WO2010130114A1 - 一种wson光传送网可替代路由实现方法和系统 - Google Patents

一种wson光传送网可替代路由实现方法和系统 Download PDF

Info

Publication number
WO2010130114A1
WO2010130114A1 PCT/CN2009/073692 CN2009073692W WO2010130114A1 WO 2010130114 A1 WO2010130114 A1 WO 2010130114A1 CN 2009073692 W CN2009073692 W CN 2009073692W WO 2010130114 A1 WO2010130114 A1 WO 2010130114A1
Authority
WO
WIPO (PCT)
Prior art keywords
snp
sub
node
segment
alternative
Prior art date
Application number
PCT/CN2009/073692
Other languages
English (en)
French (fr)
Inventor
王振宇
王大江
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP09844526.5A priority Critical patent/EP2432157B1/en
Priority to ES09844526T priority patent/ES2763541T3/es
Priority to US13/257,966 priority patent/US9301028B2/en
Publication of WO2010130114A1 publication Critical patent/WO2010130114A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0267Optical signaling or routing
    • H04J14/0268Restoration of optical paths, e.g. p-cycles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0284WDM mesh architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/22Alternate routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/62Wavelength based
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • H04Q2011/0081Fault tolerance; Redundancy; Recovery; Reconfigurability

Definitions

  • the present invention relates to the field of optical communications, and in particular, to an alternative route implementation method and system for a SCDMA service of a WS0N optical transport network under network resource constraints.
  • WSON Widelength Switched Optical Network
  • WDM ASON Widelength-Division Multi-plexing Automatically Switched Optical Network
  • RWA Routing and Wavelength Assignment: Implementing a solution to solve the problem of SPC (Soft Permanent Connection) connection establishment. Since the RWA problem itself has the characteristics of a non-deterministic polynomial, the R process of the route it contains and the WA process of the wavelength allocation are divided into two steps. The WA wavelength allocation process of the current WSON transport network is often not full-wavelength switching. Due to the limitation of the transmission node's resistance to cross-constraint, it is necessary to provide multiple alternative routes in the R-route calculation process to prevent selection.
  • the routing calculations generally need to meet the constraints issued by the management plane, and usually include: the nodes, links, SRLG (Shared Risk Link Group), and the necessary nodes, links, and SRLG. Therefore, the K alternative routes provided by the ASON control plane must fully satisfy the constraints imposed on the route calculation delivered by the management plane.
  • the control plane calculates the route under the constraint condition, it is often implemented by means of segmentation calculation. The complete route of the SPC source node to the destination node to be calculated according to the necessary nodes, links, SRLG, etc. Divided into several sub-segments, as shown in Figure 1.
  • the technical problem to be solved by the present invention is to overcome the deficiencies of the prior art, and to provide a WSON optical transmission network alternative routing implementation method and system, so as to improve the utilization rate of network resource topology in the optical transmission network in route calculation.
  • a WSON optical transport network alternative routing implementation method includes an alternative routing calculation process under constraints, the computing process comprising the steps of independently calculating an alternative route of each sub-segment according to a constraint issued by the management plane.
  • the above method also includes the step of combining the calculated sub-segment alternative routes to form a complete alternative route.
  • the above combination forms a complete alternative routing step which also includes a screening process such that there are no duplicate nodes and no duplicate links within the same complete alternative route.
  • the above constraints include mandatory network resources and necessary network resources.
  • the above-mentioned mandatory network resources include a mandatory node, a necessary link, and a shared risk link group; the necessary network resources include a must-avoid node, a must-avoid link, and a shared-risk link group.
  • the step of sub-segmentation according to the mandatory network resources is also included before the calculation of the alternative routes of the sub-segments.
  • the source node and the sink node of other sub-segments are regarded as the necessary avoidance nodes.
  • a WSON optical transport network alternative routing implementation system including an alternative route calculation engine, configured to calculate an alternate route under a constraint condition, the alternative route calculation engine includes a sub-segment calculation module, and the sub-segment calculation module uses Independently calculate each sub-segment according to the constraints issued by the management plane Alternative route.
  • the above alternative route calculation engine further includes a combination module, configured to combine the calculated sub-segments of the sub-segments to form a complete alternative route.
  • the above combination module is also used to select alternative routes such that there are no duplicate nodes and no duplicate links within the same complete alternative route.
  • the above alternative route calculation engine is also used to perform sub-segmentation according to the necessary network resources before calculating the alternative routes of the sub-segments.
  • the sub-segment calculation module is further configured to use the source node and the sink node of the other sub-sections as the necessary avoidance nodes in the alternative route calculation process of each sub-segment.
  • the present invention When calculating the alternative routes of each sub-segment, the present invention not only satisfies the constraints issued by the management plane, but also avoids the source and sink nodes of other sub-segments in the case of multiple sub-segments, and no longer any other As a necessary constraint condition, network resources can obtain more alternative routes than the existing segmentation and the nodes through which other sub-segments pass as a constrained constraint, making full use of the network resource topology;
  • the present invention filters and combines the calculated sub-segment routes to obtain a complete alternative route, so that there are no duplicate nodes and links within the same complete alternative route.
  • FIG. 1 is a schematic diagram of routing sub-segment partitioning under resource constraints in a specific implementation manner of the method of the present invention
  • FIG. 2 is a schematic structural view of a specific embodiment of the system of the present invention.
  • FIG. 3 is a schematic diagram of a transport network topology under the constraint of the SNP-4 of the embodiment 1;
  • FIG. 4 is a schematic diagram of an alternative route calculated by the method of the present invention under the constraint of the SNP-4 of the embodiment 1;
  • FIG. 5 is a schematic diagram of an alternative route obtained by using the prior art segmentation isolation strategy under the constraint of the SNP-4 of the embodiment 1; 6 is a schematic diagram of an alternative route calculated by the method of the present invention under the constraint of link link 68 (SNP-6 to SNP-8 direction) of Embodiment 2;
  • FIG. 7 is a schematic diagram of an alternative route calculated by the method of the present invention under the constraint of link link 68 (SNP-8 to SNP-6 direction);
  • FIG. 9 is a schematic diagram of an alternative route calculated by using the segmentation isolation strategy of the prior art under the constraint of link link 68 (SNP-8 to SNP-6 direction).
  • Figure 1 is an example of a constraint condition of a resource network.
  • the solid dot is a mandatory node
  • the dark solid line is a mandatory link
  • the dark thick solid line is a must-have SRLG
  • the hollow dot is unconstrained.
  • the nodes, the light-colored thin solid line is the unconstrained link
  • the light-colored thick solid line is the unconstrained SRLG
  • the dotted line is the omitted unconstrained node sequence.
  • the source and sink nodes of each sub-segment are, in addition to the first and last sub-segments, respectively, the sequential necessary nodes, or the necessary links, and the end nodes of the SRLG.
  • the mandatory constraints involved in the present invention all refer to the nodes, links, SRLG, and the like which are sequentially and strictly specified.
  • the WSON optical transport network of the present invention can replace the routing implementation system.
  • One embodiment, as shown in FIG. 2, includes an alternative route calculation engine for calculating an alternative route under constraint conditions.
  • the alternative route calculation engine is further configured to perform sub-segment partitioning according to constraints, which further includes a sub-segment calculation module and a combination module.
  • the sub-segment calculation module is configured to independently calculate the alternative routes of each sub-segment according to the constraint that the management plane sends the constraint, that is, the intermediate node through which the alternative routes of other sub-segments pass is no longer used as the constraint condition.
  • the combination module is used to combine the calculated sub-segment alternative routing filters to form a complete alternative route, so that there is no duplicate section inside the same complete alternative route. Point and no duplicate links.
  • the constraints issued by the management plane include the network resources and the network resources that must be avoided.
  • the network resources must include the necessary nodes, the necessary links, and the shared risk link groups.
  • the network resources must be avoided.
  • the link and the shared risk link group must be avoided.
  • the sub-segment calculation module calculates the alternative route by using the source node and the sink node of the other sub-sections as the necessary network nodes in the alternative route calculation process of each sub-segment.
  • the WSON optical transport network of the present invention can replace the routing implementation method.
  • the K-replaceable constrained routing calculation is performed under the constraint condition that multiple intermediate nodes are required, the K-weight alternative route obtained by the management plane must pass through Source node, node 1, node 2, node 3 ... node N, sink node.
  • the sub-segment is first divided according to the necessary network resources.
  • the route to be queried is sequentially divided into a source node, a node 1, a node 1, a node 2, a node 2, and a node 3. ...
  • each sub-segment only takes the necessary nodes other than the first and last nodes of the sub-segment, and the connected source and sink nodes as the necessary constraint conditions, instead of the previous ones.
  • the intermediate node through which each sub-segment is routed is a must-avoid constraint.
  • the resulting sub-segment routes are filtered and combined so that the combined routes do not repeat the same node and the same link internally, resulting in a K-complete complete alternative route.
  • a topology diagram of a transport network where the thin solid line is a SNP link and the thick solid line is SRLG, which is composed of SNP-1, SNP-2, SNP-3, SNP-4, and SNP-5. It consists of five nodes, and the links between its nodes (such as link24, linkl 2, etc.) refer to two-way links.
  • the link 34 between the nodes SNP-3 and SNP-4 belongs to SRLG a.
  • the management plane sends a route query request, and needs to calculate the slave node SNP-1 to the node SNP-5, and must pass the K reroute of the node SNP-4, and the final route is sorted according to a certain policy. In this embodiment, the chain is used.
  • the road cost and the smallest sorting strategy can also use other strategies.
  • the sub-routes from the source node SNP-1 to the node SNP-4 are calculated by taking the SNP-5 as a constraint condition, and the SNP-1—>SNP-2—>SNP-4, SNP-1—>SNP is obtained.
  • -3—>SNP-4 is two, as shown by the solid arrows in Figure 4; then, sub-routes from SNP-4 to SNP-5 are calculated by taking the SNP-1 as a constraint.
  • SNP-4->SNP-5 is obtained.
  • the existing segmentation isolation strategy is used to perform alternative route calculation, and the process includes the following steps: First, to avoid the sink node SNP -5 calculates the sub-route of the source node SNP-1 to the node SNP-4 for the constraint condition, and obtains SNP-l->SNP-2->SNP-4, SNP-l->SNP-3->SNP-4 Two, as shown by the solid arrows in Figure 5; Then, to avoid the first node SNP-1, intermediate node SNP-2, SNP-3 passing through the above two routes as constraints, calculate SNP-4 to The sub-route of SNP-5 results in a total of SNP-4 -> SNP-5, as indicated by the dashed arrow in Figure 5.
  • Embodiment 1 The sub-route between the mandatory node SNP-4 and the sink node SNP-5 can be calculated without excluding the node SNP-2 and the node SNP-3, and the obtained sub-segment routes are combined and filtered. Therefore, a complete route that satisfies the constraint condition of the necessary node SNP-4 with respect to the comparative example 1 can be obtained, so that the network topology resource is fully utilized in the route calculation.
  • the WSON optical transport network of the present invention can replace the route implementation method, and the K-replaceable constrained route calculation must be performed under the constraint of multiple intermediate links, and the K-weight alternative route obtained by the management plane must pass through the source in turn.
  • an implementation manner thereof must be separately and separately according to the constraints of linkl2 and link34.
  • the query route is sent, and corresponding K1, ⁇ 2, . . . strip sub-routes satisfying each mandatory link constraint are obtained according to the screening combination strategy.
  • the filtering combination strategy is used again to integrate the complete redundant alternative routing.
  • FIG. 6 to FIG. 9 Another routing network topology diagram shown in FIG. 6 to FIG. 9 , wherein the thin solid line is a SNP link, and the routing query request sent by the management plane requires calculation of the slave node SNP-1 to the node SNP-9, and The K-rerouting of the link link 68 is required, and the final route is sorted according to a certain policy.
  • the link cost and the minimum sorting strategy are used, and other strategies may be used.
  • the route calculation must consider that the constrained link of the link link68 is from SNP6 to SNP8.
  • the sub-routes from the source node SNP-1 to the node SNP-6 are calculated by taking the SNP-9 and the link endpoint SNP8 as constraints, and the SNP-1—>SNP-2—>SNP-4—is obtained.
  • SNP-1 >SNP-3—>SNP-5-->SNP-7-->SNP-6—>SNP-8—>SNP-9;
  • the constrained route of link 68 must be from SNP8 to SNP6.
  • the sub-routes from the source node SNP-1 to the node SNP-8 are calculated by taking the SNP-9 and the link endpoint SNP6 as constraints, and the SNP-1—>SNP-2—>SNP-4—is obtained.
  • the first node SNP-1 and the link endpoint SNP-8 are constraints, and the sub-routes from the link endpoint SNP-6 to the sink node SNP-9 are calculated, and the SNP-6->SNP-4->SNP-9, SNP is obtained.
  • the existing segmentation isolation strategy is used to perform alternative route calculation, and the process includes the following steps:
  • the route calculation first considers that the constrained link of the link link68 is from SNP6 to SNP8. First, the sub-routes from the source node SNP-1 to the node SNP-6 are calculated by taking the SNP-9 and the link endpoint SNP8 as constraints, and the SNP-1—>SNP-2—>SNP-4—is obtained.
  • Embodiment 2 can calculate the sub-route between the mandatory link link 68 without excluding the intermediate node SNP-2, the node SNP-3, the node SNP-4 node SNP-5, and the node SNP-7, and Each sub-segment is route-filtered and combined, so that a complete route that satisfies the constraints of the link link 68 must be obtained with respect to the comparison 2, so that the network topology resources are fully utilized in the route calculation.
  • the scenario of the SRLG must be the same as that of the multiple links.
  • the processing method is basically the same as that of the embodiment 2, and details are not described herein again.
  • the processing method can also be processed in the manner of Embodiment 1 and Embodiment 2, and between each sub-segment and the sub-segment It is treated according to the above screening combination method.
  • the present invention When calculating the alternative routes of each sub-segment, the present invention not only satisfies the constraints issued by the management plane, but also avoids the source and sink nodes of other sub-segments in the case of multiple sub-segments, and no longer any other Network resources as a must-avoid constraint, nodes that are isolated from existing segments and pass other sub-segments As an implementation of the avoidance constraint, more alternative routes can be obtained, and the network resource topology is fully utilized;
  • the present invention filters and combines the calculated sub-segment routes to obtain a complete alternative route, so that there are no duplicate nodes and links within the same complete alternative route.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Description

一种 WSON光传送网可替代路由实现方法和系统
技术领域
本发明涉及光通信领域, 具体涉及一种 WS0N光传送网 SPC业务在网 络资源约束条件下的可替代路由实现方法和系统。
背景技术
在 WSON ( Wavelength Switched Optical Network: 波长交换光网络 )或 称 WDM ASON ( Wavelength-Division Multi-plexing Automatically Switched Optical Network: 波分复用自动交换光网络)光传送网中, 需要通过设计合理 的 RWA ( Routing and Wavelength Assignment: 路由和波长分配) 实现方案以 解决 SPC ( Soft Permanent Connection: 软永久连接)连接建立的问题。 由于 RWA问题本身具有非确定型多项式的特征, 其所包含的路由的 R过程和波 长分配的 WA过程要分为两步实现。 目前的 WSON传送网的 WA波长分配 过程, 往往不是全波长交换的, 由于面临传送节点有阻交叉约束的限制, 需 要在 R路由的计算过程中, 提供多条可替代路由, 以防止在选定路由上的 WA分析失败后, 提供可替换的路由以进行再次的 WA波长分配过程。 在 RFC4655, RFC4657中着重描述了 PCE ( Path Computation Element: 路由计 算组元 )作为 GMPLS ( Generalized Multiprotocol Label Switching: 通用多协 议标志交换) 的路径计算单元的功能以及架构, 而可替代路由正是 PCE在 WSON有阻交叉条件下需要具备的功能。
路由计算一般需要满足管理平面下发的约束条件, 通常包括: 必避的节 点、 链路、 SRLG ( Shared Risk Link Group: 共享风险链路组) , 以及必经的 节点、 链路、 SRLG。 因此, 需要 ASON控制平面提供的 K条可替代路由必 须完全满足管理平面下发的对路由计算的约束条件。 而当控制平面在必经约 束条件下计算路由时, 往往釆用分段计算的方式实现, 根据需要必经的节点、 链路、 SRLG等将要计算的 SPC源节点到目的节点的完整路由, 顺序分成若 干子段, 如附图 1所示。 在计算每个子段的可替代路由时, 习惯的做法是屏 蔽(除该子段源、 宿节点以外的)之前已算出的所有子段的所有可替代路由 所经过的网络资源拓朴, 也就是将之前所有子段的所有可替代路由所经过的 所有节点、 链路、 SRLG作为必避约束条件、 同时包括这个子段以外的其它 必经的节点、 链路、 SRLG, 也作为该子段路由计算的必避约束条件。 这样做 的结果会造成后续待计算子段因为必避的网络资源越来越多, 而导致算出的 可替代路由数越来越少。
发明内容
本发明要解决的技术问题是克服现有技术的不足,提供一种 WSON光传 送网可替代路由实现方法和系统, 以提高光传送网中的网络资源拓朴在路由 计算中的使用率。
本发明的技术问题是通过以下技术方案加以解决的:
一种 WSON光传送网可替代路由实现方法, 包括约束条件下的可替代路 由计算过程, 所述计算过程包括根据管理平面下发约束条件独立计算各子段 的可替代路由的步骤。
上述方法还包括对计算出的各子段可替代路由进行组合形成完整的可替 代路由的步骤。
上述组合形成完整的可替代路由步骤中还包括筛选的过程, 使得在同一 条完整的可替代路由内部不存在重复节点和不存在重复链路。
上述约束条件包括必经网络资源和必避网络资源。
上述必经网络资源包括必经节点、 必经链路和必经共享风险链路组; 所 述必避网络资源包括必避节点、 必避链路和必避共享风险链路组。
在计算各子段的可替代路由之前还包括根据必经网络资源进行子段划分 的步骤。
上述各子段的可替代路由计算过程中将其他子段的源节点和宿节点作为 必避节点。
一种 WSON光传送网可替代路由实现系统, 包括可替代路由计算引擎, 用于计算约束条件下的可替代路由, 所述可替代路由计算引擎包括子段计算 模块, 所述子段计算模块用于根据管理平面下发的约束条件独立计算各子段 的可替代路由。
上述可替代路由计算引擎还包括组合模块, 用于将计算出的各子段可替 代路由组合形成完整的可替代路由。
上述组合模块还用于对可替代路由进行 选, 使得在同一条完整的可替 代路由内部不存在重复节点和不存在重复链路。
上述可替代路由计算引擎还用于在计算各子段的可替代路由之前根据必 经网络资源进行子段划分。
上述子段计算模块还用于在各子段的可替代路由计算过程中, 将其他子 段的源节点和宿节点作为必避节点。
本发明同现有技术相比较的有益效果是:
(1) 本发明在计算各子段的可替代路由时,除了满足管理平面下发的约束 条件, 以及在多子段情况下避开其它子段的源、 宿节点以外, 不再将其它任 何网络资源作为必避约束条件, 相比现有分段隔离并将其他子段经过的节点 作为必避约束条件的实现方式能获得更多的可替代路由, 充分利用了网络资 源拓朴;
(2) 本发明对计算得出的各子段路由进行筛选组合,从而得出完整的可替 代路由, 使得在同一条完整的可替代路由内部没有重复的节点和链路。
附图概述
图 1是本发明方法具体实施方式中必经资源约束条件下的路由子段划分 示意图;
图 2是本发明系统具体实施方式结构示意图;
图 3是实施例 1必经节点 SNP-4约束下传送网络拓朴示意图; 图 4是实施例 1必经节点 SNP-4约束下釆用本发明方法计算获得的可替 代路由示意图;
图 5 是实施例 1必经节点 SNP-4约束下釆用现有技术的分段隔离策略获 得的可替代路由示意图; 图 6是实施例 2必经链路 link68约束下 ( SNP-6到 SNP-8方向)釆用本 发明方法计算获得的可替代路由示意图;
图 7是实施例 2必经链路 link68约束下 ( SNP-8到 SNP-6方向)釆用本 发明方法计算获得的可替代路由示意图;
图 8是实施例 2必经链路 link68约束下 ( SNP-6到 SNP-8方向)釆用现 有技术的分段隔离策略计算获得的可替代路由示意图;
图 9是实施例 2必经链路 link68约束下 ( SNP-8到 SNP-6方向)釆用现 有技术的分段隔离策略计算获得的可替代路由示意图。
本发明的较佳实施方式
下面通过具体实施方式结合附图对本发明作进一步详细说明。
图 1为必经资源网络约束条件的一种示例, 实心圓点为必经节点, 深色 细实线为必经链路, 深色粗实线为必经 SRLG, 空心圓点为无约束要求的节 点, 浅色细实线为无约束要求的链路, 浅色粗实线为无约束要求的 SRLG, 点线为省略的无约束要求的节点序列。首节点到必经节点 1 (或是必经链路 1、 SRLG1的端节点 A ) 、 必经节点 1 (或是必经链路 1、 SRLG1的端节点 B ) 到必经节点 2 (或是必经链路 2、 SRLG2的端节点 A ) ... ...必经节点 n (或是 必经链路 n、 SRLG n的端节点 B )到宿节点。 每个子段的源、 宿节点除首、 末两个子段以外, 分别是顺序必经节点、 或是必经链路、 SRLG 的端节点。 本发明所涉及的必经约束均指的均为顺序地依次严格必经指定的节点、链路、 SRLG等约束。
本发明 WSON光传送网可替代路由实现系统, 其一种实施方式, 如图 2 所示, 包括可替代路由计算引擎, 用于计算约束条件下的可替代路由。
可替代路由计算引擎还用于根据约束条件进行子段划分, 其进一步包括 子段计算模块和组合模块。 子段计算模块用于根据管理平面下发必经约束条 件独立计算各子段的可替代路由, 即不再将其他子段的可替代路由经过的中 间节点作为约束条件。 组合模块用于将计算出的各子段可替代路由筛选组合 形成完整的可替代路由, 使得在同一条完整的可替代路由内部不存在重复节 点和不存在重复链路。 管理平面下发约束条件包括必经网络资源和必避网络 资源, 必经网络资源包括必经节点、 必经链路和必经共享风险链路组, 必避 网络资源包括必避节点、 必避链路和必避共享风险链路组。 子段计算模块在 各子段的可替代路由计算过程中, 将其他子段的源节点和宿节点作为必避网 络节点来计算可替代路由。
本发明 WSON光传送网可替代路由实现方法,在顺序必经多个中间节点 的约束条件下进行 K重可替代的约束路由计算情况下, 管理平面要求所获得 的 K重可替代路由必须依次经过源节点、节点 1、节点 2、节点 3... ...节点 N、 宿节点。 在路由计算时, 首先根据必经的网络资源进行子段划分, 其一种实 施方式,将待查询路由依次分为源节点一 >节点 1、节点 1一>节点 2、节点 2— >节点 3... ...节点 N—>宿节点等子段, 并依次计算各子段的 K,条子路由。 在 进行各子段路由计算的时候, 各子段只将本子段首、 尾节点以外的其它必经 节点、 和连接的源、 宿节点作为必避约束条件, 而不把在它之前得出的各子 段路由所经过的中间节点作为必避约束条件。 最终得出的各子段路由加以筛 选组合, 使得组合后的路由内部不重复经过相同节点和相同链路, 从而得出 K重完整的可替代路由。 其实施例和对比例如下:
实施例 1 :
如图 3所示的一种传送网络拓朴图, 其中细实线为 SNP链路, 粗实线为 SRLG, 由 SNP-1、 SNP-2、 SNP-3、 SNP-4, SNP-5共五个节点组成, 其节点 间的链路(如 link24、 linkl 2等)均指的是双向链路。 节点 SNP-3、 SNP-4之 间的 link34属于 SRLG a。管理平面下发路由查询请求,要求计算从节点 SNP-1 到节点 SNP-5, 且必经节点 SNP-4的 K重路由, 最终的路由按一定的策略进 行排序, 本实施例中釆用链路代价和最小的排序策略, 也可釆用其他的策略。
其可替代路由的实现步骤如下:
首先, 以避开宿节点 SNP-5为约束条件计算源节点 SNP-1到节点 SNP-4 的子路由,得出 SNP-1— >SNP-2— >SNP-4、SNP-1— >SNP-3— >SNP-4共两条, 如图 4中的实线箭头所示;然后,以避开首节点 SNP-1为约束条件,计算 SNP-4 到 SNP-5段的子路由,此时不再将节点 SNP-1到节点 SNP-4段的子路由所经 过的中间节点作为该段路由计算的必避约束条件, 得出 SNP-4—>SNP-5、 SNP-4— >SNP-2—>SNP-5 , SNP-4 ―〉 SNP-3— >SNP-5共三条, 如图 4中的 虚线箭头所示; 最后, 将这两段子段路由组合, 得出源节点 SNP-1到目的节 点 SNP-5、 且必经节点 SNP-4的 4条路由, 如图 4所示, 其中细实线为 SNP 链路, 粗实线为 SRLG, 即:
Al、 SNP-1 ->SNP-2- ―〉 SNP-4- ->SNP-5;
A2、 SNP-1 ->SNP-3- ―〉 SNP-4- ->SNP-5;
A3、 SNP-1- — >SNP-3- ―〉 SNP-4- ->SNP-2- —> SNP-5;
A4、 SNP-1- — >SNP-2- ―〉 SNP-4- ->SNP-3- ―〉 SNP-5。
对比例 1 :
针对如图 3所示的传送网络拓朴图及与实施例 1相同的约束条件, 利用 现有的分段隔离策略进行可替代路由计算, 其过程包括如下步骤: 首先, 以 避开宿节点 SNP-5为约束条件计算源节点 SNP-1到节点 SNP-4的子路由,得 出 SNP-l—>SNP-2—>SNP-4、 SNP-l—>SNP-3—>SNP-4共两条,如图 5中的 实线箭头所示; 然后, 以避开上述两条路由所经过的首节点 SNP-1、 中间节 点 SNP-2、 SNP-3为约束条件, 计算 SNP-4到 SNP-5的子路由得出 SNP-4— >SNP-5共一条, 如图 5中的虚线箭头所示; 最后, 将这两段子路由组合, 得 出源节点 SNP-1到目的节点 SNP-5、 且必经节点 SNP-4的两条路由, 如图 5 所示, 其中细实线为 SNP链路, 粗实线为 SRLG, 即
ΑΓ、 SNP-1— >SNP-2—>SNP-4—>SNP-5;
A2'、 SNP-1—>SNP-3—>SNP-4—>SNP-5。
实施例 1 可在不排除节点 SNP-2、 节点 SNP-3 的条件下计算必经节点 SNP-4到宿节点 SNP-5之间的子路由, 并将得出的各子段路由筛选组合, 从 而可以获得与相对于对比例 1更多的、 满足必经节点 SNP-4约束条件的完整 路由, 使得网络拓朴资源在路由计算中得到了充分的利用。
本发明 WSON光传送网可替代路由实现方法,必经多条中间链路的约束 条件下进行 K重可替代的约束路由计算的情况, 管理平面要求所获得的 K重 可替代路由必须依次经过源节点、 linkl2、 link34 宿节点。 在路由计算 时, 其一种实施方式根据必经 linkl2、 必经 link34... ...等约束分别单独依次下 发查询路由,并根据筛选组合策略获得对应的、满足每个必经链路约束的 Kl、 Κ2.....条子路由。 并根据得出的这 Kl、 Κ2.....条子路由再次运用筛选组合策 略, 整合出完整的 Κ重可替代路由。 其实施例和对比例如下:
实施例 2:
如图 6至图 9所示的另一种传送网络拓朴图, 其中细实线为 SNP链路, 管理平面下发的路由查询请求, 要求计算从节点 SNP-1到节点 SNP-9, 且必 经链路 link68的 K重路由, 最终的路由按一定的策略进行排序, 本实施例中 釆用链路代价和最小的排序策略, 也可釆用其他的策略。
其可替代路由的实现步骤如下:
对于必经指定链路 link68的约束, 路由计算要考虑必经链路 link68的约 束路由是从 SNP6到 SNP8方向。首先,以避开宿节点 SNP-9和链路端点 SNP8 为约束条件, 计算源节点 SNP-1 到节点 SNP-6 的子路由, 得出 SNP-1— >SNP-2— >SNP-4— >SNP-6 , SNP- 1— >SNP-3— >SNP-5— >SNP-7— >SNP-6共 两条,如图 6中的实线箭头所示;然后,以避开首节点 SNP-1、链路端点 SNP-6 为约束条件, 计算链路端点 SNP-8到宿节点 SNP-9的子路由, 得出 SNP-8— >SNP-4— >SNP-9, SNP-8— >SNP-7—>SNP-9, SNP-8— >SNP-9共三条, 如图 6中的虚线箭头所示; 最后, 将这两段子路由组合, 得出源节点 SNP-1到宿 节点 SNP-9、 且必经链路 link68, 从 SNP-6到 SNP-8方向、 无重复节点、 无 重复链路的四条路由, 如图 6所示, 即
Bl、 SNP-1—>SNP-2—>SNP-4 - ->SNP-6- ->SNP-8— >SNP-9;
B2、 SNP-1— >SNP-3—>SNP-5- ->SNP-7- ->SNP-6— >SNP-8— >SNP-9;
B3、 SNP-1—>SNP-2—>SNP-4 - ->SNP-6- ->SNP-8— >SNP-7— >SNP-9;
B4、 SNP-1— >SNP-3—>SNP-5- ->SNP-7- ->SNP-6— >SNP-8— >SNP-4—
>SNP-9。
再考虑必经链路 link68的约束路由是从 SNP8到 SNP6方向。首先, 以避 开宿节点 SNP-9和链路端点 SNP6为约束条件, 计算源节点 SNP-1 到节点 SNP-8的子路由,得出 SNP-1— >SNP-2— >SNP-4— >SNP-8、SNP-1— >SNP-3— >SNP-5—>SNP-7—SNP-8共两条, 如图 7中的实线箭头所示; 然后, 以避开 首节点 SNP-1、 链路端点 SNP-8为约束条件, 计算链路端点 SNP-6到宿节点 SNP-9的子路由, 得出 SNP-6— >SNP-4— >SNP-9、 SNP-6— >SNP-7—>SNP-9 共两条, 如图 7中的虚线箭头所示; 最后, 将这两段子路由组合, 得出源节 点 SNP-1到宿节点 SNP-9、 且必经链路 link68, 从 SNP-8到 SNP-6方向、 无 重复节点、 无重复链路的两条路由, 如图 7所示, 即:
Cl、 SNP-1—>SNP-2—>SNP-4—>SNP-8—>SNP-6—> SNP-7— >SNP-9;
C2、 SNP-1— >SNP-3—>SNP-5—>SNP-7—>SNP-8—>SNP-6—> SNP-4— >SNP-9共两条。
对比例 2:
针对如图 6至图 9所示的传送网络拓朴图及与实施例 2相同的约束条件, 利用现有的分段隔离策略进行可替代路由计算, 其过程包括如下步骤:
对于必经指定链路 link68的约束, 路由计算先考虑必经链路 link68的约 束路由是从 SNP6到 SNP8方向。首先,以避开宿节点 SNP-9和链路端点 SNP8 为约束条件, 计算源节点 SNP-1 到节点 SNP-6 的子路由, 得出 SNP-1— >SNP-2— >SNP-4— >SNP-6 , SNP- 1— >SNP-3— >SNP-5— >SNP-7― SNP-6共 两条, 如图 8中的实线箭头所示; 然后, 以避开上述两条路由所经过的首节 点 SNP-1、 中间节点 SNP-2、 SNP-3、 SNP-4、 SNP5、 SNP-7、 链路端点 SNP-6 为约束条件, 计算链路端点 SNP-8到宿节点 SNP-9 的子路由得出 SNP-8— >SNP-9共一条, 如图 8中的虚线箭头所示; 最后, 将这两段子路由组合, 得 出源节点 SNP-1到宿节点 SNP-9、 且必经链路 link68, 从 SNP-6到 SNP-8方 向的两条路由, 如图 8所示, 即:
ΒΓ、 SNP-1— >SNP-2—>SNP-4—>SNP-6—>SNP-8—>SNP-9;
B2'、 SNP-l—>SNP-3—>SNP-5—>SNP-7—>SNP-6—>SNP-8—>SNP-9。 再考虑必经链路 link68的约束路由是从 SNP8到 SNP6方向。首先, 以避 开宿节点 SNP-9和链路端点 SNP6为约束条件, 计算源节点 SNP-1 到节点 SNP-8的子路由,得出 SNP-1— >SNP-2— >SNP-4— >SNP-8、SNP-1— >SNP-3— >SNP-5—>SNP-7—>SNP-8共两条, 如图 9中的实线箭头所示; 然后, 以避 开上述两条路由所经过的首节点 SNP-1、 中间节点 SNP-2、 SNP-3 , SNP-4、 SNP5、 SNP-7、 链路端点 SNP-8为约束条件, 计算链路端点 SNP-6到宿节点 SNP-9的子路由得出 SNP-8—>SNP-9共零条; 最后, 将这两段子路由组合, 得出源节点 SNP-1到宿节点 SNP-9、 且必经链路 link68, 从 SNP-8到 SNP-6 方向的路由为零条, 如图 9所示。
这样从 SNP1到 SNP9, 且必经 link68的最终路由, 釆用分段隔离的方法 计算只有图 8中所示的两条。
实施例 2可在不排除中间节点 SNP-2、 节点 SNP-3、 节点 SNP-4 节点 SNP-5、 节点 SNP-7的条件下计算必经链路 link68之间的子路由, 并将得出 的各子段路由筛选组合, 从而可以获得相对于对比例 2更多的、 满足必经链 路 link68约束条件的完整路由, 从而使得网络拓朴资源在路由计算中得到了 充分的利用。
必经 SRLG的场景和必经多个链路的情况雷同, 处理的方法也与实施例 2基本相同, 在此不再赘述。
对于必经节点、 必经链路和必经 SRLG三种约束组合起来的情况, 其处 理方法也可按实施例 1和实施例 2的方式加以分段处理, 每个子段内部和子 段之间将按照上述筛选组合法加以处理。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明, 不能认定本发明的具体实施只局限于这些说明。 对于本发明所属技术领域的 普通技术人员来说, 在不脱离本发明构思的前提下, 还可以做出若干简单推 演或替换, 都应当视为属于本发明的保护范围。
工业实用性
技术相比较的具有如下有益效果:
(1) 本发明在计算各子段的可替代路由时,除了满足管理平面下发的约束 条件, 以及在多子段情况下避开其它子段的源、 宿节点以外, 不再将其它任 何网络资源作为必避约束条件, 相比现有分段隔离并将其他子段经过的节点 作为必避约束条件的实现方式能获得更多的可替代路由, 充分利用了网络资 源拓朴;
(2) 本发明对计算得出的各子段路由进行筛选组合,从而得出完整的可替 代路由, 使得在同一条完整的可替代路由内部没有重复的节点和链路。

Claims

权 利 要 求 书
1、 一种 WSON光传送网可替代路由实现的方法, 包括:
根据管理平面下发的约束条件, 独立计算各子段的可替代路由的步骤。
2、根据权利要求 1所述的方法, 所述方法还包括对计算出的各子段可替 代路由进行组合, 以形成完整的可替代路由的步骤。
3、 根据权利要求 2所述的方法, 其中, 所述组合的步骤中还包括筛选的 过程, 以使得在组合后的同一条完整的可替代路由内部不存在重复节点和不 存在重复链路。
4、 根据权利要求 1至 3中任一项所述的方法, 其中, 所述约束条件包括 必经网络资源和必避网络资源。
5、根据权利要求 4所述的方法,其中,所述必经网络资源包括必经节点、 必经链路和必经共享风险链路组; 所述必避网络资源包括必避节点、 必避链 路和必避共享风险链路组。
6、 根据权利要求 5所述的方法, 在根据管理平面下发的约束条件, 独立 计算各子段的可替代路由的所述步骤之前还包括根据所述约束条件中的所述 必经网络资源进行子段划分的步骤。
7、 根据权利要求 6所述的方法, 其中, 所述根据管理平面下发的约束条 件, 独立计算各子段的可替代路由的步骤中的所述独立计算包括将所计算子 段之外的子段的源节点和宿节点作为必避节点。
8、 一种 WSON光传送网可替代路由实现的系统, 包括可替代路由计算 引擎, 所述可替代路由计算引擎包括子段计算模块, 所述子段计算模块设置 为根据管理平面下发的约束条件独立计算各子段的可替代路由。
9、 根据权利要求 8所述的系统, 其中, 所述可替代路由计算引擎还包括 组合模块, 所述组合模块设置为将计算出的各子段可替代路由进行组合, 以 形成完整的可替代路由。
10、 根据权利要求 9所述的系统, 其中, 所述组合模块还设置为对在对 计算出的各子段可替代路由进行组合之前, 对所述各子段可替代路由进行筛 选, 以使得在组合后的同一条完整的可替代路由内部不存在重复节点和不存 在重复链路。
11、 根据权利要求 8至 10中任一项所述的系统, 其中, 所述约束条件包 括必经网络资源和必避网络资源。
12、 根据权利要求 11所述的系统, 其中, 所述必经网络资源包括必经节 点、 必经链路和必经共享风险链路组; 所述必避网络资源包括必避节点、 必 避链路和必避共享风险链路组。
13、 根据权利要求 12所述的系统, 其中, 所述子段计算模块还设置为在 根据管理平面下发的约束条件独立计算各子段的可替代路由之前, 根据所述 约束条件中的所述必经网络资源进行子段划分。
14、 根据权利要求 13所述的系统, 其中, 所述子段计算模块还设置为在 根据管理平面下发的约束条件独立计算各子段的可替代路由的计算过程中, 将所计算子段之外的子段的源节点和宿节点作为必避节点。
PCT/CN2009/073692 2009-05-11 2009-09-02 一种wson光传送网可替代路由实现方法和系统 WO2010130114A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09844526.5A EP2432157B1 (en) 2009-05-11 2009-09-02 Method and system for implementing alternate routes in optical transmission network of wavelength switched optical network (wson)
ES09844526T ES2763541T3 (es) 2009-05-11 2009-09-02 Procedimiento y sistema para implementar rutas alternativas en la red de transmisión óptica de la red óptica conmutada en longitud de onda (wson)
US13/257,966 US9301028B2 (en) 2009-05-11 2009-09-02 Method and system for implementing alternate routes in optical transmission network of wavelength switched optical network (WSON)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910107255.7 2009-05-11
CN200910107255.7A CN101888572B (zh) 2009-05-11 2009-05-11 一种wson光传送网可替代路由实现方法和系统

Publications (1)

Publication Number Publication Date
WO2010130114A1 true WO2010130114A1 (zh) 2010-11-18

Family

ID=43074251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/073692 WO2010130114A1 (zh) 2009-05-11 2009-09-02 一种wson光传送网可替代路由实现方法和系统

Country Status (5)

Country Link
US (1) US9301028B2 (zh)
EP (1) EP2432157B1 (zh)
CN (1) CN101888572B (zh)
ES (1) ES2763541T3 (zh)
WO (1) WO2010130114A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5716587B2 (ja) * 2011-07-19 2015-05-13 富士通株式会社 経路決定装置,経路決定方法,管理プログラム及び管理装置
US9054831B2 (en) * 2012-01-05 2015-06-09 Ciena Corporation Optical communication network path restoration
JP2013236206A (ja) * 2012-05-08 2013-11-21 Fujitsu Ltd 経路探索装置、経路探索方法及び経路探索プログラム
CN104469560A (zh) * 2014-12-26 2015-03-25 西安科技大学 基于通用多协议标签交换的波长交换光网络路由的方法
CN105991188B (zh) * 2015-02-16 2019-09-10 阿里巴巴集团控股有限公司 一种检测共享风险链路组的方法及装置
CN105141524B (zh) * 2015-09-16 2018-06-01 武汉烽火技术服务有限公司 一种带约束条件的拓扑图最优路径算法
US10694271B2 (en) * 2018-09-20 2020-06-23 Infinera Corporation Systems and methods for decoupled optical network link traversal
CN115834463A (zh) * 2021-09-16 2023-03-21 中兴通讯股份有限公司 路径计算方法、装置、网络控制器和存储介质
CN114040273B (zh) * 2021-10-25 2023-06-23 烽火通信科技股份有限公司 一种基于故障点自动调整路由倒换的方法及系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1710868A (zh) * 2005-07-14 2005-12-21 广东省电信有限公司研究院 自动交换光网络中主备保护的跨域端到端连接的建立方法
US7120118B2 (en) * 2001-10-18 2006-10-10 Intel Corporation Multi-path analysis for managing machine communications in a network

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7535826B1 (en) * 2000-12-11 2009-05-19 Juniper Networks, Inc Routing protocols for accommodating nodes with redundant routing facilities
WO2005036839A2 (en) * 2003-10-03 2005-04-21 Avici Systems, Inc. Rapid alternate paths for network destinations
CN100440864C (zh) * 2005-07-22 2008-12-03 中兴通讯股份有限公司 一种获得智能光网络约束路由的方法
EP1943784B1 (en) * 2005-08-08 2017-02-15 Telecom Italia S.p.A. Method for configuring an optical network
CN101192883A (zh) * 2006-11-21 2008-06-04 华为技术有限公司 Wdm光网络中组播保护方法
US20080225723A1 (en) * 2007-03-16 2008-09-18 Futurewei Technologies, Inc. Optical Impairment Aware Path Computation Architecture in PCE Based Network
US7668971B2 (en) * 2008-01-11 2010-02-23 Cisco Technology, Inc. Dynamic path computation element load balancing with backup path computation elements
US7839767B2 (en) * 2008-03-07 2010-11-23 Cisco Technology, Inc. Path reroute in a computer network

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7120118B2 (en) * 2001-10-18 2006-10-10 Intel Corporation Multi-path analysis for managing machine communications in a network
CN1710868A (zh) * 2005-07-14 2005-12-21 广东省电信有限公司研究院 自动交换光网络中主备保护的跨域端到端连接的建立方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FU, WEIKE: "The Research of Network Partition Algorithms for ASON Optimition", CHINESE MASTER'S THESES FULL-TEXT DATABASE, INFORMATION SCIENCE AND TECHNOLOGY. YEAR 2008, no. 11, 15 November 2008 (2008-11-15), pages I136 - 495, XP008165664 *
See also references of EP2432157A4 *

Also Published As

Publication number Publication date
EP2432157A1 (en) 2012-03-21
CN101888572B (zh) 2014-08-13
CN101888572A (zh) 2010-11-17
EP2432157A4 (en) 2012-11-07
US9301028B2 (en) 2016-03-29
EP2432157B1 (en) 2019-10-02
ES2763541T3 (es) 2020-05-29
US20120057868A1 (en) 2012-03-08

Similar Documents

Publication Publication Date Title
WO2010130114A1 (zh) 一种wson光传送网可替代路由实现方法和系统
US7835267B2 (en) Dynamic path protection in an optical network
CN100396040C (zh) 智能光网络中路径选择的方法
US20100080119A1 (en) Method for restoring connections in a network
US20110243030A1 (en) Systems and methods for determining protection paths in a multi-domain network
WO2011015057A1 (zh) K优路径的计算方法及装置
EP3244580A1 (en) Network service establishment method, cooperation control centre and network system
US7664029B2 (en) Method of determining a spectral route for a given connection in an optical telecommunications network
WO2010028560A1 (zh) 在mesh网络中实现永久环网保护的方法
WO2023015897A1 (zh) 一种光网络智能控制方法、装置及系统
JP2017511656A (ja) 光ネットワーク内に光コネクションをプロビジョニングするための方法
US20020167899A1 (en) System and method for the configuration, repair and protection of virtual ring networks
US20140040476A1 (en) Method and system for network restructuring in multilayer network
WO2015039554A1 (zh) 一种基于wson网络减少波长连续性限制的方法
WO2012129907A1 (zh) 一种多重保护叠加的保护组实现方法和装置
CN102098594A (zh) 一种基于信息扩散光网络的连接建立信令冲突避免方法
US9007892B2 (en) Apparatus and method to find partially disjoint routes for dual fiber-cuts
JP5904892B2 (ja) 光ネットワークのエネルギー効率のよい再最適化のための方法
Jaeger et al. Evaluation of novel resilience schemes in dynamic optical transport networks
JP2012105264A (ja) トラフィックグルーミングのための方法、装置、およびシステム
German et al. On the challenges of finding two link-disjoint lightpaths of minimum total weight across an optical network
WO2011009376A1 (zh) Ason业务路由分离方法及装置
Lu et al. Optical layer-driven network restoration and redesign for improved fast reroute reliability
EP2141866B1 (en) Method and apparatus for finding a path in a GMPLS controlled network
Wang et al. Efficient segment-by-segment restoration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09844526

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13257966

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009844526

Country of ref document: EP