WO2010130229A1 - 光干涉检测气体浓度的装置及其精度自动补偿检测方法 - Google Patents

光干涉检测气体浓度的装置及其精度自动补偿检测方法 Download PDF

Info

Publication number
WO2010130229A1
WO2010130229A1 PCT/CN2010/072820 CN2010072820W WO2010130229A1 WO 2010130229 A1 WO2010130229 A1 WO 2010130229A1 CN 2010072820 W CN2010072820 W CN 2010072820W WO 2010130229 A1 WO2010130229 A1 WO 2010130229A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
chamber
air
interference
prism
Prior art date
Application number
PCT/CN2010/072820
Other languages
English (en)
French (fr)
Inventor
张晶
陈均
席贵云
刘虹
Original Assignee
重庆同博测控仪器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆同博测控仪器有限公司 filed Critical 重庆同博测控仪器有限公司
Publication of WO2010130229A1 publication Critical patent/WO2010130229A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/45Refractivity; Phase-affecting properties, e.g. optical path length using interferometric methods; using Schlieren methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/45Refractivity; Phase-affecting properties, e.g. optical path length using interferometric methods; using Schlieren methods
    • G01N2021/451Refractivity; Phase-affecting properties, e.g. optical path length using interferometric methods; using Schlieren methods for determining the optical absorption

Definitions

  • the invention relates to an optical measuring method for measuring instruments and gas concentrations, in particular to a device for detecting the concentration of gas by optical interference and an automatic compensation detecting method thereof.
  • the basic principle of the interferometric gas sensor is to measure the concentration of the gas by using the interference phenomenon of the light.
  • the optical interference system has many advantages such as high precision, wide measurement range and good stability with respect to the carrier catalysis.
  • the traditional visual optical interferometric decane detector mainly uses manual reading methods, and has its own weaknesses such as low automation, cumbersome measurement methods, unintuitive readings, large human error, and inability to store data.
  • intelligent optical interference decane detectors using image sensor readings have emerged. They have the advantages of high automation, convenient measurement, and automatic data storage. However, when subjected to complex environmental stress, its accuracy and zero point will be severe. drift.
  • a first object of the present invention is to provide a device for detecting the gas concentration by optical interference
  • a second object is to provide an automatic compensation compensation method for the aforementioned device, which realizes light by using an improved optical path and an optimized data processing method.
  • Interference with the zero point and precision of the interference decane detector solves the problem of the accuracy and zero-point drift of the intelligent optical interference decane detector in complex environments.
  • An optical interference detecting gas concentration device comprising: an optical path system for generating two sets of optical interference fringes by using the same light source; an image sensor for converting physical position information of two sets of stripes into an electrical signal; Set the physical position of the stripe, and finally determine the gas content in the air 1), the optical path system for generating two sets of optical interference fringes by using the same light source: comprising an incident light source, and concentrating a mirror, a cemented lens, and a light bar are arranged before the light source to realize collimation of incident light and removing stray light; a glue prism, a photosensitive portion of the image sensor, a right-angle prism, and a gas chamber disposed between the glue prism and the right-angle prism, wherein the glue prism is glued by a beam splitting prism and a reflection prism, and the incident light from the light source passes through the glue prism The light splits into two beams, and the two beams are reflected by the right angle prism through the air chamber, and then output by the
  • the electrical signal collecting processing part for identifying two sets of stripe physical positions, and finally determining the measured gas content in the air comprises an analog to digital conversion circuit, a PC or a microprocessor, and application software, an analog to digital conversion circuit Converting the image signal into a digital signal, processed by a PC or a microprocessor, and converted into two digital waveform diagrams A' and B' corresponding to the two sets of stripes A and B, by darkening the image of the two digital waveforms
  • the distance L between the two lowest-level center points corresponding to the interference fringes and the offset S of the digital waveform B' with respect to the pixel points of the digital waveform A' are stored as the measured gas concentration D.
  • the offset value S is obtained.
  • the distance between the two extremely dark stripes is L.
  • the L value and the offset value S are corrected for accuracy, and the actual concentration value of the measured gas after compensation is finally calculated.
  • the invention relates to a method for measuring gas concentration in air by using the above-mentioned optical interference detecting gas concentration device, which has zero point automatic tracking and automatic precision compensation capability, and the method comprises the following steps: 1), Accuracy calibration: first adjust the air pressure in the sample chamber and the air chamber to the corresponding value to simulate the concentration of gas in the air as D 0 , and the corresponding digital waveform is automatically recorded by the PC or microprocessor in Cartesian coordinates. Corresponding S 0 , L 0 values, and stored in their non-volatile memory;
  • Double-chamber optical interference detection The first set of interference fringes A is obtained by interference of a bundle of coherent light Y1 passing through the air-free air chamber, and another beam Y2 passing through the air-free air chamber After the interference of the gas-containing gas sample chamber, a second set of interference fringes B is obtained, and a gap between the two sets of interference fringes formed by the cavity material between the sample chamber and the air chamber;
  • the two sets of interference fringes obtained in step 2) are converted into electrical signals by an image sensor, and the electrical signals are digitized to obtain two digital waveforms A in Cartesian coordinates.
  • ', B' where the X axis represents the pixel point and the y axis represents the logic level value; the two rising edges of the digital waveform A' are rl, r2, the two falling edges are fl, f2, and the two of the digital waveform B' The rising edge is rl,, r2, and the two falling edges are fl,, f2,;
  • step 5 After step 5), the S value has been corrected to Si under the same environmental conditions as S 0 , and the gas concentration D stored when the instrument accuracy was last calibrated.
  • A, B two groups The offset of the fringe S D , the gas concentration D obtained by the empirical formula (4) of the light interference with the measured gas concentration
  • the invention realizes the differentiation of the optical image by using two sets of stripes in the same optical path, and the whole system processes the data in a differential manner, which greatly improves the anti-interference ability of the device.
  • the invention is based on the principle of automatic compensation of instrument precision, and solves the problem that the traditional optical interference detector is seriously out of balance due to the distortion of the optical system. When the accuracy of the instrument is seriously unbalanced, the instrument can be intelligently identified and can be effectively calibrated.
  • FIG. 1 is a block diagram of the instrument
  • FIG. 1 and Figure 2 are schematic diagrams of the optical path system
  • Figure 4 is the interference fringe on the face of the image sensor
  • Figure 5 is a schematic diagram of zero point automatic tracking
  • Figure 6 is a schematic diagram of automatic correction of accuracy
  • Figure 7 is a waveform output diagram of the graphic sensor during detection
  • Figure 8 is a digitized diagram of the graphic signal shown in Figure 7. detailed description
  • the whole process is as follows: First, the optical path system generates interference fringes related to the concentration of decane or carbon dioxide, and then the image sensor The interference fringes are converted into electrical signals, and the final data collection processing portion accurately calculates the concentration of decane or carbon dioxide in the air using the adaptive method of the present invention.
  • the white light source 1 emits a beam of light, passes through the condensing mirror 2, the diaphragm 3, and the cemented lens 4, reaches the bonding prism 5, and splits into two beams of light passing through the sample chamber 10 and the air chamber 11 in the plenum 8.
  • a beam of light is reflected on the rear reflecting surface of the right-angle prism 9 into the gas sample chamber 10 of the gas chamber 8, and then reaches the cementing prism 5, and the other light is reflected on the rear reflecting surface of the right-angle prism 9.
  • FIG. 1 shows two sets of stripes A, B, and an intermediate barrier C.
  • the image sensor 6 converts the two sets of fringes into electrical signals for easy electronic system identification processing.
  • a compensating mirror 7 mounted through the rotating shaft is provided, and the compensating mirror can be rotated around the axis or swinged back and forth to realize optical path compensation and post-adjustment locking.
  • the two chambers formed by the axial center groove are respectively formed by the air chamber 8 and the air chamber 11 and the sample gas chamber 10, and the sample chamber 10 is located in the axial center groove, two The cavity is respectively blocked by upper and lower end caps, wherein the sample gas chamber 10 has a gas sample introduction channel; both ends of the gas chamber 8 located in the light path are blocked by a transparent material with high light transmittance.
  • the final interference fringes Due to the use of a white light source, the final interference fringes have extremely bright stripes a and extremely dark stripes b, c distributed on both sides.
  • the waveforms of the two sets of optical interference fringes after output by the image sensor are shown in Fig. 7.
  • the concentration of decane or carbon dioxide in the gas sample chamber 10 changes, the refractive index change of the light in the chamber is inevitably caused, and the position of the extremely bright stripe a' in the B group moves along the X-axis direction on the xy plane coordinate system, and the group A
  • the position of the extremely bright stripe a in the resulting offset of the pixel is 8 .
  • the image sensor image signal output frequency is high.
  • the image signal needs to be digitized first, and various methods such as an A/D converter, a comparator, and a dedicated image processing chip can be used.
  • the present invention digitizes the image signal to obtain a waveform as shown in FIG.
  • the microcontroller will obtain two rising edges rl and r2 and two falling edges fl and f2 in each row of the corresponding region of the A group of stripes.
  • the microcontroller will obtain two rising edges rl, and r2, and two falling edges in each row of the B-group stripe corresponding region. From equations (1) and (2), the offset S of the B-group stripe relative to the A-group stripe in the X-axis direction and the distance L between the two extremely dark strips can be calculated.
  • the optical path system shown in Figure 3 the group A interference fringes are from a coherent light Yl passing through an air chamber containing no decane or carbon dioxide.
  • the interference fringes of group B are from a sample gas containing decane or carbon dioxide.
  • the optical path difference of coherent light is:
  • is the wavelength of the light wave
  • is the number of stripes
  • the ⁇ is the equivalent of the air path system.
  • the wedge angle of the two sets of fringes is outputted by the image sensor.
  • the waveform is shown in Figure 7.
  • the upper part of the figure represents the ⁇ group stripes, and the lower part represents the B group of stripes.
  • the output waveform of the image sensor is shown in Fig. 5.
  • the B group of stripes is the translation of the A group of stripes along the y-axis direction, and the extremely bright stripe a in the group A is With reference to the point, the zero point of the device can be automatically tracked.
  • a group of stripes is the zero point of the B group stripes.
  • the image sensor will be The electrical signal collection and processing circuit provides a set of differential signals, and B and A are positive and negative terminals, respectively.
  • B and A are positive and negative terminals, respectively.
  • the present invention uses two sets of stripes in the same optical path to realize the optical image differentiation, and the whole system processes the data in a differential manner, which greatly improves the equipment. Anti-interference ability.
  • the ⁇ value is determined by the optical path system. Obviously, the L value will change with the parameters of the optical path system. In order to ensure stable accuracy, it is necessary to ensure that the stability of the wavelength ⁇ satisfies the system design specifications. In the complex environment of the industrial site, the change of the wedge angle is inevitable due to the environmental stress caused by the environmental path. From the revelation of the compensation wedge angle ⁇ obtained from the equation (12), the present invention solves the problem that the wedge angle ⁇ change caused by the system strain causes a serious deviation in accuracy, and FIG.
  • Equation (12) the L values of the two sets of stripes are equal with respect to the same stable optical system A, and the combination of equation (11) is the same level of interference fringes (the value of the series N is the same) when the optical system parameters change.
  • L is obtained by changing the S value to the optical system corresponding to the most recent calibration accuracy by the same-scale k change, and S i is obtained : L' (16)
  • the invention is based on the principle of automatic compensation of instrument accuracy, and solves the problem that the conventional optical interference decane detector is seriously imbalanced due to distortion of the optical system. When the accuracy of the instrument is seriously unbalanced, the instrument can be intelligently identified, which can effectively calibration.
  • the refractive index of light in different gases is different, causing the optical path difference between coherent lights to be different.
  • the optical path difference between the light beam containing air of decane or carbon dioxide and the light beam directly passing through air containing no decane or carbon dioxide is ⁇ ⁇ , and both light passes through air containing no decane or carbon dioxide.
  • the optical path difference is ⁇ A, , A, B
  • the actual position of the stripe reflects the relationship between ⁇ A and ⁇ B.
  • the actual position of the strips of the two groups A and B can be calculated by the image sensor to calculate the decane in the air or The concentration of carbon dioxide.
  • the offset value S of the B-group stripe relative to the A-group stripe on the X-axis can be obtained.
  • the distance L between the two extremely dark strips on both sides of the extremely bright stripe can be obtained. The zero point is automatically tracked, and the accuracy is automatically compensated.
  • the concentration of decane or carbon dioxide in the air can be determined by equation (4).
  • the invention uses two sets of stripes in the same optical path to realize the differentiation of the optical image, and the whole system processes the data in a differential manner, thereby achieving the effect of zero-point automatic tracking; realizing automatic compensation of accuracy by real-time monitoring of the stripe spacing, when precision
  • the instrument can effectively identify and calibrate when it is seriously unbalanced, which solves the problem of serious imbalance of precision caused by optical system distortion of traditional optical interference decane detector. It is used for gas detection in various application fields, such as carbon monoxide, carbon dioxide, decane, hydrogen. Gas detection of hydrogen sulfide, nitrogen, etc., especially coal mine gas detection provides a detection method with high accuracy and good stability.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

光干涉检测气体浓度的装置及其精度自动补偿检测方法
技术领域
本发明涉及测量仪器和气体浓度的光学测量方法, 特别是一种光干涉检 测气体浓度的装置及其精度自动补偿检测方法。
背景技术
干涉式气体传感器的基本原理是应用光的干涉现象来测气体的浓度, 光 干涉系统相对于载体催化来讲, 在理论上有精度高、 测量范围广、 稳定性好 等诸多优点。 例如, 传统的目测型光干涉曱烷检测仪主要釆用人工读数的方 法, 存在自动化程度低、 测量方法繁瑣、 读数不直观、 人为误差较大、 不能 存储数据等自身弱点。 近年来出现了使用图像传感器读数的智能光干涉曱烷 检测仪, 它具有自动化程度高, 测量方便, 能够自动保存数据的优点, 但在 受到复杂的环境应力影响时, 它的精度和零点会严重漂移。
发明内容
本发明的第一目的是提供一种光干涉检测气体浓度的装置, 第二目的是 提供一种前述装置的精度自动补偿检测方法, 通过釆用改进型的光路和优化 的数据处理方法实现了光干涉曱烷检测仪零点和精度的自适应, 解决了智能 光干涉曱烷检测仪在复杂环境下精度和零点严重漂移的难题。
为本发明的第一目的而釆用的技术方案如下:
一种光干涉检测气体浓度装置, 其特征为: 包括一个利用同一光源产生 两组光干涉条纹的光路系统; 一个将两组条纹的物理位置信息转化为电信号 的图像传感器; 一个用于识别两组条纹物理位置, 最终确定空气中气体含量 1 )、 所述利用同一光源产生两组光干涉条纹的光路系统: 包括入射光源, 在光源之前装有聚光镜、 胶合透镜、 光栏, 以实现对入射光的准直及除去杂 光; 还包括胶合棱镜、 图像传感器的感光部分、 直角棱镜及设置在胶合棱镜 与直角棱镜之间的气室, 所述胶合棱镜由一个分光棱镜和一个反射棱镜胶合 而成, 来自光源的入射光经胶合棱镜后分光为两束光, 两束光经气室后经直 角棱镜反射, 再经气室后由胶合棱镜输出; 所述气室被分成两部分:不含被测 气体的空气气室及含被测气体的空气釆样气室; 所述胶合棱镜的光输出端设 置图像传感器的感光部分, 由所述图像传感器将获得的光干涉条纹图像转换 为电信号输出; 由胶合棱镜分束得到的一束相干光经过不含被测气体的气室 干涉后在图像传感器的感光面上获得一组干涉条纹 A;由胶合棱镜分束得到的 另一束相干光经过含有被测气体的釆样气室干涉后在图像传感器的感光面获 得另一组干涉条纹 B ,由釆样气室与空气气室之间的腔体隔断材料形成的两组 干涉条纹 A和 B之间的隔带 C;
2 )、 所述用于识别两组条纹物理位置, 最终确定空气中被测气体含量的 电信号釆集处理部分包括模数转换电路、 PC机或微处理器, 及应用软件, 模 数转换电路将图像信号转变成数字信号, 由 PC机或微处理器处理后转换为与 两组条纹 A和 B对应的两个数字波形图 A '和 B ' ,通过对所述两个数字波形的图像 暗干涉条纹对应的两个最低电平中心点的距离 L及数字波形 B'相对数字波形 A' 的像素点的偏移量 S , 用存储的被测气体浓度为 D。的空气标定精度时, 得到的 偏移值 S。, 两条极暗条纹间的距离为 L。对前述 L值和偏移值 S进行精度修正, 最 后计算出精度的补偿后的被测气体的实际浓度值。
为实现本发明第二目的而釆用的技术方案如下:
一种釆用上述光干涉检测气体浓度装置, 具有零点自动跟踪, 精度自动 补偿能力的测定空气中气体浓度的方法, 方法包括以下步骤: 1 )、 精度标定:首先调节釆样气室与空气气室内的气压到相应值模拟出空 气中气体的浓度为 D0,由 PC机或微处理器自动记录其对应的数字波形在笛卡尔 坐标下相应的 S0, L0值, 并存储在其非易失性存储器内;
2)、 双气室光干涉检测: 由经过不含气体的空气气室的一束相干光 Y1干 涉后获得第一组干涉条纹 A, 由经过不含气体的空气气室的另一束光 Y2经过 含有气体的釆样气室干涉后获得第二组干涉条纹 B ,由釆样室与空气气室之间 的腔体材料形成的两组干涉条纹之间的隔带;
3 )、对光干涉条纹的的物理位置信息图像处理:通过图像传感器将步骤 2 ) 得到的两组干涉条纹转化为电信号, 并数字化该电信号后得到笛卡尔坐标下 的两条数字波形 A' 、 B' , 其中 X轴代表像素点, y轴代表逻辑电平值; 数 字波形 A' 的两个上升沿为 rl,r2, 两个下降沿为 fl, f2, 数字波形 B' 的两 个上升沿为 rl,,r2,, 两个下降沿为 fl,,f2,;
4 )对光干涉条纹的的物理位置信息的识别: 根据步骤 3)计算出数字波形 的距离 L及数字波形 B' 相对数字波形 A' 的像素点的偏移量 S:
L = (1)
^ f2f÷rlf-f2-fl
=—— -—— (2)
5 )精度自动补偿: 将步骤 4 )获得的 L值和偏移值 S与步骤 1 )用气体浓度 为 D0的空气标定精度时, 得到的偏移值 S0, 两条极暗条纹间的距离为 L0, 利用 式(3)自动修正步骤的 4 ) 的 S值到 Si: = ^ (3)
J- L
6 )对浓度值计算进行精度的补偿: 经过步骤 5 ), S值已被修正为与 S0同等 环境条件下的 Si, 利用最近一次标定仪器精度时保存的气体浓度 D。与 A, B两组 条纹的偏移量 SD, 由光干涉经测气体浓度的经验公式(4)获得本次测量的气体 浓度 D
Figure imgf000006_0001
本发明在同一光路中釆用两组条纹实现了光学图像的差分化, 进而整个 系统以差分化方式处理数据, 极大地提高了设备的抗干扰能力。 本发明基于 仪器精度的自动补偿原理, 解决了传统光干涉检测仪因光学系统畸变引起的 精度严重失衡的难题, 当仪器精度严重失衡时仪器能够智能识别, 可以有效 地校准。 附图说明
图 1为仪器的框图;
图 2 , 图 3为光路系统原理图;
图 4为图像传感器耙面上的干涉条纹;
图 5为零点自动跟踪示意图;
图 6为精度自动修正示意图;
图 7为检测时图形传感器的波形输出图;
图 8为图 7所示的图形信号的数字化图。 具体实施方式
以测量空气中曱烷或二氧化碳气体为例, 如图 1所示, 整个实施过程为: 首先光路系统产生与曱烷或二氧化碳浓度相关的干涉条纹, 然后图像传感器 将干涉条纹转换为电信号, 最终数据釆集处理部分利用本发明涉及的自适应 方法准确计算出空气中曱烷或二氧化碳的浓度。
光路系统与图像传感器描述:
如图 2所示, 白光光源 1发出一束光, 经过聚光镜 2 , 光栏 3 , 胶合透镜 4 , 到达胶合棱镜 5分成两束光通过气室 8中的釆样气室 10和空气气室 11到直角棱 镜 9后反射面上, 一束光在直角棱镜 9的后反射面上反射进入气室 8的气样室 10 , 然后到达胶合棱镜 5 , 另一束光在直角棱镜 9的后反射面上反射进入气室 8 的另一个空气室 1 1 , 然后到达胶合棱镜 5 , 这两束光在胶合棱镜 5相遇发生干 涉, 由于气室 8的特殊性在图像传感器 6的感光面上将出现如图 3所示两组条纹 A, B, 以及中间隔离带 C , 图像传感器 6将两组条纹转化为电信号, 便于电子 系统识别处理。
在实施例中, 在胶合棱镜与气室 8之间的光路中, 设置有通过转轴安装的 补偿镜 7 , 所述补偿镜可以绕轴旋转或前后的摆动, 实现光路补偿与调节后锁 定。 此外, 所述气室 8由轴向中心凹槽分隔形成的两个腔体分别构成空气气室 11和釆样气室 10 , 釆样气室 10位于所述轴向中心凹槽中, 两个腔体分别由上 下端盖封堵, 其中釆样气室 10具有气样引入通道; 所述气室 8位于光路中的两 端由高透光率的透明材料封堵。
由于使用白光光源, 所以最终的干涉条纹存在极亮条纹 a , 以及分布于两 侧的极暗条纹 b , c。 两组光干涉条纹通过图像传感器输出后波形图见图 7。 气 样室 10中曱烷或二氧化碳浓度变化时必然引起其腔室内光的折射率变化, 导 致 B组中的极亮条纹 a' 的位置在 x-y平面坐标系上沿 X轴方向移动, 与 A组中的 极亮条纹 a的位置产生的像素点的偏移值8。
图像釆集与识别阐述: 图像传感器图像信号输出的频率较高 , 为了方便微控制器识别处理图 像, 需要先对图像信号数字化, 可以使用 A/D转换器, 比较器, 专用图像处 理芯片等多种方法。 本发明将图像信号数字化后, 得到如图 8所示的波形。 微控制器将在 A组条纹对应区域的每一行内获得两个上升沿 rl和 r2与两个 下降沿 fl和 f2。微控制器将在 B组条纹对应区域的每一行内获得两个上升沿 rl,和 r2,与两个下降沿
Figure imgf000008_0001
,, 由式(1) (2)可以计算出 B组条纹相对 A组 条纹在 X轴方向的偏移量 S, 两条极暗条纹间的距离 L。
零点自动跟踪原理阐述:
如图 2, 图 3所示的光路系统, A组干涉条纹来自经过不含曱烷或二氧化 碳的空气气室的一束相干光 Yl, B组干涉条纹来自经过含曱烷或二氧化碳的 釆样气室的另一束相干光 Y2。 由迈克尔逊干涉仪原理及等厚干涉原理可知, 相干光的光程差:
Δ=Νλ (11)
其中 λ为光波波长, Ν为条纹级数
条纹间距:
ί=λ/2ΝΘ (12)
其中 Θ为整个光路系统等效的空气劈尖的楔角 两组条纹通过图像传感器输出后波形见图 7,图中上半部分代表 Α组条纹, 下半部分代表 B组条纹, 在 x-y平面坐标系上, 在曱烷或二氧化碳含量为零 的情况下, 图像传感器输出波形见图 5, 理论上说 B组条纹就是 A组条纹沿 y 轴方向的平移, 取 A组中的极亮条纹 a为参照点, 由此可以实现设备的零点 自动跟踪一A组条纹就是 B组条纹的零点。进一步可以理解为图像传感器将为 电信号釆集与处理电路提供一组差动信号, B , A分别为正负端。 就像电路上 釆用差动输入可以克服温漂一样, 本发明在同一光路中釆用两组条纹实现了 光学图像的差分化, 进而整个系统以差分化方式处理数据, 极大地提高了设 备的抗干扰能力。
精度自动补偿阐述:
利用光干涉仪原理测量气体折射率已有应用, 但是在工业实际应用中环 境应力经常使仪器光学系统发生畸变导致精度严重失衡。 由式(12)可知, 在 整个光学系统稳定且条纹级数 N确定的情况下, 极亮条纹两侧的极暗条纹的 距离 L与波长 λ和楔角 Θ存在函数关系
L=L ( λ , θ ) (1 3)
Θ值由光路系统决定, 显然 L值会随着光路系统的参数改变而变化, 为了保 证精度稳定, 必须保证波长 λ的稳定度满足系统设计指标。 在工业现场复杂 的环境下, 光路受环境应力影响导致楔角 Θ变化是不可避免的。 从式(12)中 得到补偿楔角 Θ的启示, 本发明解决了因系统应变引起的楔角 Θ变化继而引 起精度严重偏离的难题, 图 6很好地演示了此类情况, 在相同的曱烷或二氧 化碳浓度下, 不同楔角 θ 1与 Θ 2所对应的 L1与 L2必然不相等, 对应的 S1 与 S2也不相等, 但是他们存在如下关系:
(14)
L2 S2
假设最近一次以 D。的曱烷浓度准确地标定设备, 得到 S0,L0, 在每次测量中总 可以得到 S,L , 存在如下关系: k= = (15)
L S
由式(12)可知相对同一稳定的光学系统 A, B两组条纹的 L值相等, 结合式(11) 当光学系统参数变化时, 对同一级干涉条纹(级数 N的值相同) S, L以将以同 ― 比例 k变化, 将 S值修正到最近一次标定精度时对应的光学系统下, 得到 Si : L' (16) 本发明基于仪器精度的自动补偿原理, 解决了传统光干涉曱烷检测仪因光学 系统畸变引起的精度严重失衡的难题, 当仪器精度严重失衡时仪器能够智能 识别, 可以有效地校准。
气体测量原理阐述:
在同等环境下, 光在不同气体中的折射率不一样, 引起相干光间的光程差 也不一样。 在本发明中含有曱烷或二氧化碳的空气的光束与直接通过不含曱 烷或二氧化碳的空气的光束间的光程差为 Δ Β, 而两束光都通过不含曱烷或二 氧化碳的空气的光程差为△ A, , A, B两组条纹的实际位置反映了△ A与△ B的 关系, 利用图像传感器釆集到 A, B两组条纹的实际位置可以计算出空气中曱 烷或二氧化碳的浓度。 由式(2)可以得出 B组条纹相对 A组条纹在 X轴上的偏 移值 S , 由式(1) 可以得出极亮条纹两侧两条极暗条纹间的距离 L , 结合上述 的零点自动跟踪, 精度自适自动补偿, 由式(4)可以确定空气中曱烷或二氧化 碳的浓度。
发明效果
本发明在同一光路中釆用两组条纹实现光学图像的差分化, 进而整个系统 以差分化方式处理数据, 达到了零点自动跟踪的效果; 通过实时监测条纹间 距实现了精度的自动补偿, 当精度严重失衡时仪器能够有效地识别和校准, 解决了传统光干涉曱烷检测仪因光学系统畸变引起的精度严重失衡的难题, 为多种应用领域的气体检测, 如一氧化碳、 二氧化碳、 曱烷、 氢气、 硫化氢、 氮气等气体检测, 特别是煤矿瓦斯检测提供了一种准确度高, 稳定性好的检 测方法,。

Claims

权 利 要 求
1、 一种光干涉检测气体浓度装置, 其特征为: 包括一个利用同一光源产 生两组光干涉条紋的光路系统; 一个将两组条紋的物理位置信息转化为电信 号的图像传感器; 一个用于识别两组条紋物理位置, 最终确定被测气体含量 的电信号釆集处理部分; 其中
1 )、 所述利用同一光源产生两组光干涉条紋的光路系统: 包括入射光源 ( 1 ), 在光源 ( 1 ) 之前装有聚光镜( 2 )、 胶合透镜( 4 )、 光栏( 3 ), 以实现 对入射光的准直及除去杂光; 还包括胶合棱镜(5)、 图像传感器(6) 的感光 部分、直角棱镜( 9 )及设置在胶合棱镜( 5 )与直角棱镜( 9 )之间的气室( 8 ), 所述胶合棱镜由一个分光棱镜和一个反射棱镜胶合而成, 来自光源的入射光 经胶合棱镜后分光为两束光, 两束光经气室 (8 )后经直角棱镜(9)反射, 再经气室 ( 8 )后由胶合棱镜输出; 所述气室 ( 8 )被分成两部分:不含被测气 体的空气气室(11 )及含被测气体的空气釆样气室 (10); 所述胶合棱镜的光 输出端设置图像传感器(6)的感光部分, 由所述图像传感器将获得的光干涉 条紋图像转换为电信号输出; 由胶合棱镜分束得到的一束相干光(Y1 )经过 不含被测气体的气室 (11 )干涉后在图像传感器(6) 的感光面上获得一组干 涉条紋(A); 由胶合棱镜分束得到的另一束相干光(Y2) 经过含有被测气体 的釆样气室( 10 )干涉后在图像传感器( 6 )的感光面获得另一组干涉条紋( B ), 由釆样气室 (10) 与空气气室 (11 )之间的腔体隔断材料形成的两组干涉条 紋 A和 B之间的隔带 (C);
2)、 所述用于识别两组条紋物理位置, 最终确定空气中被测气体含量的 电信号釆集处理部分包括模数转换电路、 PC机或微处理器, 及应用软件, 模 数转换电路将图像信号转变成数字信号, 由 PC机或微处理器处理后转换为与 两组条紋(A,B)对应的两个数字波形图 A'和 Β', 通过对所述两个数字波形的 条极暗干涉条紋对应的两个最低电平中心点的距离 L及数字波形 B,相对数字波 形 A'的像素点的偏移量 S , 用存储的被测气体浓度为 D。的空气标定精度时, 得 到的偏移值 S。, 两条极暗条紋间的距离为 L。对前述 L值和偏移值 S进行精度修 正, 最后计算出精度的补偿后的被测气体的实际浓度值。
2、 根据权利要求书 1所述光干涉检测气体浓度的装置, 其特征是: 在胶 合棱镜与气室 (8 )之间的光路中, 设置有通过转轴安装的补偿镜( 7 ), 所述 卜偿镜可以绕轴旋转或前后的摆动, 实现光路 卜偿与调节后锁定。
3、 根据权利要求书 1所述光干涉检测气体浓度的装置, 其特征是: 所述 气室 (8 ) 由轴向中心凹槽分隔形成的两个腔体分别构成空气气室 (11 )和釆 样气室 (10 ), 釆样气室 ( 10 )位于所述轴向中心凹槽中, 两个腔体分别由上 下端盖封堵, 其中釆样气室 (10 )具有气样引入通道; 所述气室 (8 )位于光 路中的两端由高透光率的透明材料封堵。
4、 一种釆用权利要求书 1所述光干涉检测气体浓度的装置, 具有零点 自动跟踪, 精度自动补偿能力的测定空气中某一气体浓度的方法, 方法包括 以下步骤:
1 )、 精度标定:调节釆样气室(10 ) 内的气压到相应值模拟出空气中某被 测的浓度为 DQ, 按照以下 2 )、 3)和 4)步骤所述得到其对应的数字波形在笛卡 尔坐标下相应的 S。, L。值, 由 PC机或微处理器自动记录 S。, L。在其非易失性存 储器内;
2 )、 双气室光干涉检测: 由经过不含被测气体的空气气室 (11 ) 的两束相 干光 Y1和 Y2干涉后获得第一组干涉条紋 A,由经过不含被测的空气气室( 11 ) 的一束光 XI和另一束经过含有被测气体的空气的釆样室 ( 10 ) 而且与 XI相 干的光 X2干涉获得第二组干涉条紋 B, 由釆样室 (10)与空气气室 (11 )之 间的腔体材料形成的两组干涉条紋 A和 B之间的隔带 ( C );
3)、 对光干涉条紋的物理位置信息图像处理: 通过图像传感器将步骤 2) 得到的两组干涉条紋转化为电信号, 并数字化该电信号后得到笛卡尔坐标下 的两条数字波形 Α'、 Β', 其中 χ轴代表像素点, y轴代表逻辑电平值; 数字 波形 A'的两个上升沿为 rl, r2, 两个下降沿为 fl, f2,数字波形 B'的两个上升 沿为 rl,,r2,, 两个下降沿为 fl,,f2,;
4 )对光干涉条紋的物理位置信息的识别:根据步骤 3)计算出数字波形 A, 离 L及数字波形 B'相对数字波形 A'的像素点的偏移量 S:
T f2-S-r2-fl-ri
L = (l)
2
S = (2)
5 )精度自动补偿: 将步骤 4 )获得的 L值和偏移值 S与步骤 1 )用被测气体 的浓度为 D0的空气标定精度时,得到的偏移值 S0,两条极暗条紋间的距离为 L0, 利用式(3)自动修正步骤的 4 ) 的 S值到 Si: ·= ¾ (3)
6)对浓度值计算进行精度的补偿: 经过步骤 5), S值已被修正为与 SQ同等 环境条件下的 Si, 利用最近一次标定仪器精度时保存的被测气体浓度 DQ与 A, B 两组条紋的偏移量 SQ, 由光干涉经气体浓度的经验公式(4)获得本次测量的被 测气体浓度 D
O = 一 : (4) 。
¾ 十 il- ri)
PCT/CN2010/072820 2009-05-15 2010-05-15 光干涉检测气体浓度的装置及其精度自动补偿检测方法 WO2010130229A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910103855.6 2009-05-15
CN2009101038556A CN101576489B (zh) 2009-05-15 2009-05-15 光干涉检测甲烷或二氧化碳装置及精度自动补偿检测方法

Publications (1)

Publication Number Publication Date
WO2010130229A1 true WO2010130229A1 (zh) 2010-11-18

Family

ID=41271480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/072820 WO2010130229A1 (zh) 2009-05-15 2010-05-15 光干涉检测气体浓度的装置及其精度自动补偿检测方法

Country Status (2)

Country Link
CN (1) CN101576489B (zh)
WO (1) WO2010130229A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107966544A (zh) * 2017-12-26 2018-04-27 重庆光可巡科技有限公司 避免人工校正的可燃气体探测器的校正系统
CN111283194A (zh) * 2020-02-06 2020-06-16 高尚孜 一种智能制造系统计算机控制方法
CN115032341A (zh) * 2022-06-06 2022-09-09 青岛理工大学 一种主动距离补偿的气体巡检平台及巡检方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101576489B (zh) * 2009-05-15 2012-04-18 重庆同博测控仪器有限公司 光干涉检测甲烷或二氧化碳装置及精度自动补偿检测方法
CN101782507A (zh) * 2010-03-03 2010-07-21 煤炭科学研究总院沈阳研究院 一种煤矿井下极性混合气体光谱分析方法
CN102706834B (zh) * 2012-02-17 2015-01-07 重庆同博测控仪器有限公司 光干涉气体检测装置的气体浓度数值超限检测方法
CN102590144B (zh) * 2012-02-17 2014-10-15 重庆同博测控仪器有限公司 光干涉气体检测装置
CN102692395B (zh) * 2012-04-28 2014-07-16 重庆同博测控仪器有限公司 光干涉气体检测装置及其工况检测方法
CN102721667B (zh) * 2012-06-29 2014-07-16 中国科学院自动化研究所 光干涉式智能气体传感器
CN102998286B (zh) * 2012-12-20 2014-10-15 重庆一心仪器仪表有限公司 一种光干涉甲烷浓度检测方法
CN106645028B (zh) * 2016-10-17 2019-04-02 中国科学院自动化研究所 一种光干涉气体浓度传感器系统
EP3633352B1 (de) * 2018-10-02 2020-12-30 Axetris AG Verfahren und anordnung zum relativen referenzieren eines zielgases in einem optischen messsystem für die laserspektroskopie

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2279603Y (zh) * 1996-04-22 1998-04-22 王恩江 光干涉甲烷检定器
US20070151325A1 (en) * 2004-03-29 2007-07-05 Noveltech Solutions Oy Method and system for detecting one or more gases or gas mixtures and/or for measuring the concentration of one or more gases or gas mixtures
JP2008203022A (ja) * 2007-02-19 2008-09-04 Riken Keiki Co Ltd 光干渉式ガス濃度測定装置
CN101354350A (zh) * 2008-09-01 2009-01-28 陈书乾 光干涉式甲烷测定器
CN101576489A (zh) * 2009-05-15 2009-11-11 重庆同博测控仪器有限公司 光干涉检测甲烷或二氧化碳装置及精度自动补偿检测方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4733967A (en) * 1987-03-19 1988-03-29 Zygo Corporation Apparatus for the measurement of the refractive index of a gas
CN2783317Y (zh) * 2005-03-07 2006-05-24 煤炭科学研究总院重庆分院 便携式智能光干涉甲烷测定器
CN2771850Y (zh) * 2005-03-23 2006-04-12 抚顺煤矿安全仪器总厂 光电甲烷传感器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2279603Y (zh) * 1996-04-22 1998-04-22 王恩江 光干涉甲烷检定器
US20070151325A1 (en) * 2004-03-29 2007-07-05 Noveltech Solutions Oy Method and system for detecting one or more gases or gas mixtures and/or for measuring the concentration of one or more gases or gas mixtures
JP2008203022A (ja) * 2007-02-19 2008-09-04 Riken Keiki Co Ltd 光干渉式ガス濃度測定装置
CN101354350A (zh) * 2008-09-01 2009-01-28 陈书乾 光干涉式甲烷测定器
CN101576489A (zh) * 2009-05-15 2009-11-11 重庆同博测控仪器有限公司 光干涉检测甲烷或二氧化碳装置及精度自动补偿检测方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107966544A (zh) * 2017-12-26 2018-04-27 重庆光可巡科技有限公司 避免人工校正的可燃气体探测器的校正系统
CN111283194A (zh) * 2020-02-06 2020-06-16 高尚孜 一种智能制造系统计算机控制方法
CN111283194B (zh) * 2020-02-06 2022-03-22 山东云则信息技术有限公司 一种智能制造系统计算机控制方法
CN115032341A (zh) * 2022-06-06 2022-09-09 青岛理工大学 一种主动距离补偿的气体巡检平台及巡检方法

Also Published As

Publication number Publication date
CN101576489A (zh) 2009-11-11
CN101576489B (zh) 2012-04-18

Similar Documents

Publication Publication Date Title
WO2010130229A1 (zh) 光干涉检测气体浓度的装置及其精度自动补偿检测方法
CN109470176B (zh) 基于双光栅的高精度三维角度测量方法与装置
CN104634280B (zh) 通用水平转台绝对角度和旋转角度的测量方法
CN102003935B (zh) 一种激光跟踪仪测量中环境补偿的方法
CN108871278B (zh) 一种液体表面反射式双轴光电水平仪及方法
CN107806821B (zh) 用集成四光电探测器的差分单频干涉信号处理装置及方法
CN1041769C (zh) 光学测量仪器
CN105182000B (zh) 光学mems加速度计中三光路信号补偿系统及其方法
CN103542813B (zh) 一种基于边界微分和环境光自校准的激光测径仪
CN105737733A (zh) 一种大范围绝对距离测量中空气折射率的修正方法
JP2011099802A (ja) 軸ぶれ計測方法及び軸ぶれ計測機能を具備した自己校正機能付き角度検出器
CN103162645A (zh) 一种基于椭偏度测量的滚转角误差测量方法和装置
CN114636387B (zh) 一种圆光栅编码器双读数头非对称安装偏心误差补偿方法
CN105974158A (zh) 一种非对称空间外差光谱仪风速测量标定装置及方法
CN103344209B (zh) 一种反射镜零重力面形测试方法
CN109579744B (zh) 基于光栅的跟随式三维光电自准直方法与装置
CN117128877B (zh) 一种薄膜厚度检测方法、计算机及系统
CN111998782B (zh) 光学测量装置及方法
CN112254658B (zh) 一种薄膜厚度的量值溯源方法
CN205581298U (zh) 一种基于f-p标准具的高精度调频连续波激光测距系统
CN104330053A (zh) 微角度测量方法及装置
CN113494890B (zh) 基于fpi干涉仪的光纤光栅应变传感器精度测量装置及方法
CN202256150U (zh) 智能光干涉气体测定装置
CN110006356B (zh) 基于ss-oct间距测量系统中的实时标定装置和方法
CN215767106U (zh) 一种环形激光测角仪刻度系数动态测量装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10774570

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10774570

Country of ref document: EP

Kind code of ref document: A1