WO2010126143A1 - Tire - Google Patents

Tire Download PDF

Info

Publication number
WO2010126143A1
WO2010126143A1 PCT/JP2010/057709 JP2010057709W WO2010126143A1 WO 2010126143 A1 WO2010126143 A1 WO 2010126143A1 JP 2010057709 W JP2010057709 W JP 2010057709W WO 2010126143 A1 WO2010126143 A1 WO 2010126143A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
tire
group
tire according
mass
Prior art date
Application number
PCT/JP2010/057709
Other languages
French (fr)
Japanese (ja)
Inventor
一晃 難波
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Publication of WO2010126143A1 publication Critical patent/WO2010126143A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/06Sulfur
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/45Heterocyclic compounds having sulfur in the ring
    • C08K5/46Heterocyclic compounds having sulfur in the ring with oxygen or nitrogen in the ring
    • C08K5/47Thiazoles

Definitions

  • the present invention relates to a tire having a steel cord and a belt layer made of a coating rubber covering the steel cord, and more particularly, a rubber having excellent deterioration characteristics as a coating rubber for the belt layer and excellent adhesion to the steel cord.
  • the present invention relates to a tire having excellent durability using the composition as a coating rubber for a belt layer.
  • the belt member of tires from passenger cars to industrial large-sized tires is generally made of a metal and a coating rubber covering its cord.
  • the required performance of the coating rubber for the belt includes that the crack does not easily develop and that the adhesiveness of the rubber-steel cord can be secured against the thermal history.
  • steel cord reinforced tires with a belt layer if the tire is used under heavy load and high speed, the decrease in adhesion between the rubber and steel cord of the belt layer is promoted, resulting in a problem in tire durability. It has been known.
  • securing the adhesion between the steel cord and the coating rubber covering the cord has been a very important issue.
  • Various studies have been made to improve the heat-resistant adhesion and durability.
  • a rubber covering the cord 35 to 50 parts by weight of carbon black, 3 to 15 parts by weight of silica (white carbon), 100 parts by weight of ethylene glycol with respect to 100 parts by weight of a rubber component mainly composed of natural rubber or synthetic natural rubber 0.1 to 3.0 parts by weight of zinc glycol, diethylene glycol, triethylene glycol, polyethylene glycol, 0.1 to 3.0 parts by weight, zinc monomethacrylate or zinc dimethacrylate 0
  • a rubber composition for coating a steel cord is known, characterized in that .05 to 0.8 parts by weight are blended (for example, Patent Document 1). Irradiation).
  • An object of the present invention is to provide a tire having excellent durability of adhesion between a steel cord and a coating rubber in a belt layer even under conditions, and excellent durability.
  • the inventor has a tire having a steel cord and a belt layer made of a coating rubber covering the steel cord, the coating covering the steel cord of the belt layer.
  • a rubber composition having specific physical properties as the rubber it was found that the above-mentioned tire can be obtained, and the present invention has been completed.
  • the present invention resides in the following (1) to (22).
  • the rubber composition contains 0.1 to 10 parts by mass of the sulfenamide vulcanization accelerator represented by the general formula (I) with respect to 100 parts by mass of the rubber component.
  • the rubber composition contains 0.3 to 10 parts by mass of sulfur with respect to 100 parts by mass of the rubber component and 0.1 to 10 parts of the sulfenamide vulcanization accelerator represented by the above general formula (I).
  • the tire according to (1) comprising a mass part.
  • R 1 is a tert-butyl group
  • R 2 is a linear alkyl group having 1 to 6 carbon atoms
  • R 3 to R 6 are hydrogen atoms.
  • R 1 is a tert-butyl group
  • n 0,
  • R 2 is a linear alkyl group having 1 to 6 carbon atoms
  • R 3 to R 6 Is a tire as described in said (1) which is a hydrogen atom.
  • R 1 in the general formula (I) is a tert-butyl group
  • n 0,
  • R 2 is a methyl group, an ethyl group, or an n-propyl group
  • R 3 to R 6 are The tire according to (1), which is a hydrogen atom.
  • (9) The tire according to any one of (1) to (8), wherein the rubber composition further contains cobalt and / or a compound containing cobalt.
  • the belt layer includes a steel cord layer group embedded with four or more coating rubbers, and includes at least a pair of crossing layers in the steel cord layer group.
  • the total weight part of the weight of the N, N′-diphenylmethane bismaleimide and the weight of the trans polybutadiene is 10 or less, and the weight of the trans polybutadiene is 25% or more and 95% or less of the total weight of the two.
  • the total weight part of the weight of the N, N′-diphenylmethane bismaleimide and the weight of the trans polybutadiene is 6 or less, and the weight of the trans polybutadiene is 25% or more and 95% or less of the total weight of the two.
  • the tire according to (14) or (15) above. (18) The total weight part of the weight of the N, N′-diphenylmethane bismaleimide and the weight of the trans polybutadiene is 6 or less, and the weight of the trans polybutadiene is 25% or more and 75% or less of the total weight of the two.
  • the content of the N, N′-diphenylmethane bismaleimide is 0.1 to 4 parts by mass with respect to 100 parts by mass of the rubber component, as described in any one of (14) to (18) above Tires.
  • the coating rubber has a tensile stress at 100% elongation of 3.5 MPa or more and a tan ⁇ of 0.200 or less when immediately applied under the condition of 2% strain at 25 ° C.
  • the present invention it becomes satisfactory even for the demands of higher loads such as higher load, higher speed, and higher life, and even under harsh conditions, the heat resistance adhesion and resistance between the steel cord and the coating rubber in the belt layer.
  • the tire is excellent in cracking property, and a tire excellent in durability is provided.
  • FIG. 1 is a cross-sectional view showing an example of an embodiment of a tire of the present invention.
  • the tire A of the present embodiment includes a tread portion 1, a pair of sidewall portions 2 extending radially inward from the side portions of the tread portion 1, and a radius of the sidewall portion 2.
  • the belt layer 6 having a steel cord which is composed of two belt layers 6 and 6 in this embodiment, is not limited to the number of belt layers in the tire of the present invention.
  • the tire A of the present embodiment has a tire skeleton structure, and the carcass 4 that reinforces the tread portion 1, the sidewall portion 2, and the bead portion 3 of the tire is configured by one or more carcass plies.
  • the carcass 4 in FIG. 1 is composed of one carcass ply.
  • the number of carcass plies may be plural, and the structure is not particularly limited. .
  • the tire A of the present embodiment includes a steel cord layer in which the belt layer 6 is coated with a coating rubber. That is, at least one belt layer 6 may be a steel cord layer, and one or more belt layers may be a steel cord layer.
  • the steel cord used for the belt layer 6 is not particularly limited in material, number, twisted structure, etc., and is used for a tire belt layer for passenger cars to large-sized [trucks / buses (TB), construction vehicles (OR)]. Various steel cords can be used. Also, the configuration of the belt layer 6 is not particularly limited, and it is possible to employ a belt layer that has each configuration of tires for passenger cars to large-sized [trucks / buses (TB), construction vehicles (OR)]. it can.
  • the coating rubber that covers the steel cord of the belt layer 6 of the tire A contains a rubber component, sulfur, and a sulfenamide-based vulcanization accelerator represented by the following general formula (I).
  • the rubber composition is used.
  • the rubber component in the rubber composition used for the coating rubber for coating the steel cord of the belt layer 6 is not particularly limited as long as it exhibits rubber elasticity, but in addition to natural rubber, vinyl aromatic hydrocarbon / conjugated diene. All known rubbers such as copolymers, polyisoprene rubber, butadiene rubber, butyl rubber, halogenated butyl rubber, and synthetic rubber such as ethylene-propylene rubber can be used.
  • the rubber component may be used alone or in combination of two or more. From the viewpoint of adhesion characteristics with steel cords and fracture characteristics of the rubber composition, the rubber component is composed of at least one of natural rubber and polyisoprene rubber, or contains 50% by mass or more of natural rubber, with the balance being synthetic rubber. It is preferable.
  • the content of sulfur contained in the rubber composition for coating rubber is in the range of 0.3 to 10 parts by mass, preferably in the range of 3 to 8 parts by mass with respect to 100 parts by mass of the rubber component.
  • the sulfur content is 0.3 parts by mass or more with respect to 100 parts by mass of the rubber component, it is preferable in terms of adhesiveness to the steel cord, and when it is 10 parts by mass or less, an excessive adhesive layer is generated. Since it is suppressed, adhesiveness is not lowered, which is preferable.
  • the compound represented by the general formula (I) contained in the rubber composition used for the belt layer has a vulcanization retarding effect equivalent to that of N, N-dicyclohexyl-2-benzothiazolylsulfenamide, and It is excellent in adhesion durability in direct vulcanization adhesion to a metal reinforcing material such as a steel cord, and is suitably used for a rubber composition for coating a belt layer having a steel cord.
  • R 1 is a tert-butyl group
  • x 1 or 2
  • a sulfenamide compound which is a hydrogen atom, as a vulcanization accelerator in terms of adhesion and vulcanization delay effect.
  • sulfenamide vulcanization accelerators are used as vulcanization accelerators for the first time in the present invention, and are the slowest in the vulcanization reaction among the conventional sulfenamide vulcanization accelerators.
  • N, N-dicyclohexyl-2-benzothiazolylsulfenamide which is known as a vulcanization accelerator that gives a sufficient vulcanization retarding effect, and has both sufficient vulcanization promoting ability and steel cord Excellent adhesion durability in direct vulcanization bonding with metal reinforcing materials such as Therefore, it is suitably used for a rubber composition for coating or the like having excellent adhesion durability in direct vulcanization adhesion with the steel cord of the belt layer of the tire of the present invention.
  • R 1 in the sulfenamide compound represented by the general formula (I) represents a branched alkyl group having 3 to 12 carbon atoms. If R 1 is a branched alkyl group having 3 to 12 carbon atoms, the vulcanization acceleration performance of the compound represented by the general formula (I) is good and the adhesion performance can be enhanced.
  • R 1 of the compound represented by the general formula (I) include isopropyl group, isobutyl group, triisobutyl group, sec-butyl group, tert-butyl group, isoamyl group (isopentyl group), neopentyl group, tert-amyl group (tert-pentyl group), isohexyl group, tert-hexyl group, isoheptyl group, tert-heptyl group, isooctyl group, tert-octyl group, isononyl group, tert-nonyl group, isodecyl group, tert-decyl group , Isoundecyl group, tert-undecyl group, isododecyl group, tert-dodecyl group and the like.
  • R 1 preferably has a branch at the ⁇ -position, and more preferably, from the viewpoint of effects such as obtaining a suitable scorch time.
  • a tert-alkyl group having 3 to 12 carbon atoms is preferred, and in particular, tert-butyl group, tert-amyl group (tert-pentyl group), tert-dodecyl group, among which tert-butyl group is preferred from the viewpoint of synthesis and raw material acquisition It is economically excellent, and also provides a vulcanization rate equivalent to that of DCBS (DZ) and is particularly desirable from the viewpoint of further adhesion.
  • DCBS DCBS
  • R 2 in the sulfenamide compound represented by the general formula (I) represents a linear alkyl group having 1 to 10 carbon atoms.
  • R 2 is a linear alkyl group having 1 to 10 carbon atoms
  • the vulcanization acceleration performance of the compound represented by the general formula (I) is good and the adhesion performance can be enhanced.
  • Specific examples of R 2 of the compound represented by the general formula (I) include methyl group, ethyl group, n-propyl group, n-butyl group, n-amyl group (n-pentyl group), n-hexyl. Group, n-heptyl group, n-octyl group, nonyl group, decyl group and the like.
  • a straight-chain alkyl group having 1 to 8 carbon atoms, and further a straight-chain alkyl group having 1 to 6 carbon atoms is preferable.
  • Group, n-propyl group and n-butyl group are preferred.
  • a straight-chain alkyl group having 1 to 6 carbon atoms is desirable in that a suitable Mooney scorch time can be obtained and high steel cord adhesion can be obtained. This is because when the number of carbons increases, the vulcanization is further delayed, so that productivity is lowered and adhesiveness is lowered.
  • R 3 to R 6 in the sulfenamide compound represented by the general formula (I) are a hydrogen atom, a linear alkyl group having 1 to 4 carbon atoms or an alkoxy group, and a branched one having 3 to 4 carbon atoms.
  • R 3 and R 5 are each a linear alkyl group or alkoxy group having 1 to 4 carbon atoms, or a group having 3 to 4 carbon atoms.
  • R 3 to R 6 are an alkyl group or alkoxy group having 1 to 4 carbon atoms, it is preferably 1 carbon atom, and particularly preferably a hydrogen atom. This is because in any case, the ease of synthesis of the compound and the vulcanization rate do not slow down.
  • R 3 to R 6 of the sulfenamide compound represented by the general formula (I) include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec- Examples thereof include a butyl group, a tert-butyl group, a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, an isobutoxy group, a sec-butoxy group, and a tert-butoxy group.
  • R 1 and R 2 in the sulfenamide compound represented by the general formula (I) are both branched alkyl groups, the difficulty of synthesis increases, and a stable compound is difficult to synthesize. In particular, when R 1 and R 2 are both tert-butyl groups, the synthesis is not successful. Moreover, when both R 1 and R 2 are branched alkyl groups, the heat resistant adhesiveness is deteriorated, which is not preferable.
  • R 1 in the sulfenamide compound represented by the general formula (I) is a branched alkyl group having 3 to 12 carbon atoms, and R 2 is a linear alkyl group having 1 to 10 carbon atoms.
  • R 1 and R 2 in the sulfenamide compound represented by the above general formula (I) are a particularly preferred combination of R 1 and R 2 in the sulfenamide compound represented by the above general formula (I), R 1 is a tert-butyl group, and R 2 is a linear alkyl having 1 to 10 carbon atoms.
  • the groups R 3 to R 6 are a combination of hydrogen atoms.
  • the best mode combination is when R 1 is a tert-butyl group and R 2 is a methyl group, ethyl group, n-propyl group, or n-butyl group having 4 or less carbon atoms.
  • the vulcanization speed is equivalent to that of DCBS (DZ), further ensuring adhesion performance, and human body accumulation
  • DCBS DCBS
  • the combination which becomes the best mode can be confirmed from the numerical value of the octanol / water partition coefficient (log POW) which is one of simple measures for evaluating the condensability of chemicals.
  • log POW octanol / water partition coefficient
  • n is preferably 0.
  • the Mooney scorch time is faster.
  • R 1 is a functional group other than a branched alkyl group having 3 to 12 carbon atoms (for example, an n-octadecyl group) or 12 carbon atoms.
  • R 2 is a functional group other than a linear alkyl group having 1 to 10 carbon atoms (eg, n-octadecyl group) or a linear alkyl group exceeding 10 carbon atoms
  • R 3 to R 6 are outside the range of each functional group and carbon number outside the above range, and when n is 2 or more, the effects of the object of the present invention are rarely exhibited.
  • the preferable Mooney scorch time becomes slow and the vulcanization time becomes long, resulting in a decrease in productivity, adhesion, or vulcanization performance and rubber performance as an accelerator. .
  • x is 3 or more, it is not preferable in terms of stability.
  • R 1 in the sulfenamide compound represented by the above general formula (I) is a branched alkyl group, it has a branch other than the ⁇ -position, for example, 2-ethylhexyl, 2-ethylbutyl, etc. Therefore, it is desirable that there is a branch at the ⁇ position because the balance between vulcanization speed, adhesion performance securing, and human body accumulation tends to deteriorate.
  • representative examples of the compound represented by the general formula (I) include N-methyl-Nt-butylbenzothiazol-2-sulfenamide, N-ethyl-Nt- Butylbenzothiazol-2-sulfenamide, Nn-propyl-Nt-butylbenzothiazol-2-sulfenamide, Nn-butyl-Nt-butylbenzothiazo -L-2-sulfenamide, N-methyl-N-isoamylbenzothiazol-2-sulfenamide, N-ethyl-N-isoamylbenzothiazol-2-sulfenamide, Nn -Propyl-N-isoamylbenzothiazol-2-sulfenamide, Nn-butyl-N-isoamylbenzothiazol-2-sulfenamide, N-methyl-N-tert-amylbenzothia Sol-2 Sulfenamide, N-methyl-Nt
  • N-methyl-Nt-butylbenzothiazol-2-sulfenamide, N-ethyl-Nt-butylbenzothiazol-2-sulfenamide Phenamide and Nn-propyl-Nt-butylbenzothiazol-2-sulfenamide are preferred.
  • N-methyl-Nt-butylbenzothiazol-2-sulfenamide, N-ethyl-Nt-butyl are particularly preferred in that they have the longest scorch time and excellent adhesion performance.
  • benzothiazol-2-sulfenamide or Nn-propyl-Nt-butylbenzothiazol-2-sulfenamide may be used alone or in combination.
  • general-purpose vulcanization accelerators such as N-tert-butyl-2-benzothiazol sulfenamide (TBBS), N-cyclohexyl-2-benzothiazol sulfenamide (CBS), dibenzothiazolyl disulfide (MBTS), etc. It is also possible to use in combination.
  • the following method can be mentioned as a preferable manufacturing method of the sulfenamide compound represented by the general formula (I) of the present invention. That is, N-chloroamine and bis (benzothiazol-2-yl) disulfide prepared in advance by the reaction of the corresponding amine and sodium hypochlorite are reacted in an appropriate solvent in the presence of an amine and a base. If an amine is used as the base, neutralize and return to the free amine, then subject to appropriate post-treatment such as filtration, washing with water, concentration and recrystallization according to the properties of the resulting reaction mixture. Sulfenamide is obtained.
  • Examples of the base used in this production method include raw material amine used in excess, tertiary amine such as triethylamine, alkali hydroxide, alkali carbonate, alkali bicarbonate, sodium alkoxide and the like.
  • the reaction is carried out using excess raw material amine as a base or tertiary amine triethylamine, neutralizing the hydrochloride formed with sodium hydroxide, taking out the target product, and then removing the amine from the filtrate.
  • a method of reuse is desirable.
  • As the solvent used in this production method alcohol is desirable, and methanol is particularly desirable.
  • N-ethyl-Nt-butylbenzothiazol-2-sulfenamide an aqueous sodium hypochlorite solution was added dropwise to Nt-butylethylamine at 0 ° C. or lower and the oil layer was stirred for 2 hours.
  • aqueous sodium hypochlorite solution was added dropwise to Nt-butylethylamine at 0 ° C. or lower and the oil layer was stirred for 2 hours.
  • Bis (benzothiazol-2-yl) disulfide, Nt-butylethylamine and the oil layer described above were suspended in methanol and stirred under reflux for 2 hours.
  • the content of these sulfenamide-based vulcanization accelerators is 0.1 to 10 parts by weight, preferably 0.5 to 5.0 parts by weight, and more preferably 0.8 parts per 100 parts by weight of the rubber component.
  • the amount is desirably 8 to 2.5 parts by mass.
  • the content of the vulcanization accelerator is less than 0.1 parts by mass, the vulcanization is not sufficiently performed.
  • the content exceeds 10 parts by mass, bloom is a problem, which is not preferable.
  • the rubber composition used for the belt layer of the present invention can contain a filler usually used in the rubber composition used for the belt layer.
  • An inorganic filler such as carbon black can be contained.
  • the content of these inorganic fillers is preferably 30 to 150 parts by mass, more preferably 40 to 100 parts by mass, and particularly preferably 40 to 65 parts by mass with respect to 100 parts by mass of the rubber component. It is.
  • carbon black there is no restriction
  • Examples of carbon black include GPF, FEF, SRF, HAF, ISAF, and SAF.
  • N 2 SA nitrogen adsorption specific surface area
  • DBP dibutyl phthalate
  • the rubber composition used for the coating rubber covering the steel cord of the belt layer 6 of the present invention may contain cobalt (single) and / or a compound containing cobalt from the viewpoint of improving the initial adhesion performance.
  • cobalt-containing compound that can be used include at least one of a cobalt salt of an organic acid and a cobalt salt of an inorganic acid, such as cobalt chloride, cobalt sulfate, cobalt nitrate, cobalt phosphate, and cobalt chromate.
  • Examples of the organic acid cobalt salt that can be used include at least one of cobalt naphthenate, cobalt stearate, cobalt neodecanoate, cobalt rosinate, cobalt versatate, cobalt tall oil, and the like.
  • the organic acid cobalt may be a complex salt in which a part of the organic acid is replaced with boric acid. Specifically, a commercial name “manobond” manufactured by OMG Co., Ltd. may be used.
  • a commercial name “manobond” manufactured by OMG Co., Ltd. may be used.
  • the adhesion performance is improved even if it is not a cobalt salt such as a fatty acid.
  • the (total) content of these cobalt and / or cobalt-containing compounds is 0.03 to 3 parts by weight, preferably 0.03 to 1 part by weight, based on 100 parts by weight of the rubber component, as the amount of cobalt. More preferably, the content is 0.05 to 0.7 parts by mass. If the content of these cobalt amounts is less than 0.03 parts by mass, further adhesiveness cannot be exhibited. On the other hand, if it exceeds 3 parts by mass, the aging physical properties are greatly reduced, which is not preferable.
  • the rubber composition used for the coating rubber for coating the steel cord of the belt layer 6 of the present invention has a rubber component consisting of isoprene rubber and transpolybutadiene, and N, It is desirable to contain N′-diphenylmethane bismaleimide.
  • the total weight part of the weight of the N, N′-diphenylmethane bismaleimide and the weight of the trans polybutadiene is 10 or less, and the weight of the trans polybutadiene is 25% or more and 95% or less of the total weight of the two.
  • the total weight part of the weight of the N, N′-diphenylmethane bismaleimide and the weight of the trans polybutadiene is 6 or less, and the weight of the trans polybutadiene is 25% or more of the total weight of the two, 95 %, Particularly preferably, the total weight part of the weight of the N, N′-diphenylmethane bismaleimide and the weight of the transpolybutadiene is 6 or less, and the weight of the transpolybutadiene is 25% of the total weight of the two. % Or more and 75% or less is particularly desirable.
  • the content of N, N′-diphenylmethane bismaleimide is preferably 0.1 to 4 parts by mass with respect to 100 parts by mass of the rubber component made of isoprene rubber and transpolybutadiene.
  • the coating rubber has a tensile stress at 100% elongation of 3.5 MPa or more after vulcanization, and a tan ⁇ of 0.200 or less when immediately applied under the condition of 2% strain at 25 ° C. It is preferable.
  • the trans polybutadiene preferably has a trans bond content of 82 to 98 mol% and a weight average molecular weight of 30,000 to 200,000.
  • the rubber composition used for the coating rubber for coating the steel cord of the belt layer 6 of the present invention is a compound usually used in a tire belt layer.
  • the agent can be used within a range that does not impair the effects of the present invention.
  • inorganic fillers such as silica other than the carbon black, softeners, anti-aging agents, and the like can be appropriately contained depending on the tire application.
  • a rubber composition for coating rubber that covers the steel cord of the belt layer 6 can be prepared by kneading the above-described components with, for example, a Banbury mixer, a kneader, etc., and tires such as passenger cars, trucks, and buses can be prepared.
  • the tire of the present invention is manufactured by a usual method. A rubber member that forms a belt layer is molded using the rubber composition having the above-described structure coated with the steel cord, and other tire members are pasted and molded on a tire molding machine by a normal method, thereby producing a raw tire. Is formed. The green tire is heated and pressurized in a vulcanizer to obtain the desired tire.
  • the tire of the present invention configured as described above, it can be suitably applied to automobile and truck / bus tires that require particularly high strength, in response to demands for higher loads, higher speed, and higher life. Becomes a satisfactory tire, and is excellent in durability and crack resistance between the steel cord and the coating rubber in the belt layer and excellent in durability.
  • a rubber composition further containing cobalt (a simple substance) and / or a compound containing cobalt it is further excellent in adhesion durability and crack resistance with a steel cord used for a belt layer of a tire, A tire having excellent durability can be obtained.
  • the rubber component is made of isoprene rubber and transpolybutadiene and further containing N, N′-diphenylmethane bismaleimide.
  • a tire for example, a belt layer having a steel cord layer group embedded with four or more coating rubbers, and a tire for a large vehicle including at least a pair of crossing layers among the steel cord layer group, further for a large vehicle
  • a large vehicle tire having excellent adhesion durability and crack resistance with a steel cord used for the belt layer of the tire and excellent durability can be obtained.
  • the vulcanization accelerator used in the coating rubber for coating the steel cord of the belt layer of the present invention will be described in more detail based on the production examples of the vulcanization accelerator and the tire examples and comparative examples of the present invention.
  • the present invention is not limited to these production examples and examples.
  • the octanol / water partition coefficient (log P) of the obtained vulcanization accelerators (1 to 4) was measured by a high performance liquid chromatography method according to JIS Z 7260-117 (2006). A high performance liquid chromatography manufactured by Shimadzu Corporation was used.
  • Examples 1 to 12 and Comparative Examples 1 to 8 Using a 2200 ml Banbury mixer, the rubber component, sulfur, the vulcanization accelerator obtained in the above production example, the organic acid cobalt salt, and other compounding agents were kneaded and mixed according to the formulation shown in Tables 1 to 3 below. Thus, an unvulcanized rubber composition was prepared. Using each rubber composition obtained, the following evaluation methods were used to evaluate heat resistance adhesion and tire durability as well as adhesion durability and crack durability. These results are shown in Tables 1 to 3 below.
  • each ampoule is left in a gear oven at 100 ° C for 15 to 30 days, then the steel cord is pulled out by the above test method, and the rubber coating state is visually observed and displayed in 0 to 100%. And used as an index for each thermal adhesiveness. It shows that it is excellent in heat-resistant adhesiveness, so that a numerical value is large.
  • the coating rubber covering the steel cord of the belt layer is suitable for passenger cars, trucks, buses and the like by using a suitable rubber composition that is directly vulcanized and bonded to the steel cord. .

Abstract

Disclosed is a tire which satisfies strict requirements for higher loads, higher speeds and longer service life, shows excellent adhesion durability between a steel cord and a coating rubber and excellent cracking resistance in a belt layer even under severe conditions, and has excellent durability. Specifically disclosed is a tire (A) in which a belt layer (6) comprises a layer consisting of steel cords coated with a coating rubber, said tire being characterized in that a rubber composition comprising a rubber component, sulfur and a sulfenamide vulcanization accelerator represented by general formula (I) is used as the coating rubber for coating the steel cords in said belt layer (6). In general formula (I), R1 represents a branched alkyl group having 3 to 12 carbon atoms; R2 represents a straight-chain alkyl group having 1 to 10 carbon atoms; R3 to R6 may be the same or different and each represents a hydrogen atom, a straight-chain alkyl or alkoxy group having 1 to 4 carbon atoms, or a branched alkyl or alkoxy group having 3 to 4 carbon atoms; x represents an integer of 1 or 2; and n represents an integer of 0 or 1.

Description

タイヤtire
 本発明は、スチールコードと、該スチールコードを被覆するコーティングゴムからなるベルト層を有するタイヤに関し、更に詳しくは、ベルト層のコーティングゴムとして良好な劣化特性及びスチールコードとの接着性に優れたゴム組成物をベルト層のコーティングゴムに用いた耐久性に優れたタイヤに関する。 The present invention relates to a tire having a steel cord and a belt layer made of a coating rubber covering the steel cord, and more particularly, a rubber having excellent deterioration characteristics as a coating rubber for the belt layer and excellent adhesion to the steel cord. The present invention relates to a tire having excellent durability using the composition as a coating rubber for a belt layer.
 従来より、自動車用タイヤに要求される性能は益々厳しくなってきており、タイヤの耐久性の更なる改良が望まれている。更に、近年、タイヤは、効率化を求めるため、より重荷重、高速度、高ライフを要求されている。 Conventionally, the performance required for automobile tires has become increasingly severe, and further improvements in tire durability are desired. Furthermore, in recent years, tires are required to have a heavier load, higher speed, and higher life in order to increase efficiency.
 乗用車から工業用大型などのタイヤのベルト部材は、一般的に金属とそのコードを被覆するコーティングゴムから成り立っている。ベルト用のコーティングゴムの要求性能としては、亀裂進展が起こりにくいこと、及び熱履歴に対してゴム-スチールコードの接着性が確保できることなどが挙げられる。
 ベルト層を有するスチールコード補強タイヤにおいては、タイヤの使用条件が重荷重化、高速度化すると、ベルト層のゴム-スチールコード間の接着力低下が促進され、タイヤの耐久性に問題が生じることが知られている。
 このスチールコードで補強したベルト層を有するタイヤにおいては、スチールコードと該コードを被覆するコーティングゴムとの接着性を確保することが非常に大きな課題として取り組まれており、これまでスチールコードとコーティングゴムとの耐熱接着性、耐久性を改良するために、様々な検討が行われてきている。
The belt member of tires from passenger cars to industrial large-sized tires is generally made of a metal and a coating rubber covering its cord. The required performance of the coating rubber for the belt includes that the crack does not easily develop and that the adhesiveness of the rubber-steel cord can be secured against the thermal history.
In steel cord reinforced tires with a belt layer, if the tire is used under heavy load and high speed, the decrease in adhesion between the rubber and steel cord of the belt layer is promoted, resulting in a problem in tire durability. It has been known.
In a tire having a belt layer reinforced with this steel cord, securing the adhesion between the steel cord and the coating rubber covering the cord has been a very important issue. Various studies have been made to improve the heat-resistant adhesion and durability.
 例えば、スチールコードとゴム間の接着低下を引き起こすことなく、低発熱性と、耐熱老化性を両立させることが可能であり、高熱及び高歪性の条件下におかれる特にタイヤのベルト層のスチールコードの被覆ゴムとして、天然ゴム又は合成天然ゴムを主体とするゴム成分100重量部に対し、カ-ボンブラックを35~50重量部、シリカ(ホワイトカ-ボン)3~15重量部、エチレングリコ-ル、ジエチレングリコ-ル、トリエチレングリコ-ル、ポリエチレングリコ-ルの中から選ばれた少なくとも一種のグリコ-ルを0.1~3.0重量部、モノメタクリル酸亜鉛又はジメタクリル酸亜鉛0.05~0.8重量部、を配合したことを特徴とする、主としてスチールコード被覆用のゴム組成物が知られている(例えば、特許文献1参照)。 For example, it is possible to achieve both low heat build-up and heat aging resistance without causing a decrease in the adhesion between the steel cord and rubber, and especially the steel in the belt layer of a tire that is subjected to high heat and high strain conditions. As a rubber covering the cord, 35 to 50 parts by weight of carbon black, 3 to 15 parts by weight of silica (white carbon), 100 parts by weight of ethylene glycol with respect to 100 parts by weight of a rubber component mainly composed of natural rubber or synthetic natural rubber 0.1 to 3.0 parts by weight of zinc glycol, diethylene glycol, triethylene glycol, polyethylene glycol, 0.1 to 3.0 parts by weight, zinc monomethacrylate or zinc dimethacrylate 0 A rubber composition for coating a steel cord is known, characterized in that .05 to 0.8 parts by weight are blended (for example, Patent Document 1). Irradiation).
 しかしながら、この特許文献1に記載される技術を用いても、より重荷重、高速度化、高ライフを要求されるニーズに対しては未だ不十分である点に課題があり、ベルト層のスチールコードとコーティングゴムとの接着耐久性に優れ、耐久性に優れたタイヤが切望されているのが現状である。 However, even if the technique described in Patent Document 1 is used, there is still a problem in that it is still insufficient for the needs that require a heavier load, higher speed, and higher life. At present, tires that are excellent in the durability of bonding between the cord and the coating rubber and excellent in the durability are desired.
特開平5-51491号公報(特許請求の範囲、実施例等)Japanese Patent Laid-Open No. 5-51491 (Claims, Examples, etc.)
 本発明は、上記従来技術の課題及び現状に鑑み、これを解消しようとするものであり、より重荷重、高速度化、高ライフの高度の要求に対しても満足のいくものとなり、過酷な条件下でもベルト層におけるスチールコードとコーティングゴムとの接着耐久性に優れ、耐久性に優れたタイヤを提供することを目的とする。 The present invention intends to solve this problem in view of the above-described problems of the prior art and the current situation, and satisfies the demands for higher loads, higher speeds, and higher lifespans. An object of the present invention is to provide a tire having excellent durability of adhesion between a steel cord and a coating rubber in a belt layer even under conditions, and excellent durability.
 本発明者は、上記従来の課題等について、鋭意検討した結果、スチールコードと、該スチールコードを被覆するコーティングゴムからなるベルト層を有するタイヤであって、上記ベルト層のスチールコードを被覆するコーティングゴムに、特定物性のゴム組成物を用いることにより、上記目的のタイヤが得られることを見い出し、本発明を完成するに至ったのである。 As a result of intensive studies on the above-described conventional problems and the like, the inventor has a tire having a steel cord and a belt layer made of a coating rubber covering the steel cord, the coating covering the steel cord of the belt layer. By using a rubber composition having specific physical properties as the rubber, it was found that the above-mentioned tire can be obtained, and the present invention has been completed.
 すなわち、本発明は、次の(1)~(22)に存する。
(1) スチールコードと、該スチールコードを被覆するコーティングゴムからなるベルト層を有するタイヤであって、上記ベルト層のスチールコードを被覆するコーティングゴムに、ゴム成分と、硫黄と、下記一般式(I)で表されるスルフェンアミド系加硫促進剤とを含有してなるゴム組成物を用いたことを特徴とするタイヤ。
Figure JPOXMLDOC01-appb-C000002
(2) 前記ゴム組成物は、ゴム成分100質量部に対し、上記一般式(I)で表されるスルフェンアミド系加硫促進剤0.1~10質量部を含有してなる上記(1)に記載のタイヤ。
(3) 前記ゴム組成物は、ゴム成分100質量部に対し、硫黄0.3~10質量部を含有してなる上記(1)に記載のタイヤ。
(4) 前記ゴム組成物は、ゴム成分100質量部に対し、硫黄0.3~10質量部と、上記一般式(I)で表されるスルフェンアミド系加硫促進剤0.1~10質量部とを含有してなる上記(1)に記載のタイヤ。
(5) 上記一般式(I)中のRは、tert-アルキル基であり、n=0である上記(1)に記載のタイヤ。
(6) 上記一般式(I)中のRは、tert-ブチル基であり、Rは、炭素数1~6の直鎖アルキル基であり、R~Rは、水素原子である上記(1)に記載のタイヤ。
(7) 上記一般式(I)中のRは、tert-ブチル基であり、n=0であり、Rは、炭素数1~6の直鎖アルキル基であり、R~Rは、水素原子である上記(1)に記載のタイヤ。
(8) 上記一般式(I)中のRは、tert-ブチル基であり、n=0であり、Rはメチル基、エチル基、n-プロピル基であり、R~Rは、水素原子である上記(1)に記載のタイヤ。
(9) 前記ゴム組成物には、更に、コバルト及び/又はコバルトを含有する化合物を含有する上記(1)~(8)の何れか一つに記載のタイヤ。
(10) コバルト及び/又はコバルトを含有する化合物の含有量がコバルト量として、ゴム成分100質量部に対し、0.03~3質量部である上記(9)に記載のタイヤ。
(11) コバルトを含有する化合物が、有機酸のコバルト塩である上記(9)又は(10)に記載のタイヤ。
(12) 前記ゴム組成物のゴム成分が、天然ゴム及びポリイソプレンゴムの少なくとも一方を含む上記(1)~(11)の何れか一つに記載のタイヤ。
(13) 前記ゴム組成物のゴム成分が、50質量%以上の天然ゴム及び残部を合成ゴムよりなる上記(1)~(11)の何れか一つに記載のタイヤ。
(14) 前記ゴム組成物のゴム成分が、イソプレンゴムとトランスポリブタジエンとからなり、かつ、N,N´-ジフェニルメタンビスマレイミドを含有する上記(1)~(11)の何れか一つに記載のタイヤ。
(15) ベルト層は、4層以上のコーティングゴムにより埋没されたスチールコード層群を有し、前記スチールコード層群のうち少なくとも一対の交錯層を含む上記(14)に記載のタイヤ。
(16) 前記N,N´-ジフェニルメタンビスマレイミドの重量と前記トランスポリブタジエンの重量の総重量部数が10以下であると共に、トランスポリブタジエンの重量が二者の総重量の25%以上、95%以下である上記(14)又は(15)に記載のタイヤ。
(17) 前記N,N´-ジフェニルメタンビスマレイミドの重量と前記トランスポリブタジエンの重量の総重量部数が6以下であると共に、トランスポリブタジエンの重量が二者の総重量の25%以上、95%以下である上記(14)又は(15)に記載のタイヤ。
(18) 前記N,N´-ジフェニルメタンビスマレイミドの重量と前記トランスポリブタジエンの重量の総重量部数が6以下であると共に、トランスポリブタジエンの重量が二者の総重量の25%以上、75%以下である上記(14)又は(15)に記載のタイヤ。
(19) 前記N,N´-ジフェニルメタンビスマレイミドの含有量が前記ゴム成分100質量部に対して、0.1~4質量部である上記(14)~(18)の何れか一つに記載のタイヤ。
(20) タイヤが大型車両用タイヤである上記(14)~(19)の何れか一つに記載のタイヤ。
(21) 前記コーティングゴムは、加硫後、100%伸張時の引張応力が3.5MPa以上であり、かつ25℃で歪2%の条件下で即敵したときのtanδが0.200以下である上記(14)~(19)の何れか一つに記載のタイヤ。
(22) 前記トランスポリブタジエンは、そのトランス結合含有量が82~98モル%であり、かつ、重量平均分子量が30000~200000である上記(14)~(21)の何れか一つに記載のタイヤ。
That is, the present invention resides in the following (1) to (22).
(1) A tire having a steel cord and a belt layer made of a coating rubber covering the steel cord, wherein the coating rubber covering the steel cord of the belt layer includes a rubber component, sulfur, and the following general formula ( A tire comprising a rubber composition containing a sulfenamide vulcanization accelerator represented by I).
Figure JPOXMLDOC01-appb-C000002
(2) The rubber composition contains 0.1 to 10 parts by mass of the sulfenamide vulcanization accelerator represented by the general formula (I) with respect to 100 parts by mass of the rubber component. ) Tire.
(3) The tire according to (1), wherein the rubber composition contains 0.3 to 10 parts by mass of sulfur with respect to 100 parts by mass of the rubber component.
(4) The rubber composition contains 0.3 to 10 parts by mass of sulfur with respect to 100 parts by mass of the rubber component and 0.1 to 10 parts of the sulfenamide vulcanization accelerator represented by the above general formula (I). The tire according to (1), comprising a mass part.
(5) The tire according to (1), wherein R 1 in the general formula (I) is a tert-alkyl group and n = 0.
(6) In the general formula (I), R 1 is a tert-butyl group, R 2 is a linear alkyl group having 1 to 6 carbon atoms, and R 3 to R 6 are hydrogen atoms. The tire according to (1) above.
(7) In the general formula (I), R 1 is a tert-butyl group, n = 0, R 2 is a linear alkyl group having 1 to 6 carbon atoms, and R 3 to R 6 Is a tire as described in said (1) which is a hydrogen atom.
(8) R 1 in the general formula (I) is a tert-butyl group, n = 0, R 2 is a methyl group, an ethyl group, or an n-propyl group, and R 3 to R 6 are The tire according to (1), which is a hydrogen atom.
(9) The tire according to any one of (1) to (8), wherein the rubber composition further contains cobalt and / or a compound containing cobalt.
(10) The tire according to (9), wherein the content of cobalt and / or a compound containing cobalt is 0.03 to 3 parts by mass with respect to 100 parts by mass of the rubber component as the amount of cobalt.
(11) The tire according to (9) or (10), wherein the cobalt-containing compound is a cobalt salt of an organic acid.
(12) The tire according to any one of (1) to (11), wherein the rubber component of the rubber composition contains at least one of natural rubber and polyisoprene rubber.
(13) The tire according to any one of (1) to (11) above, wherein the rubber component of the rubber composition is 50% by mass or more of natural rubber and the balance is made of synthetic rubber.
(14) The rubber component of the rubber composition according to any one of (1) to (11) above, wherein the rubber component is made of isoprene rubber and transpolybutadiene and contains N, N′-diphenylmethane bismaleimide. tire.
(15) The tire according to (14), wherein the belt layer includes a steel cord layer group embedded with four or more coating rubbers, and includes at least a pair of crossing layers in the steel cord layer group.
(16) The total weight part of the weight of the N, N′-diphenylmethane bismaleimide and the weight of the trans polybutadiene is 10 or less, and the weight of the trans polybutadiene is 25% or more and 95% or less of the total weight of the two. The tire according to (14) or (15) above.
(17) The total weight part of the weight of the N, N′-diphenylmethane bismaleimide and the weight of the trans polybutadiene is 6 or less, and the weight of the trans polybutadiene is 25% or more and 95% or less of the total weight of the two. The tire according to (14) or (15) above.
(18) The total weight part of the weight of the N, N′-diphenylmethane bismaleimide and the weight of the trans polybutadiene is 6 or less, and the weight of the trans polybutadiene is 25% or more and 75% or less of the total weight of the two. The tire according to (14) or (15) above.
(19) The content of the N, N′-diphenylmethane bismaleimide is 0.1 to 4 parts by mass with respect to 100 parts by mass of the rubber component, as described in any one of (14) to (18) above Tires.
(20) The tire according to any one of (14) to (19), wherein the tire is a tire for a large vehicle.
(21) After the vulcanization, the coating rubber has a tensile stress at 100% elongation of 3.5 MPa or more and a tan δ of 0.200 or less when immediately applied under the condition of 2% strain at 25 ° C. The tire according to any one of the above (14) to (19).
(22) The tire according to any one of (14) to (21), wherein the trans polybutadiene has a trans bond content of 82 to 98 mol% and a weight average molecular weight of 30,000 to 200,000. .
 本発明によれば、より重荷重、高速度化、高ライフの高度の要求に対しても満足のいくものとなり、過酷な条件下でもベルト層におけるスチールコードとコーティングゴムとの耐熱接着性及び耐亀裂性に優れることとなり、耐久性に優れたタイヤが提供される。 According to the present invention, it becomes satisfactory even for the demands of higher loads such as higher load, higher speed, and higher life, and even under harsh conditions, the heat resistance adhesion and resistance between the steel cord and the coating rubber in the belt layer. The tire is excellent in cracking property, and a tire excellent in durability is provided.
本発明のタイヤの実施形態の一例を示す横断面図である。It is a transverse cross section showing an example of an embodiment of a tire of the present invention.
 以下に、本発明の実施形態を図面を参照しながら、詳しく説明する。
 図1は、本発明のタイヤの実施形態の一例を示す横断面図である。
 本実施形態のタイヤAは、図1に示すように、トレッド部1を備え、該トレッド部1の側部から半径方向内方へ延びる一対のサイドウォール部2と、該サイドウォール部2の半径方向内端に連なるビード部3と、それぞれのビード部3に配設したそれぞれのビードコア5間にトロイダルに延びる本体部と、カーカス4のクラウン部のタイヤ半径方向外側に配設した一枚以上のスチールコードを有するベルト層6、本実施形態では、二枚のベルト層6,6よりなるが、本発明のタイヤにおいては、ベルト層の枚数はこれに限られるものではない。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a cross-sectional view showing an example of an embodiment of a tire of the present invention.
As shown in FIG. 1, the tire A of the present embodiment includes a tread portion 1, a pair of sidewall portions 2 extending radially inward from the side portions of the tread portion 1, and a radius of the sidewall portion 2. One or more sheets disposed on the outer side in the tire radial direction of the crown part of the carcass 4, a bead part 3 connected to the inner end in the direction, a body part extending in a toroidal manner between the respective bead cores 5 disposed in each bead part 3 The belt layer 6 having a steel cord, which is composed of two belt layers 6 and 6 in this embodiment, is not limited to the number of belt layers in the tire of the present invention.
 本実施形態のタイヤAは、タイヤの骨格構造をなし、タイヤの上記トレッド部1、サイドウォール部2及びビード部3を補強するカーカス4を、一枚以上のカーカスプライにて構成している。なお、図1中のカーカス4は、一枚のカーカスプライよりなるが、本発明のタイヤにおいては、カーカスプライの枚数は複数であってもよく、また、その構造は特に限定されるものではない。 The tire A of the present embodiment has a tire skeleton structure, and the carcass 4 that reinforces the tread portion 1, the sidewall portion 2, and the bead portion 3 of the tire is configured by one or more carcass plies. The carcass 4 in FIG. 1 is composed of one carcass ply. However, in the tire of the present invention, the number of carcass plies may be plural, and the structure is not particularly limited. .
 本実施形態のタイヤAは、ベルト層6がコーティングゴムで被覆したスチールコードの層を含むものである。すなわち、ベルト層6の少なくとも一枚が、スチールコードの層であればよく、一枚以上のベルト層がスチールコードの層であってもよい。 The tire A of the present embodiment includes a steel cord layer in which the belt layer 6 is coated with a coating rubber. That is, at least one belt layer 6 may be a steel cord layer, and one or more belt layers may be a steel cord layer.
 ベルト層6に用いるスチールコードは、その材質、本数、撚り構造などは特に限定されず、乗用車用から大型〔トラック・バス(TB)用、建設車両(OR用)〕のタイヤのベルト層に用いられる各種スチールコードを用いることができる。また、ベルト層6の構成も特に限定されるものではなく、乗用車用から大型〔トラック・バス(TB)用、建設車両(OR用)〕のタイヤの各構成となるベルト層を採用することができる。 The steel cord used for the belt layer 6 is not particularly limited in material, number, twisted structure, etc., and is used for a tire belt layer for passenger cars to large-sized [trucks / buses (TB), construction vehicles (OR)]. Various steel cords can be used. Also, the configuration of the belt layer 6 is not particularly limited, and it is possible to employ a belt layer that has each configuration of tires for passenger cars to large-sized [trucks / buses (TB), construction vehicles (OR)]. it can.
 本発明では、上記タイヤAのベルト層6のスチールコードを被覆するコーティングゴムに、ゴム成分と、硫黄と、下記一般式(I)で表されるスルフェンアミド系加硫促進剤とを含有してなるゴム組成物を用いたことを特徴とするものである。
Figure JPOXMLDOC01-appb-C000003
In the present invention, the coating rubber that covers the steel cord of the belt layer 6 of the tire A contains a rubber component, sulfur, and a sulfenamide-based vulcanization accelerator represented by the following general formula (I). The rubber composition is used.
Figure JPOXMLDOC01-appb-C000003
 上記ベルト層6のスチールコードを被覆するコーティングゴムに用いるゴム組成物におけるゴム成分としては、ゴム弾性を示すものであれば特に制限はないが、天然ゴムの他、ビニル芳香族炭化水素/共役ジエン共重合体、ポリイソプレンゴム、ブタジエンゴム、ブチルゴム、ハロゲン化ブチルゴム、エチレン-プロピレンゴム等の合成ゴム等の公知のゴムの総てを用いることができる。該ゴム成分は1種単独で用いても、2種以上を混合して用いてもよい。スチールコードとの接着特性及びゴム組成物の破壊特性の観点から、該ゴム成分は、天然ゴム及びポリイソプレンゴムの少なくとも一方よりなるか、50質量%以上の天然ゴムを含み残部が合成ゴムであることが好ましい。 The rubber component in the rubber composition used for the coating rubber for coating the steel cord of the belt layer 6 is not particularly limited as long as it exhibits rubber elasticity, but in addition to natural rubber, vinyl aromatic hydrocarbon / conjugated diene. All known rubbers such as copolymers, polyisoprene rubber, butadiene rubber, butyl rubber, halogenated butyl rubber, and synthetic rubber such as ethylene-propylene rubber can be used. The rubber component may be used alone or in combination of two or more. From the viewpoint of adhesion characteristics with steel cords and fracture characteristics of the rubber composition, the rubber component is composed of at least one of natural rubber and polyisoprene rubber, or contains 50% by mass or more of natural rubber, with the balance being synthetic rubber. It is preferable.
 上記ベルト層に用いるゴム組成物に含有される硫黄としては、特に制限はないが、通常粉体を用いる。上記コーティングゴム用ゴム組成物に含有される硫黄の含有量は、ゴム成分100質量部に対して、0.3~10質量部の範囲であり、3~8質量部の範囲が好ましい。
 この硫黄の含有量がゴム成分100質量部に対して0.3質量部以上であると、スチールコードとの接着性の点で好ましく、10質量部以下であると、過剰な接着層の生成が抑制されるため、接着性が低下しないので好ましい。
Although there is no restriction | limiting in particular as sulfur contained in the rubber composition used for the said belt layer, Usually powder is used. The content of sulfur contained in the rubber composition for coating rubber is in the range of 0.3 to 10 parts by mass, preferably in the range of 3 to 8 parts by mass with respect to 100 parts by mass of the rubber component.
When the sulfur content is 0.3 parts by mass or more with respect to 100 parts by mass of the rubber component, it is preferable in terms of adhesiveness to the steel cord, and when it is 10 parts by mass or less, an excessive adhesive layer is generated. Since it is suppressed, adhesiveness is not lowered, which is preferable.
 上記ベルト層に用いるゴム組成物に含有される上記一般式(I)で表される化合物は、N,N-ジシクロヘキシル-2-ベンゾチアゾリルスルフェンアミド同等の加硫遅延効果を有し、かつ、スチールコード等の金属補強材との直接加硫接着における接着耐久性に優れており、スチールコードを有するベルト層のコーティング用ゴム組成物に好適に使用するものである。
 更に、上記一般式(I)で表されるスルフェンアミド系加硫促進剤の中で、特に、Rが、tert-ブチル基であり、x=1又は2、n=0であり、Rは直鎖がより好ましいが、直鎖の中でもメチル基、エチル基、n-プロピル基、n-ブチル基であり、最も好ましいのはメチル基、エチル基であり、R~Rが好ましくは水素原子であるスルフェンアミド化合物を加硫促進剤として用いることが接着性と加硫遅延効果の点で最も好ましい。これらのスルフェンアミド系加硫促進剤は、本発明で初めて加硫促進剤として用いられるものであり、かつ、従来のスルフェンアミド系加硫促進剤の中で、最も加硫反応に遅効性を与える加硫促進剤として知られるN,N-ジシクロヘキシル-2-ベンゾチアゾリルスルフェンアミド以上の加硫遅延効果を有しながら十分な加硫促進能力を両立するものであり、しかも、スチールコード等の金属補強材との直接加硫接着における接着耐久性に優れている。そのため、本発明のタイヤのベルト層のスチールコードとの直接加硫接着における接着耐久性に優れたコーティング用等のゴム組成物に好適に使用するものである。
The compound represented by the general formula (I) contained in the rubber composition used for the belt layer has a vulcanization retarding effect equivalent to that of N, N-dicyclohexyl-2-benzothiazolylsulfenamide, and It is excellent in adhesion durability in direct vulcanization adhesion to a metal reinforcing material such as a steel cord, and is suitably used for a rubber composition for coating a belt layer having a steel cord.
Further, among the sulfenamide vulcanization accelerators represented by the above general formula (I), in particular, R 1 is a tert-butyl group, x = 1 or 2, n = 0, 2 is more preferably a straight chain, but among the straight chains, a methyl group, an ethyl group, an n-propyl group, and an n-butyl group are preferable, and a methyl group and an ethyl group are most preferable, and R 3 to R 6 are preferable. It is most preferable to use a sulfenamide compound, which is a hydrogen atom, as a vulcanization accelerator in terms of adhesion and vulcanization delay effect. These sulfenamide vulcanization accelerators are used as vulcanization accelerators for the first time in the present invention, and are the slowest in the vulcanization reaction among the conventional sulfenamide vulcanization accelerators. N, N-dicyclohexyl-2-benzothiazolylsulfenamide, which is known as a vulcanization accelerator that gives a sufficient vulcanization retarding effect, and has both sufficient vulcanization promoting ability and steel cord Excellent adhesion durability in direct vulcanization bonding with metal reinforcing materials such as Therefore, it is suitably used for a rubber composition for coating or the like having excellent adhesion durability in direct vulcanization adhesion with the steel cord of the belt layer of the tire of the present invention.
 本発明において、上記一般式(I)で表されるスルフェンアミド化合物中のRは、炭素数3~12の分岐アルキル基を表す。このRが炭素数3~12の分岐アルキル基であれば、一般式(I)で表される化合物の加硫促進性能が良好であると共に、接着性能を高めることができる。
 上記一般式(I)で表される化合物のRの具体例としては、イソプロピル基、イソブチル基、トリイソブチル基、sec-ブチル基,tert-ブチル基、イソアミル基(イソペンチル基)、ネオペンチル基、tert-アミル基(tert-ペンチル基)、イソヘキシル基、tert-ヘキシル基、イソヘプチル基、tert-ヘプチル基、イソオクチル基、tert-オクチル基、イソノニル基、tert-ノニル基、イソデシル基、tert-デシル基、イソウンデシル基、tert-ウンデシル基、イソドデシル基、tert-ドデシル基などが挙げられる。
 これらの中でも、加硫速度、接着性、人体蓄積性等の点から、Rはα位に分岐を有することが好ましく、更に好ましくは、好適なスコーチタイムが得られるなどの効果の点から、炭素数3~12のtert-アルキル基が好ましく、特に、tert-ブチル基、tert-アミル基(tert-ペンチル基)、tert-ドデシル基、中でもtert-ブチル基が合成面、原料入手の観点から経済的に優れており、しかも、DCBS(DZ)と同等の加硫速度が得られ、かつ、更なる接着性の点から特に望ましい。
In the present invention, R 1 in the sulfenamide compound represented by the general formula (I) represents a branched alkyl group having 3 to 12 carbon atoms. If R 1 is a branched alkyl group having 3 to 12 carbon atoms, the vulcanization acceleration performance of the compound represented by the general formula (I) is good and the adhesion performance can be enhanced.
Specific examples of R 1 of the compound represented by the general formula (I) include isopropyl group, isobutyl group, triisobutyl group, sec-butyl group, tert-butyl group, isoamyl group (isopentyl group), neopentyl group, tert-amyl group (tert-pentyl group), isohexyl group, tert-hexyl group, isoheptyl group, tert-heptyl group, isooctyl group, tert-octyl group, isononyl group, tert-nonyl group, isodecyl group, tert-decyl group , Isoundecyl group, tert-undecyl group, isododecyl group, tert-dodecyl group and the like.
Among these, from the viewpoint of vulcanization speed, adhesiveness, human body accumulation property, etc., R 1 preferably has a branch at the α-position, and more preferably, from the viewpoint of effects such as obtaining a suitable scorch time. A tert-alkyl group having 3 to 12 carbon atoms is preferred, and in particular, tert-butyl group, tert-amyl group (tert-pentyl group), tert-dodecyl group, among which tert-butyl group is preferred from the viewpoint of synthesis and raw material acquisition It is economically excellent, and also provides a vulcanization rate equivalent to that of DCBS (DZ) and is particularly desirable from the viewpoint of further adhesion.
 また、上記一般式(I)で表されるスルフェンアミド化合物中のRは、炭素数1~10の直鎖アルキル基を表す。このRが炭素数1~10の直鎖アルキル基であれば、一般式(I)で表される化合物の加硫促進性能が良好であると共に、接着性能を高めることができる。
 上記一般式(I)で表される化合物のRの具体例としては、メチル基、エチル基、n-プロピル基、n-ブチル基、n-アミル基(n-ペンチル基)、n-ヘキシル基、n-ヘプチル基、n-オクチル基、ノニル基、デシル基などが挙げられる。これらの中でも、合成のし易さや原材料コストなどの効果の点から、炭素数1~8の直鎖アルキル基、更に炭素数1~6の直鎖アルキル基であることが好ましく、メチル基、エチル基、n-プロピル基、n-ブチル基が好ましい。
 特に好ましくは、好適なムーニースコーチタイムが得られかつ高いスチールコード接着が得られる点で、炭素数1~6の直鎖アルキル基が望ましい。これは炭素数が増えると加硫が更に遅れるため生産性が低下したり、接着性が低下するためである。これらの中でも、炭素数4以下の直鎖アルキル基であるメチル基、エチル基、n-プロピル基、n-ブチル基が最も望ましい。
 また、上記一般式(I)で表されるスルフェンアミド化合物中のR~Rは、水素原子、炭素数1~4の直鎖アルキル基又はアルコキシ基、炭素数3~4の分岐のアルキル基又はアルコキシ基であり、これらは同一であっても異なっていてもよく、なかでも、RとRが、炭素数1~4の直鎖アルキル基又はアルコキシ基、炭素数3~4の分岐のアルキル基又はアルコキシ基であることが好ましい。また、R~Rが、炭素数1~4のアルキル基又はアルコキシ基の場合、炭素数1であることが好ましく、水素原子であることが特に好ましい。好ましいいずれの場合も、化合物の合成のし易さ及び加硫速度が遅くならないためである。
 上記一般式(I)で表されるスルフェンアミド化合物のR~Rの具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基,tert-ブトキシ基が挙げられる。
R 2 in the sulfenamide compound represented by the general formula (I) represents a linear alkyl group having 1 to 10 carbon atoms. When R 2 is a linear alkyl group having 1 to 10 carbon atoms, the vulcanization acceleration performance of the compound represented by the general formula (I) is good and the adhesion performance can be enhanced.
Specific examples of R 2 of the compound represented by the general formula (I) include methyl group, ethyl group, n-propyl group, n-butyl group, n-amyl group (n-pentyl group), n-hexyl. Group, n-heptyl group, n-octyl group, nonyl group, decyl group and the like. Among these, from the viewpoint of effects such as ease of synthesis and raw material costs, a straight-chain alkyl group having 1 to 8 carbon atoms, and further a straight-chain alkyl group having 1 to 6 carbon atoms is preferable. Group, n-propyl group and n-butyl group are preferred.
Particularly preferably, a straight-chain alkyl group having 1 to 6 carbon atoms is desirable in that a suitable Mooney scorch time can be obtained and high steel cord adhesion can be obtained. This is because when the number of carbons increases, the vulcanization is further delayed, so that productivity is lowered and adhesiveness is lowered. Among these, a methyl group, an ethyl group, an n-propyl group, and an n-butyl group, which are linear alkyl groups having 4 or less carbon atoms, are most desirable.
In addition, R 3 to R 6 in the sulfenamide compound represented by the general formula (I) are a hydrogen atom, a linear alkyl group having 1 to 4 carbon atoms or an alkoxy group, and a branched one having 3 to 4 carbon atoms. An alkyl group or an alkoxy group, which may be the same or different. Among them, R 3 and R 5 are each a linear alkyl group or alkoxy group having 1 to 4 carbon atoms, or a group having 3 to 4 carbon atoms. It is preferably a branched alkyl group or alkoxy group. In addition, when R 3 to R 6 are an alkyl group or alkoxy group having 1 to 4 carbon atoms, it is preferably 1 carbon atom, and particularly preferably a hydrogen atom. This is because in any case, the ease of synthesis of the compound and the vulcanization rate do not slow down.
Specific examples of R 3 to R 6 of the sulfenamide compound represented by the general formula (I) include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec- Examples thereof include a butyl group, a tert-butyl group, a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, an isobutoxy group, a sec-butoxy group, and a tert-butoxy group.
 上記一般式(I)で表されるスルフェンアミド化合物中のR、Rがどちらも分岐アルキル基の場合は、合成の困難性が増すこととなり、しかも、安定したものが合成できにくいものとなる、特に、R、Rが共にtert-ブチル基の場合は合成がうまくできない。また、R、Rがどちらも分岐アルキル基の場合は、耐熱接着性が悪くなり、好ましくないものとなる。本発明では、上記一般式(I)で表されるスルフェンアミド化合物中のRは、炭素数3~12の分岐アルキル基であり、Rは、炭素数1~10の直鎖アルキル基であり、この組み合わせにおいて、従来にない本発明の特有の効果を発揮するものとなる。
 上記一般式(I)で表されるスルフェンアミド化合物中のR、Rの特に好ましい組み合わせとしては、Rがtert-ブチル基であり、Rが炭素数1~10の直鎖アルキル基、R~Rは、水素原子の組み合わせである。この組み合わせの中でも、ベストモードとなる組み合わせとしては、Rがtert-ブチル基であり、Rが炭素数4以下となるメチル基、エチル基、n-プロピル基、n-ブチル基となる場合であり、更に好ましくは、Rが炭素数3以下、特に好ましくは炭素数2以下であるこの組み合わせの場合に、加硫速度がDCBS(DZ)と同等、更なる接着性能確保、人体蓄積性の見地から最も性能バランスが良いものとなる。
 上記ベストモードとなる組み合わせは、薬品の凝縮性を評価する簡易メジャーの一つであるオクタノール/水分配係数(logPOW)の数値から確認することができる。本発明では、このlogPの値は小さいほど、上記加硫速度、接着性能確保、人体蓄積性のバランスがより良好となる。
 本発明(後述する実施例等を含む)において、上記オクタノール/水分配係数(logP)の測定は、JIS Z 7260-117(2006)に準拠して、高速液体クロマトグラフィー法により実施することができ、下記式により定義される。
  logP=log(「Co」/「Cw」)
   Co:1-オクタノール層中の被験物質濃度
   Cw:水層中の被験物質濃度
When R 1 and R 2 in the sulfenamide compound represented by the general formula (I) are both branched alkyl groups, the difficulty of synthesis increases, and a stable compound is difficult to synthesize. In particular, when R 1 and R 2 are both tert-butyl groups, the synthesis is not successful. Moreover, when both R 1 and R 2 are branched alkyl groups, the heat resistant adhesiveness is deteriorated, which is not preferable. In the present invention, R 1 in the sulfenamide compound represented by the general formula (I) is a branched alkyl group having 3 to 12 carbon atoms, and R 2 is a linear alkyl group having 1 to 10 carbon atoms. In this combination, a unique effect of the present invention which has not been obtained so far is exhibited.
As a particularly preferred combination of R 1 and R 2 in the sulfenamide compound represented by the above general formula (I), R 1 is a tert-butyl group, and R 2 is a linear alkyl having 1 to 10 carbon atoms. The groups R 3 to R 6 are a combination of hydrogen atoms. Among these combinations, the best mode combination is when R 1 is a tert-butyl group and R 2 is a methyl group, ethyl group, n-propyl group, or n-butyl group having 4 or less carbon atoms. More preferably, in the case of this combination in which R 2 has 3 or less carbon atoms, particularly preferably 2 or less carbon atoms, the vulcanization speed is equivalent to that of DCBS (DZ), further ensuring adhesion performance, and human body accumulation The best balance of performance from the viewpoint of.
The combination which becomes the best mode can be confirmed from the numerical value of the octanol / water partition coefficient (log POW) which is one of simple measures for evaluating the condensability of chemicals. In the present invention, the smaller the value of logP, the better the balance between the vulcanization speed, adhesion performance securing, and human body accumulation.
In the present invention (including the examples described later), the octanol / water partition coefficient (log P) can be measured by a high performance liquid chromatography method in accordance with JIS Z 7260-117 (2006). Is defined by the following equation.
logP = log ("Co" / "Cw")
Co: Test substance concentration in 1-octanol layer Cw: Test substance concentration in water layer
 上記一般式(I)で表されるスルフェンアミド化合物中のxは1又は2の整数を表し、また、nは、0又は1の整数を表し、合成のし易さや原材料コストなどの効果の点から、nは、0であるものが望ましい。
 以上のように、本発明に用いる上記一般式(I)で表されるスルフェンアミド化合物の中で好ましい化合物から更に好ましい化合物を順番にまとめてみると、具体的には、ムーニースコーチタイムが早くなりすぎず加工時にゴム焦げを起こさず、作業性の低下、かつ接着性の低下を回避する点等から、1)上記一般式(I)のRは、tert-ブチル基であり、n=0、Rは、炭素数1~10の直鎖アルキル基であり、R~Rは、水素原子であるもの、2)上記一般式(I)中のRは、tert-ブチル基であり、nは0又は1の整数、Rは、炭素数1~6の直鎖アルキル基であり、R~Rは、水素原子であるもの、3)上記一般式(I)中のRは、tert-ブチル基であり、n=0であり、Rは、炭素数1~6の直鎖アルキル基であり、R~Rは、水素原子であるもの、4)上記一般式(I)中のRは、tert-ブチル基であり、n=0であり、Rは炭素数4以下の直鎖アルキル基(好ましくは炭素数3以下の直鎖アルキル基)であり、R~Rは、水素原子であるもの、5)上記一般式(I)中のRは、tert-ブチル基であり、n=0であり、Rは炭素数2以下の直鎖アルキル基(メチル基、エチル基)であり、R~Rは、水素原子であるものが好ましいものとなる(降順する程、好適なスルフェンアミド化合物となる)。
 なお、上記一般式(I)で表されるスルフェンアミド化合物中のRが炭素数3~12の分岐アルキル基以外の各官能基(例えば、n-オクタデシル基等)や炭素数が12を超える分岐アルキル基である場合、また、Rが炭素数1~10の直鎖アルキル基以外の各官能基(例えば、n-オクタデシル基等)や炭素数10を超える直鎖アルキル基である場合、更にR~Rが上記範囲外の各官能基、各炭素数の範囲外である場合、更にまた、nが2以上の場合には、本発明の目的の効果を発揮することが少なく、好適なムーニースコーチタイムが遅くなり加硫時間が長くなることによる生産性低下、若しくは、接着性が低下したり、または、促進剤としての加硫性能やゴム性能が低下したりすることがある。更に、xが3以上では、安定性の点で好ましくない。また、上記一般式(I)で表されるスルフェンアミド化合物中のRが分岐アルキル基である場合に、α位以外に分岐を有するもの、例えば、2-エチルヘキシル、2-エチルブチルなどの場合には、加硫速度、接着性能確保、人体蓄積性のバランスが悪化する傾向となるので、α位に分岐があることが望ましい。
In the sulfenamide compound represented by the above general formula (I), x represents an integer of 1 or 2, and n represents an integer of 0 or 1, which is advantageous in terms of effects such as ease of synthesis and raw material costs. In view of this, n is preferably 0.
As described above, when the more preferable compounds among the sulfenamide compounds represented by the general formula (I) used in the present invention are further summarized in order, specifically, the Mooney scorch time is faster. 1) R 1 of the above general formula (I) is a tert-butyl group, and n = 0, R 2 is a linear alkyl group having 1 to 10 carbon atoms, R 3 to R 6 are hydrogen atoms, 2) R 1 in the above general formula (I) is a tert-butyl group N is an integer of 0 or 1, R 2 is a linear alkyl group having 1 to 6 carbon atoms, and R 3 to R 6 are hydrogen atoms, 3) In the above general formula (I) of R 1 is tert- butyl group, a n = 0, R 2 is C 1 -C 6 is a straight-chain alkyl group, R 3 ~ R 6 are are hydrogen atoms, 4) R 1 in the general formula (I) is a tert- butyl group, a n = 0, R 2 is a straight-chain alkyl group having 4 or less carbon atoms (preferably a straight-chain alkyl group having 3 or less carbon atoms), and R 3 to R 6 are hydrogen atoms, 5) in the above general formula (I) R 1 is a tert-butyl group, n = 0, R 2 is a linear alkyl group having 2 or less carbon atoms (methyl group, ethyl group), and R 3 to R 6 are hydrogen atoms (The more descending, the more suitable the sulfenamide compound).
In the sulfenamide compound represented by the general formula (I), R 1 is a functional group other than a branched alkyl group having 3 to 12 carbon atoms (for example, an n-octadecyl group) or 12 carbon atoms. When it is a branched alkyl group exceeding 1, or when R 2 is a functional group other than a linear alkyl group having 1 to 10 carbon atoms (eg, n-octadecyl group) or a linear alkyl group exceeding 10 carbon atoms Further, when R 3 to R 6 are outside the range of each functional group and carbon number outside the above range, and when n is 2 or more, the effects of the object of the present invention are rarely exhibited. , The preferable Mooney scorch time becomes slow and the vulcanization time becomes long, resulting in a decrease in productivity, adhesion, or vulcanization performance and rubber performance as an accelerator. . Further, when x is 3 or more, it is not preferable in terms of stability. Further, when R 1 in the sulfenamide compound represented by the above general formula (I) is a branched alkyl group, it has a branch other than the α-position, for example, 2-ethylhexyl, 2-ethylbutyl, etc. Therefore, it is desirable that there is a branch at the α position because the balance between vulcanization speed, adhesion performance securing, and human body accumulation tends to deteriorate.
 本発明において、上記一般式(I)で表される化合物の代表例としては、N-メチル-N-t-ブチルベンゾチアゾ-ル-2-スルフェンアミド、N-エチル-N-t-ブチルベンゾチアゾ-ル-2-スルフェンアミド、N-n-プロピル-N-t-ブチルベンゾチアゾ-ル-2-スルフェンアミド、N-n-ブチル-N-t-ブチルベンゾチアゾ-ル-2-スルフェンアミド、N-メチル-N-イソアミルベンゾチアゾ-ル-2-スルフェンアミド、N-エチル-N-イソアミルベンゾチアゾ-ル-2-スルフェンアミド、N-n-プロピル-N-イソアミルベンゾチアゾ-ル-2-スルフェンアミド、N-n-ブチル-N-イソアミルベンゾチアゾ-ル-2-スルフェンアミド、N-メチル-N-tert-アミルベンゾチアゾ-ル-2-スルフェンアミド、N-エチル-N-tert-アミルベンゾチアゾ-ル-2-スルフェンアミド、N-n-プロピル-N-tert-アミルベンゾチアゾ-ル-2-スルフェンアミド、N-n-ブチル-N-tert-アミルベンゾチアゾ-ル-2-スルフェンアミド、N-メチル-N-tert-ヘプチルベンゾチアゾ-ル-2-スルフェンアミド、N-エチル-N-tert-ヘプチルベンゾチアゾ-ル-2-スルフェンアミド、N-n-プロピル-N-tert-ヘプチルベンゾチアゾ-ル-2-スルフェンアミド、N-n-ブチル-N-tert-ヘプチルベンゾチアゾ-ル-2-スルフェンアミド等が挙げられる。これらの化合物は、単独で又は2種以上を混合して(本明細書では、単に「少なくとも1種」という)用いることができる。
 好ましくは、更なる接着性能の点から、N-メチル-N-t-ブチルベンゾチアゾ-ル-2-スルフェンアミド、N-エチル-N-t-ブチルベンゾチアゾ-ル-2-スルフェンアミド、N-n-プロピル-N-t-ブチルベンゾチアゾ-ル-2-スルフェンアミドが好ましい。
 これらの中でも、特に、最も長いスコーチタイムと優れた接着性能を有する点で、N-メチル-N-t-ブチルベンゾチアゾ-ル-2-スルフェンアミド、N-エチル-N-t-ブチルベンゾチアゾ-ル-2-スルフェンアミド、N-n-プロピル-N-t-ブチルベンゾチアゾ-ル-2-スルフェンアミドを用いることが望ましい。
 これらの化合物は、1種でも組み合わせて使用してもよい。また、N-tert-ブチル-2-ベンゾチアゾ-ルスルフェンアミド(TBBS)、N-シクロヘキシル-2-ベンゾチアゾ-ルスルフェンアミド(CBS)、ジベンゾチアゾリルジスルフィド(MBTS)などの汎用の加硫促進剤と組み合わせて使用することも可能である。
In the present invention, representative examples of the compound represented by the general formula (I) include N-methyl-Nt-butylbenzothiazol-2-sulfenamide, N-ethyl-Nt- Butylbenzothiazol-2-sulfenamide, Nn-propyl-Nt-butylbenzothiazol-2-sulfenamide, Nn-butyl-Nt-butylbenzothiazo -L-2-sulfenamide, N-methyl-N-isoamylbenzothiazol-2-sulfenamide, N-ethyl-N-isoamylbenzothiazol-2-sulfenamide, Nn -Propyl-N-isoamylbenzothiazol-2-sulfenamide, Nn-butyl-N-isoamylbenzothiazol-2-sulfenamide, N-methyl-N-tert-amylbenzothia Sol-2 Sulfenamide, N-ethyl-N-tert-amylbenzothiazol-2-sulfenamide, Nn-propyl-N-tert-amylbenzothiazol-2-sulfenamide, N- n-butyl-N-tert-amylbenzothiazol-2-sulfenamide, N-methyl-N-tert-heptylbenzothiazol-2-sulfenamide, N-ethyl-N-tert- Heptylbenzothiazol-2-sulfenamide, Nn-propyl-N-tert-heptylbenzothiazol-2-sulfenamide, Nn-butyl-N-tert-heptylbenzothiazo -L-2-sulfenamide and the like. These compounds can be used alone or in admixture of two or more (referred to herein simply as “at least one”).
Preferably, from the viewpoint of further adhesion performance, N-methyl-Nt-butylbenzothiazol-2-sulfenamide, N-ethyl-Nt-butylbenzothiazol-2-sulfenamide Phenamide and Nn-propyl-Nt-butylbenzothiazol-2-sulfenamide are preferred.
Among these, N-methyl-Nt-butylbenzothiazol-2-sulfenamide, N-ethyl-Nt-butyl are particularly preferred in that they have the longest scorch time and excellent adhesion performance. It is desirable to use benzothiazol-2-sulfenamide or Nn-propyl-Nt-butylbenzothiazol-2-sulfenamide.
These compounds may be used alone or in combination. Also, general-purpose vulcanization accelerators such as N-tert-butyl-2-benzothiazol sulfenamide (TBBS), N-cyclohexyl-2-benzothiazol sulfenamide (CBS), dibenzothiazolyl disulfide (MBTS), etc. It is also possible to use in combination.
 本発明の上記一般式(I)で表されるスルフェンアミド化合物の好ましい製造方法としては、下記方法を挙げることができる。
 すなわち、対応するアミンと次亜塩素酸ソーダの反応によりあらかじめ調製したN-クロロアミンとビス(ベンゾチアゾ-ル-2-イル)ジスルフィドを、アミンおよび塩基存在下、適切な溶媒中で反応させる。塩基としてアミンを用いた場合は、中和を行い、遊離のアミンに戻した後、得られた反応混合物の性状に従って、ろ過、水洗、濃縮、再結晶など適切な後処理をおこなうと、目的とするスルフェンアミドが得られる。
 本製造方法に用いる塩基としては、過剰量用いた原料アミン、トリエチルアミンなどの3級アミン、水酸化アルカリ、炭酸アルカリ、重炭酸アルカリ、ナトリウムアルコキシドなどが挙げられる。特に、過剰の原料アミンを塩基として用いたり、3級アミンであるトリエチルアミンを用いて反応を行い、水酸化ナトリウムで生成した塩酸塩を中和し、目的物を取り出した後、ろ液からアミンを再利用する方法が望ましい。
 本製造方法に用いる溶媒としては、アルコールが望ましく、特にメタノールが望ましい。
 例えば、N-エチル-N-t-ブチルベンゾチアゾ-ル-2-スルフェンアミドでは、N-t-ブチルエチルアミンに次亜塩素酸ナトリウム水溶液を0℃以下で滴下し、2時間攪拌後油層を分取した。ビス(ベンゾチアゾ-ル-2-イル)ジスルフィド、N-t-ブチルエチルアミンおよび前述の油層を、メタノ-ルに懸濁させ、還流下2時間攪拌した。冷却後、水酸化ナトリウムで中和し、ろ過、水洗、減圧濃縮した後、再結晶することで目的とするN-エチル-N-t-ブチルベンゾチアゾ-ル-2-スルフェンアミド(白色固体)を得ることができる。
The following method can be mentioned as a preferable manufacturing method of the sulfenamide compound represented by the general formula (I) of the present invention.
That is, N-chloroamine and bis (benzothiazol-2-yl) disulfide prepared in advance by the reaction of the corresponding amine and sodium hypochlorite are reacted in an appropriate solvent in the presence of an amine and a base. If an amine is used as the base, neutralize and return to the free amine, then subject to appropriate post-treatment such as filtration, washing with water, concentration and recrystallization according to the properties of the resulting reaction mixture. Sulfenamide is obtained.
Examples of the base used in this production method include raw material amine used in excess, tertiary amine such as triethylamine, alkali hydroxide, alkali carbonate, alkali bicarbonate, sodium alkoxide and the like. In particular, the reaction is carried out using excess raw material amine as a base or tertiary amine triethylamine, neutralizing the hydrochloride formed with sodium hydroxide, taking out the target product, and then removing the amine from the filtrate. A method of reuse is desirable.
As the solvent used in this production method, alcohol is desirable, and methanol is particularly desirable.
For example, in the case of N-ethyl-Nt-butylbenzothiazol-2-sulfenamide, an aqueous sodium hypochlorite solution was added dropwise to Nt-butylethylamine at 0 ° C. or lower and the oil layer was stirred for 2 hours. Was sorted. Bis (benzothiazol-2-yl) disulfide, Nt-butylethylamine and the oil layer described above were suspended in methanol and stirred under reflux for 2 hours. After cooling, neutralize with sodium hydroxide, filter, wash with water, concentrate under reduced pressure, and recrystallize to give the desired N-ethyl-Nt-butylbenzothiazol-2-sulfenamide (white Solid) can be obtained.
 これらのスルフェンアミド系加硫促進剤の含有量は、ゴム成分100質量部に対し、0.1~10質量部、好ましくは、0.5~5.0質量部、更に好ましくは、0.8~2.5質量部とすることが望ましい。
 この加硫促進剤の含有量が0.1質量部未満であると、十分に加硫しなくなり、一方、10質量部を越えると、ブルームが問題となり、好ましくない。
The content of these sulfenamide-based vulcanization accelerators is 0.1 to 10 parts by weight, preferably 0.5 to 5.0 parts by weight, and more preferably 0.8 parts per 100 parts by weight of the rubber component. The amount is desirably 8 to 2.5 parts by mass.
When the content of the vulcanization accelerator is less than 0.1 parts by mass, the vulcanization is not sufficiently performed. On the other hand, when the content exceeds 10 parts by mass, bloom is a problem, which is not preferable.
 本発明のベルト層に用いるゴム組成物には、上記ゴム成分、硫黄、加硫促進剤の他に、ベルト層に用いるゴム組成物で通常使用される充填剤を含有することができ、例えば、カーボンブラック等の無機充填剤を含有することができる。
 これらの無機充填剤の含有量は、ゴム成分100質量部に対して、30~150質量部含むことが好ましく、より好ましくは、40~100質量部、特に好ましくは、40~65質量部の範囲である。
In addition to the rubber component, sulfur and vulcanization accelerator, the rubber composition used for the belt layer of the present invention can contain a filler usually used in the rubber composition used for the belt layer. An inorganic filler such as carbon black can be contained.
The content of these inorganic fillers is preferably 30 to 150 parts by mass, more preferably 40 to 100 parts by mass, and particularly preferably 40 to 65 parts by mass with respect to 100 parts by mass of the rubber component. It is.
 用いるカーボンブラックとしては特に制限はなく、従来ベルト層のゴム補強用充填材として慣用されているものの中から任意のものを選択して用いることができる。カーボンブラックとしては、例えば、GPF,FEF,SRF,HAF,ISAF,SAF等が挙げられる。好ましくは、窒素吸着比表面積(N2SA)が30~150m2/g、かつジブチルフタレート(DBP)吸油量が70~140L/100gのカーボンブラックである。カーボンブラックを用いることにより、諸物性の改良効果は大きくなる。 There is no restriction | limiting in particular as carbon black to be used, It can select and use from what is conventionally used as a rubber reinforcement filler of a belt layer. Examples of carbon black include GPF, FEF, SRF, HAF, ISAF, and SAF. Carbon black having a nitrogen adsorption specific surface area (N 2 SA) of 30 to 150 m 2 / g and a dibutyl phthalate (DBP) oil absorption of 70 to 140 L / 100 g is preferable. By using carbon black, the effect of improving various physical properties is increased.
 更に、本発明のベルト層6のスチールコードを被覆するコーティングゴムに用いるゴム組成物には、初期接着性能の向上の点から、コバルト(単体)及び/又はコバルトを含有する化合物を含有せしめることが好ましい。
 用いることができるコバルトを含有する化合物としては、有機酸のコバルト塩、無機酸のコバルト塩である塩化コバルト、硫酸コバルト、硝酸コバルト、リン酸コバルト、クロム酸コバルトの少なくとも1種が挙げられる。
 好ましくは、更なる初期接着性能の向上の点から、有機酸のコバルト塩の使用が望ましい。
 用いることができる有機酸のコバルト塩としては、例えば、ナフテン酸コバルト、ステアリン酸コバルト、ネオデカン酸コバルト、ロジン酸コバルト、バーサチック酸コバルト、トール油酸コバルト等の少なくとも1種を挙げることができ、また、有機酸コバルトは有機酸の一部をホウ酸で置き換えた複合塩でもよく、具体的には、市販のOMG社製の商品名「マノボンド」等も用いることができる。なお、スチール(金属材)・ゴム接着反応において、コバルトを含むものであれば、脂肪酸等のコバルト塩でなくとも、接着性能は向上するものとなる。
 これらのコバルト及び/又はコバルトを含有する化合物の(合計)含有量は、コバルト量として、ゴム成分100質量部に対し、0.03~3質量部、好ましくは、0.03~1質量部、更に好ましくは、0.05~0.7質量部とすることが望ましい。
 これらのコバルト量の含有量が0.03質量部未満では、更なる接着性を発揮することができず、一方、3質量部を越えると、老化物性が大きく低下し、好ましくない。
Furthermore, the rubber composition used for the coating rubber covering the steel cord of the belt layer 6 of the present invention may contain cobalt (single) and / or a compound containing cobalt from the viewpoint of improving the initial adhesion performance. preferable.
Examples of the cobalt-containing compound that can be used include at least one of a cobalt salt of an organic acid and a cobalt salt of an inorganic acid, such as cobalt chloride, cobalt sulfate, cobalt nitrate, cobalt phosphate, and cobalt chromate.
Preferably, it is desirable to use a cobalt salt of an organic acid from the viewpoint of further improving the initial adhesion performance.
Examples of the organic acid cobalt salt that can be used include at least one of cobalt naphthenate, cobalt stearate, cobalt neodecanoate, cobalt rosinate, cobalt versatate, cobalt tall oil, and the like. The organic acid cobalt may be a complex salt in which a part of the organic acid is replaced with boric acid. Specifically, a commercial name “manobond” manufactured by OMG Co., Ltd. may be used. In addition, in the steel (metal material) / rubber adhesion reaction, if cobalt is contained, the adhesion performance is improved even if it is not a cobalt salt such as a fatty acid.
The (total) content of these cobalt and / or cobalt-containing compounds is 0.03 to 3 parts by weight, preferably 0.03 to 1 part by weight, based on 100 parts by weight of the rubber component, as the amount of cobalt. More preferably, the content is 0.05 to 0.7 parts by mass.
If the content of these cobalt amounts is less than 0.03 parts by mass, further adhesiveness cannot be exhibited. On the other hand, if it exceeds 3 parts by mass, the aging physical properties are greatly reduced, which is not preferable.
 本発明のベルト層6のスチールコードを被覆するコーティングゴムに用いるゴム組成物は、更なる本発明の効果を向上せしめる点から、ゴム成分が、イソプレンゴムとトランスポリブタジエンとからなり、かつ、N,N´-ジフェニルメタンビスマレイミドを含有することが望ましい。
 前記N,N´-ジフェニルメタンビスマレイミドの重量と前記トランスポリブタジエンの重量の総重量部数が10以下であると共に、トランスポリブタジエンの重量が二者の総重量の25%以上、95%以下であることが好ましく、更に好ましくは、前記N,N´-ジフェニルメタンビスマレイミドの重量と前記トランスポリブタジエンの重量の総重量部数が6以下であると共に、トランスポリブタジエンの重量が二者の総重量の25%以上、95%以下であること、特に好ましくは、前記N,N´-ジフェニルメタンビスマレイミドの重量と前記トランスポリブタジエンの重量の総重量部数が6以下であると共に、トランスポリブタジエンの重量が二者の総重量の25%以上、75%以下であることが特に望ましい。
 また、前記N,N´-ジフェニルメタンビスマレイミドの含有量は、前記イソプレンゴムとトランスポリブタジエンからなるゴム成分100質量部に対して、0.1~4質量部であることが望ましい。
 更に、前記コーティングゴムは、加硫後、100%伸張時の引張応力が3.5MPa以上であり、かつ25℃で歪2%の条件下で即敵したときのtanδが0.200以下であることが好ましい。
 また、前記トランスポリブタジエンは、そのトランス結合含有量が82~98モル%であり、かつ、重量平均分子量が30000~200000であるものが望ましい。
The rubber composition used for the coating rubber for coating the steel cord of the belt layer 6 of the present invention has a rubber component consisting of isoprene rubber and transpolybutadiene, and N, It is desirable to contain N′-diphenylmethane bismaleimide.
The total weight part of the weight of the N, N′-diphenylmethane bismaleimide and the weight of the trans polybutadiene is 10 or less, and the weight of the trans polybutadiene is 25% or more and 95% or less of the total weight of the two. More preferably, the total weight part of the weight of the N, N′-diphenylmethane bismaleimide and the weight of the trans polybutadiene is 6 or less, and the weight of the trans polybutadiene is 25% or more of the total weight of the two, 95 %, Particularly preferably, the total weight part of the weight of the N, N′-diphenylmethane bismaleimide and the weight of the transpolybutadiene is 6 or less, and the weight of the transpolybutadiene is 25% of the total weight of the two. % Or more and 75% or less is particularly desirable.
The content of N, N′-diphenylmethane bismaleimide is preferably 0.1 to 4 parts by mass with respect to 100 parts by mass of the rubber component made of isoprene rubber and transpolybutadiene.
Further, the coating rubber has a tensile stress at 100% elongation of 3.5 MPa or more after vulcanization, and a tan δ of 0.200 or less when immediately applied under the condition of 2% strain at 25 ° C. It is preferable.
The trans polybutadiene preferably has a trans bond content of 82 to 98 mol% and a weight average molecular weight of 30,000 to 200,000.
 本発明のベルト層6のスチールコードを被覆するコーティングゴムに用いるゴム組成物には、上記ゴム成分、硫黄、加硫促進剤、コバルト化合物等の他に、タイヤのベルト層で通常使用される配合剤を本発明の効果を阻害しない範囲で用いることができ、例えば、上記カーボンブラック以外のシリカ等の無機充填剤、軟化剤、老化防止剤などをタイヤ用途に応じて適宜含有することができる。 In addition to the rubber component, sulfur, vulcanization accelerator, cobalt compound, etc., the rubber composition used for the coating rubber for coating the steel cord of the belt layer 6 of the present invention is a compound usually used in a tire belt layer. The agent can be used within a range that does not impair the effects of the present invention. For example, inorganic fillers such as silica other than the carbon black, softeners, anti-aging agents, and the like can be appropriately contained depending on the tire application.
 本発明では、上記各成分を、例えば、バンバリーミキサー、ニーダー等により混練りすることによりベルト層6のスチールコードを被覆するコーティングゴム用ゴム組成物を調製でき、乗用車、トラック、バス等のタイヤのベルト層6のスチールコードを被覆するコーティングゴム用として、スチールコードとの直接加硫接着に好適に使用できるものとなる。
 本発明のタイヤは、通常の方法によって製造される。上記スチールコードを被覆した上記構成のゴム組成物を用いてベルト層を構成するベルト部材を成形すると共に、その他の各タイヤ部材をタイヤ成形機上で、通常の方法により貼り付け成形され、生タイヤが成形される。この生タイヤを加硫機中で加熱加圧して、目的のタイヤが得られる。
In the present invention, a rubber composition for coating rubber that covers the steel cord of the belt layer 6 can be prepared by kneading the above-described components with, for example, a Banbury mixer, a kneader, etc., and tires such as passenger cars, trucks, and buses can be prepared. As a coating rubber for covering the steel cord of the belt layer 6, it can be suitably used for direct vulcanization adhesion with the steel cord.
The tire of the present invention is manufactured by a usual method. A rubber member that forms a belt layer is molded using the rubber composition having the above-described structure coated with the steel cord, and other tire members are pasted and molded on a tire molding machine by a normal method, thereby producing a raw tire. Is formed. The green tire is heated and pressurized in a vulcanizer to obtain the desired tire.
 このように構成される本発明のタイヤでは、特に強度が要求される自動車用、トラック・バス用のタイヤに好適に適用でき、より重荷重、高速度化、高ライフの高度の要求に対しても満足のいくタイヤとなり、ベルト層におけるスチールコードとコーティングゴムとの接着耐久性及び耐亀裂性に優れ、耐久性に優れたタイヤとなる。
 また、コバルト(単体)及び/又はコバルトを含有する化合物を更に含有するゴム組成物を用いることにより、更に、タイヤのベルト層に用いられるスチールコードとの接着耐久性及び耐亀裂性に優れ、更に耐久性に優れたタイヤが得られるものとなる。
 更に、ベルト層のスチールコードを被覆するコーティングゴムに用いるゴム組成物として、ゴム成分を、イソプレンゴムとトランスポリブタジエンとからなり、かつ、N,N´-ジフェニルメタンビスマレイミドを更に含有したものより構成したタイヤ、例えば、ベルト層が、4層以上のコーティングゴムにより埋没されたスチールコード層群を有し、前記スチールコード層群のうち少なくとも一対の交錯層を含む大型車両用タイヤでは、更に大型車両用タイヤのベルト層に用いられるスチールコードとの接着耐久性及び耐亀裂性に優れ、更に耐久性に優れた大型車両用タイヤが得られるものとなる。
In the tire of the present invention configured as described above, it can be suitably applied to automobile and truck / bus tires that require particularly high strength, in response to demands for higher loads, higher speed, and higher life. Becomes a satisfactory tire, and is excellent in durability and crack resistance between the steel cord and the coating rubber in the belt layer and excellent in durability.
In addition, by using a rubber composition further containing cobalt (a simple substance) and / or a compound containing cobalt, it is further excellent in adhesion durability and crack resistance with a steel cord used for a belt layer of a tire, A tire having excellent durability can be obtained.
Further, as a rubber composition used for the coating rubber for covering the steel cord of the belt layer, the rubber component is made of isoprene rubber and transpolybutadiene and further containing N, N′-diphenylmethane bismaleimide. A tire, for example, a belt layer having a steel cord layer group embedded with four or more coating rubbers, and a tire for a large vehicle including at least a pair of crossing layers among the steel cord layer group, further for a large vehicle A large vehicle tire having excellent adhesion durability and crack resistance with a steel cord used for the belt layer of the tire and excellent durability can be obtained.
 次に、本発明のベルト層のスチールコードを被覆するコーティングゴムに用いる加硫促進剤の製造例、並びに、本発明のタイヤの実施例及び比較例に基づいて更に詳述するが、本発明は、これらの製造例、実施例に何ら限定されるものではない。
 また、得られた加硫促進剤(1~4)のオクタノール/水分配係数(logP)を、JIS Z 7260-117(2006)に準拠して、高速液体クロマトグラフィー法により測定した。高速液体クロマトグラフィーは、島津製作所社製のものを使用した。
Next, the vulcanization accelerator used in the coating rubber for coating the steel cord of the belt layer of the present invention will be described in more detail based on the production examples of the vulcanization accelerator and the tire examples and comparative examples of the present invention. However, the present invention is not limited to these production examples and examples.
Further, the octanol / water partition coefficient (log P) of the obtained vulcanization accelerators (1 to 4) was measured by a high performance liquid chromatography method according to JIS Z 7260-117 (2006). A high performance liquid chromatography manufactured by Shimadzu Corporation was used.
〔製造例1:N-エチル-N-t-ブチルベンゾチアゾ-ル-2-スルフェンアミドの合成〕
 N-t-ブチルエチルアミン16.4g(0.162mol)に12%次亜塩素酸ナトリウム水溶液148gを0℃以下で滴下し、2時間攪拌後油層を分取した。ビス(ベンゾチアゾ-ル-2-イル)ジスルフィド39.8g(0.120mol)、N-t-ブチルエチルアミン24.3g(0.240mol)および前述の油層を、メタノ-ル120mlに懸濁させ、還流下2時間攪拌した。冷却後、水酸化ナトリウム6.6g(0.166mol)で中和し、ろ過、水洗、減圧濃縮した後、再結晶することで目的とするN-エチル-N-t-ブチルベンゾチアゾ-ル-2-スルフェンアミドを41.9g(収率66%)の白色固体(融点60~61℃)として得た。
 得られたN-エチル-N-t-ブチルベンゾチアゾ-ル-2-スルフェンアミドのスペクトルデータを以下に示す。
 H-NMR(400MHz,CDCl)δ=1.29(t,3H,J=7.1Hz,CH(エチル))、1.34(s,9H,CH(t-ブチル))、2.9-3.4(br-d,CH)、7.23(1H,m)、7.37(1H,m)、7.75(1H,m)、7.78(1H,m):13C-NMR(100MHz,CDCl)δ=15.12、28.06、47.08、60.41、120.70、121.26、123.23、125.64、134.75、154.93、182.63:質量分析(EI、70eV):m/z;251(M-CH)、167(M-C14N)、100(M-CNS):IR(KBr,cm-1):3061,2975,2932,2868,1461,1429,1393,1366,1352,1309,1273,1238,1198,1103,1022,1011,936,895,756,727。
 また、このN-エチル-N-t-ブチルベンゾチアゾ-ル-2-スルフェンアミドのオクタノール/水分配係数(logP)は、4.9であった。
[Production Example 1: Synthesis of N-ethyl-Nt-butylbenzothiazol-2-sulfenamide]
To 16.4 g (0.162 mol) of Nt-butylethylamine, 148 g of a 12% aqueous sodium hypochlorite solution was added dropwise at 0 ° C. or lower, and after stirring for 2 hours, the oil layer was separated. Bis (benzothiazol-2-yl) disulfide (39.8 g, 0.120 mol), Nt-butylethylamine (24.3 g, 0.240 mol) and the oil layer described above were suspended in 120 ml of methanol and refluxed. Stir for 2 hours. After cooling, the solution was neutralized with 6.6 g (0.166 mol) of sodium hydroxide, filtered, washed with water, concentrated under reduced pressure, and recrystallized to obtain the desired N-ethyl-Nt-butylbenzothiazol. -2-Sulfenamide was obtained as a white solid (melting point: 60 to 61 ° C.) of 41.9 g (yield: 66%).
The spectrum data of the obtained N-ethyl-Nt-butylbenzothiazol-2-sulfenamide is shown below.
1 H-NMR (400 MHz, CDCl 3 ) δ = 1.29 (t, 3H, J = 7.1 Hz, CH 3 (ethyl)), 1.34 (s, 9H, CH 3 (t-butyl)), 2.9-3.4 (br-d, CH 2 ), 7.23 (1H, m), 7.37 (1H, m), 7.75 (1H, m), 7.78 (1H, m ): 13 C-NMR (100 MHz, CDCl 3 ) δ = 15.12, 28.06, 47.08, 60.41, 120.70, 121.26, 123.23, 125.64, 134.75, 154.93, 182.63: Mass spectrometry (EI, 70 eV): m / z; 251 (M + -CH 4 ), 167 (M + -C 6 H 14 N), 100 (M + -C 7 H 5 NS 2 ): IR (KBr, cm −1 ): 3061, 2975, 2932, 2868 , 1461, 1429, 1393, 1366, 1352, 1309, 1273, 1238, 1198, 1103, 1022, 1011, 936, 895, 756, 727.
The N-ethyl-Nt-butylbenzothiazol-2-sulfenamide had an octanol / water partition coefficient (log P) of 4.9.
〔製造例2:N-メチル-N-t-ブチルベンゾチアゾ-ル-2-スルフェンアミドの合成〕
 N-t-ブチルエチルアミンの代わりにN-t-ブチルメチルアミン14.1g(0.162mol)用いて実施例1と同様に行い、N-メチル-N-t-ブチルベンゾチアゾ-ル-2-スルフェンアミドを46.8g(収率82%)の白色固体(融点56~58℃)として得た。
 H-NMR(400MHz,CDCl)δ=1.32(9H,s,CH(t-ブチル))、3.02(3H,s,CH(メチル))、7.24(1H,m)、7.38(1H,m)、7.77(1H,m)、7.79(1H,m):13C-NMR(100MHz,CDCl)δ=27.3、41.9、59.2、120.9、121.4、123.3、125.7、135.0、155.5、180.8:質量分析(EI,70eV)m/z;252(M)、237(M-CH)、223(M-C)、195(M-C)、167(M-C12N)、86(M-CNS)。
 また、このN-メチル-N-t-ブチルベンゾチアゾ-ル-2-スルフェンアミドのオクタノール/水分配係数(logP)は、4.5であった。
[Production Example 2: Synthesis of N-methyl-Nt-butylbenzothiazol-2-sulfenamide]
N-methyl-Nt-butylbenzothiazol-2 was prepared in the same manner as in Example 1 except that 14.1 g (0.162 mol) of Nt-butylmethylamine was used instead of Nt-butylethylamine. -Obtained 46.8 g (82% yield) of sulfenamide as a white solid (melting point 56-58 ° C.).
1 H-NMR (400 MHz, CDCl 3 ) δ = 1.32 (9H, s, CH 3 (t-butyl)), 3.02 (3H, s, CH 3 (methyl)), 7.24 (1H, m), 7.38 (1H, m), 7.77 (1H, m), 7.79 (1H, m): 13 C-NMR (100 MHz, CDCl 3 ) δ = 27.3, 41.9, 59.2, 120.9, 121.4, 123.3, 125.7, 135.0, 155.5, 180.8: mass spectrometry (EI, 70 eV) m / z; 252 (M + ), 237 (M + -CH 3 ), 223 (M + -C 2 H 6 ), 195 (M + -C 4 H 9 ), 167 (M + -C 5 H 12 N), 86 (M + -C 7 H 4 NS 2).
Further, the octanol / water partition coefficient (log P) of this N-methyl-Nt-butylbenzothiazol-2-sulfenamide was 4.5.
〔製造例3:N-n-プロピル-N-t-ブチルベンゾチアゾ-ル-2-スルフェンアミドの合成〕
 N-t-ブチルエチルアミンの代わりにN-n-プロピル-t-ブチルアミン18.7g(0.162mol)を用いて実施例1と同様に行い、N-n-プロピル-N-t-ブチルベンゾチアゾ-ル-2-スルフェンアミドを白色固体(融点50~52℃)として得た。
 H-NMR(400MHz,CDCl)δ:0.92(t,J=7.3Hz,3H),1.34(s,9H),1.75(br,2H),3.03(brd,2H),7.24(t,J=7.0Hz,1H),7.38(t,J=7.0Hz,1H),7.77(d,J=7.5Hz,1H),7.79(d,J=7.5Hz,1H)。
 13C-NMR(100MHz,CDCl)δ:11.7,23.0,28.1,55.3,60.4,120.7,121.3,123.3,125.7,134.7,154.8,181.3。
 また、このN-n-プロピル-N-t-ブチルベンゾチアゾ-ル-2-スルフェンアミドのオクタノール/水分配係数(logP)は、5.3であった。
[Production Example 3: Synthesis of Nn-propyl-Nt-butylbenzothiazol-2-sulfenamide]
The same procedure as in Example 1 was carried out using 18.7 g (0.162 mol) of Nn-propyl-t-butylamine instead of Nt-butylethylamine, and Nn-propyl-Nt-butylbenzothia Sol-2-sulfenamide was obtained as a white solid (melting point 50-52 ° C.).
1 H-NMR (400 MHz, CDCl 3 ) δ: 0.92 (t, J = 7.3 Hz, 3H), 1.34 (s, 9H), 1.75 (br, 2H), 3.03 (brd , 2H), 7.24 (t, J = 7.0 Hz, 1H), 7.38 (t, J = 7.0 Hz, 1H), 7.77 (d, J = 7.5 Hz, 1H), 7 79 (d, J = 7.5 Hz, 1H).
13 C-NMR (100 MHz, CDCl 3 ) δ: 11.7, 23.0, 28.1, 55.3, 60.4, 120.7, 121.3, 123.3, 125.7, 134. 7, 154.8, 181.3.
The Nn-propyl-Nt-butylbenzothiazol-2-sulfenamide had an octanol / water partition coefficient (log P) of 5.3.
〔製造例4:N-n-ブチル-N-t-ブチルベンゾチアゾ-ル-2-スルフェンアミドの合成〕
 N-t-ブチルエチルアミンの代わりにN-t-ブチル-n-ブチルアミン20.9g(0.162mol)を用いて実施例1と同様に行い、N-n-ブチル-N-t-ブチルベンゾチアゾ-ル-2-スルフェンアミドを42.4g(収率60%)の白色固体(融点55~56℃)として得た。
 H-NMR(400MHz,CDCl)δ=0.89(3H,t,J=7.32Hz,CH(n-Bu))、1.2-1.4(s+m,11H,CH(t-ブチル)+CH(n-ブチル))、1.70(br.s,2H,CH)、2.9-3.2(br.d,2H,N-CH)、7.23(1H,m)、7.37(1H,m)、7.75(1H,m)、7.78(1H,m);13C-NMR(100MHz,CDCl)δ:14.0、20.4、27.9、31.8、53.0、60.3、120.6、121.1、123.1、125.5、134.6、154.8、181.2;質量分析(EI,70eV)、m/z294(M)、279(M-CH)、237(M-C)、167(M-C18N)、128(M-CNS):IR(neat):1707cm-1,3302cm-1
 また、このN-n-ブチル-N-t-ブチルベンゾチアゾ-ル-2-スルフェンアミドのオクタノール/水分配係数(logP)は、5.8であった。
[Production Example 4: Synthesis of Nn-butyl-Nt-butylbenzothiazol-2-sulfenamide]
The same procedure as in Example 1 was carried out using 20.9 g (0.162 mol) of Nt-butyl-n-butylamine instead of Nt-butylethylamine, and Nn-butyl-Nt-butylbenzothia Sol-2-sulfenamide was obtained as 42.4 g (yield 60%) of a white solid (melting point 55-56 ° C.).
1 H-NMR (400 MHz, CDCl 3 ) δ = 0.89 (3H, t, J = 7.32 Hz, CH 3 (n-Bu)), 1.2-1.4 (s + m, 11H, CH 3 ( t-butyl) + CH 2 (n-butyl)), 1.70 (br.s, 2H, CH 2 ), 2.9-3.2 (br.d, 2H, N—CH 2 ), 7.23 (1H, m), 7.37 (1H, m), 7.75 (1H, m), 7.78 (1H, m); 13 C-NMR (100 MHz, CDCl 3 ) δ: 14.0, 20 .4, 27.9, 31.8, 53.0, 60.3, 120.6, 121.1, 123.1, 125.5, 134.6, 154.8, 181.2; mass spectrometry ( EI, 70 eV), m / z 294 (M + ), 279 (M + -CH 3 ), 237 (M + -C 4 H 9 ), 167 ( M + -C 8 H 18 N), 128 (M + -C 7 H 4 NS 2 ): IR (neat): 1707 cm −1 , 3302 cm −1 .
The Nn-butyl-Nt-butylbenzothiazol-2-sulfenamide had an octanol / water partition coefficient (log P) of 5.8.
〔実施例1~12及び比較例1~8〕
 2200mlのバンバリーミキサーを使用して、ゴム成分、硫黄、上記製造例で得た加硫促進剤、有機酸コバルト塩、その他の配合剤を下記表1~表3に示す配合処方で混練り混合して未加硫のゴム組成物を調製した。得られた各ゴム組成物を用いて、下記評価方法により、耐熱接着性、並びに、タイヤ評価として接着耐久性、亀裂耐久性について評価した。
 これらの結果を下記表1~表3に示す。
[Examples 1 to 12 and Comparative Examples 1 to 8]
Using a 2200 ml Banbury mixer, the rubber component, sulfur, the vulcanization accelerator obtained in the above production example, the organic acid cobalt salt, and other compounding agents were kneaded and mixed according to the formulation shown in Tables 1 to 3 below. Thus, an unvulcanized rubber composition was prepared. Using each rubber composition obtained, the following evaluation methods were used to evaluate heat resistance adhesion and tire durability as well as adhesion durability and crack durability.
These results are shown in Tables 1 to 3 below.
〔接着性能の評価方法〕
 黄銅めっき(Cu:63wt%、Zu:37wt%)したスチールコード(外径0.5mm×長さ300mm)3本を10mm間隔で平行に並べ、このスチールコードを上下両側から各ゴム組成物でコーティングして、これを160℃、20分間の条件で加硫し、サンプルを作製した。
 得られた各サンプルの接着性について、ASTM-D-2229に準拠して、各サンプルに対してスチールコードを引き抜き、ゴムの被覆状態を目視で観察し、0~100%で表示し、接着性の指標とした。耐熱接着性は、各アンプルを100℃のギヤオーブンに15日、30日間放置した後に、上記試験法にて、スチールコードを引き抜き、ゴムの被覆状態を目視で観察し、0~100%で表示し、各熱接着性の指標とした。数値が大きい程、耐熱接着性に優れていることを示す。
[Adhesion performance evaluation method]
Three steel cords (outer diameter 0.5 mm x length 300 mm) plated with brass (Cu: 63 wt%, Zu: 37 wt%) are arranged in parallel at 10 mm intervals, and this steel cord is coated with each rubber composition from both the upper and lower sides. This was vulcanized at 160 ° C. for 20 minutes to prepare a sample.
Regarding the adhesion of each sample obtained, the steel cord was pulled out from each sample in accordance with ASTM-D-2229, and the rubber coating state was visually observed and displayed at 0 to 100%. It was used as an index. For heat-resistant adhesion, each ampoule is left in a gear oven at 100 ° C for 15 to 30 days, then the steel cord is pulled out by the above test method, and the rubber coating state is visually observed and displayed in 0 to 100%. And used as an index for each thermal adhesiveness. It shows that it is excellent in heat-resistant adhesiveness, so that a numerical value is large.
〔タイヤ評価:接着耐久性の評価方法〕
 上記得られた各ゴム組成物でスチールコード(1×5構造、素線0.25mm)を被覆してベルト層を形成し、該ベルト層を備えた、サイズTBR11R22.5の空気入りラジルタイヤを常法により試作した。
 得られた各試作タイヤを室内ドラム評価、具体的には、正規内圧、正規荷重、一定速度、ステップロード走行後、交錯層のスチールコード切り出しサンプルに対してスチールコードを引き抜きゴムの被覆状態を目視で観察し、0~100%で表示し、比較例1を基準(指数表示:100)として評価した。数値が大きい程、接着耐久性に優れていることを示す。
[Tire evaluation: Evaluation method of adhesion durability]
Each rubber composition obtained above was coated with a steel cord (1 × 5 structure, strand 0.25 mm) to form a belt layer, and a pneumatic rasil tire of size TBR11R22.5 provided with the belt layer was usually used. Prototype by the method.
Each prototype tire obtained was evaluated for indoor drums. Specifically, after running at normal internal pressure, normal load, constant speed, and step load, the steel cord was pulled out of the steel cord cut sample of the crossing layer, and the rubber coating state was visually observed. And was displayed in a range of 0 to 100%, and Comparative Example 1 was evaluated with reference (index display: 100). It shows that it is excellent in adhesive durability, so that a numerical value is large.
〔タイヤ評価:亀裂耐久性の評価方法〕
 上記得られた各ゴム組成物でスチールコード(1×6構造、素線0.25mm)を被覆してベルト層を形成し、該ベルト層を備えた、サイズTBR11R22.5の空気入りラジルタイヤを常法により試作した。
 得られた各試作タイヤを室内ドラム評価、具体的には、正規内圧、正規荷重、一定速度、ステップロード走行後、試験後のベルト端部から進展する亀裂長を測定し、比較例1を基準(指数表示:100)として評価した。数値が大きい程、亀裂耐久性に優れていることを示す。
[Tire evaluation: Crack durability evaluation method]
Each rubber composition obtained above was coated with a steel cord (1 × 6 structure, elemental wire 0.25 mm) to form a belt layer, and a pneumatic rasil tire of size TBR11R22.5 equipped with the belt layer was usually used. Prototype by the method.
Each prototype tire obtained was evaluated for indoor drums, specifically, normal internal pressure, normal load, constant speed, step load running, and crack length developed from the end of the belt after the test. It was evaluated as (index indication: 100). It shows that it is excellent in crack durability, so that a numerical value is large.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 上記表1~表3の結果から明らかなように、本発明範囲となる実施例1~12のタイヤは、本発明の範囲外となる比較例1~8のタイヤに較べて、耐熱接着性に優れたゴム組成物とすることができ、これをタイヤのベルト層のスチールコードを被覆するコーティングゴムとして用いたたものは、耐久性(接着耐久性及び亀裂耐久性)に優れることが判った。 As is apparent from the results of Tables 1 to 3, the tires of Examples 1 to 12 that fall within the scope of the present invention are more resistant to heat than the tires of Comparative Examples 1 to 8 that fall outside the scope of the present invention. It was found that an excellent rubber composition could be obtained, and that this was used as a coating rubber for coating the steel cord of the tire belt layer was excellent in durability (adhesion durability and crack durability).
 本発明のタイヤでは、ベルト層のスチールコードを被覆するコーティングゴムに、スチールコードとの直接加硫接着する好適なゴム組成物を用いることにより、乗用車、トラック、バス用等に好適なものとなる。 In the tire of the present invention, the coating rubber covering the steel cord of the belt layer is suitable for passenger cars, trucks, buses and the like by using a suitable rubber composition that is directly vulcanized and bonded to the steel cord. .
 1 トレッド部
 2 サイドウォール部
 3 ビード部
 4 カーカス
 5 ビードコア
 6 ベルト層
DESCRIPTION OF SYMBOLS 1 Tread part 2 Side wall part 3 Bead part 4 Carcass 5 Bead core 6 Belt layer

Claims (22)

  1.  スチールコードと、該スチールコードを被覆するコーティングゴムからなるベルト層を有するタイヤであって、上記ベルト層のスチールコードを被覆するコーティングゴムに、ゴム成分と、硫黄と、下記一般式(I)で表されるスルフェンアミド系加硫促進剤とを含有してなるゴム組成物を用いたことを特徴とするタイヤ。
    Figure JPOXMLDOC01-appb-C000001
    A tire having a steel cord and a belt layer made of a coating rubber covering the steel cord, wherein the coating rubber covering the steel cord of the belt layer includes a rubber component, sulfur, and the following general formula (I): A tire comprising a rubber composition containing a sulfenamide-based vulcanization accelerator represented.
    Figure JPOXMLDOC01-appb-C000001
  2.  前記ゴム組成物は、ゴム成分100質量部に対し、上記一般式(I)で表されるスルフェンアミド系加硫促進剤0.1~10質量部を含有してなる請求項1に記載のタイヤ。 2. The rubber composition according to claim 1, wherein the rubber composition contains 0.1 to 10 parts by mass of the sulfenamide vulcanization accelerator represented by the general formula (I) with respect to 100 parts by mass of the rubber component. tire.
  3.  前記ゴム組成物は、ゴム成分100質量部に対し、硫黄0.3~10質量部を含有してなる請求項1に記載のタイヤ。 The tire according to claim 1, wherein the rubber composition contains 0.3 to 10 parts by mass of sulfur with respect to 100 parts by mass of the rubber component.
  4.  前記ゴム組成物は、ゴム成分100質量部に対し、硫黄0.3~10質量部と、上記一般式(I)で表されるスルフェンアミド系加硫促進剤0.1~10質量部とを含有してなる請求項1に記載のタイヤ。 The rubber composition comprises 0.3 to 10 parts by mass of sulfur and 0.1 to 10 parts by mass of a sulfenamide vulcanization accelerator represented by the above general formula (I) with respect to 100 parts by mass of the rubber component. The tire according to claim 1, comprising:
  5.  上記一般式(I)中のRは、tert-アルキル基であり、n=0である請求項1に記載のタイヤ。 The tire according to claim 1, wherein R 1 in the general formula (I) is a tert-alkyl group and n = 0.
  6.  上記一般式(I)中のRは、tert-ブチル基であり、Rは、炭素数1~6の直鎖アルキル基であり、R~Rは、水素原子である請求項1に記載のタイヤ。 2. In the general formula (I), R 1 is a tert-butyl group, R 2 is a linear alkyl group having 1 to 6 carbon atoms, and R 3 to R 6 are hydrogen atoms. Tire described in.
  7.  上記一般式(I)中のRは、tert-ブチル基であり、n=0であり、Rは、炭素数1~6の直鎖アルキル基であり、R~Rは、水素原子である請求項1に記載のタイヤ。 In the general formula (I), R 1 is a tert-butyl group, n = 0, R 2 is a linear alkyl group having 1 to 6 carbon atoms, and R 3 to R 6 are hydrogen atoms. The tire according to claim 1, which is an atom.
  8.  上記一般式(I)中のRは、tert-ブチル基であり、n=0であり、Rはメチル基、エチル基、n-プロピル基であり、R~Rは、水素原子である請求項1に記載のタイヤ。 In the general formula (I), R 1 is a tert-butyl group, n = 0, R 2 is a methyl group, an ethyl group, or an n-propyl group, and R 3 to R 6 are hydrogen atoms. The tire according to claim 1.
  9.  前記ゴム組成物には、更に、コバルト及び/又はコバルトを含有する化合物を含有する請求項1~8の何れか一つに記載のタイヤ。 The tire according to any one of claims 1 to 8, wherein the rubber composition further contains cobalt and / or a compound containing cobalt.
  10.  コバルト及び/又はコバルトを含有する化合物の含有量がコバルト量として、ゴム成分100質量部に対し、0.03~3質量部である請求項9に記載のタイヤ。 The tire according to claim 9, wherein the content of cobalt and / or a compound containing cobalt is 0.03 to 3 parts by mass with respect to 100 parts by mass of the rubber component as the amount of cobalt.
  11.  コバルトを含有する化合物が、有機酸のコバルト塩である請求項9又は10に記載のタイヤ。 The tire according to claim 9 or 10, wherein the compound containing cobalt is a cobalt salt of an organic acid.
  12.  前記ゴム組成物のゴム成分が、天然ゴム及びポリイソプレンゴムの少なくとも一方を含む請求項1~11の何れか一つに記載のタイヤ。 The tire according to any one of claims 1 to 11, wherein the rubber component of the rubber composition contains at least one of natural rubber and polyisoprene rubber.
  13.  前記ゴム組成物のゴム成分が、50質量%以上の天然ゴム及び残部を合成ゴムよりなる請求項1~11の何れか一つに記載のタイヤ。 The tire according to any one of claims 1 to 11, wherein the rubber component of the rubber composition is 50% by mass or more of natural rubber and the balance is synthetic rubber.
  14.  前記ゴム組成物のゴム成分が、イソプレンゴムとトランスポリブタジエンとからなり、かつ、N,N´-ジフェニルメタンビスマレイミドを含有する請求項1~11の何れか一つに記載のタイヤ。 The tire according to any one of claims 1 to 11, wherein the rubber component of the rubber composition is made of isoprene rubber and transpolybutadiene and contains N, N'-diphenylmethane bismaleimide.
  15.  ベルト層は、4層以上のコーティングゴムにより埋没されたスチールコード層群を有し、前記スチールコード層群のうち少なくとも一対の交錯層を含む請求項14に記載のタイヤ。 The tire according to claim 14, wherein the belt layer has a steel cord layer group buried with four or more coating rubbers, and includes at least a pair of crossing layers in the steel cord layer group.
  16.  前記N,N´-ジフェニルメタンビスマレイミドの重量と前記トランスポリブタジエンの重量の総重量部数が10以下であると共に、トランスポリブタジエンの重量が二者の総重量の25%以上、95%以下である請求項14又は15に記載のタイヤ。 A total weight part of the weight of the N, N'-diphenylmethane bismaleimide and the weight of the trans polybutadiene is 10 or less, and the weight of the trans polybutadiene is 25% or more and 95% or less of the total weight of the two. The tire according to 14 or 15.
  17.  前記N,N´-ジフェニルメタンビスマレイミドの重量と前記トランスポリブタジエンの重量の総重量部数が6以下であると共に、トランスポリブタジエンの重量が二者の総重量の25%以上、95%以下である請求項14又は15に記載のタイヤ。 A total weight part of the weight of the N, N'-diphenylmethane bismaleimide and the weight of the trans polybutadiene is 6 or less, and the weight of the trans polybutadiene is 25% or more and 95% or less of the total weight of the two. The tire according to 14 or 15.
  18.  前記N,N´-ジフェニルメタンビスマレイミドの重量と前記トランスポリブタジエンの重量の総重量部数が6以下であると共に、トランスポリブタジエンの重量が二者の総重量の25%以上、75%以下である請求項14又は15に記載のタイヤ。 A total weight part of the weight of the N, N'-diphenylmethane bismaleimide and the weight of the trans polybutadiene is 6 or less, and the weight of the trans polybutadiene is 25% or more and 75% or less of the total weight of the two. The tire according to 14 or 15.
  19.  前記N,N´-ジフェニルメタンビスマレイミドの含有量が前記ゴム成分100質量部に対して、0.1~4質量部である請求項14~18の何れか一つに記載のタイヤ。 The tire according to any one of claims 14 to 18, wherein a content of the N, N'-diphenylmethane bismaleimide is 0.1 to 4 parts by mass with respect to 100 parts by mass of the rubber component.
  20.  タイヤが大型車両用タイヤである請求項14~19の何れか一つに記載のタイヤ。 The tire according to any one of claims 14 to 19, wherein the tire is a tire for a large vehicle.
  21.  前記コーティングゴムは、加硫後、100%伸張時の引張応力が3.5MPa以上であり、かつ25℃で歪2%の条件下で即敵したときのtanδが0.200以下である請求項14~19の何れか一つに記載のタイヤ。 The coating rubber has a tensile stress at 100% elongation of 3.5 MPa or more after vulcanization and a tan δ of 0.200 or less when immediately applied under the condition of 2% strain at 25 ° C. The tire according to any one of 14 to 19.
  22.  前記トランスポリブタジエンは、そのトランス結合含有量が82~98モル%であり、かつ、重量平均分子量が30000~200000である請求項14~21の何れか一つに記載のタイヤ。 The tire according to any one of claims 14 to 21, wherein the trans polybutadiene has a trans bond content of 82 to 98 mol% and a weight average molecular weight of 30,000 to 200,000.
PCT/JP2010/057709 2009-04-30 2010-04-30 Tire WO2010126143A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009110835 2009-04-30
JP2009-110835 2009-04-30
JP2009-160396 2009-07-07
JP2009160396 2009-07-07

Publications (1)

Publication Number Publication Date
WO2010126143A1 true WO2010126143A1 (en) 2010-11-04

Family

ID=43032285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057709 WO2010126143A1 (en) 2009-04-30 2010-04-30 Tire

Country Status (1)

Country Link
WO (1) WO2010126143A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0551491A (en) * 1991-08-23 1993-03-02 Bridgestone Corp Rubber composition
JP2005139239A (en) * 2003-11-04 2005-06-02 Sanshin Chem Ind Co Ltd Vulcanization accelerator using amine derived from natural fat and oil, and rubber composition
JP2005139082A (en) * 2003-11-04 2005-06-02 Sanshin Chem Ind Co Ltd Sulfenamide compound
WO2009084538A1 (en) * 2007-12-27 2009-07-09 Ouchi Shinko Chemical Industrial Co., Ltd. Sulfenamide, vulcanization accelerator containing the sulfenamide for rubber, and process for producing the same
WO2009084617A1 (en) * 2007-12-27 2009-07-09 Bridgestone Corporation Rubber composition
WO2010021312A1 (en) * 2008-08-19 2010-02-25 株式会社ブリヂストン Rubber composition
WO2010021316A1 (en) * 2008-08-19 2010-02-25 株式会社ブリヂストン Rubber composition
JP2010070746A (en) * 2008-08-19 2010-04-02 Bridgestone Corp Rubber composition

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0551491A (en) * 1991-08-23 1993-03-02 Bridgestone Corp Rubber composition
JP2005139239A (en) * 2003-11-04 2005-06-02 Sanshin Chem Ind Co Ltd Vulcanization accelerator using amine derived from natural fat and oil, and rubber composition
JP2005139082A (en) * 2003-11-04 2005-06-02 Sanshin Chem Ind Co Ltd Sulfenamide compound
WO2009084538A1 (en) * 2007-12-27 2009-07-09 Ouchi Shinko Chemical Industrial Co., Ltd. Sulfenamide, vulcanization accelerator containing the sulfenamide for rubber, and process for producing the same
WO2009084617A1 (en) * 2007-12-27 2009-07-09 Bridgestone Corporation Rubber composition
WO2010021312A1 (en) * 2008-08-19 2010-02-25 株式会社ブリヂストン Rubber composition
WO2010021316A1 (en) * 2008-08-19 2010-02-25 株式会社ブリヂストン Rubber composition
JP2010070744A (en) * 2008-08-19 2010-04-02 Bridgestone Corp Rubber composition
JP2010070746A (en) * 2008-08-19 2010-04-02 Bridgestone Corp Rubber composition

Similar Documents

Publication Publication Date Title
JP5467869B2 (en) Steel cord-rubber composite
JP5524522B2 (en) Rubber composition
US20110172339A1 (en) Rubber composition
JP5632592B2 (en) Rubber composition
JP2022501470A (en) Rubber composition containing polyphenol compound
JP5524523B2 (en) Pneumatic tire
JP5197734B2 (en) Rubber-metal composite material
EP1803765A2 (en) Rubber composition for coating steel cord and tire using the same
JP5579179B2 (en) Rubber-steel cord composite
WO2010126143A1 (en) Tire
JP2010163593A (en) Rubber composition for bead filler and tire using the same
JP2010275520A (en) Pneumatic tire
WO2010126100A1 (en) Pneumatic tire
JP5534726B2 (en) Pneumatic tire
JP5383351B2 (en) Pneumatic tire
JP2010070745A (en) Rubber composition
CN114845887B (en) Reinforced product based on at least one metal reinforcing element and a rubber composition
JP2011006039A (en) Pneumatic tire
JP2011225664A (en) Rubber-steel cord composite
RU2465289C2 (en) Rubber mixture
US20120136102A1 (en) Rubber composition
WO2010004930A1 (en) Rubber composition
JP2010150502A (en) Rubber composition for run-flat tire, and run-flat tire using thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10769841

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10769841

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP