WO2010127615A1 - 太阳光聚光器控制系统及方法 - Google Patents
太阳光聚光器控制系统及方法 Download PDFInfo
- Publication number
- WO2010127615A1 WO2010127615A1 PCT/CN2010/072440 CN2010072440W WO2010127615A1 WO 2010127615 A1 WO2010127615 A1 WO 2010127615A1 CN 2010072440 W CN2010072440 W CN 2010072440W WO 2010127615 A1 WO2010127615 A1 WO 2010127615A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sensor
- adjustment
- solar concentrator
- ambient light
- sunlight
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 57
- 238000012545 processing Methods 0.000 claims abstract description 44
- 230000009471 action Effects 0.000 claims abstract description 22
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 37
- 229910052710 silicon Inorganic materials 0.000 claims description 37
- 239000010703 silicon Substances 0.000 claims description 37
- 238000005286 illumination Methods 0.000 claims description 14
- 239000000835 fiber Substances 0.000 claims description 12
- 238000005070 sampling Methods 0.000 claims description 12
- 230000008569 process Effects 0.000 claims description 11
- 230000033001 locomotion Effects 0.000 claims description 8
- 230000003287 optical effect Effects 0.000 claims description 8
- 238000004458 analytical method Methods 0.000 claims description 4
- 239000013307 optical fiber Substances 0.000 claims description 4
- 238000001514 detection method Methods 0.000 claims description 2
- 238000011084 recovery Methods 0.000 claims 2
- 230000006870 function Effects 0.000 description 21
- 238000010586 diagram Methods 0.000 description 9
- 230000008901 benefit Effects 0.000 description 5
- 239000003990 capacitor Substances 0.000 description 4
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 4
- 238000009434 installation Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000002803 fossil fuel Substances 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011217 control strategy Methods 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S50/00—Arrangements for controlling solar heat collectors
- F24S50/20—Arrangements for controlling solar heat collectors for tracking
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/47—Mountings or tracking
Definitions
- the invention relates to a control system and method for a solar concentrator, which is used for collecting, analyzing and processing signals of a sensible sensor on a solar concentrator, and driving the motion tracking of the mechanical part of the solar concentrator sunshine.
- the first one is based on the tracking method of the light sensor.
- this tracking device there is a sensor specifically for detecting the position of the sun.
- the system adjusts until the sun's rays realign with the optical axis of the system.
- the second is to calculate the position of the sun at different times of the year through theoretical formulas, and then pass the control system Track the position of the sun in real time to track the position of the sun.
- the disadvantage is that it is susceptible to weather disturbances and is susceptible to interference in cloudy weather.
- the advantage of the second method is that the tracking is not affected by the weather.
- the disadvantage is that the parameters of the tracking system need to be reset in different geographical locations, and the tracking has accumulated errors. Summary of the invention
- One of the objects of the present invention is to provide a control system capable of accurately controlling a solar concentrator, which has a simple structure, low cost, high reliability, convenient operation, and can meet the control requirements of a solar concentrator, thereby ensuring Under the premise of using performance, reduce manufacturing costs, in order to promote the application in China.
- Another object of the present invention is to provide a control method which can still keep the solar concentrator stable during cloudy weather.
- the solar concentrator control system of the present invention includes
- Solar tracking sensor including ambient light sensor, azimuth sensor and height angle sensor,
- Central processing circuit including signal amplifying circuit, limit switch circuit and central processing unit,
- Motion drive circuit including driver and relay
- the solar tracking sensor converts the optical signal at the position of the solar concentrator into an electrical signal and amplifies it and sends it to the central processing circuit. After analysis by the central processor, various control signals are given to the action driving circuit, and the action driving circuit is driven. After the driver is processed, the corresponding relays are controlled to work, and the relay control motor and the electromagnetic clutch action adjustment concentrator are always aligned with the sunlight.
- the solar light tracking sensor comprises an ambient light sensor, an azimuth angle sensor and a height angle sensor, the three are located on a common base, the ambient light sensor is composed of two silicon photo cells, and the two silicon photo cells are arranged at 90°. On the pedestal.
- the azimuth sensor and the height angle sensor are identical in structure and arranged perpendicular to each other. Both are composed of two silicon photo cells and one sun visor. The two sun visors are fixed on the pedestal in a vertical state at a certain distance. Two silicon photocells They are mounted on the bases on the outside of the two sun visors.
- a rotation limit switch trigger block is arranged on a side of the base, and two rotation limit switches are respectively arranged at corresponding positions in the outer base; a swing limit switch trigger block is arranged on the swing shaft under the base, and is swinging There are two swing limit switches respectively in the corresponding positions outside the shaft; a limit switch circuit is arranged in the central processing circuit, the input end of the limit switch circuit is connected with the rotation limit switch and the swing limit switch, and the output end is connected to the central processor. .
- a method for controlling a solar concentrator includes the following steps:
- the data is initialized, the timer interrupt function is enabled, and it is judged whether the solar concentrator and the sunlight are allowed to be adjusted. If the solar concentrator is not allowed, or there is no sunlight, the program waits for entry. Interrupt the program; if the solar concentrator is allowed to be adjusted, or if there is sunlight, the timer interrupt function is disabled and the program begins to adjust the solar concentrator;
- the solar concentrator is not adjusted in place, ie neither the elevation sensor and the azimuth sensor are facing the sun, or if any of the elevation sensor and the azimuth sensor are not facing the sun, then the sun is detected again, if not Sunlight, turn off the motor, stop the adjustment, re-enter the allowable timer interrupt function, and wait for the interrupt program; if there is sunlight, determine whether the solar concentrator needs to be adjusted according to the azimuth sensor, if the test result needs to be adjusted, then judge Whether the solar concentrator has been adjusted to the limit position.
- the motor is turned off, the adjustment is stopped, the adjustment flag is cleared, the timer interrupt function is re-entered, and the interrupt program is waited; if the limit position is not reached, Turn the adjustment, then the program re-enters to determine if there is a sunlight program;
- the solar concentrator does not need to be adjusted, turn off the motor, stop the adjustment, and the program enters the judgment of whether both directions are adjusted in place; if adjustment is needed, it is judged whether the solar concentrator reaches the limit position, if it reaches In the extreme position, the motor is turned off, the adjustment is stopped, the adjustment bit is cleared, the allowable timer interrupt function is re-entered, and the interrupt program is waited for; if the solar concentrator does not reach the limit position, the drive motor is oscillated and re-entered. a sunny judgment procedure;
- the field protection program After entering the interrupt program, the field protection program is started, and the interrupt counter counts the number of interrupts to determine whether to enter the debug mode: If the debug mode is to be entered, the set enable flag is set, the interrupt counter and the ambient light counter are cleared, and the field program is restored. If you do not enter the debug mode, determine whether you need to use lighting, if the user needs to light, perform the light-on procedure; otherwise, you do not need to light, perform the light-off procedure;
- Sampling the ambient light setting an upper limit value and a lower limit value.
- the sampled value of the ambient light sensor is greater than or equal to the upper limit value, the sun is considered to be present, and the ambient light counter is counted once; the sample value of the ambient light sensor is less than or equal to
- the night counter counts once; if the sample value of the ambient light sensor is between the upper limit value and the lower limit value, it is considered cloudy; then it is judged whether an adjustment period expires, if one does not reach one Adjust the cycle, directly restore the scene, return from the interrupt program; If an adjustment cycle is reached, clear the interrupt counter, determine the ambient light Whether the counting number of counters reaches the set number of times, if the set number of times is reached, the permission adjustment flag is set, the ambient light counter, the night counter and the reset counter are cleared; if the set number of times is not reached, the ambient light counter is cleared, and the night counter is judged Whether the set number of times has been reached, if
- the reset program is executed to reset the counter; if the set number of reset counters is not reached, restart Timer, restore the field program; If the night counter does not reach the set number of times, restart the timer to resume the scene and exit the interrupt program.
- the program further includes a debugging mode, and enters a debugging mode: the debugging mode is to adjust the spot of the light-transmitting mirror and the fiber entrance after the solar concentrator is first installed.
- the debugging mode the program is in the pair.
- the solar concentrator does not detect the ambient light during the adjustment process, but samples the azimuth sensor and the height angle sensor every other interruption period, and debugs the solar concentrator according to the sampling result, so that the solar orientation
- the angle sensor and the height angle sensor face the sun; if the ambient light is insufficient during the adjustment process, the adjustment process automatically stops because the elevation angle sensor and the azimuth sensor have no shadow, and the program waits for an interruption period and restarts the next adjustment cycle.
- steps (1) and (2) determining whether there is sunlight: the ambient light counter counts according to whether the voltage value output by the ambient light sensor is greater than or equal to the set voltage value, and if so, the ambient light counter counts once; If not, it will not count; then it is judged according to whether the number of counts in the adjustment period of the ambient light counter reaches the set number. If the set number of times is reached, there is sunlight; if the set number of times is not reached, there is no sunlight.
- step (2) whether the rotation limit switch and the swing limit switch reach the limit position according to whether the voltage value output by the rotation limit open sensor and the swing limit switch sensor is greater than or equal to the set value, if If it is greater than or equal to the set value, the limit position is reached; otherwise, the limit position is not reached.
- the light source when there is no sunlight, the light source provides illumination through the optical fiber.
- the light source When there is sunlight, the light source is turned off, and the sunlight is directly introduced into the optical fiber to provide illumination.
- the set value is generally set according to different regions and seasons.
- the invention firstly measures whether the environment is sunlight by an ambient light sensor, and after the ambient light signal is obtained by the photometric sensor, in the case of night or cloudy, when light is needed, the state of light generated by electricity is switched, and the state is not required.
- the system does not operate; in the case of the sun during the day, the azimuth sensor and the height angle sensor receive sunlight, convert the optical signal into an electrical signal, and then transmit it to the central processor, the mode in the central processor.
- Digital converter will simulate the signal Converted into a digital signal, the central processor analyzes the digital signals to determine whether the spot concentrated by the concentrator surrounds the fiber entrance, and the system does not operate when surrounded.
- the motor and the electromagnetic clutch act to control the rotation and swing adjustment of the concentrator so that the entrance of the fiber is always within the spot, so that the lighting surface is always facing the sun, the absorbed light energy is the largest, and the tracking accuracy is high.
- the invention has the advantages of simple structure, high control precision, low cost and good cost performance.
- the first control method is adopted by the invention, that is, the tracking method based on the light sensor is optimized, and the control strategy is optimized at the same time, so that the method can still work stably in cloudy weather.
- the invention has the function of lighting illumination, and the light can be used for illumination even in the absence of sunlight, ensuring that the lighting is uninterrupted throughout the day.
- the invention has two modes of debugging mode and working mode, which facilitates installation and debugging of the entire daylighting system.
- Figure 1 is a flow chart of the control system of the present invention.
- FIG. 2 is a schematic view of an ambient light sensor of the present invention.
- FIG. 3 is a schematic view of an azimuth sensor of the present invention.
- FIG. 4 is a schematic view showing the position arrangement of the height angle sensor and the azimuth angle sensor of the present invention.
- Fig. 5 is a view showing the operation state of the azimuth sensor and the height angle sensor of the present invention.
- FIG. 6 is a schematic flow chart of a central processing circuit of the present invention.
- Figure 7 is a schematic diagram of an amplifying circuit in the central processing circuit of the present invention.
- Figure 8 is a schematic view showing the arrangement of the rotation limit switch of the present invention.
- FIG. 9 is a schematic view showing the arrangement of the swing limit switch of the present invention.
- Figure 10 is a circuit diagram of a limit switch in the central processing circuit of the present invention.
- Figure 11 is a block diagram of the action driving circuit of the present invention.
- Figure 12 is the circuit diagram of the main control chip.
- Figure 13 shows the motion drive circuit
- Figure 14 shows the relay circuit
- Figure 15 shows the limit switch circuit
- Figure 16 is a diagram of the control system of the present invention.
- Figure 17 is a flow chart of the main routine of the present invention.
- Figure 18 is a flow chart of the interrupt routine of the present invention.
- Embodiment 1 The control system of the present invention comprises a mechanical part and a circuit control part.
- a schematic view of the structure of the mechanical part refer to the utility model patent of the applicant application number 200820185735.
- the control system of the present invention includes a solar tracking sensor composed of an ambient light sensor, an azimuth sensor and a height angle sensor.
- the central processing circuit and the action driving circuit composed of the driver and the relay are composed of a signal amplifying circuit, a limit switch circuit and a central processing unit.
- Power circuit Includes dedicated isolated power supply 220VAC-24VDC/220VAC-5VAC-12VDC.
- System protection circuit including overvoltage, overcurrent, positive and negative reverse connection protection.
- Water temperature control system Automatically control two fans at 40 degrees for cooling; at 50 degrees, the large fan performs cooling; at 60 degrees, the filter enters the fiber; at 70 degrees, the lamp is used to cover the spot All the tails are turned on; until the temperature reaches 30 degrees, the original state is restored.
- the system photovoltaic battery charges the battery, and the internal and external power supply coexistence circuit
- Taillight device 4 ⁇ 5W LED lamp; Photo sensor is provided at the tail light.
- the tail light 4 ⁇ LED light When the indoor brightness is lower than 50 lux, the tail light 4 ⁇ LED light is on; when the indoor brightness exceeds 300 lux, the tail light 4 ⁇ LED light is off.
- the output end of the solar tracking sensor is connected to the input end of the amplifying circuit of the central processing circuit, and the output end of the amplifying circuit is connected to the input end of the central processing unit; the output end of the limiting switch circuit is connected to the input end of the amplifying circuit of the central processing circuit, the amplifying circuit
- the output is connected to the input of the central processor; the output of the central processor is connected to the input of the driver of the drive circuit, and the output of the drive is connected to each relay.
- the solar tracking sensor converts the optical signal at the position of the solar concentrator into an electrical signal and sends it to the central processor.
- the central processor collects the optical signals of various positions of the solar concentrator and converts them into electrical signals.
- the amplifier circuit After the amplifier circuit is amplified, it is sent to the central processing unit. After analysis by the central processing unit, the corresponding control signal is sent to the action driving circuit. After the driver of the action driving circuit processes, the corresponding relays are driven to operate, and the motor is controlled by the relay.
- the central processor collects the action information of the limit switch circuit in real time to control the displacement of the solar concentrator. The displacement during the movement of the solar concentrator is transmitted to the central processing unit of the central processing circuit to ensure that the solar concentrator stops moving after reaching the limit position, preventing the solar concentrator from being damaged beyond the motion limit.
- the solar light tracking sensor is used to detect the position of the sunlight, and the output end thereof is connected to the input end of the amplifying circuit, and includes an ambient light sensor 22, an azimuth angle sensor 21, and a height angle sensor 23, which are disposed on the base 20. as shown in picture 2
- the ambient light sensor 22 is used to detect the brightness of the ambient light to determine whether there is sun.
- the ambient light sensor 22 is composed of two silicon photo cells A, and the two silicon photo cells are arranged at 90° to ensure even The sun can still receive enough sunlight when it is oblique.
- FIG 3 is a schematic view of the azimuth angle sensor 21, and the structure of the azimuth angle sensor 21 is exactly the same as that of the height angle sensor 23, which are composed of a silicon photocell C and a sun visor B, and two silicon photocells C are respectively mounted on the sunshade.
- the bottom of the outer side of the plate B is on the base 20.
- Figure 4 shows the positional arrangement of the height angle sensor and the azimuth angle sensor, the installation directions of which are perpendicular to each other.
- E represents the east direction
- S represents the south direction.
- Figure 5 shows the working state diagrams of the azimuth sensor and the height angle sensor. According to the presence or absence of illumination of the two silicon photocells C, the sensor is divided into three states: When the left silicon photocell has illumination and the right silicon photocell has no illumination, the light is concentrated. The counter needs to be adjusted counterclockwise (Fig. 5a); when the left silicon photocell is not illuminated and the right silicon photocell is illuminated, the concentrator needs to be adjusted clockwise (Fig. 5b); when both the left silicon photo cell and the right silicon photocell have illumination , the concentrator does not need to be adjusted (Figure 5c).
- FIG. 6 shows the flow chart of the central processing circuit.
- the central processing circuit is mainly composed of a signal amplifying circuit, a limit switch circuit and a central processing unit, that is, a main control chip circuit.
- the main control chip circuit mainly includes a PIC16F877A single-chip microcomputer, and the signal amplifying circuit mainly includes LM358 op amp and some resistors and capacitors.
- the voltage signals output from the silicon photocells of the ambient light sensor 22, the azimuth angle sensor 21 and the height angle sensor 23 are relatively weak, and the signal is amplified by the operational amplifier circuit, and the limit signal given by the limit switch circuit is simultaneously sent to the master control.
- the analog-to-digital conversion interface of the chip, the main control chip determines and adjusts the signal by analyzing and judging the signal, and then gives instructions to each part of the solar concentrator.
- the limit signal given by the limit switch circuit is simultaneously sent to the analog-to-digital conversion interface of the central processing unit.
- the central processor analyzes and judges the signal to determine the adjustment method required by the system.
- Figure 7 shows the amplifier circuit in the central processing circuit, which includes an operational amplifier and three resistors R1, R2, and R3, and two capacitors C1 and C2.
- R2 and R3 determine the amplification factor of this amplifier circuit, which is (1 + R3/ R2 ), the input sensor signal is amplified (1 + R3/ R2 ) times and output, and the capacitors C1 and C2 are filter capacitors.
- the whole system has 6 Such an amplifying circuit amplifies the sensor signals, respectively.
- the limit switch circuit is composed of a series of inductive limit switches to prevent damage caused by excessive rotation or swing of the mechanical part; in addition, the arrester is connected in the electrical circuit switch control loop, and FIG. 8 is a schematic diagram of the arrangement of the rotary limit switch.
- a rotation limit switch trigger block K is disposed on a side of the base 20, and two rotation limit switches K1 and ⁇ 2 are respectively disposed at corresponding positions outside the base 20, and the rotation limit switch is of a type J3-B4C1, and the rotation limit is The switches K1 and ⁇ 2 ensure that the turntable can only rotate within 180 degrees. In the figure, ⁇ represents the east direction and S represents the south direction.
- FIG. 9 is a schematic view showing the arrangement of the swing limit switch.
- a swing limit switch trigger block F is arranged on the swing shaft under the base 20, and two swing limit switches F1 and F2 are respectively arranged at corresponding positions outside the swing shaft, and the model of the swing limit switch is J3-B4C1, the swing limit Bit switch Fl and F2 ensure that the turntable can only swing within 90 degrees, thereby protecting the swing mechanism from excessive swinging and damaging the mechanical part.
- Figure 10 shows the limit switch circuit, which includes a limit switch and three resistors. The input end of the limit switch circuit is connected to the rotation limit switch and the swing limit switch, and the output end is connected to the central processor.
- the limit switches F1 and F2 of the limit switch circuit sense an object, a low level is output.
- the bit switch signal is '0'.
- the output is a high level, that is, the limit switch signal is '1'.
- the system has eight such limit circuits that sense the extreme positions of the system.
- FIG 11 shows the action drive circuit.
- the control signal drives the relay through the drive chip to control the motor and the electromagnetic clutch power supply to realize the functions to be realized in the system. It consists of a drive that drives the chip 003, seven double-pole double-throw solid relays, two electromagnetic clutches, and two diodes.
- the driver is used to power amplify the control signal output by the central processing unit to obtain sufficient driving capability to drive the coil of the relay.
- the relay is used as a controllable switch to control the power supply of the motor, clutch and lamp.
- the relay is used to simultaneously isolate the control signal and the strong signal to improve the reliability and safety of the system.
- the driver chip ULN2003 converts the weak control signal sent from the master chip into a drive signal with a voltage of 24V and strong driving capability.
- the main motor switch relay and the main motor forward and reverse relay jointly form a control circuit for controlling the main motor.
- the main motor switch relay switch When the system rotation and swing position need to be adjusted, the main motor needs to be operated. At this time, the main motor switch relay switch is turned on, and the main motor is energized. Rotate, through the main motor forward and reverse relay to control whether the main motor is forward or reverse. Once the system is adjusted, the main motor switch relay switch is turned off and the main motor stops.
- the rotary relay and the swing relay control the pull-in and disengagement of the two electromagnetic clutches.
- the rotary relay switch When the system needs to be adjusted, the rotary relay switch is turned on, and the electromagnetic clutch of the control is powered on. At this time, the main motor drives the system to perform the rotation adjustment.
- the positive and negative rotation is controlled by the positive and negative relays.
- the electromagnetic clutch is turned off and the power is separated. If the swing is still to be adjusted, the swing clutch is energized and the swing is adjusted. If both are adjusted, then The clutch is powered off and the main motor stops.
- the diode on the electromagnetic clutch is used to prevent the electromagnetic clutch from suddenly turning off, and the coil induced voltage in the electromagnetic clutch burns the coil.
- the function of the lamp motor switching relay and the lamp motor reversing relay is the same as that of the main motor switching relay and the main motor reversing relay, which is used to control the operation and forward and reverse directions of the lamp motor.
- the light switch relay is used to control the turn-on and turn-off. In the case of night or cloudy, when light is needed, the light is extended and turned on by the lamp motor, no light is needed or there is sun during the day. In the case, the lamp is retracted by the lamp motor, and the lamp power is turned off.
- Figure 12 shows the main control center of the system, that is, the central processing unit.
- the central processing unit has a high-performance PISC with a fast computing speed of DC-200 ns , which ensures the real-time acquisition of eight limit switch signals and eight sensor signals. Any one way sends a request signal to the central processing unit, and the central processing unit immediately enters the interrupt, and sends a response control signal.
- the control signal has a total of 7 numbers, each corresponding to a different driving circuit.
- the performance and speed of the central processor guarantees the integrity of the entire control system. Timeliness and efficiency.
- Figure 13 is the main control drive and relay switching circuit.
- UNL2003 is a high voltage, high current Darlington display that controls the working state of 7 relays. The action and direction of the motor are controlled by the open and closed states of the relay. The high voltage and high operating current, the output can also run in parallel with high load current, ensuring the normal operation of high-power motors.
- Figure 14 shows the working circuit of the motor-driven relay.
- the relay is normally open. It is disconnected before the UNL2003 drive signal is received. When the UNL2003 drive signal is received, the relay is closed, and the output and input terminals are short-circuited. The output is connected to the input of the motor, so the relay closes the motor.
- Figure 15 shows the limit switch circuit.
- the limit switch is an NPN-type, inductive, normally-open type circuit.
- the action of the limit switch is collected by the central processor in real time.
- the central processor When the limit switch is activated, the central processor immediately sends out The control signal is sent to UNL2003.
- UNL2003 receives the signal from the central processor, it immediately drives the corresponding relay to open, ensuring that the limit position is not crossed.
- 12-15 are an action drive circuit, a relay circuit, and a limit switch circuit, respectively, which constitute the main circuit portion of the present invention.
- the present invention provides a concept of a controller for a solar concentrator, and it should be noted that those skilled in the art can make several improvements and variations without departing from the principles of the present invention. And variations are also considered to be the scope of protection of the present invention.
- Example 2
- the structure of the hardware portion of the present invention includes a mechanical portion and a control portion.
- the invention is connected by a bevel gear pair, and under the contact of two electromagnetic clutches, the two pairs of worms and the worm wheel are meshed, and the solar concentrator is driven to adjust the angle of the plane in the east-west direction, and the height angle of the north-south vertical direction is adjusted to form a
- the organic composite moving body, and self-locking, automatically realizes the focus of collecting the solar light source, and completes the movement adjustment of any spatial angle required to track the sun; the sunlight receiving end of the light is directly guided by the optical fiber.
- the control system of the present invention comprises a solar light tracking sensor composed of an ambient light sensor, an azimuth angle sensor and a height angle sensor, and the central processing circuit and the driver are composed of a signal amplifying circuit, a limit switch circuit and a central processing unit.
- a motion driving circuit composed of a relay
- the solar tracking sensor converts the optical signal at the position where the solar concentrator is located into an electrical signal and sends it to the central processing circuit
- the central processing circuit performs various position signals of the solar concentrator. After the acquisition, it is amplified by the signal amplifying circuit and sent to the central processing unit. After analysis by the central processor, various control signals are given to the action driving circuit.
- the motor operates, and in Fig. 16, 1, 2 are electromagnetic clutches.
- the solar tracking sensor is used to detect the position of the sunlight, including the ambient light sensor, the azimuth sensor, and the height angle sensor, which are disposed on the ring-shaped threaded lens.
- Figure 2 shows the ambient light sensor.
- the ambient light sensor is used to detect the brightness of the ambient light to determine if there is a sun.
- the ambient light sensor consists of two silicon photocells A, which are arranged at 90° to ensure that sufficient sunlight is received even when the sun is oblique. As shown in Fig.
- the azimuth sensor and a height angle sensor which are composed of a silicon photocell (a sun visor B and a pedestal, and the pedestal is a lens.
- the height angle sensor and the azimuth sensor arrangement are shown in Fig. 3.
- the position diagram, the azimuth sensor structure and the height angle sensor structure are exactly the same, the installation directions of the two are perpendicular to each other.
- the azimuth angle sensor is arranged vertically, and the height angle sensor is arranged horizontally. According to the two silicon photo cells, there is no light.
- the sensor is divided into three states.
- the solar concentrator needs to be adjusted counterclockwise (Fig. 5a); when the left silicon photocell has no illumination, the right side When the silicon photocell is illuminated, the solar concentrator needs to be adjusted clockwise (Fig. 5b); when both the left and right silicon photocells are illuminated, the solar concentrator does not need to be adjusted (Fig. 5c).
- a silicon photocell converts solar energy into an electrical energy output, and judges whether the voltage value of the output reaches a set voltage value.
- the system program includes the working mode and the debugging mode, and selects to enter the working mode or the debugging mode according to the external function selection switch.
- the system program sets two cycles, one is the sampling period, which is implemented by the timer period interrupt method; the other is the adjustment period, which is implemented by counting the sampling period.
- Each adjustment period is 2 minutes, and each sampling period, that is, the interruption period is set to 2 seconds, and each adjustment period includes 60 sampling periods.
- the ambient light counter counts according to whether the voltage value output by the ambient light sensor is greater than or equal to the set voltage value, and if it is greater than or equal to the set voltage value, the ambient light counter counts once; If no, it will not count. Then, according to whether the number of times of counting in the adjustment period of the ambient light counter reaches the set number of times, if the set number of times is reached, there is sunlight; if the set number of times is not reached, there is no sunlight. If the set value is 2V and the set number of times is 10, if the ambient light sensor output voltage is greater than or equal to 2V, the ambient light counter counts once. In one adjustment period, if the count is greater than 10 times, there is sunlight; otherwise, No sunshine.
- the program After the system is powered on, the program first initializes the data, enables the timer interrupt function, determines whether the solar concentrator is allowed to be adjusted, and determines whether there is sunlight. If the solar concentrator is not allowed to be adjusted, or there is no sunlight, the program waits for the interrupt program; if the solar concentrator is allowed to be adjusted, or if there is sunlight, the timer interrupt function is disabled and the program begins to adjust the solar concentrator .
- the solar concentrator In the working mode, it is judged whether the solar concentrator is adjusted in place, that is, the height angle sensor and the azimuth sensor are No, it is facing the sun; if the solar concentrator is adjusted to the position, clear the allowable adjustment bit, re-enter the allowable timer interrupt function, and wait for the interrupt program to enter. If the solar concentrator is not adjusted in place, ie neither the elevation sensor and the azimuth sensor are facing the sun, or if any of the elevation sensor and the azimuth sensor are not facing the sun, then the sun is detected again, if not In the case of sunlight, the motor is turned off, the adjustment is stopped, the timer interrupt function is re-entered, and the interrupt program is awaited.
- the solar concentrator determines whether the solar concentrator needs to be adjusted according to the azimuth sensor.
- the detection result needs to be adjusted, it is determined whether the solar concentrator has been adjusted to the limit position, and whether the limit value is reached according to whether the voltage value output by the rotation limit switch sensor reaches the set value, and the set value includes a high power. Ping and a low level, if the high level is 5V and the low level is 0V, if the output voltage value is equal to 5V, the limit position is reached; conversely, if the output level is 0V, the limit position is not reached. If the limit position is reached, the motor is turned off, the adjustment is stopped, the adjustment flag is cleared, the timer interrupt function is re-entered, and the interrupt program is entered. If the limit position is not reached, the rotation adjustment is performed, and then the program re-enters to determine whether there is sunlight. Judge.
- the azimuth sensor does not require rotational adjustment, turn off the motor to stop the adjustment. Once again, determine if there is sunlight. If there is no sunlight, turn off the motor, stop the adjustment, re-enter the allowable timer interrupt function, and wait for the interrupt program to be entered. If there is sunlight, determine whether the solar concentrator needs to be adjusted according to the altitude sensor.
- the method of judging whether the bit switch reaches the limit position is the same. If it reaches the limit position, turn off the motor, stop the adjustment, clear the allowable adjustment bit, re-enter the allowable timer interrupt function, and wait for the interrupt program to be entered; if the solar concentrator does not reach the limit position, the drive motor performs the swing adjustment and restarts Enter the judgment procedure for whether there is sunshine.
- the interrupt routine is entered every other interrupt cycle, and the interrupt period of the embodiment is set to 2 seconds.
- the ambient light judges does not detect whether the user needs to turn on the lighting, does not execute the reset program, but directly sets the adjustment permission flag, clears the interrupt counter and the ambient light counter.
- the program does not enter debug mode, if the level of the pin of the central processor connected to the light-on switch is up to To the user-set level value, such as 5 volts, the user needs to illuminate and perform the light-on procedure; otherwise, no lighting is required and the light-off procedure is performed. If you choose to turn on the lighting, the program will automatically move the light source to the fiber receiving port and use the light to illuminate. If the lighting is not selected, the program will remove the light source so that the sunlight can converge into the fiber receiving port and use sunlight. illumination.
- To the user-set level value such as 5 volts
- the program uses the following method to determine whether it is sunny, cloudy or evening.
- an upper limit value and a lower limit value are set, and the upper limit value or the lower limit value is a voltage value.
- the sampled value of the ambient light sensor is greater than or equal to the upper limit, the sun is considered; when the sampled value of the ambient light sensor is less than or equal to the lower limit, it is considered to be night; when the sampled value of the ambient light sensor is between the upper limit and the lower limit It is considered to be cloudy during the period.
- the upper limit is set to 2V
- the lower limit is set to 0. 5V.
- the program samples the ambient light every 2 seconds during the 2 minute adjustment period. If the sampled value is greater than or equal to the upper limit of 2V, the ambient light is considered, the environment is sunny, the ambient light counter counts once; if the sampled value is less than or equal to the lower limit of 0. 5V, the ambient light is considered to be ambient, the environment is night, and the night counter is counted once. ; If the sampled value is between 2V and 0. 5V, cloud occlusion is considered.
- the program judges the interrupt counter. If the counter value is equal to 60 times, an adjustment cycle time is reached, and the interrupt count counter is cleared; otherwise, the scene is directly restored and returned from the interrupt program.
- the program confirms that the current state is indeed sunny, allowing the solar concentrator to adjust.
- the ambient light counter, the night counter, and the reset counter are cleared, and the allowable adjustment flag is set, which allows the solar concentrator to adjust.
- the night timer is judged. If the value of the night counter reaches the set number, if it is set to 50 times, if it is greater than 50 times, the reset counter is counted once, and the night counter is cleared; otherwise, the night counter is cleared. And restart the timer, resume the scene, and exit the interrupt program. Then, the reset counter is judged. If the reset counter value reaches the set number of times, if it is set to 20 times, if it is greater than 20 times, the system reset procedure is executed, that is, the solar concentrator is reset, and the solar concentrator is automatically returned. Position to the vertical state, wait for the sun to rise the next day; otherwise restart the timer, resume the scene, and exit the interrupt program.
- the program does not perform any action, and continues to detect the ambient light, waiting for the sun to reappear.
- the program still detects the ambient light in real time during the rotation adjustment or swing adjustment of the solar concentrator. If the sun is blocked by the cloud during the adjustment process, the program detects that the current state is cloudy, then the program pauses to gather the sunlight. The light is adjusted and the ambient light is detected in real time, and once the sun appears, it is immediately adjusted.
- the invention can realize the stable operation of the solar concentrator and enhance the anti-interference ability of the solar concentrator.
- the debug mode is used to adjust the solar concentrator spot to the fiber entrance after the solar concentrator is first installed. If the external function switch is set to the debug mode: the program does not judge the ambient light, does not detect whether the user needs to turn on the illumination, does not execute the reset program, but directly sets the adjustment enable flag, clears the interrupt count counter and the ambient light counter.
- the program does not detect the ambient light during the adjustment of the solar concentrator, that is, does not detect the presence or absence of sunlight, but samples the azimuth sensor and the height angle sensor every 2 seconds, and The solar concentrator is tuned according to the sampling result, so that the azimuth sensor and the height angle sensor face the sun. According to the sampling result of the azimuth sensor and the height angle sensor, whether the solar concentrator needs to be adjusted is the same as the method of determining whether the solar concentrator needs to be adjusted according to the square angle sensor and the height angle sensor in the main program.
- the setting values in the above working mode are artificial settings, and different values are set according to the solar lighting conditions of the four seasons and the area in which they are located.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Photovoltaic Devices (AREA)
Description
说明书
太阳光聚光器控制系统及方法
技术领域
本发明涉及一种太阳光聚光器的控制系统及方法,该控制系统及方法用于太阳光聚光 器上感光传感器信号的采集、分析和处理,并驱动太阳光聚光器机械部分动作跟踪太阳光。 背景技术
随着地球人口的增长, 能源已成为迫切需要解决的焦点问题之一。 越来越多的人将 解决的关键投注在自然能源上, 如太阳能、 潮汐能等。提高太阳光利用率, 实时跟踪太阳 的位置, 实现光线直射是关键。 太阳光跟踪可以使太阳能更有效地转换成热能、 机械能、 电能和化学能, 其中太阳热能利用历史最为久远, 开发最为普遍; 现在, 太阳光能的应用 也正变为一个新的研究领域。电灯照明日益成为商业建筑电力消耗最大支出的现状,促使 人们重新关注绿色照明技术,从而使以太阳能采光照明的开发利用不断得到世界各国的重 视。 大型建筑中应用太阳光改善 "室内采光"已经越来越受到建筑师们的极大关注, 即采 集太阳光并利用光缆把它传输到需要的地方, 如大型会议室、 教室、 危险品仓库、 矿井、 地下商场、 人防工程等等。 欧美及日本等发达国家已开发了一系列太阳光采光照明系统, 并在工业和民用建设中应用, 即节省了能源,又提高了室内环境品质,有益于健康。因此, 太阳光采光照明具有显著的经济效益和社会效益。但是, 由于现有的太阳光采光照明系统 结构复杂、 造价昂贵, 特别是控制系统部分的电路复杂, 限制了其在中国国内的应用。
能源是人类社会赖以生存和发展的物质基础。当前,包括我国在内的绝大多数国家都 以石油、天然气和煤炭等矿物燃料为主要能源。随着地球人口的增长、矿物燃料的日益枯 竭和全球环境的不断恶化,太阳能利用已成为人们的研究热点。但太阳能是一种能流密度 低, 辐射具有间歇性、 空间分布又不断变化的能源, 与常规能源有很大的区别, 这就对太 阳能的收集和利用提出更高的要求。目前被广泛应用的太阳能热水器即使采用真空热管技 术,夏天也只能达到 70〜90°C,冬天只有 40〜50°C,这个温度范围只能用于家庭淋浴,无法 提供工业上广泛应用的 200〜300 °C的热蒸汽。 为有效地提高太阳能能流密度,需采用聚 焦、 跟踪技术,其关键装置就是太阳光聚光器、 跟踪传动机构、 自动控制系统。
常用的太阳跟踪装置主要有二种: 第一种是基于光线传感器的跟踪方式。 在这种跟 踪装置中有一个专门用来检测太阳位置的传感器,当太阳光线和跟踪系统光轴之间的偏差 超过一定值时, 系统就进行调节, 直至太阳光线与系统光轴重新一致, 从而实现对太阳的 跟踪;第二种是先通过理论公式计算出太阳在一年中不同时间的位置,然后通过控制系统
实时跟踪太阳的位置, 实现对太阳位置的跟踪。这两种控制方式各有优缺点。第一种方法 的优点是控制参数和地理位置无关, 且跟踪没有误差, 缺点是易受天气的干扰, 在多云天 气易受干扰。第二种方法的优点是跟踪不受天气的影响,缺点是在不同的地理位置需要重 新设置跟踪系统的参数, 而且跟踪存在累积误差。 发明内容
本发明的目的之一在于提供一种可精确控制太阳光聚光器的控制系统, 其结构简单、 成本低廉、可靠性高、操作方便且能满足太阳光聚光器的控制要求, 从而在保证使用性能 的前提下, 降低制造成本, 以利于在我国推广应用。
本发明的目的之二是提供一种在多云天气仍然可以使太阳光聚光器保持稳定工作的 控制方法。
本发明的技术方案之一是:
本发明所述的太阳光聚光器控制系统, 包括,
太阳光跟踪传感器: 包括环境光传感器、 方位角传感器和高度角传感器,
中央处理电路: 包括信号放大电路、 限位开关电路和中央处理器,
动作驱动电路: 包括驱动器和继电器,
太阳光跟踪传感器将太阳光聚光器所处位置的光信号转换成电信号并经放大后送至 中央处理电路, 中央处理器分析后给出各种控制信号至动作驱动电路,经动作驱动电路的 驱动器处理后, 控制相应的各继电器工作, 由继电器控制电机、 电磁离合器动作调整聚光 器始终对准阳光。
所述太阳光跟踪传感器包括环境光传感器、方位角传感器和高度角传感器,三者位于 一个共同的基座上, 所述环境光传感器由两个硅光电池构成, 两个硅光电池呈 90° 布置 在基座上。
方位角传感器和高度角传感器结构相同且相互垂直布置, 两者都是由两个硅光电池、 一块遮阳板组成, 两块遮阳板呈垂直状态、 间隔一定距离固定在基座上, 两个硅光电池分 别安装在两块遮阳板外侧底部的基座上。
在基座的侧面设有转动限位开关触发块,在基座外内对应位置分别设有两个转动限位 开关;在基座下上的摆动轴上装有摆动限位开关触发块,在摆动轴外内对应位置分别设有 两个摆动限位开关;在中央处理电路中设有限位开关电路, 限位开关电路的输入端连接转 动限位开关和摆动限位开关, 输出端连接中央处理器。
本发明的技术方案之二是:
一种太阳光聚光器的控制方法, 包括以下步骤:
( 1 ) 进入工作模式后, 数据初始化, 启用定时器中断功能, 判断是否允许调节太阳 光聚光器和是否有阳光, 如果不允许调太阳光聚光器, 或没有太阳光, 则程序等待进入中 断程序; 如果允许调节太阳光聚光器, 或有阳光, 则禁止定时器中断功能, 程序开始调整 太阳光聚光器;
( 2 )在调整程序下, 判断太阳光聚光器调整到位与否, 即高度角传感器和方位角传 感器是否都正对太阳; 若太阳光聚光器调整到位, 则清允许调节位, 重新进入允许定时中 断功能, 并等待进入中断程序;
若太阳光聚光器没有调整到位, 即高度角传感器和方位角传感器都没有正对太阳, 或者高度角传感器、方位角传感器中的任何一个没有正对太阳, 则再次检测有无阳光, 若 没有阳光, 则关闭电机, 停止调整, 重新进入允许定时中断功能, 并等待进入中断程序; 若有阳光, 则根据方位角传感器判断太阳光聚光器是否需要调整, 若检测结果需要 调整,则再判断太阳光聚光器是否已经调整到极限位置,如果达到极限位置,则关闭电机, 停止调节, 清允许调节标志, 重新进入允许定时中断功能, 并等待进入中断程序; 如果没 有达到极限位置, 则进行转动调节, 然后程序重新进入判断是否有阳光程序;
如果太阳光聚光器不需要转动调节, 则关闭电机停止调节;
再次判断是否有阳光, 如果没有阳光, 则关闭电机, 停止调节, 重新进入允许定时中 断功能, 并等待进入中断程序; 如果有阳光, 再根据高度角传感器判断太阳光聚光器进行 是否需要摆动调节, 如果太阳光聚光器不需要调节, 则关闭电机, 停止调节, 程序进入到 两个方向是否均调节到位的判断;如果需要调节,再判断是太阳光聚光器否达到极限位置, 如果达到极限位置,则关闭电机,停止调节,清允许调节位,重新进入允许定时中断功能, 并等待进入中断程序; 如果太阳光聚光器没有达到极限位置, 则驱动电机进行摆动调节, 并重新进入是否有阳光的判断程序;
( 3 ) 如果允许定时器中断, 则每隔一个中断周期进入中断程序;
进入中断程序后, 启动现场保护程序, 中断计数器对中断次数进行计数, 判断是否要 进入调试模式: 如果要进入调试模式, 则置位调节允许标志, 清中断次数计数器和环境光 计数器, 恢复现场程序; 如果不进入调试模式, 则判断是否需要采用灯光照明, 如果用户 需要进行灯光照明, 执行开灯程序; 否则就不需要进行灯光照明, 执行退灯程序;
对环境光进行采样,设定一个上限值和一个下限值, 当环境光传感器的采样值大于等 于上限值时, 认为有太阳, 环境光计数器计数一次; 环境光传感器的采样值小于等于下限 值时, 认为是晚上, 夜晚计数器计数一次; 如果环境光传感器的采样值介于上限值和下限 值之间认为是多云; 然后判断是一个调整周期是否期满, 如果没有达到一个调整周期, 直 接恢复现场, 从中断程序中返回; 如果达到一个调整周期, 则清中断计数器, 判断环境光
计数器的计数次数是否达到设定次数, 如果达到设定次数, 则置位允许调节标志, 清环境 光计数器、 夜晚计数器和复位计数器; 如果没有达到设定次数, 清环境光计数器, 并判断 夜晚计数器是否达到设定次数, 如果达到设定次数, 复位计数器计数一次, 如果复位计数 器的计数次数达到设定次数, 则执行复位程序, 清复位计数器; 如果没有达到复位计数器 的设定次数, 则重新启动定时器, 恢复现场程序; 如果夜晚计数器没有达到设定次数, 则 重新启动定时器恢复现场, 退出中断程序。
其中, 所述的程序还包括调试模式, 进入调试模式: 调试模式是在太阳光聚光器初次 安装好以后, 调整透光镜的光斑与光纤入口的对照情况, 在调试模式下, 程序在对太阳光 聚光器进行调节的过程中不检测环境光照情况,而是每隔一个中断周期对方位角传感器和 高度角传感器采样一次,并根据采样结果对太阳光聚光器进行调试,使得太阳方位角传感 器和高度角传感器正对太阳;如果在调节过程中环境光照不足,调节过程因为高度角传感 器和方位角传感器没有阴影而自动停止,程序等待一个中断周期后重新开始下一个调节周 期。
其中, 步骤 (1 ) 和 (2 ) 中, 判断是否有阳光: 环境光计数器根据环境光传感器输 出的电压值是否大于等于设定电压值进行计数, 如果是, 则环境光计数器计数一次; 如果 为否,则不计数;再根据环境光计数器在一个调整周期内的计数次数是否达到设定次数进 行判断, 如果达到设定次数, 则有阳光; 如果没有达到设定次数, 则没有阳光。
其中, 步骤 (1 ) 中判断是否允许调节的是根据方位角传感器和高度角传感器进行判 断:设方位角传感器或高度角传感器中的一个硅光电池输出的经放大后的电压值为 0UT1, 设方位角传感器和高度角传感器的另一个硅光电池输出的经放大后的电压值为 0UT2, 则 去 0UT3=3 X ( 0UT1+0UT2 ) /8作为参考值, 如果 0UT1大于等于 0UT3, 且 0UT2大于等于 0UT3 , 则不需要转动或摆动调节; 反之, 则不需要调节。
其中, 所述的步骤 (2 ) 中, 根据转动限位开传感器和摆动限位开关传感器输出的电 压值是否大于等于设定值来判断转动限位开关和摆动限位开关是否达到极限位置,如果大 于等于设定值, 则达到极限位置; 反之, 则没有达到极限位置。
其中, 步骤(3 ) 中如果选择灯光照明, 则在无阳光时, 由灯光源通过光纤提供照明, 有太阳光时, 灯光源关闭, 太阳光直接导入光纤提供照明。
其中, 所述的设定值一般根据地域、 季节的不同进行设置。
本发明首先通过一个环境光传感器测量所处的环境是否有阳光,光度传感器得到环境 光信号后,在黑夜或是阴天的情况下,需要光时,切换到由电产生光的状态,不需要光时, 系统不动作; 在白天有太阳的情况下, 方位角传感器和高度角传感器接收太阳光, 将光信 号转换成电信号,再经放大之后送入中央处理器, 中央处理器中的模数转换器将模拟信号
转换成数字信号, 中央处理器对这些数字信号进行分析,判断此时经聚光器汇聚的光斑是 否包围光纤入口, 包围则系统不动作, 如果光斑偏离光纤入口, 则输出相应的控制代码, 控制电动机, 电磁离合器动作,从而控制聚光器转动和摆动调节使光纤入口处始终在光斑 之内, 这样采光面始终正对太阳, 吸收的光能最大, 且跟踪精度较高。 本发明结构简单, 控制精度高, 而成本低廉, 性价比好。
本发明采用的是第一种控制方法, 即基于光线传感器的跟踪方式, 同时对控制策略进 行了优化, 从而使该方法在多云天气仍然可以稳定工作。
本发明增加了灯光照明功能, 即使在无阳光天气仍然可以采用灯光来进行照明,保证 照明全天不间断。
本发明具有调试模式和工作模式两种模式, 方便整个采光器系统的安装调试。
附图说明
图 1为本发明控制系统流程图。
图 2为本发明环境光传感器的示意图。
图 3为本发明方位角传感器的示意图。
图 4为本发明高度角传感器和方位角传感器位置布置示意图。
图 5为本发明方位角传感器和高度角传感器的工作状态图。
图 6为本发明中央处理电路的流程示意图。
图 7为本发明中央处理电路中的放大电路示意图。
图 8为本发明转动限位开关的布置示意图。
图 9为本发明摆动限位开关的布置示意图。
图 10为本发明中央处理电路中的限位开关电路图。
图 11为本发明动作驱动电路框图。
图 12为主控芯片电路图。
图 13为动作驱动电路。
图 14为继电器电路。
图 15为限位开关电路。
图 16为本发明的控制系统图。
图 17为本发明主程序流程图。
图 18为本发明中断程序流程图。
具体实施方式
实施例一。
本发明的控制系统包括机械部分和电路控制部分, 机械部分的结构示意图参见本申 请人申请号为 200820185735. 6的实用新型专利。
如图 1所示, 本发明控制系统包括由环境光传感器、 方位角传感器和高度角传感器 组成的太阳光跟踪传感器,
由信号放大电路、 限位开关电路和中央处理器组成中央处理电路和由驱动器和继电 器组成的动作驱动电路。
电源电路: 包括专用的隔离电源 220VAC-24VDC/220VAC-5VAC-12VDC。
系统保护电路: 包括过压、 过流、 正负反接保护。
系统复位电路和系统避雷电路;
水温控制系统: 自动控制在 40度时 2个电扇进行冷却工作; 在 50度时大电扇进行 冷却工作; 在 60度时滤光片进入光纤上方; 在 70度时用灯杯在遮住光斑头尾全部开灯; 直至温度下到 30度恢复原态。
系统光伏电池给蓄电池充电, 内外电源共存电路;
尾灯装置 4盏 5W的 LED灯; 尾灯处设有光敏传感器,当室内亮度低于 50勒克斯时, 尾灯 4盏 LED灯开; 当室内亮度超过 300勒克斯时, 尾灯 4盏 LED灯关。
设有水温度显示, 各部分故障指示灯, 名牌、 单位、 日期显示, 电灯自动或手动开 关, 滤光器开关, 内外电源开关的液晶显示屏电路。
太阳光跟踪传感器的输出端与中央处理电路的放大电路输入端连接, 放大电路输出 端与中央处理器输入端连接; 限位开关电路输出端与中央处理电路的放大电路输入端连 接,该放大电路输出端与中央处理器输入端连接; 中央处理器输出端与驱动电路的驱动器 输入端连接,驱动器输出端与各继电器连接。太阳光跟踪传感器将太阳光聚光器所处位置 的光信号转换成电信号并送至中央处理器,中央处理器将太阳光聚光器的各种位置光信号 进行采集后转换成电信号由运放电路放大后给中央处理器,中央处理器分析后发出相应的 控制信号至动作驱动电路, 经动作驱动电路的驱动器处理后控制驱动相应的各继电器工 作, 由继电器控制电机动作。其中, 中央处理器实时采集限位开关电路的动作信息, 控制 太阳光聚光器的移动位移。将太阳光聚光器运动过程中的位移情况传输给中央处理电路的 中央处理器,保证太阳光聚光器到达极限位置后停止运动, 防止太阳光聚光器超过运动极 限而损坏。
太阳光跟踪传感器用来检测太阳光的位置,其输出端与放大电路输入端连接,包括环 境光传感器 22、 方位角传感器 21、 高度角传感器 23, 它们设在基座 20上。 如图 2所示
为环境光传感器 22, 环境光传感器 22用来检测环境光的亮度以此来判断是否有太阳, 环 境光传感器 22由两个硅光电池 A构成, 两个硅光电池呈 90° 布置, 以保证即使在太阳光 斜射时仍然可以接收到足够的太阳光。 图 3所示为方位角传感器 21的示意图, 方位角传 感器 21 的结构和高度角传感器 23的结构完全一样, 它们都是由硅光电池 C和遮阳板 B 组成, 两个硅光电池 C分别安装在遮阳板 B外侧底部的基座 20上。
图 4所示为高度角传感器和方位角传感器的位置布置示意图, 二者的安装方向相互 垂直。 图中, E代表正东方向, S代表正南方向。 图 5所示为方位角传感器和高度角传感 器的工作状态图, 根据两个硅光电池 C有无光照, 把传感器分成三种状态: 当左边硅光电 池有光照而右边硅光电池没有光照时, 聚光器就需逆时针调节(图 5a) ; 当左边硅光电池 没有光照而右边硅光电池有光照时, 聚光器就需顺时针调节(图 5b ) ; 当左边硅光电池和 右边硅光电池都有光照时, 聚光器无需调节 (图 5c)。
图 6所示为中央处理电路的流程示意图, 中央处理电路主要由信号放大电路、限位开 关电路和中央处理器即主控芯片电路组成, 主控芯片电路主要包括 PIC16F877A单片机, 信号放大电路主要包括 LM358运算放大器及一些电阻电容。 从环境光传感器 22、 方位角 传感器 21和高度角传感器 23的硅光电池输出的电压信号比较弱,需经过运算放大电路将 信号放大,和限位开关电路所给的限位信号同时送入主控芯片的模数转换接口,主控芯片 通过对信号进行分析、判断, 确定系统需要的调整方法, 然后给各太阳光聚光器各部分指 令。限位开关电路所给的限位信号同时送入中央处理器的模数转换接口, 中央处理器通过 对信号进行分析、 判断, 确定系统需要的调整方法。
如图 7所示为中央处理电路中的放大电路, 包括一个运算放大器和三个电阻 Rl、 R2 和 R3, 两个电容 C1和 C2。 R2和 R3决定这个放大电路的放大倍数, 为 (1 + R3/ R2 ) ,即 将输入的传感器信号放大 (1 +R3/ R2 ) 倍后输出, 电容 C1,C2为滤波电容, 整个系统有 6个这样的放大电路分别对传感器信号进行放大。
限位开关电路由一系列感应式限位开关构成, 防止机械部分转动或摆动过度造成损 坏;另外在电器电路开关控制回路中联接避雷器,图 8所示为转动限位开关的布置示意图。 在基座 20的侧面设有转动限位开关触发块 K,在基座 20外对应位置分别设有两个转动限 位开关 K1和 Κ2, 转动限位开关的型号为 J3-B4C1, 转动限位开关 K1和 Κ2保证转台只能 在 180度范围内转动, 图中 Ε代表正东方向, S代表正南方向。 如图 9所示为摆动限位开 关的布置示意图。在基座 20下的摆动轴上装有摆动限位开关触发块 F,在摆动轴外对应位 置分别设有两个摆动限位开关 F1和 F2, 摆动限位开关的型号为 J3-B4C1 , 摆动限位开关
Fl和 F2保证转台只能在 90度范围内摆动, 从而保护摆动机构不会过度摆动而损坏机械 部分。 图 10为限位开关电路, 包括一个限位开关和三个电阻。 限位开关电路的输入端连 接转动限位开关和摆动限位开关, 输出端连接中央处理器, 当限位开关电路的限位开关 F1和 F2感应到物体时, 就输出一个低电平即限位开关信号为 ' 0 ', 当没感应到物体时, 输出为一个高电平即限位开关信号为 ' 1 '。 本系统有 8个这样的限位电路, 分别感应系 统的极限位置。
图 11所示为动作驱动电路, 控制信号通过驱动芯片后驱动继电器通断来控制电机和 电磁离合器电源, 实现系统中所要实现的功能。 它由一块驱动器即驱动芯片 麗 003、 7 个双刀双掷的固体继电器、两个电磁离合器和两个二极管组成。驱动器用来对中央处理器 输出的控制信号进行功率放大以获得足够的驱动能力驱动继电器的线圈。继电器作为可控 开关用来对电机、离合器以及灯的电源进行控制,采用继电器同时实现控制信号和强电信 号的隔离,提高系统的可靠性和安全性。驱动芯片 ULN2003将由主控芯片发过来的弱控制 信号, 转换成电压为 24V、 驱动能力较强的驱动信号。 主电机开关继电器和主电机正反转 继电器联合构成控制主电机的控制电路, 当系统转动和摆动位置需要调整时,主电机需要 运行, 这时, 主电机开关继电器开关接通, 主电机通电开始转动, 通过主电机正反转继电 器来控制主电机是正转还是反转,一旦系统调节到位了, 主电机开关继电器开关断开, 主 电机停转。转动继电器和摆动继电器则来控制两个电磁离合器的吸合与分离, 当系统转动 需要调节, 那么转动继电器开关导通, 其控制的电磁离合器上电吸合, 这时主电机带动系 统进行转动调节 (正反转动由正反转继电器控制), 当转动调节到位后, 转动电磁离合器 掉电分离, 如果还需调节摆动, 则使摆动离合器上电吸合, 进行摆动调节, 如果都调节到 位, 那么离合器都掉电分开, 主电机停转。 电磁离合器上的二极管是为防止电磁离合器突 然关断时, 电磁离合器里的线圈感生电压烧毁线圈。灯电机开关继电器和灯电机正反转继 电器的作用和主电机开关继电器和主电机正反转继电器作用一样,用来控制灯电机的运转 和正反方向。灯开关继电器则是用来控制等的接通和关断, 在黑夜或是阴天的情况下, 需 要光时, 就通过灯电机将灯伸出并接通, 不需要灯或白天有太阳的情况, 就通过灯电机将 灯缩回, 关断灯电源。
图 12为系统的主控中心即中央处理器,该中央处理器具有高性能的 PISC, 运算速度 快 DC-200ns, 确保了实时采集 8路限位开关信号和 8路传感器信号的功能, 如果任意一 路向中央处理器发出请求信号, 中央处理器马上进入中断, 发出响应的控制信号, 控制信 号共有 7号,各自对应不同驱动电路。中央处理器的性能和速度保证了整个控制系统的实
时性、 高效性。
图 13为主控驱动和继电器切换电路, UNL2003是高电压、大电流达林顿陈列, 控制 7 个继电器的工作状态, 由继电器的断开和闭合状态来控制电机的动作和方向,该电路工作 电压高工作电流大, 输出还可以高负载电流并行运行, 确保了大功率电机的正常工作。
图 14为电机驱动继电器的工作电路, 继电器为常开型的, 在没有收的 UNL2003的驱 动信号前是断开的, 当收的 UNL2003的驱动信号后继电器闭合, 输出端和输入端短路, 继 电器的输出端和电机的输入端相连接, 故继电器闭合电机工作。
图 15为限位开关电路, 限位开关是 NPN型、 电感式、 常开型的电路, 限位开关的动 作情况实时被中央处理器所采集, 当限位开关动作时中央处理器就马上发出控制信号给 UNL2003,当 UNL2003收的中央处理器的信号后立即驱动相应的继电器断开,确保极限位置 不被越过。
图 12-15分别是动作驱动电路、继电器电路和限位开关电路,它们构成本发明的主要 电路部分。
本发明提供了太阳光聚光器的控制器的思路,应当指出,对于本技术领域的普通技术 人员来说, 在不脱离本发明原理的前提下, 还可以做出若干改进和变化, 这些改进和变化 也应视为本发明的保护范围。 实施例二。
本发明硬件部分的结构,包括机械部分和控制部分。机械部分的结构示意图参见本申 请人申请号为的 200820185735. 6的实用新型专利。 本发明通过锥齿轮副连接, 在二个电 磁离合器吸合下,经两对蜗杆、蜗轮啮合,驱动太阳光聚光器作东西平面方向角调整同时, 作南北垂直方向高度角的调整, 构成一个有机的复合运动体, 并自锁, 自动实现聚焦采集 太阳光源, 完成跟踪太阳所需的任何空间角度的运动调整; 太阳光聚焦的采光接收端, 直 接用光纤进行光导。
如图 16所示, 本发明控制系统包括由环境光传感器、 方位角传感器和高度角传感器 组成的太阳光跟踪传感器, 由信号放大电路、限位开关电路和中央处理器组成中央处理电 路和由驱动器和继电器组成的动作驱动电路,太阳光跟踪传感器将太阳光聚光器所处位置 的光信号转换成电信号并送至中央处理电路,中央处理电路将太阳光聚光器的各种位置信 号进行采集后由信号放大电路放大后给中央处理器,中央处理器分析后给出各种控制信号 至动作驱动电路,经动作驱动电路的驱动器处理后控制相应的各继电器工作, 由继电器通 过电磁离合器控制电机动作, 图 16中 1、 2为电磁离合器。
太阳光跟踪传感器用来检测太阳光的位置, 包括环境光传感器、 方位角传感器、 高 度角传感器, 它们设在环带状螺纹透镜上。 图 2所示为环境光传感器, 环境光传感器用来 检测环境光的亮度以此来判断是否有太阳。环境光传感器由两个硅光电池 A构成,两个硅 光电池呈 90° 布置, 以保证即使在太阳光斜射时仍然可以接收到足够的太阳光。 如图 4 所示, 为方位角传感器和高度角传感器, 它们由硅光电池(、 遮阳板 B和基座组成, 基座 即为透镜。如附图 3所示为高度角传感器和方位角传感器布置位置示意图,方位角传感器 结构和高度角传感器结构完全一样,二者的安装方向相互垂直。其中竖直布置的为方位角 传感器,横向布置的为高度角传感器。根据两个硅光电池有无光照把传感器分成三种状态, 以方位角传感器为例, 当左边硅光电池有光照而右边硅光电池没有光照时,太阳光聚光器 就需逆时针调节(图 5a) ; 当左边硅光电池没有光照而右边硅光电池有光照时, 太阳光聚 光器就需顺时针调节(图 5b ) ; 当左边硅光电池和右边硅光电池都有光照时, 太阳光聚光 器无需调节 (图 5c)。
硅光电池将太阳能转化为电能输出, 根据其输出的电压值是否达到设定的电压值进 行判断。
系统程序包括工作模式和调试模式,根据外部功能选择开关选择进入工作模式或调试 模式。
系统程序设定两个周期, 一个为采样周期, 采用定时器周期中断方法实现; 另一个为 调整周期, 采用对采样周期计数的方法实现。每个调整周期为 2分钟, 每个采样周期即中 断周期设定为 2秒钟, 每个调整周期包含 60个采样周期。
如果选择进入工作模式, 即进入主程序, 如图 17所示。 主程序中, 采用如下方法判 断是否有阳光:环境光计数器根据环境光传感器输出的电压值是否大于等于设定电压值进 行计数, 如果是大于等于设定电压值, 则环境光计数器计数一次; 如果为否, 则不计数。 然后再根据环境光计数器在一个调整周期内的计数次数是否达到设定次数进行判断,如果 达到设定次数, 则有阳光; 如果没有达到设定次数, 则没有阳光。 如设定值为 2V,设定次 数为 10次, 则如果环境光传感器输出的电压大于等于 2V, 环境光计数器计数一次, 在一 个调整周期内, 如果计数大于 10次, 则有阳光; 否则就是没有阳光。
系统开机后, 程序首先进行数据的初始化, 启用定时器中断功能, 判断是否允许调节 太阳光聚光器, 并判断是否有阳光。 如果不允许调节太阳光聚光器, 或者没有太阳光, 则 程序等待进入中断程序;如果允许调节太阳光聚光器,或有阳光,则禁止定时器中断功能, 程序开始调整太阳光聚光器。
在工作模式下,判断太阳光聚光器调整到位与否, 即高度角传感器和方位角传感器是
否都正对太阳;若太阳光聚光器调整到位,则清允许调节位,重新进入允许定时中断功能, 并等待进入中断程序。若太阳光聚光器没有调整到位, 即高度角传感器和方位角传感器都 没有正对太阳, 或者高度角传感器、方位角传感器中的任何一个没有正对太阳, 则再次检 测有无阳光, 若没有阳光, 则关闭电机, 停止调整, 重新进入允许定时中断功能, 并等待 进入中断程序。若有阳光, 则根据方位角传感器判断太阳光聚光器是否需要调整, 判断方 法如下: 假设方位角传感器左边硅光电池输出的经放大后的电压值为 0UT1, 方位角传感 器右边硅光电池输出的经放大后的电压值为 0UT2,则取 0UT3=3 X (0UT1+0UT2) /8作为参考 电压, 如果 0UT1大于等于 0UT3, 且 0UT2大于等于 0UT3,则不需要转动调整; 否则需要转 动调节。若检测结果需要调整, 则再判断太阳光聚光器是否已经调整到极限位置, 根据转 动限位开关传感器输出的电压值是否达到设定值来判断是否达到极限位置,设定值包括一 个高电平和一个低电平,如设高电平为 5V,低电平为 0V,则如果其输出的电压值等于 5V, 则达到极限位置; 反之, 如果输出电平为 0V, 则没有达到极限位置。 如果达到极限位置, 则关闭电机, 停止调节, 清允许调节标志, 重新进入允许定时中断功能, 并等待进入中断 程序; 如果没有达到极限位置, 则进行转动调节, 然后程序重新进入判断是否有阳光的判 断。
如果方位角传感器不需要转动调节, 则关闭电机停止调节。 再次判断是否有阳光, 如 果没有阳光,则关闭电机,停止调节,重新进入允许定时中断功能,并等待进入中断程序; 如果有阳光, 则根据高度角传感器判断太阳光聚光器是否需要调整, 判断方法如下: 假设 高度角传感器上边硅光电池输出的经放大后的电压值为 0UT1,高度角传感器下边硅光电 池输出的经放大后的电压值为 0UT2,则取 0UT3=3 X (0UTl+0UT2) /8 作为参考电压, 如果 0UT1大于等于 0UT3, 且 0UT2大于等于 0UT3,则不需要摆动调整, 否则需要摆动调节。 如 果不需要调节, 则关闭电机, 停止调节, 程序进入到两个方向是否均调节到位的判断; 如 果需要调节,再根据摆动限位开关输出的电压值判断是否达到极限位置,判断方法与转动 限位开关是否达到极限位置的判断方法一致。如果到达极限位置,则关闭电机,停止调节, 清允许调节位, 重新进入允许定时中断功能, 并等待进入中断程序; 如果太阳光聚光器没 有达到极限位置, 则驱动电机进行摆动调节, 并重新进入是否有阳光的判断程序。
如果允许定时器中断, 则每隔一个中断周期, 进入中断程序, 实施例的中断周期设为 2秒钟。 所述的中断功能程序如图 18所示, 进入中断程序后, 启动现场保护程序, 中断 计数器对中断次数进行计数。如果中央处理器的与外部功能选择开关相连的引脚的电平达 到用户设定的电平值, 如设定为 5伏, 如果达到 5V, 则设置程序为调试模式, 在调试模 式下程序不对环境光进行判断, 不检测用户是否需要开启灯光照明, 不会执行复位程序, 而是直接置位调节允许标志, 清中断次数计数器和环境光计数器。
如果程序不进入调试模式,则如果中央处理器的与灯光开启开关相连的引脚的电平达
到用户设定的电平值, 如 5伏, 则用户需要进行灯光照明, 执行开灯程序; 否则就不需要 进行灯光照明, 执行退灯程序。如果选择开启灯光照明, 则程序自动将灯光源移动至光纤 受光口, 采用灯光进行照明; 如果未选择灯光照明, 则程序将灯光源移开, 使得阳光可以 汇聚入光纤受光口, 采用太阳光进行照明。
然后用环境光传感器进行采样, 程序采用如下方法判断是晴天、多云或晚上。首先设 定一个上限值和一个下限值,该上限值或下限值均为电压值。当环境光传感器的采样值大 于等于上限值时认为有太阳; 当环境光传感器的采样值小于等于下限值时认为是晚上; 当 环境光传感器的采样值介于上限值和下限值之间时认为是多云状态。
实施例中, 设定上限值为 2V, 下限值设定为 0. 5V。 程序在 2分钟的调整周期内, 每 隔 2秒钟会对环境光采样一次。 如果采样值大于等于上限值 2V, 认为有环境光照, 环境 是晴天, 环境光计数器计数一次; 如果采样值小于等于下限值 0. 5V, 认为无环境光照, 环境是晚上, 夜晚计数器计数一次; 如果采样值介于 2V和 0. 5V之间, 则认为有云遮挡。
然后程序对中断次数计数器进行判断, 如果计数器的数值等于 60次, 则一个调整周 期时间到, 对中断次数计数器清零; 否则直接恢复现场, 从中断程序中返回。
如果中断计数器的计数次数等于 60次, 即一个调整周期时间到, 判断环境光计数器 的次数是否的达到设定的次数, 如设定为 10次, 贝 U:
1.如果有大于 10次的采样结果是晴天, 则程序确认现在状态确实是晴天, 允许太阳 光聚光器进行调节。并对环境光计数器、夜晚计数器和复位计数器清零, 并置位允许调节 标志, 即允许太阳光聚光器进行调节。采用这种判断方式即使在一个调整周期内不时有云 遮挡太阳, 只要在每个调整周期内有大于 20秒的时间没有被云遮挡, 程序即可准确判断 当前环境光状态。
2. 如果环境光计数器没有达到设定的次数, 则清零环境光计数器, 并清除允许调节 标志, 即不允许太阳光聚光器进行调节。然后对夜晚计时器进行判断, 如果夜晚计数器的 数值达到设定次数, 如设定为 50次, 则如果大于 50次, 则复位计数器计数一次, 并清零 夜晚计数器; 否则只清零夜晚计数器, 并重新启动定时器, 恢复现场, 退出中断程序。 然 后对复位计数器进行判断, 如果复位计数器数值达到设定次数, 如设定为 20次, 则如果 大于 20次, 则执行系统复位程序, 即太阳光聚光器复位, 太阳光聚光器自动回位至竖直 状态, 等待第二天太阳升起; 否则重新启动定时器, 恢复现场, 退出中断程序。
本程序中, 如果是晚上, 程序并不会立即进行复位, 而是要在连续 20个调整周期内 均检测到均是晚上, 即复位计数器的技术次数时大于 20次时才会执行复位程序, 防止厚 重乌云遮挡太阳引起误判断。
3.如果在整个调整周期内太阳全部被云遮挡,程序确认现在状态是多云,则程序不执 行任何动作, 继续对环境光进行检测, 等待太阳重新出现。
程序在对太阳光聚光器进行转动调节或者摆动调节过程中仍然实时对环境光进行检 测, 如果调节过程中发生太阳被云遮挡状态, 程序检测到目前是多云状态, 则程序暂停对 太阳光聚光器进行调节, 并实时检测环境光, 一旦太阳出现, 立即进行调节。通过上述的 方式本发明可以实现太阳光聚光器的稳定工作, 增强了太阳光聚光器的抗干扰能力。
最后恢复现场, 从中断程序中返回主程序。
调试模式是在太阳光聚光器初次安装好以后用来调整太阳光聚光器光斑与光纤入口 的对照情况。 如果外部功能开关设置为调试模式:则程序不对环境光进行判断, 不检测用 户是否需要开启灯光照明, 不会执行复位程序, 而是直接置位调节允许标志, 清中断次数 计数器和环境光计数器。
在调试模式下,程序在对太阳光聚光器进行调节的过程中不检测环境光照情况, 即不 检测有无阳光,而是每隔 2秒种对方位角传感器和高度角传感器采样一次,并根据采样结 果对太阳光聚光器进行调试,使得方位角传感器和高度角传感器正对太阳。根据方位角传 感器和高度角传感器采样结果判断太阳光聚光器是否需要调整的方法,与主程序里根据方 位角传感器和高度角传感器判断太阳光聚光器是否需要调整的方法一样。具体判断方法以 高度角传感器为例:假设高度角传感器上边硅光电池输出的经放大后的电压值为 0UT1,高 度角传感器下边硅光电池输出的经放大后的电压值为 0UT2,则取 0UT3=3 X (0UT1+0UT2) /8 作为参考电压, 如果 0UT1大于等于 0UT3, 且 0UT2大于等于 0UT3,则不需要摆动调整, 否 则需要摆动调节。根据方位角传感器判断太阳光聚光器是否需要调整也是如此,如果方位 角传感器和高度角传感器不需要调整, 即太阳光聚光器的光斑就与光纤入口对照。如果在 调节过程中环境光照不足,调节过程因为高度角传感器和方位角传感器没有阴影而自动停 止, 程序等待 2秒后重新开始下一个调节周期。
上述工作模式下的设定值为人为设定,根据四季太阳光照情况及所处区域不同设定不 同的值。
Claims
1、 一种太阳光聚光器控制系统, 其特征在于包括:
太阳光跟踪传感器: 包括环境光传感器、 方位角传感器和高度角传感器, 中央处理电路: 包括信号放大电路、 限位开关电路和中央处理器,
动作驱动电路: 包括驱动器和继电器,
太阳光跟踪传感器将太阳光聚光器所处位置的光信号转换成电信号并经放大后送至 中央处理电路, 中央处理器分析后给出各种控制信号至动作驱动电路, 经动作驱动电路的 驱动器处理后, 控制相应的各继电器工作, 由继电器控制电机、 电磁离合器动作调整聚光 器始终对准阳光。
2、 根据权利要求 1所述的太阳光聚光器控制系统, 其特征在于包括: 太阳光跟踪传 感器包括环境光传感器、 方位角传感器和高度角传感器, 三者位于一个共同的基座上, 所 述环境光传感器由两个硅光电池构成, 两个硅光电池呈 90° 布置在基座上。
3、 根据权利要求 2所述的太阳光聚光器控制系统, 其特征在于方位角传感器和高度 角传感器结构相同且相互垂直布置, 两者都是由两个硅光电池、 一块遮阳板组成, 两块遮 阳板呈垂直状态、 间隔一定距离固定在基座上, 两个硅光电池分别安装在两块遮阳板外侧 底部的基座上。
4、 根据权利要求 2或 3所述的太阳光聚光器控制系统, 其特征在于包括: 在基座的 侧面设有转动限位开关触发块, 在基座外内对应位置分别设有两个转动限位开关; 在基座 下上的摆动轴上装有摆动限位开关触发块,在摆动轴外内对应位置分别设有两个摆动限位 开关; 在中央处理电路中设有限位开关电路, 限位开关电路的输入端连接转动限位开关和 摆动限位开关, 输出端连接中央处理器。
5、 一种太阳光聚光器的控制方法, 其特征在于它包括以下步骤:
( 1 ) 进入工作模式后, 数据初始化, 启用定时器中断功能, 判断是否允许调节太阳 光聚光器和是否有阳光, 如果不允许调太阳光聚光器, 或没有太阳光, 则程序等待进入中 断程序; 如果允许调节太阳光聚光器, 或有阳光, 则禁止定时器中断功能, 程序开始调整 太阳光聚光器;
( 2 )在调整程序下, 判断太阳光聚光器调整到位与否, 即高度角传感器和方位角传 感器是否都正对太阳; 若太阳光聚光器调整到位, 则清允许调节位, 重新进入允许定时中 断功能, 并等待进入中断程序;
若太阳光聚光器没有调整到位, 即高度角传感器和方位角传感器都没有正对太阳,
或者高度角传感器、 方位角传感器中的任何一个没有正对太阳, 则再次检测有无阳光, 若 没有阳光, 则关闭电机, 停止调整, 重新进入允许定时中断功能, 并等待进入中断程序; 若有阳光, 则根据方位角传感器判断太阳光聚光器是否需要调整, 若检测结果需要 调整,则再判断太阳光聚光器是否已经调整到极限位置,如果达到极限位置,则关闭电机, 停止调节, 清允许调节标志, 重新进入允许定时中断功能, 并等待进入中断程序; 如果没 有达到极限位置, 则进行转动调节, 然后程序重新进入判断是否有阳光程序;
如果太阳光聚光器不需要转动调节, 则关闭电机停止调节;
再次判断是否有阳光, 如果没有阳光, 则关闭电机, 停止调节, 重新进入允许定时中 断功能, 并等待进入中断程序; 如果有阳光, 再根据高度角传感器判断太阳光聚光器进行 是否需要摆动调节, 如果太阳光聚光器不需要调节, 则关闭电机, 停止调节, 程序进入到 两个方向是否均调节到位的判断;如果需要调节,再判断是太阳光聚光器否达到极限位置, 如果达到极限位置, 则关闭电机, 停止调节,清允许调节位, 重新进入允许定时中断功能, 并等待进入中断程序; 如果太阳光聚光器没有达到极限位置, 则驱动电机进行摆动调节, 并重新进入是否有阳光的判断程序;
( 3) 如果允许定时器中断, 则每隔一个中断周期进入中断程序;
进入中断程序后, 启动现场保护程序, 中断计数器对中断次数进行计数, 判断是否要 进入调试模式: 如果要进入调试模式, 则置位调节允许标志, 清中断次数计数器和环境光 计数器, 恢复现场程序; 如果不进入调试模式, 则判断是否需要采用灯光照明, 如果用户 需要进行灯光照明, 执行开灯程序; 否则就不需要进行灯光照明, 执行退灯程序;
对环境光进行采样, 设定一个上限值和一个下限值, 当环境光传感器的采样值大于等 于上限值时, 认为有太阳, 环境光计数器计数一次; 环境光传感器的采样值小于等于下限 值时, 认为是晚上, 夜晚计数器计数一次; 如果环境光传感器的采样值介于上限值和下限 值之间认为是多云; 然后判断是一个调整周期是否期满, 如果没有达到一个调整周期, 直 接恢复现场, 从中断程序中返回; 如果达到一个调整周期, 则清中断计数器, 判断环境光 计数器的计数次数是否达到设定次数, 如果达到设定次数, 则置位允许调节标志, 清环境 光计数器、 夜晚计数器和复位计数器; 如果没有达到设定次数, 清环境光计数器, 并判断 夜晚计数器是否达到设定次数, 如果达到设定次数, 复位计数器计数一次, 如果复位计数 器的计数次数达到设定次数, 则执行复位程序, 清复位计数器; 如果没有达到复位计数器 的设定次数, 则重新启动定时器, 恢复现场程序; 如果夜晚计数器没有达到设定次数, 则 重新启动定时器恢复现场, 退出中断程序。
6、 根据权利要求 5所述的太阳光聚光器的控制方法, 其特征在于: 所述的程序还包 括调试模式, 进入调试模式: 调试模式是在太阳光聚光器初次安装好以后, 调整透光镜的 光斑与光纤入口的对照情况, 在调试模式下, 程序在对太阳光聚光器进行调节的过程中不
检测环境光照情况, 而是每隔一个中断周期对方位角传感器和高度角传感器采样一次, 并 根据采样结果对太阳光聚光器进行调试, 使得太阳方位角传感器和高度角传感器正对太 阳; 如果在调节过程中环境光照不足, 调节过程因为高度角传感器和方位角传感器没有阴 影而自动停止, 程序等待一个中断周期后重新开始下一个调节周期。
7、 根据权利要求 5所述的太阳光聚光器的控制方法, 其特征在于: 步骤 (1 ) 和 (2 ) 中, 判断是否有阳光: 环境光计数器根据环境光传感器输出的电压值是否大于等于设定电 压值进行计数, 如果是, 则环境光计数器计数一次; 如果为否, 则不计数; 再根据环境光 计数器在一个调整周期内的计数次数是否达到设定次数进行判断, 如果达到设定次数, 则 有阳光; 如果没有达到设定次数, 则没有阳光。
8、 根据权利要求 5所述的太阳光聚光器的控制方法, 其特征在于: 步骤 (1 ) 中判断 是否允许调节的是根据方位角传感器和高度角传感器进行判断:设方位角传感器或高度角 传感器中的一个硅光电池输出的经放大后的电压值为 0UT1,设方位角传感器和高度角传感 器的另一个硅光电池输出的经放大后的电压值为 0UT2, 则去 0UT3=3 X ( 0UT1+0UT2 ) /8 作为参考值, 如果 0UT1大于等于 0UT3, 且 0UT2大于等于 0UT3, 则不需要转动或摆动调 节; 反之, 则不需要调节。
9、 根据权利要求 5所述的太阳光聚光器的控制方法, 其特征在于: 所述的步骤 (2 ) 中,根据转动限位开传感器和摆动限位开关传感器输出的电压值是否大于等于设定值来判 断转动限位开关和摆动限位开关是否达到极限位置, 如果大于等于设定值, 则达到极限位 置; 反之, 则没有达到极限位置。
10、 根据权利要求 5所述的太阳光聚光器的控制方法, 其特征在于: 步骤 (3 ) 中如 果选择灯光照明, 则在无阳光时, 由灯光源通过光纤提供照明,有太阳光时, 灯光源关闭, 太阳光直接导入光纤提供照明。
11、 根据权利要求 5所述的太阳光聚光器的控制方法, 其特征在于: 所述的设定值一 般根据地域、 季节的不同进行设置。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200910031297.7 | 2009-05-04 | ||
CN2009100312977A CN101539760B (zh) | 2009-05-04 | 2009-05-04 | 一种太阳光聚光器的控制方法 |
CN200910026741A CN101782745A (zh) | 2009-05-05 | 2009-05-05 | 太阳光聚光器控制系统 |
CN200910026741.6 | 2009-05-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010127615A1 true WO2010127615A1 (zh) | 2010-11-11 |
Family
ID=43049979
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2010/072440 WO2010127615A1 (zh) | 2009-05-04 | 2010-05-04 | 太阳光聚光器控制系统及方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2010127615A1 (zh) |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4147154A (en) * | 1977-07-08 | 1979-04-03 | Lewandowski Robert E | Solar heat tracking and collecting apparatus |
JPS59202360A (ja) * | 1983-04-30 | 1984-11-16 | Omron Tateisi Electronics Co | 太陽追尾用センサ |
JPH0371076A (ja) * | 1989-08-10 | 1991-03-26 | Yazaki Corp | 太陽追尾センサ |
JPH06323850A (ja) * | 1993-05-14 | 1994-11-25 | Konan Kogyo Kk | 太陽光方向センサー |
CN2377498Y (zh) * | 1999-05-19 | 2000-05-10 | 南京春辉科技实业有限公司 | 全自动跟踪太阳的采光装置 |
CN2697528Y (zh) * | 2004-04-06 | 2005-05-04 | 孟伟 | 全自动全方位跟踪太阳的装置 |
CN2760463Y (zh) * | 2004-12-30 | 2006-02-22 | 郭忠文 | 太阳光跟踪传感器 |
WO2009031726A1 (en) * | 2007-09-03 | 2009-03-12 | Joo-Pyoung Yoon | A sun following sensor unit and a sun following apparatus having the same therewith |
CN201251092Y (zh) * | 2008-09-09 | 2009-06-03 | 南京帅瑞科技有限公司 | 光源导入器 |
CN101539760A (zh) * | 2009-05-04 | 2009-09-23 | 南京帅瑞科技有限公司 | 一种太阳光聚光器的控制方法 |
CN101672452A (zh) * | 2008-09-09 | 2010-03-17 | 南京帅瑞科技有限公司 | 光源导入器 |
-
2010
- 2010-05-04 WO PCT/CN2010/072440 patent/WO2010127615A1/zh active Application Filing
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4147154A (en) * | 1977-07-08 | 1979-04-03 | Lewandowski Robert E | Solar heat tracking and collecting apparatus |
JPS59202360A (ja) * | 1983-04-30 | 1984-11-16 | Omron Tateisi Electronics Co | 太陽追尾用センサ |
JPH0371076A (ja) * | 1989-08-10 | 1991-03-26 | Yazaki Corp | 太陽追尾センサ |
JPH06323850A (ja) * | 1993-05-14 | 1994-11-25 | Konan Kogyo Kk | 太陽光方向センサー |
CN2377498Y (zh) * | 1999-05-19 | 2000-05-10 | 南京春辉科技实业有限公司 | 全自动跟踪太阳的采光装置 |
CN2697528Y (zh) * | 2004-04-06 | 2005-05-04 | 孟伟 | 全自动全方位跟踪太阳的装置 |
CN2760463Y (zh) * | 2004-12-30 | 2006-02-22 | 郭忠文 | 太阳光跟踪传感器 |
WO2009031726A1 (en) * | 2007-09-03 | 2009-03-12 | Joo-Pyoung Yoon | A sun following sensor unit and a sun following apparatus having the same therewith |
CN201251092Y (zh) * | 2008-09-09 | 2009-06-03 | 南京帅瑞科技有限公司 | 光源导入器 |
CN101672452A (zh) * | 2008-09-09 | 2010-03-17 | 南京帅瑞科技有限公司 | 光源导入器 |
CN101539760A (zh) * | 2009-05-04 | 2009-09-23 | 南京帅瑞科技有限公司 | 一种太阳光聚光器的控制方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kalogirou | Design and construction of a one-axis sun-tracking system | |
CN106869540B (zh) | 太阳能光伏停车棚 | |
CN105240989A (zh) | 具有红外检测系统的空调器及其控制方法 | |
CN101782745A (zh) | 太阳光聚光器控制系统 | |
CN102393756A (zh) | 太阳能追日控制器 | |
CN101539760B (zh) | 一种太阳光聚光器的控制方法 | |
TWI577921B (zh) | 扁平壁掛式內置感測器之追日引光裝置 | |
CN103676968A (zh) | 太阳跟踪装置 | |
CN108457554A (zh) | 一种智能开关窗户 | |
CN202512442U (zh) | 用于光伏发电的太阳方位自动跟踪装置 | |
CN104570878A (zh) | 太阳能采集控制系统 | |
CN203963794U (zh) | 一种基于太阳能照明装置的自然光收集装置 | |
CN102541071A (zh) | 二维太阳跟踪控制系统 | |
CN102789239B (zh) | 一种双轴高精度太阳追踪电机控制器 | |
CN201311114Y (zh) | 太阳能实时自动跟踪装置 | |
CN103268123B (zh) | 一种可自动追踪太阳的太阳能收集传送器 | |
CN203070107U (zh) | 一种双轴式太阳跟踪系统的控制电路 | |
CN202306333U (zh) | 太阳能追日控制器 | |
CN205433242U (zh) | 太阳能智能窗帘控制系统 | |
WO2010127615A1 (zh) | 太阳光聚光器控制系统及方法 | |
CN201993650U (zh) | 自动跟踪器 | |
JP3231220U (ja) | 太陽光自動追尾型発電電源装置 | |
CN203054617U (zh) | 太阳能电池板自动控制转向装置 | |
CN201607644U (zh) | 光伏电太阳自动跟踪器太阳跟踪电路 | |
CN109542129A (zh) | 一种太阳能光伏二维制动跟踪控制系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10772018 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/02/2012) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10772018 Country of ref document: EP Kind code of ref document: A1 |