WO2010126098A1 - Polyurethane block copolymer - Google Patents

Polyurethane block copolymer Download PDF

Info

Publication number
WO2010126098A1
WO2010126098A1 PCT/JP2010/057610 JP2010057610W WO2010126098A1 WO 2010126098 A1 WO2010126098 A1 WO 2010126098A1 JP 2010057610 W JP2010057610 W JP 2010057610W WO 2010126098 A1 WO2010126098 A1 WO 2010126098A1
Authority
WO
WIPO (PCT)
Prior art keywords
block copolymer
polyurethane
polymer
mass
polyol
Prior art date
Application number
PCT/JP2010/057610
Other languages
French (fr)
Japanese (ja)
Inventor
秀和 齋藤
和正 服部
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2011511445A priority Critical patent/JPWO2010126098A1/en
Publication of WO2010126098A1 publication Critical patent/WO2010126098A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4236Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups
    • C08G18/4238Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups derived from dicarboxylic acids and dialcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6633Compounds of group C08G18/42
    • C08G18/6637Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/664Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/69Polymers of conjugated dienes
    • C08G18/698Mixtures with compounds of group C08G18/40
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • C08G18/7671Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group

Definitions

  • the present invention relates to a polyurethane block copolymer having a specific addition polymerization block and a specific polyurethane block, a polyurethane block copolymer composition and a thermoplastic polymer composition containing the same, and using these
  • the present invention relates to a molded body and a composite molded body to be obtained.
  • Silicone is excellent in releasability, heat resistance, cold resistance, weather resistance, water repellency, and electrical insulation, and exhibits stable physical properties in a wide temperature range. It is used. However, silicones have a limited range of use due to their poor mechanical properties (such as tensile break strength and wear resistance) and poor adhesion to other materials.
  • Patent Documents 1 and 2 disclose a coating agent for coating a silicone rubber substrate, and the coating material is a polyurethane having an aliphatic unsaturated group in a molecule produced using an organotin compound catalyst or the like.
  • Patent Document 3 discloses an overcoat material for silicone rubber, which comprises a linear polymer having a hydroxyl group or an amino group at both ends and a bifunctional isocyanate compound, wherein the molar ratio of the former is the latter.
  • the main component is a urethane resin having a weight average molecular weight of 10,000 to 500,000 obtained by reacting so as to be larger than 1.0.
  • these coating agents (coating materials) still have insufficient adhesion to silicone, and even if these coating agents (coating materials) are coated on a silicone rubber substrate, both polyurethane and silicone are excellent. Thus, a composite molded body having the above characteristics cannot be obtained.
  • Patent Document 4 discloses a method for producing a composite molded body in which a silicone rubber layer and a thermoplastic resin layer are laminated and integrated. After the primary injection molding in the mold cavity, the addition curing type silicone rubber composition is subjected to secondary injection molding on the thermoplastic resin layer formed in the cavity, and the silicone rubber composition is made to be above the softening point of the thermoplastic resin. Cure at a temperature below the melting point.
  • this method may not provide a sufficient effect depending on the type of thermoplastic resin. For example, even if this method is applied to the production of a composite molded body of polyurethane and silicone rubber, a composite molded body in which the polyurethane layer and the silicone rubber layer are well bonded cannot be obtained.
  • polyurethane block copolymers having a specific addition polymerization block and a specific polyurethane block are themselves various materials ( Especially excellent in adhesiveness with silicone); and by blending the polyurethane block copolymer into various thermoplastic polymers as a masterbatch, the thermoplastic polymer has excellent adhesiveness with various materials (especially silicone). It was found that a composition was obtained.
  • the present inventors have further studied based on the above findings and completed the present invention. The features of the present invention are as follows.
  • a polyurethane block copolymer having an addition polymerization block ( ⁇ ) and a polyurethane block ( ⁇ ) is selected from a block copolymer having a polymer block (A) containing an aromatic vinyl compound unit and a polymer block (B) containing a conjugated diene unit; and a hydrogenated product thereof.
  • the polyurethane block ( ⁇ ) has the following general formula (I):
  • R 1 and R 2 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • the content of the structural unit (I) is 0.2 to 40% by mass in the total mass of the polyurethane block copolymer, as described in any one of the above [1] to [4] Polyurethane block copolymer.
  • the functional group-containing addition polymerization block copolymer has a functional group capable of reacting with at least one component selected from the group consisting of a polymer polyol (a p ), an organic polyisocyanate (b), and a chain extender (c).
  • the functional group-containing addition polymerization block copolymer has a functional group capable of reacting with at least one component selected from the group consisting of a polymer polyol (a p ), an organic polyisocyanate (b), and a chain extender (c).
  • [8] At least one selected from the group consisting of the polyurethane block copolymer according to any one of [1] to [5] above, and an organic zinc compound, an organic bismuth compound, an organic titanium compound, and an organic zirconium compound.
  • a polyurethane block copolymer composition comprising a seed metal compound, wherein the content of the metal compound is 0.1 to 2,000 ppm by mass based on the mass of the polyurethane block copolymer.
  • thermoplastic polymer composition comprising the polyurethane block copolymer according to any one of [1] to [5] above and a thermoplastic polymer other than the polyurethane block copolymer.
  • the content of the structural unit (I) of the polyurethane block ( ⁇ ) is 0.1 to 20% by mass in the total mass of the thermoplastic polymer composition, according to the above [9].
  • Thermoplastic polymer composition is 0.1 to 20% by mass in the total mass of the thermoplastic polymer composition, according to the above [9].
  • At least one metal compound selected from the group consisting of an organic zinc compound, an organic bismuth compound, an organic titanium compound, and an organic zirconium compound is added in an amount of 0.1 to 2, based on the mass of the polyurethane block copolymer.
  • the thermoplastic polymer is polyamide; polyester; polyvinylidene chloride; polyvinyl chloride; polycarbonate; acrylic resin; polyoxymethylene resin; saponified ethylene-vinyl acetate copolymer; aromatic vinyl compound and cyanide A copolymer with at least one selected from a vinyl fluoride compound, a conjugated diene and an olefin; a polyurethane; a styrenic polymer; and at least one selected from the group consisting of polyolefins.
  • the thermoplastic polymer composition according to any one of the above.
  • thermoplastic polymer composition according to any one of [9] to [12] above, wherein the polyurethane block copolymer and the thermoplastic polymer are A production method comprising a step of melt-kneading.
  • thermoplastic polymer composition according to any one of [9] to [12] above.
  • the present invention it is excellent in adhesiveness with various materials (especially silicone), and can be sufficiently adhered to the various materials without prior surface activation treatment (primer treatment or the like).
  • a polyurethane block copolymer is obtained.
  • the polyurethane block copolymer has excellent adhesion to various materials (particularly silicone), and the various materials can be used without prior surface activation treatment (primer treatment, etc.).
  • a thermoplastic polymer composition that can be sufficiently bonded is obtained.
  • the present invention provides a method for producing the polyurethane block copolymer in addition to the polyurethane block copolymer and the thermoplastic polymer composition; a polyurethane block copolymer composition containing the polyurethane block copolymer; A method for producing the thermoplastic polymer composition; a master batch capable of efficiently producing the thermoplastic polymer composition; the polyurethane block copolymer, the polyurethane block copolymer composition, or A molded body composed of the thermoplastic polymer composition; a composite molded body in which a member containing the polyurethane block copolymer and a member made of various materials typified by silicone are sufficiently bonded; and the composite molding A method for producing a body.
  • the polyurethane block copolymer of the present invention has an addition polymerization block ( ⁇ ) and a polyurethane block ( ⁇ ).
  • the addition polymerization block ( ⁇ ) is a block copolymer having a polymer block (A) containing an aromatic vinyl compound unit and a polymer block (B) containing a conjugated diene unit; and the block copolymer It is derived from an addition polymerization block copolymer selected from hydrogenated products.
  • the bonding form of the addition polymerization block ( ⁇ ) and the polyurethane block ( ⁇ ) is not particularly limited, and is a straight chain, a branched chain, a radial, or a combination thereof. Any form may be sufficient. Among these, a linear bond form is preferable.
  • the structure of the polyurethane block copolymer is represented by the formula: ⁇ - ⁇ , ⁇ - ⁇ , where the above addition polymerization block ( ⁇ ) is simply represented by “ ⁇ ” and the polyurethane block ( ⁇ ) is simply represented by “ ⁇ ”.
  • diblock type polyurethane block copolymer, and the polyurethane block copolymer composition and thermoplastic polymer composition containing the same are more excellent in adhesiveness to silicone.
  • the addition polymerization blocks ( ⁇ ) may be blocks having the same contents or different contents. Also good.
  • the polyurethane block copolymer has two or more polyurethane blocks ( ⁇ )
  • the polyurethane blocks ( ⁇ ) may be blocks having the same contents or different contents.
  • the block ( ⁇ )] may be the same or different in the type of structural units constituting them, the bonding type, the number average molecular weight, and the like.
  • the mass ratio of the addition polymerization block ( ⁇ ) / polyurethane block ( ⁇ ) is preferably within the range of 10/90 to 95/5, more preferably within the range of 10/90 to 90/10, and even more preferably 20 / It is in the range of 80 to 80/20, particularly preferably in the range of 30/70 to 70/30.
  • a polyurethane block copolymer having an addition polymerization block ( ⁇ ) / polyurethane block ( ⁇ ) at a preferred mass ratio is more excellent in adhesion to silicone.
  • Examples of the aromatic vinyl compound unit constituting the polymer block (A) containing the aromatic vinyl compound unit contained in the addition polymerization block ( ⁇ ) include styrene, ⁇ -methylstyrene, ⁇ -methylstyrene, and o-methyl.
  • Styrene m-methylstyrene, p-methylstyrene, 2,4-dimethylstyrene, 2,4,6-trimethylstyrene, 4-propylstyrene, t-butylstyrene, 4-cyclohexylstyrene, 4-dodecylstyrene, 2- Examples include structural units derived from ethyl-4-benzylstyrene, 4- (phenylbutyl) styrene, 1-vinylnaphthalene, vinylanthracene, indene, acetonaphthylene, monofluorostyrene, difluorostyrene, monochlorostyrene, methoxystyrene, and the like.
  • the polymer block (A) may be composed of one type of aromatic vinyl compound unit, or may be composed of two or more types of aromatic vinyl compound units.
  • the polymer block (A) is preferably composed mainly of structural units derived from styrene and / or ⁇ -methylstyrene.
  • the polymer block (A) may contain a small amount of a structural unit derived from another copolymerizable monomer, if necessary, along with the aromatic vinyl compound unit.
  • the content of structural units derived from other copolymerizable monomers is preferably 30% by mass or less, more preferably 10% by mass or less, based on the mass of the polymer block (A).
  • Examples of other copolymerizable monomers include 1-butene, 1-pentene, 1-hexene, butadiene, 2-methyl-1,3-butadiene (isoprene), methyl vinyl ether, and the like.
  • Examples of the conjugated diene unit constituting the polymer block (B) containing the conjugated diene unit contained in the addition polymerization block ( ⁇ ) include 1,3-butadiene, 2-methyl-1,3-butadiene (isoprene). ), Structural units derived from 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene, and the like.
  • the polymer block (B) may be composed of one type of conjugated diene unit or may be composed of two or more types of conjugated diene units. When the polymer block (B) contains two or more kinds of conjugated diene units, the bonding form thereof may be random, tapered, or partially blocky, and even if they are mixed Good.
  • the content of the conjugated diene unit in the polymer block (B) is preferably in the range of 70 to 100% by mass, and in the range of 90 to 100% by mass based on the mass of the polymer block (B). It is more preferable.
  • the addition polymerization block ( ⁇ ) may be a hydrogenated product of a block copolymer having a polymer block (A) and a polymer block (B).
  • the hydrogenated product may be one in which only a part of the unsaturated double bond of the polymer block (B) is hydrogenated, or one in which all of the hydrogenated product is hydrogenated.
  • the hydrogenation rate in the block in which the polymer block (B) is hydrogenated is 50 mol% or more based on the total number of unsaturated double bonds of the polymer block (B) before hydrogenation. Is preferably 60 mol% or more, and more preferably 80 mol% or more. If the hydrogen conversion rate of the polymer block (B) is 50 mol% or more, a polyurethane block copolymer excellent in heat resistance, weather resistance and light resistance can be obtained.
  • the addition polymerization block ( ⁇ ) is hydrogenated as a polymer block (B) which may be hydrogenated. It is preferable to have an isoprene polymer block that may be hydrogenated, a butadiene polymer block that may be hydrogenated, or a copolymer block of isoprene and butadiene that may be hydrogenated.
  • the addition polymerization system block ( ⁇ ) is an optionally hydrogenated isoprene polymer block or hydrogenated as an optionally hydrogenated polymer block (B).
  • the proportion is 30 mol% or more based on the number of moles of all isoprene units and butadiene units contained in the polymer block (B) (preferably 4 It is a mol% or more).
  • the addition polymerization system block ( ⁇ ) has an optionally hydrogenated butadiene polymer block as the optionally hydrogenated polymer block (B), And (4) the proportion of 1,2-bonded butadiene units contained in the polymer block (B) is 60 mol% or more based on the number of moles of all butadiene units contained in the polymer block (B). (Preferably 80 mol% or more).
  • the conjugated diene unit (for example, isoprene unit, butadiene unit, etc.) in the block in which the polymer block (B) is hydrogenated includes a hydrogenated conjugated diene unit (for example, hydrogenated isoprene unit). , Hydrogenated butadiene units, etc.).
  • the bonding form of the polymer block (A) in the addition polymerization system block ( ⁇ ) and the polymer block (B) or a block in which it is hydrogenated is not particularly limited, and is linear, branched or radial. , Or a combined form in which they are combined, but is preferably a linear combined form.
  • the addition polymerization block ( ⁇ ) includes the above polymer block (A) (hereinafter sometimes simply referred to as “A”) and the polymer block (B) or a block in which it is hydrogenated (hereinafter referred to as “A”).
  • the structure is simply represented by “B”, and the structure thereof is represented by the formula: (AB) m -A, (AB) n , B- (AB) p (wherein , M, n, and p each represents an integer of 1 or more).
  • the addition polymerization block ( ⁇ ) has two or more A and one or more B directly. It is preferably in the form of a chain-bonded block copolymer, and more preferably in the form of a triblock copolymer represented by the formula: ABA.
  • the polymer blocks (A) may be blocks having the same contents or different contents.
  • the addition polymerization system block ( ⁇ ) has two or more polymer blocks (B) or a block in which it is hydrogenated
  • the polymer block (B) or the block in which it is hydrogenated has the same content.
  • the block may be a block with different contents.
  • two A in the triblock structure represented by ABA or two B in the triblock structure represented by BAB are aromatic vinyl compounds or conjugates constituting them.
  • the type of diene, the bonding type thereof, the number average molecular weight of the block, etc. may be the same or different.
  • the content of the structural unit derived from the aromatic vinyl compound in the addition polymerization block ( ⁇ ) is preferably in the range of 5 to 90% by mass with respect to the total mass of the addition polymerization block ( ⁇ ).
  • a polyurethane block copolymer having an addition polymerization block ( ⁇ ) in which the content of a structural unit derived from an aromatic vinyl compound is within the above range is further excellent in adhesiveness to silicone.
  • the content of the structural unit derived from the aromatic vinyl compound in the addition polymerization block ( ⁇ ) is more preferably in the range of 10 to 90% by mass with respect to the total mass of the addition polymerization block ( ⁇ ). .
  • the content of structural units derived from an aromatic vinyl compound in the addition polymerization block ( ⁇ ) Is preferably in the range of 5 to 60% by mass, more preferably in the range of 10 to 50% by mass.
  • a structural unit derived from an aromatic vinyl compound in the addition polymerization block ( ⁇ ) The content of is preferably in the range of 40 to 90% by mass, more preferably in the range of 50 to 90% by mass. If the content rate of the said structural unit exists in the preferable range, the thermoplastic polymer composition which was further excellent in adhesiveness with silicone will be obtained.
  • the number average molecular weights of the polymer block (A) and the polymer block (B) are not particularly limited.
  • the number average molecular weight of the polymer block (B) is preferably in the range of 10,000 to 150,000.
  • the polyurethane block copolymer in which the number average molecular weight of each block is within the above range is further excellent in adhesiveness with silicone.
  • the total number average molecular weight of the addition polymerization block ( ⁇ ) is preferably in the range of 10,000 to 300,000, more preferably 20,000 to 100,000, from the viewpoint of adhesion to silicone. Within range.
  • polyurethane block ( ⁇ ) of the polyurethane block copolymer of the present invention Is the following general formula (I);
  • R 1 and R 2 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • R 1 and R 2 are each independently a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. Both R 1 and R 2 may be hydrogen atoms, one may be a hydrogen atom and the other may be an alkyl group, or both may be an alkyl group.
  • R 1 are hydrogen atom, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group, n-pentyl group, cyclopentyl group, n-hexyl group, cyclohexyl group.
  • R 1 is preferably a hydrogen atom, a methyl group, or an ethyl group.
  • R 2 examples include hydrogen atom, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group, n-pentyl group, cyclopentyl group, n-hexyl group, Examples thereof include a cyclohexyl group, and R 2 is preferably a hydrogen atom, a methyl group, or an ethyl group.
  • the structural unit (I) includes the above-mentioned (Ia), (Ib), ( Ic) and (Id) are preferable, and (Ia), (Ib) and (Ic) are more preferable.
  • the polyurethane-based block copolymer of the present invention preferably has the structural unit (I) of the polyurethane block ( ⁇ ) in a proportion of 0.2 to 40% by mass based on the total mass.
  • the content of the structural unit (I) contained in the polyurethane block ( ⁇ ) is less than 0.2% by mass, the adhesion of the resulting polyurethane block copolymer to silicone tends to decrease.
  • the content is more than 40% by mass, the moldability of the obtained polyurethane block copolymer tends to be lowered, and the molding and composite molding obtained from the polyurethane block copolymer have a tendency to deteriorate. Characteristics, heat resistance, weather resistance and the like tend to decrease.
  • the content of the structural unit (I) of the polyurethane block ( ⁇ ) in the polyurethane block copolymer is more preferably 1 to 35% by mass based on the total mass of the polyurethane block copolymer.
  • the content is more preferably 5 to 35% by mass, and particularly preferably 2 to 30% by mass.
  • Polyurethane block (beta) is at least, polymer polyols containing polymer polyol having a structural unit (I) in a molecule (a p -1) and (a p), formed by the reaction of an organic polyisocyanate (b) be able to.
  • the polymer polyol (a p ) is a polymer polyol other than the polymer polyol (a p -1) [that is, a polymer polyol having no structural unit (I), hereinafter referred to as “other polymer polyol (a p -2)”. It may be abbreviated].
  • the polyurethane block ( ⁇ ) is preferably formed by the reaction of the polymer polyol (a p ), the organic polyisocyanate (b) and the chain extender (c). These reactions are preferably carried out in the presence of a urethanization reaction catalyst comprising at least one metal compound selected from the group consisting of an organic zinc compound, an organic bismuth compound, an organic titanium compound and an organic zirconium compound.
  • the hydroxyl group which said polymer polyol ( ap ) has is located in the molecular terminal.
  • the hydroxyl group located at the molecular end is involved in the main chain extension during polyurethane formation.
  • the number of hydroxyl groups in the polymer polyol (a p ) is preferably 0.7 or more on average per molecule, more preferably 0.7 to 3, and preferably 1.8 to 2.5. More preferably it is.
  • the number average molecular weight of the polymer polyol (a p ) is preferably 500 to 10,000, more preferably 500 to 8,000, still more preferably 600 to 5,000, and particularly preferably 800 to 5,000.
  • a polymer polyol (a p ) having a preferred number average molecular weight, non-adhesiveness, melt moldability, mechanical properties (such as wear resistance and tensile breaking strength), flexibility, flexibility, low residual strain Polyurethane block copolymer, molded body, composite molded body and the like having excellent properties and oil resistance can be obtained.
  • the number average molecular weights of the polymer polyol (a p -1) and the other polymer polyol (a p -2) used in the above case are preferably 500 to 10,000, more preferably 500 to 8,000, It is preferably 600 to 5,000, particularly preferably 800 to 5,000.
  • a polymer polyol ( ap- 1) having a number average molecular weight and another polymer polyol ( ap- 2) a polyurethane block copolymer excellent in non-adhesiveness, mechanical strength, heat resistance, etc., molding Body, composite molded body and the like can be obtained.
  • the number average molecular weight of the polymer polyol referred to in the present specification is a number average molecular weight calculated based on a hydroxyl value measured in accordance with JIS K-1557.
  • the number of hydroxyl groups per molecule in the polymer polyol (a p -1) and the other polymer polyol (a p -2) is preferably 2.0 to 2.1, more preferably 2.0 to It is in the range of 2.07, particularly preferably 2.005 to 2.05.
  • a polymer polyol (a p -1) having a preferred number of hydroxyl groups and another polymer polyol (a p -2) are used, a polyurethane block excellent in moldability, non-adhesiveness, mechanical properties (for example, abrasion resistance), etc.
  • a copolymer can be obtained.
  • the molecular weight of the polymer polyol (a p -2), the molecular weight and amount of the organic polyisocyanate (b), the molecular weight and amount of the chain extender (c), and the like can be adjusted.
  • the content of the structural unit (I) in the finally obtained polyurethane block copolymer is preferably in the range of 0.2 to 40% by mass, more preferably 1 to 35% by mass.
  • the polymer polyol (a p -1) in the polymer polyol (a p ) so that it is in the range of 1.5 to 35% by mass, more preferably in the range of 2 to 30% by mass.
  • the content rate may be adjusted.
  • the polymer polyol (a p -1) having the structural unit (I) in the molecule the polymer polyol having a desired amount of the structural unit (I) in the molecule and having a plurality of hydroxyl groups reactive with isocyanate groups Any may be used.
  • polystyrene polyol examples include polybutadiene polyol in which butadiene is mainly polymerized by 1,2-bonds; polyisoprene polyol in which isoprene is polymerized mainly by 1,2-bonds and / or 3,4-bonds; A butadiene / isoprene copolymer polyol in which isoprene is polymerized mainly by 1,2-bonds and / or 3,4-bonds; butadiene and / or isoprene is predominantly by 1,2-bonds and / or 3,4-bonds Polymerized butadiene and / or isoprene and other monomers [eg styrene, ⁇ -methylstyrene, 3-methylstyrene, 4-propylstyrene, 4-cyclohexylstyrene, 4-dodecylstyrene, 2-ethyl-4-benzylstyrene, 4- (P
  • the polymer polyol (a p -1) is preferably at least one selected from the group consisting of polybutadiene polyol, polyisoprene polyol and butadiene / isoprene copolymer polyol.
  • the total proportion of 1,2-bond units and 3,4-bond units in all structural units derived from butadiene and / or isoprene is generally 80 to 100 mol%. Preferably, it is 85 to 100 mol%, more preferably 90 to 100 mol%.
  • the proportion of the structural unit derived from butadiene and / or isoprene in the copolymer polyol is preferably 80% by mass or more, more preferably 85%. It is 90% by mass or more, particularly preferably 90 to 99% by mass. With such a ratio, a desired amount of the structural unit (I) can be easily contained in the copolymer polyol, and adhesiveness with silicone is effectively expressed.
  • polymer polyol (a p) As part of the polymer polyol (a p), as the other polymer polyols that may be used with the polymer polyol having a structural unit (I) (a p -1) (a p -2), conventionally used for the production of polyurethane Any polymer polyol can be used.
  • Such other polymer polyols include polyester polyols, polyether polyols, polycarbonate polyols, polyester polycarbonate polyols, polyolefin polyols, castor oil-based polyols, vinyl polymer-based polyols, etc. (however, the structural unit (I )).
  • These other polymer polyols (a p -2) may be used alone or in combination of two or more.
  • polyester polyol, polyether polyol, and polyolefin polyol are preferable, and polyester polyol and / or polyether polyol are more preferable.
  • polyester polyol examples include (1) a polyol component and a polycarboxylic acid component [polycarboxylic acid or an ester-forming derivative thereof (for example, an ester thereof) according to a conventional method.
  • Polyester anhydride obtained by direct esterification reaction or transesterification reaction; and (2) polyester polyol obtained by ring-opening polymerization of a lactone using a polyol as an initiator; be able to.
  • the aforementioned polyol component (a diol diol having two hydroxyl groups per molecule and a polyol having three or more hydroxyl groups per molecule) used in the production of a polyester polyol obtained by reacting a polyol component and a polycarboxylic acid component is: Any of those generally used in the production of polyester may be used.
  • diol examples include aliphatic diols having 2 to 15 carbon atoms (for example, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, 1,3-propanediol, 2-methyl-1,3-propanediol, 2,2 -Diethyl-1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 2-methyl-1,4-butanediol, neopentyl glycol, 1,5-pentanediol, 3-methyl- 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 2-methyl-1,8-octanediol, 2,7-dimethyl-1,8-octane Diol, 1,9-nonanediol, 2-methyl-1,9-n
  • the polycarboxylic acid component that can be used in the production of a polyester polyol obtained by reacting a polyol component and a polycarboxylic acid component may be any as long as it is generally used in the production of polyester.
  • aliphatic dicarboxylic acids having 4 to 12 carbon atoms for example, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid, methylsuccinic acid, 2-methylglutaric acid, 3- Methyl glutaric acid, trimethyladipic acid, 2-methyloctanedioic acid, 3,8-dimethyldecanedioic acid, 3,7-dimethyldecanedioic acid, etc.); alicyclic dicarboxylic acids (eg cyclohexanedicarboxylic acid, dimer acid, water) Dimer acid, etc.]; aromatic dicarboxy
  • polycarboxylic acid components may be used individually by 1 type, and may use 2 or more types together.
  • aliphatic dicarboxylic acids having 6 to 12 carbon atoms, particularly one or more of adipic acid, azelaic acid and sebacic acid are preferably used.
  • lactones used in the production of polyester polyols obtained by ring-opening polymerization of lactones include ⁇ -caprolactone and ⁇ -methyl- ⁇ -valerolactone.
  • polyether polyol examples include polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polytetramethylene glycol obtained by ring-opening polymerization of a cyclic ether in the presence of the polyol.
  • polytetramethylene glycol examples include polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polytetramethylene glycol obtained by ring-opening polymerization of a cyclic ether in the presence of the polyol.
  • Methodyl tetramethylene glycol and the like can be mentioned. These may be used alone or in combination of two or more. Of these, polytetramethylene glycol and poly (methyltetramethylene glycol) are preferred.
  • Examples of the polycarbonate polyol that can be used as the other polymer polyol (a p -2) include those obtained by reacting a polyol with a carbonate compound (eg, dialkyl carbonate, alkylene carbonate, diaryl carbonate, etc.).
  • a carbonate compound eg, dialkyl carbonate, alkylene carbonate, diaryl carbonate, etc.
  • the polyol component illustrated previously as a component used for manufacture of a polyester polyol can be used.
  • Examples of the dialkyl carbonate include dimethyl carbonate and diethyl carbonate
  • examples of the alkylene carbonate include ethylene carbonate
  • examples of the diaryl carbonate include diphenyl carbonate.
  • polyester polycarbonate polyol that can be used as the other polymer polyol (a p -2) include, for example, (1) those obtained by reacting a polyol, a polycarboxylic acid and a carbonate compound at the same time; And a compound obtained by reacting it with a carbonate compound; and (3) a compound obtained by previously synthesizing a polycarbonate polyol and then reacting with a polycarboxylic acid.
  • polystyrene copolymer polyol examples include conjugated dienes such as polyisoprene polyol, polybutadiene polyol, butadiene / isoprene copolymer polyol, butadiene / acrylonitrile copolymer polyol, and butadiene / styrene copolymer polyol.
  • conjugated dienes such as polyisoprene polyol, polybutadiene polyol, butadiene / isoprene copolymer polyol, butadiene / acrylonitrile copolymer polyol, and butadiene / styrene copolymer polyol.
  • Examples thereof include hydrogenated products of polymer polyols.
  • the conjugated diene polymer polyol is obtained by subjecting only a conjugated diene (for example, butadiene, isoprene, etc.) or a conjugated diene and another monomer to living polymerization in the presence of a polymerization initiator, and then a hydroxyl group-containing epoxy compound at the polymerization active terminal. It can be obtained by reaction.
  • the said hydrogenation thing may be used individually by 1 type, and may use 2 or more types together.
  • the type of the organic polyisocyanate (b) is not particularly limited, and any organic polyisocyanate conventionally used in the production of polyurethane can be used.
  • the organic polyisocyanate (b) include aromatic diisocyanates (for example, 4,4′-diphenylmethane diisocyanate, tolylene diisocyanate, phenylene diisocyanate, xylylene diisocyanate, 1,5-naphthylene diisocyanate, 3,3′-dichloro-4, 4'-diphenylmethane diisocyanate, etc.); and aliphatic or cycloaliphatic diisocyanates (eg, hexamethylene diisocyanate, isophorone diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, hydrogenated xylylene diisocyanate, etc.). These organic polyisocyanates may be used alone or in combination of two or more. Of the
  • chain extender (c) a low molecular weight compound having a molecular weight of 450 or less and having two or more active hydrogen atoms, which is usually used as a chain extender in the production of polyurethane, can be used.
  • chain extender (c) that can be used in the present invention include diols (for example, ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, 1,4-bis ( ⁇ -hydroxyethoxy).
  • the molecular weight is in the range of 100 to 450, and two or more active hydrogen atoms and the structural unit (I) are included. You may use the compound which has as chain extender (c).
  • the polyurethane block copolymer of the present invention is (I) a functional group-containing addition polymerization block copolymer; (Ii) a polymer polyol containing a polymer polyol having a structural unit (I) that in the molecule represented by the above general formula (I) (a p -1) (a p); (Iii) an organic polyisocyanate (b); and optionally (iv) a chain extender (c) Can be obtained by a production method including a step of reacting (hereinafter, sometimes abbreviated as “production method 1”).
  • the functional group-containing addition polymerization block copolymer is a functional group capable of reacting with at least one component selected from the group consisting of a polymer polyol (a p ), an organic polyisocyanate (b), and a chain extender (c).
  • the production method 1 includes a reaction product of the polymer polyol (a p ), the organic polyisocyanate (b) and a chain extender (c) as an optional component, the functional group-containing addition polymerization block copolymer, A mode in which is reacted is included.
  • the polyurethane block copolymer of the present invention is (I) a polymer containing a polymer polyol having a structural unit (I) that in the molecule represented by the above general formula (I) (a p -1) polyol (a p); (Ii) an organic polyisocyanate (b); and optionally (iii) a chain extender (c) Polyurethane formed by reacting with (Iv) It can also be obtained by a production method including a step of reacting a functional group-containing addition polymerization block copolymer (hereinafter sometimes abbreviated as “production method 2”). The description of the functional group-containing addition polymerization block copolymer of Production Method 2 is the same as that of Production Method 1 above.
  • Examples of the reactive functional group possessed by the functional group-containing addition polymerization block copolymer include functional groups that can react with the polymer polyol (a p ) and / or the chain extender (c) (for example, carboxyl groups, acid anhydrides). Groups, thiocarboxyl groups, isocyanate groups, etc.), and functional groups that can react with the organic polyisocyanate (b) (for example, hydroxyl groups, amino groups, mercapto groups, carboxyl groups, acid anhydride groups, thiocarboxyl groups, isocyanate groups, etc.) Is mentioned.
  • the functional group-containing addition polymerization block copolymer may contain two or more of these functional groups.
  • the reactive functional group is preferably a functional group capable of reacting with the organic polyisocyanate (b), more preferably a hydroxyl group. If a functional group-containing addition polymerization block copolymer containing a hydroxyl group is used, a uniform polyurethane-forming reaction can be performed in the production of the polyurethane block copolymer.
  • the reactive functional group is preferably located at the end of the functional group-containing addition polymerization block copolymer.
  • the reactive functional group is involved in the main chain extension by the polyurethane formation reaction when the polyurethane block copolymer is produced.
  • the polyurethane block copolymer thus obtained is further excellent in adhesiveness with silicone.
  • the number of reactive functional groups is preferably an average of 0.6 or more, more preferably 0.7 or more per molecule per molecule of the functional group-containing addition polymerization block copolymer.
  • the production method of the functional group-containing addition polymerization block copolymer is not limited in any way, and examples thereof include ionic polymerization methods (anionic polymerization methods and cationic polymerization methods), single site polymerization methods, radical polymerization methods, and the like. be able to.
  • anionic polymerization method for example, an aromatic vinyl compound and a conjugated diene are sequentially polymerized in an inert organic solvent (eg, n-hexane, cyclohexane, etc.) using a polymerization initiator (eg, an alkyl lithium compound).
  • a compound having an oxirane skeleton for example, ethylene oxide, propylene oxide, styrene oxide, etc.
  • a lactone compound for example, ⁇ -caprolactone, ⁇ -propiolactone, dimethylpropiolactone ( Pivalolactone), methylvalerolactone, etc.
  • an active hydrogen-containing compound for example, alcohols, carboxylic acids, water, etc.
  • the obtained block copolymer is subjected to hydrogenation reaction in an inert organic solvent (eg, n-hexane, cyclohexane, etc.) in the presence of a hydrogenation reaction catalyst (eg, a Ziegler catalyst comprising an alkylaluminum compound and cobalt, nickel, etc.).
  • a hydrogenation reaction catalyst eg, a Ziegler catalyst comprising an alkylaluminum compound and cobalt, nickel, etc.
  • the hydrogenated product can also be obtained by hydrogenation under the conditions of a reaction temperature of 20 to 150 ° C. and a hydrogen pressure of 1 to 150 kg / cm 2 .
  • the block copolymer before or after hydrogenation may be modified with maleic anhydride or the like.
  • the number average molecular weight of the functional group-containing addition polymerization block copolymer is preferably in the range of 15,000 to 300,000, and more preferably in the range of 20,000 to 100,000.
  • the number average molecular weight of the functional group-containing addition polymerization block copolymer is a value measured in terms of standard polystyrene by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • MFR melt flow rate of the functional group-containing addition polymerization block copolymer measured at 230 ° C. under a load of 2.16 kg is preferably in the range of 0.01 to 100 g / 10 min.
  • melt flow rate (MFR) of the functional group-containing addition polymerization block copolymer measured at 230 ° C. under a load of 2.16 kg is more preferably in the range of 0.05 to 80 g / 10 minutes.
  • the melt flow rate of the functional group-containing addition polymerization block copolymer is a value measured according to ASTM D-1238.
  • the reaction of the above production methods 1 and 2 (in production method 2, at least one of the two reactions, preferably two reactions, the same shall apply hereinafter) is melt kneaded in the absence of a solvent. Preferably it is done. In particular, the reaction is more preferably carried out by continuously melt-kneading using a multi-screw extruder.
  • the melt kneading temperature is generally in the range of 180 to 280 ° C., preferably in the range of 200 to 260 ° C.
  • the urethanization reaction catalyst may be abbreviated as at least one metal compound selected from the group consisting of an organic zinc compound, an organic bismuth compound, an organic titanium compound, and an organic zirconium compound (hereinafter referred to as “metal compound (M)”). .) Is preferably used. By doing so, a polyurethane block copolymer composition containing at least one metal compound (M) together with the polyurethane block copolymer is obtained.
  • an organic titanium compound and / or an organic zirconium compound are preferably used, and an organic titanium compound is more preferably used.
  • the polyurethane system containing the catalyst obtained thereby is used.
  • the block copolymer composition and the thermoplastic polymer composition of the present invention described later tend to have poor adhesion to silicone.
  • the reason may be that the organotin compound and / or the tertiary amine causes a decrease in the curing function of a silicone curing catalyst (for example, a platinum catalyst), but the exact reason is not clear. From this point, it is preferable that the polyurethane block copolymer composition and the thermoplastic polymer composition of the present invention described later do not contain an organic tin compound and a tertiary amine.
  • organic zinc compound examples include zinc acetylacetonate, zinc propionate, zinc octoate, zinc 2-ethylhexanoate, zinc neodecanoate, zinc laurate, zinc stearate, zinc linoleate, zinc naphthenate, Examples thereof include zinc benzoate and zinc salicylate.
  • organic bismuth compound examples include bis (acetylacetone) bismuth, bismuth 2-ethylhexanoate, bismuth neodecanoate, and bismuth salicylate.
  • organic titanium compounds include tetraalkoxy titanium compounds such as tetraisopropyl titanate, tetra-n-butyl titanate, tetra-2-ethylhexyl titanate, and tetrastearyl titanate; titanium acylate compounds such as polyhydroxy titanium stearate; Examples include titanium chelate compounds such as titanium acetylacetonate, triethanolamine titanate, titanium ammonium lactate, titanium ethyl lactate, and titanium octylene glycol.
  • titanium chelate compounds such as titanium acetylacetonate, triethanolamine titanate, titanium ammonium lactate, titanium ethyl lactate, and titanium octylene glycol.
  • organic zirconium compound examples include zirconium tetraisopropoxide, zirconium tetra-n-butoxide, zirconium tetra-t-butoxide, zirconium 2-ethylhexanoate, zirconium neodecanoate, zirconium acetylacetonate and the like. it can.
  • the metal compound (M) is preferably used in an amount in the range of 0.1 to 2,000 mass ppm (0.2 mass%) with respect to the mass of the polyurethane block copolymer to be obtained.
  • amount of the metal compound (M) used is less than 0.1 mass ppm, the melt-formability of the resulting polyurethane block copolymer and the adhesion to silicone tend to be reduced.
  • usage-amount of the said metal compound (M) exceeds 2,000 mass ppm, there exists a tendency for the melt moldability (especially melt residence stability) of a polyurethane-type block copolymer to fall.
  • the amount of the metal compound (M) used is more preferably in the range of 0.5 to 200 ppm by mass, and still more preferably in the range of 1 to 200 ppm by mass, with respect to the mass of the resulting polyurethane block copolymer. Particularly preferably, it is in the range of 1 to 100 ppm by mass.
  • the present invention contains the polyurethane block copolymer of the present invention and at least one metal compound (M), and the content of the metal compound (M) is based on the mass of the polyurethane block copolymer.
  • a polyurethane block copolymer composition having a content of 0.1 to 2,000 ppm by mass (preferably 0.5 to 200 ppm by mass, more preferably 1 to 200 ppm by mass, and even more preferably 1 to 100 ppm by mass). Include.
  • the polyurethane block copolymer composition may be abbreviated as at least one compound selected from the group consisting of a phosphorus compound and a phenol compound (hereinafter referred to as “compound (Q)”) together with the metal compound described above. ) Is preferably contained.
  • the compound (Q) functions as a deactivator of the above-described metal compound that can be used as a urethanization reaction catalyst, and the processing stability and durability (water resistance, heat resistance) of the polyurethane block copolymer composition. , Weather resistance, etc.) can be made better.
  • the compound (Q) is mainly used for the purpose of deactivation of the metal compound, it is preferably added after completion of the urethane forming reaction.
  • phosphorus compounds which is one of the compounds (Q)
  • phosphorus compounds represented by the following general formulas (IIa) to (IIc) are preferable.
  • R 3 to R 5 each independently represents a hydrogen atom or a monovalent hydrocarbon group, a and b each represents 0 or 1; in the formula (IIb), R 6 and R 7 represent Each independently a monovalent hydrocarbon group, d, e, f and g each represents 0 or 1; in formula (IIc), R 8 to R 11 are each independently a monovalent hydrocarbon group, R 12 is a divalent hydrocarbon group, h, i, j and k each represents 0 or 1; ]
  • the monovalent hydrocarbon group of R 3 to R 11 is preferably a hydrocarbon group having 1 to 30 carbon atoms.
  • the hydrocarbon group include aliphatic hydrocarbon groups (for example, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, octyl group, isooctyl group, 2-ethylhexyl group, nonyl group, decyl group, dodecyl group).
  • the aromatic hydrocarbon group may have a substituent such as a halogen atom, an alkoxy group, a phenoxy group or a hydroxyl group on the aromatic ring.
  • the divalent hydrocarbon group for R 12 is preferably a divalent hydrocarbon group having 1 to 50 carbon atoms.
  • the divalent hydrocarbon group include a divalent aliphatic hydrocarbon group (for example, a methylene group, an ethylene group, a propylene group, and a butylene group); a divalent alicyclic hydrocarbon group (for example, a cyclohexylene group); A divalent aromatic hydrocarbon group (for example, a phenylene group, a biphenylene group, a 4,4′-butylidene-bis (3-methyl-6-tert-butylphenyl) group, a 4,4′-isopropylidene diphenyl group, etc.) Can be mentioned.
  • the divalent aromatic hydrocarbon group may have a substituent such as a halogen atom, an alkoxy group, a phenoxy group or a hydroxyl group on the aromatic ring.
  • Examples of the phosphorus compound represented by the formula (IIa) include phosphorous acid; phosphoric acid; phosphite ester [for example, methyl phosphite, ethyl phosphite, isopropyl phosphite, butyl phosphite, 2-ethylhexyl phosphite.
  • Examples of the phosphorus compound represented by the formula (IIb) include phosphites [for example, didodecyl pentaerythritol diphosphite, bis (octadecyl) pentaerythritol diphosphite, bis (nonylphenyl) pentaerythritol diphosphite.
  • Examples of the phosphorus compound represented by the above formula (IIc) include phosphites [for example, 4,4′-butylidene-bis (3-methyl-6-tert-butylphenylditridecyl) phosphite, 4,4 '-Isopropylidenediphenoltetrakis (tridecyl) diphosphite etc.]; phosphonites [eg tetrakis (2,4-di-t-butylphenyl) -4,4'-biphenylenephosphonite etc.] and the like.
  • phosphites for example, 4,4′-butylidene-bis (3-methyl-6-tert-butylphenylditridecyl) phosphite, 4,4 '-Isopropylidenediphenoltetrakis (tridecyl) diphosphite etc.
  • phosphonites eg tetrakis (2,4-d
  • the above phosphorus compounds may be used alone or in combination of two or more.
  • phosphate esters and diesters of phosphonic acid derivatives are preferred, and lauryl phosphate, oleyl phosphate, stearyl phosphate, dilauryl phosphate, dioleyl phosphate, distearyl phosphate, tris (2-ethylhexyl) phosphate, bis (octadecyl)
  • Particularly preferred are pentaerythritol diphosphate, diethyl phenylphosphonate, diethyl 3,5-di-t-butyl-4-hydroxybenzylphosphonate.
  • Examples of the phenolic compound that is one of the compounds (Q) include hindered phenolic compounds [for example, 2,2′-methylenebis (4-methyl-6-t-butylphenol), 2-butyl-6- (3′-t-butyl-2′-hydroxy-5′-methylbenzyl) -4-methylphenyl acrylate, 2- [1- (2-hydroxy-3,5-dipentylphenyl) ethyl] -4,6- Dipentylphenyl acrylate, 4,4′-butylidenebis (3-methyl-6-tert-butylphenol), 4,4′-thiobis (3-methyl-6-tert-butylphenol), triethylene glycol-bis [3- (3 -T-butyl-5-methyl-4-hydroxyphenyl) propionate], 1,1,3-tris (2-methyl-4-hydroxy- -T-butylphenyl) butane, 1,3,5- (t-butyl-3-hydroxy-2,6-dimethylbenzyl) -1,
  • the amount used is preferably 1 to 20,000 mass ppm (2 mass%) based on the mass of the polyurethane block copolymer.
  • the usage-amount of the said compound (Q) is less than 1 mass ppm, the melt moldability (especially melt residence stability) of a polyurethane-type block copolymer composition may fall.
  • the amount of the compound (Q) used exceeds 20,000 mass ppm (2 mass%), there are the following problems (1) to (3): (1) Obtained polyurethane block copolymer composition There exists a tendency for the surface state of the molded object comprised from a thing to be impaired.
  • the amount of the compound (Q) used is more preferably in the range of 5 to 2,000 ppm by mass (0.2% by mass), more preferably 5 to 1, based on the mass of the polyurethane block copolymer. It is within the range of 000 mass ppm (0.1 mass%), particularly preferably within the range of 5 to 500 mass ppm, and most preferably within the range of 10 to 250 mass ppm.
  • the blending ratio of the compound (Q) to the metal compound (M) will be described.
  • the ratio of the phosphorus atom in the phosphorus compound is preferably relative to 1 mol of the metal atom in the metal compound (M) present in the polyurethane block copolymer composition. Is from 0.1 to 500 mol, more preferably from 0.2 to 200 mol, and even more preferably from 0.5 to 100 mol.
  • the proportion of the hydroxyl group of the phenol compound is preferably relative to 1 mol of the metal atom in the metal compound (M) present in the polyurethane block copolymer composition. Is 1 to 5,000 mol, more preferably 2 to 2,000 mol, still more preferably 5 to 1,000 mol.
  • an organic polyisocyanate is used per 1 mol of active hydrogen atoms contained in the polymer polyol (a p ) and the chain extender (c).
  • the ratio of the isocyanate group that (b) has is preferably in the range of 0.9 to 1.3 mol.
  • the polyurethane block copolymer obtained by performing the polyurethane forming reaction at the above ratio is further excellent in adhesiveness with silicone.
  • the content of nitrogen atoms derived from isocyanate groups is the polyurethane block ( ⁇ ) obtained in production method 1 or production method 2 Is preferably in the range of 1 to 6.5% by mass based on the mass of the polyurethane obtained in (1).
  • the polyurethane block copolymer obtained by performing the polyurethane forming reaction at the above ratio is further excellent in adhesiveness with silicone.
  • the content of nitrogen atoms derived from the isocyanate group is more preferably in the range of 1 to 6% by mass based on the mass of the polyurethane block ( ⁇ ) obtained by Production Method 1 or the polyurethane obtained by Production Method 2. It is preferably in the range of 1.3 to 5.5% by mass, particularly preferably in the range of 1.6 to 5% by mass.
  • Production method 2 includes an embodiment in which a reaction mixture of a polymer polyol (a p ), an organic polyisocyanate (b), and optionally a chain extender (c) is reacted with a functional group-containing addition polymerization block copolymer. .
  • the reaction mixture also includes a urethane prepolymer.
  • the reaction mixture may contain an unreacted raw material (for example, polymer polyol or the like) or may be post-treated according to a conventional method.
  • a commercial product of a urethane prepolymer formed from a polymer polyol ( ap ), an organic polyisocyanate (b) and optionally a chain extender (c) can also be used as part of the reaction mixture.
  • a functional group-containing addition polymerization block copolymer When a polyurethane block copolymer is produced by production methods 1 and 2, a functional group-containing addition polymerization block copolymer, a polymer polyol (a p ), an organic polyisocyanate (b), and a chain extender as an optional component
  • the ratio to (c) is [mass of functional group-containing addition polymerization block copolymer]: [mass of polymer polyol (a p ) + mass of organic polyisocyanate (b) + mass of chain extender (c) ] Is preferably within the range of 10:90 to 90:10, more preferably within the range of 20:80 to 80:20, and further preferably within the range of 30:70 to 70:30. preferable.
  • the polyurethane block copolymer obtained by the production methods 1 and 2 includes an unreacted functional group-containing addition polymerization block copolymer, an unreacted polymer polyol (a p ), It may be obtained as a polymer composition containing unreacted organic polyisocyanate (b) or unreacted chain extender (c). These contents vary depending on the reaction conditions such as the ratio of raw materials used in the reaction and the reaction temperature.
  • the said polymer composition may contain the polyurethane formed from a polymer polyol ( ap ), organic polyisocyanate (b), and the chain extender (c) as an arbitrary component.
  • the block copolymer composition described above has a polymer block (A) and a polymer block (B), and has no functional group, or a hydrogenated product (addition polymerization block ( ⁇ And a polymer having the same structure as
  • the polymer composition obtained by the above method is pelletized as necessary, and further pulverized to an appropriate size, and then treated with a polyurethane good solvent (such as dimethylformamide),
  • a polyurethane good solvent such as dimethylformamide
  • the polyurethane that did not react with the functional group-containing addition polymerization block copolymer (if present in the polymer composition) is removed, and then a good solvent for the functional group-containing addition polymerization block copolymer
  • a good solvent for the functional group-containing addition polymerization block copolymer For example, when it is present in the polymer composition, it is treated with an unreacted functional group-containing addition polymerization block copolymer and a polymer having the same structure as the addition polymerization block ( ⁇ ). ) Is extracted and removed, and the remaining solid is dried to obtain a polyurethane block copolymer.
  • thermoplastic polymer composition of the present invention contains the above-mentioned polyurethane block copolymer of the present invention and a thermoplastic polymer other than the polyurethane block copolymer.
  • the thermoplastic polymer is not particularly limited, but polyamide, polyester, polyvinylidene chloride, polyvinyl chloride, polycarbonate, acrylic resin, polyoxymethylene resin, saponified ethylene-vinyl acetate copolymer, aromatic vinyl
  • the compound is a copolymer of at least one selected from a vinyl cyanide compound, a conjugated diene and an olefin; a polyurethane; a styrenic polymer; and at least one selected from the group consisting of polyolefins. preferable.
  • polyamide those having an amide bond (—CO—NH—) in the polymer main chain and capable of being melted by heating can be used.
  • polyamide obtained by ring-opening polymerization of a lactam having 3 or more members polylactam
  • polyamide obtained by polycondensation of ⁇ -amino acid polycondensation of dicarboxylic acid and diamine Polyamide obtained; and the like, and one or more of these polyamides
  • specific examples of the lactam include ⁇ -caprolactam, enantolactam, capryllactam, lauryllactam, ⁇ -pyrrolidone and the like.
  • Specific examples of the ⁇ -amino acid include 6-aminocaproic acid, 7-aminoheptanoic acid, 9-aminononanoic acid, 11-aminoundecanoic acid and the like.
  • examples of the dicarboxylic acid used as a raw material for polyamide include aliphatic dicarboxylic acids (for example, malonic acid, dimethylmalonic acid, succinic acid, 2,2-diethylsuccinic acid, glutaric acid, 2,2-dimethylglutaric acid).
  • aliphatic dicarboxylic acids for example, malonic acid, dimethylmalonic acid, succinic acid, 2,2-diethylsuccinic acid, glutaric acid, 2,2-dimethylglutaric acid.
  • Adipic acid sebacic acid, suberic acid, etc.
  • alicyclic dicarboxylic acids eg, 1,3-cyclopentanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, etc.
  • aromatic dicarboxylic acids eg, terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,4-phenylenedioxydiacetic acid, 1,3-phenylenedioxydiacetic acid, diphenic acid, 4,4 '-Oxydibenzoic acid, diphenylmethane-4,4'-dicarboxylic acid, diphenylsulfone-4, '- dicarboxylic acid, 4,4'-diphenyl dicarboxylic acid, etc.); and the like.
  • diamine examples include aliphatic diamines (for example, ethylenediamine, propylenediamine, 1,4-butanediamine, 1,6-hexanediamine, 1,8-octanediamine, 1,9-nonanediamine, 1,10-decane).
  • aliphatic diamines for example, ethylenediamine, propylenediamine, 1,4-butanediamine, 1,6-hexanediamine, 1,8-octanediamine, 1,9-nonanediamine, 1,10-decane.
  • alicyclic diamines eg, cyclohexanediamine, methylcyclohexanediamine, isophoronediamine, etc
  • polyester those having an ester bond in the polymer main chain and capable of being melted by heating can be used.
  • polyester obtained by reaction of dicarboxylic acid component and diol component; (2) polyester obtained by ring-opening polymerization of lactone (polylactone); (3) hydroxycarboxylic acid or its ester-forming derivative And polyester obtained by condensation.
  • a polyester substantially formed from a dicarboxylic acid component and a diol component is preferable.
  • dicarboxylic acid component used as a raw material for the polyester examples include aromatic dicarboxylic acids (for example, terephthalic acid, phthalic acid, isophthalic acid, naphthalenedicarboxylic acid, bis (p-carboxyphenyl) methane, anthracene dicarboxylic acid, 4,4 '-Oxydibenzoic acid, sodium 5-sulfoisophthalate, tetrabromophthalic acid, etc.); saturated aliphatic dicarboxylic acids (eg glutaric acid, adipic acid, pimelic acid, suberic acid, sebacic acid, azelaic acid, etc.); alicyclic And dicarboxylic acids (for example, cyclohexane dicarboxylic acid); unsaturated aliphatic dicarboxylic acids (for example, maleic acid, fumaric acid, itaconic acid, etc.); and ester-forming derivatives thereof.
  • diol component used as a raw material for the polyester examples include aliphatic diols (for example, ethylene glycol, propylene glycol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexane).
  • aliphatic diols for example, ethylene glycol, propylene glycol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexane.
  • alicyclic diols eg cyclohexanedimethanol, cyclohexanediol etc.
  • polyalkylene glycols having a molecular weight of 6,000 or less eg diethylene glycol, polyethylene glycol, polypropylene glycol
  • the polyester may contain one or more structural units derived from, for example, a trifunctional or higher functional compound (glycerin, trimethylolpropane, pentaerythritol, trimellitic acid, pyromellitic acid, etc.). You may have a small amount.
  • a trifunctional or higher functional compound glycolin, trimethylolpropane, pentaerythritol, trimellitic acid, pyromellitic acid, etc.
  • polyvinylidene chloride examples include a polymer having a structural unit derived from vinylidene chloride, preferably in a proportion of 50% by mass or more, more preferably in a proportion of 70 to 98% by mass.
  • a copolymer of polyvinylidene chloride and one or more other unsaturated monomers for example, vinyl chloride, acrylonitrile, acrylic acid ester, acrylic acid, etc.
  • the degree of polymerization of polyvinylidene chloride is not particularly limited, but in general, the degree of polymerization is preferably in the range of 100 to 10,000, more preferably in the range of 400 to 5,000.
  • polyvinyl chloride examples include homopolymers and copolymers of vinyl chloride. These may be used alone or in combination of two or more.
  • vinyl chloride copolymer those having a structural unit derived from vinyl chloride in a proportion of 70% by mass or more are preferable.
  • Polyvinyl chloride copolymers include vinyl chloride and one or more other copolymerizable monomers (eg, ethylene, propylene, vinyl acetate, vinyl bromide, vinylidene chloride, acrylonitrile, maleimide, etc.) And a copolymer are preferred.
  • the degree of polymerization of polyvinyl chloride is not particularly limited, but the degree of polymerization is preferably in the range of 100 to 10,000, more preferably in the range of 400 to 5,000.
  • polycarbonate examples include polycarbonate obtained by reacting a dihydroxy compound with phosgene, a carbonic acid diester, or a haloformate.
  • raw material dihydroxy compound examples include aromatic dihydroxy compounds (for example, 2,2-bis (4-hydroxyphenyl) propane [bisphenol A], tetramethylbisphenol A, tetrabromobisphenol A, bis (4-hydroxyphenyl) -p. -Diisopropylbenzene, hydroquinone, resorcinol, etc.), among which bisphenol A is preferred.
  • acrylic resin examples include acrylic resins mainly composed of structural units derived from (meth) acrylic acid esters.
  • the ratio of the structural unit derived from the (meth) acrylic acid ester in the acrylic resin is preferably 50% by mass or more, and more preferably 80% by mass or more.
  • examples of the (meth) acrylic acid ester constituting the structural unit of the acrylic resin include alkyl esters of (meth) acrylic acid (for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate) Butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and the like.
  • the acrylic resin can have one or more structural units derived from these (meth) acrylic acid esters.
  • acrylic resin may have 1 type, or 2 or more types of structural units induced
  • the acrylic resin may have a structural unit derived from a vinyl cyanide monomer (for example, (meth) acrylonitrile or the like), preferably in a proportion of 50% by mass or less.
  • the acrylic resin has a structure derived from an aromatic vinyl compound (for example, styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, o-chlorostyrene, m-chlorostyrene, p-chlorostyrene, etc.). You may have a unit in the ratio of preferably 10 mass% or less.
  • aromatic vinyl compound for example, styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, o-chlorostyrene, m-chlorostyrene, p-chlorostyrene, etc.
  • the polyoxymethylene resin is a polymer compound having an oxymethylene group as a main structural unit.
  • the polyoxymethylene resin include: (1) a polymer composed of one or more oxymethylene monomers (for example, formaldehyde, trioxane, tetraoxane, etc.); (2) the oxymethylene monomer; Copolymers comprising other cyclic ethers (ethylene oxide, propylene oxide, oxacyclobutane, 1,3-dioxolane, etc.); (3) the oxymethylene monomers and cyclic esters (for example, ⁇ -propiolactone, ⁇ A copolymer with -butyrolactone, etc.).
  • a terminal-modified polyoxymethylene resin can also be used.
  • a terminal-modified polyoxymethylene resin whose terminal is acetylated with acetic anhydride or the like has better heat resistance than an unmodified one.
  • Examples of the saponified ethylene-vinyl acetate copolymer include those having an ethylene unit in the range of 20 to 60 mol% (more preferably 25 to 60 mol%) and a saponification degree of 95 mol% or more. Preferably used.
  • the melt index of the saponified ethylene-vinyl acetate copolymer is preferably in the range of 0.1 to 25 g / 10 minutes, and more preferably in the range of 0.3 to 20 g / 10 minutes.
  • a saponified ethylene-vinyl acetate copolymer having a preferred melt index has good moldability. The melt index was measured under the conditions of 190 ° C. and 2160 g load according to ASTM D-1238-65T.
  • Examples of the aromatic vinyl compound used in the copolymer include styrene, ⁇ -methylstyrene, p-methylstyrene, vinyl xylene, monochlorostyrene, dichlorostyrene, monobromostyrene, dibromostyrene, fluorostyrene, p- Examples thereof include t-butyl styrene, ethyl styrene, vinyl naphthalene and the like, and one or more of these can be used. Of these, styrene is particularly preferred.
  • Examples of the vinyl cyanide compound used in the copolymer include acrylonitrile and methacrylonitrile.
  • Examples of the conjugated diene used in the copolymer include 1,3-butadiene, 2-methyl-1,3-butadiene [isoprene], 2,3-dimethyl-1,3-butadiene, 2- And neopentyl-1,3-butadiene, 2-chloro-1,3-butadiene, 2-cyano-1,3-butadiene, substituted linear conjugated petanedienes, substituted linear conjugated hexadienes, and the like. Species or two or more can be used. Of these, 1,3-butadiene and / or 2-methyl-1,3-butadiene are particularly preferred.
  • Examples of the olefin used in the copolymer include ethylene and propylene.
  • copolymer examples include styrene-acrylonitrile copolymer (AS resin), acrylonitrile-butadiene-styrene copolymer (ABS resin), and acrylonitrile-ethylene-propylene-styrene copolymer (AES resin).
  • AS resin styrene-acrylonitrile copolymer
  • ABS resin acrylonitrile-butadiene-styrene copolymer
  • AES resin acrylonitrile-ethylene-propylene-styrene copolymer
  • polyurethane examples include polyurethanes other than the polyurethane block copolymer of the present invention. Examples thereof include those obtained by reacting the above other polymer polyol (a p -2), organic polyisocyanate (b) and optionally a chain extender (c).
  • the styrenic polymer examples include polymers containing a structural unit derived from a styrenic monomer, preferably 10% by mass or more, more preferably 50% by mass or more.
  • the styrene monomer examples include styrene, ⁇ -methylstyrene, p-methylstyrene, pt-butylstyrene, 3,4-dimethylstyrene, and the like.
  • the styrenic polymer can have one or more structural units derived from the styrenic monomer.
  • the styrenic polymer together with the structural unit derived from the styrenic monomer, is preferably a structural unit derived from another vinyl monomer at a ratio of preferably 90% by mass or less, more preferably 50% by mass or less. You may have.
  • vinyl monomers include, for example, vinyl cyanide monomers (for example, acrylonitrile, methacrylonitrile, etc.); (meth) acrylic acid alkyl having 1 to 18 carbon atoms (for example, methyl, ethyl, propyl, n -Butyl, i-butyl, hexyl, 2-ethylhexyl, dodecyl, okdadecyl, etc.) esters; esters of (meth) acrylic acid and diols (eg ethylene glycol, propylene glycol, butanediol, etc.); carbons having 1 to 6 carbon atoms Vinyl esters of acids (eg, acetic acid, propionic acid, etc.); unsaturated carboxylic acids (eg, acrylic acid, methacrylic acid, maleic acid, etc.); unsaturated dicarboxylic acid anhydrides (eg, maleic anhydride, etc.); (meth) acrylamides ( For example,
  • Copolymers of styrene monomers and other vinyl monomers include at least one of styrene monomers, acrylonitrile, methyl methacrylate, butyl acrylate, N-phenylmaleimide, maleic anhydride
  • a copolymer with at least one selected from the group consisting of butadiene and butadiene is preferable from the viewpoint of mechanical properties and the like.
  • the above styrene polymer is A styrenic polymer containing a rubbery polymer as a constituent component may be used.
  • the glass transition temperature of the rubbery polymer is Preferably 0 ° C. or lower, More preferably, it is ⁇ 20 ° C. or lower.
  • Such rubbery polymers include: Polybutadiene; Styrene-butadiene copolymer; Styrene-butadiene copolymer containing (meth) acrylic acid lower alkyl ester in a proportion of 30% by mass or less; Polyisoprene; Polychloroprene; And so on.
  • Examples of other rubbery polymer that can be included in the styrene polymer include acrylic rubber.
  • the acrylic rubber is preferably a polyalkyl acrylate rubber mainly composed of a structural unit derived from an alkyl having 1 to 8 carbon atoms (more preferably, ethyl, butyl, 2-ethylhexyl) ester of acrylic acid (more preferably Are polyethyl acrylate rubber, polybutyl acrylate rubber, and 2-ethylhexyl polyacrylate rubber).
  • the polyalkyl acrylate rubber may have structural units derived from other monomers (for example, vinyl acetate, methyl methacrylate, styrene, acrylonitrile, vinyl ether, etc.) in an amount of 30% by mass or less in some cases. Good.
  • the polyalkyl acrylate rubber has a structural unit derived from a crosslinkable unsaturated monomer (for example, alkylene diol (meth) acrylate, divinylbenzene, triallyl cyanurate, etc.) in an amount of 5% by mass or less in some cases. You may do it.
  • styrene polymer examples include, for example, ethylene-propylene-nonconjugated diene copolymers (eg, ethylene-propylene-ethylidene norbornene copolymers); styrene polymer blocks— Examples thereof include a hydrogenated product of a block copolymer composed of a butadiene polymer block; a hydrogenated product of a block copolymer composed of a styrene polymer block-isoprene polymer block; and the like.
  • ethylene-propylene-nonconjugated diene copolymers eg, ethylene-propylene-ethylidene norbornene copolymers
  • styrene polymer blocks examples thereof include a hydrogenated product of a block copolymer composed of a butadiene polymer block; a hydrogenated product of a block copolymer composed of a styrene polymer block-isopre
  • the rubbery polymer that can be contained in the above-mentioned styrene polymer the styrene monomer and / or other various unsaturated monomers are grafted to the various rubber polymers mentioned above.
  • polymerization can be mentioned.
  • Styrenic polymer containing rubbery polymer contains one or more of polybutadiene, styrene-butadiene copolymer, polybutyl acrylate rubber, and ethylene-propylene-nonconjugated diene copolymer Styrenic polymers are preferred.
  • polystyrene resin examples include homopolymers of olefins (for example, ethylene, propylene, butylene, etc.); copolymers of two or more kinds of the olefins; one or two or more kinds of the olefins, and one or more kinds of other olefins. And a copolymer with a vinyl monomer.
  • polyolefin examples include low density polyethylene, medium density polyethylene, high density polyethylene, polypropylene, polybutylene, ethylene-vinyl acetate copolymer (preferably vinyl acetate content of 5 to 30% by mass), ethylene-acrylic acid copolymer.
  • Examples thereof include a polymer (preferably having an acrylic acid content of 5 to 30% by mass), an ethylene-propylene copolymer, an ethylene-propylene-diene copolymer, and an ethylene-butylene copolymer.
  • a polymer preferably having an acrylic acid content of 5 to 30% by mass
  • an ethylene-propylene copolymer preferably having an acrylic acid content of 5 to 30% by mass
  • an ethylene-propylene copolymer preferably having an acrylic acid content of 5 to 30% by mass
  • an ethylene-propylene copolymer ethylene-propylene-diene copolymer
  • an ethylene-butylene copolymer ethylene-butylene copolymer.
  • olefin homopolymers and copolymers are preferred.
  • the ratio of the polyurethane block copolymer to the other thermoplastic polymer is not particularly limited, but the content of the polyurethane block copolymer is the sum of the two. It is preferably in the range of 1 to 40% by mass, more preferably in the range of 3 to 35% by mass, and still more preferably in the range of 5 to 30% by mass with respect to the mass.
  • the thermoplastic polymer composition of the present invention may contain an optional component other than the polyurethane block copolymer and the thermoplastic polymer, if necessary, within a range not impairing the effects of the present invention.
  • optional components include various additives (for example, release agents, reinforcing agents, colorants, flame retardants, UV absorbers, antioxidants, hydrolysis resistance improvers, antifungal agents, antibacterial agents, and stabilizers. Etc.); various fibers (eg glass fiber, polyester fiber etc.); inorganic substances (eg talc, silica etc.); various coupling agents;
  • the proportion of the total mass of the polyurethane-based block copolymer and the thermoplastic polymer can be appropriately set according to the use of the thermoplastic polymer composition of the present invention, but the proportion is the thermoplasticity of the present invention.
  • the polymer composition it is preferably in the range of 50 to 100% by mass, more preferably in the range of 80 to 100% by mass, and still more preferably in the range of 95 to 100% by mass.
  • the thermoplastic polymer composition of the present invention can be produced by melt-kneading a polyurethane block copolymer and other thermoplastic polymers.
  • the melt kneading can be performed using a known apparatus such as an extruder, a mixing roll, or a kneader. Since kneading can be performed more efficiently, it is preferable to use an extruder.
  • the melt kneading temperature is preferably in the range of 150 to 300 ° C., more preferably in the range of 180 to 270 ° C., although it depends on the type of the thermoplastic polymer used.
  • thermoplastic polymers Prior to melt kneading, it is also possible to dry-blend a polyurethane block copolymer, other thermoplastic polymers, and optional components blended as necessary.
  • the polyurethane block copolymer may be melt-kneaded with the thermoplastic polymer in the form of a composition with other components.
  • the thermoplastic polymer may be melt-kneaded with the polyurethane block copolymer in the form of a composition with other components.
  • the polyurethane block copolymer [including the composition of the polyurethane block copolymer and other components] Can be regarded as a masterbatch for modifying the thermoplastic polymer.
  • the present invention also includes a masterbatch containing a polyurethane-based block copolymer.
  • the content of the polyurethane block copolymer in the masterbatch is preferably in the range of 50 to 100% by mass, more preferably in the range of 80 to 100% by mass, still more preferably in the range of 95 to 100% by mass, in particular. Preferably it is 100 mass%.
  • the content of the structural unit (I) contained in the polyurethane block ( ⁇ ) is preferably 0.1 to 20 mass based on the total mass of the thermoplastic polymer composition. %, More preferably in the range of 0.2 to 10% by weight, still more preferably in the range of 0.4 to 4% by weight.
  • the thermoplastic polymer composition is more excellent in adhesiveness with silicone.
  • thermoplastic polymer composition of the present invention when the above-mentioned polyurethane block copolymer composition containing at least one metal compound (M) is used together with the polyurethane block copolymer, the metal A thermoplastic polymer composition containing the compound (M) is obtained.
  • the content of the metal compound (M) is 0.1 to 2,000 mass ppm (0.2 mass%) based on the mass of the polyurethane block copolymer. ) Is preferable.
  • the content of the metal compound (M) is less than 0.1 ppm by mass, the melt moldability and adhesiveness with silicone of the resulting thermoplastic polymer composition of the present invention tend to be lowered.
  • the content rate of the said metal compound (M) exceeds 2,000 mass ppm, there exists a tendency for the melt moldability (especially melt residence stability) of a polyurethane-type block copolymer to fall.
  • the content of the metal compound is more preferably in the range of 0.5 to 200 ppm by mass, and more preferably 1 to 1 in terms of the mass of the polyurethane block copolymer. It is in the range of 200 ppm by mass, particularly preferably in the range of 1 to 100 ppm by mass.
  • polyurethane block copolymer polyurethane block copolymer composition and thermoplastic polymer composition of the present invention
  • polyurethane block copolymer etc. are melt-molded. Excellent in properties. Therefore, various moldings (for example, for example, injection molding, extrusion molding, inflation molding, blow molding, calender molding, press molding, casting, etc.) from the polyurethane block copolymer of the present invention, etc. Sheet, film, plate, tubular body, rod-shaped body, hollow molded body, various containers, various block-shaped molded bodies, various molds, etc.) can be produced smoothly.
  • the polyurethane block copolymer of the present invention is non-adhesive, hardly adheres to a molding apparatus or a mold, etc., and is excellent in melt moldability. Therefore, various high-quality molded articles can be produced with high productivity. Can be manufactured.
  • thermoplastic polymers especially polyurethane
  • Conventionally employed molding methods, molding conditions, molding apparatuses, etc. can be used to produce a molded body using the.
  • the polyurethane-based block copolymers of the present invention are usually heated and melted at a temperature of 180 to 230 ° C., particularly 190 to 220 ° C., thereby forming the molding.
  • the body can be manufactured smoothly.
  • the polyurethane block copolymer or the like of the present invention is non-tacky and is excellent in adhesion to various materials typified by silicone. Further, the polyurethane block copolymer of the present invention has properties such as mechanical properties (especially abrasion resistance, tensile breaking strength, tensile breaking elongation, etc.), flexibility, oil resistance, water resistance, elastic recovery, etc. Excellent residual resistance, low residual strain, and moderate flexibility. Moreover, the polyurethane block copolymer of the present invention has a smooth surface and a good surface state. Therefore, the polyurethane block copolymer of the present invention can be used for various applications by taking advantage of the above-described properties.
  • Various applications include, for example, conveyor belts; various key sheets and keyboards used for push button switches (for example, those used for mobile phones, home appliances, automobile parts, communication devices, etc.); laminated products; films for various containers And hose; tube; automobile parts; machine parts; shoe soles; watch bands; packing materials; damping materials;
  • the polyurethane block copolymer of the present invention is excellent in adhesiveness with various materials (particularly silicone). Therefore, the polyurethane block copolymer and the like of the present invention can be used as a raw material of a composite molded body in which a member formed therefrom and other members are in contact with each other.
  • the present invention also includes an invention of a composite molded body.
  • the composite molded body has a member (X) containing the polyurethane block copolymer of the present invention and a member (Y) other than the member (X), and the member (X) and the member ( Y) is in contact.
  • the member (X) can be composed of any one of the polyurethane block copolymer, the polyurethane block copolymer composition, and the thermoplastic polymer composition of the present invention.
  • the composite molded body of the present invention is excellent in adhesion between the member (X) and the member (Y).
  • the member (X) of the composite molded body of the present invention can be obtained by the same method as the above-described method for manufacturing a molded body.
  • the member (X) and the member (Y) may be in contact with each other at least at a part of both members.
  • the composite molded body of the present invention has two or more members (X) and / or two or more members (Y), at least one member (X) and at least one member. (Y) may be in contact with at least a part of both members.
  • the configuration of the composite molded body of the present invention is not limited at all.
  • a composite molded body having one member (X) and one member (Y); between two members (Y) Composite molded body in which member (X) is interposed; Composite molded body in which member (Y) is interposed between two members (X); Composite molded body in which members (X) and members (Y) are alternately contacted And the like.
  • One or both of the members (X) and (Y) may be layered. Therefore, the composite molded body of the present invention includes a laminated structure.
  • a two-layer structure having one layered member (X) and one layered member (Y); a layered member (X) is intermediate between two layered members (Y)
  • a three-layer structure existing as a layer a three-layer structure in which a layered member (Y) exists as an intermediate layer between two layered members (X); a layered member (X) and a layered member (Y)
  • a multilayer structure in which four or more layers are alternately stacked.
  • thermoplastic polymers As a material constituting the member (Y), in addition to silicone described later, various thermoplastic polymers (however, other than the polyurethane block copolymer of the present invention) and compositions thereof (however, the polyurethane system of the present invention) Examples include block copolymer compositions and thermoplastic polymer compositions), thermosetting polymers, paper, fabrics, metals, wood, and ceramics.
  • the method for producing the composite molded body of the present invention is not particularly limited.
  • the above-described member (Y) is melt-coated with the polyurethane block copolymer of the present invention; two or more members (Y)
  • the polyurethane block copolymer of the present invention under melting is introduced, and these are bonded and integrated;
  • the member (Y) is placed (inserted) in the mold, and then the molten base A method of filling a polyurethane block copolymer of the present invention into a mold and bonding and integrating them; a thermoplastic member (Y) and a polyurethane block copolymer of the present invention which is thermoplastic A method of co-extrusion and the like to bond and integrate them; a method of pressing the member (X) and the member (Y); and a member (X) and the member (Y) using an adhesive Adhesion / integration method; Kill.
  • the polyurethane block copolymer of the present invention exhibits good melt adhesion to both high polarity polymers and low polarity polymers, and is particularly excellent in melt adhesion to highly polar polymers. . Therefore, for example, the polyurethane block copolymer of the present invention and the polymer (particularly polyamide; polyester; polyvinylidene chloride; polyvinyl chloride; polycarbonate; acrylic resin; polyoxymethylene resin; ethylene-vinyl acetate copolymer) Saponified products; copolymers of aromatic vinyl compounds and vinyl cyanide compounds, at least one selected from conjugated dienes and olefins; polyurethanes; styrenic polymers; Can be manufactured.
  • the polyurethane block copolymer of the present invention and the polymer particularly polyamide; polyester; polyvinylidene chloride; polyvinyl chloride; polycarbonate; acrylic resin; polyoxymethylene resin; ethylene-vinyl acetate copolymer
  • laminated structure (L1) and laminated structure (L2) can be mentioned as preferred embodiments of the composite molded body of the present invention.
  • Laminated structure (L1) a laminated structure having at least part of a structure in which these are laminated in the form of layer (X ′) / layer (Y′1), and the layer (X ′) Including the polyurethane block copolymer of the invention, the layer (Y′1) is composed of polyamide, polyester, polyvinylidene chloride, polyvinyl chloride, polycarbonate, acrylic resin, polyoxymethylene resin, ethylene-vinyl acetate copolymer.
  • the layer (Y′2) includes a combination, and the layer (Y
  • the layer (X ′) can be composed of any one of the polyurethane block copolymer, the polyurethane block copolymer composition, and the thermoplastic polymer composition of the present invention.
  • Examples of the polar polymer such as polyamide that can be included in the layer (Y′1) or the layer (Y′2) include the polymers exemplified above as the thermoplastic polymer included in the thermoplastic polymer composition of the present invention. Similar ones can be used.
  • the said layer (Y'1) may be comprised only from the said polar polymer, as long as the property is not impaired, it contains the 1 type, or 2 or more types of arbitrary component as needed. Also good.
  • the optional component include a heat stabilizer (eg, metal soap, phosphorus compound, sulfur compound, phenol compound, L-ascorbic acid, epoxy compound, etc.), light stabilizer, plasticizer (eg, aliphatic dicarboxylic acid).
  • the content of the polar polymer in the layer (Y′1) is preferably in the range of 50 to 100% by mass, more preferably in the range of 80 to 100% by mass, and 95 to 100%. More preferably, it is in the range of mass%.
  • the layer (Y′2) may be composed only of the nonpolar polymer, but contains one or more optional components as necessary as long as the properties are not impaired. You may do it.
  • the optional component include a heat stabilizer (eg, metal soap, phosphorus compound, sulfur compound, phenol compound, L-ascorbic acid, epoxy compound, etc.), light stabilizer, plasticizer (eg, aliphatic dicarboxylic acid). Ester, hydroxy polycarboxylic acid ester, fatty acid ester, polyester compound, phosphate ester, etc.), inorganic fine powder, lubricant (organic lubricant, etc.), dispersant, dye / pigment, antistatic agent, antioxidant, mold release agent And flame retardants and ultraviolet absorbers.
  • a heat stabilizer eg, metal soap, phosphorus compound, sulfur compound, phenol compound, L-ascorbic acid, epoxy compound, etc.
  • plasticizer eg, aliphatic dicarboxylic acid. Ester, hydroxy polycarboxylic acid
  • the content of the nonpolar polymer in the layer (Y′2) is preferably in the range of 50 to 100% by mass, more preferably in the range of 80 to 100% by mass, More preferably, it is in the range of 100% by mass.
  • the unsaturated hydrocarbon group in the structural unit (I) contained in the polyurethane-based block copolymer or the like of the present invention is a silicone having a hydrogen atom bonded to a silicon atom (organohydrogenpolyethylene in the presence of a hydrosilylation catalyst. It also reacts with silicones having unsaturated groups such as vinyl groups in the molecule. Therefore, the polyurethane block copolymer and the like of the present invention and silicone can be firmly bonded without subjecting them to surface activation treatment (for example, primer treatment).
  • the polyurethane block copolymer of the present invention is a composite molded body [particularly, a member composed of the polyurethane block copolymer of the present invention, a member containing silicone (hereinafter referred to as “silicone member”). "Is sometimes abbreviated as”) is extremely effective in the production of a strongly bonded laminated structure]. Therefore, this invention also includes the said composite molded object whose said member (Y) is a silicone member.
  • the above-mentioned silicone-based member may be composed only of silicone or may be composed of a silicone composition containing silicone.
  • the silicone content in the silicone-based member is preferably in the range of 50 to 100% by mass, more preferably in the range of 80 to 100% by mass, and particularly preferably in the range of 95 to 100% by mass.
  • the adhesive strength of a silicone type member and member (X) can be improved as a silicone content rate exists in a preferable range.
  • the above-mentioned silicone composition includes, for example, various additives (for example, release agents, reinforcing agents, colorants, flame retardants, ultraviolet absorbers, antioxidants, hydrolysis resistance improvers, antifungal agents, antibacterial agents, and stable agents. Agents); various fibers (for example, glass fibers, polyester fibers, etc.); inorganic substances (for example, talc, silica, etc.); various coupling agents.
  • additives for example, release agents, reinforcing agents, colorants, flame retardants, ultraviolet absorbers, antioxidants, hydrolysis resistance improvers, antifungal agents, antibacterial agents, and stable agents.
  • various fibers for example, glass fibers, polyester fibers, etc.
  • inorganic substances for example, talc, silica, etc.
  • various coupling agents for example, glass fibers, polyester fibers, etc.
  • the silicone-based member is preferably formed by simply curing the curable silicone composition.
  • the curable silicone composition include (i) a room temperature curable silicone composition that cures at room temperature to form a silicone rubber or silicone resin, and (ii) heat that cures upon heating to form a silicone rubber or silicone resin.
  • a cross-linked silicone composition (such as a methyl vinyl silicone composition) can be used.
  • the room temperature curable silicone composition (i) is preferable, and a room temperature curable silicone rubber composition that is cured at room temperature to form a silicone rubber is more preferable.
  • the room temperature curable silicone composition is soft paste or semi-fluid before curing, and is excellent in handleability.
  • the (i) room-temperature curable silicone composition includes a one-part silicone composition that cures with moisture in the air and a two-part silicone composition that cures with a curing agent.
  • a one-component room-temperature curable silicone composition tends to be inferior in releasability and handleability because it has adhesiveness to a molding apparatus and different materials.
  • the two-component room temperature curable silicone composition exhibits excellent adhesion to dissimilar materials and is excellent in handleability. Accordingly, a two-pack type room temperature curable silicone composition is preferable, and a two-pack type room temperature curable silicone rubber composition is more preferable.
  • the two-pack type room temperature curable silicone composition is roughly classified into two types, a condensation reaction type and an addition reaction type, depending on the functional group introduced into the silicone.
  • a condensation reaction type a hydroxyl-terminated reactive diorganopolysiloxane and an alkoxy-terminated reactive diorganopolysiloxane are polymerized using a catalyst (for example, a tin compound).
  • a catalyst for example, a tin compound
  • an organopolysiloxane having an alkenyl group (for example, a vinyl group) and an organohydrogenpolysiloxane (hydrogenated polysiloxane) having a hydrogen atom bonded to a silicon atom are converted into a noble metal compound (for example, platinum).
  • Palladium, iridium, rhodium, osmium, ruthenium, etc. Palladium, iridium, rhodium, osmium, ruthenium, etc
  • the addition reaction type curable silicone composition is preferable.
  • the addition reaction type curable silicone composition is excellent in reactivity with the polyurethane block copolymer having the structural unit (I) in the molecule. By using this, the member (X) and the silicone member are used. And a composite molded body having improved adhesive strength can be produced smoothly.
  • the addition reaction type curable silicone composition includes a curable silicone composition containing an organohydrogenpolysiloxane and a hydrosilylation catalyst, particularly ( ⁇ ) an organohydrogenpolysiloxane and a hydrosilylation catalyst, and an alkenyl group.
  • a curable silicone composition containing no organopolysiloxane and having ( ⁇ ) an organohydrogenpolysiloxane, an alkenyl group-containing organopolysiloxane and a hydrosilylation catalyst can be used. It is.
  • the organohydrogenpolysiloxane may be any organohydrogenpolysiloxane having at least one hydrogen atom bonded to a silicon atom in one molecule, and is not particularly limited.
  • organohydrogenpolysiloxanes diorganohydrogenpolysiloxane in which one or more monovalent organic groups (organogroups) bonded to silicon atoms in the diorganopolysiloxane molecule are replaced with hydrogen atoms.
  • Siloxane is preferable, and dimethyl hydrogen polysiloxane in which one or more (particularly 2 to 10) methyl groups bonded to silicon atoms in the dimethylpolysiloxane molecule are replaced with hydrogen atoms is more preferable.
  • the diorganohydrogenpolysiloxane (particularly the dimethylhydrogenpolysiloxane) is excellent in flexibility, elastic properties, curability and the like and is easily available.
  • the organopolysiloxane having an alkenyl group may be any organopolysiloxane having one or more alkenyl groups (for example, vinyl group, allyl group) in one molecule, and is not particularly limited.
  • organopolysiloxanes having such alkenyl groups diorganopolysiloxanes having one or more alkenyl groups bonded to silicon atoms are preferred, and one of the methyl groups bonded to silicon atoms in the dimethylpolysiloxane molecule. More preferred is dimethylpolysiloxane in which one or more (particularly 2 to 10) are replaced by alkenyl groups.
  • the diorganopolysiloxane (particularly the dimethylpolysiloxane) is excellent in flexibility, elastic properties, curability and the like and is easily available.
  • the molecular weight of the organohydrogenpolysiloxane and the organopolysiloxane having an alkenyl group is not particularly limited, and those suitable for each application can be used depending on the application of the composite molded article of the present invention. .
  • the type of hydrosilylation catalyst used in the curable silicone composition is not particularly limited, and any conventionally used hydrosilylation catalyst can be used.
  • a noble metal for example, platinum, palladium, iridium, rhodium, osmium, ruthenium, etc.
  • an organic peroxide for example, an organic peroxide; an azo compound; Among them, a platinum complex having high reactivity and excellent handleability is preferable.
  • an alcohol solution of chloroplatinic acid; a compound in which an aliphatic unsaturated hydrocarbon group-containing compound is coordinated after neutralizing the chloroplatinic acid solution is more preferable.
  • the content of the hydrosilylation catalyst in the curable silicone composition is usually preferably about 1 ppm by mass to 1% by mass with respect to the total mass of the organohydrogenpolysiloxane and the organopolysiloxane having an alkenyl group. Preferably, it is about 10 to 500 mass ppm.
  • the curable silicone composition may be a silicone-based adhesive or printing ink.
  • the composite molded body of the present invention having a silicone-based member, one or two or more members (X) and only one or two or more silicone-based members, or a member ( X) and a member made of a material different from that of the silicone-based member may be hereinafter referred to as “other material member”.
  • the number of other material members may be one, or two or more.
  • the composite molded body of the present invention is preferably abbreviated as a layered member (X) (hereinafter sometimes abbreviated as “layer (X ′)”) and a layered silicone-based member (hereinafter abbreviated as “silicone layer”).
  • X layered member
  • silicon layer a layered silicone-based member
  • the number of layers in such a laminated structure is not particularly limited, and may be any of two layers, three layers, four layers, five layers or more.
  • the layer (X ′) and the silicone layer further has another material member in the form of a layer (hereinafter sometimes abbreviated as “other material layer”)
  • the layer (X ′) And / or the silicone layer and the other material layer may be bonded and laminated on the entire surface of one surface, or may be bonded or laminated continuously or intermittently (for example, line bonding, point bonding, partial bonding, etc.) Surface adhesion, etc.).
  • a laminated structure having a layer (X ′) and a silicone layer for example, a two-layer structure comprising layer (X ′) / silicone layer; silicone layer / layer (X ′) / 3-layer structure consisting of silicone layer; 3-layer structure consisting of layer (X ′) / silicone layer / layer (X ′); layer (X ′) / silicone layer / layer (X ′) / silicone layer Four-layer structure; three-layer structure composed of another material layer / silicone layer / layer (X ′); three-layer structure composed of silicone layer / layer (X ′) / other material layer; silicone layer / layer ( Examples thereof include a 5-layer structure comprising X ′) / silicone layer / layer (X ′) / other material layers.
  • the two or more layers (X ′) are layers containing the polyurethane-based block copolymer of the present invention
  • the layers may be the same layer or may be different in the type, content, layer thickness, and the like of the polyurethane block copolymer contained.
  • the two or more silicone layers may be the same layer or different layers.
  • the total thickness of the laminated structure, the thickness of the layer (X ′), and the thickness of the silicone layer are not particularly limited. It can adjust according to the use etc. of a structure.
  • the thickness of the layer (X ′) (one layer) is generally 10 ⁇ m or more, preferably in the range of 20 to 3,000 ⁇ m, more preferably in the range of 50 to 2,000 ⁇ m.
  • the thickness of the layer) is generally 10 ⁇ m or more, preferably in the range of 20 to 3,000 ⁇ m, more preferably in the range of 50 to 2,000 ⁇ m. If the layer (X ′) and the silicone layer having such a thickness are used, a laminated structure having excellent adhesion between these layers can be easily produced.
  • the layer (X ′) is preferably formed from a film from the viewpoints of ease of production, heat resistance, post-processing passability, and the like.
  • the thickness of the film is preferably in the range of 20 to 200 ⁇ m, more preferably in the range of 30 to 200 ⁇ m, and still more preferably in the range of 40 to 150 ⁇ m.
  • a silicone type member is formed on member (X) by hardening a curable silicone composition on member (X).
  • the manufacturing method including the process to make is preferable. According to the said manufacturing method, even if it does not perform a surface activation process, the composite molded object which is excellent in the adhesive strength of member (X) and a silicone type member is obtained easily.
  • the method for curing the curable silicone composition on the polyurethane-based member is not particularly limited, and for example, the following methods (1) to (5) can be employed: (1) A method in which a curable silicone composition is coated on the member (X), and then the curable silicone composition is cured to produce a composite molded body.
  • the member (X) is placed (inserted) in the mold, and then the molten curable silicone composition is filled into the mold to cure the curable silicone composition.
  • (3) A method of extruding a curable silicone composition that is thermoplastic onto the member (X), curing the curable silicone composition, and bonding / integrating the member (X) and the silicone-based member.
  • (4) A method of applying a silicone-based adhesive or printing ink as a curable silicone composition on the member (X) and curing them.
  • a curable silicone composition that is thermoplastic and the thermoplastic polymer composition of the present invention are co-extruded to cure the curable silicone composition and to form a member (X) and a silicone-based member.
  • the composite molded body of the present invention can be used for various applications depending on the properties of the member (X) and member (Y) (silicone-based member etc.) constituting the composite molded body.
  • automotive interior parts for example, instrument panels, center panels, center console boxes, door trims, pillars, assist grips, handles, airbag covers, etc.
  • automotive exterior parts for example, moldings, etc.
  • Vacuum cleaner bumper for example, Refrigerator door; Camera grip; Electric tool grip; Household cooking utensils; Remote control switch;
  • Various key tops for OA equipment Various key sheets and keyboards used for push button switches (cell phones, household appliances, automobiles) Parts, parts used in communication equipment, etc.); household appliance parts (for example, housings); sports equipment (for example, underwater glasses); various covers; various industrial parts with packing (for example, wear resistance, airtightness, soundproofing, prevention) For vibration and other purposes); Wire coatings; belt; hose; tube; sole; watchband; silencing gear
  • Adhesiveness with silicone Using the laminated structures obtained in the following examples or comparative examples, a member containing a polyurethane block copolymer or polyurethane and a material other than polyurethane (silicone, ABS resin or polypropylene) in a 180 ° C. peel test The resistance value (adhesive strength) at the time of peeling was measured using “Instron 5566” manufactured by Instron Japan, at room temperature and at a tensile rate of 100 mm / min. This adhesive strength was used as an index of adhesiveness.
  • Polyester diol produced by reacting 1,4-butanediol with adipic acid and having a number of hydroxyl groups per molecule of 2.00 and a number average molecular weight of 1,000
  • F-TPS Hydrogenated product of a triblock copolymer having a polystyrene block-poly (isoprene / butadiene) block-polystyrene block type structure and having a hydroxyl group at one end of the molecule [number average molecular weight: 50,000, styrene content: 30% by mass, hydrogenation rate in hydrogenated poly (isoprene / butadiene) block: 98 mol%, ratio of isoprene to butadiene: 50/50 (mass ratio), average number of hydroxyl groups per molecule: 0.9 ]
  • the f-TPS was produced using styrene, isoprene and butadiene as raw materials according to the method described in Reference Example 1 of JP-A-10-139963.
  • TPS-OH [number average molecular weight: 50,000, styrene content: 30 mass%, hydrogenation rate in hydrogenated poly (isoprene / butadiene) block: 98 mol%, ratio of isoprene to butadiene: 50 / 50 (mass ratio)
  • Data of the TPS [number average molecular weight: 50,000, styrene content: 30% by mass, hydrogenation rate in poly (isoprene / butadiene) block: 98 mol%, ratio of isoprene to butadiene: 50/50 (mass ratio) ].
  • thermoplastic polyurethane (C1)
  • POH polymer polyol
  • TI urethanization reaction catalyst
  • BD chain extender
  • MDI organic polyisocyanate
  • thermoplastic polyurethane (C1) The obtained polyurethane melt was continuously extruded into water as a strand, and then cut with a pelletizer to obtain pellets. The pellet was dehumidified and dried at 80 ° C. for 4 hours to obtain a thermoplastic polyurethane (C1). It was 2,010 Pa.s when the melt viscosity of the obtained thermoplastic polyurethane (C1) was measured by the above-mentioned method on 200 degreeC conditions.
  • Example 1 Production of Polyurethane Block Copolymer Polyolefin polyol (POG) having structural unit (I) containing 100 mass ppm of urethanization reaction catalyst (TI), 10 mass ppm of urethanization reaction catalyst (TI)
  • f-TPS functional group-containing addition polymerization block copolymer
  • the obtained melt was continuously extruded into water as a strand, and then cut with a pelletizer to obtain pellets.
  • the pellets were dehumidified and dried at 80 ° C. for 4 hours to obtain a polymer composition containing a polyurethane block copolymer. It was 1,540 Pa.s when the melt viscosity of the obtained polymer composition was measured on the conditions of 220 degreeC by the above-mentioned method.
  • polyurethane block copolymer was a diblock copolymer.
  • One block is a polystyrene block-hydrogenated poly (isoprene / butadiene) block-polystyrene block type block [addition polymerization block ( ⁇ )], and the other block is a POG unit.
  • Polyurethane block [polyurethane block ( ⁇ )] composed of POH units, MDI units and BD units.
  • the extract of cyclohexane contained a triblock copolymer, which was also recovered.
  • the two blocks are polystyrene block-hydrogenated poly (isoprene / butadiene) block-polystyrene block type block [addition polymerization block ( ⁇ )], and the other block is a unit of POG.
  • Polyurethane block [polyurethane block ( ⁇ )] composed of POH units, MDI units and BD units.
  • each content of the diblock copolymer contained in the polymer composition, polyurethane extracted using dimethylformamide, and TPS-OH, TPS extracted using cyclohexane, and the triblock copolymer When the polymer composition is 100% by mass, the diblock copolymer is 14% by mass, the polyurethane is 33% by mass, the TPS-OH is 0% by mass, the TPS is 5% by mass, the triblock copolymer. It was 48 mass%.
  • the content of the structural unit (I) of the polyurethane block ( ⁇ ) in the total mass of the polyurethane block copolymer (the diblock copolymer and the triblock copolymer) is 6.8% by mass. there were.
  • Example 2 Production of a laminated structure Sheet Production
  • the polymer composition containing the polyurethane block copolymer obtained in Example 1 was subjected to a T-die type single screw extruder (25 mm ⁇ , cylinder temperature: 200 to 210 ° C., die temperature: 210 ° C.). After being melt melt-kneaded, the kneaded product is extruded onto a 30 ° C. cooling roll, cooled, and wound up at a winding speed of about 0.2 m / min. A sheet (thickness 1 mm) composed of the combined composition was produced.
  • This molded body and the above-mentioned cut-out test piece were superposed and pressure-treated using a manual press device (manufactured by Marushichi Co., Ltd., M4A type) (temperature: 135 ° C., pressure: attached gauge pressure gauge) 1 kg / cm 2 , time: 3 minutes), a laminated structure having a two-layer structure composed of a member containing a polyurethane block copolymer and a member made of ABS resin was obtained.
  • the adhesive strength between the member containing the polyurethane block copolymer in the obtained laminated structure and the member composed of ABS resin was measured by the above evaluation method, it was 1,000 g / cm or more. It was.
  • laminated structure (3) In the same manner as in the production of the laminated structure (2) described above, a laminated structure having a two-layer structure comprising a member containing a polyurethane block copolymer and a member composed of an ABS resin is produced. Apply a liquid curable silicone composition (“Shin-Etsu Silicone KE-2000” manufactured by Shin-Etsu Chemical Co., Ltd.) (mixed liquid A and liquid B) to a thickness of about 100 ⁇ m on the side containing the polymer. These were left in a 120 ° C.
  • a liquid curable silicone composition (“Shin-Etsu Silicone KE-2000” manufactured by Shin-Etsu Chemical Co., Ltd.) (mixed liquid A and liquid B)
  • This molded body and the above-mentioned cut-out test piece were superposed and pressure-treated using a manual press device (manufactured by Marushichi Co., Ltd., M4A type) (temperature: 135 ° C., pressure: attached gauge pressure gauge) 1 kg / cm 2 , time: 3 minutes), a laminated structure having a two-layer structure composed of a member containing a polyurethane block copolymer and a member made of polypropylene was obtained. It was 700 g / cm when the adhesive strength between the member containing the polyurethane-type block copolymer in the obtained laminated structure and the member comprised from a polypropylene was measured by said evaluation method.
  • a laminated structure having a two-layer structure comprising a member containing a polyurethane block copolymer and a member made of polypropylene is produced.
  • a liquid curable silicone composition (“Shin-Etsu Silicone KE-2000” manufactured by Shin-Etsu Chemical Co., Ltd.) (mixed liquid A and liquid B) to a thickness of about 100 ⁇ m on the member side including the coalescence, These were allowed to stand in a hot air dryer at 120 ° C.
  • thermoplastic polyurethane (C1) obtained in Production Example 1 was melt-kneaded using a T-die type single screw extruder (25 mm ⁇ , cylinder temperature: 195 to 205 ° C., die temperature: 200 ° C.) Then, the kneaded product is extruded onto a cooling roll at 30 ° C., cooled, and wound at a winding speed of about 2 m / min, whereby a film (thickness 100 ⁇ m) composed of thermoplastic polyurethane (C1) is obtained. Manufactured.
  • a test piece having a width of 25 mm and a length of 100 mm was cut out from the film (rolled film) obtained in the manufacture of the film.
  • a liquid curable silicone composition (“Shin-Etsu Silicone KE-2000” manufactured by Shin-Etsu Chemical Co., Ltd.) (mixed liquid A and B) was applied to the test piece to a thickness of about 100 ⁇ m.
  • a laminated structure in which both members were bonded was not obtained (adhesive strength was evaluated as 0 g / cm).
  • thermoplastic Polyurethane obtained in Production Example 1 ( C1) was dry blended in the proportions shown in Table 1 below.
  • the obtained mixture was melt-kneaded using a T-die type single screw extruder (25 mm ⁇ , cylinder temperature: 205 to 215 ° C., die temperature: 205 ° C.), and then the kneaded product was extruded onto a 30 ° C. cooling roll.
  • the film (thickness 100 ⁇ m) composed of the thermoplastic polymer composition was produced by cooling and winding it at a winding speed of about 2 m / min.
  • This molded body and the above-described cut specimen are superposed and pressure-treated using a manual press device (manufactured by Marushichi Co., Ltd., M4A type) (temperature: 135 ° C., pressure: attached gauge) 2 layers consisting of a member composed of a thermoplastic polymer composition (a member including a polyurethane block copolymer) and a member composed of an ABS resin based on a pressure gauge of 1 kg / cm 2 , time: 3 minutes) A laminated structure having a structure was obtained.
  • the adhesive strength between the member composed of the thermoplastic polymer composition and the member composed of the ABS resin was measured by the above evaluation method, it was 1,000 g / cm or more.
  • Two-layer structure comprising a member composed of a thermoplastic polymer composition (a member including a polyurethane block copolymer) and a member composed of an ABS resin in the same manner as in the production of the laminated structure (2) described above.
  • a liquid curable silicone composition (“Shin-Etsu Silicone KE-2000” manufactured by Shin-Etsu Chemical Co., Ltd.) (liquid A and liquid B) is produced on the side of the member composed of the thermoplastic polymer composition.
  • liquid A and liquid B is produced on the side of the member composed of the thermoplastic polymer composition.
  • a laminated structure having a three-layer structure of member / member containing silicone was obtained.
  • the adhesive strength between the member composed of the thermoplastic polymer composition and the member containing silicone was measured and found to be 1,000 g / cm or more.
  • thermoplastic polymer composition containing the polyurethane-based block copolymer of the present invention is excellent in adhesiveness to various materials (particularly silicone). Therefore, if the thermoplastic polymer composition of the present invention is used, a member containing the thermoplastic polymer composition and silicone or other material can be used without prior surface activation treatment (primer treatment, etc.). It is possible to easily manufacture a composite molded body in which the containing member is sufficiently adhered. Furthermore, from the results of Examples 3 and 4, thermoplastic polymer compositions obtained by blending a masterbatch containing the polyurethane block copolymer of the present invention with thermoplastic polyurethane (thermoplastic polymer) are also various materials.
  • the polyurethane block copolymer, polyurethane block copolymer composition, and thermoplastic polymer composition of the present invention are excellent in adhesiveness to various materials (particularly silicone) and are subjected to prior surface activation treatment (primer). Even if it does not carry out a process etc., it can fully be made to adhere to the above-mentioned various materials. Therefore, these can be suitably used for various applications, for example, in the form of a molded body or a composite molded body.
  • the present invention is based on Japanese Patent Application No. 2009-111318 filed in Japan, the contents of which are all included in this specification.

Abstract

Provided is a polyurethane block copolymer having addition polymerization blocks (α) and polyurethane blocks (β). The addition polymerization blocks (α) are derived from either: a block copolymer having polymer blocks (A) that contain aromatic vinyl compound units and also having polymer blocks (B) that contain conjugated diene units; or said block copolymer with hydrogen added thereto. The polyurethane blocks (β) have a structural unit (I) represented by general formula (I).

Description

ポリウレタン系ブロック共重合体Polyurethane block copolymer
 本発明は、特定の付加重合系ブロックと特定のポリウレタンブロックとを有するポリウレタン系ブロック共重合体、それを含有するポリウレタン系ブロック共重合体組成物および熱可塑性重合体組成物、並びにこれらを用いて得られる成形体および複合成形体等に関する。 The present invention relates to a polyurethane block copolymer having a specific addition polymerization block and a specific polyurethane block, a polyurethane block copolymer composition and a thermoplastic polymer composition containing the same, and using these The present invention relates to a molded body and a composite molded body to be obtained.
 シリコーンは、離型性、耐熱性、耐寒性、耐候性、撥水性、および電気絶縁性に優れ、しかも幅広い温度範囲で安定した物性を発現することから、それらの特性を活かして色々な分野で用いられている。しかしながら、シリコーンは、力学的特性(例えば引張破断強度および耐摩耗性など)および他の材料との接着性に劣るため、その使用範囲が限られている。 Silicone is excellent in releasability, heat resistance, cold resistance, weather resistance, water repellency, and electrical insulation, and exhibits stable physical properties in a wide temperature range. It is used. However, silicones have a limited range of use due to their poor mechanical properties (such as tensile break strength and wear resistance) and poor adhesion to other materials.
 そこで、近年、シリコーンとポリウレタン等の熱可塑性重合体とからなる複合成形体が開発され、例えば、携帯電話、家電製品、自動車部品、通信機器等の押しボタンスイッチに用いられるキーシート(キーパッド);電子写真複写機やプリンター等に用いられるロール;などとして用いられるようになっている。しかしながら、シリコーンは熱可塑性重合体との接着性に劣るため、熱可塑性重合体またはシリコーンからなる成形体の表面を事前に活性化処理して、両者間の接着性を向上させる必要がある。このような活性化処理法としては、プライマー処理、コロナ放電処理、プラズマ処理、オゾン処理、フレーム処理などがある。しかし、いずれの処理も、「前処理」として別途行わなければならないという点で、作業効率の低下の要因となっている。 Therefore, in recent years, composite molded bodies composed of silicone and a thermoplastic polymer such as polyurethane have been developed. For example, key sheets (keypads) used for push button switches of cellular phones, home appliances, automobile parts, communication devices, etc. Rolls used in electrophotographic copying machines, printers, and the like; However, since silicone is inferior in adhesiveness to a thermoplastic polymer, it is necessary to activate the surface of a molded body made of the thermoplastic polymer or silicone in advance to improve the adhesiveness between the two. Such activation treatment methods include primer treatment, corona discharge treatment, plasma treatment, ozone treatment, flame treatment and the like. However, each process is a factor of lowering work efficiency in that it must be performed separately as “pre-processing”.
 上記の点から、前処理を行わなくてもシリコーンに接着する熱可塑性重合体材料に関する研究が行われるようになっている。例えば、特許文献1および2は、シリコーンゴム基材にコーティングするためのコーティング剤を開示し、該コーティング材は、有機錫化合物触媒等を用いて製造した分子中に脂肪族不飽和基を有するポリウレタン、ヒドロシリル基を有するオルガノハイドロジェンポリシロキサンおよびヒドロシリル化触媒を含有する。また特許文献3は、シリコーンゴム用オーバーコート材を開示し、該コート材は、両末端に水酸基またはアミノ基を有する直鎖状ポリマーと二官能性イソシアネート化合物とを、前者:後者のモル比が1.0よりも大きくなるように反応させて得られる重量平均分子量が10,000~500,000のウレタン樹脂を主成分とする。
 しかしながら、これらのコーティング剤(コート材)は、未だシリコーンに対する接着性が不十分であり、これらのコーティング剤(コート材)をシリコーンゴム基材にコーティングしても、ポリウレタンとシリコーンとの両方の優れた特性を兼ね備える複合成形体は得られない。
In view of the above, research has been conducted on thermoplastic polymer materials that adhere to silicone without pretreatment. For example, Patent Documents 1 and 2 disclose a coating agent for coating a silicone rubber substrate, and the coating material is a polyurethane having an aliphatic unsaturated group in a molecule produced using an organotin compound catalyst or the like. A hydrosilyl group-containing organohydrogenpolysiloxane and a hydrosilylation catalyst. Patent Document 3 discloses an overcoat material for silicone rubber, which comprises a linear polymer having a hydroxyl group or an amino group at both ends and a bifunctional isocyanate compound, wherein the molar ratio of the former is the latter. The main component is a urethane resin having a weight average molecular weight of 10,000 to 500,000 obtained by reacting so as to be larger than 1.0.
However, these coating agents (coating materials) still have insufficient adhesion to silicone, and even if these coating agents (coating materials) are coated on a silicone rubber substrate, both polyurethane and silicone are excellent. Thus, a composite molded body having the above characteristics cannot be obtained.
 また特許文献4は、シリコーンゴム層と熱可塑性樹脂層とが積層一体化した複合成形体を製造する方法を開示し、該方法は、熱可塑性樹脂(例えばポリカーボネート、ポリプロピレン、ポリブチレンテレフタレート)を金型キャビティ内に一次射出成形した後に、キャビティ内に形成した前記熱可塑性樹脂層上に付加硬化型シリコーンゴム組成物を二次射出成形し、それと共にシリコーンゴム組成物を熱可塑性樹脂の軟化点以上融点未満の温度で硬化させる。しかしながら、この方法は、熱可塑性樹脂の種類によっては十分な効果が得られないことがある。例えばこの方法を、ポリウレタンとシリコーンゴムとの複合成形体の製造に応用しても、ポリウレタン層とシリコーンゴム層とが良好に接着した複合成形体を得ることはできない。 Patent Document 4 discloses a method for producing a composite molded body in which a silicone rubber layer and a thermoplastic resin layer are laminated and integrated. After the primary injection molding in the mold cavity, the addition curing type silicone rubber composition is subjected to secondary injection molding on the thermoplastic resin layer formed in the cavity, and the silicone rubber composition is made to be above the softening point of the thermoplastic resin. Cure at a temperature below the melting point. However, this method may not provide a sufficient effect depending on the type of thermoplastic resin. For example, even if this method is applied to the production of a composite molded body of polyurethane and silicone rubber, a composite molded body in which the polyurethane layer and the silicone rubber layer are well bonded cannot be obtained.
特開2001-26648号公報Japanese Patent Laid-Open No. 2001-26648 特開2002-206071号公報JP 2002-206071 A 特開2001-26748号公報JP 2001-26748 A 特開平8-174604号公報JP-A-8-174604
 本発明は、事前の表面活性化処理(例えばプライマー処理など)をしなくても、シリコーン、熱可塑性重合体(例えばポリアミド、ポリエステル、ポリウレタンなど)、および他の材料(例えば紙、布帛、木材など)との接着性に優れ、且つ各種成形体や複合成形体などを円滑に製造することができる、ポリウレタンをベースとする重合体を提供することを目的とする。また本発明は、該重合体の製造方法、該重合体を含む組成物、および該組成物の製造方法を提供することを目的とする。また本発明は、上記重合体または組成物を用いて得られる成形体、および上記重合体または組成物を用いて得られる複合成形体、並びにそれらの製造方法を提供することを目的とする。さらに本発明は、上記組成物を製造する際に好適に使用することができるマスターバッチを提供することを目的とする。 The present invention provides silicone, thermoplastic polymers (eg, polyamide, polyester, polyurethane, etc.), and other materials (eg, paper, fabric, wood, etc.) without prior surface activation treatment (eg, primer treatment). It is an object of the present invention to provide a polyurethane-based polymer that is excellent in adhesiveness to the resin and that can smoothly produce various molded products and composite molded products. Another object of the present invention is to provide a method for producing the polymer, a composition containing the polymer, and a method for producing the composition. Another object of the present invention is to provide a molded product obtained using the polymer or composition, a composite molded product obtained using the polymer or composition, and a method for producing them. Furthermore, an object of this invention is to provide the masterbatch which can be used conveniently when manufacturing the said composition.
 本発明者らは、前記した目的を達成するために鋭意検討を重ねてきた結果、特定の付加重合系ブロックと特定のポリウレタンブロックとを有するポリウレタン系ブロック共重合体が、それ自体、各種材料(特にシリコーン)との接着性に優れること;および前記ポリウレタン系ブロック共重合体をマスターバッチとして各種熱可塑性重合体に配合することによって、各種材料(特にシリコーン)との接着性に優れる熱可塑性重合体組成物が得られること;を見出した。本発明者らは、前記知見に基づいてさらに検討を重ねて、本発明を完成させた。本発明の特徴は以下の通りである。 As a result of intensive studies to achieve the above-mentioned object, the present inventors have found that polyurethane block copolymers having a specific addition polymerization block and a specific polyurethane block are themselves various materials ( Especially excellent in adhesiveness with silicone); and by blending the polyurethane block copolymer into various thermoplastic polymers as a masterbatch, the thermoplastic polymer has excellent adhesiveness with various materials (especially silicone). It was found that a composition was obtained. The present inventors have further studied based on the above findings and completed the present invention. The features of the present invention are as follows.
[1] 付加重合系ブロック(α)と、ポリウレタンブロック(β)とを有するポリウレタン系ブロック共重合体であって、
 前記付加重合系ブロック(α)は、芳香族ビニル化合物単位を含む重合体ブロック(A)および共役ジエン単位を含む重合体ブロック(B)を有するブロック共重合体;並びにその水素添加物;から選ばれる付加重合系ブロック共重合体から誘導されるものであり、
 前記ポリウレタンブロック(β)は、下記の一般式(I);
[1] A polyurethane block copolymer having an addition polymerization block (α) and a polyurethane block (β),
The addition polymerization block (α) is selected from a block copolymer having a polymer block (A) containing an aromatic vinyl compound unit and a polymer block (B) containing a conjugated diene unit; and a hydrogenated product thereof. Is derived from an addition polymerization block copolymer,
The polyurethane block (β) has the following general formula (I):
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(式中、R1およびR2はそれぞれ独立して水素原子または炭素数1~6のアルキル基を示す。)
で表される構造単位(I)を有するものである、ポリウレタン系ブロック共重合体。
(In the formula, R 1 and R 2 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.)
A polyurethane-based block copolymer having a structural unit (I) represented by:
[2] 前記ポリウレタンブロック(β)が、分子中に前記構造単位(I)を有するポリマーポリオール(ap-1)を含有するポリマーポリオール(ap)と、有機ポリイソシアネート(b)との反応により形成されたブロックである、上記[1]に記載のポリウレタン系ブロック共重合体。 [2] Reaction of polymer polyol (a p ) containing polymer polyol (a p -1) having the structural unit (I) in the molecule of the polyurethane block (β) with organic polyisocyanate (b) The polyurethane block copolymer according to the above [1], which is a block formed by.
[3] 前記ポリマーポリオール(ap-1)が、ポリオレフィンポリオールである上記[2]に記載のポリウレタン系ブロック共重合体。 [3] The polyurethane block copolymer according to the above [2], wherein the polymer polyol (a p -1) is a polyolefin polyol.
[4] 前記ポリオレフィンポリオールが、ポリブタジエンポリオール、ポリイソプレンポリオールおよびブタジエン/イソプレンコポリマーポリオールからなる群から選ばれる少なくとも1種である上記[3]に記載のポリウレタン系ブロック共重合体。 [4] The polyurethane block copolymer according to [3], wherein the polyolefin polyol is at least one selected from the group consisting of polybutadiene polyol, polyisoprene polyol, and butadiene / isoprene copolymer polyol.
[5] 前記構造単位(I)の含有率が、ポリウレタン系ブロック共重合体の全質量中、0.2~40質量%である、上記[1]~[4]のいずれか1つに記載のポリウレタン系ブロック共重合体。 [5] The content of the structural unit (I) is 0.2 to 40% by mass in the total mass of the polyurethane block copolymer, as described in any one of the above [1] to [4] Polyurethane block copolymer.
[6] 上記[1]~[5]のいずれか1つに記載のポリウレタン系ブロック共重合体を製造するための製造方法であって、
(i)官能基含有付加重合系ブロック共重合体;
(ii)分子中に前記構造単位(I)を有するポリマーポリオール(ap-1)を含有するポリマーポリオール(ap);
(iii)有機ポリイソシアネート(b);および所望により
(iv)鎖伸長剤(c)
を反応させる工程を含み、
 前記官能基含有付加重合系ブロック共重合体は、ポリマーポリオール(ap)、有機ポリイソシアネート(b)および鎖伸長剤(c)からなる群から選ばれる少なくとも1つの成分と反応し得る官能基を有し、且つ前記重合体ブロック(A)および前記重合体ブロック(B)を有するブロック共重合体;並びにその水素添加物;から選ばれるものである
製造方法。
[6] A production method for producing the polyurethane block copolymer according to any one of [1] to [5] above,
(I) a functional group-containing addition polymerization block copolymer;
(Ii) a polymer polyol containing a polymer polyol having the structural unit (I) in a molecule (a p -1) (a p );
(Iii) an organic polyisocyanate (b); and optionally (iv) a chain extender (c)
A step of reacting
The functional group-containing addition polymerization block copolymer has a functional group capable of reacting with at least one component selected from the group consisting of a polymer polyol (a p ), an organic polyisocyanate (b), and a chain extender (c). And a block copolymer having the polymer block (A) and the polymer block (B); and a hydrogenated product thereof.
[7] 上記[1]~[5]のいずれか1つに記載のポリウレタン系ブロック共重合体を製造するための製造方法であって、
(i)分子中に前記構造単位(I)を有するポリマーポリオール(ap-1)を含有するポリマーポリオール(ap);
(ii)有機ポリイソシアネート(b);および所望により
(iii)鎖伸長剤(c)
の反応により形成されたポリウレタンと、
(iv)官能基含有付加重合系ブロック共重合体と
を反応させる工程を含み、
 前記官能基含有付加重合系ブロック共重合体は、ポリマーポリオール(ap)、有機ポリイソシアネート(b)および鎖伸長剤(c)からなる群から選ばれる少なくとも1つの成分と反応し得る官能基を有し、且つ前記重合体ブロック(A)および前記重合体ブロック(B)を有するブロック共重合体;並びにその水素添加物;から選ばれるものである
製造方法。
[7] A production method for producing the polyurethane block copolymer according to any one of [1] to [5] above,
(I) a polymer polyol containing a polymer polyol having the structural unit (I) in a molecule (a p -1) (a p );
(Ii) an organic polyisocyanate (b); and optionally (iii) a chain extender (c)
Polyurethane formed by the reaction of
(Iv) comprising a step of reacting with a functional group-containing addition polymerization block copolymer,
The functional group-containing addition polymerization block copolymer has a functional group capable of reacting with at least one component selected from the group consisting of a polymer polyol (a p ), an organic polyisocyanate (b), and a chain extender (c). And a block copolymer having the polymer block (A) and the polymer block (B); and a hydrogenated product thereof.
[8] 上記[1]~[5]のいずれか1つに記載のポリウレタン系ブロック共重合体、並びに有機亜鉛化合物、有機ビスマス化合物、有機チタン化合物および有機ジルコニウム化合物からなる群から選ばれる少なくとも1種の金属化合物を含有し、前記金属化合物の含有率が前記ポリウレタン系ブロック共重合体の質量に基づいて0.1~2,000質量ppmである、ポリウレタン系ブロック共重合体組成物。 [8] At least one selected from the group consisting of the polyurethane block copolymer according to any one of [1] to [5] above, and an organic zinc compound, an organic bismuth compound, an organic titanium compound, and an organic zirconium compound. A polyurethane block copolymer composition comprising a seed metal compound, wherein the content of the metal compound is 0.1 to 2,000 ppm by mass based on the mass of the polyurethane block copolymer.
[9] 上記[1]~[5]のいずれか1つに記載のポリウレタン系ブロック共重合体および前記ポリウレタン系ブロック共重合体以外の熱可塑性重合体を含有する熱可塑性重合体組成物。 [9] A thermoplastic polymer composition comprising the polyurethane block copolymer according to any one of [1] to [5] above and a thermoplastic polymer other than the polyurethane block copolymer.
[10] 前記ポリウレタンブロック(β)が有する前記構造単位(I)の含有率が、熱可塑性重合体組成物の全質量中、0.1~20質量%である、上記[9]に記載の熱可塑性重合体組成物。 [10] The content of the structural unit (I) of the polyurethane block (β) is 0.1 to 20% by mass in the total mass of the thermoplastic polymer composition, according to the above [9]. Thermoplastic polymer composition.
[11] 有機亜鉛化合物、有機ビスマス化合物、有機チタン化合物および有機ジルコニウム化合物からなる群から選ばれる少なくとも1種の金属化合物を、前記ポリウレタン系ブロック共重合体の質量に基づいて0.1~2,000質量ppmの割合でさらに含有する、上記[9]または[10]に記載の熱可塑性重合体組成物。 [11] At least one metal compound selected from the group consisting of an organic zinc compound, an organic bismuth compound, an organic titanium compound, and an organic zirconium compound is added in an amount of 0.1 to 2, based on the mass of the polyurethane block copolymer. The thermoplastic polymer composition according to the above [9] or [10], further containing 000 ppm by mass.
[12] 前記熱可塑性重合体が、ポリアミド;ポリエステル;ポリ塩化ビニリデン;ポリ塩化ビニル;ポリカーボネート;アクリル系樹脂;ポリオキシメチレン樹脂;エチレン-酢酸ビニル共重合体のケン化物;芳香族ビニル化合物とシアン化ビニル化合物、共役ジエンおよびオレフィンから選ばれる少なくとも1種との共重合体;ポリウレタン;スチレン系重合体;並びにポリオレフィンからなる群から選ばれる少なくとも1種である、上記[9]~[11]のいずれか1つに記載の熱可塑性重合体組成物。 [12] The thermoplastic polymer is polyamide; polyester; polyvinylidene chloride; polyvinyl chloride; polycarbonate; acrylic resin; polyoxymethylene resin; saponified ethylene-vinyl acetate copolymer; aromatic vinyl compound and cyanide A copolymer with at least one selected from a vinyl fluoride compound, a conjugated diene and an olefin; a polyurethane; a styrenic polymer; and at least one selected from the group consisting of polyolefins. The thermoplastic polymer composition according to any one of the above.
[13] 上記[9]~[12]のいずれか1つに記載の熱可塑性重合体組成物を製造するための製造方法であって、前記ポリウレタン系ブロック共重合体および前記熱可塑性重合体を溶融混練する工程を含む、製造方法。 [13] A production method for producing the thermoplastic polymer composition according to any one of [9] to [12] above, wherein the polyurethane block copolymer and the thermoplastic polymer are A production method comprising a step of melt-kneading.
[14] 上記[8]に記載のポリウレタン系ブロック共重合体組成物から構成される成形体。 [14] A molded body composed of the polyurethane block copolymer composition described in [8] above.
[15] 上記[9]~[12]のいずれか1つに記載の熱可塑性重合体組成物から構成される成形体。 [15] A molded body composed of the thermoplastic polymer composition according to any one of [9] to [12] above.
[16] 上記[1]~[5]のいずれか1つに記載のポリウレタン系ブロック共重合体を含む部材(X)と、前記部材(X)以外の他の部材(Y)とを有し、前記部材(X)と前記部材(Y)とが接触している複合成形体。 [16] A member (X) containing the polyurethane block copolymer according to any one of [1] to [5] above and a member (Y) other than the member (X) The composite molded body in which the member (X) and the member (Y) are in contact.
[17] 前記部材(X)が、上記[8]に記載のポリウレタン系ブロック共重合体組成物から構成される部材である、上記[16]に記載の複合成形体。 [17] The composite molded body according to [16], wherein the member (X) is a member composed of the polyurethane block copolymer composition according to [8].
[18] 前記部材(X)が、上記[9]~[12]のいずれか1つに記載の熱可塑性重合体組成物から構成される部材である、上記[16]に記載の複合成形体。 [18] The composite molded body according to [16], wherein the member (X) is a member composed of the thermoplastic polymer composition according to any one of [9] to [12]. .
[19] 前記部材(Y)がシリコーンを含む部材である、上記[18]に記載の複合成形体。 [19] The composite molded body according to [18], wherein the member (Y) is a member containing silicone.
[20] 前記部材(Y)が、硬化性シリコーン組成物を硬化させて形成したものである上記[19]に記載の複合成形体。 [20] The composite molded body according to [19], wherein the member (Y) is formed by curing a curable silicone composition.
[21] 前記硬化性シリコーン組成物が、珪素原子に結合した水素原子を有するオルガノハイドロジェンポリシロキサンおよびヒドロシリル化触媒を含有する上記[20]に記載の複合成形体。 [21] The composite molded article according to [20], wherein the curable silicone composition contains an organohydrogenpolysiloxane having a hydrogen atom bonded to a silicon atom and a hydrosilylation catalyst.
[22] 上記[20]または[21]に記載の複合成形体を製造するための製造方法であって、前記部材(X)上で硬化性シリコーン組成物を硬化させる工程を含む、製造方法。 [22] A production method for producing the composite molded article according to [20] or [21], comprising a step of curing the curable silicone composition on the member (X).
 本発明によれば、各種材料(特にシリコーン)との接着性に優れていて、事前の表面活性化処理(プライマー処理など)をしなくても、前記の各種材料と十分に接着させることができる、ポリウレタン系ブロック共重合体が得られる。また前記ポリウレタン系ブロック共重合体を含有させることによって、各種材料(特にシリコーン)との接着性に優れていて、事前の表面活性化処理(プライマー処理など)をしなくても前記の各種材料と十分に接着させることができる、熱可塑性重合体組成物が得られる。本発明は、前記ポリウレタン系ブロック共重合体および前記熱可塑性重合体組成物に加えて、前記ポリウレタン系ブロック共重合体の製造方法;前記ポリウレタン系ブロック共重合体を含むポリウレタン系ブロック共重合体組成物;前記熱可塑性重合体組成物の製造方法;前記熱可塑性重合体組成物を効率的に製造することができるマスターバッチ;前記ポリウレタン系ブロック共重合体、前記ポリウレタン系ブロック共重合体組成物または前記熱可塑性重合体組成物から構成される成形体;前記ポリウレタン系ブロック共重合体を含む部材と、シリコーンに代表される各種材料からなる部材とが十分に接着した複合成形体;および前記複合成形体の製造方法;を提供する。 According to the present invention, it is excellent in adhesiveness with various materials (especially silicone), and can be sufficiently adhered to the various materials without prior surface activation treatment (primer treatment or the like). A polyurethane block copolymer is obtained. Moreover, by including the polyurethane block copolymer, it has excellent adhesion to various materials (particularly silicone), and the various materials can be used without prior surface activation treatment (primer treatment, etc.). A thermoplastic polymer composition that can be sufficiently bonded is obtained. The present invention provides a method for producing the polyurethane block copolymer in addition to the polyurethane block copolymer and the thermoplastic polymer composition; a polyurethane block copolymer composition containing the polyurethane block copolymer; A method for producing the thermoplastic polymer composition; a master batch capable of efficiently producing the thermoplastic polymer composition; the polyurethane block copolymer, the polyurethane block copolymer composition, or A molded body composed of the thermoplastic polymer composition; a composite molded body in which a member containing the polyurethane block copolymer and a member made of various materials typified by silicone are sufficiently bonded; and the composite molding A method for producing a body.
 以下に本発明について詳細に説明する。
 本発明のポリウレタン系ブロック共重合体は、付加重合系ブロック(α)とポリウレタンブロック(β)とを有する。そして当該付加重合系ブロック(α)は、芳香族ビニル化合物単位を含む重合体ブロック(A)および共役ジエン単位を含む重合体ブロック(B)を有するブロック共重合体;並びに当該ブロック共重合体の水素添加物;から選ばれる付加重合系ブロック共重合体から誘導される。
The present invention is described in detail below.
The polyurethane block copolymer of the present invention has an addition polymerization block (α) and a polyurethane block (β). The addition polymerization block (α) is a block copolymer having a polymer block (A) containing an aromatic vinyl compound unit and a polymer block (B) containing a conjugated diene unit; and the block copolymer It is derived from an addition polymerization block copolymer selected from hydrogenated products.
 本発明のポリウレタン系ブロック共重合体における付加重合系ブロック(α)とポリウレタンブロック(β)との結合形態は特に制限されず、直鎖状、分岐鎖状、放射状、またはこれらが組み合わさった結合形態のいずれであってもよい。これらの中で、直鎖状の結合形態が好ましい。ポリウレタン系ブロック共重合体の構造は、上記の付加重合系ブロック(α)を単に「α」で表し、ポリウレタンブロック(β)を単に「β」で表すと、式;α-β、α-β-α、β-α-β等の様々な形態を取り得るが、α-β型のジブロック型の構造および/またはα-β-α型のトリブロック型の構造であることが好ましく、α-β型のジブロック型の構造であることがより好ましい。ジブロック型のポリウレタン系ブロック共重合体、並びにそれを含むポリウレタン系ブロック共重合体組成物および熱可塑性重合体組成物は、シリコーンとの接着性に一層優れる。 In the polyurethane block copolymer of the present invention, the bonding form of the addition polymerization block (α) and the polyurethane block (β) is not particularly limited, and is a straight chain, a branched chain, a radial, or a combination thereof. Any form may be sufficient. Among these, a linear bond form is preferable. The structure of the polyurethane block copolymer is represented by the formula: α-β, α-β, where the above addition polymerization block (α) is simply represented by “α” and the polyurethane block (β) is simply represented by “β”. It can take various forms such as -α, β-α-β, etc., but is preferably an α-β type diblock type structure and / or an α-β-α type triblock type structure, A β-type diblock structure is more preferable. The diblock type polyurethane block copolymer, and the polyurethane block copolymer composition and thermoplastic polymer composition containing the same are more excellent in adhesiveness to silicone.
 またポリウレタン系ブロック共重合体が2個以上の付加重合系ブロック(α)を有する場合、付加重合系ブロック(α)は互いに同じ内容のブロックであってもよいし、異なる内容のブロックであってもよい。またポリウレタン系ブロック共重合体が2個以上のポリウレタンブロック(β)を有する場合、ポリウレタンブロック(β)は互いに同じ内容のブロックであってもよいし、異なる内容のブロックであってもよい。例えば、上記α-β-αで表されるトリブロック構造における2個のα〔付加重合系ブロック(α)〕、あるいはβ-α-βで表されるトリブロック構造における2個のβ〔ポリウレタンブロック(β)〕は、それらを構成する構造単位の種類、その結合形式、数平均分子量などが同じであってもよいし、異なっていてもよい。 When the polyurethane block copolymer has two or more addition polymerization blocks (α), the addition polymerization blocks (α) may be blocks having the same contents or different contents. Also good. When the polyurethane block copolymer has two or more polyurethane blocks (β), the polyurethane blocks (β) may be blocks having the same contents or different contents. For example, two α [addition polymerization block (α)] in the triblock structure represented by α-β-α or two β [polyurethanes in a triblock structure represented by β-α-β The block (β)] may be the same or different in the type of structural units constituting them, the bonding type, the number average molecular weight, and the like.
 付加重合系ブロック(α)/ポリウレタンブロック(β)の質量割合は、好ましくは10/90~95/5の範囲内、より好ましくは10/90~90/10の範囲内、さらに好ましくは20/80~80/20の範囲内、特に好ましは30/70~70/30の範囲内である。好ましい質量割合で付加重合系ブロック(α)/ポリウレタンブロック(β)を有するポリウレタン系ブロック共重合体は、シリコーンとの接着性に一層優れたものとなる。 The mass ratio of the addition polymerization block (α) / polyurethane block (β) is preferably within the range of 10/90 to 95/5, more preferably within the range of 10/90 to 90/10, and even more preferably 20 / It is in the range of 80 to 80/20, particularly preferably in the range of 30/70 to 70/30. A polyurethane block copolymer having an addition polymerization block (α) / polyurethane block (β) at a preferred mass ratio is more excellent in adhesion to silicone.
 付加重合系ブロック(α)が有する芳香族ビニル化合物単位を含む重合体ブロック(A)を構成する芳香族ビニル化合物単位としては、例えば、スチレン、α-メチルスチレン、β-メチルスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、2,4-ジメチルスチレン、2,4,6-トリメチルスチレン、4-プロピルスチレン、t-ブチルスチレン、4-シクロヘキシルスチレン、4-ドデシルスチレン、2-エチル-4-ベンジルスチレン、4-(フェニルブチル)スチレン、1-ビニルナフタレン、ビニルアントラセン、インデン、アセトナフチレン、モノフルオロスチレン、ジフルオロスチレン、モノクロロスチレン、メトキシスチレン等から誘導される構造単位を挙げることができる。重合体ブロック(A)は、1種類の芳香族ビニル化合物単位から構成されていてもよいし、2種類以上の芳香族ビニル化合物単位から構成されていてもよい。重合体ブロック(A)は、スチレンおよび/またはα-メチルスチレンから誘導される構造単位より主としてなるものが好ましい。重合体ブロック(A)は、芳香族ビニル化合物単位とともに、必要に応じて他の共重合性単量体から誘導される構造単位を少量含んでいてもよい。他の共重合性単量体から誘導される構造単位の含有率は、重合体ブロック(A)の質量に基づいて30質量%以下であることが好ましく、10質量%以下であることがより好ましい。他の共重合性単量体としては、例えば、1-ブテン、1-ペンテン、1-ヘキセン、ブタジエン、2-メチル-1,3-ブタジエン(イソプレン)、メチルビニルエーテル等を挙げることができる。 Examples of the aromatic vinyl compound unit constituting the polymer block (A) containing the aromatic vinyl compound unit contained in the addition polymerization block (α) include styrene, α-methylstyrene, β-methylstyrene, and o-methyl. Styrene, m-methylstyrene, p-methylstyrene, 2,4-dimethylstyrene, 2,4,6-trimethylstyrene, 4-propylstyrene, t-butylstyrene, 4-cyclohexylstyrene, 4-dodecylstyrene, 2- Examples include structural units derived from ethyl-4-benzylstyrene, 4- (phenylbutyl) styrene, 1-vinylnaphthalene, vinylanthracene, indene, acetonaphthylene, monofluorostyrene, difluorostyrene, monochlorostyrene, methoxystyrene, and the like. it can. The polymer block (A) may be composed of one type of aromatic vinyl compound unit, or may be composed of two or more types of aromatic vinyl compound units. The polymer block (A) is preferably composed mainly of structural units derived from styrene and / or α-methylstyrene. The polymer block (A) may contain a small amount of a structural unit derived from another copolymerizable monomer, if necessary, along with the aromatic vinyl compound unit. The content of structural units derived from other copolymerizable monomers is preferably 30% by mass or less, more preferably 10% by mass or less, based on the mass of the polymer block (A). . Examples of other copolymerizable monomers include 1-butene, 1-pentene, 1-hexene, butadiene, 2-methyl-1,3-butadiene (isoprene), methyl vinyl ether, and the like.
 また、付加重合系ブロック(α)が有する共役ジエン単位を含む重合体ブロック(B)を構成する共役ジエン単位としては、例えば、1,3-ブタジエン、2-メチル-1,3-ブタジエン(イソプレン)、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン等から誘導される構造単位を挙げることができる。重合体ブロック(B)は、1種類の共役ジエン単位から構成されていてもよいし、2種類以上の共役ジエン単位から構成されていてもよい。重合体ブロック(B)が2種類以上の共役ジエン単位を含む場合には、それらの結合形態はランダム、テーパー、一部ブロック状のいずれであってもよいし、さらにそれらが混在していてもよい。 Examples of the conjugated diene unit constituting the polymer block (B) containing the conjugated diene unit contained in the addition polymerization block (α) include 1,3-butadiene, 2-methyl-1,3-butadiene (isoprene). ), Structural units derived from 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene, and the like. The polymer block (B) may be composed of one type of conjugated diene unit or may be composed of two or more types of conjugated diene units. When the polymer block (B) contains two or more kinds of conjugated diene units, the bonding form thereof may be random, tapered, or partially blocky, and even if they are mixed Good.
 重合体ブロック(B)における共役ジエン単位の含有率は、重合体ブロック(B)の質量に基づいて70~100質量%の範囲内であることが好ましく、90~100質量%の範囲内であることがより好ましい。 The content of the conjugated diene unit in the polymer block (B) is preferably in the range of 70 to 100% by mass, and in the range of 90 to 100% by mass based on the mass of the polymer block (B). It is more preferable.
 付加重合系ブロック(α)は、重合体ブロック(A)および重合体ブロック(B)を有するブロック共重合体の水素添加物であってもよい。水素添加物は、重合体ブロック(B)が有する不飽和二重結合の一部のみが水素添加されたものでもよく、またはその全部が水素添加されたものでもよい。重合体ブロック(B)が水素添加されたブロックにおける水素添加率は、水素添加前の重合体ブロック(B)が有する不飽和二重結合の総モル数に基づいて、50モル%以上であることが好ましく、60モル%以上であることがより好ましく、80モル%以上であることがさらに好ましい。重合体ブロック(B)の水素転化率が50モル%以上であれば、耐熱性、耐候性および耐光性に優れたポリウレタン系ブロック共重合体が得られる。 The addition polymerization block (α) may be a hydrogenated product of a block copolymer having a polymer block (A) and a polymer block (B). The hydrogenated product may be one in which only a part of the unsaturated double bond of the polymer block (B) is hydrogenated, or one in which all of the hydrogenated product is hydrogenated. The hydrogenation rate in the block in which the polymer block (B) is hydrogenated is 50 mol% or more based on the total number of unsaturated double bonds of the polymer block (B) before hydrogenation. Is preferably 60 mol% or more, and more preferably 80 mol% or more. If the hydrogen conversion rate of the polymer block (B) is 50 mol% or more, a polyurethane block copolymer excellent in heat resistance, weather resistance and light resistance can be obtained.
 また、特に溶融成形性に優れたポリウレタン系ブロック共重合体を得る場合には、付加重合系ブロック(α)が、水素添加されていてもよい重合体ブロック(B)として、水素添加されていてもよいイソプレン重合体ブロック、水素添加されていてもよいブタジエン重合体ブロック、または水素添加されていてもよいイソプレンとブタジエンの共重合体ブロックを有することが好ましい。 In addition, when obtaining a polyurethane block copolymer particularly excellent in melt moldability, the addition polymerization block (α) is hydrogenated as a polymer block (B) which may be hydrogenated. It is preferable to have an isoprene polymer block that may be hydrogenated, a butadiene polymer block that may be hydrogenated, or a copolymer block of isoprene and butadiene that may be hydrogenated.
 さらに、下記(1)かつ(2)の場合には、常温付近において損失係数の値が大きく、且つ広い温度範囲にわたって大きな損失係数の値を保持する制振性能および溶融成形性に優れたポリウレタン系ブロック共重合体が得られる:(1)付加重合系ブロック(α)が、水素添加されていてもよい重合体ブロック(B)として、水素添加されていてもよいイソプレン重合体ブロックまたは水素添加されていてもよいイソプレンとブタジエンの共重合体ブロックを有し、かつ(2)前記重合体ブロック(B)に含まれる1,2-結合および3,4-結合のイソプレン単位およびブタジエン単位の合計の割合が、前記重合体ブロック(B)に含まれる全てのイソプレン単位およびブタジエン単位のモル数に基づいて30モル%以上(好ましくは40モル%以上)である。 Furthermore, in the case of (1) and (2) below, a polyurethane system having a large loss factor near normal temperature and having a large loss factor over a wide temperature range and excellent vibration damping performance and melt moldability A block copolymer is obtained: (1) The addition polymerization system block (α) is an optionally hydrogenated isoprene polymer block or hydrogenated as an optionally hydrogenated polymer block (B). A copolymer block of isoprene and butadiene that may be present, and (2) a total of 1,2-bonded and 3,4-bonded isoprene units and butadiene units contained in the polymer block (B). The proportion is 30 mol% or more based on the number of moles of all isoprene units and butadiene units contained in the polymer block (B) (preferably 4 It is a mol% or more).
 また、下記(3)かつ(4)の場合にも、常温付近において損失係数の値が大きく、かつ広い温度範囲にわたって大きな損失係数の値を保持する制振性能および溶融成形性に優れたポリウレタン系ブロック共重合体が得られる:(3)付加重合系ブロック(α)が、水素添加されていてもよい重合体ブロック(B)として、水素添加されていてもよいブタジエン重合体ブロックを有し、かつ(4)前記重合体ブロック(B)に含まれる1,2-結合のブタジエン単位の割合が、前記重合体ブロック(B)に含まれる全てのブタジエン単位のモル数に基づいて60モル%以上(好ましくは80モル%以上)である。 Also in the cases of (3) and (4) below, a polyurethane system having a large loss factor near normal temperature and having a large loss factor over a wide temperature range and excellent vibration damping performance and melt moldability A block copolymer is obtained: (3) The addition polymerization system block (α) has an optionally hydrogenated butadiene polymer block as the optionally hydrogenated polymer block (B), And (4) the proportion of 1,2-bonded butadiene units contained in the polymer block (B) is 60 mol% or more based on the number of moles of all butadiene units contained in the polymer block (B). (Preferably 80 mol% or more).
 なお、本明細書において、重合体ブロック(B)が水素添加されたブロックにおける共役ジエン単位(例えばイソプレン単位、ブタジエン単位等)には、水素添加された共役ジエン単位(例えば水素添加されたイソプレン単位、水素添加されたブタジエン単位等)が包含されるものとする。 In the present specification, the conjugated diene unit (for example, isoprene unit, butadiene unit, etc.) in the block in which the polymer block (B) is hydrogenated includes a hydrogenated conjugated diene unit (for example, hydrogenated isoprene unit). , Hydrogenated butadiene units, etc.).
 付加重合系ブロック(α)における重合体ブロック(A)と;重合体ブロック(B)またはそれが水素添加されたブロックと;の結合形態は特に制限されず、直鎖状、分岐鎖状、放射状、またはそれらが組み合わさった結合形態のいずれであってもよいが、直鎖状の結合形態であることが好ましい。 The bonding form of the polymer block (A) in the addition polymerization system block (α) and the polymer block (B) or a block in which it is hydrogenated is not particularly limited, and is linear, branched or radial. , Or a combined form in which they are combined, but is preferably a linear combined form.
 付加重合系ブロック(α)は、上記の重合体ブロック(A)(以下、単に「A」で表すことがある)および重合体ブロック(B)またはそれが水素添加されたブロック(以下、これらをまとめて単に「B」で表すことがある)を有するが、その構造としては、式;(A-B)m-A、(A-B)n、B-(A-B)p(式中、m、nおよびpはそれぞれ1以上の整数を示す)などで表されるブロック共重合体の形態を挙げることができる。これらの中でも、シリコーンとの接着性に一層優れたポリウレタン系ブロック共重合体を確実に得ることができることから、付加重合系ブロック(α)は、2個以上のAと1個以上のBが直鎖状に結合したブロック共重合体の形態のものであることが好ましく、式:A-B-Aで表されるトリブロック共重合体の形態のものであることがより好ましい。 The addition polymerization block (α) includes the above polymer block (A) (hereinafter sometimes simply referred to as “A”) and the polymer block (B) or a block in which it is hydrogenated (hereinafter referred to as “A”). In some cases, the structure is simply represented by “B”, and the structure thereof is represented by the formula: (AB) m -A, (AB) n , B- (AB) p (wherein , M, n, and p each represents an integer of 1 or more). Among these, since the polyurethane block copolymer having more excellent adhesiveness with silicone can be obtained with certainty, the addition polymerization block (α) has two or more A and one or more B directly. It is preferably in the form of a chain-bonded block copolymer, and more preferably in the form of a triblock copolymer represented by the formula: ABA.
 付加重合系ブロック(α)が2個以上の重合体ブロック(A)を有する場合、重合体ブロック(A)は互いに同じ内容のブロックであってもよいし、異なる内容のブロックであってもよい。また、付加重合系ブロック(α)が2個以上の重合体ブロック(B)またはそれが水素添加されたブロックを有する場合、重合体ブロック(B)またはそれが水素添加されたブロックは互いに同じ内容のブロックであってもよいし、異なる内容のブロックであってもよい。例えば、A-B-Aで表されるトリブロック構造における2個のA、あるいはB-A-Bで表されるトリブロック構造における2個のBは、それらを構成する芳香族ビニル化合物または共役ジエンの種類、その結合形式、ブロックの数平均分子量などが同じであってもよいし、異なっていてもよい。 When the addition polymerization block (α) has two or more polymer blocks (A), the polymer blocks (A) may be blocks having the same contents or different contents. . Further, when the addition polymerization system block (α) has two or more polymer blocks (B) or a block in which it is hydrogenated, the polymer block (B) or the block in which it is hydrogenated has the same content. The block may be a block with different contents. For example, two A in the triblock structure represented by ABA or two B in the triblock structure represented by BAB are aromatic vinyl compounds or conjugates constituting them. The type of diene, the bonding type thereof, the number average molecular weight of the block, etc. may be the same or different.
 付加重合系ブロック(α)における芳香族ビニル化合物から誘導される構造単位の含有率は、付加重合系ブロック(α)の全質量に対して5~90質量%の範囲内であることが好ましい。芳香族ビニル化合物から誘導される構造単位の含有率が上記の範囲内にある付加重合系ブロック(α)を有するポリウレタン系ブロック共重合体は、シリコーンとの接着性に一層優れる。付加重合系ブロック(α)における芳香族ビニル化合物から誘導される構造単位の含有率は、付加重合系ブロック(α)の全質量に対して10~90質量%の範囲内であることがより好ましい。 The content of the structural unit derived from the aromatic vinyl compound in the addition polymerization block (α) is preferably in the range of 5 to 90% by mass with respect to the total mass of the addition polymerization block (α). A polyurethane block copolymer having an addition polymerization block (α) in which the content of a structural unit derived from an aromatic vinyl compound is within the above range is further excellent in adhesiveness to silicone. The content of the structural unit derived from the aromatic vinyl compound in the addition polymerization block (α) is more preferably in the range of 10 to 90% by mass with respect to the total mass of the addition polymerization block (α). .
 なお、ポリウレタン系ブロック共重合体をポリオレフィンに配合して、後述する熱可塑性重合体組成物を得る場合には、付加重合系ブロック(α)における芳香族ビニル化合物から誘導される構造単位の含有率は、好ましくは5~60質量%の範囲内、より好ましくは10~50質量%の範囲内である。また、ポリウレタン系ブロック共重合体をスチレン系重合体に配合して、後述する熱可塑性重合体組成物を得る場合には、付加重合系ブロック(α)における芳香族ビニル化合物から誘導される構造単位の含有率は、好ましくは40~90質量%の範囲内、より好ましくは50~90質量%の範囲内である。前記構造単位の含有率が好ましい範囲内にあれば、シリコーンとの接着性に一層優れた熱可塑性重合体組成物が得られる。 In addition, when a polyurethane block copolymer is blended with polyolefin to obtain a thermoplastic polymer composition described later, the content of structural units derived from an aromatic vinyl compound in the addition polymerization block (α) Is preferably in the range of 5 to 60% by mass, more preferably in the range of 10 to 50% by mass. When a polyurethane block copolymer is blended with a styrene polymer to obtain a thermoplastic polymer composition described later, a structural unit derived from an aromatic vinyl compound in the addition polymerization block (α) The content of is preferably in the range of 40 to 90% by mass, more preferably in the range of 50 to 90% by mass. If the content rate of the said structural unit exists in the preferable range, the thermoplastic polymer composition which was further excellent in adhesiveness with silicone will be obtained.
 重合体ブロック(A)および重合体ブロック(B)の数平均分子量は特に制限されるものではないが、水素添加前の状態で、重合体ブロック(A)の数平均分子量が2,500~75,000の範囲内であり、重合体ブロック(B)の数平均分子量が10,000~150,000の範囲内であることが好ましい。前記各ブロックの数平均分子量が上記の範囲内にあるポリウレタン系ブロック共重合体は、シリコーンとの接着性に一層優れる。また、付加重合系ブロック(α)の全体の数平均分子量は、シリコーンとの接着性の観点から、好ましくは10,000~300,000の範囲内、より好ましくは20,000~100,000の範囲内である。 The number average molecular weights of the polymer block (A) and the polymer block (B) are not particularly limited. The number average molecular weight of the polymer block (B) is preferably in the range of 10,000 to 150,000. The polyurethane block copolymer in which the number average molecular weight of each block is within the above range is further excellent in adhesiveness with silicone. The total number average molecular weight of the addition polymerization block (α) is preferably in the range of 10,000 to 300,000, more preferably 20,000 to 100,000, from the viewpoint of adhesion to silicone. Within range.
 一方、本発明のポリウレタン系ブロック共重合体が有するポリウレタンブロック(β)
は、下記の一般式(I);
On the other hand, the polyurethane block (β) of the polyurethane block copolymer of the present invention
Is the following general formula (I);
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式中、R1およびR2はそれぞれ独立して水素原子または炭素数1~6のアルキル基を示す。)
で表される、ビニル基またはアルキル置換ビニル基が結合した構造単位(I)を有する。
(In the formula, R 1 and R 2 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.)
And a structural unit (I) to which a vinyl group or an alkyl-substituted vinyl group is bonded.
 上記の一般式(I)において、R1およびR2はそれぞれ独立して水素原子または炭素数1~6のアルキル基である。R1およびR2の両方が水素原子であってもよいし、一方が水素原子でもう一方がアルキル基であってもよいし、または両方がアルキル基であってもよい。 In the general formula (I), R 1 and R 2 are each independently a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. Both R 1 and R 2 may be hydrogen atoms, one may be a hydrogen atom and the other may be an alkyl group, or both may be an alkyl group.
 R1の具体例としては、水素原子、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基、n-ペンチル基、シクロペンチル基、n-ヘキシル基、シクロヘキシル基などを挙げることができ、R1は水素原子、メチル基、エチル基であることが好ましい。 Specific examples of R 1 are hydrogen atom, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group, n-pentyl group, cyclopentyl group, n-hexyl group, cyclohexyl group. R 1 is preferably a hydrogen atom, a methyl group, or an ethyl group.
 また、R2の具体例としては、水素原子、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基、n-ペンチル基、シクロペンチル基、n-ヘキシル基、シクロヘキシル基などを挙げることができ、R2は水素原子、メチル基、エチル基であることが好ましい。 Specific examples of R 2 include hydrogen atom, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group, n-pentyl group, cyclopentyl group, n-hexyl group, Examples thereof include a cyclohexyl group, and R 2 is preferably a hydrogen atom, a methyl group, or an ethyl group.
 限定されるものではないが、構造単位(I)の具体例としては、
 (Ia)構造単位(I)において、R1およびR2の両方が水素原子であるもの;
 (Ib)構造単位(I)において、R1が水素原子で、R2がメチル基であるもの;
 (Ic)構造単位(I)において、R1がメチル基で、R2が水素原子であるもの;
 (Id)構造単位(I)において、R1およびR2の両方がメチル基であるもの;
 (Ie)構造単位(I)において、R1が水素原子で、R2がエチル基であるもの;
 (If)構造単位(I)において、R1がメチル基で、R2がエチル基であるもの;
 (Ig)構造単位(I)において、R1が水素原子で、R2がn-プロピル基であるもの;
 (Ih)構造単位(I)において、R1がメチル基で、R2がn-プロピル基であるもの;
 (Ii)構造単位(I)において、R1が水素原子で、R2がn-ブチル基であるもの;
 (Ij)構造単位(I)において、R1がメチル基で、R2がn-ブチル基であるもの;
 (Ik)構造単位(I)において、R1が水素原子で、R2がn-ペンチル基であるもの;
 (Im)構造単位(I)において、R1がメチル基で、R2がn-ペンチル基であるもの;
 (In)構造単位(I)において、R1が水素原子で、R2がn-ヘキシル基であるもの;
 (Io)構造単位(I)において、R1がメチル基で、R2がn-ヘキシル基であるもの;
などを挙げることができる。
Although not limited, as a specific example of structural unit (I),
(Ia) In the structural unit (I), both R 1 and R 2 are hydrogen atoms;
(Ib) In the structural unit (I), R 1 is a hydrogen atom and R 2 is a methyl group;
(Ic) In the structural unit (I), R 1 is a methyl group and R 2 is a hydrogen atom;
(Id) In the structural unit (I), both R 1 and R 2 are methyl groups;
(Ie) In the structural unit (I), R 1 is a hydrogen atom and R 2 is an ethyl group;
(If) In the structural unit (I), R 1 is a methyl group and R 2 is an ethyl group;
(Ig) In the structural unit (I), R 1 is a hydrogen atom and R 2 is an n-propyl group;
(Ih) In the structural unit (I), R 1 is a methyl group and R 2 is an n-propyl group;
(Ii) Structural unit (I) wherein R 1 is a hydrogen atom and R 2 is an n-butyl group;
(Ij) In the structural unit (I), R 1 is a methyl group and R 2 is an n-butyl group;
(Ik) In the structural unit (I), R 1 is a hydrogen atom and R 2 is an n-pentyl group;
(Im) Structural unit (I) wherein R 1 is a methyl group and R 2 is an n-pentyl group;
(In) Structural unit (I) wherein R 1 is a hydrogen atom and R 2 is an n-hexyl group;
(Io) In the structural unit (I), R 1 is a methyl group and R 2 is an n-hexyl group;
And so on.
 上記した中でも、構造単位(I)を有するポリウレタン用原料の入手容易性;シリコーン(特に珪素原子に結合した水素原子を有するオルガノハイドロジェンポリシロキサン)とポリウレタン系ブロック共重合体との接着強度;シリコーン(特にオルガノハイドロジェンポリシロキサン)と構造単位(I)におけるビニル基またはアルキル置換ビニル基との反応性;などの点から、構造単位(I)としては、上記(Ia)、(Ib)、(Ic)、(Id)が好ましく、(Ia)、(Ib)、(Ic)がより好ましい。 Among the above, the availability of a raw material for polyurethane having the structural unit (I); adhesive strength between silicone (particularly organohydrogenpolysiloxane having a hydrogen atom bonded to a silicon atom) and polyurethane block copolymer; silicone The structural unit (I) includes the above-mentioned (Ia), (Ib), ( Ic) and (Id) are preferable, and (Ia), (Ib) and (Ic) are more preferable.
 本発明のポリウレタン系ブロック共重合体は、その全質量に基づいて、ポリウレタンブロック(β)が有する前記構造単位(I)を0.2~40質量%の割合で有することが好ましい。ポリウレタンブロック(β)が有する前記構造単位(I)の含有率が0.2質量%よりも少ないと、得られるポリウレタン系ブロック共重合体のシリコーンとの接着性が低下する傾向がある。一方、この含有率が40質量%よりも多いと、得られるポリウレタン系ブロック共重合体の成形性が低下する傾向があり、またポリウレタン系ブロック共重合体から得られる成形体や複合成形体の力学的特性、耐熱性、耐候性などが低下する傾向がある。ポリウレタン系ブロック共重合体におけるポリウレタンブロック(β)が有する前記構造単位(I)の含有率は、ポリウレタン系ブロック共重合体の全質量に基づいて1~35質量%であることがより好ましく、1.5~35質量%であることがさらに好ましく、2~30質量%であることが特に好ましい。 The polyurethane-based block copolymer of the present invention preferably has the structural unit (I) of the polyurethane block (β) in a proportion of 0.2 to 40% by mass based on the total mass. When the content of the structural unit (I) contained in the polyurethane block (β) is less than 0.2% by mass, the adhesion of the resulting polyurethane block copolymer to silicone tends to decrease. On the other hand, when the content is more than 40% by mass, the moldability of the obtained polyurethane block copolymer tends to be lowered, and the molding and composite molding obtained from the polyurethane block copolymer have a tendency to deteriorate. Characteristics, heat resistance, weather resistance and the like tend to decrease. The content of the structural unit (I) of the polyurethane block (β) in the polyurethane block copolymer is more preferably 1 to 35% by mass based on the total mass of the polyurethane block copolymer. The content is more preferably 5 to 35% by mass, and particularly preferably 2 to 30% by mass.
 ポリウレタンブロック(β)は、少なくとも、分子中に構造単位(I)を有するポリマーポリオール(ap-1)を含有するポリマーポリオール(ap)と、有機ポリイソシアネート(b)との反応により形成することができる。なおポリマーポリオール(ap)は、ポリマーポリオール(ap-1)以外の他のポリマーポリオール[すなわち構造単位(I)を持たないポリマーポリオール、以下「他のポリマーポリオール(ap-2)」と略称することがある]を含有していてもよい。 Polyurethane block (beta) is at least, polymer polyols containing polymer polyol having a structural unit (I) in a molecule (a p -1) and (a p), formed by the reaction of an organic polyisocyanate (b) be able to. The polymer polyol (a p ) is a polymer polyol other than the polymer polyol (a p -1) [that is, a polymer polyol having no structural unit (I), hereinafter referred to as “other polymer polyol (a p -2)”. It may be abbreviated].
 ポリウレタンブロック(β)は、ポリマーポリオール(ap)、有機ポリイソシアネート(b)および鎖伸長剤(c)の反応により形成することが好ましい。またこれらの反応は、有機亜鉛化合物、有機ビスマス化合物、有機チタン化合物および有機ジルコニウム化合物からなる群から選ばれる少なくとも1種の金属化合物よりなるウレタン化反応触媒の存在下に行うことが好ましい。 The polyurethane block (β) is preferably formed by the reaction of the polymer polyol (a p ), the organic polyisocyanate (b) and the chain extender (c). These reactions are preferably carried out in the presence of a urethanization reaction catalyst comprising at least one metal compound selected from the group consisting of an organic zinc compound, an organic bismuth compound, an organic titanium compound and an organic zirconium compound.
 上記のポリマーポリオール(ap)が有する水酸基は、その分子末端に位置していることが好ましい。分子末端に位置する水酸基はポリウレタン形成時に主鎖延長に関与する。その結果、物性(例えば非粘着性、溶融成形性、力学的特性など)に優れ、しかもシリコーンに対して均一な接着性を有するポリウレタン系ブロック共重合体が得られる。 It is preferable that the hydroxyl group which said polymer polyol ( ap ) has is located in the molecular terminal. The hydroxyl group located at the molecular end is involved in the main chain extension during polyurethane formation. As a result, a polyurethane block copolymer having excellent physical properties (for example, non-tackiness, melt moldability, mechanical properties, etc.) and uniform adhesion to silicone can be obtained.
 ポリマーポリオール(ap)における水酸基の数は、1分子当たり平均で0.7個以上であることが好ましく、0.7~3個であることがより好ましく、1.8~2.5個であることがさらに好ましい。 The number of hydroxyl groups in the polymer polyol (a p ) is preferably 0.7 or more on average per molecule, more preferably 0.7 to 3, and preferably 1.8 to 2.5. More preferably it is.
 ポリマーポリオール(ap)の数平均分子量は、好ましくは500~10,000、より好ましくは500~8,000、さらに好ましくは600~5,000、特に好ましくは800~5,000である。好ましい数平均分子量を有するポリマーポリオール(ap)を使用することによって、非粘着性、溶融成形性、力学的特性(例えば耐摩耗性や引張破断強度など)、柔軟性、屈曲性、低残留歪み性、耐油性等に優れるポリウレタン系ブロック共重合体、成形体、複合成形体などが得られる。 The number average molecular weight of the polymer polyol (a p ) is preferably 500 to 10,000, more preferably 500 to 8,000, still more preferably 600 to 5,000, and particularly preferably 800 to 5,000. By using a polymer polyol (a p ) having a preferred number average molecular weight, non-adhesiveness, melt moldability, mechanical properties (such as wear resistance and tensile breaking strength), flexibility, flexibility, low residual strain Polyurethane block copolymer, molded body, composite molded body and the like having excellent properties and oil resistance can be obtained.
 上記の場合に用いるポリマーポリオール(ap-1)および他のポリマーポリオール(ap-2)の数平均分子量は、それぞれ、好ましくは500~10,000、より好ましくは500~8,000、さらに好ましくは600~5,000、特に好ましくは800~5,000である。かかる数平均分子量のポリマーポリオール(ap-1)および他のポリマーポリオール(ap-2)を用いることによって、非粘着性、力学的強度、耐熱性等に優れるポリウレタン系ブロック共重合体、成形体、複合成形体などを得ることができる。 The number average molecular weights of the polymer polyol (a p -1) and the other polymer polyol (a p -2) used in the above case are preferably 500 to 10,000, more preferably 500 to 8,000, It is preferably 600 to 5,000, particularly preferably 800 to 5,000. By using such a polymer polyol ( ap- 1) having a number average molecular weight and another polymer polyol ( ap- 2), a polyurethane block copolymer excellent in non-adhesiveness, mechanical strength, heat resistance, etc., molding Body, composite molded body and the like can be obtained.
 ここで、本明細書でいうポリマーポリオールの数平均分子量は、JIS K-1557に準拠して測定した水酸基価に基づいて算出した数平均分子量である。 Here, the number average molecular weight of the polymer polyol referred to in the present specification is a number average molecular weight calculated based on a hydroxyl value measured in accordance with JIS K-1557.
 また、ポリマーポリオール(ap-1)および他のポリマーポリオール(ap-2)における1分子当たりの水酸基数は、それぞれ、好ましくは2.0~2.1個、さらに好ましくは2.0~2.07個、特に好ましくは2.005~2.05個の範囲内である。好ましい水酸基数を有するポリマーポリオール(ap-1)および他のポリマーポリオール(ap-2)を用いれば、成形性、非粘着性、力学的特性(例えば耐摩耗性)などに優れるポリウレタン系ブロック共重合体を得ることができる。 The number of hydroxyl groups per molecule in the polymer polyol (a p -1) and the other polymer polyol (a p -2) is preferably 2.0 to 2.1, more preferably 2.0 to It is in the range of 2.07, particularly preferably 2.005 to 2.05. When a polymer polyol (a p -1) having a preferred number of hydroxyl groups and another polymer polyol (a p -2) are used, a polyurethane block excellent in moldability, non-adhesiveness, mechanical properties (for example, abrasion resistance), etc. A copolymer can be obtained.
 ポリマーポリオール(ap)におけるポリマーポリオール(ap-1)の含有率は、ポリマーポリオール(ap-1)における構造単位(I)の含有率;ポリマーポリオール(ap-1)の分子量;他のポリマーポリオール(ap-2)の分子量;有機ポリイソシアネート(b)の分子量および使用量;鎖伸長剤(c)の分子量および使用量;などに応じて調節することができる。最終的に得られるポリウレタン系ブロック共重合体中の前記構造単位(I)の含有率が、前記したように、好ましくは0.2~40質量%の範囲内、より好ましくは1~35質量%の範囲内、さらに好ましくは1.5~35質量%の範囲内、特に好ましくは2~30質量%の範囲内になるように、ポリマーポリオール(ap)におけるポリマーポリオール(ap-1)の含有率を調節するとよい。 The molecular weight of the polymer polyol (a p -1);; content, content of the structural units (I) in polymer polyol (a p -1) of the polymer polyol in the polymer polyol (a p) (a p -1 ) Other The molecular weight of the polymer polyol (a p -2), the molecular weight and amount of the organic polyisocyanate (b), the molecular weight and amount of the chain extender (c), and the like can be adjusted. As described above, the content of the structural unit (I) in the finally obtained polyurethane block copolymer is preferably in the range of 0.2 to 40% by mass, more preferably 1 to 35% by mass. Of the polymer polyol (a p -1) in the polymer polyol (a p ) so that it is in the range of 1.5 to 35% by mass, more preferably in the range of 2 to 30% by mass. The content rate may be adjusted.
 分子中に構造単位(I)を有するポリマーポリオール(ap-1)としては、分子中に構造単位(I)を所望量で有し、且つイソシアネート基と反応性の水酸基を複数個有するポリマーポリオールであればいずれでもよい。代表的には、1,2-結合および/または3,4-結合により重合したブタジエン単位および/またはイソプレン単位を有し、且つ2個以上の水酸基(好ましくは2個の水酸基)を有するポリオレフィンポリオール等を挙げることができる。 As the polymer polyol (a p -1) having the structural unit (I) in the molecule, the polymer polyol having a desired amount of the structural unit (I) in the molecule and having a plurality of hydroxyl groups reactive with isocyanate groups Any may be used. Typically, a polyolefin polyol having a butadiene unit and / or an isoprene unit polymerized by 1,2-bond and / or 3,4-bond and having two or more hydroxyl groups (preferably two hydroxyl groups). Etc.
 前記ポリオレフィンポリオールの具体例としては、ブタジエンが主に1,2-結合により重合したポリブタジエンポリオール;イソプレンが主に1,2-結合および/または3,4-結合により重合したポリイソプレンポリオール;ブタジエンおよび/またはイソプレンが主に1,2-結合および/または3,4-結合により重合したブタジエン/イソプレンコポリマーポリオール;ブタジエンおよび/またはイソプレンが主に1,2-結合および/または3,4-結合により重合したブタジエンおよび/またはイソプレンと、他のモノマー[例えばスチレン、α-メチルスチレン、3-メチルスチレン、4-プロピルスチレン、4-シクロヘキシルスチレン、4-ドデシルスチレン、2-エチル-4-ベンジルスチレン、4-(フェニルブチル)スチレン、1-ビニルナフタレン、アクリロニトリル、オレフィン、塩化ビニル、(メタ)アクリル酸エステルなど]とのランダム共重合またはブロック共重合により得られるコポリマーポリオール;などを挙げることができる。これらのポリマーポリオール(ap-1)は1種を単独で使用してもよく、2種以上を併用してもよい。 Specific examples of the polyolefin polyol include polybutadiene polyol in which butadiene is mainly polymerized by 1,2-bonds; polyisoprene polyol in which isoprene is polymerized mainly by 1,2-bonds and / or 3,4-bonds; A butadiene / isoprene copolymer polyol in which isoprene is polymerized mainly by 1,2-bonds and / or 3,4-bonds; butadiene and / or isoprene is predominantly by 1,2-bonds and / or 3,4-bonds Polymerized butadiene and / or isoprene and other monomers [eg styrene, α-methylstyrene, 3-methylstyrene, 4-propylstyrene, 4-cyclohexylstyrene, 4-dodecylstyrene, 2-ethyl-4-benzylstyrene, 4- (Phenylbut And the like; le) styrene, 1-vinylnaphthalene, acrylonitrile, olefin, vinyl chloride, copolymer polyols obtained by random copolymerization or block copolymerization with (meth) acrylic acid ester. These polymer polyols (a p -1) may be used alone or in combination of two or more.
 ポリマーポリオール(ap-1)は、ポリブタジエンポリオール、ポリイソプレンポリオールおよびブタジエン/イソプレンコポリマーポリオールからなる群から選ばれる少なくとも1種であることが好ましい。 The polymer polyol (a p -1) is preferably at least one selected from the group consisting of polybutadiene polyol, polyisoprene polyol and butadiene / isoprene copolymer polyol.
 これらのポリマーポリオール(ap-1)では、ブタジエンおよび/またはイソプレンに由来する全構造単位における1,2-結合単位および3,4-結合単位の合計の割合は、一般に80~100モル%であることが好ましく、85~100モル%であることがより好ましく、90~100モル%であることがさらに好ましい。 In these polymer polyols (a p -1), the total proportion of 1,2-bond units and 3,4-bond units in all structural units derived from butadiene and / or isoprene is generally 80 to 100 mol%. Preferably, it is 85 to 100 mol%, more preferably 90 to 100 mol%.
 また、ブタジエンおよび/またはイソプレンと、これら以外の他のモノマーとのコポリマーポリオールでは、前記コポリマーポリオールにおけるブタジエンおよび/またはイソプレンに由来する構造単位の割合は、好ましくは80質量%以上、より好ましくは85質量%以上、特に好ましくは90~99質量%である。このような割合であれば、コポリマーポリオール中に所望量の構造単位(I)を含有させ易く、しかもシリコーンとの接着性が効果的に発現される。 Moreover, in the copolymer polyol of butadiene and / or isoprene and other monomers other than these, the proportion of the structural unit derived from butadiene and / or isoprene in the copolymer polyol is preferably 80% by mass or more, more preferably 85%. It is 90% by mass or more, particularly preferably 90 to 99% by mass. With such a ratio, a desired amount of the structural unit (I) can be easily contained in the copolymer polyol, and adhesiveness with silicone is effectively expressed.
 ポリマーポリオール(ap)の一部として、構造単位(I)を有するポリマーポリオール(ap-1)と共に用い得る他のポリマーポリオール(ap-2)としては、ポリウレタンの製造に従来から用いられているあらゆるポリマーポリオールを使用することができる。 As part of the polymer polyol (a p), as the other polymer polyols that may be used with the polymer polyol having a structural unit (I) (a p -1) (a p -2), conventionally used for the production of polyurethane Any polymer polyol can be used.
 かかる他のポリマーポリオール(ap-2)の代表例としては、ポリエステルポリオール、ポリエーテルポリオール、ポリカーボネートポリオール、ポリエステルポリカーボネートポリオール、ポリオレフィンポリオール、ひまし油系ポリオール、ビニル重合体系ポリオールなど(ただし、構造単位(I)を持たないもの)を挙げることができる。これらの他のポリマーポリオール(ap-2)は、1種を単独で使用しても、または2種以上を併用してもよい。そのうちでも、他のポリマーポリオール(ap-2)としては、ポリエステルポリオール、ポリエーテルポリオール、ポリオレフィンポリオールが好ましく、ポリエステルポリオールおよび/またはポリエーテルポリオールがより好ましい。 Representative examples of such other polymer polyols (a p -2) include polyester polyols, polyether polyols, polycarbonate polyols, polyester polycarbonate polyols, polyolefin polyols, castor oil-based polyols, vinyl polymer-based polyols, etc. (however, the structural unit (I )). These other polymer polyols (a p -2) may be used alone or in combination of two or more. Among these, as the other polymer polyol (a p -2), polyester polyol, polyether polyol, and polyolefin polyol are preferable, and polyester polyol and / or polyether polyol are more preferable.
 他のポリマーポリオール(ap-2)として用い得る上記ポリエステルポリオールとしては、例えば、(1)常法にしたがって、ポリオール成分とポリカルボン酸成分[ポリカルボン酸またはそのエステル形成性誘導体(例えばそのエステルや酸無水物等)]とを、直接エステル化反応またはエステル交換反応させて得られるポリエステルポリオール;および(2)ポリオールを開始剤としてラクトンを開環重合することによって得られるポリエステルポリオール;などを挙げることができる。 Examples of the polyester polyol that can be used as the other polymer polyol (a p -2) include (1) a polyol component and a polycarboxylic acid component [polycarboxylic acid or an ester-forming derivative thereof (for example, an ester thereof) according to a conventional method. Polyester anhydride obtained by direct esterification reaction or transesterification reaction; and (2) polyester polyol obtained by ring-opening polymerization of a lactone using a polyol as an initiator; be able to.
 ポリオール成分とポリカルボン酸成分とを反応させて得られるポリエステルポリオールの製造に用いる前記したポリオール成分(1分子当たり水酸基を2個有するジオールジオール、および1分子当たり水酸基を3個以上有するポリオール)は、ポリエステルの製造において一般的に使用されているものであればいずれでもよい。ジオールとしては、例えば、炭素数2~15の脂肪族ジオール(例えばエチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、1,3-プロパンジオール、2-メチル-1,3-プロパンジオール、2,2-ジエチル-1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2-メチル-1,4-ブタンジオール、ネオペンチルグリコール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、2-メチル-1,8-オクタンジオール、2,7-ジメチル-1,8-オクタンジオール、1,9-ノナンジオール、2-メチル-1,9-ノナンジオール、2,8-ジメチル-1,9-ノナンジオール、1,10-デカンジオール等);脂環式ジオール(例えば1,4-シクロヘキサンジオール、シクロヘキサンジメタノール、シクロオクタンジメタノール、ジメチルシクロオクタンジメタノール等);芳香族二価アルコール(例えば1,4-ビス(β-ヒドロキシエトキシ)ベンゼン等);などを挙げることができる。ポリオールとしては、トリメチロールプロパン、トリメチロールエタン、グリセリン、1,2,6-ヘキサントリオール、ペンタエリスリトール、ジグリセリンなどを挙げることができる。ポリエステルポリオールの製造に当たっては、これらのポリオール成分は1種を単独で使用してもよく、2種以上を併用してもよい。 The aforementioned polyol component (a diol diol having two hydroxyl groups per molecule and a polyol having three or more hydroxyl groups per molecule) used in the production of a polyester polyol obtained by reacting a polyol component and a polycarboxylic acid component is: Any of those generally used in the production of polyester may be used. Examples of the diol include aliphatic diols having 2 to 15 carbon atoms (for example, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, 1,3-propanediol, 2-methyl-1,3-propanediol, 2,2 -Diethyl-1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 2-methyl-1,4-butanediol, neopentyl glycol, 1,5-pentanediol, 3-methyl- 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 2-methyl-1,8-octanediol, 2,7-dimethyl-1,8-octane Diol, 1,9-nonanediol, 2-methyl-1,9-nonanediol, 2,8-dimethyl -1,9-nonanediol, 1,10-decanediol, etc.); alicyclic diols (eg, 1,4-cyclohexanediol, cyclohexanedimethanol, cyclooctanedimethanol, dimethylcyclooctanedimethanol, etc.); A monohydric alcohol (eg, 1,4-bis (β-hydroxyethoxy) benzene); Examples of the polyol include trimethylolpropane, trimethylolethane, glycerin, 1,2,6-hexanetriol, pentaerythritol, and diglycerin. In producing the polyester polyol, these polyol components may be used alone or in combination of two or more.
 ポリオール成分とポリカルボン酸成分とを反応させて得られるポリエステルポリオールの製造に用い得る上記ポリカルボン酸成分としては、ポリエステルの製造において一般的に使用されているものであればいずれでもよい。例えば、炭素数4~12の脂肪族ジカルボン酸(例えばコハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸、メチルコハク酸、2-メチルグルタル酸、3-メチルグルタル酸、トリメチルアジピン酸、2-メチルオクタン二酸、3,8-ジメチルデカン二酸、3,7-ジメチルデカン二酸等);脂環式ジカルボン酸(例えばシクロヘキサンジカルボン酸、ダイマー酸、水添ダイマー酸等);芳香族ジカルボン酸(例えばテレフタル酸、イソフタル酸、オルトフタル酸、ナフタレンジカルボン酸等);3官能以上のポリカルボン酸(例えばトリメリット酸、ピロメリット酸等);あるいはそれらのエステル形成性誘導体;などを挙げることができる。これらのポリカルボン酸成分は、1種を単独で使用してもよく、2種以上を併用してもよい。そのうちでも、炭素数6~12の脂肪族ジカルボン酸、特にアジピン酸、アゼライン酸、セバシン酸の1種または2種以上が好ましく用いられる。 The polycarboxylic acid component that can be used in the production of a polyester polyol obtained by reacting a polyol component and a polycarboxylic acid component may be any as long as it is generally used in the production of polyester. For example, aliphatic dicarboxylic acids having 4 to 12 carbon atoms (for example, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid, methylsuccinic acid, 2-methylglutaric acid, 3- Methyl glutaric acid, trimethyladipic acid, 2-methyloctanedioic acid, 3,8-dimethyldecanedioic acid, 3,7-dimethyldecanedioic acid, etc.); alicyclic dicarboxylic acids (eg cyclohexanedicarboxylic acid, dimer acid, water) Dimer acid, etc.]; aromatic dicarboxylic acid (eg, terephthalic acid, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, etc.); trifunctional or higher polycarboxylic acid (eg, trimellitic acid, pyromellitic acid, etc.); or esters thereof Forming derivatives; and the like. These polycarboxylic acid components may be used individually by 1 type, and may use 2 or more types together. Among these, aliphatic dicarboxylic acids having 6 to 12 carbon atoms, particularly one or more of adipic acid, azelaic acid and sebacic acid are preferably used.
 ラクトンの開環重合によって得られるポリエステルポリオールの製造に用いるラクトンとしては、例えば、ε-カプロラクトン、β-メチル-δ-バレロラクトンなどを挙げることができる。 Examples of lactones used in the production of polyester polyols obtained by ring-opening polymerization of lactones include ε-caprolactone and β-methyl-δ-valerolactone.
 他のポリマーポリオール(ap-2)として用い得る上記ポリエーテルポリオールとしては、例えば、ポリオールの存在下に、環状エーテルを開環重合して得られるポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリ(メチルテトラメチレングリコール)などを挙げることができる。これらは、1種を単独で使用してもよく、2種以上を併用してもよい。これらの中で、ポリテトラメチレングリコールおよびポリ(メチルテトラメチレングリコール)が好ましい。 Examples of the polyether polyol that can be used as the other polymer polyol (a p -2) include polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polytetramethylene glycol obtained by ring-opening polymerization of a cyclic ether in the presence of the polyol. (Methyl tetramethylene glycol) and the like can be mentioned. These may be used alone or in combination of two or more. Of these, polytetramethylene glycol and poly (methyltetramethylene glycol) are preferred.
 他のポリマーポリオール(ap-2)として用い得る上記ポリカーボネートポリオールとしては、例えば、ポリオールと、カーボネート化合物(例えばジアルキルカーボネート、アルキレンカーボネート、ジアリールカーボネートなど)との反応により得られるものを挙げることができる。ポリカーボネートポリオールを構成するポリオールとしては、ポリエステルポリオールの製造に用いる成分として先に例示したポリオール成分を用いることができる。また、ジアルキルカーボネートとしてはジメチルカーボネート、ジエチルカーボネートなどを、アルキレンカーボネートとしてはエチレンカーボネートなどを、ジアリールカーボネートとしてはジフェニルカーボネートなどを挙げることができる。 Examples of the polycarbonate polyol that can be used as the other polymer polyol (a p -2) include those obtained by reacting a polyol with a carbonate compound (eg, dialkyl carbonate, alkylene carbonate, diaryl carbonate, etc.). . As a polyol which comprises a polycarbonate polyol, the polyol component illustrated previously as a component used for manufacture of a polyester polyol can be used. Examples of the dialkyl carbonate include dimethyl carbonate and diethyl carbonate, examples of the alkylene carbonate include ethylene carbonate, and examples of the diaryl carbonate include diphenyl carbonate.
 他のポリマーポリオール(ap-2)として用い得る上記ポリエステルポリカーボネートポリオールとしては、例えば、(1)ポリオール、ポリカルボン酸およびカーボネート化合物を同時に反応させて得られたもの;(2)予めポリエステルポリオールを合成し、次いでそれとカーボネート化合物とを反応させることによって得られたもの;および(3)予めポリカーボネートポリオールを合成し、次いでポリカルボン酸と反応させることによって得られたもの;などを挙げることができる。 Examples of the polyester polycarbonate polyol that can be used as the other polymer polyol (a p -2) include, for example, (1) those obtained by reacting a polyol, a polycarboxylic acid and a carbonate compound at the same time; And a compound obtained by reacting it with a carbonate compound; and (3) a compound obtained by previously synthesizing a polycarbonate polyol and then reacting with a polycarboxylic acid.
 他のポリマーポリオール(ap-2)として用い得る上記ポリオレフィンポリオールとしては、例えば、ポリイソプレンポリオール、ポリブタジエンポリオール、ブタジエン/イソプレンコポリマーポリオール、ブタジエン/アクリロニトリルコポリマーポリオール、ブタジエン/スチレンコポリマーポリオール等の共役ジエン系ポリマーポリオールの水素添加物などを挙げることができる。前記共役ジエン系ポリマーポリオールは、重合開始剤の存在下に、共役ジエン(例えばブタジエン、イソプレンなど)のみ、または共役ジエンと他のモノマーとをリビング重合した後に、重合活性末端に水酸基含有エポキシ化合物を反応させて得ることができる。前記水素添加物は、1種を単独で使用してもよく、2種以上を併用してもよい。 Examples of the polyolefin polyol that can be used as the other polymer polyol (a p -2) include conjugated dienes such as polyisoprene polyol, polybutadiene polyol, butadiene / isoprene copolymer polyol, butadiene / acrylonitrile copolymer polyol, and butadiene / styrene copolymer polyol. Examples thereof include hydrogenated products of polymer polyols. The conjugated diene polymer polyol is obtained by subjecting only a conjugated diene (for example, butadiene, isoprene, etc.) or a conjugated diene and another monomer to living polymerization in the presence of a polymerization initiator, and then a hydroxyl group-containing epoxy compound at the polymerization active terminal. It can be obtained by reaction. The said hydrogenation thing may be used individually by 1 type, and may use 2 or more types together.
 上記の有機ポリイソシアネート(b)の種類は特に制限されず、ポリウレタンの製造に従来から用いられている有機ポリイソシアネートのいずれもが使用できる。有機ポリイソシアネート(b)としては、芳香族ジイソシアネート(例えば4,4’-ジフェニルメタンジイソシアネート、トリレンジイソシアネート、フェニレンジイソシアネート、キシリレンジイソシアネート、1,5-ナフチレンジイソシアネート、3,3’-ジクロロ-4,4’-ジフェニルメタンジイソシアネート等);および脂肪族または脂環式ジイソシアネート(例えばヘキサメチレンジイソシアネート、イソホロンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、水素化キシリレンジイソシアネート等)などを挙げることができる。これらの有機ポリイソシアネートは1種を単独で使用してもよく、2種以上を併用してもよい。上記した有機ポリイソシアネートのうちでも、芳香族ジイソシアネートが好ましく、特に4,4’-ジフェニルメタンジイソシアネートがより好ましい。 The type of the organic polyisocyanate (b) is not particularly limited, and any organic polyisocyanate conventionally used in the production of polyurethane can be used. Examples of the organic polyisocyanate (b) include aromatic diisocyanates (for example, 4,4′-diphenylmethane diisocyanate, tolylene diisocyanate, phenylene diisocyanate, xylylene diisocyanate, 1,5-naphthylene diisocyanate, 3,3′-dichloro-4, 4'-diphenylmethane diisocyanate, etc.); and aliphatic or cycloaliphatic diisocyanates (eg, hexamethylene diisocyanate, isophorone diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, hydrogenated xylylene diisocyanate, etc.). These organic polyisocyanates may be used alone or in combination of two or more. Of the organic polyisocyanates described above, aromatic diisocyanates are preferable, and 4,4'-diphenylmethane diisocyanate is more preferable.
 上記の鎖伸長剤(c)としては、ポリウレタンの製造に際して鎖伸長剤として通常用いられている、2個以上の活性水素原子を有する分子量450以下の低分子化合物を使用することができる。本発明で用い得る鎖伸長剤(c)の例としては、ジオール類(例えばエチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、1,4-ビス(β-ヒドロキシエトキシ)ベンゼン、1,4-シクロヘキサンジオール、ビス(β-ヒドロキシエチル)テレフタレート、キシリレングリコール等);ジアミン類(例えばヒドラジン、エチレンジアミン、プロピレンジアミン、キシリレンジアミン、イソホロンジアミン、ピペラジンまたはその誘導体、フェニレンジアミン、トリレンジアミン、キシレンジアミン、アジピン酸ジヒドラジド、イソフタル酸ジヒドラジド等);アミノアルコール類(例えばアミノエチルアルコール、アミノプロピルアルコール等);などを挙げることができる。これらの鎖伸長剤は1種を単独で使用してもよく、2種以上を併用してもよい。上記した鎖伸長剤のうちでも、炭素数2~10の脂肪族ジオールが好ましく、1,4-ブタンジオールがより好ましい。 As the chain extender (c), a low molecular weight compound having a molecular weight of 450 or less and having two or more active hydrogen atoms, which is usually used as a chain extender in the production of polyurethane, can be used. Examples of the chain extender (c) that can be used in the present invention include diols (for example, ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, 1,4-bis (β-hydroxyethoxy). ) Benzene, 1,4-cyclohexanediol, bis (β-hydroxyethyl) terephthalate, xylylene glycol, etc.); diamines (eg hydrazine, ethylenediamine, propylenediamine, xylylenediamine, isophoronediamine, piperazine or derivatives thereof, phenylenediamine) , Tolylenediamine, xylenediamine, adipic acid dihydrazide, isophthalic acid dihydrazide, etc.); amino alcohols (for example, aminoethyl alcohol, aminopropyl alcohol, etc.); These chain extenders may be used individually by 1 type, and may use 2 or more types together. Of the above chain extenders, aliphatic diols having 2 to 10 carbon atoms are preferable, and 1,4-butanediol is more preferable.
 なお、前記構造単位(I)を所望量で有するポリウレタン系ブロック共重合体を得るために、分子量が100~450の範囲内にあり、且つ2個以上の活性水素原子および構造単位(I)を有する化合物を、鎖伸長剤(c)として使用してもよい。 In order to obtain a polyurethane-based block copolymer having the structural unit (I) in a desired amount, the molecular weight is in the range of 100 to 450, and two or more active hydrogen atoms and the structural unit (I) are included. You may use the compound which has as chain extender (c).
 本発明のポリウレタン系ブロック共重合体は、
(i)官能基含有付加重合系ブロック共重合体;
(ii)分子中に上記一般式(I)で表される構造単位(I)を有するポリマーポリオール(ap-1)を含有するポリマーポリオール(ap);
(iii)有機ポリイソシアネート(b);および所望により
(iv)鎖伸長剤(c)
を反応させる工程を含む製造方法(以下、「製造方法1」と略称することがある)によって得ることができる。なお前記官能基含有付加重合系ブロック共重合体は、ポリマーポリオール(ap)、有機ポリイソシアネート(b)および鎖伸長剤(c)からなる群から選ばれる少なくとも1つの成分と反応し得る官能基(以下「反応性官能基」と略称することがある)を有し、且つ前記重合体ブロック(A)および重合体ブロック(B)を有するブロック共重合体;並びにその水素添加物;から選ばれるものである。また製造方法1には、上記ポリマーポリオール(ap)、有機ポリイソシアネート(b)および任意成分としての鎖伸長剤(c)の反応物と、上記官能基含有付加重合系ブロック共重合体と、を反応させる態様が包含される。
The polyurethane block copolymer of the present invention is
(I) a functional group-containing addition polymerization block copolymer;
(Ii) a polymer polyol containing a polymer polyol having a structural unit (I) that in the molecule represented by the above general formula (I) (a p -1) (a p);
(Iii) an organic polyisocyanate (b); and optionally (iv) a chain extender (c)
Can be obtained by a production method including a step of reacting (hereinafter, sometimes abbreviated as “production method 1”). The functional group-containing addition polymerization block copolymer is a functional group capable of reacting with at least one component selected from the group consisting of a polymer polyol (a p ), an organic polyisocyanate (b), and a chain extender (c). A block copolymer having the above polymer block (A) and polymer block (B); and a hydrogenated product thereof. Is. The production method 1 includes a reaction product of the polymer polyol (a p ), the organic polyisocyanate (b) and a chain extender (c) as an optional component, the functional group-containing addition polymerization block copolymer, A mode in which is reacted is included.
 また、本発明のポリウレタン系ブロック共重合体は、
(i)分子中に上記一般式(I)で表される構造単位(I)を有するポリマーポリオール(ap-1)を含有するポリマーポリオール(ap);
(ii)有機ポリイソシアネート(b);および所望により
(iii)鎖伸長剤(c)
を反応させて形成したポリウレタンと、
(iv)官能基含有付加重合系ブロック共重合体と
を反応させる工程を含む製造方法(以下、「製造方法2」と略称することがある)によって、得ることもできる。製造方法2の官能基含有付加重合系ブロック共重合体の説明は、上記製造方法1のものと同じである。
The polyurethane block copolymer of the present invention is
(I) a polymer containing a polymer polyol having a structural unit (I) that in the molecule represented by the above general formula (I) (a p -1) polyol (a p);
(Ii) an organic polyisocyanate (b); and optionally (iii) a chain extender (c)
Polyurethane formed by reacting with
(Iv) It can also be obtained by a production method including a step of reacting a functional group-containing addition polymerization block copolymer (hereinafter sometimes abbreviated as “production method 2”). The description of the functional group-containing addition polymerization block copolymer of Production Method 2 is the same as that of Production Method 1 above.
 上記の官能基含有付加重合系ブロック共重合体が有する反応性官能基としては、ポリマーポリオール(ap)および/または鎖伸長剤(c)と反応し得る官能基(例えばカルボキシル基、酸無水物基、チオカルボキシル基、イソシアネート基等)、および有機ポリイソシアネート(b)と反応し得る官能基(例えば水酸基、アミノ基、メルカプト基、カルボキシル基、酸無水物基、チオカルボキシル基、イソシアネート基等)が挙げられる。官能基含有付加重合系ブロック共重合体は、これらの官能基を2種類以上含有していてもよい。前記反応性官能基は、好ましくは有機ポリイソシアネート(b)と反応し得る官能基、より好ましくは水酸基である。水酸基を含有するの官能基含有付加重合系ブロック共重合体を用いれば、ポリウレタン系ブロック共重合体の製造に際し、均一なポリウレタン形成反応を行うことができる。 Examples of the reactive functional group possessed by the functional group-containing addition polymerization block copolymer include functional groups that can react with the polymer polyol (a p ) and / or the chain extender (c) (for example, carboxyl groups, acid anhydrides). Groups, thiocarboxyl groups, isocyanate groups, etc.), and functional groups that can react with the organic polyisocyanate (b) (for example, hydroxyl groups, amino groups, mercapto groups, carboxyl groups, acid anhydride groups, thiocarboxyl groups, isocyanate groups, etc.) Is mentioned. The functional group-containing addition polymerization block copolymer may contain two or more of these functional groups. The reactive functional group is preferably a functional group capable of reacting with the organic polyisocyanate (b), more preferably a hydroxyl group. If a functional group-containing addition polymerization block copolymer containing a hydroxyl group is used, a uniform polyurethane-forming reaction can be performed in the production of the polyurethane block copolymer.
 また反応性官能基は、官能基含有付加重合系ブロック共重合体の末端に位置していることが好ましい。反応性官能基を末端に有する官能基含有付加重合系ブロック共重合体を使用すると、ポリウレタン系ブロック共重合体を製造する際に、ポリウレタン形成反応による主鎖延長に反応性官能基が関与する。こうして得られたポリウレタン系ブロック共重合体は、シリコーンとの接着性に一層優れる。 The reactive functional group is preferably located at the end of the functional group-containing addition polymerization block copolymer. When a functional group-containing addition polymerization block copolymer having a reactive functional group at the end is used, the reactive functional group is involved in the main chain extension by the polyurethane formation reaction when the polyurethane block copolymer is produced. The polyurethane block copolymer thus obtained is further excellent in adhesiveness with silicone.
 反応性官能基の数は、官能基含有付加重合系ブロック共重合体1分子当たりの平均で、好ましくは0.6以上、より好ましくは0.7以上である。 The number of reactive functional groups is preferably an average of 0.6 or more, more preferably 0.7 or more per molecule per molecule of the functional group-containing addition polymerization block copolymer.
 官能基含有付加重合系ブロック共重合体の製造方法は、何ら限定されるものではないが、例えば、イオン重合法(アニオン重合法およびカチオン重合法)、シングルサイト重合法、ラジカル重合法などを挙げることができる。アニオン重合法による場合は、例えば、不活性有機溶媒(例えばn-ヘキサンやシクロヘキサン等)中で、重合開始剤(例えばアルキルリチウム化合物等)を用いて、芳香族ビニル化合物、共役ジエンを逐次重合させ、所望の分子構造および分子量に達した時点で、オキシラン骨格を有する化合物(例えばエチレンオキサイド、プロピレンオキサイド、スチレンオキサイド等);ラクトン化合物(例えばε-カプロラクトン、β-プロピオラクトン、ジメチルプロピオラクトン(ピバロラクトン)、メチルバレロラクトン等)などを付加させ、次いで、活性水素含有化合物(例えばアルコール類、カルボン酸類、水等)を添加して重合を停止させることにより製造することができる。そして、得られたブロック共重合体を、不活性有機溶媒(例えばn-ヘキサン、シクロヘキサン等)中で水素添加反応触媒(例えばアルキルアルミニウム化合物とコバルト、ニッケル等からなるチーグラー触媒など)の存在下に、反応温度20~150℃、水素圧力1~150kg/cm2の条件下で水素添加することによって、その水素添加物を得ることもできる。また、所望により、水素添加前または水素添加後のブロック共重合体を、無水マレイン酸等によって変性してもよい。 The production method of the functional group-containing addition polymerization block copolymer is not limited in any way, and examples thereof include ionic polymerization methods (anionic polymerization methods and cationic polymerization methods), single site polymerization methods, radical polymerization methods, and the like. be able to. In the case of the anionic polymerization method, for example, an aromatic vinyl compound and a conjugated diene are sequentially polymerized in an inert organic solvent (eg, n-hexane, cyclohexane, etc.) using a polymerization initiator (eg, an alkyl lithium compound). When a desired molecular structure and molecular weight are reached, a compound having an oxirane skeleton (for example, ethylene oxide, propylene oxide, styrene oxide, etc.); a lactone compound (for example, ε-caprolactone, β-propiolactone, dimethylpropiolactone ( Pivalolactone), methylvalerolactone, etc.) are added, and then an active hydrogen-containing compound (for example, alcohols, carboxylic acids, water, etc.) is added to terminate the polymerization. Then, the obtained block copolymer is subjected to hydrogenation reaction in an inert organic solvent (eg, n-hexane, cyclohexane, etc.) in the presence of a hydrogenation reaction catalyst (eg, a Ziegler catalyst comprising an alkylaluminum compound and cobalt, nickel, etc.). The hydrogenated product can also be obtained by hydrogenation under the conditions of a reaction temperature of 20 to 150 ° C. and a hydrogen pressure of 1 to 150 kg / cm 2 . If desired, the block copolymer before or after hydrogenation may be modified with maleic anhydride or the like.
 官能基含有付加重合系ブロック共重合体の数平均分子量は15,000~300,000の範囲内であることが好ましく、20,000~100,000の範囲内であることがより好ましい。なお、官能基含有付加重合系ブロック共重合体の数平均分子量はゲルパーミエーションクロマトグラフィー(GPC)により標準ポリスチレン換算で測定した値である。また、官能基含有付加重合系ブロック共重合体の230℃、2.16kg荷重下で測定したメルトフローレート(MFR)は0.01~100g/10分の範囲内であることが好ましい。かかるメルトフローレートを有する官能基含有付加重合系ブロック共重合体を使用することにより、シリコーンとの接着性に一層優れるポリウレタン系ブロック共重合体を得ることができる。官能基含有付加重合系ブロック共重合体の230℃、2.16kg荷重下で測定したメルトフローレート(MFR)は、0.05~80g/10分の範囲内であることがより好ましい。なお、官能基含有付加重合系ブロック共重合体のメルトフローレートは、ASTM D-1238に準拠して測定した値である。 The number average molecular weight of the functional group-containing addition polymerization block copolymer is preferably in the range of 15,000 to 300,000, and more preferably in the range of 20,000 to 100,000. The number average molecular weight of the functional group-containing addition polymerization block copolymer is a value measured in terms of standard polystyrene by gel permeation chromatography (GPC). The melt flow rate (MFR) of the functional group-containing addition polymerization block copolymer measured at 230 ° C. under a load of 2.16 kg is preferably in the range of 0.01 to 100 g / 10 min. By using such a functional group-containing addition polymerization block copolymer having a melt flow rate, a polyurethane block copolymer having further excellent adhesion to silicone can be obtained. The melt flow rate (MFR) of the functional group-containing addition polymerization block copolymer measured at 230 ° C. under a load of 2.16 kg is more preferably in the range of 0.05 to 80 g / 10 minutes. The melt flow rate of the functional group-containing addition polymerization block copolymer is a value measured according to ASTM D-1238.
 上記製造方法1および2の反応(製造方法2においては、二つの反応のうちの少なくとも一つの反応、好ましくは二つの反応、以下同じ)は、実質的に溶剤の不存在下に溶融混練して行うことが好ましい。特に多軸スクリュー型押出機を使用して連続的に溶融混練することによって、前記反応を行うことがより好ましい。前記溶融混練の温度は、一般に180~280℃の範囲内、好ましくは200~260℃の範囲内である。 The reaction of the above production methods 1 and 2 (in production method 2, at least one of the two reactions, preferably two reactions, the same shall apply hereinafter) is melt kneaded in the absence of a solvent. Preferably it is done. In particular, the reaction is more preferably carried out by continuously melt-kneading using a multi-screw extruder. The melt kneading temperature is generally in the range of 180 to 280 ° C., preferably in the range of 200 to 260 ° C.
 また上記製造方法1および2の反応は、ウレタン化反応触媒として従来から汎用されている有機錫化合物および第3級アミンを用いないことが好ましい。ウレタン化反応触媒としては、有機亜鉛化合物、有機ビスマス化合物、有機チタン化合物および有機ジルコニウム化合物からなる群から選ばれる少なくとも1種の金属化合物(以下、「金属化合物(M)」と略称することがある。)を用いることが好ましい。このようにすると、ポリウレタン系ブロック共重合体とともに、少なくとも1種の金属化合物(M)を含有したポリウレタン系ブロック共重合体組成物が得られる。本発明では、上記金属化合物(M)のうち、有機チタン化合物および/または有機ジルコニウム化合物が好ましく用いられ、有機チタン化合物がより好ましく用いられる。 In addition, it is preferable that the reactions of the above production methods 1 and 2 do not use an organic tin compound and a tertiary amine that are conventionally used as a urethanization reaction catalyst. The urethanization reaction catalyst may be abbreviated as at least one metal compound selected from the group consisting of an organic zinc compound, an organic bismuth compound, an organic titanium compound, and an organic zirconium compound (hereinafter referred to as “metal compound (M)”). .) Is preferably used. By doing so, a polyurethane block copolymer composition containing at least one metal compound (M) together with the polyurethane block copolymer is obtained. In the present invention, among the metal compounds (M), an organic titanium compound and / or an organic zirconium compound are preferably used, and an organic titanium compound is more preferably used.
 上記製造方法1および2の反応で、ポリウレタンの製造に従来から汎用されている有機錫化合物および/または第3級アミンを触媒として用いた場合には、それによって得られる前記触媒を含有するポリウレタン系ブロック共重合体組成物、さらには後述する本発明の熱可塑性重合体組成物は、シリコーンに対する接着性が低下する傾向がある。その理由としては、有機錫化合物および/または第3級アミンが、シリコーンの硬化触媒(例えば白金触媒など)の硬化機能の低下をもたらすことなどが考えられるが、正確な理由は定かではない。かかる点から、前記ポリウレタン系ブロック共重合体組成物や後述する本発明の熱可塑性重合体組成物は、有機錫化合物および第3級アミンを含有しないことが好ましい。 In the reaction of the above production methods 1 and 2, when an organic tin compound and / or a tertiary amine conventionally used for the production of polyurethane is used as a catalyst, the polyurethane system containing the catalyst obtained thereby is used. The block copolymer composition and the thermoplastic polymer composition of the present invention described later tend to have poor adhesion to silicone. The reason may be that the organotin compound and / or the tertiary amine causes a decrease in the curing function of a silicone curing catalyst (for example, a platinum catalyst), but the exact reason is not clear. From this point, it is preferable that the polyurethane block copolymer composition and the thermoplastic polymer composition of the present invention described later do not contain an organic tin compound and a tertiary amine.
 上記有機亜鉛化合物の具体例としては、亜鉛アセチルアセトナート、プロピオン酸亜鉛、オクタン酸亜鉛、2-エチルヘキサン酸亜鉛、ネオデカン酸亜鉛、ラウリン酸亜鉛、ステアリン酸亜鉛、リノール酸亜鉛、ナフテン酸亜鉛、安息香酸亜鉛、サリチル酸亜鉛などを挙げることができる。 Specific examples of the organic zinc compound include zinc acetylacetonate, zinc propionate, zinc octoate, zinc 2-ethylhexanoate, zinc neodecanoate, zinc laurate, zinc stearate, zinc linoleate, zinc naphthenate, Examples thereof include zinc benzoate and zinc salicylate.
 上記有機ビスマス化合物の具体例としては、ビス(アセチルアセトン)ビスマス、2-エチルヘキサン酸ビスマス、ネオデカン酸ビスマス、サリチル酸ビスマスなどを挙げることができる。 Specific examples of the organic bismuth compound include bis (acetylacetone) bismuth, bismuth 2-ethylhexanoate, bismuth neodecanoate, and bismuth salicylate.
 上記有機チタン化合物の具体例としては、テトライソプロピルチタネート、テトラ-n-ブチルチタネート、テトラ-2-エチルヘキシルチタネート、テトラステアリルチタネート等のテトラアルコキシチタン化合物;ポリヒドロキシチタンステアレート等のチタンアシレート化合物;チタンアセチルアセトナート、トリエタノールアミンチタネート、チタンアンモニウムラクテート、チタンエチルラクテート、チタンオクチレングリコール等のチタンキレート化合物などを挙げることができる。 Specific examples of the organic titanium compounds include tetraalkoxy titanium compounds such as tetraisopropyl titanate, tetra-n-butyl titanate, tetra-2-ethylhexyl titanate, and tetrastearyl titanate; titanium acylate compounds such as polyhydroxy titanium stearate; Examples include titanium chelate compounds such as titanium acetylacetonate, triethanolamine titanate, titanium ammonium lactate, titanium ethyl lactate, and titanium octylene glycol.
 上記有機ジルコニウム化合物の具体例としては、ジルコニウムテトライソプロポキシド、ジルコニウムテトラ-n-ブトキシド、ジルコニウムテトラ-t-ブトキシド、2-エチルヘキサン酸ジルコニウム、ネオデカン酸ジルコニウム、ジルコニウムアセチルアセトナートなどを挙げることができる。 Specific examples of the organic zirconium compound include zirconium tetraisopropoxide, zirconium tetra-n-butoxide, zirconium tetra-t-butoxide, zirconium 2-ethylhexanoate, zirconium neodecanoate, zirconium acetylacetonate and the like. it can.
 上記金属化合物(M)は、得られるポリウレタン系ブロック共重合体の質量に対して、0.1~2,000質量ppm(0.2質量%)の範囲内となる量で用いることが好ましい。上記金属化合物(M)の使用量が0.1質量ppm未満であると、得られるポリウレタン系ブロック共重合体の溶融成形性やシリコーンとの接着性などが低下する傾向がある。一方、上記金属化合物(M)の使用量が2,000質量ppmを超える場合にも、ポリウレタン系ブロック共重合体の溶融成形性(特に溶融滞留安定性)が低下する傾向がある。上記金属化合物(M)の使用量は、得られるポリウレタン系ブロック共重合体の質量に対して、より好ましくは0.5~200質量ppmの範囲内、さらに好ましくは1~200質量ppmの範囲内、特に好ましくは1~100質量ppmの範囲内である。 The metal compound (M) is preferably used in an amount in the range of 0.1 to 2,000 mass ppm (0.2 mass%) with respect to the mass of the polyurethane block copolymer to be obtained. When the amount of the metal compound (M) used is less than 0.1 mass ppm, the melt-formability of the resulting polyurethane block copolymer and the adhesion to silicone tend to be reduced. On the other hand, also when the usage-amount of the said metal compound (M) exceeds 2,000 mass ppm, there exists a tendency for the melt moldability (especially melt residence stability) of a polyurethane-type block copolymer to fall. The amount of the metal compound (M) used is more preferably in the range of 0.5 to 200 ppm by mass, and still more preferably in the range of 1 to 200 ppm by mass, with respect to the mass of the resulting polyurethane block copolymer. Particularly preferably, it is in the range of 1 to 100 ppm by mass.
 なお本発明は、本発明のポリウレタン系ブロック共重合体、および少なくとも1種の金属化合物(M)を含有し、前記金属化合物(M)の含有率が前記ポリウレタン系ブロック共重合体の質量に基づいて0.1~2,000質量ppm(好ましくは0.5~200質量ppm、より好ましくは1~200質量ppm、さらに好ましくは1~100質量ppm)であるポリウレタン系ブロック共重合体組成物を、包含する。 The present invention contains the polyurethane block copolymer of the present invention and at least one metal compound (M), and the content of the metal compound (M) is based on the mass of the polyurethane block copolymer. A polyurethane block copolymer composition having a content of 0.1 to 2,000 ppm by mass (preferably 0.5 to 200 ppm by mass, more preferably 1 to 200 ppm by mass, and even more preferably 1 to 100 ppm by mass). Include.
 上記ポリウレタン系ブロック共重合体組成物は、上記した金属化合物と共に、リン化合物およびフェノール系化合物からなる群から選ばれる少なくとも1種の化合物(以下、「化合物(Q)」と略称することがある。)を含有していることが好ましい。 The polyurethane block copolymer composition may be abbreviated as at least one compound selected from the group consisting of a phosphorus compound and a phenol compound (hereinafter referred to as “compound (Q)”) together with the metal compound described above. ) Is preferably contained.
 上記化合物(Q)は、ウレタン化反応触媒として使用することができる上記した金属化合物の失活剤として機能し、ポリウレタン系ブロック共重合体組成物の加工安定性、耐久性(耐水性、耐熱性、耐侯性など)をより良好なものとすることができる。 The compound (Q) functions as a deactivator of the above-described metal compound that can be used as a urethanization reaction catalyst, and the processing stability and durability (water resistance, heat resistance) of the polyurethane block copolymer composition. , Weather resistance, etc.) can be made better.
 上記化合物(Q)は、上記した金属化合物の失活の目的で主に用いられるものであるから、ウレタン形成反応の終了後に添加することが好ましい。 Since the compound (Q) is mainly used for the purpose of deactivation of the metal compound, it is preferably added after completion of the urethane forming reaction.
 上記化合物(Q)の1種であるリン化合物としては、下記の一般式(IIa)~(IIc)で表されるリン化合物が好ましい。 As the phosphorus compound which is one of the compounds (Q), phosphorus compounds represented by the following general formulas (IIa) to (IIc) are preferable.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
[式(IIa)中、R3~R5はそれぞれ独立して水素原子または1価の炭化水素基、aおよびbはそれぞれ0または1を示し;式(IIb)中、R6およびR7はそれぞれ独立して1価の炭化水素基、d、e、fおよびgはそれぞれ0または1を示し;式(IIc)中、R8~R11はそれぞれ独立して1価の炭化水素基、R12は2価の炭化水素基、h、i、jおよびkはそれぞれ0または1を示す。] [In the formula (IIa), R 3 to R 5 each independently represents a hydrogen atom or a monovalent hydrocarbon group, a and b each represents 0 or 1; in the formula (IIb), R 6 and R 7 represent Each independently a monovalent hydrocarbon group, d, e, f and g each represents 0 or 1; in formula (IIc), R 8 to R 11 are each independently a monovalent hydrocarbon group, R 12 is a divalent hydrocarbon group, h, i, j and k each represents 0 or 1; ]
 上記の式(IIa)において、aが1の場合には、R3~R5のうちの少なくとも1つが脂肪族炭化水素基または脂環式炭化水素基であることが好ましい。また、上記の式(IIc)において、hとiがともに1の場合には、R8~R11のうちの少なくとも1つが脂肪族炭化水素基または脂環式炭化水素基であることが好ましい。 In the above formula (IIa), when a is 1, at least one of R 3 to R 5 is preferably an aliphatic hydrocarbon group or an alicyclic hydrocarbon group. In the above formula (IIc), when h and i are both 1, at least one of R 8 to R 11 is preferably an aliphatic hydrocarbon group or an alicyclic hydrocarbon group.
 上記の式(IIa)~(IIc)において、R3~R11の1価の炭化水素基としては、炭素数1~30の炭化水素基が好ましい。炭化水素基としては、脂肪族炭化水素基(例えばメチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、オクチル基、イソオクチル基、2-エチルヘキシル基、ノニル基、デシル基、ドデシル基、イソデシル基、オクタデシル基等);脂環式炭化水素基(例えばシクロヘキシル基等);芳香族炭化水素基(例えばフェニル基、ノニルフェニル基、クレジル基、2,4-ジ-t-ブチルフェニル基、2,6-ジ-t-ブチル-4-メチルフェニル基、ナフチル基、ベンジル基、3,5-ジ-t-ブチル-4-ヒドロキシベンジル基等)挙げられる。芳香族炭化水素基は、ハロゲン原子、アルコキシ基、フェノキシ基または水酸基などの置換基を芳香環上に有していてもよい。 In the above formulas (IIa) to (IIc), the monovalent hydrocarbon group of R 3 to R 11 is preferably a hydrocarbon group having 1 to 30 carbon atoms. Examples of the hydrocarbon group include aliphatic hydrocarbon groups (for example, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, octyl group, isooctyl group, 2-ethylhexyl group, nonyl group, decyl group, dodecyl group). , Isodecyl group, octadecyl group etc.); alicyclic hydrocarbon group (eg cyclohexyl group etc.); aromatic hydrocarbon group (eg phenyl group, nonylphenyl group, cresyl group, 2,4-di-t-butylphenyl group) 2,6-di-t-butyl-4-methylphenyl group, naphthyl group, benzyl group, 3,5-di-t-butyl-4-hydroxybenzyl group, etc.). The aromatic hydrocarbon group may have a substituent such as a halogen atom, an alkoxy group, a phenoxy group or a hydroxyl group on the aromatic ring.
 また、上記の式(IIc)において、R12の2価の炭化水素基としては、炭素数1~50の2価の炭化水素基であることが好ましい。2価の炭化水素基としては、2価の脂肪族炭化水素基(例えばメチレン基、エチレン基、プロピレン基、ブチレン基等);2価の脂環式炭化水素基(例えばシクロヘキシレン基等);2価の芳香族炭化水素基(例えばフェニレン基、ビフェニレン基、4,4’-ブチリデン-ビス(3-メチル-6-t-ブチルフェニル)基、4,4’-イソプロピリデンジフェニル基等)を挙げることができる。2価の芳香族炭化水素基は、ハロゲン原子、アルコキシ基、フェノキシ基または水酸基などの置換基を芳香環上に有していてもよい。 In the above formula (IIc), the divalent hydrocarbon group for R 12 is preferably a divalent hydrocarbon group having 1 to 50 carbon atoms. Examples of the divalent hydrocarbon group include a divalent aliphatic hydrocarbon group (for example, a methylene group, an ethylene group, a propylene group, and a butylene group); a divalent alicyclic hydrocarbon group (for example, a cyclohexylene group); A divalent aromatic hydrocarbon group (for example, a phenylene group, a biphenylene group, a 4,4′-butylidene-bis (3-methyl-6-tert-butylphenyl) group, a 4,4′-isopropylidene diphenyl group, etc.) Can be mentioned. The divalent aromatic hydrocarbon group may have a substituent such as a halogen atom, an alkoxy group, a phenoxy group or a hydroxyl group on the aromatic ring.
 上記の式(IIa)で表されるリン化合物としては、例えば、亜リン酸;リン酸;亜リン酸エステル[例えばメチルホスファイト、エチルホスファイト、イソプロピルホスファイト、ブチルホスファイト、2-エチルヘキシルホスファイト、ラウリルホスファイト、オレイルホスファイト、ステアリルホスファイト、フェニルホスファイト、ジメチルホスファイト、ジエチルホスファイト、ジイソプロピルホスファイト、ジブチルホスファイト、ビス(2-エチルヘキシル)ホスファイト、ジラウリルホスファイト、ジオレイルホスファイト、ジステアリルホスファイト、ジフェニルホスファイト、トリメチルホスファイト、トリエチルホスファイト、トリブチルホスファイト、トリオクチルホスファイト、トリス(2-エチルヘキシル)ホスファイト、トリノニルホスファイト、トリス(デシル)ホスファイト、トリドデシルホスファイト、トリス(オクタデシル)ホスファイト、トリシクロヘキシルホスファイト、ジフェニルイソオクチルホスファイト、フェニルジイソオクチルホスファイト、ジフェニルイソデシルホスファイト、フェニルジイソデシルホスファイト等];リン酸エステル[例えばメチルホスフェート、エチルホスフェート、イソプロピルホスフェート、ブチルホスフェート、2-エチルヘキシルホスフェート、ラウリルホスフェート、オレイルホスフェート、ステアリルホスフェート、フェニルホスフェート、ジメチルホスフェート、ジエチルホスフェート、ジイソプロピルホスフェート、ジブチルホスフェート、ビス(2-エチルヘキシル)ホスフェート、ジラウリルホスフェート、ジオレイルホスフェート、ジステアリルホスフェート、ジフェニルホスフェート、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリオクチルホスフェート、トリス(2-エチルヘキシル)ホスフェート、トリス(デシル)ホスフェート、トリドデシルホスフェート、トリス(オクタデシル)ホスフェート、トリシクロヘキシルホスフェート等];亜ホスホン酸誘導体のジエステル[例えばフェニル亜ホスホン酸ジメチル、フェニル亜ホスホン酸ジエチル、フェニル亜ホスホン酸ジブチル、フェニル亜ホスホン酸ジオクチル、フェニル亜ホスホン酸ジドデシル、フェニル亜ホスホン酸ビス(オクタデシル)、フェニル亜ホスホン酸ジシクロヘキシル、フェニル亜ホスホン酸ジフェニル等];ホスホン酸誘導体のジエステル[例えば、フェニルホスホン酸ジメチル、フェニルホスホン酸ジエチル、フェニルホスホン酸ジブチル、フェニルホスホン酸ジオクチル、フェニルホスホン酸ジドデシル、フェニルホスホン酸ビス(オクタデシル)、フェニルホスホン酸ジシクロヘキシル、フェニルホスホン酸ジフェニル、3,5-ジ-t-ブチル-4-ヒドロキシベンジルホスホン酸ジエチル等];などが挙げられる。 Examples of the phosphorus compound represented by the formula (IIa) include phosphorous acid; phosphoric acid; phosphite ester [for example, methyl phosphite, ethyl phosphite, isopropyl phosphite, butyl phosphite, 2-ethylhexyl phosphite. Phyto, lauryl phosphite, oleyl phosphite, stearyl phosphite, phenyl phosphite, dimethyl phosphite, diethyl phosphite, diisopropyl phosphite, dibutyl phosphite, bis (2-ethylhexyl) phosphite, dilauryl phosphite, dioleyl Phosphite, distearyl phosphite, diphenyl phosphite, trimethyl phosphite, triethyl phosphite, tributyl phosphite, trioctyl phosphite, tris (2-ethylhexyl) Sphite, trinonyl phosphite, tris (decyl) phosphite, tridodecyl phosphite, tris (octadecyl) phosphite, tricyclohexyl phosphite, diphenylisooctyl phosphite, phenyldiisooctyl phosphite, diphenylisodecyl phosphite, Phenyl diisodecyl phosphite, etc.]; phosphate esters [eg, methyl phosphate, ethyl phosphate, isopropyl phosphate, butyl phosphate, 2-ethylhexyl phosphate, lauryl phosphate, oleyl phosphate, stearyl phosphate, phenyl phosphate, dimethyl phosphate, diethyl phosphate, diisopropyl phosphate, Dibutyl phosphate, bis (2-ethylhexyl) phosphate , Dilauryl phosphate, dioleyl phosphate, distearyl phosphate, diphenyl phosphate, trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate, tris (2-ethylhexyl) phosphate, tris (decyl) phosphate, tridodecyl phosphate, tris (octadecyl) ) Phosphates, tricyclohexyl phosphates, etc.]; diesters of phosphonous acid derivatives [eg phenyl phosphonous acid dimethyl, phenylphosphonous acid diethyl, phenylphosphonous acid dibutyl, phenylphosphonous acid dioctyl, phenylphosphonous acid didodecyl, phenylphosphonic acid Acid bis (octadecyl), phenylphosphonous acid dicyclohexyl, phenylphosphonous acid diphene Diesters of phosphonic acid derivatives [for example, dimethyl phenylphosphonate, diethyl phenylphosphonate, dibutyl phenylphosphonate, dioctyl phenylphosphonate, didodecyl phenylphosphonate, bis (octadecyl) phenylphosphonate, dicyclohexyl phenylphosphonate, Diphenyl phenylphosphonate, diethyl 3,5-di-t-butyl-4-hydroxybenzylphosphonate, etc.].
 上記の式(IIb)で表されるリン化合物としては、例えば、ホスファイト類[例えばジドデシルペンタエリスリトールジホスファイト、ビス(オクタデシル)ペンタエリスリトールジホスファイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジ-t-ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト等];ホスフェート類[例えばビス(オクタデシル)ペンタエリスリトールジホスフェート等]などが挙げられる。 Examples of the phosphorus compound represented by the formula (IIb) include phosphites [for example, didodecyl pentaerythritol diphosphite, bis (octadecyl) pentaerythritol diphosphite, bis (nonylphenyl) pentaerythritol diphosphite. Bis (2,4-di-t-butylphenyl) pentaerythritol diphosphite, bis (2,6-di-t-butyl-4-methylphenyl) pentaerythritol diphosphite, etc.]; phosphates [eg bis (Octadecyl) pentaerythritol diphosphate etc.] and the like.
 上記の式(IIc)で表されるリン化合物としては、例えば、ホスファイト類[例えば4,4’-ブチリデン-ビス(3-メチル-6-t-ブチルフェニルジトリデシル)ホスファイト、4,4’-イソプロピリデンジフェノールテトラキス(トリデシル)ジホスファイト等];ホスホナイト類[例えばテトラキス(2,4-ジ-t-ブチルフェニル)-4,4’-ビフェニレンホスホナイト等]などが挙げられる。 Examples of the phosphorus compound represented by the above formula (IIc) include phosphites [for example, 4,4′-butylidene-bis (3-methyl-6-tert-butylphenylditridecyl) phosphite, 4,4 '-Isopropylidenediphenoltetrakis (tridecyl) diphosphite etc.]; phosphonites [eg tetrakis (2,4-di-t-butylphenyl) -4,4'-biphenylenephosphonite etc.] and the like.
 上記リン化合物は、1種を単独で使用してもよく、2種以上を併用してもよい。上記リン化合物の中でも、リン酸エステル、ホスホン酸誘導体のジエステルが好ましく、ラウリルホスフェート、オレイルホスフェート、ステアリルホスフェート、ジラウリルホスフェート、ジオレイルホスフェート、ジステアリルホスフェート、トリス(2-エチルヘキシル)ホスフェート、ビス(オクタデシル)ペンタエリスリトールジホスフェート、フェニルホスホン酸ジエチル、3,5-ジ-t-ブチル-4-ヒドロキシベンジルホスホン酸ジエチルなどが特に好ましい。 The above phosphorus compounds may be used alone or in combination of two or more. Among the above phosphorus compounds, phosphate esters and diesters of phosphonic acid derivatives are preferred, and lauryl phosphate, oleyl phosphate, stearyl phosphate, dilauryl phosphate, dioleyl phosphate, distearyl phosphate, tris (2-ethylhexyl) phosphate, bis (octadecyl) Particularly preferred are pentaerythritol diphosphate, diethyl phenylphosphonate, diethyl 3,5-di-t-butyl-4-hydroxybenzylphosphonate.
 また上記化合物(Q)の1種であるフェノール系化合物としては、例えば、ヒンダードフェノール系化合物[例えば2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)、2-ブチル-6-(3’-t-ブチル-2’-ヒドロキシ-5’-メチルベンジル)-4-メチルフェニルアクリレート、2-[1-(2-ヒドロキシ-3,5-ジペンチルフェニル)エチル]-4,6-ジペンチルフェニルアクリレート、4,4’-ブチリデンビス(3-メチル-6-t-ブチルフェノール)、4,4’-チオビス(3-メチル-6-t-ブチルフェノール)、トリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、1,3,5-(t-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、2,2’-メチレンビス(4-エチル-6-t-ブチルフェノール)等];ヒドロキシベンゾフェノン系化合物[例えば2-ヒドロキシ-4-オクチルベンゾフェノン、2-ヒドロキシ-4-ドデシルオキシベンゾフェノン、2-ヒドロキシ-4-ベンジルオキシベンゾフェノン、ビス(5-ベンゾイル-4-ヒドロキシ-2-メトキシフェニル)メタン等];ヒドロキシベンゾトリアゾール系化合物[例えば2-[2’-ヒドロキシ-3’-(3’’,4’’,5’’,6’’-テトラヒドロフタルイミドメチル)-5’-メチルフェニル]ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-t-ブチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-t-オクチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-t-アミルフェニル)ベンゾトリアゾール、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2H-ベンゾトリアゾール、2,2’-メチレンビス{4-(1,1,3,3-テトラメチルブチル)-6-[(2H-ベンゾトリアゾール-2-イル)フェノール]}等];サリチル酸系化合物(例えば4-t-ブチルフェニルサリチル酸等);オキシ安息香酸系化合物(例えば4-t-ブチルパラオキシ安息香酸フェニル等);カテコール系化合物(例えば3,4-ジヒドロキシ安息香酸オクチル等);レゾルシノール系化合物(例えば3,5-ジヒドロキシ安息香酸オクチル等);ビフェノール系化合物(例えば4,4’-オクチル-2,2’-ビフェノール等);ビナフトール系化合物(例えば2,2’-ビナフトール等);などが挙げられる。フェノール系化合物は、1種を単独で使用してもよく、2種以上を併用してもよい。 Examples of the phenolic compound that is one of the compounds (Q) include hindered phenolic compounds [for example, 2,2′-methylenebis (4-methyl-6-t-butylphenol), 2-butyl-6- (3′-t-butyl-2′-hydroxy-5′-methylbenzyl) -4-methylphenyl acrylate, 2- [1- (2-hydroxy-3,5-dipentylphenyl) ethyl] -4,6- Dipentylphenyl acrylate, 4,4′-butylidenebis (3-methyl-6-tert-butylphenol), 4,4′-thiobis (3-methyl-6-tert-butylphenol), triethylene glycol-bis [3- (3 -T-butyl-5-methyl-4-hydroxyphenyl) propionate], 1,1,3-tris (2-methyl-4-hydroxy- -T-butylphenyl) butane, 1,3,5- (t-butyl-3-hydroxy-2,6-dimethylbenzyl) -1,3,5-triazine-2,4,6- (1H, 3H, 5H) -trione, 2,2′-methylenebis (4-ethyl-6-t-butylphenol), etc.]; hydroxybenzophenone compounds [eg 2-hydroxy-4-octylbenzophenone, 2-hydroxy-4-dodecyloxybenzophenone, 2-hydroxy-4-benzyloxybenzophenone, bis (5-benzoyl-4-hydroxy-2-methoxyphenyl) methane, etc.]; hydroxybenzotriazole compounds [eg 2- [2′-hydroxy-3 ′-(3 ′ ', 4' ', 5' ', 6' '-tetrahydrophthalimidomethyl) -5'-methylphenyl] benzoto Azole, 2- (2′-hydroxy-3 ′, 5′-t-butylphenyl) benzotriazole, 2- (2′-hydroxy-5′-t-octylphenyl) benzotriazole, 2- (2′-hydroxy -3 ′, 5′-t-amylphenyl) benzotriazole, 2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] -2H-benzotriazole, 2,2′-methylenebis { 4- (1,1,3,3-tetramethylbutyl) -6-[(2H-benzotriazol-2-yl) phenol]} and the like]; a salicylic acid compound (for example, 4-t-butylphenyl salicylic acid and the like); Oxybenzoic acid compounds (eg, phenyl 4-t-butylparaoxybenzoate); catechol compounds (eg, octyl 3,4-dihydroxybenzoate) Resorcinol compounds (eg octyl 3,5-dihydroxybenzoate); biphenol compounds (eg 4,4′-octyl-2,2′-biphenol etc.); binaphthol compounds (eg 2,2′-) Binaphthol, etc.); A phenol type compound may be used individually by 1 type, and may use 2 or more types together.
 少なくとも1種の上記化合物(Q)を用いる場合、その使用量は、ポリウレタン系ブロック共重合体の質量に基づいて、1~20,000質量ppm(2質量%)であることが好ましい。上記化合物(Q)の使用量が1質量ppm未満の場合には、ポリウレタン系ブロック共重合体組成物の溶融成形性(特に溶融滞留安定性)が低下することがある。一方、上記化合物(Q)の使用量が20,000質量ppm(2質量%)を超えると、下記(1)~(3)の不具合がある:(1)得られるポリウレタン系ブロック共重合体組成物から構成される成形体の表面状態が、損なわれる傾向がある。(2)ポリウレタン系ブロック共重合体組成物から構成される層とシリコーンを含む層とを有する積層構造体などを製造する際に、ポリウレタン系ブロック共重合体組成物とシリコーンとの接着性の低下を招く傾向がある。(3)硬化性シリコーン組成物の硬化性を阻害する場合がある。 When at least one kind of the above compound (Q) is used, the amount used is preferably 1 to 20,000 mass ppm (2 mass%) based on the mass of the polyurethane block copolymer. When the usage-amount of the said compound (Q) is less than 1 mass ppm, the melt moldability (especially melt residence stability) of a polyurethane-type block copolymer composition may fall. On the other hand, when the amount of the compound (Q) used exceeds 20,000 mass ppm (2 mass%), there are the following problems (1) to (3): (1) Obtained polyurethane block copolymer composition There exists a tendency for the surface state of the molded object comprised from a thing to be impaired. (2) When manufacturing a laminated structure having a layer composed of a polyurethane block copolymer composition and a layer containing silicone, the adhesiveness between the polyurethane block copolymer composition and silicone is lowered. Tend to invite. (3) The curability of the curable silicone composition may be inhibited.
 上記化合物(Q)の使用量は、ポリウレタン系ブロック共重合体の質量に基づいて、より好ましくは5~2,000質量ppm(0.2質量%)の範囲内、さらに好ましくは5~1,000質量ppm(0.1質量%)の範囲内、特に好ましくは5~500質量ppmの範囲内、最も好ましくは10~250質量ppmの範囲内である。 The amount of the compound (Q) used is more preferably in the range of 5 to 2,000 ppm by mass (0.2% by mass), more preferably 5 to 1, based on the mass of the polyurethane block copolymer. It is within the range of 000 mass ppm (0.1 mass%), particularly preferably within the range of 5 to 500 mass ppm, and most preferably within the range of 10 to 250 mass ppm.
 次に金属化合物(M)に対する化合物(Q)の配合割合について説明する。
 化合物(Q)としてリン化合物を用いる場合、リン化合物中のリン原子の割合は、ポリウレタン系ブロック共重合体組成物中に存在する上記金属化合物(M)中の金属原子1モルに対して、好ましくは0.1~500モル、より好ましくは0.2~200モル、さらに好ましは0.5~100モルである。
 化合物(Q)としてフェノール系化合物を用いる場合、フェノール系化合物の水酸基の割合は、ポリウレタン系ブロック共重合体組成物中に存在する上記金属化合物(M)中の金属原子1モルに対して、好ましくは1~5,000モル、より好ましくは2~2,000モル、さらに好ましくは5~1,000モルである。
Next, the blending ratio of the compound (Q) to the metal compound (M) will be described.
When a phosphorus compound is used as the compound (Q), the ratio of the phosphorus atom in the phosphorus compound is preferably relative to 1 mol of the metal atom in the metal compound (M) present in the polyurethane block copolymer composition. Is from 0.1 to 500 mol, more preferably from 0.2 to 200 mol, and even more preferably from 0.5 to 100 mol.
When a phenol compound is used as the compound (Q), the proportion of the hydroxyl group of the phenol compound is preferably relative to 1 mol of the metal atom in the metal compound (M) present in the polyurethane block copolymer composition. Is 1 to 5,000 mol, more preferably 2 to 2,000 mol, still more preferably 5 to 1,000 mol.
 製造方法1の反応および製造方法2の前者の反応(即ちポリウレタン形成反応)において、ポリマーポリオール(ap)および鎖伸長剤(c)が有している活性水素原子1モルに対し、有機ポリイソシアネート(b)が有しているイソシアネート基の割合は、好ましくは0.9~1.3モルの範囲内である。上記の割合でポリウレタン形成反応を行って得られるポリウレタン系ブロック共重合体は、シリコーンとの接着性に一層優れる。 In the reaction of production method 1 and the former reaction of production method 2 (that is, polyurethane formation reaction), an organic polyisocyanate is used per 1 mol of active hydrogen atoms contained in the polymer polyol (a p ) and the chain extender (c). The ratio of the isocyanate group that (b) has is preferably in the range of 0.9 to 1.3 mol. The polyurethane block copolymer obtained by performing the polyurethane forming reaction at the above ratio is further excellent in adhesiveness with silicone.
 また、製造方法1の反応および製造方法2の前者の反応(即ちポリウレタン形成反応)において、イソシアネート基に由来する窒素原子の含有率は、製造方法1で得られるポリウレタンブロック(β)または製造方法2で得られるポリウレタンの質量に基づいて、好ましくは1~6.5質量%の範囲内である。上記の割合でポリウレタン形成反応を行って得られるポリウレタン系ブロック共重合体は、シリコーンとの接着性に一層優れる。イソシアネート基に由来する窒素原子の含有率は、製造方法1で得られるポリウレタンブロック(β)または製造方法2で得られるポリウレタンの質量に基づいて、より好ましくは1~6質量%の範囲内、さらに好ましく1.3~5.5質量%の範囲内、特に好ましは1.6~5質量%の範囲内である。 In addition, in the reaction of production method 1 and the former reaction of production method 2 (that is, polyurethane formation reaction), the content of nitrogen atoms derived from isocyanate groups is the polyurethane block (β) obtained in production method 1 or production method 2 Is preferably in the range of 1 to 6.5% by mass based on the mass of the polyurethane obtained in (1). The polyurethane block copolymer obtained by performing the polyurethane forming reaction at the above ratio is further excellent in adhesiveness with silicone. The content of nitrogen atoms derived from the isocyanate group is more preferably in the range of 1 to 6% by mass based on the mass of the polyurethane block (β) obtained by Production Method 1 or the polyurethane obtained by Production Method 2. It is preferably in the range of 1.3 to 5.5% by mass, particularly preferably in the range of 1.6 to 5% by mass.
 製造方法2は、ポリマーポリオール(ap)、有機ポリイソシアネート(b)および所望によりさらに鎖伸長剤(c)の反応混合物を、官能基含有付加重合系ブロック共重合体と反応させる態様も包含する。前記反応混合物には、ポリウレタンに加えて、ウレタンプレポリマーも含まれる。前記反応混合物は、未反応の原料(例えばポリマーポリオール等)を含むものであってもよく、常法に従って後処理したものであってもよい。また、ポリマーポリオール(ap)、有機ポリイソシアネート(b)および所望によりさらに鎖伸長剤(c)から形成されるウレタンプレポリマーの市販品を、前記反応混合物の一部として使用することもできる。 Production method 2 includes an embodiment in which a reaction mixture of a polymer polyol (a p ), an organic polyisocyanate (b), and optionally a chain extender (c) is reacted with a functional group-containing addition polymerization block copolymer. . In addition to polyurethane, the reaction mixture also includes a urethane prepolymer. The reaction mixture may contain an unreacted raw material (for example, polymer polyol or the like) or may be post-treated according to a conventional method. A commercial product of a urethane prepolymer formed from a polymer polyol ( ap ), an organic polyisocyanate (b) and optionally a chain extender (c) can also be used as part of the reaction mixture.
 製造方法1および2によってポリウレタン系ブロック共重合体を製造する場合、官能基含有付加重合系ブロック共重合体と、ポリマーポリオール(ap)、有機ポリイソシアネート(b)および任意成分としての鎖伸長剤(c)との割合は、[官能基含有付加重合系ブロック共重合体の質量]:[ポリマーポリオール(ap)の質量+有機ポリイソシアネート(b)の質量+鎖伸長剤(c)の質量]=10:90~90:10の範囲内であることが好ましく、20:80~80:20の範囲内であることがより好ましく、30:70~70:30の範囲内であることがさらに好ましい。 When a polyurethane block copolymer is produced by production methods 1 and 2, a functional group-containing addition polymerization block copolymer, a polymer polyol (a p ), an organic polyisocyanate (b), and a chain extender as an optional component The ratio to (c) is [mass of functional group-containing addition polymerization block copolymer]: [mass of polymer polyol (a p ) + mass of organic polyisocyanate (b) + mass of chain extender (c) ] Is preferably within the range of 10:90 to 90:10, more preferably within the range of 20:80 to 80:20, and further preferably within the range of 30:70 to 70:30. preferable.
 製造方法1および2により得られたポリウレタン系ブロック共重合体は、ポリウレタン系ブロック共重合体以外に、未反応の官能基含有付加重合系ブロック共重合体、未反応のポリマーポリオール(ap)、未反応の有機ポリイソシアネート(b)または未反応の鎖伸長剤(c)を含有する重合体組成物として得られることがある。これらの含有量は、反応に使用した原料の割合、反応温度等の反応条件によって変化する。また、上記重合体組成物は、ポリマーポリオール(ap)、有機ポリイソシアネート(b)および任意成分としての鎖伸長剤(c)から形成されるポリウレタンを含有する場合がある。さらに、上記したブロック共重合体組成物は、重合体ブロック(A)と重合体ブロック(B)を有し、官能基を有しないブロック共重合体またはその水素添加物(付加重合系ブロック(α)と同様の構造を有する重合体)を含み得る。 In addition to the polyurethane block copolymer, the polyurethane block copolymer obtained by the production methods 1 and 2 includes an unreacted functional group-containing addition polymerization block copolymer, an unreacted polymer polyol (a p ), It may be obtained as a polymer composition containing unreacted organic polyisocyanate (b) or unreacted chain extender (c). These contents vary depending on the reaction conditions such as the ratio of raw materials used in the reaction and the reaction temperature. Moreover, the said polymer composition may contain the polyurethane formed from a polymer polyol ( ap ), organic polyisocyanate (b), and the chain extender (c) as an arbitrary component. Further, the block copolymer composition described above has a polymer block (A) and a polymer block (B), and has no functional group, or a hydrogenated product (addition polymerization block (α And a polymer having the same structure as
 例えば、上記の方法で得られた重合体組成物を、必要に応じてペレット状とし、さらに適当な大きさに粉砕した後、これをポリウレタンの良溶媒(例えばジメチルホルムアミド等)で処理して、官能基含有付加重合系ブロック共重合体とは反応しなかったポリウレタン(重合体組成物中に存在している場合)を除去し、次いで、官能基含有付加重合系ブロック共重合体の良溶媒(例えばシクロヘキサン等)で処理して、未反応の官能基含有付加重合系ブロック共重合体および付加重合系ブロック(α)と同様の構造を有する重合体(重合体組成物中に存在している場合)を抽出・除去し、残った固形物を乾燥することにより、ポリウレタン系ブロック共重合体を取得することができる。なお、本発明の趣旨を損なわない限り、上記の方法で得られた重合体組成物をそのまま各用途に使用してもよい。 For example, the polymer composition obtained by the above method is pelletized as necessary, and further pulverized to an appropriate size, and then treated with a polyurethane good solvent (such as dimethylformamide), The polyurethane that did not react with the functional group-containing addition polymerization block copolymer (if present in the polymer composition) is removed, and then a good solvent for the functional group-containing addition polymerization block copolymer ( For example, when it is present in the polymer composition, it is treated with an unreacted functional group-containing addition polymerization block copolymer and a polymer having the same structure as the addition polymerization block (α). ) Is extracted and removed, and the remaining solid is dried to obtain a polyurethane block copolymer. In addition, unless the meaning of this invention is impaired, you may use the polymer composition obtained by said method for each use as it is.
 本発明の熱可塑性重合体組成物は、上記した本発明のポリウレタン系ブロック共重合体および当該ポリウレタン系ブロック共重合体以外の熱可塑性重合体を含有する。当該熱可塑性重合体としては、特に制限されないが、ポリアミド;ポリエステル;ポリ塩化ビニリデン;ポリ塩化ビニル;ポリカーボネート;アクリル系樹脂;ポリオキシメチレン樹脂;エチレン-酢酸ビニル共重合体のケン化物;芳香族ビニル化合物とシアン化ビニル化合物、共役ジエンおよびオレフィンから選ばれる少なくとも1種との共重合体;ポリウレタン;スチレン系重合体;並びにポリオレフィンからなる群から選ばれる少なくとも1種であることが好ましく、ポリウレタンがより好ましい。 The thermoplastic polymer composition of the present invention contains the above-mentioned polyurethane block copolymer of the present invention and a thermoplastic polymer other than the polyurethane block copolymer. The thermoplastic polymer is not particularly limited, but polyamide, polyester, polyvinylidene chloride, polyvinyl chloride, polycarbonate, acrylic resin, polyoxymethylene resin, saponified ethylene-vinyl acetate copolymer, aromatic vinyl Preferably, the compound is a copolymer of at least one selected from a vinyl cyanide compound, a conjugated diene and an olefin; a polyurethane; a styrenic polymer; and at least one selected from the group consisting of polyolefins. preferable.
 上記ポリアミドとしては、ポリマー主鎖にアミド結合(-CO-NH-)を有し、加熱溶融が可能なものを使用することができる。例えば、(1)3員環以上のラクタムを開環重合して得られるポリアミド(ポリラクタム);(2)ω-アミノ酸の重縮合により得られるポリアミド;(3)ジカルボン酸とジアミンとの重縮合により得られるポリアミド;などを挙げることができ、これらのポリアミドの1種または2種以上を用いることができる。その場合に、上記ラクタムの具体例としては、ε-カプロラクタム、エナントラクタム、カプリルラクタム、ラウリルラクタム、α-ピロリドンなどを挙げることができる。また、上記ω-アミノ酸の具体例としては、6-アミノカプロン酸、7-アミノヘプタン酸、9-アミノノナン酸、11-アミノウンデカン酸などを挙げることができる。 As the polyamide, those having an amide bond (—CO—NH—) in the polymer main chain and capable of being melted by heating can be used. For example, (1) polyamide obtained by ring-opening polymerization of a lactam having 3 or more members (polylactam); (2) polyamide obtained by polycondensation of ω-amino acid; (3) by polycondensation of dicarboxylic acid and diamine Polyamide obtained; and the like, and one or more of these polyamides can be used. In this case, specific examples of the lactam include ε-caprolactam, enantolactam, capryllactam, lauryllactam, α-pyrrolidone and the like. Specific examples of the ω-amino acid include 6-aminocaproic acid, 7-aminoheptanoic acid, 9-aminononanoic acid, 11-aminoundecanoic acid and the like.
 さらに、ポリアミドの原料となる上記したジカルボン酸としては、例えば、脂肪族ジカルボン酸(例えばマロン酸、ジメチルマロン酸、コハク酸、2,2-ジエチルコハク酸、グルタル酸、2,2-ジメチルグルタル酸、アジピン酸、セバシン酸、スベリン酸等);脂環式ジカルボン酸(例えば1,3-シクロペンタンジカルボン酸、1,4-シクロヘキサンジカルボン酸等);芳香族ジカルボン酸(例えばテレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,4-フェニレンジオキシジ酢酸、1,3-フェニレンジオキシジ酢酸、ジフェン酸、4,4’-オキシジ安息香酸、ジフェニルメタン-4,4’-ジカルボン酸、ジフェニルスルホン-4,4’-ジカルボン酸、4,4’-ジフェニルジカルボン酸等);を挙げることができる。上記したジアミンとしては、例えば、脂肪族ジアミン(例えばエチレンジアミン、プロピレンジアミン、1,4-ブタンジアミン、1,6-ヘキサンジアミン、1,8-オクタンジアミン、1,9-ノナンジアミン、1,10-デカンジアミン、1,12-ドデカンジアミン、2-メチル-1,5-ペンタンジアミン、3-メチル-1,5-ペンタンジアミン、2,2,4-トリメチル-1,6-ヘキサンジアミン、2-メチル-1,8-オクタンジアミン、5-メチル-1,9-ノナンジアミン等);脂環式ジアミン(例えばシクロヘキサンジアミン、メチルシクロヘキサンジアミン、イソホロンジアミン等);芳香族ジアミン(例えばp-フェニレンジアミン、m-フェニレンジアミン、キシリレンジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルエーテル等)を挙げることができる。 Further, examples of the dicarboxylic acid used as a raw material for polyamide include aliphatic dicarboxylic acids (for example, malonic acid, dimethylmalonic acid, succinic acid, 2,2-diethylsuccinic acid, glutaric acid, 2,2-dimethylglutaric acid). , Adipic acid, sebacic acid, suberic acid, etc.); alicyclic dicarboxylic acids (eg, 1,3-cyclopentanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, etc.); aromatic dicarboxylic acids (eg, terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,4-phenylenedioxydiacetic acid, 1,3-phenylenedioxydiacetic acid, diphenic acid, 4,4 '-Oxydibenzoic acid, diphenylmethane-4,4'-dicarboxylic acid, diphenylsulfone-4, '- dicarboxylic acid, 4,4'-diphenyl dicarboxylic acid, etc.); and the like. Examples of the diamine include aliphatic diamines (for example, ethylenediamine, propylenediamine, 1,4-butanediamine, 1,6-hexanediamine, 1,8-octanediamine, 1,9-nonanediamine, 1,10-decane). Diamine, 1,12-dodecanediamine, 2-methyl-1,5-pentanediamine, 3-methyl-1,5-pentanediamine, 2,2,4-trimethyl-1,6-hexanediamine, 2-methyl- 1,8-octanediamine, 5-methyl-1,9-nonanediamine, etc.); alicyclic diamines (eg, cyclohexanediamine, methylcyclohexanediamine, isophoronediamine, etc.); aromatic diamines (eg, p-phenylenediamine, m-phenylene) Diamine, xylylenediamine, 4,4'-diaminodiphe Rumetan, 4,4'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl ether, etc.) can be mentioned.
 上記ポリエステルとしては、ポリマー主鎖にエステル結合を有し、加熱溶融が可能なものを使用することができる。例えば、(1)ジカルボン酸成分とジオール成分との反応により得られるポリエステル;(2)ラクトンを開環重合して得られるポリエステル(ポリラクトン);(3)ヒドロキシカルボン酸またはそのエステル形成性誘導体を重縮合して得られるポリエステル;などを挙げることができる。そのうちでも、ジカルボン酸成分とジオール成分とから実質的に形成されているポリエステルが好ましい。 As the polyester, those having an ester bond in the polymer main chain and capable of being melted by heating can be used. For example, (1) polyester obtained by reaction of dicarboxylic acid component and diol component; (2) polyester obtained by ring-opening polymerization of lactone (polylactone); (3) hydroxycarboxylic acid or its ester-forming derivative And polyester obtained by condensation. Among these, a polyester substantially formed from a dicarboxylic acid component and a diol component is preferable.
 上記ポリエステルの原料となる上記ジカルボン酸成分としては、例えば、芳香族ジカルボン酸(例えばテレフタル酸、フタル酸、イソフタル酸、ナフタレンジカルボン酸、ビス(p-カルボキシフェニル)メタン、アントラセンジカルボン酸、4,4’-オキシジ安息香酸、5-スルホイソフタル酸ナトリウム、テトラブロモフタル酸等);飽和脂肪族ジカルボン酸(例えばグルタル酸、アジピン酸、ピメリン酸、スベリン酸、セバシン酸、アゼライン酸等);脂環式ジカルボン酸(例えばシクロヘキサンジカルボン酸等);不飽和脂肪族ジカルボン酸(例えばマレイン酸、フマル酸、イタコン酸等);およびそれらのエステル形成性誘導体;を挙げることができる。また、上記ポリエステルの原料となる上記ジオール成分としては、例えば、脂肪族ジオール(例えばエチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、3-メチル-1,5-ペンタンジオール、2-メチル-1,8-オクタンジオール等);脂環式ジオール(例えばシクロヘキサンジメタノール、シクロヘキサンジオール等);分子量6,000以下のポリアルキレングリコール(例えばジエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等)から誘導されるジオール;などを挙げることができる。また、ポリエステルは、必要に応じて、例えば、3官能以上の化合物(グリセリン、トリメチロールプロパン、ペンタエリスリトール、トリメリット酸、ピロメリット酸等)から誘導される1種または2種以上の構造単位を、少量有していてもよい。 Examples of the dicarboxylic acid component used as a raw material for the polyester include aromatic dicarboxylic acids (for example, terephthalic acid, phthalic acid, isophthalic acid, naphthalenedicarboxylic acid, bis (p-carboxyphenyl) methane, anthracene dicarboxylic acid, 4,4 '-Oxydibenzoic acid, sodium 5-sulfoisophthalate, tetrabromophthalic acid, etc.); saturated aliphatic dicarboxylic acids (eg glutaric acid, adipic acid, pimelic acid, suberic acid, sebacic acid, azelaic acid, etc.); alicyclic And dicarboxylic acids (for example, cyclohexane dicarboxylic acid); unsaturated aliphatic dicarboxylic acids (for example, maleic acid, fumaric acid, itaconic acid, etc.); and ester-forming derivatives thereof. Examples of the diol component used as a raw material for the polyester include aliphatic diols (for example, ethylene glycol, propylene glycol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexane). Diol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 3-methyl-1,5-pentanediol, 2-methyl-1,8-octane Diols derived from alicyclic diols (eg cyclohexanedimethanol, cyclohexanediol etc.); polyalkylene glycols having a molecular weight of 6,000 or less (eg diethylene glycol, polyethylene glycol, polypropylene glycol, polytetramethylene glycol etc.) Lumpur; and the like. In addition, the polyester may contain one or more structural units derived from, for example, a trifunctional or higher functional compound (glycerin, trimethylolpropane, pentaerythritol, trimellitic acid, pyromellitic acid, etc.). You may have a small amount.
 上記ポリ塩化ビニリデンとしては、塩化ビニリデンに由来する構造単位を、好ましくは50質量%以上の割合、より好ましくは70~98質量%の割合で有する重合体が挙げられる。ポリ塩化ビニリデンの共重合体としては、塩化ビニリデンと、1種または2種以上の他の不飽和単量体(例えば塩化ビニル、アクリロニトリル、アクリル酸エステル、アクリル酸等)との共重合体が好ましい。ポリ塩化ビニリデンの重合度は特に制限されないが、一般に、その重合度は、好ましくは100~10,000の範囲内、より好ましくは400~5,000の範囲内のである。 Examples of the polyvinylidene chloride include a polymer having a structural unit derived from vinylidene chloride, preferably in a proportion of 50% by mass or more, more preferably in a proportion of 70 to 98% by mass. As the copolymer of polyvinylidene chloride, a copolymer of vinylidene chloride and one or more other unsaturated monomers (for example, vinyl chloride, acrylonitrile, acrylic acid ester, acrylic acid, etc.) is preferable. . The degree of polymerization of polyvinylidene chloride is not particularly limited, but in general, the degree of polymerization is preferably in the range of 100 to 10,000, more preferably in the range of 400 to 5,000.
 上記ポリ塩化ビニルとしては、塩化ビニルの単独重合体および共重合体等が挙げられる。これらは、1種を単独で使用してもよく、2種以上を併用してもよい。塩化ビニルの共重合体としては、塩化ビニルに由来する構造単位を70質量%以上の割合で有するものが好ましい。ポリ塩化ビニルの共重合体としては、塩化ビニルと、1種または2種以上の他の共重合性単量体(例えばエチレン、プロピレン、酢酸ビニル、臭化ビニル、塩化ビニリデン、アクリロニトリル、マレイミド等)との共重合体が好ましい。ポリ塩化ビニルの重合度は特に制限されないが、その重合度は、好ましくは100~10,000の範囲内、より好ましくは400~5,000の範囲内である。 Examples of the polyvinyl chloride include homopolymers and copolymers of vinyl chloride. These may be used alone or in combination of two or more. As the vinyl chloride copolymer, those having a structural unit derived from vinyl chloride in a proportion of 70% by mass or more are preferable. Polyvinyl chloride copolymers include vinyl chloride and one or more other copolymerizable monomers (eg, ethylene, propylene, vinyl acetate, vinyl bromide, vinylidene chloride, acrylonitrile, maleimide, etc.) And a copolymer are preferred. The degree of polymerization of polyvinyl chloride is not particularly limited, but the degree of polymerization is preferably in the range of 100 to 10,000, more preferably in the range of 400 to 5,000.
 上記ポリカーボネートとしては、ジヒドロキシ化合物と、ホスゲン、炭酸ジエステルまたはハロホルメートとを反応させて得られるポリカーボネートを挙げることができる。原料となるジヒドロキシ化合物としては、芳香族ジヒドロキシ化合物(例えば2,2-ビス(4-ヒドロキシフェニル)プロパン[ビスフェノールA]、テトラメチルビスフェノールA、テトラブロモビスフェノールA、ビス(4-ヒドロキシフェニル)-p-ジイソプロピルベンゼン、ハイドロキノン、レゾルシノール等)を挙げることができ、これらのうちでもビスフェノールAが好ましい。 Examples of the polycarbonate include polycarbonate obtained by reacting a dihydroxy compound with phosgene, a carbonic acid diester, or a haloformate. Examples of the raw material dihydroxy compound include aromatic dihydroxy compounds (for example, 2,2-bis (4-hydroxyphenyl) propane [bisphenol A], tetramethylbisphenol A, tetrabromobisphenol A, bis (4-hydroxyphenyl) -p. -Diisopropylbenzene, hydroquinone, resorcinol, etc.), among which bisphenol A is preferred.
 上記アクリル系樹脂としては、(メタ)アクリル酸エステルから誘導される構造単位から主としてなるアクリル系樹脂を挙げることができる。アクリル系樹脂における(メタ)アクリル酸エステルから誘導される構造単位の割合は、好ましくは50質量%以上、より好ましは80質量%以上である。アクリル系樹脂の構造単位を構成する(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸のアルキルエステル(例えば(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルヘキシル等)を挙げることができる。アクリル系樹脂は、これらの(メタ)アクリル酸エステルから誘導される1種または2種以上の構造単位を有することができる。また、アクリル系樹脂は、必要に応じて、(メタ)アクリル酸アルキルエステル以外の不飽和単量体から誘導される1種または2種以上の構造単位を有していてもよい。例えば、アクリル系樹脂は、シアン化ビニル系単量体(例えば(メタ)アクリロニトリル等)から誘導される構造単位を、好ましくは50質量%以下の割合で有していてもよい。またアクリル系樹脂は、芳香族ビニル化合物(例えばスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、o-クロロスチレン、m-クロロスチレン、p-クロロスチレン等)から誘導される構造単位を、好ましくは10質量%以下の割合で有していてもよい。 Examples of the acrylic resin include acrylic resins mainly composed of structural units derived from (meth) acrylic acid esters. The ratio of the structural unit derived from the (meth) acrylic acid ester in the acrylic resin is preferably 50% by mass or more, and more preferably 80% by mass or more. Examples of the (meth) acrylic acid ester constituting the structural unit of the acrylic resin include alkyl esters of (meth) acrylic acid (for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate) Butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and the like. The acrylic resin can have one or more structural units derived from these (meth) acrylic acid esters. Moreover, acrylic resin may have 1 type, or 2 or more types of structural units induced | guided | derived from unsaturated monomers other than (meth) acrylic-acid alkylester as needed. For example, the acrylic resin may have a structural unit derived from a vinyl cyanide monomer (for example, (meth) acrylonitrile or the like), preferably in a proportion of 50% by mass or less. The acrylic resin has a structure derived from an aromatic vinyl compound (for example, styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, o-chlorostyrene, m-chlorostyrene, p-chlorostyrene, etc.). You may have a unit in the ratio of preferably 10 mass% or less.
 上記ポリオキシメチレン樹脂は、オキシメチレン基を主たる構造単位とする高分子化合物である。ポリオキシメチレン樹脂としては、例えば、(1)1種または2種以上のオキシメチレン系単量体(例えばホルムアルデヒド、トリオキサン、テトラオキサン等)からなる重合体;(2)前記オキシメチレン系単量体と他の環状エーテル(エチレンオキサイド、プロピレンオキサイド、オキサシクロブタン、1,3-ジオキソラン等)とからなる共重合体;(3)前記オキシメチレン系単量体と環状エステル(例えばβ-プロピオラクトン、γ-ブチロラクトン等)との共重合体;などを挙げることができる。さらに末端変性ポリオキシメチレン樹脂も用いることができる。例えば、末端が無水酢酸等でアセチル化された末端変性ポリオキシメチレン樹脂は、未変性のものよりも、耐熱性が優れている。 The polyoxymethylene resin is a polymer compound having an oxymethylene group as a main structural unit. Examples of the polyoxymethylene resin include: (1) a polymer composed of one or more oxymethylene monomers (for example, formaldehyde, trioxane, tetraoxane, etc.); (2) the oxymethylene monomer; Copolymers comprising other cyclic ethers (ethylene oxide, propylene oxide, oxacyclobutane, 1,3-dioxolane, etc.); (3) the oxymethylene monomers and cyclic esters (for example, β-propiolactone, γ A copolymer with -butyrolactone, etc.). Further, a terminal-modified polyoxymethylene resin can also be used. For example, a terminal-modified polyoxymethylene resin whose terminal is acetylated with acetic anhydride or the like has better heat resistance than an unmodified one.
 上記エチレン-酢酸ビニル共重合体のケン化物としては、エチレン単位が20~60モル%(より好ましくは25~60モル%)の範囲内であり、ケン化度が95モル%以上であるものが好ましく用いられる。また、エチレン-酢酸ビニル共重合体のケン化物のメルトインデックスは、好ましくは0.1~25g/10分の範囲内、より好ましは0.3~20g/10分の範囲内である。好ましいメルトインデックスを有するエチレン-酢酸ビニル共重合体のケン化物は、成形性が良好である。なおこのメルトインデックスは、ASTM D-1238-65Tに準拠して、190℃、2160g荷重下の条件で測定したものである。 Examples of the saponified ethylene-vinyl acetate copolymer include those having an ethylene unit in the range of 20 to 60 mol% (more preferably 25 to 60 mol%) and a saponification degree of 95 mol% or more. Preferably used. The melt index of the saponified ethylene-vinyl acetate copolymer is preferably in the range of 0.1 to 25 g / 10 minutes, and more preferably in the range of 0.3 to 20 g / 10 minutes. A saponified ethylene-vinyl acetate copolymer having a preferred melt index has good moldability. The melt index was measured under the conditions of 190 ° C. and 2160 g load according to ASTM D-1238-65T.
 次に、ポリウレタン系ブロック共重合体以外の熱可塑性重合体の1種である上記芳香族ビニル化合物とシアン化ビニル化合物、共役ジエンおよびオレフィンから選ばれる少なくとも1種との共重合体について説明する。前記共重合体において使用される芳香族ビニル化合物としては、例えば、スチレン、α-メチルスチレン、p-メチルスチレン、ビニルキシレン、モノクロロスチレン、ジクロロスチレン、モノブロモスチレン、ジブロモスチレン、フルオロスチレン、p-t-ブチルスチレン、エチルスチレン、ビニルナフタレン等を挙げることができ、これらの1種または2種以上を使用することができる。これらのうちで特にスチレンが好ましい。また、前記共重合体において使用されるシアン化ビニル化合物としては、例えば、アクリロニトリル、メタクリロニトリル等を挙げることができる。そして、前記共重合体において使用される共役ジエンとしては、例えば、1,3-ブタジエン、2-メチル-1,3-ブタジエン[イソプレン]、2,3-ジメチル-1,3-ブタジエン、2-ネオペンチル-1,3-ブタジエン、2-クロロ-1,3-ブタジエン、2-シアノ-1,3-ブタジエン、置換直鎖共役ペタンジエン類、置換直鎖共役ヘキサジエン等を挙げることができ、これらの1種または2種以上を用いることができる。これらのうちで、1,3-ブタジエンおよび/または2-メチル-1,3-ブタジエンが特に好ましい。また、前記共重合体において使用されるオレフィンとしては、例えば、エチレン、プロピレン等を挙げることができる。好ましい前記共重合体としては、スチレン-アクリロニトリル共重合体(AS樹脂)、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)、アクリロニトリル-エチレン-プロピレン-スチレン共重合体(AES樹脂)などを挙げることができる。 Next, a copolymer of the above aromatic vinyl compound and at least one selected from a vinyl cyanide compound, a conjugated diene and an olefin, which is one of thermoplastic polymers other than the polyurethane block copolymer, will be described. Examples of the aromatic vinyl compound used in the copolymer include styrene, α-methylstyrene, p-methylstyrene, vinyl xylene, monochlorostyrene, dichlorostyrene, monobromostyrene, dibromostyrene, fluorostyrene, p- Examples thereof include t-butyl styrene, ethyl styrene, vinyl naphthalene and the like, and one or more of these can be used. Of these, styrene is particularly preferred. Examples of the vinyl cyanide compound used in the copolymer include acrylonitrile and methacrylonitrile. Examples of the conjugated diene used in the copolymer include 1,3-butadiene, 2-methyl-1,3-butadiene [isoprene], 2,3-dimethyl-1,3-butadiene, 2- And neopentyl-1,3-butadiene, 2-chloro-1,3-butadiene, 2-cyano-1,3-butadiene, substituted linear conjugated petanedienes, substituted linear conjugated hexadienes, and the like. Species or two or more can be used. Of these, 1,3-butadiene and / or 2-methyl-1,3-butadiene are particularly preferred. Examples of the olefin used in the copolymer include ethylene and propylene. Preferred examples of the copolymer include styrene-acrylonitrile copolymer (AS resin), acrylonitrile-butadiene-styrene copolymer (ABS resin), and acrylonitrile-ethylene-propylene-styrene copolymer (AES resin). Can do.
 上記ポリウレタンとしては、本発明のポリウレタン系ブロック共重合体以外のポリウレタンを挙げることができる。例えば、上記の他のポリマーポリオール(ap-2)、有機ポリイソシアネート(b)および所望によりさらに鎖伸長剤(c)を反応させて得られるものなどが挙げられる。 Examples of the polyurethane include polyurethanes other than the polyurethane block copolymer of the present invention. Examples thereof include those obtained by reacting the above other polymer polyol (a p -2), organic polyisocyanate (b) and optionally a chain extender (c).
 上記スチレン系重合体としては、スチレン系単量体に由来する構造単位を、好ましくは10質量%以上、より好ましくは50質量%以上含有する重合体が挙げられる。前記スチレン系単量体としては、スチレン、α-メチルスチレン、p-メチルスチレン、p-t-ブチルスチレン、3,4-ジメチルスチレン等を挙げることができる。スチレン系重合体は、前記スチレン系単量体に由来する1種または2種以上の構造単位を有することができる。 Examples of the styrenic polymer include polymers containing a structural unit derived from a styrenic monomer, preferably 10% by mass or more, more preferably 50% by mass or more. Examples of the styrene monomer include styrene, α-methylstyrene, p-methylstyrene, pt-butylstyrene, 3,4-dimethylstyrene, and the like. The styrenic polymer can have one or more structural units derived from the styrenic monomer.
 上記スチレン系重合体は、上記スチレン系単量体に由来する構造単位と共に、好ましくは90質量%以下、より好ましくは50質量%以下の割合で、他のビニル系単量体に由来する構造単位を有していてもよい。他のビニル系単量体としては、例えば、シアン化ビニル単量体(例えばアクリロニトリル、メタクリロニトリル等);(メタ)アクリル酸の炭素数1~18のアルキル(例えばメチル、エチル、プロピル、n-ブチル、i-ブチル、ヘキシル、2-エチルヘキシル、ドデシル、オクダデシル等)エステル;(メタ)アクリル酸とジオール(例えばエチレングリコール、プロピレングリコール、ブタンジオール等)とのエステル;炭素数1~6のカルボン酸(例えば酢酸やプロピオン酸等)のビニルエステル;不飽和カルボン酸(例えばアクリル酸、メタクリル酸、マレイン酸等);不飽和ジカルボン酸無水物(例えば無水マレイン酸等);(メタ)アクリルアミド類(例えばアクリルアミド、メタクリルアミド、N,N-ジメチルアクリルアミド等);N置換または非置換のマレイミド類(例えばマレイミド、N-メチルマレイミド、N-エチルマレイミド、N-フェニルマレイミド、N-シクロヘキシルマレイミド等);共役ジエン(例えばブタジエン、イソプレン等);などを挙げることができ、スチレン系重合体は、ビニル系単量体に由来する1種または2種以上の構造単位を有することができる。スチレン系単量体と他のビニル系単量体との共重合体としては、スチレン系単量体の少なくとも1種と、アクリロニトリル、メタクリル酸メチル、アクリル酸ブチル、N-フェニルマレイミド、無水マレイン酸およびブタジエンからなる群から選ばれる少なくとも1種との共重合体が、力学的特性などの点から好ましい。 The styrenic polymer, together with the structural unit derived from the styrenic monomer, is preferably a structural unit derived from another vinyl monomer at a ratio of preferably 90% by mass or less, more preferably 50% by mass or less. You may have. Other vinyl monomers include, for example, vinyl cyanide monomers (for example, acrylonitrile, methacrylonitrile, etc.); (meth) acrylic acid alkyl having 1 to 18 carbon atoms (for example, methyl, ethyl, propyl, n -Butyl, i-butyl, hexyl, 2-ethylhexyl, dodecyl, okdadecyl, etc.) esters; esters of (meth) acrylic acid and diols (eg ethylene glycol, propylene glycol, butanediol, etc.); carbons having 1 to 6 carbon atoms Vinyl esters of acids (eg, acetic acid, propionic acid, etc.); unsaturated carboxylic acids (eg, acrylic acid, methacrylic acid, maleic acid, etc.); unsaturated dicarboxylic acid anhydrides (eg, maleic anhydride, etc.); (meth) acrylamides ( For example, acrylamide, methacrylamide, N, N-dimethylacrylic N-substituted or unsubstituted maleimides (eg, maleimide, N-methylmaleimide, N-ethylmaleimide, N-phenylmaleimide, N-cyclohexylmaleimide, etc.); conjugated dienes (eg, butadiene, isoprene, etc.); The styrenic polymer can have one or more structural units derived from a vinyl monomer. Copolymers of styrene monomers and other vinyl monomers include at least one of styrene monomers, acrylonitrile, methyl methacrylate, butyl acrylate, N-phenylmaleimide, maleic anhydride A copolymer with at least one selected from the group consisting of butadiene and butadiene is preferable from the viewpoint of mechanical properties and the like.
 上記のスチレン系重合体は、ゴム質重合体を構成成分として含有するスチレン系重合体であってもよい。そのゴム質重合体のガラス転移温度は、好ましくは0℃以下、より好ましくは-20℃以下である。そのようなゴム質重合体としては、ポリブタジエン;スチレン-ブタジエン共重合体;(メタ)アクリル酸低級アルキルエステルを30質量%以下の割合で含有するスチレン-ブタジエン共重合体;ポリイソプレン;ポリクロロプレン;などを挙げることができる。 The above styrene polymer is A styrenic polymer containing a rubbery polymer as a constituent component may be used. The glass transition temperature of the rubbery polymer is Preferably 0 ° C. or lower, More preferably, it is −20 ° C. or lower. Such rubbery polymers include: Polybutadiene; Styrene-butadiene copolymer; Styrene-butadiene copolymer containing (meth) acrylic acid lower alkyl ester in a proportion of 30% by mass or less; Polyisoprene; Polychloroprene; And so on.
 スチレン系重合体に含まれ得る他のゴム質重合体としては、アクリルゴムを挙げることができる。当該アクリルゴムは、好ましくは、アクリル酸の炭素数1~8のアルキル(より好ましくは、エチル、ブチル、2-エチルヘキシル)エステルから誘導される構造単位より主としてなるポリアクリル酸アルキル系ゴム(より好ましくは、ポリアクリル酸エチル系ゴム、ポリアクリル酸ブチル系ゴム、ポリアクリル酸2-エチルヘキシル系ゴム)である。ポリアクリル酸アルキル系ゴムは、場合により30質量%以下の量で、他の単量体(例えば酢酸ビニル、メタクリル酸メチル、スチレン、アクリロニトリル、ビニルエーテル等)に由来する構造単位を有していてもよい。またポリアクリル酸アルキル系ゴムは、場合により5質量%以下の量で、架橋性不飽和単量体(例えばアルキレンジオール(メタ)アクリレート、ジビニルベンゼン、シアヌル酸トリアリルなど)に由来する構造単位を有していてもよい。 Examples of other rubbery polymer that can be included in the styrene polymer include acrylic rubber. The acrylic rubber is preferably a polyalkyl acrylate rubber mainly composed of a structural unit derived from an alkyl having 1 to 8 carbon atoms (more preferably, ethyl, butyl, 2-ethylhexyl) ester of acrylic acid (more preferably Are polyethyl acrylate rubber, polybutyl acrylate rubber, and 2-ethylhexyl polyacrylate rubber). The polyalkyl acrylate rubber may have structural units derived from other monomers (for example, vinyl acetate, methyl methacrylate, styrene, acrylonitrile, vinyl ether, etc.) in an amount of 30% by mass or less in some cases. Good. In addition, the polyalkyl acrylate rubber has a structural unit derived from a crosslinkable unsaturated monomer (for example, alkylene diol (meth) acrylate, divinylbenzene, triallyl cyanurate, etc.) in an amount of 5% by mass or less in some cases. You may do it.
 スチレン系重合体に含まれ得る他のゴム質重合体としては、例えば、エチレン-プロピレン-非共役ジエン系共重合体(例えばエチレン-プロピレン-エチリデンノルボルネン共重合体等);スチレン系重合体ブロック-ブタジエン系重合体ブロックからなるブロック共重合体の水素添加物;スチレン系重合体ブロック-イソプレン系重合体ブロックからなるブロック共重合体の水素添加物;などを挙げることができる。また、上記のスチレン系重合体に含まれ得るゴム質重合体としては、上記で挙げた各種のゴム質重合体に、スチレン系単量体および/またはその他の各種の不飽和単量体をグラフト重合してなるグラフト共重合体を挙げることができる。 Other rubbery polymers that can be included in the styrene polymer include, for example, ethylene-propylene-nonconjugated diene copolymers (eg, ethylene-propylene-ethylidene norbornene copolymers); styrene polymer blocks— Examples thereof include a hydrogenated product of a block copolymer composed of a butadiene polymer block; a hydrogenated product of a block copolymer composed of a styrene polymer block-isoprene polymer block; and the like. In addition, as the rubbery polymer that can be contained in the above-mentioned styrene polymer, the styrene monomer and / or other various unsaturated monomers are grafted to the various rubber polymers mentioned above. The graft copolymer formed by superposition | polymerization can be mentioned.
 ゴム質重合体を含有するスチレン系重合体としては、ポリブタジエン、スチレン-ブタジエン共重合体、ポリアクリル酸ブチル系ゴム、およびエチレン-プロピレン-非共役ジエン共重合体の1種または2種以上を含有するスチレン系重合体が好ましい。 Styrenic polymer containing rubbery polymer contains one or more of polybutadiene, styrene-butadiene copolymer, polybutyl acrylate rubber, and ethylene-propylene-nonconjugated diene copolymer Styrenic polymers are preferred.
 上記ポリオレフィンとしては、オレフィン(例えばエチレン、プロピレン、ブチレン等)の単独重合体;2種以上の前記オレフィンの共重合体;1種または2種以上の前記オレフィンと、1種または2種以上の他のビニル系単量体との共重合体;などを挙げることができる。ポリオレフィンの具体例としては、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、ポリブチレン、エチレン-酢酸ビニル共重合体(好ましくは酢酸ビニル含有量が5~30質量%)、エチレン-アクリル酸共重合体(好ましくはアクリル酸含有量が5~30質量%)、エチレン-プロピレン共重合体、エチレン-プロピレン-ジエン共重合体、エチレン-ブチレン共重合体などを挙げることができる。これらの中でも、オレフィンの単独重合体および共重合体が好ましい。 Examples of the polyolefin include homopolymers of olefins (for example, ethylene, propylene, butylene, etc.); copolymers of two or more kinds of the olefins; one or two or more kinds of the olefins, and one or more kinds of other olefins. And a copolymer with a vinyl monomer. Specific examples of polyolefin include low density polyethylene, medium density polyethylene, high density polyethylene, polypropylene, polybutylene, ethylene-vinyl acetate copolymer (preferably vinyl acetate content of 5 to 30% by mass), ethylene-acrylic acid copolymer. Examples thereof include a polymer (preferably having an acrylic acid content of 5 to 30% by mass), an ethylene-propylene copolymer, an ethylene-propylene-diene copolymer, and an ethylene-butylene copolymer. Among these, olefin homopolymers and copolymers are preferred.
 本発明の熱可塑性重合体組成物において、ポリウレタン系ブロック共重合体とそれ以外の熱可塑性重合体との比率は、特に制限されないが、ポリウレタン系ブロック共重合体の含有率は、前記両者の合計質量に対して、好ましくは1~40質量%の範囲内、より好ましくは3~35質量%の範囲内、さらに好ましは5~30質量%の範囲内である。 In the thermoplastic polymer composition of the present invention, the ratio of the polyurethane block copolymer to the other thermoplastic polymer is not particularly limited, but the content of the polyurethane block copolymer is the sum of the two. It is preferably in the range of 1 to 40% by mass, more preferably in the range of 3 to 35% by mass, and still more preferably in the range of 5 to 30% by mass with respect to the mass.
 本発明の熱可塑性重合体組成物は、本発明の効果を損なわない範囲内で、必要に応じて、ポリウレタン系ブロック共重合体および熱可塑性重合体以外の任意の成分を含有してもよい。任意の成分としては、例えば、各種添加剤(例えば離型剤、補強剤、着色剤、難燃剤、紫外線吸収剤、酸化防止剤、耐加水分解性向上剤、防かび剤、抗菌剤、安定剤等);各種繊維(例えばガラス繊維、ポリエステル繊維等);無機物(例えばタルク、シリカ等);各種カップリング剤;などが挙げられる。 The thermoplastic polymer composition of the present invention may contain an optional component other than the polyurethane block copolymer and the thermoplastic polymer, if necessary, within a range not impairing the effects of the present invention. Examples of optional components include various additives (for example, release agents, reinforcing agents, colorants, flame retardants, UV absorbers, antioxidants, hydrolysis resistance improvers, antifungal agents, antibacterial agents, and stabilizers. Etc.); various fibers (eg glass fiber, polyester fiber etc.); inorganic substances (eg talc, silica etc.); various coupling agents;
 ポリウレタン系ブロック共重合体および熱可塑性重合体の合計質量の割合は、本発明の熱可塑性重合体組成物の用途等に応じて適宜設定することができるが、前記割合は、本発明の熱可塑性重合体組成物中、好ましくは50~100質量%の範囲内、より好ましくは80~100質量%の範囲内、さらに好ましくは95~100質量%の範囲内である。 The proportion of the total mass of the polyurethane-based block copolymer and the thermoplastic polymer can be appropriately set according to the use of the thermoplastic polymer composition of the present invention, but the proportion is the thermoplasticity of the present invention. In the polymer composition, it is preferably in the range of 50 to 100% by mass, more preferably in the range of 80 to 100% by mass, and still more preferably in the range of 95 to 100% by mass.
 本発明の熱可塑性重合体組成物は、ポリウレタン系ブロック共重合体およびそれ以外の熱可塑性重合体を溶融混練することにより製造することができる。当該溶融混練は、押出機、ミキシングロール、ニーダー等の公知の装置を使用して行うことができる。より効率よく混練を行うことができることから、押出機を使用して行うことが好ましい。溶融混練の温度は、使用される上記熱可塑性重合体の種類にもよるが、好ましくは、150~300℃の範囲内、より好ましくは180~270℃の範囲内である。なお、溶融混練に先立ち、ポリウレタン系ブロック共重合体、それ以外の熱可塑性重合体および必要に応じて配合される任意の成分などを予めドライブレンドしておくことも可能である。また、ポリウレタン系ブロック共重合体は、それ以外の成分との組成物の形態で、上記熱可塑性重合体と溶融混練されてもよい。また上記熱可塑性重合体は、それ以外の成分との組成物の形態で、ポリウレタン系ブロック共重合体と溶融混練されてもよい。 The thermoplastic polymer composition of the present invention can be produced by melt-kneading a polyurethane block copolymer and other thermoplastic polymers. The melt kneading can be performed using a known apparatus such as an extruder, a mixing roll, or a kneader. Since kneading can be performed more efficiently, it is preferable to use an extruder. The melt kneading temperature is preferably in the range of 150 to 300 ° C., more preferably in the range of 180 to 270 ° C., although it depends on the type of the thermoplastic polymer used. Prior to melt kneading, it is also possible to dry-blend a polyurethane block copolymer, other thermoplastic polymers, and optional components blended as necessary. The polyurethane block copolymer may be melt-kneaded with the thermoplastic polymer in the form of a composition with other components. The thermoplastic polymer may be melt-kneaded with the polyurethane block copolymer in the form of a composition with other components.
 ポリウレタン系ブロック共重合体およびそれ以外の熱可塑性重合体を溶融混練する場合には、当該ポリウレタン系ブロック共重合体[ポリウレタン系ブロック共重合体とそれ以外の成分との組成物の形態を含む]は、上記熱可塑性重合体を改質するためのマスターバッチとみなすことができる。本発明は、ポリウレタン系ブロック共重合体を含むマスターバッチも包含する。当該マスターバッチにおけるポリウレタン系ブロック共重合体の含有率は、好ましくは50~100質量%の範囲内、より好ましくは80~100質量%の範囲内、さらに好ましく95~100質量%の範囲内、特に好ましくは100質量%である。 When melt-kneading the polyurethane block copolymer and other thermoplastic polymers, the polyurethane block copolymer [including the composition of the polyurethane block copolymer and other components] Can be regarded as a masterbatch for modifying the thermoplastic polymer. The present invention also includes a masterbatch containing a polyurethane-based block copolymer. The content of the polyurethane block copolymer in the masterbatch is preferably in the range of 50 to 100% by mass, more preferably in the range of 80 to 100% by mass, still more preferably in the range of 95 to 100% by mass, in particular. Preferably it is 100 mass%.
 本発明の熱可塑性重合体組成物において、ポリウレタンブロック(β)が有する前記構造単位(I)の含有率は、熱可塑性重合体組成物の全質量に基づいて、好ましくは0.1~20質量%の範囲内、より好ましくは0.2~10質量%の範囲内、さらに好ましくは0.4~4質量%の範囲内である。構造単位(I)の含有率が前記の好ましい範囲内である場合、熱可塑性重合体組成物は、シリコーンとの接着性がより優れる。 In the thermoplastic polymer composition of the present invention, the content of the structural unit (I) contained in the polyurethane block (β) is preferably 0.1 to 20 mass based on the total mass of the thermoplastic polymer composition. %, More preferably in the range of 0.2 to 10% by weight, still more preferably in the range of 0.4 to 4% by weight. When the content of the structural unit (I) is within the above preferable range, the thermoplastic polymer composition is more excellent in adhesiveness with silicone.
 本発明の熱可塑性重合体組成物を製造するに当たって、ポリウレタン系ブロック共重合体と共に、少なくとも1種の金属化合物(M)を含有する上記したポリウレタン系ブロック共重合体組成物を用いると、前記金属化合物(M)を含有する熱可塑性重合体組成物が得られる。本発明の熱可塑性重合体組成物において、前記金属化合物(M)をの含有率は、ポリウレタン系ブロック共重合体の質量に基づいて、0.1~2,000質量ppm(0.2質量%)の範囲内であることが好ましい。上記金属化合物(M)の含有率が0.1質量ppm未満であると、得られる本発明の熱可塑性重合体組成物の溶融成形性やシリコーンとの接着性などが低下する傾向がある。一方、上記金属化合物(M)の含有率が、2,000質量ppmを超える場合には、ポリウレタン系ブロック共重合体の溶融成形性(特に溶融滞留安定性)が低下する傾向がある。本発明の熱可塑性重合体組成物において、上記金属化合物の含有率は、ポリウレタン系ブロック共重合体の質量に基づいて、より好ましくは0.5~200質量ppmの範囲内、さらに好ましくは1~200質量ppmの範囲内、特に好ましくは1~100質量ppmの範囲内である。 In producing the thermoplastic polymer composition of the present invention, when the above-mentioned polyurethane block copolymer composition containing at least one metal compound (M) is used together with the polyurethane block copolymer, the metal A thermoplastic polymer composition containing the compound (M) is obtained. In the thermoplastic polymer composition of the present invention, the content of the metal compound (M) is 0.1 to 2,000 mass ppm (0.2 mass%) based on the mass of the polyurethane block copolymer. ) Is preferable. When the content of the metal compound (M) is less than 0.1 ppm by mass, the melt moldability and adhesiveness with silicone of the resulting thermoplastic polymer composition of the present invention tend to be lowered. On the other hand, when the content rate of the said metal compound (M) exceeds 2,000 mass ppm, there exists a tendency for the melt moldability (especially melt residence stability) of a polyurethane-type block copolymer to fall. In the thermoplastic polymer composition of the present invention, the content of the metal compound is more preferably in the range of 0.5 to 200 ppm by mass, and more preferably 1 to 1 in terms of the mass of the polyurethane block copolymer. It is in the range of 200 ppm by mass, particularly preferably in the range of 1 to 100 ppm by mass.
 本発明のポリウレタン系ブロック共重合体、ポリウレタン系ブロック共重合体組成物および熱可塑性重合体組成物(以下、これらを「ポリウレタン系ブロック共重合体等」と略称することがある)は、溶融成形性に優れている。そのため、本発明ポリウレタン系ブロック共重合体等から、任意の成形方法(例えば射出成形、押出成形、インフレーション成形、ブロー成形、カレンダー成形、プレス成形、注型など)によって、種々の成形体(例えば、シート、フィルム、プレート、管状体、棒状体、中空成形体、各種容器、各種ブロック状成形体、各種型物など)を円滑に製造することができる。特に、本発明のポリウレタン系ブロック共重合体等は、非粘着性で成形装置や金型などに付着しにくく、且つ溶融成形性に優れているので、各種の高品質の成形体を生産性良く製造することができる。 The polyurethane block copolymer, polyurethane block copolymer composition and thermoplastic polymer composition of the present invention (hereinafter, these may be abbreviated as “polyurethane block copolymer etc.”) are melt-molded. Excellent in properties. Therefore, various moldings (for example, for example, injection molding, extrusion molding, inflation molding, blow molding, calender molding, press molding, casting, etc.) from the polyurethane block copolymer of the present invention, etc. Sheet, film, plate, tubular body, rod-shaped body, hollow molded body, various containers, various block-shaped molded bodies, various molds, etc.) can be produced smoothly. In particular, the polyurethane block copolymer of the present invention is non-adhesive, hardly adheres to a molding apparatus or a mold, etc., and is excellent in melt moldability. Therefore, various high-quality molded articles can be produced with high productivity. Can be manufactured.
 本発明のポリウレタン系ブロック共重合体等の1種または2種以上を用いて成形体を製造する際の成形方法、成形条件、成形装置などは特に制限されず、熱可塑性重合体(特にポリウレタン)を用いて成形体を製造するのに従来から採用されている成形方法、成形条件、成形装置などを採用することができる。本発明のポリウレタン系ブロック共重合体等の1種または2種以上を用いて溶融成形する場合は、これらを、通常180~230℃、特に190~220℃の温度で加熱溶融することによって、成形体を円滑に製造することができる。 There are no particular restrictions on the molding method, molding conditions, molding apparatus and the like when producing a molded body using one or more of the polyurethane block copolymers of the present invention, and thermoplastic polymers (especially polyurethane). Conventionally employed molding methods, molding conditions, molding apparatuses, etc., can be used to produce a molded body using the. When one or more of the polyurethane-based block copolymers of the present invention are used for melt molding, these are usually heated and melted at a temperature of 180 to 230 ° C., particularly 190 to 220 ° C., thereby forming the molding. The body can be manufactured smoothly.
 本発明のポリウレタン系ブロック共重合体等は、非粘着性であり、それにも拘わらずシリコーンに代表される各種材料との接着性に優れている。さらに、本発明のポリウレタン系ブロック共重合体等は、力学的特性(特に耐摩耗性、引張破断強度、および引張破断伸度等)、屈曲性、耐油性、耐水性、弾性回復性などの特性に優れ、残留歪みが小さく、且つ適度な柔軟性を有している。しかも本発明のポリウレタン系ブロック共重合体等は、平滑な表面を有し表面状態も良好である。そのため、本発明のポリウレタン系ブロック共重合体等は、前記した特性を活かして、各種用途に使用することができる。各種用途としては、例えば、コンベアベルト;押しボタンスイッチに用いられる各種キーシートおよびキーボード(例えば携帯電話、家電製品、自動車部品、通信機器に使用されるものなど);ラミネート品;各種容器用のフィルムやシート;ホース;チューブ;自動車部品;機械部品;靴底;時計バンド;パッキング材;制振材;日用雑貨;などが挙げられる The polyurethane block copolymer or the like of the present invention is non-tacky and is excellent in adhesion to various materials typified by silicone. Further, the polyurethane block copolymer of the present invention has properties such as mechanical properties (especially abrasion resistance, tensile breaking strength, tensile breaking elongation, etc.), flexibility, oil resistance, water resistance, elastic recovery, etc. Excellent residual resistance, low residual strain, and moderate flexibility. Moreover, the polyurethane block copolymer of the present invention has a smooth surface and a good surface state. Therefore, the polyurethane block copolymer of the present invention can be used for various applications by taking advantage of the above-described properties. Various applications include, for example, conveyor belts; various key sheets and keyboards used for push button switches (for example, those used for mobile phones, home appliances, automobile parts, communication devices, etc.); laminated products; films for various containers And hose; tube; automobile parts; machine parts; shoe soles; watch bands; packing materials; damping materials;
 また、本発明のポリウレタン系ブロック共重合体等は、上記したように、各種材料(特にシリコーン)との接着性に優れている。従って、本発明のポリウレタン系ブロック共重合体等は、それから構成される部材と、それ以外の部材とが接触している複合成形体の原料として使用することができる。本発明は、複合成形体の発明も包含する。前記複合成形体は、本発明のポリウレタン系ブロック共重合体を含む部材(X)と、前記部材(X)以外の他の部材(Y)とを有し、前記部材(X)と前記部材(Y)とが接触している。ここで前記部材(X)は、本発明のポリウレタン系ブロック共重合体、ポリウレタン系ブロック共重合体組成物、および熱可塑性重合体組成物のいずれかから構成することができる。本発明の複合成形体は、部材(X)と部材(Y)との接着性に優れている。 Also, as described above, the polyurethane block copolymer of the present invention is excellent in adhesiveness with various materials (particularly silicone). Therefore, the polyurethane block copolymer and the like of the present invention can be used as a raw material of a composite molded body in which a member formed therefrom and other members are in contact with each other. The present invention also includes an invention of a composite molded body. The composite molded body has a member (X) containing the polyurethane block copolymer of the present invention and a member (Y) other than the member (X), and the member (X) and the member ( Y) is in contact. Here, the member (X) can be composed of any one of the polyurethane block copolymer, the polyurethane block copolymer composition, and the thermoplastic polymer composition of the present invention. The composite molded body of the present invention is excellent in adhesion between the member (X) and the member (Y).
 本発明の複合成形体が有する部材(X)は、上記した成形体の製造方法と同様の手法により得ることができる。 The member (X) of the composite molded body of the present invention can be obtained by the same method as the above-described method for manufacturing a molded body.
 本発明の複合成形体において、部材(X)と部材(Y)とは、両部材の少なくとも一部分において接触していればよい。また後述するように、本発明の複合成形体が2つ以上の部材(X)および/または2つ以上の部材(Y)を有する場合には、少なくとも1つの部材(X)と少なくとも1つの部材(Y)とが両部材の少なくとも一部分において接触していればよい。 In the composite molded body of the present invention, the member (X) and the member (Y) may be in contact with each other at least at a part of both members. As will be described later, when the composite molded body of the present invention has two or more members (X) and / or two or more members (Y), at least one member (X) and at least one member. (Y) may be in contact with at least a part of both members.
 本発明の複合成形体の構成としては、何ら限定されるものではないが、例えば、1つの部材(X)と1つの部材(Y)とを有する複合成形体;2つの部材(Y)の間に部材(X)が介在する複合成形体;2つの部材(X)の間に部材(Y)が介在する複合成形体;部材(X)と部材(Y)とが交互に接触した複合成形体;などが挙げられる。また、上記の部材(X)および(Y)の一方または両方は層状であってもよい。したがって、本発明の複合成形体は、積層構造体も包含する。積層構造体としては、1つの層状の部材(X)と1つの層状の部材(Y)とを有する2層構造体;2つの層状の部材(Y)の間に層状の部材(X)が中間層として存在する3層構造体;2つの層状の部材(X)の間に層状の部材(Y)が中間層として存在する3層構造体;層状の部材(X)と層状の部材(Y)とが交互に4層以上に積層した多層構造体等;が挙げられる。 The configuration of the composite molded body of the present invention is not limited at all. For example, a composite molded body having one member (X) and one member (Y); between two members (Y) Composite molded body in which member (X) is interposed; Composite molded body in which member (Y) is interposed between two members (X); Composite molded body in which members (X) and members (Y) are alternately contacted And the like. One or both of the members (X) and (Y) may be layered. Therefore, the composite molded body of the present invention includes a laminated structure. As a laminated structure, a two-layer structure having one layered member (X) and one layered member (Y); a layered member (X) is intermediate between two layered members (Y) A three-layer structure existing as a layer; a three-layer structure in which a layered member (Y) exists as an intermediate layer between two layered members (X); a layered member (X) and a layered member (Y) And a multilayer structure in which four or more layers are alternately stacked.
 上記の部材(Y)を構成する素材としては、後述するシリコーンの他、各種熱可塑性重合体(但し、本発明のポリウレタン系ブロック共重合体以外)やその組成物(但し、本発明のポリウレタン系ブロック共重合体組成物や熱可塑性重合体組成物以外)、熱硬化性重合体、紙、布帛、金属、木材、セラミックスなどを挙げることができる。 As a material constituting the member (Y), in addition to silicone described later, various thermoplastic polymers (however, other than the polyurethane block copolymer of the present invention) and compositions thereof (however, the polyurethane system of the present invention) Examples include block copolymer compositions and thermoplastic polymer compositions), thermosetting polymers, paper, fabrics, metals, wood, and ceramics.
 本発明の複合成形体の製造方法は特に制限されず、例えば、前記した部材(Y)を、本発明のポリウレタン系ブロック共重合体等で溶融被覆する方法;2つ以上の部材(Y)の間に、溶融下の本発明のポリウレタン系ブロック共重合体等を導入して、これらを接着・一体化させる方法;部材(Y)を金型内に配置(インサート)し、次いで溶融下の本発明のポリウレタン系ブロック共重合体等を金型内に充填して、これらを接着・一体化させる方法;熱可塑性である部材(Y)と、熱可塑性である本発明のポリウレタン系ブロック共重合体等とを共押出成形して、これらを接着・一体化させる方法;部材(X)と部材(Y)とをプレスする方法;部材(X)と部材(Y)とを、接着剤を用いて接着・一体化させる方法;などを挙げることができる。 The method for producing the composite molded body of the present invention is not particularly limited. For example, the above-described member (Y) is melt-coated with the polyurethane block copolymer of the present invention; two or more members (Y) In the meantime, the polyurethane block copolymer of the present invention under melting is introduced, and these are bonded and integrated; the member (Y) is placed (inserted) in the mold, and then the molten base A method of filling a polyurethane block copolymer of the present invention into a mold and bonding and integrating them; a thermoplastic member (Y) and a polyurethane block copolymer of the present invention which is thermoplastic A method of co-extrusion and the like to bond and integrate them; a method of pressing the member (X) and the member (Y); and a member (X) and the member (Y) using an adhesive Adhesion / integration method; Kill.
 本発明のポリウレタン系ブロック共重合体等は、極性の高い重合体および極性の低い重合体の両方に対して良好な溶融接着性を示し、特に極性の高い重合体に対する溶融接着性に優れている。従って、例えば、本発明のポリウレタン系ブロック共重合体等と重合体(特にポリアミド;ポリエステル;ポリ塩化ビニリデン;ポリ塩化ビニル;ポリカーボネート;アクリル系樹脂;ポリオキシメチレン樹脂;エチレン-酢酸ビニル共重合体のケン化物;芳香族ビニル化合物とシアン化ビニル化合物、共役ジエンおよびオレフィンから選ばれる少なくとも1種との共重合体;ポリウレタン;スチレン系重合体;ポリオレフィンなど)と溶融接着して、各種の複合成形体を製造することができる。 The polyurethane block copolymer of the present invention exhibits good melt adhesion to both high polarity polymers and low polarity polymers, and is particularly excellent in melt adhesion to highly polar polymers. . Therefore, for example, the polyurethane block copolymer of the present invention and the polymer (particularly polyamide; polyester; polyvinylidene chloride; polyvinyl chloride; polycarbonate; acrylic resin; polyoxymethylene resin; ethylene-vinyl acetate copolymer) Saponified products; copolymers of aromatic vinyl compounds and vinyl cyanide compounds, at least one selected from conjugated dienes and olefins; polyurethanes; styrenic polymers; Can be manufactured.
 したがって、本発明の複合成形体の好ましい態様として、以下の積層構造体(L1)および積層構造体(L2)を挙げることができる。
 ・積層構造体(L1):層(X’)/層(Y’1)の形態でこれらを積層した構造を、少なくとも一部に有する積層構造体であり、前記層(X’)は、本発明のポリウレタン系ブロック共重合体を含み、前記層(Y’1)は、ポリアミド;ポリエステル;ポリ塩化ビニリデン;ポリ塩化ビニル;ポリカーボネート;アクリル系樹脂;ポリオキシメチレン樹脂;エチレン-酢酸ビニル共重合体のケン化物;並びに芳香族ビニル化合物とシアン化ビニル化合物、共役ジエンおよびオレフィンから選ばれる少なくとも1種との共重合体;ポリウレタンからなる群から選ばれる少なくとも1種の極性重合体を含む。
 ・積層構造体(L2):層(Y’1)/層(X’)/層(Y’2)の形態でこれらを積層した構造を少なくとも一部に有する積層構造体であり、前記層(X’)は、本発明のポリウレタン系ブロック共重合体を含み、前記層(Y’1)は、ポリアミド;ポリエステル;ポリ塩化ビニリデン;ポリ塩化ビニル;ポリカーボネート;アクリル系樹脂;ポリオキシメチレン樹脂;エチレン-酢酸ビニル共重合体のケン化物;並びに芳香族ビニル化合物とシアン化ビニル化合物、共役ジエンおよびオレフィンから選ばれる少なくとも1種との共重合体;ポリウレタンからなる群から選ばれる少なくとも1種の極性重合体を含み、前記層(Y’2)は、スチレン系重合体およびポリオレフィンからなる群から選ばれる少なくとも1種の非極性重合体を含む。
Therefore, the following laminated structure (L1) and laminated structure (L2) can be mentioned as preferred embodiments of the composite molded body of the present invention.
Laminated structure (L1): a laminated structure having at least part of a structure in which these are laminated in the form of layer (X ′) / layer (Y′1), and the layer (X ′) Including the polyurethane block copolymer of the invention, the layer (Y′1) is composed of polyamide, polyester, polyvinylidene chloride, polyvinyl chloride, polycarbonate, acrylic resin, polyoxymethylene resin, ethylene-vinyl acetate copolymer. A copolymer of at least one selected from aromatic vinyl compounds and vinyl cyanide compounds, conjugated dienes and olefins; and at least one polar polymer selected from the group consisting of polyurethanes.
Stacked structure (L2): a stacked structure having at least part of a structure in which these layers are stacked in the form of layer (Y′1) / layer (X ′) / layer (Y′2), X ′) comprises the polyurethane block copolymer of the present invention, and the layer (Y′1) comprises polyamide; polyester; polyvinylidene chloride; polyvinyl chloride; polycarbonate; acrylic resin; A saponified product of a vinyl acetate copolymer; and a copolymer of an aromatic vinyl compound and a vinyl cyanide compound, at least one selected from conjugated dienes and olefins; at least one polar weight selected from the group consisting of polyurethanes The layer (Y′2) includes a combination, and the layer (Y′2) includes at least one nonpolar polymer selected from the group consisting of a styrene polymer and a polyolefin.
 前記層(X’)は、本発明のポリウレタン系ブロック共重合体、ポリウレタン系ブロック共重合体組成物、および熱可塑性重合体組成物のいずれかから、構成することができる。 The layer (X ′) can be composed of any one of the polyurethane block copolymer, the polyurethane block copolymer composition, and the thermoplastic polymer composition of the present invention.
 前記層(Y’1)または層(Y’2)が含み得る前記ポリアミド等の極性重合体としては、本発明の熱可塑性重合体組成物が含む熱可塑性重合体として先に例示した重合体と同様のものを使用することができる。 Examples of the polar polymer such as polyamide that can be included in the layer (Y′1) or the layer (Y′2) include the polymers exemplified above as the thermoplastic polymer included in the thermoplastic polymer composition of the present invention. Similar ones can be used.
 上記層(Y’1)は、上記極性重合体のみから構成されていてもよいが、その性質を損なわない限りは、必要に応じて、1種または2種以上の任意成分を含有していてもよい。前記任意成分としては、例えば、熱安定剤(例えば、金属セッケン、リン化合物、硫黄化合物、フェノール系化合物、L-アスコルビン酸類、エポキシ化合物等)、光安定剤、可塑剤(例えば、脂肪族ジカルボン酸エステル、ヒドロキシ多価カルボン酸エステル、脂肪酸エステル、ポリエステル系化合物、リン酸エステル等)、無機微粉末、滑剤(有機滑剤等)、分散剤、染顔料、帯電防止剤、酸化防止剤、離型剤、難燃剤、紫外線吸収剤などを挙げることができる。 Although the said layer (Y'1) may be comprised only from the said polar polymer, as long as the property is not impaired, it contains the 1 type, or 2 or more types of arbitrary component as needed. Also good. Examples of the optional component include a heat stabilizer (eg, metal soap, phosphorus compound, sulfur compound, phenol compound, L-ascorbic acid, epoxy compound, etc.), light stabilizer, plasticizer (eg, aliphatic dicarboxylic acid). Ester, hydroxy polycarboxylic acid ester, fatty acid ester, polyester compound, phosphate ester, etc.), inorganic fine powder, lubricant (organic lubricant, etc.), dispersant, dye / pigment, antistatic agent, antioxidant, mold release agent And flame retardants and ultraviolet absorbers.
 上記層(Y’1)における上記極性重合体の含有率としては、50~100質量%の範囲内であることが好ましく、80~100質量%の範囲内であることがより好ましく、95~100質量%の範囲内であることがさらに好ましい。 The content of the polar polymer in the layer (Y′1) is preferably in the range of 50 to 100% by mass, more preferably in the range of 80 to 100% by mass, and 95 to 100%. More preferably, it is in the range of mass%.
 また、上記層(Y’2)は、上記非極性重合体のみから構成されていてもよいが、その性質を損なわない限りは、必要に応じて、1種または2種以上の任意成分を含有していてもよい。前記任意成分としては、例えば、熱安定剤(例えば、金属セッケン、リン化合物、硫黄化合物、フェノール系化合物、L-アスコルビン酸類、エポキシ化合物等)、光安定剤、可塑剤(例えば、脂肪族ジカルボン酸エステル、ヒドロキシ多価カルボン酸エステル、脂肪酸エステル、ポリエステル系化合物、リン酸エステル等)、無機微粉末、滑剤(有機滑剤等)、分散剤、染顔料、帯電防止剤、酸化防止剤、離型剤、難燃剤、紫外線吸収剤などを挙げることができる。 The layer (Y′2) may be composed only of the nonpolar polymer, but contains one or more optional components as necessary as long as the properties are not impaired. You may do it. Examples of the optional component include a heat stabilizer (eg, metal soap, phosphorus compound, sulfur compound, phenol compound, L-ascorbic acid, epoxy compound, etc.), light stabilizer, plasticizer (eg, aliphatic dicarboxylic acid). Ester, hydroxy polycarboxylic acid ester, fatty acid ester, polyester compound, phosphate ester, etc.), inorganic fine powder, lubricant (organic lubricant, etc.), dispersant, dye / pigment, antistatic agent, antioxidant, mold release agent And flame retardants and ultraviolet absorbers.
 上記層(Y’2)における上記非極性重合体の含有率としては、50~100質量%の範囲内であることが好ましく、80~100質量%の範囲内であることがより好ましく、95~100質量%の範囲内であることがさらに好ましい。 The content of the nonpolar polymer in the layer (Y′2) is preferably in the range of 50 to 100% by mass, more preferably in the range of 80 to 100% by mass, More preferably, it is in the range of 100% by mass.
 本発明のポリウレタン系ブロック共重合体等に含まれる構造単位(I)中の不飽和炭化水素基は、ヒドロシリル化触媒の存在下で、珪素原子に結合した水素原子を有するシリコーン(オルガノハイドロジェンポリシロキサン)と反応し、また分子中にビニル基などの不飽和基を有するシリコーンとも反応する。そのため、本発明のポリウレタン系ブロック共重合体等とシリコーンとは、これらに対して表面活性化処理(例えばプライマー処理など)を施さなくても、強固に接合することができる。かかる点から、本発明のポリウレタン系ブロック共重合体等は、複合成形体[特に、本発明のポリウレタン系ブロック共重合体等から構成される部材と、シリコーンを含む部材と(以下「シリコーン系部材」と略称することがある)が強固に接合した積層構造体]の製造に極めて有効である。したがって本発明は、上記部材(Y)がシリコーン部材である上記複合成形体も包含する。 The unsaturated hydrocarbon group in the structural unit (I) contained in the polyurethane-based block copolymer or the like of the present invention is a silicone having a hydrogen atom bonded to a silicon atom (organohydrogenpolyethylene in the presence of a hydrosilylation catalyst. It also reacts with silicones having unsaturated groups such as vinyl groups in the molecule. Therefore, the polyurethane block copolymer and the like of the present invention and silicone can be firmly bonded without subjecting them to surface activation treatment (for example, primer treatment). From this point, the polyurethane block copolymer of the present invention is a composite molded body [particularly, a member composed of the polyurethane block copolymer of the present invention, a member containing silicone (hereinafter referred to as “silicone member”). "Is sometimes abbreviated as") is extremely effective in the production of a strongly bonded laminated structure]. Therefore, this invention also includes the said composite molded object whose said member (Y) is a silicone member.
 上記のシリコーン系部材は、シリコーンのみから構成されていてもよいし、シリコーンを含むシリコーン組成物から構成されていてもよい。シリコーン系部材におけるシリコーンの含有率は、好ましくは50~100質量%の範囲内、より好ましくは80~100質量%の範囲内、特に好ましくは95~100質量%の範囲内である。シリコーン含有率が好ましい範囲内であると、シリコーン系部材と部材(X)との接着強度を向上させることができる。 The above-mentioned silicone-based member may be composed only of silicone or may be composed of a silicone composition containing silicone. The silicone content in the silicone-based member is preferably in the range of 50 to 100% by mass, more preferably in the range of 80 to 100% by mass, and particularly preferably in the range of 95 to 100% by mass. The adhesive strength of a silicone type member and member (X) can be improved as a silicone content rate exists in a preferable range.
 上記のシリコーン組成物は、例えば、各種添加剤(例えば離型剤、補強剤、着色剤、難燃剤、紫外線吸収剤、酸化防止剤、耐加水分解性向上剤、防かび剤、抗菌剤、安定剤等);各種繊維(例えばガラス繊維、ポリエステル繊維等);無機物(例えばタルク、シリカ等);各種カップリング剤;を含むことができる。 The above-mentioned silicone composition includes, for example, various additives (for example, release agents, reinforcing agents, colorants, flame retardants, ultraviolet absorbers, antioxidants, hydrolysis resistance improvers, antifungal agents, antibacterial agents, and stable agents. Agents); various fibers (for example, glass fibers, polyester fibers, etc.); inorganic substances (for example, talc, silica, etc.); various coupling agents.
 シリコーン系部材を構成するシリコーンとしては特に制限はない。シリコーン系部材は、簡便に、硬化性シリコーン組成物を硬化させて形成することが好ましい。前記硬化性シリコーン組成物としては、例えば、(i)常温で硬化してシリコーンゴムまたはシリコーン樹脂となる常温硬化型のシリコーン組成物、(ii)加熱により硬化してシリコーンゴムまたはシリコーン樹脂となる加熱架橋型のシリコーン組成物(例えばメチルビニルシリコーンの組成物等)を用いることができる。作業性の観点からは、前記(i)の常温硬化型のシリコーン組成物が好ましく、特に常温で硬化してシリコーンゴムとなる常温硬化型のシリコーンゴム組成物がより好ましい。常温硬化型のシリコーン組成物は、硬化前は柔らかなペースト状もしくは半流動状であり、取り扱い性に優れる。 There is no particular limitation on the silicone constituting the silicone-based member. The silicone-based member is preferably formed by simply curing the curable silicone composition. Examples of the curable silicone composition include (i) a room temperature curable silicone composition that cures at room temperature to form a silicone rubber or silicone resin, and (ii) heat that cures upon heating to form a silicone rubber or silicone resin. A cross-linked silicone composition (such as a methyl vinyl silicone composition) can be used. From the viewpoint of workability, the room temperature curable silicone composition (i) is preferable, and a room temperature curable silicone rubber composition that is cured at room temperature to form a silicone rubber is more preferable. The room temperature curable silicone composition is soft paste or semi-fluid before curing, and is excellent in handleability.
 前記(i)の常温硬化型のシリコーン組成物には、空気中の水分によって硬化する1液型のシリコーン組成物と、硬化剤によって硬化する2液型のシリコーン組成物がある。一般に、1液型の常温硬化型のシリコーン組成物は、成形加工装置や異種材料に対して接着性を有するため、離型性、取り扱い性に劣る傾向がある。一方、2液型の常温硬化型のシリコーン組成物は、異種材料に対しては優れた接着性を示し、且つ取り扱い性に優れる。従って、2液型の常温硬化型のシリコーン組成物が好ましく、2液型の常温硬化型のシリコーンゴム組成物がより好ましい。 The (i) room-temperature curable silicone composition includes a one-part silicone composition that cures with moisture in the air and a two-part silicone composition that cures with a curing agent. In general, a one-component room-temperature curable silicone composition tends to be inferior in releasability and handleability because it has adhesiveness to a molding apparatus and different materials. On the other hand, the two-component room temperature curable silicone composition exhibits excellent adhesion to dissimilar materials and is excellent in handleability. Accordingly, a two-pack type room temperature curable silicone composition is preferable, and a two-pack type room temperature curable silicone rubber composition is more preferable.
 2液型の常温硬化型のシリコーン組成物は、シリコーン中に導入されている官能基によって、縮合反応型と付加反応型の2種類に大別される。縮合反応型は、水酸基末端反応型ジオルガノポリシロキサンとアルコキシ基末端反応性ジオルガノポリシロキサンとを、触媒(例えば錫化合物など)を用いて重合するものである。一方、付加反応型は、アルケニル基(例えばビニル基等)を有するオルガノポリシロキサンと、珪素原子に結合した水素原子を有するオルガノハイドロジェンポリシロキサン(水素化ポリシロキサン)とを、貴金属化合物(例えば白金、パラジウム、イリジウム、ロジウム、オスミウム、ルテニウム等の化合物)などからなるヒドロシリル化触媒を用いて、常温または加熱下で(一般に150℃以下)で反応させるものである。 The two-pack type room temperature curable silicone composition is roughly classified into two types, a condensation reaction type and an addition reaction type, depending on the functional group introduced into the silicone. In the condensation reaction type, a hydroxyl-terminated reactive diorganopolysiloxane and an alkoxy-terminated reactive diorganopolysiloxane are polymerized using a catalyst (for example, a tin compound). On the other hand, in the addition reaction type, an organopolysiloxane having an alkenyl group (for example, a vinyl group) and an organohydrogenpolysiloxane (hydrogenated polysiloxane) having a hydrogen atom bonded to a silicon atom are converted into a noble metal compound (for example, platinum). , Palladium, iridium, rhodium, osmium, ruthenium, etc.) and the like, and the like, and the reaction is carried out at room temperature or under heating (generally 150 ° C. or lower).
 硬化性シリコーン組成物としては、前記した付加反応型の硬化性シリコーン組成物が好ましい。付加反応型の硬化性シリコーン組成物は、分子中に構造単位(I)を有するポリウレタン系ブロック共重合体との反応性に優れていて、これを用いることによって、部材(X)とシリコーン系部材との接着強度が向上した複合成形体を円滑に製造することができる。前記付加反応型の硬化性シリコーン組成物としては、オルガノハイドロジェンポリシロキサンおよびヒドロシリル化触媒を含有する硬化性シリコーン組成物、特に(α)オルガノハイドロジェンポリシロキサンとヒドロシリル化触媒を含有し、アルケニル基を有するオルガノポリシロキサンを含有しない硬化性シリコーン組成物;または(β)オルガノハイドロジェンポリシロキサン、アルケニル基を有するオルガノポリシロキサンおよびヒドロシリル化触媒を含有する硬化性シリコーン組成物;のいずれもが使用可能である。 As the curable silicone composition, the addition reaction type curable silicone composition described above is preferable. The addition reaction type curable silicone composition is excellent in reactivity with the polyurethane block copolymer having the structural unit (I) in the molecule. By using this, the member (X) and the silicone member are used. And a composite molded body having improved adhesive strength can be produced smoothly. The addition reaction type curable silicone composition includes a curable silicone composition containing an organohydrogenpolysiloxane and a hydrosilylation catalyst, particularly (α) an organohydrogenpolysiloxane and a hydrosilylation catalyst, and an alkenyl group. A curable silicone composition containing no organopolysiloxane and having (β) an organohydrogenpolysiloxane, an alkenyl group-containing organopolysiloxane and a hydrosilylation catalyst can be used. It is.
 上記オルガノハイドロジェンポリシロキサンとしては、珪素原子に結合した水素原子を1分子中に1個以上有するオルガノハイドロジェンポリシロキサンであればいずれでもよく、特に制限されない。このようなオルガノハイドロジェンポリシロキサンの中でも、ジオルガノポリシロキサン分子中の珪素原子に結合した1価の有機基(オルガノ基)の1つまたは2つ以上が水素原子で置き換わったジオルガノハイドロジェンポリシロキサンが好ましく、ジメチルポリシロキサン分子中の珪素原子に結合したメチル基の1個以上(特に2~10個)が水素原子に置き換わったジメチルハイドロジェンポリシロキサンがより好ましい。前記ジオルガノハイドロジェンポリシロキサン(特に前記ジメチルハイドロジェンポリシロキサン)は、柔軟性、弾性特性、硬化性等に優れ、且つ入手が容易である。 The organohydrogenpolysiloxane may be any organohydrogenpolysiloxane having at least one hydrogen atom bonded to a silicon atom in one molecule, and is not particularly limited. Among such organohydrogenpolysiloxanes, diorganohydrogenpolysiloxane in which one or more monovalent organic groups (organogroups) bonded to silicon atoms in the diorganopolysiloxane molecule are replaced with hydrogen atoms. Siloxane is preferable, and dimethyl hydrogen polysiloxane in which one or more (particularly 2 to 10) methyl groups bonded to silicon atoms in the dimethylpolysiloxane molecule are replaced with hydrogen atoms is more preferable. The diorganohydrogenpolysiloxane (particularly the dimethylhydrogenpolysiloxane) is excellent in flexibility, elastic properties, curability and the like and is easily available.
 また、上記のアルケニル基を有するオルガノポリシロキサンとしては、1分子中に1個以上のアルケニル基(例えばビニル基、アリル基等)を有するオルガノポリシロキサンであればいずれでもよく、特に制限されない。このようなアルケニル基を有するオルガノポリシロキサンの中でも、珪素原子に結合したアルケニル基を1つまたは2つ以上有するジオルガノポリシロキサンが好ましく、ジメチルポリシロキサン分子中の珪素原子に結合したメチル基の1個以上(特に2~10個)がアルケニル基に置き換わったジメチルポリシロキサンがより好ましい。前記ジオルガノポリシロキサン(特に前記ジメチルポリシロキサン)は、柔軟性、弾性特性、硬化性等に優れ、且つ入手が容易である。 The organopolysiloxane having an alkenyl group may be any organopolysiloxane having one or more alkenyl groups (for example, vinyl group, allyl group) in one molecule, and is not particularly limited. Among the organopolysiloxanes having such alkenyl groups, diorganopolysiloxanes having one or more alkenyl groups bonded to silicon atoms are preferred, and one of the methyl groups bonded to silicon atoms in the dimethylpolysiloxane molecule. More preferred is dimethylpolysiloxane in which one or more (particularly 2 to 10) are replaced by alkenyl groups. The diorganopolysiloxane (particularly the dimethylpolysiloxane) is excellent in flexibility, elastic properties, curability and the like and is easily available.
 上記オルガノハイドロジェンポリシロキサン、および上記アルケニル基を有するオルガノポリシロキサンの分子量は特に制限されず、本発明の複合成形体の用途等に応じて、それぞれの用途に適したものを使用することができる。 The molecular weight of the organohydrogenpolysiloxane and the organopolysiloxane having an alkenyl group is not particularly limited, and those suitable for each application can be used depending on the application of the composite molded article of the present invention. .
 上記硬化性シリコーン組成物で用いるヒドロシリル化触媒の種類は特に制限されず、従来から用いられているあらゆるヒドロシリル化触媒を使用することができる。例えば、貴金属(例えば白金、パラジウム、イリジウム、ロジウム、オスミウム、ルテニウム等)の錯体;有機過酸化物;アゾ化合物;などを挙げることができる。そのうちでも、反応性が高く、取り扱い性に優れる白金錯体が好ましい。特に、塩化白金酸のアルコール溶液;塩化白金酸溶液を中和した後に脂肪族不飽和炭化水素基含有化合物を配位させたもの;がより好ましい。 The type of hydrosilylation catalyst used in the curable silicone composition is not particularly limited, and any conventionally used hydrosilylation catalyst can be used. For example, a noble metal (for example, platinum, palladium, iridium, rhodium, osmium, ruthenium, etc.) complex; an organic peroxide; an azo compound; Among them, a platinum complex having high reactivity and excellent handleability is preferable. In particular, an alcohol solution of chloroplatinic acid; a compound in which an aliphatic unsaturated hydrocarbon group-containing compound is coordinated after neutralizing the chloroplatinic acid solution is more preferable.
 上記硬化性シリコーン組成物におけるヒドロシリル化触媒の含有量は、通常、オルガノハイドロジェンポリシロキサンとアルケニル基を有するオルガノポリシロキサンとの合計質量に対して、好ましくは1質量ppm~1質量%程度、より好ましくは10~500質量ppm程度である。 The content of the hydrosilylation catalyst in the curable silicone composition is usually preferably about 1 ppm by mass to 1% by mass with respect to the total mass of the organohydrogenpolysiloxane and the organopolysiloxane having an alkenyl group. Preferably, it is about 10 to 500 mass ppm.
 なお、上記の硬化性シリコーン組成物は、シリコーン系の接着剤や印刷インキであってもよい。 The curable silicone composition may be a silicone-based adhesive or printing ink.
 シリコーン系部材を有する本発明の複合成形体の好ましい態様としては、1つまたは2つ以上の部材(X)および1つまたは2つ以上のシリコーン系部材のみからなるものや、これらと共に、部材(X)およびシリコーン系部材とは異なる材料から構成される部材以下「他の材料部材」と略称することがある)を有していてもよい。他の材料部材は、一つであってもよく、二つ以上であってもよい。 As a preferable aspect of the composite molded body of the present invention having a silicone-based member, one or two or more members (X) and only one or two or more silicone-based members, or a member ( X) and a member made of a material different from that of the silicone-based member may be hereinafter referred to as “other material member”. The number of other material members may be one, or two or more.
 本発明の複合成形体は、好ましくは、層状の部材(X)(以下「層(X’)」と略称することがある)と、層状のシリコーン系部材(以下「シリコーン層」と略称することがある)とが接着積層した積層構造体である。このような積層構造体の層数は特に制限されず、2層、3層、4層、5層以上のいずれであってもよい。さらに、層(X’)とシリコーン層とを有する積層構造体がさらに層状の他の材料部材(以下「他の材料層」と略称することがある)を有する場合には、層(X’)および/またはシリコーン層と他の材料層とは、1つの面の全面で接着積層していてもよいし、あるいは連続的または断続的に接着・積層(例えば、線接着、点接着、部分的な面接着など)していてもよい。 The composite molded body of the present invention is preferably abbreviated as a layered member (X) (hereinafter sometimes abbreviated as “layer (X ′)”) and a layered silicone-based member (hereinafter abbreviated as “silicone layer”). Is a laminated structure obtained by adhesion lamination. The number of layers in such a laminated structure is not particularly limited, and may be any of two layers, three layers, four layers, five layers or more. Furthermore, when the laminated structure having the layer (X ′) and the silicone layer further has another material member in the form of a layer (hereinafter sometimes abbreviated as “other material layer”), the layer (X ′) And / or the silicone layer and the other material layer may be bonded and laminated on the entire surface of one surface, or may be bonded or laminated continuously or intermittently (for example, line bonding, point bonding, partial bonding, etc.) Surface adhesion, etc.).
 限定されるものではないが、層(X’)とシリコーン層とを有する積層構造体としては、例えば、層(X’)/シリコーン層からなる2層構造体;シリコーン層/層(X’)/シリコーン層からなる3層構造体;層(X’)/シリコーン層/層(X’)からなる3層構造体;層(X’)/シリコーン層/層(X’)/シリコーン層からなる4層構造体;他の材料層/シリコーン層/層(X’)からなる3層構造体;シリコーン層/層(X’)/他の材料層からなる3層構造体;シリコーン層/層(X’)/シリコーン層/層(X’)/他の材料層からなる5層構造体などを挙げることができる。 Although not limited, as a laminated structure having a layer (X ′) and a silicone layer, for example, a two-layer structure comprising layer (X ′) / silicone layer; silicone layer / layer (X ′) / 3-layer structure consisting of silicone layer; 3-layer structure consisting of layer (X ′) / silicone layer / layer (X ′); layer (X ′) / silicone layer / layer (X ′) / silicone layer Four-layer structure; three-layer structure composed of another material layer / silicone layer / layer (X ′); three-layer structure composed of silicone layer / layer (X ′) / other material layer; silicone layer / layer ( Examples thereof include a 5-layer structure comprising X ′) / silicone layer / layer (X ′) / other material layers.
 1つの積層構造体中に2つ以上の層(X’)が存在する場合は、2つ以上の前記層(X’)は、本発明のポリウレタン系ブロック共重合体を含む層である限りは、全く同じ層であってもよく、含まれるポリウレタン系ブロック共重合体の種類、含有量、層の厚さ等が異なる層であってもよい。また、1つの複合成形体中に2つ以上のシリコーン層が存在する場合も、前記2つ以上のシリコーン層は、全く同じ層であってもよく、異なる層であってもよい。 When two or more layers (X ′) are present in one laminated structure, as long as the two or more layers (X ′) are layers containing the polyurethane-based block copolymer of the present invention, The layers may be the same layer or may be different in the type, content, layer thickness, and the like of the polyurethane block copolymer contained. Also, when two or more silicone layers are present in one composite molded body, the two or more silicone layers may be the same layer or different layers.
 上記した層(X’)とシリコーン層とが接着積層した積層構造体では、積層構造体の全体の厚さ、層(X’)の厚さおよびシリコーン層の厚さは特に制限されず、積層構造体の用途等に応じて調整することができる。 In the laminated structure in which the layer (X ′) and the silicone layer are bonded and laminated as described above, the total thickness of the laminated structure, the thickness of the layer (X ′), and the thickness of the silicone layer are not particularly limited. It can adjust according to the use etc. of a structure.
 層(X’)(1つの層)の厚さは、一般には10μm以上、好ましくは20~3,000μmの範囲内、より好ましくは50~2,000μmの範囲内であり、シリコーン層(1つの層)の厚さは、一般には10μm以上、好ましくは20~3,000μmの範囲内、より好ましくは50~2,000μmの範囲内である。このような厚さの層(X’)およびシリコーン層を用いれば、これら層間の接着力に優れた積層構造体を容易に製造することができる。 The thickness of the layer (X ′) (one layer) is generally 10 μm or more, preferably in the range of 20 to 3,000 μm, more preferably in the range of 50 to 2,000 μm. The thickness of the layer) is generally 10 μm or more, preferably in the range of 20 to 3,000 μm, more preferably in the range of 50 to 2,000 μm. If the layer (X ′) and the silicone layer having such a thickness are used, a laminated structure having excellent adhesion between these layers can be easily produced.
 また特に、製造の容易性、耐熱性、後加工の工程通過性等の観点から、層(X’)はフィルムから形成されることが好ましい。当該フィルムの厚さは、好ましくは20~200μmの範囲内、より好ましくは30~200μmの範囲内、さらに好ましくは40~150μmの範囲内である。 In particular, the layer (X ′) is preferably formed from a film from the viewpoints of ease of production, heat resistance, post-processing passability, and the like. The thickness of the film is preferably in the range of 20 to 200 μm, more preferably in the range of 30 to 200 μm, and still more preferably in the range of 40 to 150 μm.
 シリコーン系部材を有する本発明の複合成形体の製造方法としては、特に制限されないが、部材(X)上で硬化性シリコーン組成物を硬化させることによって、部材(X)上にシリコーン系部材を形成させる工程を含む製造方法が好ましい。前記製造方法によれば、表面活性化処理を施さなくても、部材(X)とシリコーン系部材との接着強度に優れる複合成形体が容易に得られる。ポリウレタン系部材上で硬化性シリコーン組成物を硬化させる方法としては、特に制限されず、例えば、以下の(1)~(5)の方法を採用することができる:
 (1)部材(X)上に硬化性シリコーン組成物を被覆し、次いで硬化性シリコーン組成物を硬化させて、複合成形体を製造する方法。
 (2)部材(X)を金型内に配置(インサート)し、次いで溶融下の硬化性シリコーン組成物を金型内に充填して、硬化性シリコーン組成物を硬化させて、部材(X)とシリコーン系部材とを接着・一体化させる方法。
 (3)熱可塑性である硬化性シリコーン組成物を部材(X)上に押出し、硬化性シリコーン組成物の硬化および部材(X)とシリコーン系部材との接着・一体化を行う方法。
 (4)部材(X)上に、硬化性シリコーン組成物としてシリコーン系の接着剤または印刷インキを塗布し、これらを硬化させる方法。
 (5)熱可塑性である硬化性シリコーン組成物と、本発明の熱可塑性重合体組成物とを、共押出成形して、硬化性シリコーン組成物の硬化および部材(X)とシリコーン系部材との接着・一体化を行う方法。
Although it does not restrict | limit especially as a manufacturing method of the composite molding of this invention which has a silicone type member, A silicone type member is formed on member (X) by hardening a curable silicone composition on member (X). The manufacturing method including the process to make is preferable. According to the said manufacturing method, even if it does not perform a surface activation process, the composite molded object which is excellent in the adhesive strength of member (X) and a silicone type member is obtained easily. The method for curing the curable silicone composition on the polyurethane-based member is not particularly limited, and for example, the following methods (1) to (5) can be employed:
(1) A method in which a curable silicone composition is coated on the member (X), and then the curable silicone composition is cured to produce a composite molded body.
(2) The member (X) is placed (inserted) in the mold, and then the molten curable silicone composition is filled into the mold to cure the curable silicone composition. A method of bonding and unifying a silicone-based member.
(3) A method of extruding a curable silicone composition that is thermoplastic onto the member (X), curing the curable silicone composition, and bonding / integrating the member (X) and the silicone-based member.
(4) A method of applying a silicone-based adhesive or printing ink as a curable silicone composition on the member (X) and curing them.
(5) A curable silicone composition that is thermoplastic and the thermoplastic polymer composition of the present invention are co-extruded to cure the curable silicone composition and to form a member (X) and a silicone-based member. A method of bonding and integration.
 本発明の複合成形体は、複合成形体を構成する部材(X)や部材(Y)(シリコーン系部材等)の性質に応じて、種々の用途に使用することができる。何ら限定されるものではないが、例えば、自動車内装部品(例えばインストルメントパネル、センターパネル、センターコンソールボックス、ドアトリム、ピラー、アシストグリップ、ハンドル、エアバックカバー等);自動車外装部品(例えばモールディング等);掃除機バンパー;冷蔵庫戸当たり;カメラグリップ;電動工具グリップ;家庭用調理器具;リモコンスイッチ;OA機器の各種キートップ;押しボタンスイッチに用いられる各種キーシートおよびキーボード(携帯電話、家電製品、自動車部品、通信機器に使用されるものなど);家電部品(例えばハウジング等);スポーツ用品(例えば水中眼鏡等);各種カバー;各種パッキン付き工業部品(例えば耐摩耗性、密閉性、防音性、防振性等を目的とするもの);カールコード電線被覆;ベルト;ホース;チューブ;靴底;時計バンド;消音ギア;コンベアベルト;ラミネート品;各種容器;各種電気・電子部品;各種機械部品;各種制振材;などを挙げることができる。 The composite molded body of the present invention can be used for various applications depending on the properties of the member (X) and member (Y) (silicone-based member etc.) constituting the composite molded body. For example, but not limited to, automotive interior parts (for example, instrument panels, center panels, center console boxes, door trims, pillars, assist grips, handles, airbag covers, etc.); automotive exterior parts (for example, moldings, etc.) ; Vacuum cleaner bumper; Refrigerator door; Camera grip; Electric tool grip; Household cooking utensils; Remote control switch; Various key tops for OA equipment; Various key sheets and keyboards used for push button switches (cell phones, household appliances, automobiles) Parts, parts used in communication equipment, etc.); household appliance parts (for example, housings); sports equipment (for example, underwater glasses); various covers; various industrial parts with packing (for example, wear resistance, airtightness, soundproofing, prevention) For vibration and other purposes); Wire coatings; belt; hose; tube; sole; watchband; silencing gears; conveyor belt; laminated products; various containers; various electric and electronic parts; various mechanical parts; various damping material; and the like.
 以下に、本発明を実施例などにより具体的に説明するが、本発明は以下の実施例などによって何ら限定されるものではない。
 以下の製造例、実施例および比較例において、ポリウレタン系ブロック共重合体を含む重合体組成物またはポリウレタンの溶融粘度、およびシリコーンとの接着性の測定または評価は、以下の方法で行った。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the following examples.
In the following production examples, examples and comparative examples, the measurement or evaluation of the polymer composition containing polyurethane block copolymer or the melt viscosity of polyurethane and the adhesion to silicone were carried out by the following methods.
(1)ポリウレタン系ブロック共重合体を含む重合体組成物またはポリウレタンの溶融粘度:
 ポリウレタン系ブロック共重合体を含む重合体組成物またはポリウレタンを、95℃で1時間減圧乾燥(10torr以下)した後に、高化式フローテスター(島津製作所製)を使用して、荷重490.3N(50kgf)、ノズル寸法=直径1mm×長さ10mm、温度200または220℃の条件下で、それらの溶融粘度を測定した。
(1) Polymer composition containing polyurethane block copolymer or melt viscosity of polyurethane:
After a polymer composition or polyurethane containing a polyurethane block copolymer was dried under reduced pressure at 95 ° C. for 1 hour (10 torr or less), a load 490.3 N (made by Shimadzu Corporation) was used. Their melt viscosities were measured under the conditions of 50 kgf), nozzle size = diameter 1 mm × length 10 mm, temperature 200 or 220 ° C.
(2)シリコーンとの接着性:
 以下の実施例または比較例で得られた積層構造体を用いて、180℃剥離試験におけるポリウレタン系ブロック共重合体またはポリウレタンを含む部材とポリウレタン以外の材料(シリコーン、ABS樹脂またはポリプロピレン)を含む部材とを引き剥がすときの抵抗値(接着強度)を、インストロン・ジャパン社製「インストロン5566」を使用して、室温下、引張速度100mm/分の条件で測定した。この接着強度を、接着性の指標とした。
(2) Adhesiveness with silicone:
Using the laminated structures obtained in the following examples or comparative examples, a member containing a polyurethane block copolymer or polyurethane and a material other than polyurethane (silicone, ABS resin or polypropylene) in a 180 ° C. peel test The resistance value (adhesive strength) at the time of peeling was measured using “Instron 5566” manufactured by Instron Japan, at room temperature and at a tensile rate of 100 mm / min. This adhesive strength was used as an index of adhesiveness.
 また、下記の製造例、実施例および比較例で用いた化合物に関する略号と内容を以下に示す。 The abbreviations and contents relating to the compounds used in the following production examples, examples and comparative examples are shown below.
《構造単位(I)を有するポリオレフィンポリオール[ポリマーポリオール(ap-1)]》
POG
 両末端に水酸基を有する、ブタジエンが1,2-結合により重合した重合体(数平均分子量1,545、1,2-ビニル結合含有量(1,2-結合単位の割合)92モル%、日本曹達株式会社製「G-1000」)
<< Polyolefin polyol having a structural unit (I) [Polymer polyol (a p -1)] >>
POG :
Polymer having hydroxyl groups at both ends and polymerized by 1,2-bond of butadiene (number average molecular weight 1,545, 1,2-vinyl bond content (ratio of 1,2-bond units) 92 mol%, Japan "G-1000" manufactured by Soda Co., Ltd.)
《構造単位(I)を持たないポリマーポリオール[他のポリマーポリオール(ap-2)]》
POH
 1,4-ブタンジオールとアジピン酸を反応させて製造した、1分子当たりの水酸基数が2.00で、数平均分子量が1,000であるポリエステルジオール
<< Polymer polyol having no structural unit (I) [other polymer polyol ( ap- 2)] >>
POH :
Polyester diol produced by reacting 1,4-butanediol with adipic acid and having a number of hydroxyl groups per molecule of 2.00 and a number average molecular weight of 1,000
《有機ポリイソシアネート》
MDI
 4,4’-ジフェニルメタンジイソシアネート
《鎖伸長剤》
BD
 1,4-ブタンジオール
《ウレタン化反応触媒》
TI
 テトライソプロピルチタネート
《Organic polyisocyanate》
MDI :
4,4'-diphenylmethane diisocyanate << chain extender >>
BD :
1,4-Butanediol << Urethane Reaction Catalyst >>
TI :
Tetraisopropyl titanate
《官能基含有付加重合系ブロック共重合体》
f-TPS
 ポリスチレンブロック-ポリ(イソプレン/ブタジエン)ブロック-ポリスチレンブロック型の構造を有し、分子の片末端に水酸基を有するトリブロック共重合体の水素添加物〔数平均分子量:50,000、スチレン含有量:30質量%、水素添加されたポリ(イソプレン/ブタジエン)ブロックにおける水素添加率:98モル%、イソプレンとブタジエンの比率:50/50(質量比)、1分子当たりの平均水酸基数:0.9個〕
 前記f-TPSは、特開平10-139963号公報の参考例1に記載された方法に準じ、スチレン、イソプレンおよびブタジエンを原料として製造した。また、前記f-TPSは、分子の片末端に水酸基を有するブロック共重合体[TPS-OH]と、分子内に水酸基を有しないブロック共重合体[TPS]とを含有する〔TPS-OH/TPS=9/1(モル比)〕。
 前記TPS-OHのデータ〔数平均分子量:50,000、スチレン含有量:30質量%、水素添加されたポリ(イソプレン/ブタジエン)ブロックにおける水素添加率:98モル%、イソプレンとブタジエンの比率:50/50(質量比)〕
 前記TPSのデータ〔数平均分子量:50,000、スチレン含有量:30質量%、ポリ(イソプレン/ブタジエン)ブロックにおける水素添加率:98モル%、イソプレンとブタジエンの比率:50/50(質量比)〕。
《Functional group-containing addition polymerization block copolymer》
F-TPS :
Hydrogenated product of a triblock copolymer having a polystyrene block-poly (isoprene / butadiene) block-polystyrene block type structure and having a hydroxyl group at one end of the molecule [number average molecular weight: 50,000, styrene content: 30% by mass, hydrogenation rate in hydrogenated poly (isoprene / butadiene) block: 98 mol%, ratio of isoprene to butadiene: 50/50 (mass ratio), average number of hydroxyl groups per molecule: 0.9 ]
The f-TPS was produced using styrene, isoprene and butadiene as raw materials according to the method described in Reference Example 1 of JP-A-10-139963. The f-TPS contains a block copolymer [TPS-OH] having a hydroxyl group at one end of the molecule and a block copolymer [TPS] having no hydroxyl group in the molecule [TPS-OH / TPS = 9/1 (molar ratio)].
Data of the TPS-OH [number average molecular weight: 50,000, styrene content: 30 mass%, hydrogenation rate in hydrogenated poly (isoprene / butadiene) block: 98 mol%, ratio of isoprene to butadiene: 50 / 50 (mass ratio)
Data of the TPS [number average molecular weight: 50,000, styrene content: 30% by mass, hydrogenation rate in poly (isoprene / butadiene) block: 98 mol%, ratio of isoprene to butadiene: 50/50 (mass ratio) ].
《製造例1》 熱可塑性ポリウレタン(C1)の製造
 ウレタン化反応触媒(TI)を10質量ppm含有する構造単位(I)を持たないポリマーポリオール(POH)、鎖伸長剤(BD)および有機ポリイソシアネート(MDI)を、POH:BD:MDIのモル比が1.00:2.83:3.76(窒素原子の含有率は4.8質量%)で、且つこれらの合計供給量が200g/分となるようにして同軸方向に回転する二軸スクリュー型押出機(30mmφ、L/D=36;加熱ゾーンは前部、中央部、後部の3つの帯域に分けたもの)の加熱ゾーンの前部に連続供給して、これらを260℃で連続溶融重合させて、ポリウレタン形成反応を行った。
<< Production Example 1 >> Production of thermoplastic polyurethane (C1) Polymer polyol (POH) having no structural unit (I) containing 10 mass ppm of urethanization reaction catalyst (TI), chain extender (BD), and organic polyisocyanate (MDI) is a POH: BD: MDI molar ratio of 1.00: 2.83: 3.76 (nitrogen atom content is 4.8% by mass), and the total feed amount is 200 g / min. The front part of the heating zone of the twin screw type extruder (30 mmφ, L / D = 36; the heating zone is divided into three zones: front, center and rear) And continuously melt polymerized at 260 ° C. to perform a polyurethane forming reaction.
 得られたポリウレタンの溶融物をストランド状に水中に連続的に押し出し、次いでペレタイザーで切断してペレットを得た。このペレットを80℃で4時間除湿乾燥することにより、熱可塑性ポリウレタン(C1)を得た。得られた熱可塑性ポリウレタン(C1)の溶融粘度を上記した方法で200℃の条件下で測定したところ、2,010Pa・sであった。 The obtained polyurethane melt was continuously extruded into water as a strand, and then cut with a pelletizer to obtain pellets. The pellet was dehumidified and dried at 80 ° C. for 4 hours to obtain a thermoplastic polyurethane (C1). It was 2,010 Pa.s when the melt viscosity of the obtained thermoplastic polyurethane (C1) was measured by the above-mentioned method on 200 degreeC conditions.
《実施例1》 ポリウレタン系ブロック共重合体の製造
 ウレタン化反応触媒(TI)を100質量ppm含有する構造単位(I)を有するポリオレフィンポリオール(POG)、ウレタン化反応触媒(TI)を10質量ppm含有する構造単位(I)を持たないポリマーポリオール(POH)、鎖伸長剤(BD)および有機ポリイソシアネート(MDI)を、POG:POH:BD:MDIのモル比が0.50:0.50:3.87:4.87(得られるポリウレタン系ブロック共重合体のポリウレタンブロックにおけるイソシアネート基由来の窒素原子の含有率は4.8質量%)で、且つこれらの合計供給量が100g/分となるようにして同軸方向に回転する二軸スクリュー型押出機(30mmφ、L/D=36;加熱ゾーンは前部、中央部、後部の3つの帯域に分けたもの)の加熱ゾーンの前部に連続供給して、これらを260℃で連続溶融重合させてポリウレタン形成反応を行った。また官能基含有付加重合系ブロック共重合体(f-TPS)を、その供給量が102g/分となるようにして、上記の二軸スクリュー型押出機の加熱ゾーンの中央部に連続供給し、上記のポリウレタン形成反応による反応混合物と反応させた。
Example 1 Production of Polyurethane Block Copolymer Polyolefin polyol (POG) having structural unit (I) containing 100 mass ppm of urethanization reaction catalyst (TI), 10 mass ppm of urethanization reaction catalyst (TI) A polymer polyol (POH) having no structural unit (I), a chain extender (BD) and an organic polyisocyanate (MDI) having a molar ratio of POG: POH: BD: MDI of 0.50: 0.50: 3.87: 4.87 (the content of nitrogen atoms derived from isocyanate groups in the polyurethane block of the polyurethane block copolymer obtained is 4.8% by mass), and the total supply amount thereof is 100 g / min. Screw screw extruder (30mmφ, L / D = 36; heating zone at the front and center) Part and rear part) were continuously fed to the front part of the heating zone, and these were continuously melt polymerized at 260 ° C. to carry out a polyurethane forming reaction. Further, the functional group-containing addition polymerization block copolymer (f-TPS) is continuously supplied to the center of the heating zone of the above twin screw extruder so that the supply amount is 102 g / min. The reaction mixture was reacted with the polyurethane formation reaction described above.
 得られた溶融物をストランド状に水中に連続的に押し出し、次いでペレタイザーで切断してペレットを得た。このペレットを80℃で4時間除湿乾燥することにより、ポリウレタン系ブロック共重合体を含む重合体組成物を得た。得られた重合体組成物の溶融粘度を上記した方法で220℃の条件下で測定したところ、1,540Pa・sであった。 The obtained melt was continuously extruded into water as a strand, and then cut with a pelletizer to obtain pellets. The pellets were dehumidified and dried at 80 ° C. for 4 hours to obtain a polymer composition containing a polyurethane block copolymer. It was 1,540 Pa.s when the melt viscosity of the obtained polymer composition was measured on the conditions of 220 degreeC by the above-mentioned method.
 得られた重合体組成物の一部をとり、ジメチルホルムアミドを用いて重合体組成物中のポリウレタンを抽出除去した。次いでシクロヘキサンを用いて未反応のTPS-OHおよびTPSを抽出除去し、残留した固形物を乾燥することによりポリウレタン系ブロック共重合体を得た。 A part of the obtained polymer composition was taken, and the polyurethane in the polymer composition was extracted and removed using dimethylformamide. Next, unreacted TPS-OH and TPS were extracted and removed using cyclohexane, and the remaining solid was dried to obtain a polyurethane block copolymer.
 1H-NMRで分析した結果、得られたポリウレタン系ブロック共重合体は、ジブロック共重合体であることが分かった。その一つのブロックは、ポリスチレンブロック-水素添加されたポリ(イソプレン/ブタジエン)ブロック-ポリスチレンブロック型の構造を有するブロック〔付加重合系ブロック(α)〕であり、もう一つのブロックは、POGの単位、POHの単位、MDIの単位およびBDの単位から構成されるポリウレタンブロック〔ポリウレタンブロック(β)〕であった。 As a result of analysis by 1 H-NMR, it was found that the obtained polyurethane block copolymer was a diblock copolymer. One block is a polystyrene block-hydrogenated poly (isoprene / butadiene) block-polystyrene block type block [addition polymerization block (α)], and the other block is a POG unit. Polyurethane block [polyurethane block (β)] composed of POH units, MDI units and BD units.
 またGPC分析の結果、シクロヘキサンによる抽出物は、トリブロック共重合体を含有していることが分かり、これも回収した。その二つのブロックは、ポリスチレンブロック-水素添加されたポリ(イソプレン/ブタジエン)ブロック-ポリスチレンブロック型の構造を有するブロック〔付加重合系ブロック(α)〕であり、もう一つのブロックは、POGの単位、POHの単位、MDIの単位およびBDの単位から構成されるポリウレタンブロック〔ポリウレタンブロック(β)〕であった。 As a result of GPC analysis, it was found that the extract of cyclohexane contained a triblock copolymer, which was also recovered. The two blocks are polystyrene block-hydrogenated poly (isoprene / butadiene) block-polystyrene block type block [addition polymerization block (α)], and the other block is a unit of POG. Polyurethane block [polyurethane block (β)] composed of POH units, MDI units and BD units.
 重合体組成物に含まれる前記ジブロック共重合体、ジメチルホルムアミドを用いて抽出されたポリウレタン、並びにシクロヘキサンを用いて抽出されたTPS-OH、TPSおよび前記トリブロック共重合体の各含有率は、前記重合体組成物を100質量%としたとき、前記ジブロック共重合体が14質量%、ポリウレタンが33質量%、TPS-OHが0質量%、TPSが5質量%、前記トリブロック共重合体48質量%であった。また、ポリウレタン系ブロック共重合体(前記ジブロック共重合体および前記トリブロック共重合体)の全質量中、ポリウレタンブロック(β)が有する構造単位(I)の含有率は6.8質量%であった。 Each content of the diblock copolymer contained in the polymer composition, polyurethane extracted using dimethylformamide, and TPS-OH, TPS extracted using cyclohexane, and the triblock copolymer, When the polymer composition is 100% by mass, the diblock copolymer is 14% by mass, the polyurethane is 33% by mass, the TPS-OH is 0% by mass, the TPS is 5% by mass, the triblock copolymer. It was 48 mass%. The content of the structural unit (I) of the polyurethane block (β) in the total mass of the polyurethane block copolymer (the diblock copolymer and the triblock copolymer) is 6.8% by mass. there were.
 上記したジブロック共重合体およびトリブロック共重合体における付加重合系ブロック(α)は、いずれもTPSと同様の構造を有していた。 All of the addition polymerization blocks (α) in the diblock copolymer and triblock copolymer described above had the same structure as TPS.
《実施例2》 積層構造体の製造
シートの製造
 実施例1で得られたポリウレタン系ブロック共重合体を含む重合体組成物をT-ダイ型単軸押出成形機(25mmφ、シリンダー温度:200~210℃、ダイス温度:210℃)を用いて溶融混練した後、混練物を30℃の冷却ロール上に押し出し、冷却して、それを約0.2m/分の巻き取り速度で巻き取ることにより、ポリウレタン系ブロック共重合体を含む重合体組成物から構成されるシート(厚さ1mm)を製造した。
Example 2 Production of a laminated structure
Sheet Production The polymer composition containing the polyurethane block copolymer obtained in Example 1 was subjected to a T-die type single screw extruder (25 mmφ, cylinder temperature: 200 to 210 ° C., die temperature: 210 ° C.). After being melt melt-kneaded, the kneaded product is extruded onto a 30 ° C. cooling roll, cooled, and wound up at a winding speed of about 0.2 m / min. A sheet (thickness 1 mm) composed of the combined composition was produced.
積層構造体の製造(1)
 上記シートの製造で得られたシート(巻き取ったシート)から幅25mm、長さ100mmの試験片を切り出した。この試験片に、液状の硬化性シリコーン組成物(信越化学工業株式会社製「信越シリコーン KE-2000」)(A液とB液とを混合した液)を約100μmの厚さに塗布し、これらを120℃の熱風乾燥機中に30分間放置して、ポリウレタン系ブロック共重合体を含む部材とシリコーンを含む部材とからなる2層構造の積層構造体を得た。上記の評価方法により、得られた積層構造体におけるポリウレタン系ブロック共重合体を含む部材とシリコーンとの接着性を評価した。結果を表1に示した。
Manufacture of laminated structure (1)
A test piece having a width of 25 mm and a length of 100 mm was cut out from the sheet obtained by the production of the sheet (the wound sheet). A liquid curable silicone composition (“Shin-Etsu Silicone KE-2000” manufactured by Shin-Etsu Chemical Co., Ltd.) (mixed liquid A and liquid B) was applied to the test piece to a thickness of about 100 μm. Was allowed to stand in a hot air dryer at 120 ° C. for 30 minutes to obtain a laminated structure having a two-layer structure composed of a member containing a polyurethane block copolymer and a member containing silicone. With the above evaluation method, the adhesion between the member containing the polyurethane block copolymer and the silicone in the obtained laminated structure was evaluated. The results are shown in Table 1.
積層構造体の製造(2)
 上記シートの製造で得られたシート(巻き取ったシート)から幅25mm、長さ100mmの試験片を切り出した。一方、表面を鏡面仕上げした金型を使用して、アクリロニトリル・ブタジエン・スチレン共重合体(ABS樹脂;東レ株式会社製「トヨラック700」)を射出成形(シリンダー温度:200~210℃、金型温度:30℃)して、短冊状の成形体(幅25mm、長さ100mm、厚み1mm)を得た。この成形体と上記の切り出した試験片とを重ね合わせ、手動プレス装置(株式会社マルシチ製、M4Aタイプ)を用いてこれらを加圧処理し(温度:135℃、圧力:附帯されているゲージ圧計に基づいて1kg/cm2、時間:3分間)、ポリウレタン系ブロック共重合体を含む部材とABS樹脂から構成される部材とからなる2層構造の積層構造体を得た。上記の評価方法により、得られた積層構造体におけるポリウレタン系ブロック共重合体を含む部材と、ABS樹脂から構成される部材との間の接着強度を測定したところ、1,000g/cm以上であった。
Manufacture of laminated structure (2)
A test piece having a width of 25 mm and a length of 100 mm was cut out from the sheet obtained by the production of the sheet (the wound sheet). On the other hand, an acrylonitrile / butadiene / styrene copolymer (ABS resin; “Toyolac 700” manufactured by Toray Industries, Inc.) is injection molded (cylinder temperature: 200 to 210 ° C., mold temperature) using a mold having a mirror-finished surface. : 30 ° C.) to obtain a strip-shaped molded body (width 25 mm, length 100 mm, thickness 1 mm). This molded body and the above-mentioned cut-out test piece were superposed and pressure-treated using a manual press device (manufactured by Marushichi Co., Ltd., M4A type) (temperature: 135 ° C., pressure: attached gauge pressure gauge) 1 kg / cm 2 , time: 3 minutes), a laminated structure having a two-layer structure composed of a member containing a polyurethane block copolymer and a member made of ABS resin was obtained. When the adhesive strength between the member containing the polyurethane block copolymer in the obtained laminated structure and the member composed of ABS resin was measured by the above evaluation method, it was 1,000 g / cm or more. It was.
積層構造体の製造(3)
 上記した積層構造体の製造(2)と同様にしてポリウレタン系ブロック共重合体を含む部材とABS樹脂から構成される部材とからなる2層構造の積層構造体を製造し、このポリウレタン系ブロック共重合体を含む部材側に液状の硬化性シリコーン組成物(信越化学工業株式会社製「信越シリコーン KE-2000」)(A液とB液とを混合した液)を約100μmの厚さに塗布し、これらを120℃の熱風乾燥機中に30分間放置して、ABS樹脂から構成される部材/ポリウレタン系ブロック共重合体を含む部材/シリコーンを含む部材の3層構造の積層構造体を得た。上記の評価方法により、得られた積層構造体におけるポリウレタン系ブロック共重合体を含む部材とシリコーンを含む部材との間の接着強度を測定したところ、1,000g/cm以上であった。
Manufacture of laminated structure (3)
In the same manner as in the production of the laminated structure (2) described above, a laminated structure having a two-layer structure comprising a member containing a polyurethane block copolymer and a member composed of an ABS resin is produced. Apply a liquid curable silicone composition (“Shin-Etsu Silicone KE-2000” manufactured by Shin-Etsu Chemical Co., Ltd.) (mixed liquid A and liquid B) to a thickness of about 100 μm on the side containing the polymer. These were left in a 120 ° C. hot air dryer for 30 minutes to obtain a laminated structure of a three-layer structure of a member composed of ABS resin / a member containing a polyurethane block copolymer / a member containing silicone. . When the adhesive strength between the member containing the polyurethane block copolymer and the member containing silicone in the obtained laminated structure was measured by the above evaluation method, it was 1,000 g / cm or more.
積層構造体の製造(4)
 上記シートの製造で得られたシート(巻き取ったシート)から幅25mm、長さ100mmの試験片を切り出した。一方、表面を鏡面仕上げした金型を使用して、ポリプロピレン(株式会社プライムポリマー製「プライムポリプロJ106G」)を射出成形(シリンダー温度:200~210℃、金型温度:30℃)し、短冊状の成形体(幅25mm、長さ100mm、厚み1mm)を得た。この成形体と上記の切り出した試験片とを重ね合わせ、手動プレス装置(株式会社マルシチ製、M4Aタイプ)を用いてこれらを加圧処理し(温度:135℃、圧力:附帯されているゲージ圧計に基づいて1kg/cm2、時間:3分間)、ポリウレタン系ブロック共重合体を含む部材とポリプロピレンから構成される部材とからなる2層構造の積層構造体を得た。上記の評価方法により、得られた積層構造体におけるポリウレタン系ブロック共重合体を含む部材とポリプロピレンから構成される部材との間の接着強度を測定したところ、700g/cmであった。
Manufacture of laminated structure (4)
A test piece having a width of 25 mm and a length of 100 mm was cut out from the sheet obtained by the production of the sheet (the wound sheet). On the other hand, using a mold with a mirror-finished surface, polypropylene ("Prime Polypro J106G" manufactured by Prime Polymer Co., Ltd.) is injection-molded (cylinder temperature: 200-210 ° C, mold temperature: 30 ° C), and strip-shaped. A molded body (width 25 mm, length 100 mm, thickness 1 mm) was obtained. This molded body and the above-mentioned cut-out test piece were superposed and pressure-treated using a manual press device (manufactured by Marushichi Co., Ltd., M4A type) (temperature: 135 ° C., pressure: attached gauge pressure gauge) 1 kg / cm 2 , time: 3 minutes), a laminated structure having a two-layer structure composed of a member containing a polyurethane block copolymer and a member made of polypropylene was obtained. It was 700 g / cm when the adhesive strength between the member containing the polyurethane-type block copolymer in the obtained laminated structure and the member comprised from a polypropylene was measured by said evaluation method.
積層構造体の製造(5)
 上記した積層構造体の製造(4)と同様にしてポリウレタン系ブロック共重合体を含む部材とポリプロピレンから構成される部材とからなる2層構造の積層構造体を製造し、このポリウレタン系ブロック共重合体を含む部材側に液状の硬化性シリコーン組成物(信越化学工業株式会社製「信越シリコーン KE-2000」)(A液とB液とを混合した液)を約100μmの厚さに塗布し、これらを120℃の熱風乾燥機中に30分間放置して、ポリプロピレンから構成される部材/ポリウレタン系ブロック共重合体を含む部材/シリコーンを含む部材の3層構造の積層構造体を得た。上記の評価方法により、得られた積層構造体におけるポリウレタン系ブロック共重合体を含む部材とシリコーンを含む部材との間の接着強度を測定したところ、1,000g/cm以上であった。
Manufacture of laminated structure (5)
In the same manner as in the production of the laminated structure (4) described above, a laminated structure having a two-layer structure comprising a member containing a polyurethane block copolymer and a member made of polypropylene is produced. Applying a liquid curable silicone composition (“Shin-Etsu Silicone KE-2000” manufactured by Shin-Etsu Chemical Co., Ltd.) (mixed liquid A and liquid B) to a thickness of about 100 μm on the member side including the coalescence, These were allowed to stand in a hot air dryer at 120 ° C. for 30 minutes to obtain a laminated structure having a three-layer structure of a member made of polypropylene / a member containing a polyurethane block copolymer / a member containing silicone. When the adhesive strength between the member containing the polyurethane block copolymer and the member containing silicone in the obtained laminated structure was measured by the above evaluation method, it was 1,000 g / cm or more.
《比較例1》 積層構造体の製造
フィルムの製造
 製造例1で得られた熱可塑性ポリウレタン(C1)をT-ダイ型単軸押出成形機(25mmφ、シリンダー温度:195~205℃、ダイス温度:200℃)を用いて溶融混練した後、混練物を30℃の冷却ロール上に押し出し、冷却して、それを約2m/分の巻き取り速度で巻き取ることにより、熱可塑性ポリウレタン(C1)から構成されるフィルム(厚さ100μm)を製造した。
<< Comparative example 1 >> Manufacture of laminated structure
Film Production After the thermoplastic polyurethane (C1) obtained in Production Example 1 was melt-kneaded using a T-die type single screw extruder (25 mmφ, cylinder temperature: 195 to 205 ° C., die temperature: 200 ° C.) Then, the kneaded product is extruded onto a cooling roll at 30 ° C., cooled, and wound at a winding speed of about 2 m / min, whereby a film (thickness 100 μm) composed of thermoplastic polyurethane (C1) is obtained. Manufactured.
積層構造体の製造
 上記フィルムの製造で得られたフィルム(巻き取ったフィルム)から幅25mm、長さ100mmの試験片を切り出した。この試験片に、液状の硬化性シリコーン組成物(信越化学工業株式会社製「信越シリコーン KE-2000」)(A液とB液とを混合した液)を約100μmの厚さに塗布し、これらを120℃の熱風乾燥機中に30分間放置して、熱可塑性ポリウレタン(C1)から構成される部材とシリコーンを含む部材とからなる2層構造の積層構造体の製造を試みた。しかし両部材が接着した積層構造体は得られなかった(接着強度は0g/cmと評価した)。
Manufacture of Laminated Structure A test piece having a width of 25 mm and a length of 100 mm was cut out from the film (rolled film) obtained in the manufacture of the film. A liquid curable silicone composition (“Shin-Etsu Silicone KE-2000” manufactured by Shin-Etsu Chemical Co., Ltd.) (mixed liquid A and B) was applied to the test piece to a thickness of about 100 μm. Was allowed to stand in a hot air dryer at 120 ° C. for 30 minutes, and an attempt was made to produce a two-layer laminated structure composed of a member made of thermoplastic polyurethane (C1) and a member containing silicone. However, a laminated structure in which both members were bonded was not obtained (adhesive strength was evaluated as 0 g / cm).
《実施例3および4》 積層構造体の製造
熱可塑性重合体組成物(フィルム)の製造
 実施例1で得られたポリウレタン系ブロック共重合体を含む重合体組成物をマスターバッチとして用いて、これと製造例1で得られた熱可塑性ポリウレタン(C1)とを、下記の表1で示す割合でドライブレンドした。得られた混合物をT-ダイ型単軸押出成形機(25mmφ、シリンダー温度:205~215℃、ダイス温度:205℃)を用いて溶融混練した後、混練物を30℃の冷却ロール上に押し出し、冷却して、それを約2m/分の巻き取り速度で巻き取ることにより熱可塑性重合体組成物から構成されるフィルム(厚さ100μm)を製造した。
<< Examples 3 and 4 >> Production of laminated structure
Production of Thermoplastic Polymer Composition (Film) Using the polymer composition containing the polyurethane block copolymer obtained in Example 1 as a master batch, this and the thermoplastic polyurethane obtained in Production Example 1 ( C1) was dry blended in the proportions shown in Table 1 below. The obtained mixture was melt-kneaded using a T-die type single screw extruder (25 mmφ, cylinder temperature: 205 to 215 ° C., die temperature: 205 ° C.), and then the kneaded product was extruded onto a 30 ° C. cooling roll. The film (thickness 100 μm) composed of the thermoplastic polymer composition was produced by cooling and winding it at a winding speed of about 2 m / min.
積層構造体の製造(1)
 上記の熱可塑性重合体組成物(フィルム)の製造で得られたフィルム(巻き取ったフィルム)から幅25mm、長さ100mmの試験片を切り出した。この試験片に液状の硬化性シリコーン組成物(信越化学工業株式会社製「信越シリコーン KE-2000」)(A液とB液とを混合した液)を約100μmの厚さに塗布し、これらを120℃の熱風乾燥機中に30分間放置して、熱可塑性重合体組成物から構成される部材(ポリウレタン系ブロック共重合体を含む部材)とシリコーンを含む部材とからなる2層構造の積層構造体を得た。上記した方法により、得られた積層構造体における熱可塑性重合体組成物から構成される部材とシリコーンとの接着性を評価した。結果を表1に示した。
Manufacture of laminated structure (1)
A test piece having a width of 25 mm and a length of 100 mm was cut out from the film (rolled film) obtained in the production of the thermoplastic polymer composition (film). A liquid curable silicone composition (“Shin-Etsu Silicone KE-2000” manufactured by Shin-Etsu Chemical Co., Ltd.) (mixed liquid A and liquid B) was applied to the test piece to a thickness of about 100 μm. A laminated structure of a two-layer structure comprising a member composed of a thermoplastic polymer composition (a member including a polyurethane block copolymer) and a member including silicone, which is left in a hot air dryer at 120 ° C. for 30 minutes. Got the body. By the above-mentioned method, the adhesiveness between the member constituted of the thermoplastic polymer composition in the obtained laminated structure and silicone was evaluated. The results are shown in Table 1.
積層構造体の製造(2)
 上記の熱可塑性重合体組成物(フィルム)の製造で得られたフィルム(巻き取ったフィルム)から幅25mm、長さ100mmの試験片を切り出した。一方、表面を鏡面仕上げした金型を使用して、アクリロニトリル・ブタジエン・スチレン共重合体(ABS樹脂;東レ株式会社製「トヨラック700」)を射出成形(シリンダー温度:200~210℃、金型温度:30℃)し、短冊状の成形体(幅25mm、長さ100mm、厚み1mm)を得た。この成形体と、上記の切り出した試験片とを重ね合わせ、手動プレス装置(株式会社マルシチ製、M4Aタイプ)を用いてこれらを加圧処理し(温度:135℃、圧力:附帯されているゲージ圧計に基づいて1kg/cm2、時間:3分間)、熱可塑性重合体組成物から構成される部材(ポリウレタン系ブロック共重合体を含む部材)とABS樹脂から構成される部材とからなる2層構造の積層構造体を得た。上記の評価方法により、熱可塑性重合体組成物から構成される部材とABS樹脂から構成される部材との間の接着強度を測定したところ、1,000g/cm以上であった。
Manufacture of laminated structure (2)
A test piece having a width of 25 mm and a length of 100 mm was cut out from the film (rolled film) obtained in the production of the thermoplastic polymer composition (film). On the other hand, acrylonitrile / butadiene / styrene copolymer (ABS resin; “Toyolac 700” manufactured by Toray Industries, Inc.) is injection molded (cylinder temperature: 200 to 210 ° C., mold temperature) using a mold with a mirror-finished surface. : 30 ° C.) to obtain a strip-shaped molded body (width 25 mm, length 100 mm, thickness 1 mm). This molded body and the above-described cut specimen are superposed and pressure-treated using a manual press device (manufactured by Marushichi Co., Ltd., M4A type) (temperature: 135 ° C., pressure: attached gauge) 2 layers consisting of a member composed of a thermoplastic polymer composition (a member including a polyurethane block copolymer) and a member composed of an ABS resin based on a pressure gauge of 1 kg / cm 2 , time: 3 minutes) A laminated structure having a structure was obtained. When the adhesive strength between the member composed of the thermoplastic polymer composition and the member composed of the ABS resin was measured by the above evaluation method, it was 1,000 g / cm or more.
積層構造体の製造(3)
 上記した積層構造体の製造(2)と同様にして熱可塑性重合体組成物から構成される部材(ポリウレタン系ブロック共重合体を含む部材)とABS樹脂から構成される部材とからなる2層構造の積層構造体を製造し、その熱可塑性重合体組成物から構成される部材側に液状の硬化性シリコーン組成物(信越化学工業株式会社製「信越シリコーン KE-2000」)(A液とB液とを混合した液)を約100μmの厚さに塗布し、これらを120℃の熱風乾燥機中に30分間放置して、ABS樹脂から構成される部材/熱可塑性重合体組成物から構成される部材/シリコーンを含む部材の3層構造の積層構造体を得た。上記の評価方法と同様にして、熱可塑性重合体組成物から構成される部材とシリコーンを含む部材との間の接着強度を測定したところ、1,000g/cm以上であった。
Manufacture of laminated structure (3)
Two-layer structure comprising a member composed of a thermoplastic polymer composition (a member including a polyurethane block copolymer) and a member composed of an ABS resin in the same manner as in the production of the laminated structure (2) described above. A liquid curable silicone composition (“Shin-Etsu Silicone KE-2000” manufactured by Shin-Etsu Chemical Co., Ltd.) (liquid A and liquid B) is produced on the side of the member composed of the thermoplastic polymer composition. Are mixed to a thickness of about 100 μm and left in a hot air dryer at 120 ° C. for 30 minutes to form a member composed of ABS resin / thermoplastic polymer composition. A laminated structure having a three-layer structure of member / member containing silicone was obtained. In the same manner as in the above evaluation method, the adhesive strength between the member composed of the thermoplastic polymer composition and the member containing silicone was measured and found to be 1,000 g / cm or more.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 上記の結果から、本発明のポリウレタン系ブロック共重合体を含む熱可塑性重合体組成物は、各種材料(特にシリコーン)との接着性に優れていることが分かる。従って、本発明の熱可塑性重合体組成物を使用すれば、事前の表面活性化処理(プライマー処理など)をしなくても、前記熱可塑性重合体組成物を含む部材とシリコーンあるいはその他の材料を含む部材とが十分に接着した複合成形体を容易に製造することができる。さらに実施例3および4の結果から、本発明のポリウレタン系ブロック共重合体を含むマスターバッチを熱可塑性ポリウレタン(熱可塑性重合体)に配合して得られた熱可塑性重合体組成物も、各種材料(特にシリコーン)との接着性に優れていることが分かる。従って本発明のマスターバッチを使用すれば、事前の表面活性化処理(プライマー処理など)をしなくても、前記熱可塑性重合体組成物を含む部材とシリコーンあるいはその他の材料を含む部材とが十分に接着した複合成形体を容易に製造することができる。 From the above results, it can be seen that the thermoplastic polymer composition containing the polyurethane-based block copolymer of the present invention is excellent in adhesiveness to various materials (particularly silicone). Therefore, if the thermoplastic polymer composition of the present invention is used, a member containing the thermoplastic polymer composition and silicone or other material can be used without prior surface activation treatment (primer treatment, etc.). It is possible to easily manufacture a composite molded body in which the containing member is sufficiently adhered. Furthermore, from the results of Examples 3 and 4, thermoplastic polymer compositions obtained by blending a masterbatch containing the polyurethane block copolymer of the present invention with thermoplastic polyurethane (thermoplastic polymer) are also various materials. It turns out that it is excellent in adhesiveness with (especially silicone). Therefore, if the masterbatch of the present invention is used, a member containing the thermoplastic polymer composition and a member containing silicone or other materials are sufficient even without a prior surface activation treatment (primer treatment or the like). It is possible to easily produce a composite molded body adhered to the substrate.
 本発明のポリウレタン系ブロック共重合体、ポリウレタン系ブロック共重合体組成物、および熱可塑性重合体組成物は各種材料(特にシリコーン)との接着性に優れていて、事前の表面活性化処理(プライマー処理など)をしなくても、前記の各種材料と十分に接着させることができる。そのためこれらを、例えば成形体または複合成形体の形態で、各種用途に好適に使用することができる。 The polyurethane block copolymer, polyurethane block copolymer composition, and thermoplastic polymer composition of the present invention are excellent in adhesiveness to various materials (particularly silicone) and are subjected to prior surface activation treatment (primer). Even if it does not carry out a process etc., it can fully be made to adhere to the above-mentioned various materials. Therefore, these can be suitably used for various applications, for example, in the form of a molded body or a composite molded body.
 本発明は、日本に出願された特願2009-111318号を基礎としており、その内容は本明細書に全て包含される。 The present invention is based on Japanese Patent Application No. 2009-111318 filed in Japan, the contents of which are all included in this specification.

Claims (22)

  1.  付加重合系ブロック(α)と、ポリウレタンブロック(β)とを有するポリウレタン系ブロック共重合体であって、
     前記付加重合系ブロック(α)は、芳香族ビニル化合物単位を含む重合体ブロック(A)および共役ジエン単位を含む重合体ブロック(B)を有するブロック共重合体;並びにその水素添加物;から選ばれる付加重合系ブロック共重合体から誘導されるものであり、
     前記ポリウレタンブロック(β)は、下記の一般式(I);
    Figure JPOXMLDOC01-appb-C000001

    (式中、R1およびR2はそれぞれ独立して水素原子または炭素数1~6のアルキル基を示す。)
    で表される構造単位(I)を有するものである、ポリウレタン系ブロック共重合体。
    A polyurethane block copolymer having an addition polymerization block (α) and a polyurethane block (β),
    The addition polymerization block (α) is selected from a block copolymer having a polymer block (A) containing an aromatic vinyl compound unit and a polymer block (B) containing a conjugated diene unit; and a hydrogenated product thereof. Is derived from an addition polymerization block copolymer,
    The polyurethane block (β) has the following general formula (I):
    Figure JPOXMLDOC01-appb-C000001

    (In the formula, R 1 and R 2 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.)
    A polyurethane-based block copolymer having a structural unit (I) represented by:
  2.  前記ポリウレタンブロック(β)が、分子中に前記構造単位(I)を有するポリマーポリオール(ap-1)を含有するポリマーポリオール(ap)と、有機ポリイソシアネート(b)との反応により形成されたブロックである、請求項1に記載のポリウレタン系ブロック共重合体。 The polyurethane block (beta) is a polymer polyol containing a polymer polyol having the structural unit (I) in a molecule (a p -1) (a p ), is formed by the reaction of an organic polyisocyanate (b) The polyurethane block copolymer according to claim 1, which is a block.
  3.  前記ポリマーポリオール(ap-1)が、ポリオレフィンポリオールである請求項2に記載のポリウレタン系ブロック共重合体。 The polyurethane block copolymer according to claim 2, wherein the polymer polyol (a p -1) is a polyolefin polyol.
  4.  前記ポリオレフィンポリオールが、ポリブタジエンポリオール、ポリイソプレンポリオールおよびブタジエン/イソプレンコポリマーポリオールからなる群から選ばれる少なくとも1種である請求項3に記載のポリウレタン系ブロック共重合体。 4. The polyurethane block copolymer according to claim 3, wherein the polyolefin polyol is at least one selected from the group consisting of polybutadiene polyol, polyisoprene polyol and butadiene / isoprene copolymer polyol.
  5.  前記構造単位(I)の含有率が、ポリウレタン系ブロック共重合体の全質量中、0.2~40質量%である、請求項1~4のいずれか1項に記載のポリウレタン系ブロック共重合体。 The polyurethane block copolymer according to any one of Claims 1 to 4, wherein the content of the structural unit (I) is 0.2 to 40% by mass in the total mass of the polyurethane block copolymer. Coalescence.
  6.  請求項1~5のいずれか1項に記載のポリウレタン系ブロック共重合体を製造するための製造方法であって、
    (i)官能基含有付加重合系ブロック共重合体;
    (ii)分子中に前記構造単位(I)を有するポリマーポリオール(ap-1)を含有するポリマーポリオール(ap);
    (iii)有機ポリイソシアネート(b);および所望により
    (iv)鎖伸長剤(c)
    を反応させる工程を含み、
     前記官能基含有付加重合系ブロック共重合体は、ポリマーポリオール(ap)、有機ポリイソシアネート(b)および鎖伸長剤(c)からなる群から選ばれる少なくとも1つの成分と反応し得る官能基を有し、且つ前記重合体ブロック(A)および前記重合体ブロック(B)を有するブロック共重合体;並びにその水素添加物;から選ばれるものである
    製造方法。
    A production method for producing the polyurethane-based block copolymer according to any one of claims 1 to 5,
    (I) a functional group-containing addition polymerization block copolymer;
    (Ii) a polymer polyol containing a polymer polyol having the structural unit (I) in a molecule (a p -1) (a p );
    (Iii) an organic polyisocyanate (b); and optionally (iv) a chain extender (c)
    A step of reacting
    The functional group-containing addition polymerization block copolymer has a functional group capable of reacting with at least one component selected from the group consisting of a polymer polyol (a p ), an organic polyisocyanate (b), and a chain extender (c). And a block copolymer having the polymer block (A) and the polymer block (B); and a hydrogenated product thereof.
  7.  請求項1~5のいずれか1項に記載のポリウレタン系ブロック共重合体を製造するための製造方法であって、
    (i)分子中に前記構造単位(I)を有するポリマーポリオール(ap-1)を含有するポリマーポリオール(ap);
    (ii)有機ポリイソシアネート(b);および所望により
    (iii)鎖伸長剤(c)
    の反応により形成されたポリウレタンと、
    (iv)官能基含有付加重合系ブロック共重合体と
    を反応させる工程を含み、
     前記官能基含有付加重合系ブロック共重合体は、ポリマーポリオール(ap)、有機ポリイソシアネート(b)および鎖伸長剤(c)からなる群から選ばれる少なくとも1つの成分と反応し得る官能基を有し、且つ前記重合体ブロック(A)および前記重合体ブロック(B)を有するブロック共重合体;並びにその水素添加物;から選ばれるものである
    製造方法。
    A production method for producing the polyurethane-based block copolymer according to any one of claims 1 to 5,
    (I) a polymer polyol containing a polymer polyol having the structural unit (I) in a molecule (a p -1) (a p );
    (Ii) an organic polyisocyanate (b); and optionally (iii) a chain extender (c)
    Polyurethane formed by the reaction of
    (Iv) comprising a step of reacting with a functional group-containing addition polymerization block copolymer,
    The functional group-containing addition polymerization block copolymer has a functional group capable of reacting with at least one component selected from the group consisting of a polymer polyol (a p ), an organic polyisocyanate (b), and a chain extender (c). And a block copolymer having the polymer block (A) and the polymer block (B); and a hydrogenated product thereof.
  8.  請求項1~5のいずれか1項に記載のポリウレタン系ブロック共重合体、並びに有機亜鉛化合物、有機ビスマス化合物、有機チタン化合物および有機ジルコニウム化合物からなる群から選ばれる少なくとも1種の金属化合物を含有し、前記金属化合物の含有率が前記ポリウレタン系ブロック共重合体の質量に基づいて0.1~2,000質量ppmである、ポリウレタン系ブロック共重合体組成物。 A polyurethane block copolymer according to any one of claims 1 to 5, and at least one metal compound selected from the group consisting of an organic zinc compound, an organic bismuth compound, an organic titanium compound, and an organic zirconium compound. And a polyurethane block copolymer composition having a content of the metal compound of 0.1 to 2,000 ppm by mass based on the mass of the polyurethane block copolymer.
  9.  請求項1~5のいずれか1項に記載のポリウレタン系ブロック共重合体および前記ポリウレタン系ブロック共重合体以外の熱可塑性重合体を含有する熱可塑性重合体組成物。 A thermoplastic polymer composition comprising the polyurethane block copolymer according to any one of claims 1 to 5 and a thermoplastic polymer other than the polyurethane block copolymer.
  10.  前記ポリウレタンブロック(β)が有する前記構造単位(I)の含有率が、熱可塑性重合体組成物の全質量中、0.1~20質量%である、請求項9に記載の熱可塑性重合体組成物。 The thermoplastic polymer according to claim 9, wherein the content of the structural unit (I) of the polyurethane block (β) is 0.1 to 20% by mass in the total mass of the thermoplastic polymer composition. Composition.
  11.  有機亜鉛化合物、有機ビスマス化合物、有機チタン化合物および有機ジルコニウム化合物からなる群から選ばれる少なくとも1種の金属化合物を、前記ポリウレタン系ブロック共重合体の質量に基づいて0.1~2,000質量ppmの割合でさらに含有する、請求項9または10に記載の熱可塑性重合体組成物。 At least one metal compound selected from the group consisting of an organic zinc compound, an organic bismuth compound, an organic titanium compound and an organic zirconium compound is added in an amount of 0.1 to 2,000 mass ppm based on the mass of the polyurethane block copolymer. The thermoplastic polymer composition according to claim 9 or 10, further comprising:
  12.  前記熱可塑性重合体が、ポリアミド;ポリエステル;ポリ塩化ビニリデン;ポリ塩化ビニル;ポリカーボネート;アクリル系樹脂;ポリオキシメチレン樹脂;エチレン-酢酸ビニル共重合体のケン化物;芳香族ビニル化合物とシアン化ビニル化合物、共役ジエンおよびオレフィンから選ばれる少なくとも1種との共重合体;ポリウレタン;スチレン系重合体;並びにポリオレフィンからなる群から選ばれる少なくとも1種である、請求項9~11のいずれか1項に記載の熱可塑性重合体組成物。 The thermoplastic polymer is polyamide; polyester; polyvinylidene chloride; polyvinyl chloride; polycarbonate; acrylic resin; polyoxymethylene resin; saponified ethylene-vinyl acetate copolymer; aromatic vinyl compound and vinyl cyanide compound. 12. A copolymer with at least one selected from conjugated dienes and olefins; polyurethane; a styrenic polymer; and at least one selected from the group consisting of polyolefins. Thermoplastic polymer composition.
  13.  請求項9~12のいずれか1項に記載の熱可塑性重合体組成物を製造するための製造方法であって、前記ポリウレタン系ブロック共重合体および前記熱可塑性重合体を溶融混練する工程を含む、製造方法。 A production method for producing the thermoplastic polymer composition according to any one of claims 9 to 12, comprising a step of melt-kneading the polyurethane block copolymer and the thermoplastic polymer. ,Production method.
  14.  請求項8に記載のポリウレタン系ブロック共重合体組成物から構成される成形体。 A molded article comprising the polyurethane block copolymer composition according to claim 8.
  15.  請求項9~12のいずれか1項に記載の熱可塑性重合体組成物から構成される成形体。 A molded body comprising the thermoplastic polymer composition according to any one of claims 9 to 12.
  16.  請求項1~5のいずれか1項に記載のポリウレタン系ブロック共重合体を含む部材(X)と、前記部材(X)以外の他の部材(Y)とを有し、前記部材(X)と前記部材(Y)とが接触している複合成形体。 A member (X) comprising the polyurethane block copolymer according to any one of claims 1 to 5, and a member (Y) other than the member (X), wherein the member (X) And the member (Y) are in contact with each other.
  17.  前記部材(X)が、請求項8に記載のポリウレタン系ブロック共重合体組成物から構成される部材である、請求項16に記載の複合成形体。 The composite molded body according to claim 16, wherein the member (X) is a member composed of the polyurethane-based block copolymer composition according to claim 8.
  18.  前記部材(X)が、請求項9~12のいずれか1項に記載の熱可塑性重合体組成物から構成される部材である、請求項16に記載の複合成形体。 The composite molded body according to claim 16, wherein the member (X) is a member composed of the thermoplastic polymer composition according to any one of claims 9 to 12.
  19.  前記部材(Y)がシリコーンを含む部材である、請求項18に記載の複合成形体。 The composite molded body according to claim 18, wherein the member (Y) is a member containing silicone.
  20.  前記部材(Y)が、硬化性シリコーン組成物を硬化させて形成したものである請求項19に記載の複合成形体。 The composite molded body according to claim 19, wherein the member (Y) is formed by curing a curable silicone composition.
  21.  前記硬化性シリコーン組成物が、珪素原子に結合した水素原子を有するオルガノハイドロジェンポリシロキサンおよびヒドロシリル化触媒を含有する請求項20に記載の複合成形体。 21. The composite molded article according to claim 20, wherein the curable silicone composition contains an organohydrogenpolysiloxane having a hydrogen atom bonded to a silicon atom and a hydrosilylation catalyst.
  22.  請求項20または21に記載の複合成形体を製造するための製造方法であって、前記部材(X)上で硬化性シリコーン組成物を硬化させる工程を含む、製造方法。 A manufacturing method for manufacturing the composite molded body according to claim 20 or 21, comprising a step of curing a curable silicone composition on the member (X).
PCT/JP2010/057610 2009-04-30 2010-04-28 Polyurethane block copolymer WO2010126098A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011511445A JPWO2010126098A1 (en) 2009-04-30 2010-04-28 Polyurethane block copolymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-111318 2009-04-30
JP2009111318 2009-04-30

Publications (1)

Publication Number Publication Date
WO2010126098A1 true WO2010126098A1 (en) 2010-11-04

Family

ID=43032242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057610 WO2010126098A1 (en) 2009-04-30 2010-04-28 Polyurethane block copolymer

Country Status (2)

Country Link
JP (1) JPWO2010126098A1 (en)
WO (1) WO2010126098A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020054348A1 (en) * 2018-09-10 2020-03-19 三洋化成工業株式会社 Polyurethane resin composition
JP2022507949A (en) * 2018-12-29 2022-01-18 シャンドン ブランデン メディカル デバイス カンパニー リミテッド Medical grade silicone rubber with high mechanical properties and its preparation method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5285297A (en) * 1976-01-02 1977-07-15 Atlantic Richfield Co Process for producing polyurethane elastomer
JPS57147512A (en) * 1981-03-09 1982-09-11 Hisao Motomura Water-swelling composition
JPS5876414A (en) * 1981-10-30 1983-05-09 Okura Ind Co Ltd Anaerobically curable composition and its manufacture
JPS6136315A (en) * 1984-07-30 1986-02-21 Nisshinbo Ind Inc Vibration-damping material
JPH0413793A (en) * 1990-05-02 1992-01-17 Sumitomo Rubber Ind Ltd Cold insulator
WO2002057332A1 (en) * 2001-01-22 2002-07-25 Toyo Ink Manufacturing Co., Ltd. Resin composition, sheet obtained therefrom, process for producing sheet, and formed object

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5285297A (en) * 1976-01-02 1977-07-15 Atlantic Richfield Co Process for producing polyurethane elastomer
JPS57147512A (en) * 1981-03-09 1982-09-11 Hisao Motomura Water-swelling composition
JPS5876414A (en) * 1981-10-30 1983-05-09 Okura Ind Co Ltd Anaerobically curable composition and its manufacture
JPS6136315A (en) * 1984-07-30 1986-02-21 Nisshinbo Ind Inc Vibration-damping material
JPH0413793A (en) * 1990-05-02 1992-01-17 Sumitomo Rubber Ind Ltd Cold insulator
WO2002057332A1 (en) * 2001-01-22 2002-07-25 Toyo Ink Manufacturing Co., Ltd. Resin composition, sheet obtained therefrom, process for producing sheet, and formed object

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020054348A1 (en) * 2018-09-10 2020-03-19 三洋化成工業株式会社 Polyurethane resin composition
CN112654676A (en) * 2018-09-10 2021-04-13 三洋化成工业株式会社 Polyurethane resin composition
CN112654676B (en) * 2018-09-10 2022-12-06 三洋化成工业株式会社 Polyurethane resin composition
JP2022507949A (en) * 2018-12-29 2022-01-18 シャンドン ブランデン メディカル デバイス カンパニー リミテッド Medical grade silicone rubber with high mechanical properties and its preparation method

Also Published As

Publication number Publication date
JPWO2010126098A1 (en) 2012-11-01

Similar Documents

Publication Publication Date Title
US7138175B2 (en) Thermoplastic polymer composition
JP5405566B2 (en) Polyurethane and production method thereof, master batch, ink binder, ink composition, thermoplastic polymer composition for molding, molded product, composite molded product, and production method thereof
JPWO2009057497A1 (en) Polyurethane composition
JP2010260914A (en) Thermoplastic polymer composition
JP5165167B2 (en) Thermoplastic polyurethane composition
JP2003160727A (en) Thermoplastic polymer composition
US7041735B2 (en) Vinyl chloride polymer composition
KR100855892B1 (en) Thermoplastic polymer composition
WO2010126098A1 (en) Polyurethane block copolymer
JP3497058B2 (en) Thermoplastic polymer composition
JP3816372B2 (en) Laminated body
JP5536497B2 (en) Method for producing thermoplastic resin composition and composite molded body including member comprising thermoplastic resin composition
JP3851239B2 (en) Vinyl chloride polymer composition
JP4522313B2 (en) Laminate for synthetic leather
JP3923385B2 (en) Thermoplastic polymer composition
JP2002363247A (en) Thermoplastic polymer composition
WO2006077772A1 (en) Thermoplastic polymer composition
WO2010113908A1 (en) Composite molded body
JP2004067721A (en) Thermoplastic polymer composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10769796

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011511445

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10769796

Country of ref document: EP

Kind code of ref document: A1