被測定物6の第2測定面に照射されるようにする。 First, as shown in FIG. 1b, the DUT 6 is placed at a predetermined position. At this time, the first measurement light emitted from the laser distance measuring device 50 is applied to the first measurement surface of the device under test 6 and the second measurement light is applied to the second measurement surface of the device under test 6.
 次に、レーザ照射手段10はその波長が所定の範囲内を連続的に変化するようにレーザ光を出射する。そして、演算部20は取得ステップと変換ステップとを同様に行う。 Next, the laser irradiation means 10 emits laser light so that its wavelength continuously changes within a predetermined range. And the calculating part 20 performs an acquisition step and a conversion step similarly.
 次に、演算部20は算出ステップとして、変換ステップで得られた干渉光の周期TS12に対し算出式(1)と同様の以下の算出式(2)により、装置内部における光路差の1/2の値(距離Ld)を含めた上での第1測定光と第2測定光との光路差の1/2の値(距離L’)を算出する。
L’=c/TS12/2・・・(2)
ここでの距離L’は、図1(a)に示すように、第2測定点S2が第1測定点S1よりもレーザ測距装置50から見て遠方にある場合には、
L’=Ld+L となり、
第2測定点S2が第1測定点S1よりもレーザ測距装置50側にある場合には、
L’=Ld-L となる。
尚、距離Lは第1測定点S1から第2測定点S2までの距離である。
Next, as a calculation step, the calculation unit 20 calculates 1 / of the optical path difference inside the apparatus by the following calculation formula (2) similar to the calculation formula (1) for the interference light period T S12 obtained in the conversion step. A value (distance L ′) that is ½ of the optical path difference between the first measurement light and the second measurement light after including the value of 2 (distance Ld) is calculated.
L ′ = c / T S12 / 2 (2)
The distance L ′ here is, as shown in FIG. 1A, when the second measurement point S2 is farther from the laser distance measuring device 50 than the first measurement point S1.
L ′ = Ld + L
When the second measurement point S2 is closer to the laser distance measuring device 50 than the first measurement point S1,
L ′ = Ld−L.
The distance L is the distance from the first measurement point S1 to the second measurement point S2.
 よって、演算部20は距離L’から予め取得されている距離Ldを減算した上で、その絶対値を取ることで第1測定点S1から第2測定点S2までの距離Lを算出する。これにより、第1測定点S1、第2測定点S2間の距離Lを高精度に算出することができる。 Therefore, the calculation unit 20 calculates the distance L from the first measurement point S1 to the second measurement point S2 by subtracting the distance Ld acquired in advance from the distance L ′ and taking the absolute value thereof. Thereby, the distance L between the first measurement point S1 and the second measurement point S2 can be calculated with high accuracy.
 次に、本発明に係る第2の形態のレーザ測距装置を図2を用いて説明する。尚、本発明に係る第2の形態のレーザ測距装置50aは、主にレーザ照射手段10とレーザ光情報取得手段26との構成が第1の形態のレーザ測距装置50と異なるものである。 Next, a second embodiment of the laser range finder according to the present invention will be described with reference to FIG. The laser distance measuring device 50a of the second embodiment according to the present invention is mainly different from the laser distance measuring device 50 of the first embodiment in the configuration of the laser irradiation means 10 and the laser light information acquisition means 26. .
 図2に示す本発明に係る第2の形態のレーザ測距装置50aのレーザ照射手段10は、特定の周波数のレーザ光を出射するレーザ照射装置10aと、レーザ照射装置10aから出射したレーザ光を所定の周波数間隔の複数のレーザ光にする光コム発生器10bと、光コム発生器10bの周波数間隔を所定の範囲内で変調する光周波数変調器10cとで構成されている。 The laser irradiating means 10 of the laser distance measuring device 50a according to the second embodiment of the present invention shown in FIG. 2 includes a laser irradiating device 10a that emits a laser beam having a specific frequency, and a laser beam emitted from the laser irradiating device 10a. The optical comb generator 10b generates a plurality of laser beams having a predetermined frequency interval, and the optical frequency modulator 10c modulates the frequency interval of the optical comb generator 10b within a predetermined range.
 また、第2の形態のレーザ測距装置50aのレーザ光情報取得手段26は、光周波数変調器10cからの変調周波数の値からレーザ照射手段10から出射するレーザ光の周波数の変化量を取得し演算部20に出力する。 The laser beam information acquisition unit 26 of the laser range finder 50a according to the second embodiment acquires the amount of change in the frequency of the laser beam emitted from the laser irradiation unit 10 from the value of the modulation frequency from the optical frequency modulator 10c. The result is output to the calculation unit 20.
 次に、図2aを用いて第1測定光と第2測定光との装置内部における光路差を取得する方法を説明する。尚、以下に示す光路差の取得方法は、基本的に本発明に係るレーザ測距方法及び第2の形態のレーザ測距装置50aの動作と同等である。また、以下に示す光路差の取得方法は本発明に係るレーザ測距装置に好適なものであるが、必ずしもこの方法を用いる必要は無い。さらに、光路差の取得は測定毎に行う必要は無く、レーザ測距装置の出荷時等に行ってメモリ等に記録しておいても良い。 Next, a method for obtaining the optical path difference in the apparatus between the first measurement light and the second measurement light will be described with reference to FIG. The optical path difference acquisition method described below is basically the same as the laser distance measuring method according to the present invention and the operation of the laser distance measuring device 50a of the second embodiment. The following optical path difference acquisition method is suitable for the laser distance measuring apparatus according to the present invention, but this method is not necessarily used. Further, the optical path difference need not be acquired for each measurement, and may be recorded at the time of shipment of the laser distance measuring device and recorded in a memory or the like.
 先ず、図2aに示すように、表面が平滑な平板7をその平滑面に第1測定光及び第2測定光が垂直に照射されるように設置する。 First, as shown in FIG. 2a, a flat plate 7 having a smooth surface is installed so that the first measurement light and the second measurement light are vertically irradiated on the smooth surface.
 次に、レーザ照射手段10を構成するレーザ照射装置10aが特定の周波数fのレーザ光を光コム発生器10bに出射する。光コム発生器10bは光周波数変調器10cから入力する変調周波数に応じて、周波数fを中心としその上下に周波数間隔の等しい複数の光コムレーザ光を生成した上で、周波数fのレーザ光とともに測定光分割部15側に照射する。例えば、光周波数変調器10cがdHzの変調周波数を出力する場合、光コム発生器10bから出射するレーザ光は、周波数fのレーザ光LZと、光コムレーザ光としての、周波数f+d(周波数fとする。)のレーザ光LZと、周波数f+2d(周波数fとする。)のレーザ光LZと、・・・、周波数f+nd(周波数fとする。)のレーザ光LZと、周波数f-d(周波数f-1とする。)のレーザ光LZ-1と、周波数f-2d(周波数f-2とする。)のレーザ光LZ-2と、・・・、周波数f-nd(周波数f-nとする。)のレーザ光LZ-nとなる。このとき、各レーザ光の強度はほぼ、
LZ=LZ-1、LZ=LZ-2、・・・、LZ=LZ-n、となり、また、
LZ>LZ>LZ>・・・>LZ
LZ>LZ-1>LZ-2>・・・>LZ-n、となる。
Next, the laser irradiation device 10a constituting the laser irradiation unit 10 emits a laser beam of a specific frequency f 0 to the optical comb generator 10b. Optical comb generator 10b in response to the modulation frequency input from the optical frequency modulator 10c, in terms of generating the plurality of light Komureza light equal frequency intervals above and below the center frequency f 0, the laser light of frequency f 0 At the same time, the measurement light splitting unit 15 is irradiated. For example, if the optical frequency modulator 10c outputs a modulation frequency of DHz, laser light emitted from the optical comb generator 10b includes a laser beam LZ 0 frequency f 0, as a light Komureza light, the frequency f 0 + d ( the frequency f 1. a laser beam LZ 1 in), and the laser beam LZ 2 frequency f 0 + 2d (. to frequency f 2), · · ·, the frequency f 0 + nd of (. to frequency f n) a laser beam LZ n, and the laser beam LZ -1 frequency f 0 -d (. to frequency f -1), and the laser beam LZ -2 frequency f 0 -2d (. to frequency f -2), ..., laser light LZ- n of frequency f 0 -nd (referred to as frequency f -n ). At this time, the intensity of each laser beam is almost
LZ 1 = LZ −1 , LZ 2 = LZ −2 ,..., LZ n = LZ −n , and
LZ 0 > LZ 1 > LZ 2 >...> LZ n ,
LZ 0 > LZ −1 > LZ −2 >...> LZ −n .
 またこのとき、光周波数変調器10cは光コム発生器10bに対する変調周波数を変化させ周波数間隔を所定の範囲内で変化させる。これにより、レーザ光LZを除く全てのレーザ光LZ、LZ、・・・、LZ、LZ-1、LZ-2、・・・、LZ-nの周波数が所定の範囲内で変化する。つまり、光周波数変調器10cが出力する変調周波数をdHzから(d+α)Hzまで変化させると、レーザ光LZの周波数fはf=f+(d+α)へ変化し、レーザ光LZの周波数fはf=f+2×(d+α)へ変化し、レーザ光LZの周波数fはf=f+n×(d+α)へ変化し、レーザ光LZ-1の周波数f-1はf-1=f-(d+α)へ変化し、レーザ光LZ-2の周波数f-2はf-2=f-2×(d+α)へ変化し、レーザ光LZ-nの周波数f-nはf-n=f-n×(d+α)へ変化する。そして、光周波数変調器10cは、変調周波数の値をレーザ光情報取得手段26に出力する。尚、便宜的に光コム発生器10bから出射するレーザ光LZ-n~LZ~LZを総称してレーザ光LZとし、光コム発生器10bから出射する光コムレーザ光、レーザ光LZ-n~LZ-1、レーザ光LZ~LZを総称してレーザ光LZ(n)とする。 At this time, the optical frequency modulator 10c changes the modulation frequency for the optical comb generator 10b to change the frequency interval within a predetermined range. Accordingly, the frequencies of all the laser beams LZ 1 , LZ 2 ,..., LZ n , LZ −1 , LZ −2 ,..., LZ −n except for the laser beam LZ 0 change within a predetermined range. To do. That is, when the modulation frequency output from the optical frequency modulator 10c is changed from dHz to (d + α) Hz, the frequency f 1 of the laser beam LZ 1 changes to f 1 = f 0 + (d + α), and the laser beam LZ 2. The frequency f 2 of the laser beam L f changes to f 2 = f 0 + 2 × (d + α), the frequency f n of the laser beam LZ n changes to f n = f 0 + n × (d + α), and the frequency f of the laser beam LZ −1 . −1 changes to f −1 = f 0 − (d + α), and the frequency f −2 of the laser beam LZ −2 changes to f −2 = f 0 −2 × (d + α), and the laser beam LZ −n The frequency f −n changes to f −n = f 0 −n × (d + α). Then, the optical frequency modulator 10 c outputs the value of the modulation frequency to the laser light information acquisition unit 26. For convenience, the laser beams LZ −n to LZ 0 to LZ n emitted from the optical comb generator 10b are collectively referred to as laser light LZ, and the optical comb laser light and laser light LZ −n emitted from the optical comb generator 10b. To LZ −1 and laser beams LZ 1 to LZ n are collectively referred to as laser beam LZ (n).
 レーザ光情報取得手段26は、光周波数変調器10cからの変調周波数の値から第1段の光コムレーザ光、(レーザ光LZ、LZ-1)の周波数の変化量、即ち上記のαの値を取得し演算部20に出力する。 The laser beam information acquisition unit 26 determines the amount of change in the frequency of the first-stage optical comb laser beam (laser beams LZ 1 , LZ −1 ) from the modulation frequency value from the optical frequency modulator 10 c, that is, the value of α described above. Is output to the calculation unit 20.
 レーザ照射手段10から出射したレーザ光LZは、ビームスプリッタ12を透過して測定光分割部15に向かう。測定光分割部15に向かったレーザ光LZは、測定光分割部15にて2分割され一方は第1測定光として出射口16aから平板7の第1測定点S1に照射される。また、他方は第2測定光としてミラー8で反射され出射口16bから平板7の第2測定点S2に照射される。 The laser light LZ emitted from the laser irradiation means 10 passes through the beam splitter 12 and travels toward the measurement light splitting unit 15. The laser beam LZ directed to the measurement beam splitting unit 15 is divided into two by the measurement beam splitting unit 15 and one is irradiated as the first measurement beam to the first measurement point S1 of the flat plate 7 from the emission port 16a. On the other hand, the other is reflected by the mirror 8 as the second measurement light and is irradiated to the second measurement point S2 of the flat plate 7 from the emission port 16b.
 第1測定光は第1測定点S1で反射された後、上記と同様の光路を辿って受光部18に到達する。また、第2測定光は第2測定点S2で反射された後、上記と同様の光路を辿って受光部18に到達する。よって、受光部18で受光される光は、レーザ光LZのそれぞれの第1測定光とレーザ光LZのそれぞれの第2測定光とが各々干渉して生じる複数の干渉光が全て合わさった干渉光となり、受光部18はこの干渉光の強度を電気信号に変換し強度データとして演算部20に出力する。尚、この干渉光の強度データには、段数の異なる光コムレーザ光(例えば、レーザ光LZとレーザ光LZ)の第1測定光と第2測定光との干渉光の強度も含まれる。これらの段数の異なる光コムレーザ光の干渉光の強度はビート(うなり)となって干渉光中に現れ、このビートは測定時間内で平均化されて最終的に一定強度のバックグラウンドノイズとなる。 The first measurement light is reflected at the first measurement point S1, and then reaches the light receiving unit 18 along the same optical path as described above. Further, after the second measurement light is reflected at the second measurement point S2, it reaches the light receiving unit 18 along the same optical path as described above. Therefore, the light received by the light receiving unit 18 is an interference light in which a plurality of interference lights generated by interference between the first measurement light of the laser light LZ and the second measurement light of the laser light LZ are combined. Then, the light receiving unit 18 converts the intensity of the interference light into an electric signal and outputs it to the arithmetic unit 20 as intensity data. The intensity data of the interference light includes the intensity of the interference light between the first measurement light and the second measurement light of optical comb laser lights (for example, laser light LZ 1 and laser light LZ 2 ) having different numbers of stages. The intensity of the interference light of the optical comb laser beams having different numbers of stages becomes a beat (beat) and appears in the interference light, and this beat is averaged within the measurement time, and finally becomes background noise with a constant intensity.
 演算部20は取得ステップとして、受光部18からの干渉光の強度データをレーザ光情報取得手段26からの周波数の変化量と対応して取得する。 As the acquisition step, the calculation unit 20 acquires the intensity data of the interference light from the light receiving unit 18 corresponding to the amount of change in the frequency from the laser light information acquisition unit 26.
 次に、演算部20は変換ステップとして、周波数の変化量と対応した干渉光の強度データに対してフーリエ変換を行う。これにより、干渉光の振幅、周期、位相として、レーザ光LZの第1測定光とレーザ光LZの第2測定光との干渉光の振幅IS12(1)、周期TS12(1)、位相φS12(1)が取得される。また、レーザ光LZの第1測定光とレーザ光LZの第2測定光との干渉光の振幅IS12(2)、周期TS12(2)、位相φS12(2)が取得される。また、レーザ光LZの第1測定光とレーザ光LZの第2測定光との干渉光の振幅IS12(n)、周期TS12(n)、位相φS12(n)が取得される。また、レーザ光LZ-1の第1測定光とレーザ光LZ-1の第2測定光との干渉光の振幅IS12(-1)、周期TS12(-1)、位相φS12(-1)が取得される。また、レーザ光LZ-2の第1測定光とレーザ光LZ-2の第2測定光との干渉光の振幅IS12(-2)、周期TS12(-2)、位相φS12(-2)が取得される。また、レーザ光LZ-nの第1測定光とレーザ光LZ-nの第2測定光との干渉光の振幅IS12(-n)、周期TS12(-n)、位相φS12(-n)が取得される。 Next, as a conversion step, the arithmetic unit 20 performs Fourier transform on the intensity data of the interference light corresponding to the frequency change amount. Thus, the amplitude of the interference light, the period, as a phase, the interference light of the first measuring light of the laser beam LZ 1 and the second measuring light of the laser beam LZ 1 amplitude I S12 (1), the period T S12 (1) , Phase φ S12 (1) is acquired. Further, the interference light amplitude I S12 of the first measuring light of the laser beam LZ 2 and the second measuring light of the laser beam LZ 2 (2), the period T S12 (2), the phase phi S12 (2) is obtained . The first measuring beam and the interference light amplitude I S12 of the second measuring light of the laser beam LZ n (n), the period T S12 (n), the phase phi S12 (n) is obtained for the laser beam LZ n . The amplitude I S12 (-1) of the first measuring beam and the interference light of the second measuring light of the laser beam LZ -1 laser beam LZ -1, period T S12 (-1), the phase phi S12 (-1 ) Is acquired. The first measuring beam and the amplitude I S12 of the second measurement light and the interference light of the laser beam LZ -2 of the laser beam LZ -2 (-2), the period T S12 (-2), the phase phi S12 (-2 ) Is acquired. The amplitude of the interference light of the first measuring beam and the second measuring light of the laser beam LZ -n of the laser beam LZ -n I S12 (-n), the period T S12 (-n), the phase phi S12 (-n ) Is acquired.
 尚、段数の異なる光コムレーザ光の干渉光によるバックグラウンドノイズは測定時間内で平均化された一定強度のものであるから、フーリエ変換により定数となる。また、レーザ光LZの周波数は光周波数変調器10cからの変調周波数が影響せず一定であるから、これもフーリエ変換により定数となる。 Note that the background noise due to the interference light of the optical comb laser beams having different numbers of stages is a constant intensity averaged within the measurement time, and thus becomes a constant by Fourier transform. Further, since the frequency of the laser beam LZ 0 is constant without affecting the modulation frequency of the optical frequency modulator 10c, which also becomes constant by the Fourier transform.
 尚、光コムレーザ光の正方向の段数のレーザ光LZの周波数は光周波数変調器10cの変調周波数により増加方向に変化し、光コムレーザ光の負方向の段数のレーザ光LZ-nの周波数は光周波数変調器10cの変調周波数により減少方向に変化する。しかしながら、上記のフーリエ変換で得られる正負同一段数の光コムレーザ光(レーザ光LZとレーザ光LZ-n)の干渉光の縞間隔(周期)は等しくなる。つまり、レーザ光LZの干渉光の周期TS12(1)と、レーザ光LZ-1の干渉光の周期TS12(-1)とは、周期TS12(1)=周期TS12(-1) であり、同様にレーザ光LZの干渉光の周期TS12(n)と、レーザ光LZ-nの干渉光の周期TS12(-n)とは、周期TS12(n)=周期TS12(-n) である。 The frequency of the laser beam LZ n in the positive direction of the number of light Komureza light changes in the increasing direction by the modulation frequency of the optical frequency modulator 10c, the frequency of the laser beam LZ -n negative direction of the number of stages of optical Komureza light It changes in a decreasing direction depending on the modulation frequency of the optical frequency modulator 10c. However, the fringe intervals (cycles) of the interference light of the optical comb laser beams (laser beam LZ n and laser beam LZ −n ) having the same number of positive and negative stages obtained by the Fourier transform are equal. In other words, the interference light of the period T S12 of the laser beam LZ 1 (1), and the period T S12 of the interference light laser beam LZ -1 (-1), the period T S12 (1) = period T S12 (-1 ), and similarly to the period T S12 of the interference light laser beam LZ n (n), the period T S12 of the interference light of the laser beam LZ -n (-n), the period T S12 (n) = period T S12 (-n) .
 ここで、レーザ測距装置50aにおける測定光分割部15の分割点からミラー8の反射点までの距離Ldを仮にLd=0.5mとし、レーザ光の周波数fをf=300MHzとすると、レーザ光LZ、LZ-1の干渉光の周期TS12(1)(=周期TS12(-1))は300MHzとなる。 Here, assuming that the distance Ld from the dividing point of the measuring light dividing unit 15 to the reflecting point of the mirror 8 in the laser distance measuring device 50a is Ld = 0.5 m and the frequency f of the laser light is f = 300 MHz, the laser light The period T S12 (1) (= period T S12 (−1) ) of the interference light of LZ 1 and LZ −1 is 300 MHz.
 また、上記のフーリエ変換は、光コムレーザ光の段数nを考慮していないレーザ光LZ、LZ-1の周波数の変化量により行われるものであるから、上記の例の場合、レーザ光LZ、LZ-nによる干渉光の周期TS12(n)(=周期TS12(-n))は300MHz/(|n|)となる。しかしながら、光コムレーザ光の段数|n|を乗算すれば全て300MHzとなる。即ち、干渉光の周期TS12(1)(=TS12(-1))、周期TS12(2)(=TS12(-2))、・・・、周期TS12(n)(=TS12(-n))は、TS12(1)、TS12(1)/2、・・・、TS12(1)/n (n=1、2、3、・・・n)で表される系列となる。 In addition, since the Fourier transform is performed by the amount of change in the frequency of the laser beams LZ 1 and LZ −1 that does not consider the number n of the optical comb laser beam, in the case of the above example, the laser beam LZ n , LZ −n interference light period T S12 (n) (= period T S12 (−n) ) is 300 MHz / (| n |). However, multiplication by the number of stages of optical comb laser light | n | That is, the period T S12 (1) (= T S12 (−1) ), the period T S12 (2) (= T S12 (−2) ),..., The period T S12 (n) (= T S12 (−n) ) is represented by T S12 (1) , T S12 (1) / 2,..., T S12 (1) / n (n = 1, 2, 3,... N). It becomes a series.
 次に、演算部20は変換ステップで得られた干渉光を構成する干渉光の干渉縞の周期のうち所定のレーザ光LZによる干渉光の周期TS12(n)を選択する。尚、干渉光の周期TS12(n)の選択はレーザ光LZもしくはレーザ光LZ-1の干渉光のものを選択することが好ましい。前述のように、変換ステップで得られるそれぞれのレーザ光LZ(n)の干渉光の周期TS12(n)は、周期TS12(1)/nの系列となる。そして、周期TS12(1)/nの系列中で最大の周期TS12(n)を選択すれば、それは即ちレーザ光LZもしくはレーザ光LZ-1による干渉光の周期TS12(1)(=周期TS12(-1))となる。これにより、干渉光を構成する複数の干渉光の周期のうちレーザ光LZ(レーザ光LZ-1)による干渉光の周期TS12(1)(=周期TS12(-1))を選択することができる。また、周期TS12(1)/nの系列中でn番目に大きな周期TS12(n)を選択すれば、それは即ち段数nのレーザ光LZ(レーザ光LZ-n)による干渉光の周期TS12(n)(=周期TS12(-n))となる。 Next, the computing unit 20 selects a period T S12 (n) of interference light by a predetermined laser beam LZ n from the period of interference fringes of interference light constituting the interference light obtained in the conversion step. Note that the interference light cycle T S12 (n) is preferably selected from the interference light of the laser light LZ 1 or the laser light LZ −1 . As described above, the cycle T S12 (n) of the interference light of each laser beam LZ (n) obtained in the conversion step is a series of cycle T S12 (1) / n. If the maximum cycle T S12 (n) is selected in the sequence of cycle T S12 (1) / n, that is, the cycle T S12 (1) ( 1) of the interference light caused by the laser beam LZ 1 or the laser beam LZ −1. = Period T S12 (−1) ). Thus, the period T S12 (1) (= period T S12 (−1) ) of the interference light by the laser light LZ 1 (laser light LZ −1 ) is selected from the plurality of periods of the interference light constituting the interference light. be able to. If the n-th largest cycle T S12 (n) is selected in the sequence of cycle T S12 (1) / n, that is, the cycle of the interference light by the laser beam LZ n (laser beam LZ −n ) having n stages. T S12 (n) (= period T S12 (−n) ).
 そして、演算部20は最大の周期T、即ちレーザ光LZもしくはレーザ光LZ-1の干渉光の周期TS12(1)(=周期TS12(-1))を選択した場合、選択された周期TS12(1)に対し、上記(1)と同様の式により装置内部における第1測定光と第2測定光の光路差の1/2の値である距離Ldを算出する。 Then, the calculation unit 20 is selected when the maximum period T, that is, the period T S12 (1) (= period T S12 (−1) ) of the interference light of the laser light LZ 1 or the laser light LZ −1 is selected. For the period T S12 (1) , a distance Ld, which is a half value of the optical path difference between the first measurement light and the second measurement light in the apparatus, is calculated by the same equation as the above (1).
 また、演算部20が段数nの光コムレーザ光による干渉光の周期TS12(n)(=周期TS12(-n))を選択する場合には、以下の式(1)’を用いて距離Ldを算出する。
Ld=c/(TS12(n)×|n|)/2・・・(1)’
そして、演算部20はこの距離Ldの値を図示していない演算部20内のメモリ等に記録する。
Further, when the calculation unit 20 selects the period T S12 (n) (= period T S12 (−n) ) of the interference light by the n-stage optical comb laser light, the distance is calculated using the following equation (1) ′. Ld is calculated.
Ld = c / ( TS12 (n) × | n |) / 2 (1) ′
Then, the calculation unit 20 records the value of the distance Ld in a memory or the like in the calculation unit 20 (not shown).
 次に、本発明に係るレーザ測距方法及び第2の形態のレーザ測距装置50aの被測定物6に対する測距時の動作を説明する。尚、前述のように本発明に係るレーザ測距方法及び第2の形態のレーザ測距装置50aの被測定物6に対する測距時の動作は、上記の装置内部における第1測定光と第2測定光の光路差を取得する方法と同等であるため、重複する部分に関しては説明を一部省略する。 Next, the operation of the laser distance measuring method according to the present invention and the distance measuring operation of the laser distance measuring apparatus 50a of the second embodiment with respect to the object 6 to be measured will be described. As described above, the laser distance measuring method according to the present invention and the laser distance measuring device 50a of the second embodiment at the time of distance measurement with respect to the object to be measured 6 are the same as the first measuring light and the second light inside the device. Since this method is equivalent to the method for obtaining the optical path difference of the measurement light, a part of the description is omitted for the overlapping portions.
 先ず、図2bに示すように、被測定物6を所定の位置に配置する。このとき、レーザ測距装置50aから出射する第1測定光が被測定物6の第1測定面に、第2測定光が被測定物6の第2測定面に照射されるようにする。 First, as shown in FIG. 2b, the DUT 6 is placed at a predetermined position. At this time, the first measurement light emitted from the laser distance measuring device 50 a is applied to the first measurement surface of the device under test 6 and the second measurement light is applied to the second measurement surface of the device under test 6.
 次に、レーザ照射手段10はその波長が所定の範囲内を連続的に変化するようにレーザ光を出射する。そして、演算部20は取得ステップと変換ステップとを同様に行う。尚このとき、第1測定光は被測定物6の第1測定点S1で反射され、第2測定光は被測定物6の第2測定点S2で反射される。そして、受光部18は、被測定物6の第1測定点S1で反射された第1測定光と被測定物6の第2測定点S2で反射された第2測定光とを受光する。 Next, the laser irradiation means 10 emits laser light so that its wavelength continuously changes within a predetermined range. And the calculating part 20 performs an acquisition step and a conversion step similarly. At this time, the first measurement light is reflected at the first measurement point S1 of the device under test 6 and the second measurement light is reflected at the second measurement point S2 of the device under test 6. The light receiving unit 18 receives the first measurement light reflected at the first measurement point S1 of the object 6 to be measured and the second measurement light reflected at the second measurement point S2 of the object 6 to be measured.
 次に、演算部20は算出ステップとして、変換ステップで得られた干渉光を構成する干渉光の干渉縞の周期のうち所定のレーザ光LZによる干渉光の周期TS12(n)を選択する。そして、レーザ光LZもしくはレーザ光LZ-1のものを選択した場合には上記(2)と同様の式により第1測定光と第2測定光との光路差の1/2の値(距離L’)を算出する。また、レーザ光LZもしくはレーザ光LZ-nのものを選択した場合には算出式(2)と同様の以下の算出式(2)’により、第1測定光と第2測定光との光路差の1/2の値(距離L’)を算出する。
L’=c/(TS12(n)×|n|)/2・・・(2)’
尚、ここで得られる距離L’は、装置内部における光路差の1/2の値(距離Ld)を含んだものである。
Next, the calculation unit 20 selects, as a calculation step, a period T S12 (n) of interference light by a predetermined laser beam LZ n from the period of interference fringes of interference light constituting the interference light obtained in the conversion step. . Then, when the laser beam LZ 1 or the laser beam LZ −1 is selected, the value (distance) of a half of the optical path difference between the first measurement light and the second measurement light by the same formula as the above (2). L ′) is calculated. Further, the calculation formula in the case of selected ones of the laser beam LZ n or laser beam LZ -n is (2) as well as the following calculation formula (2) ', optical paths of the first measuring beam and the second measuring beam A half value of the difference (distance L ′) is calculated.
L ′ = c / ( TS12 (n) × | n |) / 2 (2) ′
The distance L ′ obtained here includes a value (distance Ld) that is ½ of the optical path difference inside the apparatus.
 次に、演算部20は距離L’から予め取得されている距離Ldを減算した上で、その絶対値を取ることで第1測定点S1から第2測定点S2までの距離Lを算出する。これにより、第1測定点S1、第2測定点S2間の距離Lを高精度に算出することができる。 Next, the calculation unit 20 calculates the distance L from the first measurement point S1 to the second measurement point S2 by subtracting the distance Ld acquired in advance from the distance L ′ and taking the absolute value thereof. Thereby, the distance L between the first measurement point S1 and the second measurement point S2 can be calculated with high accuracy.
 尚、本発明に係るレーザ測距装置50、50aにおける第1測定光と第2測定光の光路は図3に示すようにしても良い。尚、図3では第1測定光と第2測定光の光路のみを簡略化して示す。図3(a)に示すレーザ測距装置50、50aの変形例は、ビームスプリッタ12の反射光を測定光として用いた例である。また、図3(b)、(c)に示すレーザ測距装置50、50aの変形例は、ビームスプリッタ12を用いずに測定光分割部15とミラー8とにより第1測定光と第2測定光との光路を構成した例である。 Note that the optical paths of the first measurement light and the second measurement light in the laser distance measuring devices 50 and 50a according to the present invention may be as shown in FIG. In FIG. 3, only the optical paths of the first measurement light and the second measurement light are shown in a simplified manner. A modification of the laser distance measuring devices 50 and 50a shown in FIG. 3A is an example in which the reflected light of the beam splitter 12 is used as measurement light. 3 (b) and 3 (c), the laser distance measuring devices 50 and 50a have the first measurement light and the second measurement light by the measurement light dividing unit 15 and the mirror 8 without using the beam splitter 12. It is the example which comprised the optical path with light.
 上記の本発明に係る第2の形態のレーザ測距装置50aは、図4に示すように、レーザ照射手段10から出射するレーザ光の光路上に所定の周波数範囲内のレーザ光のみを透過する周知の光バンドパスフィルタを設けた第3の形態のレーザ測距装置50bとしても良い。 As shown in FIG. 4, the laser distance measuring device 50 a according to the second embodiment of the present invention transmits only laser light within a predetermined frequency range on the optical path of laser light emitted from the laser irradiation means 10. A third embodiment of the laser range finder 50b may be provided with a known optical bandpass filter.
 レーザ測距装置50bに設置する光バンドパスフィルタに例えばレーザ光LZの周波数fの周波数変化範囲のレーザ光のみを透過するものを用いた場合、この光バンドパスフィルタをレーザ照射手段10とビームスプリッタ12との間の光路上(図4中の光バンドパスフィルタBPF1)、もしくはビームスプリッタ12と受光部18との間の光路上(図4中の光バンドパスフィルタBPF2)、もしくはビームスプリッタ12と測定光分割部15との間の光路上(図4中の光バンドパスフィルタBPF3)に設置すれば、受光部18はレーザ光LZによる干渉光のみを受光するため、光コム発生器10bによる安定したレーザ光を用いながら演算部20の処理に対する負荷を軽減することができる。 When using the one that transmits only the laser beam in the frequency range of variation of the frequency f 1 of the optical band-pass filter, for example, laser beam LZ 1 be installed in a laser distance measuring device 50b, the optical bandpass filter and the laser irradiation means 10 On the optical path between the beam splitter 12 (optical bandpass filter BPF1 in FIG. 4) or on the optical path between the beam splitter 12 and the light receiving unit 18 (optical bandpass filter BPF2 in FIG. 4), or the beam splitter It is provided on the optical path (optical bandpass filter BPF3 in FIG. 4) between the 12 and the measuring light splitting unit 15, the light receiving portion 18 for receiving only the interference light by the laser beam LZ 1, the optical comb generator The load on the processing of the calculation unit 20 can be reduced while using the stable laser beam by 10b.
 また、この光バンドパスフィルタを第1測定光の光路上(図4中の光バンドパスフィルタBPF4)に設置すれば、受光部18が受光する第1測定光はレーザ光LZのみのものとなるため、同様に光コム発生器10bによる安定したレーザ光を用いながら演算部20の処理に対する負荷を軽減することができる。 Also, if installing the optical bandpass filter to the first measuring light optical path (optical bandpass filter BPF4 in FIG. 4), a first measuring light receiving unit 18 receives the to those of only the laser beam LZ 1 Therefore, similarly, it is possible to reduce the load on the processing of the arithmetic unit 20 while using the stable laser light from the optical comb generator 10b.
 さらに、この光バンドパスフィルタを第2測定光の光路上(図4中の光バンドパスフィルタBPF5)に設置すれば、受光部18に受光する第2測定光はレーザ光LZのみとなるため、同様に光コム発生器10bによる安定したレーザ光を用いながら演算部20の処理に対する負荷を軽減することができる。 Furthermore, if installing the optical band pass filter to the second measuring light optical path (optical bandpass filter BPF5 in FIG. 4), the second measuring light received in the light receiving portion 18 includes only the laser beam LZ 1 Similarly, it is possible to reduce the load on the processing of the arithmetic unit 20 while using stable laser light from the optical comb generator 10b.
 尚、光バンドパスフィルタが複数の光コムレーザ光を透過する場合であっても、受光部18が受光するレーザ光の数は光バンドパスフィルタを設置しないときと比較して著しく減少するため、演算部20の処理に対する負荷は大幅に軽減される。 Even when the optical bandpass filter transmits a plurality of optical comb laser beams, the number of laser beams received by the light receiving unit 18 is significantly reduced compared to when no optical bandpass filter is installed. The load on the processing of the unit 20 is greatly reduced.
 上記のレーザ測距装置50bの構成は、図3に示すレーザ測距装置50aの変形例にも適用が可能である。 The configuration of the laser distance measuring device 50b can be applied to a modification of the laser distance measuring device 50a shown in FIG.
 また、本発明に係る第1~第3の形態のレーザ測距装置50、50a、50bは、図5の第4の形態のレーザ測距装置50cに示すように、第1測定光の光路上にミラー8aとミラー8bとを設置し、ミラー8aの反射点からミラー8bの反射点までの距離を測定光分割部15の分割点からミラー8の反射点までの距離Ldと等しくしても良い。尚、図5では第4の形態の構成を第2の形態のレーザ測距装置50aに適用した例を示しているが、図3に示すレーザ測距装置50、50aの変形例にも適用が可能である。 Further, the laser distance measuring devices 50, 50a, 50b of the first to third embodiments according to the present invention are on the optical path of the first measuring light as shown in the laser distance measuring device 50c of the fourth embodiment in FIG. The mirror 8a and the mirror 8b may be installed on the mirror 8a, and the distance from the reflection point of the mirror 8a to the reflection point of the mirror 8b may be equal to the distance Ld from the division point of the measurement light dividing unit 15 to the reflection point of the mirror 8. . 5 shows an example in which the configuration of the fourth embodiment is applied to the laser distance measuring device 50a of the second embodiment. However, the configuration can be applied to a modification of the laser distance measuring devices 50 and 50a shown in FIG. Is possible.
 上記の第4の形態のレーザ測距装置50cの構成によれば、第1測定光と第2測定光との装置内部における光路差がなくなり、装置内部における第1測定光の光路長と第2測定光の光路長とを等しくすることができる。よって、第4の形態のレーザ測距装置50cでは、第1測定光と第2測定光との装置内部における光路差の取得、及び距離L’からの距離Ldの減算処理を行う必要が無くなり、距離Lの測距手順の簡略化を図ることができる。 According to the configuration of the laser distance measuring device 50c of the fourth embodiment, the optical path difference between the first measurement light and the second measurement light in the device is eliminated, and the optical path length of the first measurement light in the device and the second The optical path length of the measurement light can be made equal. Therefore, in the laser range finder 50c of the fourth embodiment, there is no need to obtain the optical path difference inside the device between the first measurement light and the second measurement light and to perform the subtraction process of the distance Ld from the distance L ′. The distance measurement procedure for the distance L can be simplified.
 また、本発明に係るレーザ測距装置50、50a、50b、50cは、図6に示すように参照ミラー14を備えたレーザ測距装置にも適用が可能である。尚、図6ではレーザ光の光路のみを簡略化して示す。 Further, the laser distance measuring devices 50, 50a, 50b, and 50c according to the present invention can also be applied to a laser distance measuring device including a reference mirror 14 as shown in FIG. In FIG. 6, only the optical path of the laser beam is shown in a simplified manner.
 図6に示すレーザ測距装置50、50a、50b、50cは、通常の測距時に使用する参照ミラー14を備えている。そして、レーザ照射手段10に周知の波長可変レーザを用いたレーザ測距装置50の場合、受光部18が受光する光は、第1測定光と第2測定光との干渉光に加え、参照ミラー14にて反射された参照光と第1測定光との第1干渉光、参照ミラー14にて反射された参照光と第2測定光との第2干渉光となる。そして、受光部18はこの3つの干渉光が合わさった干渉光の強度を電気信号に変換し強度データとして演算部20に出力する。 The laser distance measuring devices 50, 50a, 50b, and 50c shown in FIG. In the case of the laser distance measuring device 50 using a known wavelength tunable laser as the laser irradiation means 10, the light received by the light receiving unit 18 is a reference mirror in addition to the interference light between the first measurement light and the second measurement light. The first interference light between the reference light reflected by 14 and the first measurement light, and the second interference light between the reference light reflected by the reference mirror 14 and the second measurement light. Then, the light receiving unit 18 converts the intensity of the interference light, which is the combination of the three interference lights, into an electrical signal, and outputs the electrical signal to the calculation unit 20.
 次に、演算部20は取得ステップ及び変換ステップを行い、取得した強度データに対して周波数の変化量に基づくフーリエ変換を行う。これにより、第1測定光と第2測定光との干渉光の振幅IS12、周期TS12、位相φS12とに加え、第1干渉光の振幅IS1、周期TS1、位相φS1と、第2干渉光の振幅IS2、周期TS2、位相φS2と、がそれぞれ取得される。 Next, the calculation unit 20 performs an acquisition step and a conversion step, and performs a Fourier transform based on the amount of change in frequency on the acquired intensity data. Thereby, in addition to the amplitude I S12 , period T S12 , and phase φ S12 of the interference light between the first measurement light and the second measurement light, the amplitude I S1 , period T S1 , phase φ S1 of the first interference light, The amplitude I S2 , period T S2 , and phase φ S2 of the second interference light are acquired.
 ここで、第1測定光と第2測定光はビームスプリッタ12で分割されたレーザ光が測定光分割部15でさらに分割されたものであるから、ビームスプリッタ12と測定光分割部15の分光比が50:50のもの即ちハーフミラーの場合には、その強度(振幅)IS12は第1干渉光の振幅IS1及び第2干渉光の振幅IS2と比較して小さいものとなる。 Here, since the first measurement light and the second measurement light are obtained by further dividing the laser light split by the beam splitter 12 by the measurement light splitting unit 15, the spectral ratio of the beam splitter 12 and the measurement light splitting unit 15. Is 50:50, that is, a half mirror, the intensity (amplitude) I S12 is smaller than the amplitude I S1 of the first interference light and the amplitude I S2 of the second interference light.
 従って、演算部20は算出ステップとして、変換ステップで得られた第1測定光と第2測定光との干渉光の振幅IS12と第1干渉光の振幅IS1と第2干渉光の振幅IS2とを比較して、最小の振幅を有する周期を選択することで第1測定光と第2測定光との干渉光の周期TS12を判別し、この周期TS12に基づき(2)の式により距離L’を算出する。次に、演算部20は距離L’から予め取得されている距離Ldを減算した上で、その絶対値を取ることで第1測定点S1から第2測定点S2までの距離Lを算出する。 Therefore, the calculation unit 20 calculates, as calculation steps, the amplitude I S12 of the interference light between the first measurement light and the second measurement light obtained in the conversion step, the amplitude I S1 of the first interference light, and the amplitude I of the second interference light. The period T S12 of the interference light between the first measurement light and the second measurement light is discriminated by comparing with S2 and selecting the period having the minimum amplitude, and based on this period T S12 , the formula (2) To calculate the distance L ′. Next, the calculation unit 20 calculates the distance L from the first measurement point S1 to the second measurement point S2 by subtracting the distance Ld acquired in advance from the distance L ′ and taking the absolute value thereof.
 また、ビームスプリッタ12と測定光分割部15の分光比が50:50以外のものの場合、その分光比によって振幅IS12、振幅IS1、振幅IS2は異なるから、第1測定光と第2測定光との干渉光の振幅IS12と第1干渉光の振幅IS1と第2干渉光の振幅IS2とを予め取得しておけば、この振幅IS12の値から第1測定光と第2測定光との干渉光の周期TS12を直接選択することができる。 In addition, when the spectral ratio of the beam splitter 12 and the measurement light splitting unit 15 is other than 50:50, the amplitude I S12 , the amplitude I S1 , and the amplitude I S2 differ depending on the spectral ratio. If the amplitude I S12 of the interference light with the light, the amplitude I S1 of the first interference light, and the amplitude I S2 of the second interference light are acquired in advance, the first measurement light and the second light are obtained from the value of the amplitude I S12 . The period T S12 of the interference light with the measurement light can be directly selected.
 また、距離Lの大まかな値(距離L’’)と第1測定点S1と第2測定点S2との位置関係とを予め取得しておき、これらの値から大まかな距離Ld+距離L’’(第2測定点S2が第1測定点S1よりレーザ測距装置50側の場合には距離L’’は負)の値を算出した上で、変換ステップで得られた周期TS12、周期TS1、周期TS2のそれぞれに対して(2)の式により距離L’を算出し、大まかな距離Ld+距離L’’の値と最も近似する距離L’を選択して、選択した距離L’から距離Ldを減算した上で、その絶対値を取ることで第1測定点S1から第2測定点S2までの距離Lを算出しても良い。 Further, a rough value of the distance L (distance L ″) and the positional relationship between the first measurement point S1 and the second measurement point S2 are acquired in advance, and a rough distance Ld + distance L ″ is obtained from these values. After calculating the value of (the distance L ″ is negative when the second measurement point S2 is closer to the laser distance measuring device 50 than the first measurement point S1), the period T S12 and the period T obtained in the conversion step are calculated. The distance L ′ is calculated by the expression (2) for each of S1 and the period T S2, the distance L ′ that approximates the value of the rough distance Ld + distance L ″ is selected, and the selected distance L ′ The distance L from the first measurement point S1 to the second measurement point S2 may be calculated by subtracting the distance Ld from the absolute value and taking the absolute value thereof.
 尚、装置内部における第1測定光と第2測定光との光路差の1/2の値(距離Ld)の取得は、平板7を用いて上記と同様の手順で行うことが好ましい。 In addition, it is preferable to acquire the value (distance Ld) of ½ of the optical path difference between the first measurement light and the second measurement light inside the apparatus using the flat plate 7 in the same procedure as described above.
 次に、図6に示すレーザ照射手段10がレーザ照射装置10aと光コム発生器10bと光周波数変調器10cとから構成されるレーザ測距装置50aの場合、受光部18が受光する光は、レーザ光LZのそれぞれの第1測定光とレーザ光LZのそれぞれの第2測定光とが各々干渉して生じる複数の干渉光が全て合わさった干渉光に加え、レーザ光LZのそれぞれの参照光とレーザ光LZのそれぞれの第1測定光とが各々干渉して生じる複数の干渉光が全て合わさった第1干渉光と、レーザ光LZのそれぞれの参照光とレーザ光LZのそれぞれの第2測定光とが各々干渉して生じる複数の干渉光が全て合わさった第2干渉光と、とが合わさったものとなる。そして、受光部18はこの干渉光の強度を電気信号に変換し強度データとして演算部20に出力する。尚、この干渉光の強度データには、段数の異なる光コムレーザ光(例えば、レーザ光LZとレーザ光LZ)の参照光と第1測定光との干渉光の強度、段数の異なる光コムレーザ光の参照光と第2測定光との干渉光の強度、段数の異なる光コムレーザ光の第1測定光と第2測定光との干渉光の強度、段数の異なる光コムレーザ光の第1測定光同士及び第2測定光同士の干渉光の強度、段数の異なる光コムレーザ光の参照光同士の干渉光の強度も含まれる。これらの段数の異なる光コムレーザ光の干渉光の強度はビートとなって干渉光中に現れ、このビートは測定時間内で平均化されて最終的に一定強度のバックグラウンドノイズとなる。 Next, when the laser irradiation means 10 shown in FIG. 6 is a laser distance measuring device 50a including a laser irradiation device 10a, an optical comb generator 10b, and an optical frequency modulator 10c, the light received by the light receiving unit 18 is In addition to the interference light in which a plurality of interference lights generated by the interference of the first measurement light of the laser light LZ and the second measurement light of the laser light LZ are combined, the reference light of the laser light LZ The first interference light in which a plurality of interference lights generated by interference with the respective first measurement lights of the laser light LZ are combined, the respective reference light of the laser light LZ, and the respective second measurement light of the laser light LZ. Are combined with the second interference light in which a plurality of interference lights generated by interference with each other are combined. Then, the light receiving unit 18 converts the intensity of the interference light into an electric signal and outputs it to the calculation unit 20 as intensity data. The intensity data of the interference light includes optical comb lasers having different levels of the interference light between the reference light and the first measurement light of the optical comb laser light having different stages (for example, the laser light LZ 1 and the laser light LZ 2 ). The intensity of the interference light between the reference light of the light and the second measurement light, the intensity of the interference light between the first measurement light and the second measurement light of the optical comb laser light having a different number of stages, and the first measurement light of the optical comb laser light having a different number of stages The intensity of the interference light between the second and the second measurement lights, and the intensity of the interference light between the reference lights of the optical comb laser lights having different numbers of stages are also included. The intensity of the interference light of the optical comb laser beams having different stages becomes a beat and appears in the interference light, and this beat is averaged within the measurement time and finally becomes a background noise with a constant intensity.
 次に、演算部20は取得ステップ及び変換ステップを行い、取得した強度データに対して周波数の変化量に基づくフーリエ変換を行う。これにより、第1測定光と第2測定光との干渉光の振幅、周期、位相として、レーザ光LZの第1測定光とレーザ光LZの第2測定光との干渉光の振幅IS12(1)、周期TS12(1)、位相φS12(1)が取得される。また、レーザ光LZの第1測定光とレーザ光LZの第2測定光との干渉光の振幅IS12(2)、周期TS12(2)、位相φS12(2)が取得される。また、レーザ光LZの第1測定光とレーザ光LZの第2測定光との干渉光の振幅IS12(n)、周期TS12(n)、位相φS12(n)が取得される。また、レーザ光LZ-1の第1測定光とレーザ光LZ-1の第2測定光との干渉光の振幅IS12(-1)、周期TS12(-1)、位相φS12(-1)が取得される。また、レーザ光LZ-2の第1測定光とレーザ光LZ-2の第2測定光との干渉光の振幅IS12(-2)、周期TS12(-2)、位相φS12(-2)が取得される。また、レーザ光LZ-nの第1測定光とレーザ光LZ-nの第2測定光との干渉光の振幅IS12(-n)、周期TS12(-n)、位相φS12(-n)が取得される。 Next, the calculation unit 20 performs an acquisition step and a conversion step, and performs a Fourier transform based on the amount of change in frequency on the acquired intensity data. Thus, the amplitude of the interference light of the first measuring beam and the second measuring beam, periodically, as a phase, the interference light of the first measuring light of the laser beam LZ 1 and the second measuring light of the laser beam LZ 1 amplitude I S12 (1) , period T S12 (1) , and phase φ S12 (1) are acquired. Further, the interference light amplitude I S12 of the first measuring light of the laser beam LZ 2 and the second measuring light of the laser beam LZ 2 (2), the period T S12 (2), the phase phi S12 (2) is obtained . The first measuring beam and the interference light amplitude I S12 of the second measuring light of the laser beam LZ n (n), the period T S12 (n), the phase phi S12 (n) is obtained for the laser beam LZ n . The amplitude I S12 (-1) of the first measuring beam and the interference light of the second measuring light of the laser beam LZ -1 laser beam LZ -1, period T S12 (-1), the phase phi S12 (-1 ) Is acquired. The first measuring beam and the amplitude I S12 of the second measurement light and the interference light of the laser beam LZ -2 of the laser beam LZ -2 (-2), the period T S12 (-2), the phase phi S12 (-2 ) Is acquired. The amplitude of the interference light of the first measuring beam and the second measuring light of the laser beam LZ -n of the laser beam LZ -n I S12 (-n), the period T S12 (-n), the phase phi S12 (-n ) Is acquired.
 また、第1干渉光の振幅、周期、位相として、レーザ光LZの参照光とレーザ光LZの第1測定光との干渉光の振幅IS1(1)、周期TS1(1)、位相φS1(1)が取得される。また、レーザ光LZの参照光とレーザ光LZの第1測定光との干渉光の振幅IS1(2)、周期TS1(2)、位相φS1(2)が取得される。また、レーザ光LZの参照光とレーザ光LZの第1測定光との干渉光の振幅IS1(n)、周期TS1(n)、位相φS1(n)が取得される。また、レーザ光LZ-1の参照光とレーザ光LZ-1の第1測定光との干渉光の振幅IS1(-1)、周期TS1(-1)、位相φS1(-1)が取得される。また、レーザ光LZ-2の参照光とレーザ光LZ-2の第1測定光との干渉光の振幅IS1(-2)、周期TS1(-2)、位相φS1(-2)が取得される。また、レーザ光LZ-nの参照光とレーザ光LZ-nの第1測定光との干渉光の振幅IS1(-n)、周期TS1(-n)、位相φS1(-n)が取得される。 The amplitude of the first interference light, periodically, as phase, amplitude I S1 of the interference light of the reference light laser beam LZ 1 and the first measuring beam of the laser beam LZ 1 (1), the period T S1 (1), The phase φ S1 (1) is acquired. The amplitude I S1 of the interference light of the first measuring beam of the reference beam laser beam LZ 2 and the laser beam LZ 2 (2), the period T S1 (2), the phase φ S1 (2) is obtained. The amplitude I S1 of the interference light of the first measuring beam of the reference beam and the laser beam LZ n of the laser beam LZ n (n), the period T S1 (n), the phase φ S1 (n) is obtained. The amplitude I S1 of the first measurement light and the interference light of the reference beam and the laser beam LZ -1 of the laser beam LZ -1 (-1), the period T S1 (-1), the phase phi S1 is (-1) To be acquired. The amplitude I S1 of the reference light and the interference light of the laser beam first measuring light LZ -2 laser beam LZ -2 (-2), the period T S1 (-2), the phase phi S1 is (-2) To be acquired. Further, the interference light amplitude I S1 of the first measuring light of the laser beam LZ -n of the reference beam and the laser beam LZ -n (-n), the period T S1 (-n), the phase phi S1 is (-n) To be acquired.
 さらに、第2干渉光の振幅、周期、位相として、レーザ光LZの参照光とレーザ光LZの第2測定光との干渉光の振幅IS2(1)、周期TS2(1)、位相φS2(1)が取得される。また、レーザ光LZの参照光とレーザ光LZの第2測定光との干渉光の振幅IS2(2)、周期TS2(2)、位相φS2(2)が取得される。また、レーザ光LZの参照光とレーザ光LZの第2測定光との干渉光の振幅IS2(n)、周期TS2(n)、位相φS2(n)が取得される。また、レーザ光LZ-1の参照光とレーザ光LZ-1の第2測定光との干渉光の振幅IS2(-1)、周期TS2(-1)、位相φS2(-1)が取得される。また、レーザ光LZ-2の参照光とレーザ光LZ-2の第2測定光との干渉光の振幅IS2(-2)、周期TS2(-2)、位相φS2(-2)が取得される。また、レーザ光LZ-nの参照光とレーザ光LZ-nの第2測定光との干渉光の振幅IS2(-n)、周期TS2(-n)、位相φS2(-n)が取得される。 Furthermore, the amplitude of the second interference light, the period, as a phase, an amplitude I S2 (1) of the interference light of the reference light laser beam LZ 1 and the second measuring light of the laser beam LZ 1, period T S2 (1), The phase φ S2 (1) is acquired. The amplitude I S2 of the interference light of the reference light laser beam LZ 2 and the second measuring light of the laser beam LZ 2 (2), the period T S2 (2), the phase phi S2 (2) is obtained. The amplitude I S2 of the second measurement light and the interference light of the reference beam and the laser beam LZ n of the laser beam LZ n (n), the period T S2 (n), the phase φ S2 (n) is obtained. The amplitude I S2 of the second measurement light and the interference light and the reference light and the laser beam LZ -1 of the laser beam LZ -1 (-1), the period T S2 (-1), the phase phi S2 is (-1) To be acquired. The amplitude I S2 of the reference light and the interference light of the second measuring light of the laser beam LZ -2 laser beam LZ -2 (-2), the period T S2 (-2), the phase phi S2 is (-2) To be acquired. The amplitude I S2 of the interference light of the second measuring light of the laser beam LZ -n of the reference beam and the laser beam LZ -n (-n), the period T S2 (-n), the phase φ S2 (-n) is To be acquired.
 尚、段数の異なる光コムレーザ光の干渉光によるバックグラウンドノイズは測定時間内で平均化された一定強度のものであるから、フーリエ変換により定数となる。また、レーザ光LZの周波数は光周波数変調器10cからの変調周波数が影響せず一定であるから、これもフーリエ変換により定数となる。 Note that the background noise due to the interference light of the optical comb laser beams having different numbers of stages is a constant intensity averaged within the measurement time, and thus becomes a constant by Fourier transform. Further, since the frequency of the laser beam LZ 0 is constant without affecting the modulation frequency of the optical frequency modulator 10c, which also becomes constant by the Fourier transform.
 そして、第1測定光と第2測定光との干渉光の周期TS12(1)(=TS12(-1))、周期TS12(2)(=TS12(-2))、・・・、周期TS12(n)(=TS12(-n))は、TS12(1)、TS12(1)/2、・・・、TS12(1)/n で表される系列となり、第1干渉光の周期TS1(1)(=TS1(-1))、周期TS1(2)(=TS1(-2))、・・・、周期TS1(n)(=TS1(-n))は、TS1(1)、TS1(1)/2、・・・、TS1(1)/n で表される系列となり、第2干渉光の周期TS2(1)(=TS2(-1))、周期TS2(2)(=TS2(-2))、・・・、周期TS2(n)(=TS2(-n))は、TS2(1)、TS2(1)/2、・・・、TS2(1)/n で表される系列となる。 Then, the period T S12 (1) (= T S12 (−1) ), the period T S12 (2) (= T S12 (−2) ) of the interference light between the first measurement light and the second measurement light,. The period T S12 (n) (= T S12 (−n) ) is a sequence represented by T S12 (1) , T S12 (1) / 2,..., T S12 (1) / n , Period T S1 (1) (= T S1 (−1) ), period T S1 (2) (= T S1 (−2) ),..., Period T S1 (n) (= T S1 (−n) ) is a sequence represented by T S1 (1) , T S1 (1) / 2,..., T S1 (1) / n, and the period T S2 ( 1) (= T S2 (−1) ), period T S2 (2) (= T S2 (−2) ),..., Period T S2 (n) (= T S2 (−n) ) S2 (1), T S (1) / 2, and · · ·, T S2 (1) / n sequence represented by.
 上記のように、第1測定光と第2測定光はビームスプリッタ12で分割されたレーザ光が測定光分割部15でさらに分割されたものであるから、ビームスプリッタ12と測定光分割部15の分光比が50:50のもの即ちハーフミラーの場合には、各系列の最大の周期Tと対応する振幅IS12(1)(≒振幅IS12(-1))、振幅IS1(1)(≒振幅IS1(-1))、振幅IS2(1)(≒振幅IS2(-1))は、振幅IS12(1)(≒振幅IS12(-1))のものが第1干渉光及び第2干渉光の振幅IS1(1)(≒振幅IS1(-1))、振幅IS2(1)(≒振幅IS2(-1))よりも小さくなる。 As described above, the first measurement light and the second measurement light are obtained by further dividing the laser light divided by the beam splitter 12 by the measurement light dividing unit 15. When the spectral ratio is 50:50, that is, a half mirror, the amplitude I S12 (1) (≈amplitude I S12 (−1) ) and amplitude I S1 (1) ( ≒ Amplitude I S1 (-1) ), Amplitude I S2 (1) (≒ Amplitude I S2 (-1) ) are those of amplitude I S12 (1) (≒ Amplitude I S12 (-1) ) as the first interference It becomes smaller than the amplitudes I S1 (1) (≈amplitude I S1 (−1) ) and the amplitude I S2 (1) (≈amplitude I S2 (−1) ) of the light and the second interference light.
 よって、演算部20は算出ステップとして、変換ステップで得られた干渉光の振幅IS12(1)(≒振幅IS12(-1))と第1干渉光の振幅IS1(1)(≒振幅IS1(-1))と第2干渉光の振幅IS2(1)(≒振幅IS2(-1))とを比較して、最小の振幅を有する周期Tの系列を選択することで第1測定光と第2測定光との干渉光の周期TS12(n)の系列(周期TS12(1)/nの系列)を判別する。そして、周期TS12(n)の系列のうち所定の周期TS12(n)を選択し、上記算出式(2)もしくは(2)’により距離L’を算出する。そして、演算部20は距離L’から予め取得されている距離Ldを減算した上で、その絶対値を取ることで第1測定点S1から第2測定点S2までの距離Lを算出する。 Therefore, the calculation unit 20 calculates, as calculation steps, the amplitude I S12 (1) (≈amplitude I S12 (−1) ) of the interference light obtained in the conversion step and the amplitude I S1 (1) (≈amplitude of the first interference light. I S1 (−1) ) and the amplitude I S2 (1) (≈amplitude I S2 (−1) ) of the second interference light are compared, and the series of the period T having the minimum amplitude is selected. The sequence of the period T S12 (n) of the interference light between the first measurement light and the second measurement light ( sequence of the period T S12 (1) / n) is determined. Then, select the predetermined period T S12 (n) of the sequence of the period T S12 (n), calculates the 'distance L' by the calculation formula (2) or (2). And the calculating part 20 calculates distance L from 1st measurement point S1 to 2nd measurement point S2 by subtracting distance Ld acquired beforehand from distance L ', and taking the absolute value.
 また、ビームスプリッタ12と測定光分割部15の分光比が50:50以外のものの場合、その分光比によって振幅IS12(1)(≒振幅IS12(-1))、振幅IS1(1)(≒振幅IS1(-1))、振幅IS2(1)(≒振幅IS2(-1))は異なるから、第1測定光と第2測定光との干渉光の振幅IS12(1)と第1干渉光の振幅IS1(1)と第2干渉光の振幅IS2(1)とを予め取得しておけば、この振幅IS12(1)の値から第1測定光と第2測定光との干渉光の周期TS12(n)を直接選択することができる。 When the spectral ratio between the beam splitter 12 and the measurement light splitting unit 15 is other than 50:50, the amplitude I S12 (1) (≈amplitude I S12 (−1) ) and amplitude I S1 (1) are determined depending on the spectral ratio. Since (≈amplitude I S1 (−1) ) and amplitude I S2 (1) (≈amplitude I S2 (−1) ) are different, the amplitude I S12 (1 of the interference light between the first measurement light and the second measurement light is different. ) , The amplitude I S1 (1) of the first interference light, and the amplitude I S2 (1) of the second interference light are obtained in advance, the first measurement light and the first interference light from the value of this amplitude I S12 (1) . The period T S12 (n) of the interference light with the two measurement lights can be directly selected.
 また、距離Lの大まかな値(距離L’’)と第1測定点S1と第2測定点S2との位置関係とを予め取得しておき、これらの値から大まかな距離Ld+距離L’’(第2測定点S2が第1測定点S1よりレーザ測距装置50側の場合には距離L’’は負)の値を算出した上で、変換ステップで得られた周期TS12(n)、周期TS1(n)、周期TS2(n)のそれぞれに対して(2)もしくは(2)’の式により距離L’を算出し、大まかな距離Ld+距離L’’の値と最も近似する距離L’を選択して、選択した距離L’から距離Ldを減算した上で、その絶対値を取ることで第1測定点S1から第2測定点S2までの距離Lを算出しても良い。 Further, a rough value of the distance L (distance L ″) and the positional relationship between the first measurement point S1 and the second measurement point S2 are acquired in advance, and a rough distance Ld + distance L ″ is obtained from these values. After calculating the value of (the distance L ″ is negative when the second measurement point S2 is closer to the laser distance measuring device 50 than the first measurement point S1), the period T S12 (n) obtained in the conversion step is calculated. , The distance L ′ is calculated by the expression (2) or (2) ′ for each of the periods T S1 (n) and T S2 (n) , and approximates the value of the rough distance Ld + distance L ″. The distance L ′ from the first measurement point S1 to the second measurement point S2 is calculated by subtracting the distance Ld from the selected distance L ′ and taking the absolute value thereof. good.
 尚、装置内部における第1測定光と第2測定光との光路差の1/2の値(距離Ld)の取得は、平板7を用いて上記と同様の手順で行うことが好ましい。 In addition, it is preferable to acquire the value (distance Ld) of ½ of the optical path difference between the first measurement light and the second measurement light inside the apparatus using the flat plate 7 in the same procedure as described above.
 次に、図7を用いて本発明に係る第5の形態のレーザ測距装置50dを示す。尚、図7ではレーザ光の光路のみを簡略化して示す。図7に示す本発明に係る第5の形態のレーザ測距装置50dは、レーザ測距装置50、50aのミラー8に替えてビームスプリッタ12aが設置される。また、ビームスプリッタ12と受光部18との光路上にビームスプリッタ12bが設置される。そして、ビームスプリッタ12の分割点からビームスプリッタ12bの反射点までの距離を測定光分割部15の分割点からビームスプリッタ12aの反射点までの距離Ldと等しくする。 Next, a laser range finder 50d according to a fifth embodiment of the present invention will be described with reference to FIG. In FIG. 7, only the optical path of the laser beam is shown in a simplified manner. A laser distance measuring device 50d according to the fifth embodiment of the present invention shown in FIG. 7 includes a beam splitter 12a instead of the mirror 8 of the laser distance measuring devices 50 and 50a. A beam splitter 12 b is installed on the optical path between the beam splitter 12 and the light receiving unit 18. Then, the distance from the dividing point of the beam splitter 12 to the reflecting point of the beam splitter 12b is made equal to the distance Ld from the dividing point of the measuring beam dividing unit 15 to the reflecting point of the beam splitter 12a.
 この場合、受光部18が受光する光は、ビームスプリッタ12→測定光分割部15→第1測定点S1→測定光分割部15→ビームスプリッタ12→ビームスプリッタ12b→受光部18の光路1を辿る第1測定光と、ビームスプリッタ12→測定光分割部15→ビームスプリッタ12a→第2測定点S2→ビームスプリッタ12a→ビームスプリッタ12b→受光部18の光路2を辿る第2測定光と、ビームスプリッタ12→測定光分割部15→ビームスプリッタ12a→第2測定点S2→ビームスプリッタ12a→測定光分割部15→ビームスプリッタ12→ビームスプリッタ12b→受光部18の光路3を辿る第2測定光’と、なる。 In this case, the light received by the light receiving unit 18 follows the optical path 1 of the beam splitter 12 → the measurement light dividing unit 15 → the first measurement point S 1 → the measurement light dividing unit 15 → the beam splitter 12 → the beam splitter 12 b → the light receiving unit 18. The first measurement light, the beam splitter 12 → the measurement light splitting unit 15 → the beam splitter 12a → the second measurement point S2, the beam splitter 12a → the beam splitter 12b → the second measurement light that follows the optical path 2 of the light receiving unit 18, and the beam splitter 12 → measurement beam splitting unit 15 → beam splitter 12a → second measurement point S2 → beam splitter 12a → measurement beam splitting unit 15 → beam splitter 12 → beam splitter 12b → second measurement light ′ following the optical path 3 of the light receiving unit 18 ,Become.
 そして、ビームスプリッタ12から測定光分割部15までの距離(=ビームスプリッタ12aからビームスプリッタ12bまでの距離)を距離Laとし、ビームスプリッタ12bから受光部18までの距離を距離Lbとし、測定光分割部15からビームスプリッタ12aまでの距離(=ビームスプリッタ12からビームスプリッタ12bまでの距離)を距離Ldとし、測定光分割部15から第1測定点S1までの距離を距離L1とし、ビームスプリッタ12aから第2測定点S2までの距離を距離L2とすると、第1測定光である光路1の光路長は、
2La+2L1+Ld+Lb となる。
また、第2測定光である光路2の光路長は、
2La+Ld+2L2+Lb となる。
尚、第2測定光’である光路3の光路長は、
2La+3Ld+2L2+Lb となる。
Then, the distance from the beam splitter 12 to the measurement beam splitting unit 15 (= the distance from the beam splitter 12a to the beam splitter 12b) is set as the distance La, and the distance from the beam splitter 12b to the light receiving unit 18 is set as the distance Lb. A distance from the unit 15 to the beam splitter 12a (= a distance from the beam splitter 12 to the beam splitter 12b) is a distance Ld, and a distance from the measurement light dividing unit 15 to the first measurement point S1 is a distance L1, and from the beam splitter 12a When the distance to the second measurement point S2 is a distance L2, the optical path length of the optical path 1 that is the first measurement light is
2La + 2L1 + Ld + Lb
The optical path length of the optical path 2 that is the second measurement light is
2La + Ld + 2L2 + Lb
In addition, the optical path length of the optical path 3 which is the second measurement light ′ is
2La + 3Ld + 2L2 + Lb
 よって、第1測定光である光路1と第2測定光である光路2の光路差は、
2|L1-L2| となり、|L1-L2|は第1測定点S1から第2測定点S2までの距離Lと等しいから、よって光路1と光路2の光路差は距離Lの2倍の値となる。
Therefore, the optical path difference between the optical path 1 as the first measurement light and the optical path 2 as the second measurement light is
2 | L1-L2 |, and | L1-L2 | is equal to the distance L from the first measurement point S1 to the second measurement point S2. Therefore, the optical path difference between the optical path 1 and the optical path 2 is twice the distance L. It becomes.
 受光部18は、光路1の第1測定光と、光路2の第2測定光と、光路3の第2測定光’とを受光して、第1測定光と第2測定光との干渉光と、第1測定光と第2測定光’との干渉光と、第2測定光と第2測定光’との干渉光と、が合わさった干渉光の強度を電気信号に変換し強度データとして演算部20に出力する。 The light receiving unit 18 receives the first measurement light in the optical path 1, the second measurement light in the optical path 2, and the second measurement light ′ in the optical path 3, and interference light between the first measurement light and the second measurement light. Then, the intensity of the interference light of the interference light between the first measurement light and the second measurement light ′ and the interference light between the second measurement light and the second measurement light ′ is converted into an electric signal as intensity data. The result is output to the calculation unit 20.
 次に、演算部20は取得ステップ及び変換ステップを行い、取得した強度データに対して周波数の変化量に基づくフーリエ変換を行う。これにより、レーザ照射手段10に周知の波長可変レーザを用いた場合、第1測定光と第2測定光との干渉光の振幅IS12、周期TS12、位相φS12と、第1測定光と第2測定光’との干渉光の振幅IS12’、周期TS12’、位相φS12’と、第2測定光と第2測定光’との干渉光の振幅IS22’、周期TS22’、位相φS22’と、が取得される。 Next, the calculation unit 20 performs an acquisition step and a conversion step, and performs a Fourier transform based on the amount of change in frequency on the acquired intensity data. Thereby, when a known wavelength tunable laser is used for the laser irradiation means 10, the amplitude I S12 , the period T S12 , the phase φ S12 of the interference light between the first measurement light and the second measurement light, and the first measurement light Interference light amplitude I S12 ′ with second measurement light ′, period T S12 ′, phase φ S12 ′, interference light amplitude I S22 ′ between second measurement light and second measurement light ′, period T S22 ′ , Phase φ S22 ′ is acquired.
 ここで、第2測定光’はビームスプリッタ12、12a、12bと測定光分割部15とを第1測定光及び第2測定光よりも多い回数通過するから、ビームスプリッタ12、12a、12b、測定光分割部15の分光比が50:50のものの場合には、その強度は第1測定光及び第2測定光と比較して低いものとなる。したがって、第1測定光と第2測定光’との干渉光の振幅IS12’と第2測定光と第2測定光’との干渉光の振幅IS22’とは第1測定光と第2測定光との干渉光の振幅IS12と比較して小さいものとなる。 Here, since the second measurement light ′ passes through the beam splitters 12, 12a, 12b and the measurement light splitting unit 15 more times than the first measurement light and the second measurement light, the beam splitters 12, 12a, 12b, measurement In the case where the light splitting unit 15 has a spectral ratio of 50:50, the intensity is lower than that of the first measurement light and the second measurement light. Therefore, the amplitude I S12 ′ of the interference light between the first measurement light and the second measurement light ′ and the amplitude I S22 ′ of the interference light between the second measurement light and the second measurement light ′ are the first measurement light and the second measurement light. This is smaller than the amplitude IS12 of the interference light with the measurement light.
 よって、演算部20は算出ステップとして、変換ステップで得られた第1測定光と第2測定光との干渉光の振幅IS12と第1測定光と第2測定光’との干渉光の振幅IS12’と第2測定光と第2測定光’との干渉光の振幅IS22’とを比較して、最大の振幅を有する周期を選択することで第1測定光と第2測定光との干渉光の周期TS12を判別し、この周期TS12に対し(2)の式により距離L’を算出する。この距離L’は第1測定光と第2測定光との光路差である2Lであるから、よって、演算部20は距離L’の1/2を取ることで第1測定点S1から第2測定点S2までの距離Lを算出する。 Therefore, the calculation unit 20 calculates, as the calculation step, the amplitude IS12 of the interference light between the first measurement light and the second measurement light obtained in the conversion step and the amplitude of the interference light between the first measurement light and the second measurement light ′. The first measurement light and the second measurement light are selected by comparing the amplitude I S22 ′ of the interference light between the I S12 ′ and the second measurement light and the second measurement light ′, and selecting the period having the maximum amplitude. The interference light period T S12 is discriminated, and the distance L ′ is calculated by the expression (2) with respect to the period T S12 . Since this distance L ′ is 2L, which is the optical path difference between the first measurement light and the second measurement light, the calculation unit 20 takes the half of the distance L ′ to obtain the second from the first measurement point S1. A distance L to the measurement point S2 is calculated.
 また、ビームスプリッタ12、12a、12b、測定光分割部15の分光比が50:50以外のものの場合、その分光比によって振幅IS12、振幅IS12’、振幅IS22’は異なるから、振幅IS12、振幅IS12’、振幅IS22’の値を予め取得しておけば、振幅IS12が判別可能となり第1測定光と第2測定光との干渉光の周期TS12を直接選択することができる。 When the spectral ratios of the beam splitters 12, 12a, 12b, and the measurement light splitting unit 15 are other than 50:50, the amplitude I S12 , the amplitude I S12 ′, and the amplitude I S22 ′ differ depending on the spectral ratio. If the values of S12 , amplitude I S12 ′, and amplitude I S22 ′ are acquired in advance, the amplitude I S12 can be discriminated, and the period T S12 of the interference light between the first measurement light and the second measurement light is directly selected. Can do.
 また、距離Lの大まかな値(距離L’’)を予め取得しておき、変換ステップで得られた周期TS12、周期TS12’、周期TS22’のそれぞれに対して(2)の式により距離L’を算出し、大まかな距離L’’の値と最も近似する距離L’を選択して、選択した距離L’の1/2を取ることで第1測定点S1から第2測定点S2までの距離Lを算出しても良い。 Further, a rough value (distance L ″) of the distance L is acquired in advance, and the expression (2) is obtained for each of the period T S12 , the period T S12 ′, and the period T S22 ′ obtained in the conversion step. To calculate the distance L ′, select a distance L ′ that approximates the approximate distance L ″, and take 1/2 of the selected distance L ′ to perform the second measurement from the first measurement point S1. The distance L to the point S2 may be calculated.
 次に、図6に示すレーザ照射手段10がレーザ照射装置10aと光コム発生器10bと光周波数変調器10cとから構成されるものの場合、変換ステップで得られる干渉光の周期は、第1測定光と第2測定光との干渉光の周期TS12(1)/nの系列と、第1測定光と第2測定光’との干渉光の周期TS12(1)’/nの系列と、第2測定光と第2測定光’との干渉光の周期TS22(1)’/nの系列となる。 Next, in the case where the laser irradiation means 10 shown in FIG. 6 includes a laser irradiation apparatus 10a, an optical comb generator 10b, and an optical frequency modulator 10c, the period of the interference light obtained in the conversion step is the first measurement. A series of interference light periods T S12 (1) / n between the light and the second measurement light, and a series of interference light periods T S12 (1) '/ n between the first measurement light and the second measurement light ′. , A series of interference light period T S22 (1) ′ / n between the second measurement light and the second measurement light ′.
 そして、前述のように、ビームスプリッタ12、12a、12b、測定光分割部15の分光比が50:50のものの場合、各系列の最大の周期Tと対応する第1測定光と第2測定光との干渉光の振幅IS12(1)と第1測定光と第2測定光’との干渉光の振幅IS12(1)’と第2測定光と第2測定光’との干渉光の振幅IS22(1)’とは、第1測定光と第2測定光との干渉光の振幅IS12(1)が最大となる。 As described above, when the beam splitters 12, 12a, 12b, and the measurement light splitting unit 15 have a spectral ratio of 50:50, the first measurement light and the second measurement light corresponding to the maximum period T of each series. amplitude I S12 of interference light of the (1) and the first measuring beam and the second 'of the interference light between the amplitude I S12 (1)' measurement light and second measurement light and the interference light and the second measuring beam ' The amplitude I S22 (1) ′ is the maximum of the amplitude I S12 (1) of the interference light between the first measurement light and the second measurement light.
 よって、演算部20は算出ステップとして、最大の振幅を有する周期Tの系列を選択することで第1測定光と第2測定光との干渉光の周期TS12(n)を判別し、周期TS12(n)の系列(周期TS12(1)/nの系列)のうち所定の周期TS12(n)を選択した上で、上記算出式(2)もしくは(2)’により距離L’を算出する。そして、演算部20は距離L’の1/2を取ることで第1測定点S1から第2測定点S2までの距離Lを算出する。 Therefore, the calculation unit 20 determines the cycle T S12 (n) of the interference light between the first measurement light and the second measurement light by selecting the sequence of the cycle T having the maximum amplitude as the calculation step, and the cycle T After selecting a predetermined cycle T S12 (n) from the sequence of S12 (n) ( sequence of cycle T S12 (1) / n), the distance L ′ is calculated by the above formula (2) or (2) ′. calculate. And the calculating part 20 calculates the distance L from 1st measurement point S1 to 2nd measurement point S2 by taking 1/2 of distance L '.
 また、ビームスプリッタ12、12a、12b、測定光分割部15の分光比が50:50以外のものの場合、その分光比によって振幅IS12(1)、振幅IS12(1)’、振幅IS22(1)’は異なるから、振幅IS12(1)、振幅IS12(1)’、振幅IS22(1)’の値を予め取得しておけば、振幅IS12(1)の値から第1測定光と第2測定光との干渉光の周期TS12(n)を直接選択することができる。 When the spectral ratios of the beam splitters 12, 12 a, 12 b and the measurement light dividing unit 15 are other than 50:50, the amplitude I S12 (1) , the amplitude I S12 (1) ′, and the amplitude I S22 ( 1) Since 'is different, if the values of the amplitude I S12 (1) , the amplitude I S12 (1) ', and the amplitude I S22 (1) 'are acquired in advance, the first value is calculated from the value of the amplitude I S12 (1) . The period T S12 (n) of the interference light between the measurement light and the second measurement light can be directly selected.
 また、距離Lの大まかな値(距離L’’)を予め取得しておき、変換ステップで得られた周期TS12(1)/nの系列と、第1測定光と第2測定光’との干渉光の周期TS12(1)’/nの系列と、第2測定光と第2測定光’との干渉光の周期TS22(1)’/nのうちから所定の周期TS12(n)、周期TS12(n)’、周期TS22(n)’を選択し、選択した周期Tのそれぞれに対して(2)もしくは(2)’の式により距離L’を算出し、大まかな距離L’’の値と最も近似する距離L’を選択して、選択した距離L’の1/2を取ることで第1測定点S1から第2測定点S2までの距離Lを算出しても良い。 In addition, a rough value (distance L ″) of the distance L is acquired in advance, the sequence of the period T S12 (1) / n obtained in the conversion step, the first measurement light, and the second measurement light ′. A predetermined period T S12 ( from the series of interference light periods T S12 (1) '/ n and the interference light period T S22 (1) ' / n between the second measurement light and the second measurement light ' n) , cycle T S12 (n) ', cycle T S22 (n) ' are selected, and distance L 'is calculated by the formula (2) or (2)' for each of the selected cycles T. The distance L ′ closest to the value of the distance L ″ is selected, and the distance L from the first measurement point S1 to the second measurement point S2 is calculated by taking 1/2 of the selected distance L ′. May be.
 上記の第5の形態のレーザ測距装置50dによれば、第1測定光と第2測定光との装置内部における光路差(距離Ld)の項がキャンセルされるため、第4の形態のレーザ測距装置50cの構成と同様、第1測定光と第2測定光との装置内部における光路差の取得、及び距離L’からの距離Ldの減算処理、を行う必要が無くなり、距離Lの測距手順の簡略化を図ることができる。また、距離Ldがキャンセルされるため、レーザ照射手段10におけるレーザ光の振動数の“ゆれ”の影響を低減することができる。 According to the laser distance measuring device 50d of the fifth embodiment, the term of the optical path difference (distance Ld) inside the device between the first measurement light and the second measurement light is canceled, so that the laser of the fourth embodiment Similar to the configuration of the distance measuring device 50c, it is not necessary to obtain the optical path difference between the first measurement light and the second measurement light inside the device and to subtract the distance Ld from the distance L ′. The distance procedure can be simplified. Further, since the distance Ld is canceled, the influence of the “swing” of the vibration frequency of the laser beam in the laser irradiation means 10 can be reduced.
 次に、図8を用いて本発明に係る第6の形態のレーザ測距装置50eを示す。尚、図8ではレーザ光の光路のみを簡略化して示す。図8に示す本発明に係る第6の形態のレーザ測距装置50eは、レーザ測距装置50、50aのビームスプリッタ12の位置に測定光分割部15が設置される。また、測定光分割部15の反射光側にミラー8が設置される。さらに、ミラー8で反射した第1測定光の光路上にビームスプリッタ12cが設置される。さらにまた、測定光分割部15の透過光の光路上のミラー8の反射点からビームスプリッタ12cまでの距離と等しい位置にビームスプリッタ12aが設置される。 Next, a laser range finder 50e according to a sixth embodiment of the present invention will be described with reference to FIG. In FIG. 8, only the optical path of the laser beam is shown in a simplified manner. In the laser range finder 50e according to the sixth embodiment of the present invention shown in FIG. 8, the measurement beam splitting unit 15 is installed at the position of the beam splitter 12 of the laser range finders 50 and 50a. Further, the mirror 8 is installed on the reflected light side of the measurement light splitting unit 15. Further, a beam splitter 12c is installed on the optical path of the first measurement light reflected by the mirror 8. Furthermore, the beam splitter 12 a is installed at a position equal to the distance from the reflection point of the mirror 8 to the beam splitter 12 c on the optical path of the transmitted light of the measurement light splitting unit 15.
 この場合、受光部18が受光する光は、測定光分割部15→ミラー8→ビームスプリッタ12c→第1測定点S1→ビームスプリッタ12c→ミラー8→測定光分割部15→受光部18の光路1を辿る第1測定光と、測定光分割部15→ビームスプリッタ12a→第2測定点S2→ビームスプリッタ12a→ビームスプリッタ12c→ミラー8→測定光分割部15→受光部18の光路2を辿る第2測定光’と、測定光分割部15→ミラー8→ビームスプリッタ12c→ビームスプリッタ12a→第2測定点S2→ビームスプリッタ12a→測定光分割部15→受光部18の光路3を辿る第2測定光’’と、測定光分割部15→ビームスプリッタ12a→第2測定点S2→ビームスプリッタ12a→測定光分割部15→受光部18の光路4を辿る第2測定光’’’と、測定光分割部15→ミラー8→ビームスプリッタ12c→ビームスプリッタ12a→第2測定点S2→ビームスプリッタ12a→ビームスプリッタ12c→ミラー8→測定光分割部15→受光部18の光路5を辿る第2測定光’’’’と、なる。 In this case, the light received by the light receiving unit 18 is the optical path 1 of the measurement light dividing unit 15 → mirror 8 → beam splitter 12 c → first measurement point S 1 → beam splitter 12 c → mirror 8 → measurement light dividing unit 15 → light receiving unit 18. And the first measurement light that follows the optical path 2 of the measurement light dividing unit 15 → the beam splitter 12a → the second measurement point S2 → the beam splitter 12a → the beam splitter 12c → the mirror 8 → the measurement light dividing unit 15 → the light receiving unit 18. 2 measurement light 'and the second measurement following the optical path 3 of the measurement light splitting unit 15 → mirror 8 → beam splitter 12c → beam splitter 12a → second measurement point S2 → beam splitter 12a → measurement light splitting unit 15 → light receiving unit 18 Light ”and the optical path 4 of the measurement light splitting unit 15 → beam splitter 12a → second measurement point S2 → beam splitter 12a → measurement light splitting unit 15 → light receiving unit 18 Second measurement light '' 'and measurement light splitting unit 15 → mirror 8 → beam splitter 12c → beam splitter 12a → second measurement point S2 → beam splitter 12a → beam splitter 12c → mirror 8 → measurement light splitting unit 15 → The second measurement light ″ ″ follows the optical path 5 of the light receiving unit 18.
 そして、ミラー8からビームスプリッタ12cまでの距離(=測定光分割部15からビームスプリッタ12aまでの距離)を距離Laとし、測定光分割部15からミラー8までの距離(=ビームスプリッタ12aからビームスプリッタ12cまでの距離)を距離Ldとし、測定光分割部15から受光部18までの距離を距離Lbとし、ビームスプリッタ12cから第1測定点S1までの距離を距離L1とし、ビームスプリッタ12aから第2測定点S2までの距離を距離L2とすると、第1測定光である光路1の光路長は、
2Ld+2La+2L1+Lb となる。
また、第2測定光’である光路2の光路長は、
2La+2L2+2Ld+Lb となる。
また、第2測定光’’である光路3の光路長は、
2Ld+2La+2L2+Lb となる。
また、第2測定光’’’である光路4の光路長は、
2La+2L2+Lb となる。
また、第2測定光’’’’である光路5の光路長は、
4Ld+2La+2L2+Lb となる。
Then, the distance from the mirror 8 to the beam splitter 12c (= the distance from the measuring beam splitting unit 15 to the beam splitter 12a) is the distance La, and the distance from the measuring beam splitting unit 15 to the mirror 8 (= the beam splitter 12a to the beam splitter). The distance from the beam splitter 12a to the second measurement point S1 is the distance Ld, the distance from the beam splitter 12c to the first measurement point S1 is the distance L1, When the distance to the measurement point S2 is a distance L2, the optical path length of the optical path 1 that is the first measurement light is
2Ld + 2La + 2L1 + Lb
Further, the optical path length of the optical path 2 which is the second measurement light ′ is
2La + 2L2 + 2Ld + Lb.
Further, the optical path length of the optical path 3 which is the second measurement light ″ is
2Ld + 2La + 2L2 + Lb
Further, the optical path length of the optical path 4 which is the second measurement light '''is
2La + 2L2 + Lb
Further, the optical path length of the optical path 5 which is the second measurement light '''' is
4Ld + 2La + 2L2 + Lb
 そして受光部18は、光路1の第1測定光と、光路2の第2測定光’と、光路3の第2測定光’’と、光路4の第2測定光’’’と、光路5の第2測定光’’’’とを受光する。このとき、光路2の第2測定光’と光路3の第2測定光’’とは光路長が等しいからその周期、位相も等しい。従って、光路2の第2測定光’と光路3の第2測定光’’とを合成して1つの第2測定光と見なすことができる。尚、第2測定光の強度は第2測定光’の強度と第2測定光’’の強度とが合算されたものとなる。 The light receiving unit 18 includes the first measurement light in the optical path 1, the second measurement light ′ in the optical path 2, the second measurement light ″ in the optical path 3, the second measurement light ′ ″ in the optical path 4, and the optical path 5. The second measurement light '' '' is received. At this time, since the second measurement light 'on the optical path 2 and the second measurement light' on the optical path 3 have the same optical path length, their periods and phases are also equal. Therefore, the second measurement light 'on the optical path 2 and the second measurement light' on the optical path 3 can be combined and regarded as one second measurement light. The intensity of the second measurement light is the sum of the intensity of the second measurement light ′ and the intensity of the second measurement light ″.
 よって、受光部18が受光する干渉光は、第1測定光と第2測定光との干渉光、第1測定光と第2測定光’’’との干渉光、第1測定光と第2測定光’’’’との干渉光、第2測定光と第2測定光’’’との干渉光、第2測定光と第2測定光’’’’との干渉光、第2測定光’’’と第2測定光’’’’との干渉光、となる。そして、受光部18はこれらの干渉光が合わさった干渉光の強度を電気信号に変換し強度データとして演算部20に出力する。 Therefore, the interference light received by the light receiving unit 18 is interference light between the first measurement light and the second measurement light, interference light between the first measurement light and the second measurement light '' ', the first measurement light and the second measurement light. Interference light with measurement light ″ ″, interference light between second measurement light and second measurement light ″ ″, interference light between second measurement light and second measurement light ″ ″, second measurement light Interference light between '' 'and the second measurement light' '' '. Then, the light receiving unit 18 converts the intensity of the interference light combined with the interference light into an electrical signal and outputs the electrical signal to the arithmetic unit 20 as intensity data.
 次に、演算部20は取得ステップ及び変換ステップを行い、取得した強度データに対して周波数の変化量に基づくフーリエ変換を行う。これにより、受光部18が受光した干渉光のそれぞれの振幅、周期、位相が取得される。尚、ここではレーザ照射手段10に周知の波長可変レーザを用いた場合を説明するが、レーザ照射手段10にレーザ照射装置10aと光コム発生器10bと光周波数変調器10cとを用いた場合でも基本的な動作は同等である。 Next, the calculation unit 20 performs an acquisition step and a conversion step, and performs a Fourier transform based on the amount of change in frequency on the acquired intensity data. Thereby, each amplitude, period, and phase of the interference light received by the light receiving unit 18 are acquired. Here, a case where a known wavelength tunable laser is used as the laser irradiation means 10 will be described. However, even when the laser irradiation means 10 includes a laser irradiation apparatus 10a, an optical comb generator 10b, and an optical frequency modulator 10c. The basic operation is equivalent.
 そして、それぞれの周期Tはそれぞれの光路差と対応しているから、各周期Tに対して(2)の式により距離L’を算出すると以下のようになる。
第1測定光と第2測定光の干渉光の周期TS12による距離L’
L’=2|L1-L2|=2L
第1測定光と第2測定光’’’の干渉光の周期TS12’’’による距離L’
L’=2|Ld+L1-L2|
第1測定光と第2測定光’’’’の干渉光の周期TS12’’’’による距離L’
L’=2|Ld-L1+L2|
第2測定光と第2測定光’’’の干渉光の周期TS22’’’による距離L’
L’=2Ld
第2測定光と第2測定光’’’’の干渉光の周期TS22’’’’による距離L’
L’=2Ld
第2測定光’’’と第2測定光’’’’ の干渉光の周期TS2’’’’’’’による距離L’
L’=4Ld
となる。
Since each period T corresponds to each optical path difference, when the distance L ′ is calculated by the expression (2) for each period T, the following is obtained.
Distance L ′ by period T S12 of the interference light between the first measurement light and the second measurement light
L ′ = 2 | L1-L2 | = 2L
Distance L ′ by the period T S12 ″ of the interference light between the first measurement light and the second measurement light ″ ″
L ′ = 2 | Ld + L1-L2 |
Distance L ′ by the period T S12 ″ ″ of the interference light between the first measurement light and the second measurement light ″ ″
L ′ = 2 | Ld−L1 + L2 |
Distance L ′ by the period T S22 ″ of the interference light between the second measurement light and the second measurement light ″ ″
L ′ = 2Ld
Distance L ′ by period T S22 ″ ″ of the interference light between the second measurement light and the second measurement light ″ ″
L ′ = 2Ld
Distance L ′ by the period T S2 ″ ″ 2 ″ ″ of the interference light between the second measurement light ″ ″ and the second measurement light ″ ″
L ′ = 4Ld
It becomes.
 ただし、現段階ではどの周期Tがどの干渉光によるものかは判明していない。しかしながら、周期TS22’’’から求められる距離L’(=2Ld)は周期TS22’’’’から求められる距離L’(=2Ld)と等しく、周期TS2’’’’’’’から求められる距離L’(=4Ld)は周期TS22’’’の距離L’(=2Ld)及び周期TS22’’’’の距離L’(=2Ld)の2倍となるから、演算部20はこの3つの距離L’の値から2Ldの値を特定することができる。そして、演算部20がこの2Ldの値を残りの3つの距離L’から減算して絶対値をとると、得られる値は|2L-2Ld|、2L、2Lとなり、2Lの値が2つ得られる。よって、演算部20は2Lの値を特定することができる。そして、演算部20はこの2Lの値の1/2を取ることで第1測定点S1から第2測定点S2までの距離Lを算出する。 However, at this stage, it is not known which period T is caused by which interference light. However, the period T S22 '' 'distance obtained from L' (= 2Ld) the period T S22 '''' distance obtained from L '(= 2Ld) equally, the period T S2''' 2 '' '' The distance L ′ (= 4Ld) obtained from the above is twice the distance L ′ (= 2Ld) of the cycle T S22 ″ ″ and the distance L ′ (= 2Ld) of the cycle T S22 ″ ″. 20 can specify a value of 2Ld from the values of these three distances L ′. Then, when the arithmetic unit 20 subtracts the 2Ld value from the remaining three distances L ′ to obtain an absolute value, the obtained values are | 2L−2Ld |, 2L, and 2L, and two 2L values are obtained. It is done. Therefore, the arithmetic unit 20 can specify a value of 2L. And the calculating part 20 calculates the distance L from 1st measurement point S1 to 2nd measurement point S2 by taking 1/2 of this 2L value.
 尚、測定光分割部15及びビームスプリッタ12a、12cの分光比を50:50以外とすれば、その分光比によってそれぞれの干渉光の振幅Iは異なるから、各干渉光の振幅を予め取得しておき、その振幅に基づいて第1測定光と第2測定光の干渉光の周期TS12を選択し、(2)の式により距離L’を求めた上でその1/2をとり距離Lを求めても良い。 If the spectral ratio of the measurement beam splitting unit 15 and the beam splitters 12a and 12c is other than 50:50, the amplitude I of each interference light differs depending on the spectral ratio. Then, based on the amplitude, the period T S12 of the interference light of the first measurement light and the second measurement light is selected, and the distance L ′ is obtained by the expression (2), and then the distance L ′ is taken to obtain the distance L. You may ask.
 また、予め距離Lのおおまかな値(距離L’’)を取得しておき、距離L’’の2倍の値に最も近い距離L’を選択し、その距離L’の1/2を取ることで第1測定点S1から第2測定点S2までの距離Lを算出してもよい。 In addition, a rough value (distance L ″) of the distance L is acquired in advance, the distance L ′ closest to the value twice the distance L ″ is selected, and 1/2 of the distance L ′ is taken. Thus, the distance L from the first measurement point S1 to the second measurement point S2 may be calculated.
 上記の第6の形態のレーザ測距装置50eも第5の形態のレーザ測距装置50dと同様、第1測定光と第2測定光との装置内部における光路差の取得、及び距離L’からの距離Ldの減算処理、を行う必要が無くなり、距離Lの測距手順の簡略化を図ることができる。また、距離Ldがキャンセルされるため、レーザ照射手段10におけるレーザ光の振動数の“ゆれ”の影響を低減することができる。 Similarly to the laser ranging device 50d of the fifth embodiment, the laser ranging device 50e of the sixth embodiment obtains the optical path difference inside the device between the first measuring light and the second measuring light, and from the distance L ′. The distance Ld subtraction process need not be performed, and the distance L distance measurement procedure can be simplified. Further, since the distance Ld is canceled, the influence of the “swing” of the vibration frequency of the laser beam in the laser irradiation means 10 can be reduced.
 尚、第5の形態のレーザ測距装置50d、第6の形態のレーザ測距装置50eのレーザ照射手段10にレーザ照射装置10aと光コム発生器10bと光周波数変調器10cとを用いる場合、レーザ光の光路上に所定の周波数範囲内のレーザ光のみを透過する周知の光バンドパスフィルタを設けることで、第3の形態のレーザ測距装置50bと同様、光コム発生器10bによる安定したレーザ光を用いながら演算部20の処理に対する負荷を軽減することができる。 When the laser irradiation device 10a, the optical comb generator 10b, and the optical frequency modulator 10c are used as the laser irradiation means 10 of the laser ranging device 50d of the fifth embodiment and the laser ranging device 50e of the sixth embodiment, By providing a known optical bandpass filter that transmits only laser light within a predetermined frequency range on the optical path of the laser light, as with the laser distance measuring device 50b of the third embodiment, the optical comb generator 10b can stabilize the operation. It is possible to reduce the load on the processing of the arithmetic unit 20 while using laser light.
 以上のように、本発明に係るレーザ測距方法及びレーザ測距装置によれば、レーザ照射手段10から出射するレーザ光の周波数を所定の範囲内で変化させた上で、レーザ光を第1測定光と第2測定光とに分割し、第1測定光を被測定物6の第1測定点S1に第2測定光を被測定物6の第2測定点S2に同時に照射する。そして、第1測定光と第2測定光との干渉光の干渉縞の周期に基づいて第1測定点S1から第2測定点S2までの距離Lを算出する。これにより、光路系に対する機械的な移動機構を用いることなく第1測定点S1、第2測定点S2間の距離Lを高精度に測距することができる。従って、レーザ測距装置の装置規模を比較的小規模とすることができるとともに、第1測定点S1までの距離L1もしくは第2測定点S2までの距離L2よりも実用的な第1測定点S1、第2測定点S2間の距離Lを高精度に測距することができる。 As described above, according to the laser distance measuring method and the laser distance measuring device according to the present invention, the first laser light is changed after changing the frequency of the laser light emitted from the laser irradiation means 10 within a predetermined range. The measurement light and the second measurement light are divided, and the first measurement light is irradiated to the first measurement point S1 of the object 6 to be measured and the second measurement light is simultaneously irradiated to the second measurement point S2 of the object 6 to be measured. Then, a distance L from the first measurement point S1 to the second measurement point S2 is calculated based on the period of the interference fringes of the interference light between the first measurement light and the second measurement light. Accordingly, the distance L between the first measurement point S1 and the second measurement point S2 can be measured with high accuracy without using a mechanical movement mechanism for the optical path system. Therefore, the apparatus scale of the laser distance measuring device can be made relatively small, and the first measurement point S1 is more practical than the distance L1 to the first measurement point S1 or the distance L2 to the second measurement point S2. The distance L between the second measurement points S2 can be measured with high accuracy.
 尚、上記で示したレーザ測距装置50、50a~50eは本発明に好適な例であるから、レーザ光情報取得手段26やレーザ測距装置の各部の構成、レーザ測距装置内の各光路等は、本発明の要旨を逸脱しない範囲で変更して実施することが可能である。 Since the laser distance measuring devices 50 and 50a to 50e described above are examples suitable for the present invention, the configuration of each part of the laser light information acquisition means 26 and the laser distance measuring device, and each optical path in the laser distance measuring device. These can be implemented with modifications without departing from the scope of the present invention.
      6   被測定物
      10  レーザ照射手段
      10a レーザ照射装置
      10b 光コム発生器
      10c 光周波数変調器
      15  測定光分割部
      18  受光部
      20  演算部
      26  レーザ光情報取得手段
      50、50a~50e  レーザ測距装置
      BPF1~BPF5  光バンドパスフィルタ
      S1  第1測定点
      S2  第2測定点
      L1  (第1測定点までの)距離
      L2  (第2測定点までの)距離
      L   (第1、第2測定点間の)距離
6 Object to be measured 10 Laser irradiation means 10a Laser irradiation apparatus 10b Optical comb generator 10c Optical frequency modulator 15 Measurement light splitting section 18 Light receiving section 20 Calculation section 26 Laser light information acquisition means 50, 50a to 50e Laser ranging apparatus BPF1 to BPF5 optical bandpass filter S1 first measurement point S2 second measurement point L1 distance (to the first measurement point) L2 distance (to the second measurement point) distance L (between the first and second measurement points)

Claims (7)

  1.  レーザ光を被測定物の測定点で反射させて測定点までの距離を測距するレーザ測距方法において、
     レーザ光の周波数を連続的に変化させながらレーザ照射を行い、当該レーザ光を第1測定光と第2測定光とに2分割した上で、第1測定光を被測定物の第1測定点で第2測定光を被測定物の第2測定点でそれぞれ反射させ、第1測定点で反射した第1測定光と第2測定点で反射した第2測定光とによって生じる干渉光の強度データをレーザ光の周波数の変化量と対応して取得する取得ステップと、
     取得ステップで得られた強度データをフーリエ変換して、第1測定光と第2測定光とによって生じる干渉光の干渉縞の周期を取得する変換ステップと、
     変換ステップで得られた所定の干渉光の干渉縞の周期に基づいて第1測定点から第2測定点までの距離を算出する算出ステップと、
    を有することを特徴とするレーザ測距方法。
    In the laser distance measuring method for measuring the distance to the measurement point by reflecting the laser beam at the measurement point of the object to be measured,
    Laser irradiation is performed while continuously changing the frequency of the laser beam, and the laser beam is divided into a first measurement beam and a second measurement beam, and then the first measurement beam is a first measurement point of the object to be measured. Then, the second measurement light is reflected at the second measurement point of the object to be measured, and the intensity data of the interference light generated by the first measurement light reflected at the first measurement point and the second measurement light reflected at the second measurement point Obtaining step corresponding to the amount of change in the frequency of the laser beam;
    A conversion step of Fourier-transforming the intensity data obtained in the acquisition step to acquire a period of interference fringes of interference light generated by the first measurement light and the second measurement light;
    A calculation step for calculating a distance from the first measurement point to the second measurement point based on the period of the interference fringes of the predetermined interference light obtained in the conversion step;
    A laser ranging method characterized by comprising:
  2.  出力するレーザ光に対する周波数可変機能を備えたレーザ照射手段と、
     当該レーザ照射手段から出射するレーザ光の周波数の変化量を取得するレーザ光情報取得手段と、
     前記レーザ照射手段から出射したレーザ光を第1測定光と第2測定光とに2分割する測定光分割部と、
     被測定物の第1測定点で反射した第1測定光と被測定物の第2測定点で反射した第2測定光とを受光して受光した光の強度に応じた信号を出力する受光部と、
     前記レーザ光情報取得手段からの周波数の変化量と前記受光部からの信号とが入力する演算部と、を備え、
     当該演算部が、
     レーザ光情報取得手段からのレーザ光の周波数の変化量と受光部からの信号とに基づいて、レーザ照射手段がレーザ光の周波数を連続的に変化させながらレーザ照射を行ったときに第1測定点で反射した第1測定光と第2測定点で反射した第2測定光とによって生じる干渉光の強度データをレーザ光の周波数の変化量と対応して取得する取得ステップと、
     取得ステップで得られた強度データをフーリエ変換して、第1測定光と第2測定光とによって生じる干渉光の干渉縞の周期を取得する変換ステップと、
     変換ステップで得られた所定の干渉光の干渉縞の周期に基づいて第1測定点から第2測定点までの距離を算出する算出ステップと、を行うことを特徴とするレーザ測距装置。
    Laser irradiation means having a frequency variable function for the laser beam to be output;
    Laser light information acquisition means for acquiring the amount of change in the frequency of the laser light emitted from the laser irradiation means;
    A measuring beam splitting unit that splits the laser beam emitted from the laser irradiation unit into a first measuring beam and a second measuring beam;
    A light receiving unit that receives the first measurement light reflected from the first measurement point of the object to be measured and the second measurement light reflected from the second measurement point of the object to be measured and outputs a signal corresponding to the intensity of the received light. When,
    A calculation unit that receives the amount of change in frequency from the laser light information acquisition unit and a signal from the light receiving unit;
    The calculation unit is
    Based on the amount of change in the frequency of the laser light from the laser light information acquisition means and the signal from the light receiving unit, the first measurement is performed when the laser irradiation means performs laser irradiation while continuously changing the frequency of the laser light. An acquisition step of acquiring intensity data of interference light generated by the first measurement light reflected by the point and the second measurement light reflected by the second measurement point in correspondence with the amount of change in the frequency of the laser light;
    A conversion step of Fourier-transforming the intensity data obtained in the acquisition step to acquire a period of interference fringes of interference light generated by the first measurement light and the second measurement light;
    And a calculation step of calculating a distance from the first measurement point to the second measurement point based on the period of the interference fringes of the predetermined interference light obtained in the conversion step.
  3. レーザ照射手段が、特定の周波数のレーザ光を出射するレーザ照射装置と、当該レーザ照射装置から出射したレーザ光を所定の周波数間隔の複数のレーザ光とする光コム発生器と、当該光コム発生器の周波数間隔を所定の範囲内で変調する光周波数変調器と、から構成されることを特徴とする請求項2記載のレーザ測距装置。 A laser irradiation device that emits laser light of a specific frequency, an optical comb generator that converts the laser light emitted from the laser irradiation device into a plurality of laser beams having a predetermined frequency interval, and generation of the optical comb; 3. The laser distance measuring device according to claim 2, further comprising: an optical frequency modulator that modulates a frequency interval of the detector within a predetermined range.
  4. レーザ照射手段から出射するレーザ光のうち所定の周波数範囲内のレーザ光のみを透過する光バンドパスフィルタをレーザ光の光路上に設けたことを特徴とする請求項3記載のレーザ測距装置。 4. The laser distance measuring device according to claim 3, wherein an optical band-pass filter that transmits only laser light within a predetermined frequency range of laser light emitted from the laser irradiation means is provided on the optical path of the laser light.
  5.  装置内部における第1測定光の光路長と第2測定光の光路長とを等しくすることを特徴とする請求項2に記載のレーザ測距装置。 3. The laser distance measuring device according to claim 2, wherein the optical path length of the first measurement light and the optical path length of the second measurement light inside the device are equalized.
  6.  装置内部における第1測定光の光路長と第2測定光の光路長とを等しくすることを特徴とする請求項3に記載のレーザ測距装置。 4. The laser distance measuring device according to claim 3, wherein the optical path length of the first measurement light and the optical path length of the second measurement light inside the device are equalized.
  7.  装置内部における第1測定光の光路長と第2測定光の光路長とを等しくすることを特徴とする請求項4に記載のレーザ測距装置。 The laser distance measuring device according to claim 4, wherein the optical path length of the first measurement light and the optical path length of the second measurement light in the device are equal.
PCT/JP2009/058895 2009-05-13 2009-05-13 Laser ranging method and laser ranging device WO2010131338A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/058895 WO2010131338A1 (en) 2009-05-13 2009-05-13 Laser ranging method and laser ranging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/058895 WO2010131338A1 (en) 2009-05-13 2009-05-13 Laser ranging method and laser ranging device

Publications (1)

Publication Number Publication Date
WO2010131338A1 true WO2010131338A1 (en) 2010-11-18

Family

ID=43084728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058895 WO2010131338A1 (en) 2009-05-13 2009-05-13 Laser ranging method and laser ranging device

Country Status (1)

Country Link
WO (1) WO2010131338A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61288102A (en) * 1985-06-14 1986-12-18 Nippon Sheet Glass Co Ltd Scanning differential interference device using plane waveguide
JPH0222502A (en) * 1988-07-11 1990-01-25 Kowa Co Optical interference measuring instrument
WO2006019181A1 (en) * 2004-08-18 2006-02-23 National University Corporation Tokyo University Of Agriculture And Technology Shape measurement method, shape measurement device, and frequency comb light generation device
JP2006259543A (en) * 2005-03-18 2006-09-28 Fujitsu Ltd Optical device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61288102A (en) * 1985-06-14 1986-12-18 Nippon Sheet Glass Co Ltd Scanning differential interference device using plane waveguide
JPH0222502A (en) * 1988-07-11 1990-01-25 Kowa Co Optical interference measuring instrument
WO2006019181A1 (en) * 2004-08-18 2006-02-23 National University Corporation Tokyo University Of Agriculture And Technology Shape measurement method, shape measurement device, and frequency comb light generation device
JP2006259543A (en) * 2005-03-18 2006-09-28 Fujitsu Ltd Optical device

Similar Documents

Publication Publication Date Title
JP5043714B2 (en) Optical fiber characteristic measuring apparatus and method
JPH0749207A (en) Absolute interference measuring method and laser interferometer suitable for method thereof
US5110211A (en) Optical interference signal extractor with device for reduced noise from optical light power variation
US20150330769A1 (en) Oct apparatus, ss-oct apparatus, and method of acquiring ss-oct image
JP5511162B2 (en) Multi-wavelength interference displacement measuring method and apparatus
RU2300085C1 (en) Mode of definition of the amplitude of vibration on two harmonies of the spectrum of an autodyne signal
US9581428B2 (en) Time-multiplexed spectrally controlled interferometry
JP2018059789A (en) Distance measuring apparatus and distance measuring method
JP2013064682A (en) Measuring device
JP7272327B2 (en) Optical fiber characteristic measuring device, optical fiber characteristic measuring program, and optical fiber characteristic measuring method
JP2951547B2 (en) Lightwave distance meter and distance measurement method
WO2010131338A1 (en) Laser ranging method and laser ranging device
WO2010131337A1 (en) Laser ranging method and laser ranging device
WO2010119562A1 (en) Laser ranging method and laser ranging device
JP4459961B2 (en) Laser phase difference detection device and laser phase control device
JPH09269372A (en) Distance sensor for light wave
JP2013257302A (en) Heterodyne interference device
JP2011095197A (en) Thickness measuring method and thickness measuring device
JP5891955B2 (en) Timing generation apparatus for Fourier transform spectrometer and method, Fourier transform spectrometer and method
WO2010131339A1 (en) Laser ranging method and laser ranging device
JP2009031040A (en) Brillouin scattering measuring device
JP2020501131A (en) Extending the scope of spectrum-controlled interferometry by superposition of multiple spectral modulations
US7688451B2 (en) Heterodyne interferometer having an optical modulator
Ren et al. All-fiber hybrid displacement-sensing system based on self-mixing interference and intracavity spectroscopy
Wang et al. A self-mixing laser diode for micro-displacement measurement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09844612

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09844612

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP