WO2010128740A1 - Inductively coupled plasma processing apparatus employing diffusion pump - Google Patents

Inductively coupled plasma processing apparatus employing diffusion pump Download PDF

Info

Publication number
WO2010128740A1
WO2010128740A1 PCT/KR2009/006181 KR2009006181W WO2010128740A1 WO 2010128740 A1 WO2010128740 A1 WO 2010128740A1 KR 2009006181 W KR2009006181 W KR 2009006181W WO 2010128740 A1 WO2010128740 A1 WO 2010128740A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
inductively coupled
processing apparatus
plasma processing
coupled plasma
Prior art date
Application number
PCT/KR2009/006181
Other languages
French (fr)
Korean (ko)
Inventor
이제원
Original Assignee
인제대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인제대학교 산학협력단 filed Critical 인제대학교 산학협력단
Publication of WO2010128740A1 publication Critical patent/WO2010128740A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32816Pressure
    • H01J37/32834Exhausting
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching

Definitions

  • the present invention relates to an inductively coupled plasma processing apparatus, and more particularly, to an inductively coupled plasma processing apparatus capable of performing plasma processing by smart control of a diffusion pump.
  • Plasma processing apparatuses can be used in various applications, but they are mainly used in plasma CVD (Chemical Vapor Deposition) and dry etching when the chemical reaction of gases is considered in a plasma.
  • plasma CVD Chemical Vapor Deposition
  • dry etching when the chemical reaction of gases is considered in a plasma.
  • the plasma CVD method is a method of forming a thin film by depositing a thin film on a substrate by chemical reaction of a source gas using plasma.
  • This plasma CVD method is a method of forming a thin film by forming a semiconductor integrated circuit element, a MEMS element, A semiconductor film, an insulating film, a photoconductive film, a diffusion preventing film, and a contact layer film.
  • the dry etching method is a method of etching a thin film by chemical reaction using a predetermined source gas plasma, and is also widely used in the above-mentioned fields such as semiconductor film processing.
  • inductively coupled plasma is attracting attention. This is because, by using the inductively coupled plasma, for example, high-speed etching can be performed and electrical damage of the etched thin film can be reduced, etching treatment which has not been realized so far can be performed and processing efficiency is improved.
  • a plasma generating electrode is used to generate plasma in the chamber, and typically high-frequency power is applied to the plasma generating electrode.
  • the type of the plasma generating electrode can be classified into a capacitively coupled plasma (plasma) method and an inductively coupled plasma (ICP) method.
  • An electrode method, and an internal electrode method in which electrodes are disposed in a chamber are classified into a capacitively coupled plasma (plasma) method and an inductively coupled plasma (ICP) method.
  • An electrode method, and an internal electrode method in which electrodes are disposed in a chamber are classified into a capacitively coupled plasma (plasma) method and an inductively coupled plasma (ICP) method.
  • An electrode method, and an internal electrode method in which electrodes are disposed in a chamber is widely used and is called a capacitively coupled plasma (CCP) generating apparatus.
  • CCP capacitively coupled plasma
  • This capacitively coupled plasma generating apparatus uses a charge accumulation principle of a condenser and two electrodes are opposed to each other in a chamber to apply high frequency power, low frequency power, direct current power, or time-modulated power to these electrodes It is possible to structure. And the other electrode is grounded. Or the other electrode is grounded through a combination of a capacitor, a coil (inductor), a capacitor and a coil.
  • These parallel flat plate type electrode structures accelerate charged particles such as electrons and ions by an electrostatic field between two electrodes and cause the charged particles and the charged particles to collide with each other due to the interaction between charged particles and charged particles, Is generated and maintained. It is difficult to generate and maintain a plasma at a high vacuum pressure of 10 mTorr or less in this capacitively coupled plasma generating apparatus.
  • a capacitively coupled plasma generator can not separate ion density and ion energy during dry etching. Therefore, if the high frequency power source is increased to increase the etching rate, it is likely to cause electrical, optical, and thermal damage to the material during etching due to collision with ions having a high acceleration energy.
  • an inductively coupled plasma generation method is widely used as an excellent method for generating a high vacuum high density plasma.
  • This paper summarizes the results of Chapter 2 Planar Inductively Sources (John C. Forster and John H. Kelle, p. 76) of High Density Plasma Sources (Noyes Publication, New Jersey, 1995), edited by Oleg A. Popov, -98) and Chapter 3 Electostatically-Shielded Inductively Coupled RF Plasma Sources (Wayne L. Johnson, pp. 100-148).
  • This inductive coupling method is to generate and maintain a plasma by electromagnetic induction by a change in the current flowing through the plasma generating antenna. That is, the generation and maintenance mechanism of the plasma depends on the interaction between the electromagnetic wave and the charged particle.
  • high density plasma can be generated while maintaining low ion energy in a high vacuum. Therefore, it is easy to generate and maintain a high-density plasma even at a relatively low pressure of 10 mTorr or less, so that a high-vacuum high-density plasma can be obtained.
  • an external antenna system in which a plasma generating antenna is disposed outside the chamber is widely used.
  • a plasma generating antenna in the form of a coil or a modified loop is disposed around the outside of a part made of a dielectric material such as quartz or alumina in a discharge chamber.
  • Reference 1 and the like refer to a more detailed prior art relating to an inductively coupled plasma processing apparatus.
  • the vacuum exhaust structure of the high vacuum plasma processing apparatus for dry etching is composed of a low vacuum auxiliary pump (also referred to as a 'roughing pump' or a 'backing pump') and a high vacuum main pump
  • a mechanical pump was used as an auxiliary pump
  • a turbomolecular pump was used as a high vacuum foreline pump.
  • turbo-molecular pump when a turbo-molecular pump is used as a high-vacuum foreline pump, there is an advantage that a very high degree of vacuum can be obtained.
  • the turbo-molecular pump has the following problems.
  • the turbo-molecular pump is composed of a stationary stator and a rotor.
  • the principle of the vacuum exhaust is to rotate the rotating blades of the turbo molecular pump rotor at a high speed to discharge the gas.
  • the reactive material accumulates in an extremely narrow gap between the rotor and the stator of the turbo molecular pump and impurities such as sample fragments are introduced, it has a disadvantage that it is directly connected to the failure of the high-speed rotary blade of the turbo molecular pump.
  • Turbomolecular pumps are also susceptible to electrical and mechanical shocks in the plasma etching process.
  • the turbomolecular pump has a disadvantage that it is vulnerable to overloading shocks such as power outage and lightning as long as the power is supplied during normal operation, because the mechanical impact of the turbo molecular pump damages the precision components such as rotating blades.
  • turbo molecular pump is a very expensive device, which costs up to tens of millions of dollars in maintenance and repair costs (which is more than half the cost of purchasing new products).
  • FIG. 1 shows a photograph of a turbo molecular pump (left) in which a normal turbo molecular pump (left) and a stator and a rotor of a turbo pump in the process are destroyed together.
  • a diffusion pump can be proposed as a high-vacuum pump in place of the turbo-molecular pump, there is no problem in the case of a diffusion pump.
  • the diffusion pump has been mainly used for physical vapor deposition such as sputtering and thermal evaporation, but it is hardly used for plasma chemical vapor deposition or plasma etching.
  • plasma etching in which high vacuum and high density ions are required, such as inductively coupled plasma etching, a diffusion pump is not used, and no embodiment can be found.
  • inert gas such as argon
  • the inert gas which is used as a mixed gas in the etching process or the like, has a poor bonding property with the oil gas of the diffusion pump and does not discharge well. That is, when a small amount of argon gas flows into the diffusion pump, the pressure in the discharge chamber rises sharply and deviates from the proper inductively coupled plasma etching pressure. So far, inductively coupled plasma etching has been carried out using a turbo molecular pump at a constant gas flow rate (for example, 20 scmm) and in a narrow range of high vacuum within 1 to 20 mTorr.
  • a turbo molecular pump at a constant gas flow rate (for example, 20 scmm) and in a narrow range of high vacuum within 1 to 20 mTorr.
  • the diffusion pump repeats the process of evaporating the oil and cooling it again, in which process the oil gas is very likely to backstream into the plasma reaction chamber.
  • the plasma process can not be performed properly, and the quality of the plasma-treated substrate is deteriorated.
  • a diffusion pump is employed in place of the turbo molecular pump, and an inductive coupling plasma process Device.
  • An inductively coupled plasma processing apparatus comprising a vacuum chamber, a plasma generating section, a gas supplying section, and an exhaust section,
  • the exhaust unit includes:
  • a main exhaust line connected to the vacuum chamber and the diffusion pump, the main exhaust line having a throttle valve and serving as an exhaust passage;
  • An auxiliary exhaust line connected to the vacuum chamber, the diffusion pump, and the auxiliary pump and having a main valve and an auxiliary valve,
  • the present invention also provides an inductively coupled plasma processing apparatus comprising a pressure gauge on the main exhaust line between the throttle valve and the diffusion pump.
  • the auxiliary exhaust line may include a pressure gauge between the vacuum chamber and the auxiliary pump, and a pressure gauge may be provided between the diffusion pump and the auxiliary pump.
  • the throttle valve is closed when the pressure gauge exceeds 10 mTorr in the process atmosphere.
  • the present invention also provides an inductively coupled plasma processing apparatus, wherein the main exhaust line has a conductance within a range of 100 to 9 ⁇ 10 6 / s.
  • the present invention also provides an inductively coupled plasma processing apparatus, wherein the main exhaust line has an l / d ratio within a range of 1 ⁇ 10 -4 to 1 ⁇ 10 3 .
  • the auxiliary exhaust line has a cross-sectional area of 0.01 cm 2 or more and a l / d ratio within a range of 1 ⁇ 10 -4 to 1 ⁇ 10 3. Lt; / RTI >
  • the diffusion pump includes a body, an evaporator, a nozzle, an oil, a cooling means, a heater, an inlet and an outlet, and a temperature meter at the inlet. to provide.
  • the throttle valve is closed when the temperature meter indicates 50 ° C or more.
  • the present invention also provides an inductively coupled plasma processing apparatus characterized in that the temperature of the heater is 600 ⁇ or less.
  • the present invention also provides an inductively coupled plasma processing apparatus, wherein the oil includes a silicone oil.
  • the auxiliary pump may include at least one selected from a mechanical pump, a dry pump, a booster pump, and an oil pump connected in series or in parallel.
  • the plasma processing apparatus of the present invention employs a diffusion pump, and the mechanical residual capacity ratio is significantly lower than that of the turbomolecular pump employing the pump, the maintenance cost is much lower, and the high-density plasma treatment with high quality can be effected.
  • FIG. 1 is a photograph of a turbo molecular pump (left) in which a normal turbo molecular pump (left) and a stator and a rotor of a turbo pump in the process are destroyed together.
  • FIG. 2 is a schematic view showing a configuration of an embodiment of the plasma processing apparatus of the present invention.
  • FIG. 3 is a schematic view showing the configuration of the diffusion pump of the plasma processing apparatus of the present invention.
  • FIG. 4 is a graph showing the results of diffusion pump inductively coupled plasma (ICP) etching and reactive ion etching (RIE) of a cyclic olefin copolymer (COC) according to process pressure.
  • ICP inductively coupled plasma
  • RIE reactive ion etching
  • FIG. 5 is a graph showing the results of diffusion pump inductively coupled plasma (ICP) etching and reactive ion etching (RIE) of polymethylmethacrylate (PMMA) according to the process pressure.
  • ICP inductively coupled plasma
  • RIE reactive ion etching
  • ICP diffusion pump inductively coupled plasma
  • RIE reactive ion etching
  • An inductively coupled plasma processing apparatus comprising a vacuum chamber, a plasma generating section, a gas supplying section, and an exhaust section,
  • the exhaust unit includes:
  • a main exhaust line connected to the vacuum chamber and the diffusion pump, the main exhaust line having a throttle valve and serving as an exhaust passage;
  • An auxiliary exhaust line connected to the vacuum chamber, the diffusion pump, and the auxiliary pump and having a main valve and an auxiliary valve,
  • the main exhaust line may further include a pressure gauge between the throttle valve and the diffusion pump.
  • the steam pressure of the diffusion pump is measured in the main exhaust line between the throttle valve and the diffusion pump in addition to the two pressure gauges used in the pressure measurement of the main exhaust line and the auxiliary exhaust line in the high- We have added a pressure gauge that can be used.
  • the steam pressure of the diffusion pump can be measured through the pressure gauge, and the opening / closing condition of the throttle valve, the opening / closing speed of the throttle valve, the position of the valve, and the opening / closing period of the throttle valve can be controlled based on this value.
  • the throttle valve is controlled not to open, Initial backflow can be minimized.
  • the control of the valve may be performed manually by a person, but may be performed by a mechanical device using fluid, a circuit wiring, or an automatic control through a computer.
  • the automatic control device can use the automatic control device described in the prior art without limitation.
  • the main exhaust line has a conductance within a range of 100 to 9 ⁇ 10 6 l / s. At less than 100 l / s, the process pressure suitable for plasma treatment may not be reached even if the performance of the diffusion pump is good, and if it exceeds 9 ⁇ 10 6 l / s, it may be inefficient due to the performance of the diffusion pump have.
  • the conductance of the main exhaust line was about 3,000 L / s.
  • Conductance is a term used to discuss the motion of a gas through a vacuum system, and refers to the ability of a pipe (line of the present invention) to pass gas through a given time.
  • Viscos flow at low vacuum (760 ⁇ 10 -2 Torr) and molecular flow at high vacuum (10 -3 ⁇ 10 -10 Torr) it can be explained by how easily gas can reach any pump to be. Therefore, high conductance is an important factor in constructing a high vacuum chamber, indicating that the degree of gas reaching the pump is high.
  • Conductance is affected not only by the length, diameter and pressure difference of the pipe but also by the material properties such as temperature, bent shape, shape and roughness of the pipe.
  • the main exhaust line has a ratio of diameter to length l / d (1: the length of the line and d: the diameter of the line) in the range of 1 ⁇ 10 -4 to 1 ⁇ 10 3 . If it is smaller than the above range, there is a problem in production. If it is larger than this range, it may not be suitable for high vacuum exhaust.
  • the auxiliary exhaust line preferably has a cross-sectional area of 0.01 cm 2 or more and a l / d ratio within a range of 1 ⁇ 10 -4 to 1 ⁇ 10 3 .
  • the minimum cross-sectional area for vacuum evacuation should be at least the above-mentioned range so that the evacuation is easy. If the ratio of 1 / d is also smaller than the above-mentioned range, there is a problem in production.
  • the diffusion pump includes a body, an evaporator, a nozzle, an oil, a cooling means, a heater, an inlet and an outlet, and a temperature meter at the inlet.
  • the diffusion pump of the present invention is provided with a temperature meter at the inlet port so that the temperature of the diffusion pump inlet and the heater portion can be accurately monitored.
  • the throttle valve is closed when the temperature gauge indicates 50 DEG C or higher. If the inlet of the diffusion pump is above the above-mentioned temperature, there is a problem in cooling the diffusion pump. If the inlet of the diffusion pump is opened above the temperature, the chamber may be contaminated.
  • the control of the valve may be performed manually by a person, but may be performed by a mechanical device using fluid, a circuit wiring, or an automatic control through a computer.
  • the automatic control device can use the automatic control device described in the prior art without limitation.
  • the heater temperature of the diffusion pump is preferably 600 ° C or less. Temperatures higher than 600 [deg.] C may degrade the properties of the oil for etching gas exhaust, thereby reducing the efficiency of the etching process.
  • the heater temperature control may be manually performed by a person, but may be automatically controlled through a mechanical device such as a fluid, a circuit wiring, or a computer.
  • the automatic control device can use the automatic control device described in the prior art without limitation.
  • the ON / OFF controller is mainly used.
  • Fig. 2 shows the configuration of one embodiment of the plasma processing apparatus of the present invention.
  • the vacuum chamber 10 is a reaction space in which a plasma treatment such as plasma etching or deposition takes place.
  • the vacuum chamber 10 is connected to the gas supply unit 30 and the exhaust unit 40 and has a closed structure so that the vacuum pressure can be caught.
  • a chuck 210 and a plasma generating electrode 220 are disposed in the vacuum chamber 10 and the chuck 210 and the plasma generating electrode 220 may be combined together.
  • an RF antenna 230 for inductively coupled plasma is provided outside the vacuum chamber 10.
  • a high frequency bias power supply source 250 is connected to one end of the RF antenna 230, and a ground is connected to the other end.
  • the plasma generating unit 20 includes a chuck 210 for lifting a substrate 100, a plasma generating electrode 220 for generating plasma, An RF antenna 230 for increasing the density of the plasma, and high frequency bias power sources 240 and 250 for supplying RF power to the plasma generating electrode and the RF antenna 230.
  • the substrate 100 is placed on the chuck 210.
  • a heat exchange pipe 262 is attached to the inside of the chuck 210.
  • the temperature of the chuck 210 is controlled by a cooling or high temperature fluid supplied by the heat exchanger 264.
  • the gas temperature control device uses the PID control method, it may use a gripping circuit, PI control or simple ON / OFF control as necessary.
  • An electric resistance heater or the like may be provided on the chuck 210 for high-temperature heat transfer.
  • the chuck 210 and the plasma generating electrode 220 may be separately provided, but may be combined into one. In an embodiment of the present invention, the chuck 210 and the plasma generating electrode 220 are integrated.
  • the chuck 10 is connected to a bias high frequency power supply 244 through an impedance matching circuit 242.
  • the impedance matching circuit 242 and the bias high frequency power supply 244 constitute a high frequency bias power supply source 240.
  • the alternating power induced by the high frequency power supply 244 for bias is impedance-adjusted by the impedance matching circuit 242 and supplied to the chuck 210, and the bias voltage of the substrate 100 is adjusted.
  • a shield plate 270 connected to the vacuum chamber 10 and the chuck 210 is electrically insulated in the chamber 10 by an insulator 272.
  • the frequency of the bias high-frequency power supply 244 uses the frequency for generating plasma.
  • the bias power source usually uses the above-mentioned high frequency power source of about 1 to 50,000 W, more preferably about 1 to 1,000 W.
  • the RF antenna 230 is formed by bending the copper pipe in a circular shape of about three turns.
  • the diameter of the outermost ring can be adjusted to about 300 mm.
  • the copper pipe horizontally lies on the chamber ceiling and is separated from the vacuum chamber 10 by a quartz glass plate 222 which is an insulator. Cooling water is introduced into the copper pipe to cool the electrode. However, it may be air-cooled if necessary, and may not be cooled in the case of small power.
  • the introduction terminal 232 of the RF antenna 230 is connected to the high frequency power supply 254 through the impedance matching circuit 252.
  • the impedance matching circuit 252 and the high frequency power supply 254 constitute a high frequency bias power supply source 250.
  • the frequency of the high frequency power supply 254 is 13.56 MHz and the rated output is 2 kW. However, the frequency is not limited to this, but a kHz class, 60 MHz or 100 MHz may be used, and the use range is about 10 kHz to 1000 MHz. If the upper limit of the range is exceeded, the conductor can not be used as a wiring material, and if the lower limit is exceeded, the conductor can not be transmitted as a radio wave.
  • the output waveform may be a sinusoidal waveform or a waveform obtained by applying a predetermined deformation to the output waveform.
  • a pi (pi) type circuit is used as the impedance matching circuit 252
  • a T type circuit other than the pi type circuit may be used.
  • the alternating power induced by the high frequency power supply 254 is impedance-adjusted by the impedance matching circuit 252 and supplied to the plasma generating electrode 230 through the lead-in terminal 232.
  • the RF power supplied to the RF antenna 230 is typically about 1 to about 90,000 W, and more preferably about 1 to about 2,000 W is used.
  • the gas supply unit 30 includes a gas supply line 310, a gas regulating plate 320, a gas flow regulator 330, a gas tank 340, and a vaporizer 350.
  • the gas may be injected into the gas supply line 310 by directly connecting the gas in the gaseous state such as nitrogen using the gas tank 340 or may be injected by introducing a liquid or solid material into the vaporizer 350 and vaporizing .
  • the gas can be regulated in pressure and flow by a mass flow meter 330.
  • the gas may be a gas containing an oxygen component such as O 2 , N 2 O;
  • a gas containing a fluorine component such as CF 4 or SF 6 ; Cl 2 , BCl 3 and other chlorine components; Ar, N 2, and the like may be used alone or in combination.
  • the exhaust portion 40 includes a diffusion pump 410, an auxiliary pump 420, a main exhaust line 430, an auxiliary exhaust line 440, a throttle valve 450, a main valve 452 ), An auxiliary valve 454, and pressure gauges 460, 461 and 462.
  • the pressure gauges 460, 461 and 462 are connected to the main exhaust line 430 between the throttle valve 450 and the diffusion pump 410, the auxiliary exhaust line 440 between the vacuum chamber 10 and the auxiliary pump 420, And is provided on an auxiliary barrier line 440 between the diffusion pump 410 and the auxiliary pump 420, respectively.
  • the auxiliary pump 420 is an oil spin pump (exhaust rate is 600 liters per minute) and is connected to the vacuum chamber 10 through the auxiliary exhaust line 440.
  • an oil-free pump may be used as the auxiliary pump 420, and a dry pump may be used to improve the integrity.
  • a general-purpose mechanical pump or booster pump may be used.
  • the diffusion pump 410 is connected to the vacuum chamber 10 through the main exhaust line 430, and a throttle valve 450 is provided between the diffusion pump 410 and the vacuum chamber 10 to adjust the amount of exhaust gas.
  • An auxiliary pump 420 is connected to a downstream end of the diffusion pump 410.
  • the main valve 452 is provided in the auxiliary exhaust line 440 between the diffusion pump 410 and the auxiliary pump 420 and the auxiliary valve 454 is connected between the diffusion pump 410 and the auxiliary pump 420 Is provided on the auxiliary exhaust line (440) from the auxiliary exhaust line (440) to the vacuum chamber (10).
  • any of those conventionally used for the diffusion pump may be used without limitation.
  • oils are mineral oils, silicone oils, polyphenyl ether, perfluro polyether, etc., or synthetic oils thereof.
  • silicone oil was used as the diffuser pump oil.
  • the oils used in the plasma treatment apparatus preferably have low vapor pressures, especially those which do not react with the gas injected into the process to produce unexpected by-products.
  • the silicone oil is excellent in chemical resistance and low in cost, and therefore, is preferable as the diffusion pump oil of the present invention. If you do not consider the price, you can use oil of polypheyl ether series which has excellent chemical resistance.
  • FIG. 3 shows a diffusion pump according to an embodiment of the present invention.
  • the diffusion pump includes a body 411, an evaporator 412, a nozzle 413, an oil 414, a cooling coil 415, a heater 416, an inlet 417, 418, and a temperature meter 419 is provided at the inlet.
  • the exhaust principle of the diffusion pump is that when the oil at the bottom of the diffusion pump is heated by the heater, the oil vapor rises along the evaporation pipe and is injected downward through the nozzle. At this time, the surrounding gas molecules are also moved in the same direction and exhausted.
  • Prior art for the diffusion pump can be found in, for example, U.S. Provisional Patent Application entitled " Vacuum Technology Practice ", Hongleung Scientific Publishing Co., 2004, page 174, which is incorporated herein by reference.
  • the process pressure can be used in the range of 1 to 1,000 mTorr, more preferably in the range of 1 to 200 mTorr.
  • the flow rate of the gas is controlled by the flow regulator, and the process pressure can be controlled by the throttle valve.
  • Plasma processing steps were performed on various types of substrates using the apparatus of the present invention.
  • the pressure gauges 461 and 462 reach a given constant pressure (e.g., pressure gauge 461: about 1 mTorr or less, pressure gauge 462: about 50 mTorr or less), and the throttle valve 450 and the diffusion
  • the throttle valve 450 is opened to evacuate the vacuum chamber 10 to a high vacuum region.
  • the main exhaust line (foreline) valve and the throttle valve are separately used.
  • the integrated throttle valve 450 newly developed by combining the main exhaust line (foreline) The pressure of the pump was adjusted.
  • the plasma etching process was performed on the cyclic olefin copolymer (COC) material, the polymethylmethacrylate (PMMA) material, and the olycarbonate (PC) material.
  • COC cyclic olefin copolymer
  • PMMA polymethylmethacrylate
  • PC olycarbonate
  • FIGS. 4 to 6 are graphs showing results of etching the material according to the process pressure change through the diffusion pump inductively coupled plasma etching apparatus developed through the present invention.
  • FIG. The process conditions used were fixed with 5 sccm (standard cubic centimeter per minute) of oxygen gas, 300 W inductively coupled plasma (ICP) power, and 100 W sample bias bias (RIE) power source. Also, for comparison with the conventional capacitively coupled plasma etching, the results of the plasma etching applied to the inductively coupled plasma (plasma) etching apparatus of this diffusion pump alone were as shown in Fig.
  • ICP inductively coupled plasma
  • RIE sample bias bias
  • inductively coupled plasma is much faster than capacitively coupled plasma (with a relatively low inductively coupled power of 300 W for both cyclic olefin copolymer (COC), PMMA, and polycarbonate material etching) %) Etch rate.
  • the results show that the maximum etch rate of PMMA, PC, and COC materials is 60 mTorr.
  • the inductively coupled plasma etching rate tends to converge to the capacitively coupled plasma etching rate. That is, at a process pressure of 200 mTorr or more, even if power is applied to the inductively coupled plasma, there is no difference between the plasma etch rate and the capacitive coupling plasma.

Abstract

The present invention relates to an inductively coupled plasma processing apparatus, and more specifically, to an inductively coupled processing apparatus capable of processing plasma by smart control of a diffusion pump. According to the present invention, the inductively coupled plasma processing apparatus includes a vacuum chamber, a plasma generator, a gas feeder and an exhaust unit, wherein the exhaust unit comprises a diffusion pump; an auxiliary pump; a primary exhaust line, which is connected to the vacuum chamber and the diffusion pump, has a throttle valve and serves as an exhaust passage; and a secondary exhaust line, which is connected to the vacuum chamber, the diffusion pump and the auxiliary pump, has main and auxiliary valves and serves as an exhaust passage. With such a diffusion pump, the plasma processing apparatus of the present invention has significantly low failure rates compared to other plasma processing apparatuses employing a turbo-molecular pump, lowers maintenance costs to a great extent and provides a good-quality high density plasma processing operation.

Description

확산펌프 유도결합 플라즈마 처리장치Diffusion pump Inductively coupled plasma processing device
본 발명은 유도결합 플라즈마 처리장치에 관한 것으로서, 더 상세하게는, 확산펌프를 스마트 제어하여 플라즈마 처리할 수 있는 유도결합 플라즈마 처리장치에 관한 것이다.The present invention relates to an inductively coupled plasma processing apparatus, and more particularly, to an inductively coupled plasma processing apparatus capable of performing plasma processing by smart control of a diffusion pump.
플라즈마 처리장치는 다양한 응용분야에 사용할 수 있지만, 플라즈마 내에서 가스의 화학적 반응을 고려하였을 때, 플라즈마 화학기상 증착법(Chemical Vapor Deposition, CVD)과 건식 식각법 (Dry Etching)등에 주로 사용된다.Plasma processing apparatuses can be used in various applications, but they are mainly used in plasma CVD (Chemical Vapor Deposition) and dry etching when the chemical reaction of gases is considered in a plasma.
상기 플라즈마 CVD법은 플라즈마를 이용하여 원료가스를 화학반응시켜서 기판에 박막을 퇴적시키는 박막형성 방법인데, 이 플라즈마 CVD법은 반도체 집적회로 소자, 멤스 (MEMS) 소자, 각종 전자소자, 각종 센서를 구성하고 있는 금속막, 반도체막, 절연막, 광도전체막, 확산방지막, 밀착층막의 박막을 제작하는 기술로서 널리 사용되고 있다.The plasma CVD method is a method of forming a thin film by depositing a thin film on a substrate by chemical reaction of a source gas using plasma. This plasma CVD method is a method of forming a thin film by forming a semiconductor integrated circuit element, a MEMS element, A semiconductor film, an insulating film, a photoconductive film, a diffusion preventing film, and a contact layer film.
상기 건식 식각법은 소정의 원료가스 플라즈마를 이용하여 화학반응 시켜서 박막을 식각하는 방법으로서, 역시 반도체막 가공 등 상기한 분야에서 널리 이용하고 있다. The dry etching method is a method of etching a thin film by chemical reaction using a predetermined source gas plasma, and is also widely used in the above-mentioned fields such as semiconductor film processing.
이들 플라즈마 처리방법에 있어서, 최근 유도결합 플라즈마가 주목되고 있다. 이는 유도결합 플라즈마를 이용함으로써, 예를 들어 고속의 식각이 가능하고, 식각 박막의 전기적 훼손을 줄일 수 있는 등 지금까지 실현되지 않았던 식각처리가 가능해지고, 처리효율이 개선되기 때문이다. In these plasma processing methods, recently, inductively coupled plasma is attracting attention. This is because, by using the inductively coupled plasma, for example, high-speed etching can be performed and electrical damage of the etched thin film can be reduced, etching treatment which has not been realized so far can be performed and processing efficiency is improved.
이하에, 플라즈마 발생장치에 대하여 예를 들어 종래기술을 설명한다. Hereinafter, for example, a conventional technique will be described with respect to a plasma generating apparatus.
챔버내에 플라즈마를 발생시키기 위해서는 플라즈마 발생 전극을 사용하는 것이 일반적이고, 전형적으로는 이 플라즈마 발생전극에 고주파 전력을 인가하고 있다.Generally, a plasma generating electrode is used to generate plasma in the chamber, and typically high-frequency power is applied to the plasma generating electrode.
이 플라즈마 발생전극의 형식을 분류하면, 축전결합 플라즈마 (Capacitively Coupled Plasma) 방식과 유도결합 플라즈마 (Inductively Coupled Plasma) 방식 등으로 분류할 수 있고, 또 다른 관점으로는, 챔버 외부에 전극을 배치하는 외부 전극방식과, 챔버 내부에 전극을 배치하는 내부전극방식으로 분류할 수 있다. 이들 형식 중에서 널리 사용되고 있는 것은 축전 결합방식이고 또한 내부전극방식인 평행 평판형 (parallel plate) 플라즈마 발생장치로서 이를 축전결합형 플라즈마 (Capacitively Coupled Plasma, CCP) 발생장치라 한다.The type of the plasma generating electrode can be classified into a capacitively coupled plasma (plasma) method and an inductively coupled plasma (ICP) method. In another aspect, An electrode method, and an internal electrode method in which electrodes are disposed in a chamber. Among these types, a parallel plate plasma generating apparatus which is a capacitive coupling type and an internal electrode type is widely used and is called a capacitively coupled plasma (CCP) generating apparatus.
이 축전결합형 플라즈마 발생장치는 콘덴서의 전하 축전 원리를 이용하며, 챔버 내부에서 2개의 전극을 대향시켜, 한쪽 전극에 고주파전력이나 저주파전력, 직류전력, 혹은 이들 전력을 시간 변조한 전력을 인가할 수 있는 구조로 되어 있다. 다른쪽 전극은 접지되어 있다. 혹은 다른 쪽 전극을 콘덴서, 코일(인덕터), 콘덴서와 코일의 조합을 통하여 접지하고 있는 것도 있다.This capacitively coupled plasma generating apparatus uses a charge accumulation principle of a condenser and two electrodes are opposed to each other in a chamber to apply high frequency power, low frequency power, direct current power, or time-modulated power to these electrodes It is possible to structure. And the other electrode is grounded. Or the other electrode is grounded through a combination of a capacitor, a coil (inductor), a capacitor and a coil.
이들 평행평판형 전극구조는 2개의 전극간의 정전계(靜電界)에 의해 전자와 이온 등, 하전입자를 가속하여, 하전입자와 하전입자, 또는 하전입자와 전극의 충돌에 의한 상호작용에 따라 플라즈마를 생성·유지하는 것이다. 이 축전결합형 플라즈마 발생장치에서는 10 mTorr이하의 고진공 압력에서는 플라즈마를 생성 및 유지하기가 어렵다. 또한 축전결합형 플라즈마 발생장치는 건식 식각 중에 이온 밀도와 이온 에너지를 분리할 수 없다. 따라서 식각 속도를 높이기 위하여 고주파 전원을 증가시키면 높은 가속 에너지를 가지는 이온과의 충돌에 의해 식각중 소재의 전기적, 광학적, 열적 손상을 가져오기 쉽다. These parallel flat plate type electrode structures accelerate charged particles such as electrons and ions by an electrostatic field between two electrodes and cause the charged particles and the charged particles to collide with each other due to the interaction between charged particles and charged particles, Is generated and maintained. It is difficult to generate and maintain a plasma at a high vacuum pressure of 10 mTorr or less in this capacitively coupled plasma generating apparatus. In addition, a capacitively coupled plasma generator can not separate ion density and ion energy during dry etching. Therefore, if the high frequency power source is increased to increase the etching rate, it is likely to cause electrical, optical, and thermal damage to the material during etching due to collision with ions having a high acceleration energy.
한편, 고진공 고밀도 플라즈마를 생성하는데 뛰어난 방식 중에서 널리 사용되고 있는 것은 유도결합방식의 플라즈마 발생법이다. 이를 정리한 문헌으로서 미국의 Oleg A. Popov가 편집한 High Density Plasma Sources (Noyes Publication, New Jersey, 1995년)의 제 2 장 Planar Inductively Sources (John C. Forster와 John H. Kelle 저, p.76-98)과 제 3 장 Electostatically-Shielded Inductively Coupled RF Plasma Sources (Wayne L. Johnson 저, p.100-148)이 있다. 이 유도결합방식은 플라즈마 생성안테나에 흐르는 전류의 시간변화에 의한 전자유도에 의해 플라즈마를 생성 및 유지시키는 것이다. 즉, 플라즈마의 생성유지기구가 전자기파와 하전입자의 상호작용에 따른 것이다. 또한 축전결합형과는 달리 고진공에서 낮은 이온 에너지를 유지하며 고밀도의 플라즈마를 생성시킬 수 있다. 따라서, 10 mTorr이하의 상대적으로 낮은 압력으로도 고밀도 플라즈마를 생성 및 유지하는 것이 용이하여 고진공 고밀도 플라즈마를 얻을 수 있다.On the other hand, an inductively coupled plasma generation method is widely used as an excellent method for generating a high vacuum high density plasma. This paper summarizes the results of Chapter 2 Planar Inductively Sources (John C. Forster and John H. Kelle, p. 76) of High Density Plasma Sources (Noyes Publication, New Jersey, 1995), edited by Oleg A. Popov, -98) and Chapter 3 Electostatically-Shielded Inductively Coupled RF Plasma Sources (Wayne L. Johnson, pp. 100-148). This inductive coupling method is to generate and maintain a plasma by electromagnetic induction by a change in the current flowing through the plasma generating antenna. That is, the generation and maintenance mechanism of the plasma depends on the interaction between the electromagnetic wave and the charged particle. In addition, unlike the capacitive coupling type, high density plasma can be generated while maintaining low ion energy in a high vacuum. Therefore, it is easy to generate and maintain a high-density plasma even at a relatively low pressure of 10 mTorr or less, so that a high-vacuum high-density plasma can be obtained.
이 유도결합방식 중에서 널리 사용되고 있는 것은 챔버 외부에 플라즈마 생성안테나를 배치하는 외부 안테나 방식이다. 이 방식은 방전실 중에서 석영, 알루미나 등 유전체 재료로 만들어진 부분의 외부주위에 코일상 또는 변형한 루프상의 플라즈마 생성안테나를 배치하고 있다.Among these inductive coupling schemes, an external antenna system in which a plasma generating antenna is disposed outside the chamber is widely used. In this method, a plasma generating antenna in the form of a coil or a modified loop is disposed around the outside of a part made of a dielectric material such as quartz or alumina in a discharge chamber.
유도결합 플라즈마 처리장치에 관한 더 상세한 종래기술에 대하여는 문헌 1 등을 참고할 수 있다. Reference 1 and the like refer to a more detailed prior art relating to an inductively coupled plasma processing apparatus.
[ 문헌 1 ] 이정호, “균일성 향상을 위한 고효율 유도 결합 플라즈마 발생장치 설계 및 해석 ”, 성균대학교 대학원, 박사학위논문, 2007.[1] Lee, JH, "Design and Analysis of a High Efficiency Inductively Coupled Plasma Generator for Improving Uniformity", Graduate School of Sungkyunkwan University, Doctoral Thesis, 2007.
일반적으로 건식 식각용 고진공 플라즈마 처리장치의 진공 배기구조는 저진공 보조펌프(‘러핑펌프’, 또는‘백킹펌프’라고도 함)와 고진공 주펌프(‘포어펌프’라고도 함)로 되어있는데, 종래기술의 플라즈마 처리장치는 보조펌프로는 기계적 펌프 (mechanical pump)를, 고진공 포어라인 펌프로는 터보분자 펌프 (turbomolecular pump)를 사용하였다.In general, the vacuum exhaust structure of the high vacuum plasma processing apparatus for dry etching is composed of a low vacuum auxiliary pump (also referred to as a 'roughing pump' or a 'backing pump') and a high vacuum main pump A mechanical pump was used as an auxiliary pump, and a turbomolecular pump was used as a high vacuum foreline pump.
그런데, 고진공 포어라인 펌프로 터보분자 펌프를 사용하는 경우, 매우 높은 정도의 진공상태를 만들 수 있다는 장점이 있지만, 상기 터보분자 펌프는 하기와 같은 문제점이 있다. However, when a turbo-molecular pump is used as a high-vacuum foreline pump, there is an advantage that a very high degree of vacuum can be obtained. However, the turbo-molecular pump has the following problems.
터보분자펌프는 내부에 고정축인 스테터(Stator)와 회전축인 로터(rotor)로 구성되어 있다. 진공 배기의 원리는 터보분자펌프 로터의 회전 날개를 고속으로 회전시켜 기체를 배출하는 것이다. 이때 터보분자 펌프의 고속 회전 날개 (rotor)와 날개집 (stator)와의 극히 좁은 간격에 반응성 물질들이 축적되거나 샘플 조각 등 불순물이 들어가는 경우 터보 분자 펌프의 고속 회전 날개의 고장으로 직결되는 단점을 가지고 있다. The turbo-molecular pump is composed of a stationary stator and a rotor. The principle of the vacuum exhaust is to rotate the rotating blades of the turbo molecular pump rotor at a high speed to discharge the gas. In this case, when the reactive material accumulates in an extremely narrow gap between the rotor and the stator of the turbo molecular pump and impurities such as sample fragments are introduced, it has a disadvantage that it is directly connected to the failure of the high-speed rotary blade of the turbo molecular pump.
또한 터보 분자 펌프는 플라즈마 식각 공정에서 전기적, 기계적 충격에 상당히 취약하다. 터보분자펌프는 수송 중에도 기계적 충격에 의해 회전 날개 등 정밀 부품들의 손상 위험이 크며, 평상시에 전원이 공급되는 한 정전, 번개 등의 과부하 충격에도 취약하다는 단점을 가지고 있다. Turbomolecular pumps are also susceptible to electrical and mechanical shocks in the plasma etching process. The turbomolecular pump has a disadvantage that it is vulnerable to overloading shocks such as power outage and lightning as long as the power is supplied during normal operation, because the mechanical impact of the turbo molecular pump damages the precision components such as rotating blades.
더욱이, 터보분자펌프는 매우 고가의 장비이여서, 고장시에는 유지·보수 비용이 보통 수천만원에 이른다(이는 신규 제품 구입비의 절반이 넘을 정도임).Moreover, the turbo molecular pump is a very expensive device, which costs up to tens of millions of dollars in maintenance and repair costs (which is more than half the cost of purchasing new products).
도 1에서 정상적인 터보분자펌프(좌)와 공정중 터보펌프의 고정날개 (stator)와 회전날개(rotor)가 함께 파괴된 터보분자펌프(우)의 사진을 게시하였다.FIG. 1 shows a photograph of a turbo molecular pump (left) in which a normal turbo molecular pump (left) and a stator and a rotor of a turbo pump in the process are destroyed together.
이러한 터보분자펌프를 대신한 고진공 펌프로서, 확산펌프를 제안해 볼 수 있겠으나, 확산펌프의 경우도 문제점이 없는 것은 아니다.Although a diffusion pump can be proposed as a high-vacuum pump in place of the turbo-molecular pump, there is no problem in the case of a diffusion pump.
종래에 확산펌프는 스퍼터, 열 증착 등의 물리적 증착법에 주로 사용되어 왔으나, 플라즈마 화학 증착이나 플라즈마 식각에는 거의 사용되지 않아 그 실시예를 보기 어렵다. 특히, 유도결합 플라즈마 식각 등 고진공, 고밀도의 이온이 필요한 플라즈마 식각의 경우에는 확산 펌프는 사용되지 않았으며 그 실시예도 찾을 수 없다. Conventionally, the diffusion pump has been mainly used for physical vapor deposition such as sputtering and thermal evaporation, but it is hardly used for plasma chemical vapor deposition or plasma etching. Particularly, in the case of plasma etching in which high vacuum and high density ions are required, such as inductively coupled plasma etching, a diffusion pump is not used, and no embodiment can be found.
그 이유는, 식각공정 등에 혼합가스로 사용되는 아르곤 등의 불활성 가스는 확산펌프의 오일 기체들과의 결합성이 낮아 배기가 잘 되지 않는 특성을 들 수 있다. 즉, 확산펌프에 소량의 아르곤 가스가 유입되면 방전실의 압력이 급격히 상승하여 적정한 유도결합 플라즈마 식각 압력을 벗어나게 된다. 따라서 지금까지는 유도결합 플라즈마 식각은, 터보분자펌프를 사용하여 일정한 가스 유량 (예를 들어 20 scmm)을 가지고, 1 ~ 20 mTorr 이내의 좁은 범위의 고진공하에서 실시하여 왔다.This is because the inert gas such as argon, which is used as a mixed gas in the etching process or the like, has a poor bonding property with the oil gas of the diffusion pump and does not discharge well. That is, when a small amount of argon gas flows into the diffusion pump, the pressure in the discharge chamber rises sharply and deviates from the proper inductively coupled plasma etching pressure. So far, inductively coupled plasma etching has been carried out using a turbo molecular pump at a constant gas flow rate (for example, 20 scmm) and in a narrow range of high vacuum within 1 to 20 mTorr.
또한, 확산펌프는 오일을 기화시키고 이를 다시 냉각시키는 과정을 반복하게되는데, 이 과정에서 오일 기체가 플라즈마 반응챔버 내로 역류(backstream)할 우려가 매우 높다. 이렇게 오일 기체가 역류하면 플라즈마 공정이 제대로 이루어질 수 없으며, 플라즈마 처리된 기재(subsrate)의 품질도 열화되는 문제점이 있는 것이다.In addition, the diffusion pump repeats the process of evaporating the oil and cooling it again, in which process the oil gas is very likely to backstream into the plasma reaction chamber. When the oil gas flows backward, the plasma process can not be performed properly, and the quality of the plasma-treated substrate is deteriorated.
이에, 본 발명에서는 상기한 종래기술의 문제점을 해결하고자, 플라즈마 처리장치의 배기펌프에 있어서, 터보분자펌프 대신에 확산펌프를 채용하되, 상기 확산펌프 채용시 일어날 수 있는 문제점을 해결한 유도결합 플라즈마 처리장치를 제공하고자 한다.In order to solve the problems of the prior art described above, in the present invention, in the exhaust pump of the plasma processing apparatus, a diffusion pump is employed in place of the turbo molecular pump, and an inductive coupling plasma process Device.
본 발명은 상기한 종래기술의 문제점을 해결하기 위해 안출된 것으로서,SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems of the prior art,
진공챔버, 플라즈마 발생부, 가스공급부, 및 배기부를 포함하는 유도결합형 플라즈마 처리장치에 있어서, 1. An inductively coupled plasma processing apparatus comprising a vacuum chamber, a plasma generating section, a gas supplying section, and an exhaust section,
상기 배기부는,The exhaust unit includes:
확산펌프;Diffusion pump;
보조펌프;Auxiliary pump;
상기 진공챔버 및 상기 확산펌프와 연결되고, 스로틀밸브를 구비하며, 배기통로의 역할을 하는 주배기라인;A main exhaust line connected to the vacuum chamber and the diffusion pump, the main exhaust line having a throttle valve and serving as an exhaust passage;
상기 진공챔버, 상기 확산펌프, 및 상기 보조펌프와 연결되고, 주밸브 및 보조밸브를 구비하며, 배기통로의 역할을 하는 보조배기라인An auxiliary exhaust line connected to the vacuum chamber, the diffusion pump, and the auxiliary pump and having a main valve and an auxiliary valve,
을 포함하는 것을 특징으로 하는 유도결합형 플라즈마 처리장치를 제공한다.And an inductively coupled plasma processing apparatus.
또한 본 발명에 있어서, 상기 스로틀밸브 및 상기 확산펌프 사이의 상기 주배기라인상에 압력게이지가 구비된 것을 특징으로 하는 유도결합형 플라즈마 처리장치를 제공한다.The present invention also provides an inductively coupled plasma processing apparatus comprising a pressure gauge on the main exhaust line between the throttle valve and the diffusion pump.
또한 본 발명에 있어서, 상기 보조배기라인은 진공챔버와 보조펌프 사이에 압력게이지를 구비하고, 확산펌프와 보조펌프 사이에 압력게이지를 구비하는 것임을 특징으로 하는 유도결합형 플라즈마 처리장치를 제공한다.In the present invention, the auxiliary exhaust line may include a pressure gauge between the vacuum chamber and the auxiliary pump, and a pressure gauge may be provided between the diffusion pump and the auxiliary pump.
또한 본 발명에 있어서, 상기 스로틀밸브는, 공정대기 중에 상기 압력게이지가 10 mTorr를 초과하는 경우, 폐쇄되는 것임을 특징으로 하는 유도결합형 플라즈마 처리장치를 제공한다.Further, in the present invention, the throttle valve is closed when the pressure gauge exceeds 10 mTorr in the process atmosphere.
또한 본 발명에 있어서, 상기 주배기라인은 100 내지 9 × 106 ℓ/s 범위 이내의 컨덕턴스를 가지는 것임을 특징으로 하는 유도결합형 플라즈마 처리장치를 제공한다.The present invention also provides an inductively coupled plasma processing apparatus, wherein the main exhaust line has a conductance within a range of 100 to 9 × 10 6 / s.
또한 본 발명에 있어서, 상기 주배기라인은 1 × 10-4 내지 1 × 103 범위 이내의 l/d 비(ratio)를 가지는 것임을 특징으로 하는 유도결합형 플라즈마 처리장치를 제공한다.The present invention also provides an inductively coupled plasma processing apparatus, wherein the main exhaust line has an l / d ratio within a range of 1 × 10 -4 to 1 × 10 3 .
또한 본 발명에 있어서, 상기 보조배기라인은, 단면적은 0.01 ㎠ 이상이고, l/d 비(ratio)가 1 × 10-4 내지 1 × 103 범위 이내인 것임을 특징으로 하는 유도결합형 플라즈마 처리장치를 제공한다.In the present invention, it is preferable that the auxiliary exhaust line has a cross-sectional area of 0.01 cm 2 or more and a l / d ratio within a range of 1 × 10 -4 to 1 × 10 3. Lt; / RTI >
또한 본 발명에 있어서, 상기 확산펌프는 몸체, 증발관, 노즐, 오일, 냉각수단, 히터, 흡기구 및 배기구를 구비하고, 상기 흡기구에 온도계측기를 구비하는 것임을 특징으로 하는 유도결합형 플라즈마 처리장치를 제공한다.In the present invention, it is preferable that the diffusion pump includes a body, an evaporator, a nozzle, an oil, a cooling means, a heater, an inlet and an outlet, and a temperature meter at the inlet. to provide.
또한 본 발명에 있어서, 상기 스로틀밸브는, 상기 온도계측기가 50 ℃ 이상을 나타내는 경우, 폐쇄되는 것임을 특징으로 하는 유도결합형 플라즈마 처리장치를 제공한다.Further, in the present invention, the throttle valve is closed when the temperature meter indicates 50 ° C or more.
또한 본 발명에 있어서, 상기 확산펌프는 히터의 온도가 600 ℃ 이하인 것임을 특징으로 하는 유도결합형 플라즈마 처리장치를 제공한다.The present invention also provides an inductively coupled plasma processing apparatus characterized in that the temperature of the heater is 600 캜 or less.
또한 본 발명에 있어서, 상기 오일은 실리콘 오일을 포함하는 것임을 특징으로 하는 유도결합형 플라즈마 처리장치를 제공한다.The present invention also provides an inductively coupled plasma processing apparatus, wherein the oil includes a silicone oil.
또한 본 발명에 있어서, 상기 보조펌프는 기계적 펌프, 드라이 펌프, 부스터 펌프, 및 기름회전펌프에서 선택되어지는 하나 이상을 직렬 또는 병렬로 연결한 것임을 특징으로 하는 유도결합형 플라즈마 처리장치를 제공한다.In the present invention, the auxiliary pump may include at least one selected from a mechanical pump, a dry pump, a booster pump, and an oil pump connected in series or in parallel.
본 발명의 플라즈마 처리장치는 확산펌프를 채용하여 기계적 잔고장율이 터보분자펌프를 채용한 그것에 비해 현저히 낮고, 유지비용 역시 휠씬 저렴함과 동시에, 양질의 고밀도 플라즈마 처리가 가능한 효과가 있다.The plasma processing apparatus of the present invention employs a diffusion pump, and the mechanical residual capacity ratio is significantly lower than that of the turbomolecular pump employing the pump, the maintenance cost is much lower, and the high-density plasma treatment with high quality can be effected.
도 1은 정상적인 터보분자펌프(좌)와 공정중 터보펌프의 고정날개 (stator)와 회전날개(rotor)가 함께 파괴된 터보분자펌프(우)의 사진이다.1 is a photograph of a turbo molecular pump (left) in which a normal turbo molecular pump (left) and a stator and a rotor of a turbo pump in the process are destroyed together.
도 2는 본 발명의 플라즈마 처리장치 일실시예의 구성을 나타낸 개략도이다.2 is a schematic view showing a configuration of an embodiment of the plasma processing apparatus of the present invention.
도 3은 본 발명의 플라즈마 처리장치의 확산펌프의 구성을 나타낸 개략도이다.3 is a schematic view showing the configuration of the diffusion pump of the plasma processing apparatus of the present invention.
도 4는 공정 압력에 따른 Cyclic Olefin Copolymer (COC) 소재의 확산펌프 유도결합 플라즈마 (ICP) 식각과 반응성 이온 식각 (RIE)의 결과 그래프이다. FIG. 4 is a graph showing the results of diffusion pump inductively coupled plasma (ICP) etching and reactive ion etching (RIE) of a cyclic olefin copolymer (COC) according to process pressure.
도 5은 공정 압력에 따른 Polymethylmethacrylate (PMMA) 소재의 확산펌프 유도결합 플라즈마 (ICP) 식각과 반응성 이온 식각 (RIE)의 결과 그래프이다.FIG. 5 is a graph showing the results of diffusion pump inductively coupled plasma (ICP) etching and reactive ion etching (RIE) of polymethylmethacrylate (PMMA) according to the process pressure.
도 6은 공정 압력에 따른 Polycarbonate (PC) 소재의 확산펌프 유도결합 플라즈마 (ICP) 식각과 반응성 이온 식각 (RIE)의 결과 그래프이다. 6 is a graph of the results of diffusion pump inductively coupled plasma (ICP) etching and reactive ion etching (RIE) of a polycarbonate (PC) material according to process pressure.
이하, 본 발명에 대하여 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명은,According to the present invention,
진공챔버, 플라즈마 발생부, 가스공급부, 및 배기부를 포함하는 유도결합형 플라즈마 처리장치에 있어서, 1. An inductively coupled plasma processing apparatus comprising a vacuum chamber, a plasma generating section, a gas supplying section, and an exhaust section,
상기 배기부는,The exhaust unit includes:
확산펌프;Diffusion pump;
보조펌프;Auxiliary pump;
상기 진공챔버 및 상기 확산펌프와 연결되고, 스로틀밸브를 구비하며, 배기통로의 역할을 하는 주배기라인;A main exhaust line connected to the vacuum chamber and the diffusion pump, the main exhaust line having a throttle valve and serving as an exhaust passage;
상기 진공챔버, 상기 확산펌프, 및 상기 보조펌프와 연결되고, 주밸브 및 보조밸브를 구비하며, 배기통로의 역할을 하는 보조배기라인An auxiliary exhaust line connected to the vacuum chamber, the diffusion pump, and the auxiliary pump and having a main valve and an auxiliary valve,
을 포함하는 것을 특징으로 한다.And a control unit.
특히, 본 발명에 있어서, 상기 주배기라인은 상기 스로틀밸브 및 상기 확산펌프 간에 압력게이지가 추가로 구비될 수 있다.In particular, in the present invention, the main exhaust line may further include a pressure gauge between the throttle valve and the diffusion pump.
종래에 진공장비에서 확산펌프의 사용하는 경우, 가장 우려하는 것은 확산 펌프 오일 증기의 초기 역류 문제이다. 본 발명에서는, 이 문제를 해결하기 위해 고진공 시스템에서 주배기라인과 보조배기라인의 압력 측정에 사용하는 2개의 압력 게이지 외에, 스로틀밸브와 확산펌프 사이의 주배기라인에 확산펌프의 증기 압력을 측정할 수 있는 압력게이지를 추가하였다. In the past, when using a diffusion pump in vacuum equipment, the most concern is the initial backwashing problem of the diffusion pump oil vapor. In order to solve this problem, in the present invention, the steam pressure of the diffusion pump is measured in the main exhaust line between the throttle valve and the diffusion pump in addition to the two pressure gauges used in the pressure measurement of the main exhaust line and the auxiliary exhaust line in the high- We have added a pressure gauge that can be used.
상기 압력게이지를 통해 확산펌프의 증기 압력을 측정할 수 있고, 이 수치를 기준으로 스로틀밸브의 개폐 조건, 개폐 속도, 적절한 밸브의 위치, 개폐 주기 등을 제어할 수 있다. The steam pressure of the diffusion pump can be measured through the pressure gauge, and the opening / closing condition of the throttle valve, the opening / closing speed of the throttle valve, the position of the valve, and the opening / closing period of the throttle valve can be controlled based on this value.
챔버에 가스를 유입하지 않은 공정대기 조건에서 고진공 유지를 위한 확산펌프 흡입구의 압력이 주어진 일정 기준압 (본 발명의 실시예에서는 10 mTorr)보다 높을 경우, 스로틀 밸브가 열리지 않게 제어하여 확산펌프 오일의 초기 역류를 최소화할 수 있다. 이 때 밸브의 제어는 사람이 수동으로 할 수도 있으나, 유체에 의한 기계적 장치, 회로 배선, 컴퓨터 등을 통한 자동 제어로 할 수도 있다. 상기 자동 제어장치는 종래기술로 나와 있는 자동제어장치를 제한없이 사용할 수 있다.If the pressure at the diffusion pump inlet for high vacuum maintenance is higher than a given reference pressure (10 mTorr in the embodiment of the present invention) in a process atmospheric condition in which no gas is introduced into the chamber, the throttle valve is controlled not to open, Initial backflow can be minimized. In this case, the control of the valve may be performed manually by a person, but may be performed by a mechanical device using fluid, a circuit wiring, or an automatic control through a computer. The automatic control device can use the automatic control device described in the prior art without limitation.
상기 주배기라인은 100 내지 9 × 106 ℓ/s 범위 이내의 컨덕턴스를 가지는 것임을 특징으로 한다. 100 ℓ/s 미만에서는 확산펌프의 성능이 아무리 좋은 경우에도 플라즈마 처리에 적합한 공정압력에 도달할 수 없을 수 있고, 9 × 106 ℓ/s를 초과는 경우는 확산펌프의 성능에 비추어 비효율적일 수 있다. 본 발명의 일실시예에서는, 주배기라인의 컨덕턴스는 약 3,000 ℓ/s 인 것을 사용하였다. And the main exhaust line has a conductance within a range of 100 to 9 × 10 6 ℓ / s. At less than 100 l / s, the process pressure suitable for plasma treatment may not be reached even if the performance of the diffusion pump is good, and if it exceeds 9 × 10 6 l / s, it may be inefficient due to the performance of the diffusion pump have. In one embodiment of the present invention, the conductance of the main exhaust line was about 3,000 L / s.
컨덕턱스(conductance)는 진공 시스템을 통한 기체의 운동을 논의할 때 사용되는 용어로서, 주어진 시간동안에 기체를 통과시킬 수 있는 파이프(본 발명의 라인)의 능력을 말하한다. 저진공(760 ~ 10-2 Torr)에서는 점성유동, 고진공(10-3 ~ 10-10 Torr)에서는 분자유동으로 설명될 수 있으며, 그 의미는 기체가 임의의 펌프까지 얼마나 쉽게 도달할 수 있는 정도이다. 따라서 높은 컨덕턴스는 기체가 펌프에 도달하는 정도가 높다는 것을 나타내며 고진공 챔버를 구성하는데 중요한 요소이다. 컨덕턴스는 파이프의 길이, 직경, 압력차 뿐만 아니라, 온도, 파이프의 휘어진 형상, 모양, 거칠기(roughness) 등의 재료의 특성 등에도 영향을 받는다. Conductance is a term used to discuss the motion of a gas through a vacuum system, and refers to the ability of a pipe (line of the present invention) to pass gas through a given time. In viscous flow at low vacuum (760 ~ 10 -2 Torr) and molecular flow at high vacuum (10 -3 ~ 10 -10 Torr), it can be explained by how easily gas can reach any pump to be. Therefore, high conductance is an important factor in constructing a high vacuum chamber, indicating that the degree of gas reaching the pump is high. Conductance is affected not only by the length, diameter and pressure difference of the pipe but also by the material properties such as temperature, bent shape, shape and roughness of the pipe.
상기 주배기라인은 직경 대 길이 l/d(l:라인의 길이, d:라인의 직경) 비가 1 × 10-4 내지 1 × 103 범위 이내인 것이 바람직하다. 상기 범위보다 작은 경우는 제작에 문제가 있으며 이보다 큰 경우는 고진공 배기에 적합하지 않을 수 있다. Preferably, the main exhaust line has a ratio of diameter to length l / d (1: the length of the line and d: the diameter of the line) in the range of 1 × 10 -4 to 1 × 10 3 . If it is smaller than the above range, there is a problem in production. If it is larger than this range, it may not be suitable for high vacuum exhaust.
본 발명에 있어서, 상기 보조배기라인은, 단면적은 0.01 ㎠ 이상이고, l/d 비(ratio)가 1 × 10-4 내지 1 × 103 범위 이내인 것이 바람직하다. 진공 배기를 위한 최소 단면적은 상기한 범위 이상이어야 배기가 수월하며, 1/d의 비 역시 상기한 범위보다 작으면 제작에 문제가 있으며 그보다 크면 공정을 위한 진공을 만들기 어렵다. In the present invention, the auxiliary exhaust line preferably has a cross-sectional area of 0.01 cm 2 or more and a l / d ratio within a range of 1 × 10 -4 to 1 × 10 3 . The minimum cross-sectional area for vacuum evacuation should be at least the above-mentioned range so that the evacuation is easy. If the ratio of 1 / d is also smaller than the above-mentioned range, there is a problem in production.
본 발명에 있어서, 상기 확산펌프는 몸체, 증발관, 노즐, 오일, 냉각수단, 히터, 흡기구 및 배기구를 구비하고, 상기 흡기구에 온도계측기를 구비하는 것이다. 특히, 본 발명의 확산펌프는 흡기구에 온도계측기를 구비하여 확산 펌프 입구와 히터 부분의 온도가 정확하게 모니터링되게 하였다.In the present invention, the diffusion pump includes a body, an evaporator, a nozzle, an oil, a cooling means, a heater, an inlet and an outlet, and a temperature meter at the inlet. Particularly, the diffusion pump of the present invention is provided with a temperature meter at the inlet port so that the temperature of the diffusion pump inlet and the heater portion can be accurately monitored.
본 발명에 있어서, 상기 스로틀밸브는, 상기 온도계측기가 50 ℃ 이상을 나타내는 경우, 폐쇄되는 것이 바람직하다. 확산 펌프 흡기구가 상기한 온도 이상이 되면 확산펌프의 냉각에 문제가 있다는 것으로, 상기 온도 이상에서 확산펌프의 흡기구가 열리면 챔버를 오염시킬 수 있다. 이 때 밸브의 제어는 사람이 수동으로 할 수도 있으나, 유체에 의한 기계적 장치, 회로 배선, 컴퓨터 등을 통한 자동 제어로 할 수도 있다. 상기 자동 제어장치는 종래기술로 나와 있는 자동제어장치를 제한없이 사용할 수 있다. In the present invention, it is preferable that the throttle valve is closed when the temperature gauge indicates 50 DEG C or higher. If the inlet of the diffusion pump is above the above-mentioned temperature, there is a problem in cooling the diffusion pump. If the inlet of the diffusion pump is opened above the temperature, the chamber may be contaminated. In this case, the control of the valve may be performed manually by a person, but may be performed by a mechanical device using fluid, a circuit wiring, or an automatic control through a computer. The automatic control device can use the automatic control device described in the prior art without limitation.
상기 확산펌프의 히터 온도는 600 ℃ 이하인 것이 바람직하다. 600 ℃ 초과의 높은 온도는 식각용 가스 배기를 위한 오일의 성질을 변형시켜 식각 공정 효율을 저하시킬 수 있다. 이 때 히터 온도제어는 사람이 수동으로 할 수도 있으나, 유체에 의한 기계적 장치, 회로 배선, 컴퓨터 등을 통한 자동 제어로 할 수도 있다. 상기 자동 제어장치는 종래기술로 나와 있는 자동제어장치를 제한없이 사용할 수 있다. 주로 ON/OFF제어기가 사용된다.The heater temperature of the diffusion pump is preferably 600 ° C or less. Temperatures higher than 600 [deg.] C may degrade the properties of the oil for etching gas exhaust, thereby reducing the efficiency of the etching process. At this time, the heater temperature control may be manually performed by a person, but may be automatically controlled through a mechanical device such as a fluid, a circuit wiring, or a computer. The automatic control device can use the automatic control device described in the prior art without limitation. The ON / OFF controller is mainly used.
이하, 본 발명을 일실시예를 들어 더 상세히 설명한다. 본 명세서상의 실시예는 발명의 상세한 설명을 위한 것일뿐 권리범위를 제한하기 위한 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to an embodiment. The embodiments described herein are intended to be illustrative of the invention and are not intended to limit the scope of the invention.
도 2에 본 발명의 플라즈마 처리장치 일실시예의 구성을 나타내었다.Fig. 2 shows the configuration of one embodiment of the plasma processing apparatus of the present invention.
본 발명의 일실시예에 있어서, 진공챔버(10)는 플라즈마 식각, 또는 증착 등의 플라즈마 처리가 일어나는 반응공간이다. 진공챔버(10)는 가스공급부(30) 및 배기부(40)와 연결되어 있고, 진공압이 걸릴수 있게끔 밀폐구조로 되어 있다.In one embodiment of the present invention, the vacuum chamber 10 is a reaction space in which a plasma treatment such as plasma etching or deposition takes place. The vacuum chamber 10 is connected to the gas supply unit 30 and the exhaust unit 40 and has a closed structure so that the vacuum pressure can be caught.
진공챔버(10) 내부에는 척(210)과 플라즈마 발생전극(220)이 배치되어 있고(상기 척(210)과 플라즈마 발생전극(220)은 하나로 합체될 수도 있다), 척(210)에는 고주파 바이어스 전력공급원(240)이 접속되고, 진공챔버(10)외부에는 유도결합 플라즈마용 RF 안테나(230)가 구비된다. RF 안테나(230)의 일단에는 고주파 바이어스 전원공급원(250)이 접속되고, 타단에는 어스가 접속되어 있다.A chuck 210 and a plasma generating electrode 220 are disposed in the vacuum chamber 10 and the chuck 210 and the plasma generating electrode 220 may be combined together. And an RF antenna 230 for inductively coupled plasma is provided outside the vacuum chamber 10. A high frequency bias power supply source 250 is connected to one end of the RF antenna 230, and a ground is connected to the other end.
본 발명의 일실시예에 있어서, 플라즈마 발생부(20)는 플라즈마 처리 대상물인 기재(100)를 올려는 척(210), 플라즈마를 발생시키는 플라즈마 발생전극(220), 독립적으로 유도전기장을 발생시켜 플라즈마의 밀도를 높히는 RF 안테나(230), 상기 플라즈마 발생전극 및 상기 RF 안테나(230)에 RF 전원을 공급하는 고주파 바이어스 전원공급원(240, 250)으로 구성되어 있다. In an embodiment of the present invention, the plasma generating unit 20 includes a chuck 210 for lifting a substrate 100, a plasma generating electrode 220 for generating plasma, An RF antenna 230 for increasing the density of the plasma, and high frequency bias power sources 240 and 250 for supplying RF power to the plasma generating electrode and the RF antenna 230.
기재(100)는 척(210)위에 놓인다. 척(210)내부에는 열교환파이프(262)가 부착되어 있다. 척(210)의 온도는 열교환기(264)에 의해 냉각 또는 고온의 유체가 공급되어 제어된다. 이 기체온도 조절장치는 PID제어방법을 사용하고 있으나, 필요에 따라 파지회로를 병용하거나 PI제어나 단순한 ON/OFF제어를 채용하여도 된다. 고온의 열전달을 위해서는 전기저항식 히터 등이 척(210)에 구비될 수도 있다. 척(210)과 플라즈마 발생전극(220)은 별도로 구비될 수도 있지만, 하나로 합쳐질 수 도 있으며, 본 발명의 일실시예에서는 척(210)과 플라즈마 발생전극(220)은 일체이다.The substrate 100 is placed on the chuck 210. A heat exchange pipe 262 is attached to the inside of the chuck 210. The temperature of the chuck 210 is controlled by a cooling or high temperature fluid supplied by the heat exchanger 264. Although the gas temperature control device uses the PID control method, it may use a gripping circuit, PI control or simple ON / OFF control as necessary. An electric resistance heater or the like may be provided on the chuck 210 for high-temperature heat transfer. The chuck 210 and the plasma generating electrode 220 may be separately provided, but may be combined into one. In an embodiment of the present invention, the chuck 210 and the plasma generating electrode 220 are integrated.
상기 척(10)은 임피던스 정합회로(242)를 통하여 바이어스용 고주파전원(244)에 접속되어 있다. 이 임피던스 정합회로(242) 및 바이어스용 고주파전원(244)으로 고주파 바이어스 전원공급원(240)이 구성되어 있다.The chuck 10 is connected to a bias high frequency power supply 244 through an impedance matching circuit 242. The impedance matching circuit 242 and the bias high frequency power supply 244 constitute a high frequency bias power supply source 240.
바이어스용 고주파전원(244)에 의해 유기된 교번전력은 임피던스 정합회로(242)로 임피던스 조정되어 척(210)에 공급되고, 기재(100)의 바이어스전압이 조정된다. 척(210)주위에는 진공챔버(10)에 접속된 쉴드(shield)판(270)이 있고, 또 척(210)은 절연체(272)에 의해 챔버(10)에서 전기적으로 절연되어 있다. 바이어스용 고주파 전원(244)의 주파수는 플라즈마 발생용 주파수를 사용한다. 바이어스 전원은 보통 1 ~ 50,000 W 정도의 상기한 고주파 전원을 사용하며, 보다 우수하게는 1 ~ 1,000 W 정도를 사용한다.The alternating power induced by the high frequency power supply 244 for bias is impedance-adjusted by the impedance matching circuit 242 and supplied to the chuck 210, and the bias voltage of the substrate 100 is adjusted. Around the chuck 210 is a shield plate 270 connected to the vacuum chamber 10 and the chuck 210 is electrically insulated in the chamber 10 by an insulator 272. The frequency of the bias high-frequency power supply 244 uses the frequency for generating plasma. The bias power source usually uses the above-mentioned high frequency power source of about 1 to 50,000 W, more preferably about 1 to 1,000 W.
상기 RF 안테나(230)는 동파이프를 대략 3 바퀴의 원환상으로 구부린 것이다. 최외각 환의 직경은 약 300 ㎜로서 조절이 가능하다. 이 동 파이프는 챔버 천정에 수평으로 놓여 있으며 절연체인 석영 유리판(222)에 의해 진공챔버(10)와 분리되어 있다. 이 동 파이프 내부에 냉각수를 유입시켜 이 전극을 수냉한다. 단, 필요에 따라 공냉으로 할 수 있고, 소전력의 경우는 냉각하지 않아도 된다.The RF antenna 230 is formed by bending the copper pipe in a circular shape of about three turns. The diameter of the outermost ring can be adjusted to about 300 mm. The copper pipe horizontally lies on the chamber ceiling and is separated from the vacuum chamber 10 by a quartz glass plate 222 which is an insulator. Cooling water is introduced into the copper pipe to cool the electrode. However, it may be air-cooled if necessary, and may not be cooled in the case of small power.
상기 RF 안테나(230)의 도입단자(232)는 임피던스 정합회로(252)로 통하여 고주파전원(254)에 접속되어 있다. 이 임피던스 정합회로(252)와 고주파 전원(254)으로 고주파 바이어스 전원공급원(250)이 구성된다. 고주파전원(254)의 주파수는 13.56MHz이고, 정격출력은 2kW이다. 단, 주파수는 이에 한정되지 않고, kHz 급이나, 60MHz나, 100MHz를 사용하여도 되며, 사용범위는 10kHz~1000MHz정도이다. 이 범위의 상한을 초과하면 도전체를 배선재료로서 사용할 수 없게 되고, 하한을 밑돌면 전파로서 발신되지 않게 된다. 또, 그 출력파형도 정현파(正弦坡)만이 아니라 여기에 소정의 변형을 실시한 파형이라도 좋다. 임피던스 정합회로(252)로는 π(파이)형 회로를 사용하고 있으나 이 이외의 가령 T형회로를 사용하여도 된다. 고주파전원(254)에 의해 유기된 교번전력은 임피던스 정합회로(252)로 임피던스 조정되고, 도입단자(232)를 통하여 플라즈마 발생전극(230)에 공급된다. The introduction terminal 232 of the RF antenna 230 is connected to the high frequency power supply 254 through the impedance matching circuit 252. The impedance matching circuit 252 and the high frequency power supply 254 constitute a high frequency bias power supply source 250. The frequency of the high frequency power supply 254 is 13.56 MHz and the rated output is 2 kW. However, the frequency is not limited to this, but a kHz class, 60 MHz or 100 MHz may be used, and the use range is about 10 kHz to 1000 MHz. If the upper limit of the range is exceeded, the conductor can not be used as a wiring material, and if the lower limit is exceeded, the conductor can not be transmitted as a radio wave. The output waveform may be a sinusoidal waveform or a waveform obtained by applying a predetermined deformation to the output waveform. Although a pi (pi) type circuit is used as the impedance matching circuit 252, a T type circuit other than the pi type circuit may be used. The alternating power induced by the high frequency power supply 254 is impedance-adjusted by the impedance matching circuit 252 and supplied to the plasma generating electrode 230 through the lead-in terminal 232.
상기 RF 안테나(230)에 공급되는 전원은 보통 1 ~ 90,000 W 정도의 고주파 전원을 사용하며, 보다 우수하게는 1 ~ 2,000 W 정도를 사용한다.The RF power supplied to the RF antenna 230 is typically about 1 to about 90,000 W, and more preferably about 1 to about 2,000 W is used.
본 발명의 일실시예에 있어서, 가스공급부(30)는 가스공급라인(310), 가스조절판(320), 가스유량조절기(330), 가스탱크(340), 및 기화기(350)으로 구성된다.In an embodiment of the present invention, the gas supply unit 30 includes a gas supply line 310, a gas regulating plate 320, a gas flow regulator 330, a gas tank 340, and a vaporizer 350.
가스는, 가스공급라인(310)에 질소 등 기체 상태의 가스를 가스탱크(340)를 이용하여 그대로 연결하여 주입되거나, 액체나 고체 상태의 물질을 기화기(350)에 넣고 기화시켜 주입될 수 있다. 상기 가스는 가스유량 조절기 (Mass flow meter)(330)에 의해 그 압력과 흐름을 조절할 수 있다.The gas may be injected into the gas supply line 310 by directly connecting the gas in the gaseous state such as nitrogen using the gas tank 340 or may be injected by introducing a liquid or solid material into the vaporizer 350 and vaporizing . The gas can be regulated in pressure and flow by a mass flow meter 330.
가스는 O2, N2O 등 산소 성분을 포함하는 가스; CF4, SF6 등 불소 성분을 포함하는 가스; Cl2, BCl3 등 염소 성분을 포함하는 가스; Ar, N2 등의 불활성 가스를 단독으로 또는 혼합하여 사용할 수 있다.The gas may be a gas containing an oxygen component such as O 2 , N 2 O; A gas containing a fluorine component such as CF 4 or SF 6 ; Cl 2 , BCl 3 and other chlorine components; Ar, N 2, and the like may be used alone or in combination.
본 발명의 일실시예에 있어서, 배기부(40)는 확산펌프(410), 보조펌프(420), 주배기라인(430), 보조배기라인(440), 스로틀밸브(450), 주밸브(452), 보조밸브(454), 압력게이지(460, 461, 462)로 구성되어 있다. 상기 압력게이지(460,461,462)는 상기 스로틀밸브(450)와 상기 확산펌프(410) 사이의 주배기라인(430), 진공챔버(10)와 보조펌프(420) 사이의 보조배기라인(440), 및 확산펌프(410)와 보조펌프(420) 사이의보조배리기라인(440)상에 각각 구비된다. In an embodiment of the present invention, the exhaust portion 40 includes a diffusion pump 410, an auxiliary pump 420, a main exhaust line 430, an auxiliary exhaust line 440, a throttle valve 450, a main valve 452 ), An auxiliary valve 454, and pressure gauges 460, 461 and 462. The pressure gauges 460, 461 and 462 are connected to the main exhaust line 430 between the throttle valve 450 and the diffusion pump 410, the auxiliary exhaust line 440 between the vacuum chamber 10 and the auxiliary pump 420, And is provided on an auxiliary barrier line 440 between the diffusion pump 410 and the auxiliary pump 420, respectively.
본 발명의 일실시예에서, 보조펌프(420)는 기름회전펌프(배기속도 매분 600리터)이고, 보조배기라인(440)를 통하여 진공챔버(10)와 연결된다. 진공챔버(10)의 청결성이 대단히 중요할 경우에는 보조펌프(420)로서 오일프리 펌프를 사용할 수 있고, 또, 보전성을 향상시킬 때는 드라이펌프를 사용하여도 된다. 물론, 범용적으로 사용되는 기계적 펌프, 부스터 펌프를 사용하여도 된다.In one embodiment of the present invention, the auxiliary pump 420 is an oil spin pump (exhaust rate is 600 liters per minute) and is connected to the vacuum chamber 10 through the auxiliary exhaust line 440. When the cleanliness of the vacuum chamber 10 is very important, an oil-free pump may be used as the auxiliary pump 420, and a dry pump may be used to improve the integrity. Of course, a general-purpose mechanical pump or booster pump may be used.
본 발명의 일실시예에서, 확산펌프(410)는 주배기라인(430)을 통하여 진공챔버(10)에 연결되고, 그 사이에는 배기량을 조절할 수 있는 스로틀밸브(450)가 구비되어 있다. 상기 확산펌프(410) 후단에는 보조펌프(420)가 연결되어 있다. 상기 주밸브(452)는 상기 확산펌프(410)와 보조펌프(420) 사이의 보조배기라인(440)에 구비되고, 상기 보조밸브(454)는 확산펌프(410) 및 보조펌프(420)간 연결된 보조배기라인(440)에서부터 진공챔버(10)에 이르는 보조배기라인(440)상에 구비된다.In an embodiment of the present invention, the diffusion pump 410 is connected to the vacuum chamber 10 through the main exhaust line 430, and a throttle valve 450 is provided between the diffusion pump 410 and the vacuum chamber 10 to adjust the amount of exhaust gas. An auxiliary pump 420 is connected to a downstream end of the diffusion pump 410. The main valve 452 is provided in the auxiliary exhaust line 440 between the diffusion pump 410 and the auxiliary pump 420 and the auxiliary valve 454 is connected between the diffusion pump 410 and the auxiliary pump 420 Is provided on the auxiliary exhaust line (440) from the auxiliary exhaust line (440) to the vacuum chamber (10).
상기 확산펌프(410)의 오일로는, 종래에 확산펌프에 사용되는 것을 제한없이 사용할 수도 있다. 이러한 오일의 예로, Mineral oils, Silicon oils, polyphenyl ether, perfluro polyether 등을 개별적으로 사용한 것, 또는 이들의 합성유를 들수 있다. 본 발명의 일실시예에서는, 확산펌프 오일로 실리콘 오일을 사용하였다. 플라즈마 처리장치에 사용되는 오일은 증기압이 낮은 것이 바람직하며, 특히, 공정에 주입되는 가스와 반응하여 예기치 않은 부산물을 발생시키지 않는 것이 좋다. 이러한 점에서 실리콘 오일은 내화학성이 우수하고 가격도 저렴하여 본 발명의 확산펌프 오일로서 바람직하다. 가격을 고려하지 않는다면 내화학성이 우수한 polypheyl ether 계열의 오일을 사용하여도 무방하다. As the oil of the diffusion pump 410, any of those conventionally used for the diffusion pump may be used without limitation. Examples of such oils are mineral oils, silicone oils, polyphenyl ether, perfluro polyether, etc., or synthetic oils thereof. In one embodiment of the present invention, silicone oil was used as the diffuser pump oil. The oils used in the plasma treatment apparatus preferably have low vapor pressures, especially those which do not react with the gas injected into the process to produce unexpected by-products. In this respect, the silicone oil is excellent in chemical resistance and low in cost, and therefore, is preferable as the diffusion pump oil of the present invention. If you do not consider the price, you can use oil of polypheyl ether series which has excellent chemical resistance.
도 3에는 본 발명의 일실시예의 확산 펌프를 도시하였다. 본 발명의 일실시예에서, 확산펌프는 몸체(411), 증발관(412), 노즐(413), 오일(414), 냉각코일(415), 히터(416), 흡기구(417) 및 배기구(418)를 구비하고, 상기 흡기구에 온도계측기(419)를 구비한다.FIG. 3 shows a diffusion pump according to an embodiment of the present invention. In one embodiment of the present invention, the diffusion pump includes a body 411, an evaporator 412, a nozzle 413, an oil 414, a cooling coil 415, a heater 416, an inlet 417, 418, and a temperature meter 419 is provided at the inlet.
확산펌프의 배기 원리는 확산펌프 하단부에 있는 오일을 히터에 의해 가열하면, 오일 증기는 증발관을 따라 상승하다가 노즐을 통해 아래로 분사된다. 이 때 주변의 기체 분자들도 함께 동일한 방향으로 이동시켜 배기하게 된다. 확산펌프에 대한 종래기술은 주장헌, 「진공기술실무」, 홍릉과학출판사, 2004, 174면 등을 참고할 수 있고, 상기 문헌은 본 발명의 명세서 참조내용으로서 합체된다.The exhaust principle of the diffusion pump is that when the oil at the bottom of the diffusion pump is heated by the heater, the oil vapor rises along the evaporation pipe and is injected downward through the nozzle. At this time, the surrounding gas molecules are also moved in the same direction and exhausted. Prior art for the diffusion pump can be found in, for example, U.S. Provisional Patent Application entitled " Vacuum Technology Practice ", Hongleung Scientific Publishing Co., 2004, page 174, which is incorporated herein by reference.
본 발명의 장치를 이용한 유도결합 식각에서 공정 압력은 1 ~ 1,000 mTorr의 범위에서 사용할 수 있으며, 보다 우수하게는 1 ~ 200 mTorr 범위에서 사용한다. 이 때 가스의 유량은 유량조절기로 조절하며 공정 압력은 스로틀밸브로 조절할 수 있다.In the inductive coupled etching using the apparatus of the present invention, the process pressure can be used in the range of 1 to 1,000 mTorr, more preferably in the range of 1 to 200 mTorr. At this time, the flow rate of the gas is controlled by the flow regulator, and the process pressure can be controlled by the throttle valve.
이하, 본 발명의 장치의 작동예를 들어 설명한다. 본 발명 장치를 사용하여 다양한 종류의 기재에 대하여 플라즈마 처리공정을 수행하였다. Hereinafter, an operation example of the apparatus of the present invention will be described. Plasma processing steps were performed on various types of substrates using the apparatus of the present invention.
작동예Operation example
플라즈마 공정 전, 즉 공정대기 중 상태는 아래와 같은 배기공정을 통해 이루어질 수 있다.Before the plasma process, that is, in the process standby state, can be achieved through the following exhaust process.
진공챔버(10)을 대기압으로부터 배기할 때는 우선, 보조밸브(454)를 제외한 모든 밸브를 잠그고 기름회전펌프를 작동시켜 진공챔버(10) 내부압력이 소정압력 (배기계에 따라 다르나 본 실시형태에서는 약 60 mTorr)까지 배기되면 보조밸브(60)를 잠그고 확산펌프(410)에 연결된 주밸브(452)를 연다. 진공챔버(10)는 챔버압력게이지(110)를 구비하고 있어 압력계측이 가능하다. 이때, 확산펌프는 히터(59)를 가열하여 오일이 충분히 기화되어 있는 상태이고, 외부에는 냉각코일(415)을 통해 냉각수가 흐르게 한다. 여기서 압력게이지(461, 462)가 각각 주어진 일정압력 (예, 압력게이지(461): 약 1 mTorr 이하, 압력게이지(462): 약 50 mTorr 이하)에 도달하고, 스로틀밸브(450) 및 상기 확산펌프(410) 사이의 상기 주배기라인상에 압력게이지(460)가 약 10 mTorr 이하이면, 상기 스로틀밸브(450)를 열어 진공챔버(10)을 고진공영역으로 배기한다. 종래의 경우에는 주배기라인(포어라인)밸브와 스로틀밸브를 분리하여 사용하였으나, 본 발명에서는 주배기라인(포어라인)밸브와 스로틀 밸브를 합쳐 새로이 개발한 일체형 스로틀밸브(450)를 사용하여 확산펌프의 압력을 조절하였다.When exhausting the vacuum chamber 10 from the atmospheric pressure, all the valves except for the auxiliary valve 454 are closed and the oil rotation pump is operated so that the pressure inside the vacuum chamber 10 is maintained at a predetermined pressure (depending on the exhaust system, 60 mTorr), the auxiliary valve 60 is closed and the main valve 452 connected to the diffusion pump 410 is opened. The vacuum chamber 10 is provided with a chamber pressure gauge 110, and pressure measurement is possible. At this time, the diffusion pump heats the heater 59 to sufficiently vaporize the oil, and the cooling water flows through the cooling coil 415 to the outside. Where the pressure gauges 461 and 462 reach a given constant pressure (e.g., pressure gauge 461: about 1 mTorr or less, pressure gauge 462: about 50 mTorr or less), and the throttle valve 450 and the diffusion If the pressure gauge 460 on the main exhaust line between the pump 410 is less than about 10 mTorr, the throttle valve 450 is opened to evacuate the vacuum chamber 10 to a high vacuum region. In the present invention, the main exhaust line (foreline) valve and the throttle valve are separately used. However, in the present invention, the integrated throttle valve 450 newly developed by combining the main exhaust line (foreline) The pressure of the pump was adjusted.
상기 배기공정을 제외한 나머지 플라즈마 처리공정은 종래기술의 것을 사용하였고, 이는 당해 기술분야의 통상의 지식을 가진 자라면 이미 지득하고 있는 것이므로 이에 대한 설명은 생략한다.Except for the above-described exhaust process, the plasma processing process of the prior art is used, and it is already known to those skilled in the art, so that a description thereof will be omitted.
상기 작동예에 따라 Cyclic Olefin Copolymer (COC) 소재, Polymethylmethacrylate (PMMA) 소재, olycarbonate (PC) 소재에 대하여 각각 플라즈마 식각처리하였다. According to the operation example, the plasma etching process was performed on the cyclic olefin copolymer (COC) material, the polymethylmethacrylate (PMMA) material, and the olycarbonate (PC) material.
도 4 내지 도 6은 본 발명을 통해 개발된 확산펌프 유도결합 플라즈마 식각 장치를 통해 공정 압력 변화에 따라 소재를 식각한 결과 그래프이다. 이 때 사용한 공정 조건은 5 sccm (standard cubic centimeter per minute) 의 산소 가스, 300 W 유도결합 플라즈마 (ICP) 전원, 100 W 샘플 척 바이어스 (RIE) 전원으로 고정하여 사용하였다. 또한 기존의 용량결합형 플라즈마 식각과의 비교를 위하여 본 확산펌프 유도결합 플라즈마 식각 장치에서 유도결합 플라즈마 전원은 인가하지 않고 샘플 척 바이어스만 100 W로 단독으로 인가한 플라즈마 식각 결과를 함께 나타내었다. FIGS. 4 to 6 are graphs showing results of etching the material according to the process pressure change through the diffusion pump inductively coupled plasma etching apparatus developed through the present invention. FIG. The process conditions used were fixed with 5 sccm (standard cubic centimeter per minute) of oxygen gas, 300 W inductively coupled plasma (ICP) power, and 100 W sample bias bias (RIE) power source. Also, for comparison with the conventional capacitively coupled plasma etching, the results of the plasma etching applied to the inductively coupled plasma (plasma) etching apparatus of this diffusion pump alone were as shown in Fig.
결과를 살펴보면, 첫째, Cyclic Olefin Copolymer (COC), PMMA, 폴리카보네이트의 소재 식각 모두에서 300 W 정도의 비교적 낮은 유도결합 전원을 가지고도 유도결합 플라즈마가 용량결합 플라즈마보다 훨씬 빠른 (PMMA의 경우 약 50 % 이상) 식각 속도를 제공하였다. 특히 본 결과에서 PMMA, PC, COC 소재는 모두 압력 범위가 60 mTorr 일 때 최대 식각 속도가 나타남을 알 수 있었다. The results show that, firstly, inductively coupled plasma is much faster than capacitively coupled plasma (with a relatively low inductively coupled power of 300 W for both cyclic olefin copolymer (COC), PMMA, and polycarbonate material etching) %) Etch rate. In particular, the results show that the maximum etch rate of PMMA, PC, and COC materials is 60 mTorr.
둘째, 본 그래프들은 확산펌프를 사용하여도 유도결합 플라즈마 식각에 필요한 충분한 압력을 유지하며 소재의 유도결합 플라즈마 식각이 가능하다는 것을 알 수 있었다. 이는 확산펌프로 플라즈마 식각공정이 가능하다는 것을 보여주는 최초의 데이터로 사료된다. Second, these graphs show that the inductively coupled plasma etching of the material is possible by maintaining sufficient pressure for inductively coupled plasma etching even by using a diffusion pump. This is the first data showing that the plasma etching process is possible with a diffusion pump.
셋째, 플라즈마 공정 압력이 높아질수록, 유도결합 플라즈마 식각 속도가 용량결합 플라즈마 식각 속도에 수렴되는 경향을 보이고 있다. 즉, 200 mTorr 이상의 공정압력에서는 유도결합 플라즈마에 전원을 인가하여도 용량결합 플라즈마 식각 속도와 차이가 없을 수 있어 실제적으로 큰 의미가 없을 수 있다는 것을 알 수 있었다.Third, as the plasma process pressure increases, the inductively coupled plasma etching rate tends to converge to the capacitively coupled plasma etching rate. That is, at a process pressure of 200 mTorr or more, even if power is applied to the inductively coupled plasma, there is no difference between the plasma etch rate and the capacitive coupling plasma.
이상, 도면을 참조하여 본 발명의 플라즈마 처리장치를 설명하였지만, 본 발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the invention.

Claims (12)

  1. 진공챔버, 플라즈마 발생부, 가스공급부, 및 배기부를 포함하는 유도결합형 플라즈마 처리장치에 있어서, 1. An inductively coupled plasma processing apparatus comprising a vacuum chamber, a plasma generating section, a gas supplying section, and an exhaust section,
    상기 배기부는,The exhaust unit includes:
    확산펌프;Diffusion pump;
    보조펌프;Auxiliary pump;
    상기 진공챔버 및 상기 확산펌프와 연결되고, 스로틀밸브를 구비하며, 배기통로의 역할을 하는 주배기라인;A main exhaust line connected to the vacuum chamber and the diffusion pump, the main exhaust line having a throttle valve and serving as an exhaust passage;
    상기 진공챔버, 상기 확산펌프, 및 상기 보조펌프와 연결되고, 주밸브 및 보조밸브를 구비하며, 배기통로의 역할을 하는 보조배기라인An auxiliary exhaust line connected to the vacuum chamber, the diffusion pump, and the auxiliary pump and having a main valve and an auxiliary valve,
    을 포함하는 것을 특징으로 하는 유도결합형 플라즈마 처리장치.And an inductively coupled plasma processing apparatus.
  2. 제 1 항에 있어서, 상기 스로틀밸브 및 상기 확산펌프 사이의 상기 주배기라인상에 압력게이지(460)가 구비된 것을 특징으로 하는 유도결합형 플라즈마 처리장치.The inductively coupled plasma processing apparatus according to claim 1, wherein a pressure gauge (460) is provided on the main exhaust line between the throttle valve and the diffusion pump.
  3. 제 1 항에 있어서, 상기 보조배기라인은 진공챔버와 보조펌프 사이에 압력게이지(462)를 구비하고, 확산펌프와 보조펌프 사이에 압력게이지(461)를 구비하는 것임을 특징으로 하는 유도결합형 플라즈마 처리장치.The method of claim 1, wherein the auxiliary exhaust line comprises a pressure gauge (462) between the vacuum chamber and the auxiliary pump, and a pressure gauge (461) between the diffusion pump and the auxiliary pump Processing device.
  4. 제 2 항에 있어서, 상기 스로틀밸브는, 공정대기 중에 상기 압력게이지(460)가 10 mTorr를 초과하는 경우, 폐쇄되는 것임을 특징으로 하는 유도결합형 플라즈마 처리장치.3. The inductively coupled plasma processing apparatus according to claim 2, wherein the throttle valve is closed when the pressure gauge (460) exceeds 10 mTorr during the process atmosphere.
  5. 제 1 항에 있어서, 상기 주배기라인은 100 내지 9 × 106 ℓ/s 범위 이내의 컨덕턴스를 가지는 것임을 특징으로 하는 유도결합형 플라즈마 처리장치.The inductively coupled plasma processing apparatus according to claim 1, wherein the main exhaust line has a conductance within a range of 100 to 9 × 10 6 / s.
  6. 제 1 항에 있어서, 상기 주배기라인은 1 × 10-4 내지 1 × 103 범위 이내의 l/d 비(ratio)를 가지는 것임을 특징으로 하는 유도결합형 플라즈마 처리장치.The inductively coupled plasma processing apparatus according to claim 1, wherein the main exhaust line has an l / d ratio within a range of 1 × 10 -4 to 1 × 10 3 .
  7. 제 1 항에 있어서, 상기 보조배기라인은, 단면적은 0.01 ㎠ 이상이고, l/d 비(ratio)가 1 × 10-4 내지 1 × 103 범위 이내인 것임을 특징으로 하는 유도결합형 플라즈마 처리장치.2. The inductively coupled plasma processing apparatus according to claim 1, wherein the auxiliary exhaust line has a cross-sectional area of 0.01 cm 2 or more and a l / d ratio within a range of 1 × 10 -4 to 1 × 10 3 .
  8. 제 1 항에 있어서, 상기 확산펌프는 몸체, 증발관, 노즐, 오일, 냉각수단, 히터, 흡기구 및 배기구를 구비하고, 상기 흡기구에 온도계측기를 구비하는 것임을 특징으로 하는 유도결합형 플라즈마 처리장치.The inductively coupled plasma processing apparatus according to claim 1, wherein the diffusion pump includes a body, an evaporator, a nozzle, an oil, a cooling means, a heater, an inlet and an outlet, and a temperature meter at the inlet.
  9. 제 8 항에 있어서, 상기 스로틀밸브는, 상기 온도계측기가 50 ℃ 이상을 나타내는 경우, 폐쇄되는 것임을 특징으로 하는 유도결합형 플라즈마 처리장치.The inductively coupled plasma processing apparatus according to claim 8, wherein the throttle valve is closed when the temperature meter indicates 50 ° C or more.
  10. 제 8 항에 있어서, 상기 확산펌프는 히터의 온도가 600 ℃ 이하인 것임을 특징으로 하는 유도결합형 플라즈마 처리장치.The inductively coupled plasma processing apparatus according to claim 8, wherein the temperature of the heater is 600 캜 or less.
  11. 제 8 항에 있어서, 상기 오일은 실리콘 오일을 포함하는 것임을 특징으로 하는 유도결합형 플라즈마 처리장치.9. The inductively coupled plasma processing apparatus of claim 8, wherein the oil comprises a silicone oil.
  12. 제 1 항에 있어서, 상기 보조펌프는 기계적 펌프, 드라이 펌프, 부스터 펌프, 및 기름회전펌프에서 선택되어지는 하나 이상을 직렬 또는 병렬로 연결한 것임을 특징으로 하는 유도결합형 플라즈마 처리장치.2. The inductively coupled plasma processing apparatus according to claim 1, wherein the auxiliary pump comprises at least one selected from a mechanical pump, a dry pump, a booster pump, and an oil pump connected in series or in parallel.
PCT/KR2009/006181 2009-05-06 2009-10-26 Inductively coupled plasma processing apparatus employing diffusion pump WO2010128740A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0039103 2009-05-06
KR1020090039103A KR20100120336A (en) 2009-05-06 2009-05-06 Plasma processing apparatus having a diffusion pump

Publications (1)

Publication Number Publication Date
WO2010128740A1 true WO2010128740A1 (en) 2010-11-11

Family

ID=43050221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/006181 WO2010128740A1 (en) 2009-05-06 2009-10-26 Inductively coupled plasma processing apparatus employing diffusion pump

Country Status (2)

Country Link
KR (1) KR20100120336A (en)
WO (1) WO2010128740A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102140711B1 (en) * 2019-10-17 2020-08-03 주식회사 프라임솔루션 A hi-vacuum plasma residual gas analizer and method for analysing residua gas of the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980042357A (en) * 1996-11-13 1998-08-17 조셉제이.스위니 System and Method for High Temperature Treatment of Semiconductor Wafer
KR19980079752A (en) * 1997-04-14 1998-11-25 니시히라 순지 Ionization Sputtering Device
KR20070076545A (en) * 2006-01-18 2007-07-24 동경 엘렉트론 주식회사 Plasma processing apparatus and controlling method for plasma processing apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980042357A (en) * 1996-11-13 1998-08-17 조셉제이.스위니 System and Method for High Temperature Treatment of Semiconductor Wafer
KR19980079752A (en) * 1997-04-14 1998-11-25 니시히라 순지 Ionization Sputtering Device
KR20070076545A (en) * 2006-01-18 2007-07-24 동경 엘렉트론 주식회사 Plasma processing apparatus and controlling method for plasma processing apparatus

Also Published As

Publication number Publication date
KR20100120336A (en) 2010-11-16

Similar Documents

Publication Publication Date Title
US5891349A (en) Plasma enhanced CVD apparatus and process, and dry etching apparatus and process
KR100232039B1 (en) Plasma cvd apparatus and the same method
US7199327B2 (en) Method and system for arc suppression in a plasma processing system
US7638759B2 (en) Hyperthermal neutral beam source and method of operating
KR101315558B1 (en) Treatment system
CN107408486A (en) For circulating the processing chamber housing removed with selective material with etching
US20220037127A1 (en) Plasma processing apparatus and plasma processing method
US10665432B2 (en) Temperature control method
TW201931415A (en) Linearized energetic radio-frequency plasma ion source
WO2004095532A2 (en) A barrier layer for a processing element and a method of forming the same
JP2007150012A (en) Device and method for processing plasma
CN101971715A (en) High frequency antenna unit and plasma processing apparatus
WO2009048792A1 (en) Neutral beam source and method for plasma heating
US11201040B2 (en) Substrate supporting unit and film forming device having the substrate supporting unit
WO2002052628A1 (en) Plasma processing method and plasma processor
WO2010128740A1 (en) Inductively coupled plasma processing apparatus employing diffusion pump
CN101042991B (en) Plasma processing apparatus
US6830653B2 (en) Plasma processing method and apparatus
US20220157579A1 (en) Stage, film-forming apparatus or film-processing apparatus including the stage, and method for controlling temperature of substrate
CN111670491A (en) Electrostatic chuck (ESC) pedestal voltage isolation
JPH07147273A (en) Etching treatment
KR20120029630A (en) Plasma processing equipment with a leakage current transformer
WO2015026057A1 (en) Plasma reactor
KR101272101B1 (en) The atmospheric plasma header
JP2001023972A (en) Plasma treatment device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09844407

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09844407

Country of ref document: EP

Kind code of ref document: A1