WO2010125908A1 - Eye examination device - Google Patents

Eye examination device Download PDF

Info

Publication number
WO2010125908A1
WO2010125908A1 PCT/JP2010/056571 JP2010056571W WO2010125908A1 WO 2010125908 A1 WO2010125908 A1 WO 2010125908A1 JP 2010056571 W JP2010056571 W JP 2010056571W WO 2010125908 A1 WO2010125908 A1 WO 2010125908A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
eye
visual
unit
inspection
Prior art date
Application number
PCT/JP2010/056571
Other languages
French (fr)
Japanese (ja)
Inventor
智弘 櫻田
久則 秋山
Original Assignee
株式会社トプコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トプコン filed Critical 株式会社トプコン
Publication of WO2010125908A1 publication Critical patent/WO2010125908A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/02Subjective types, i.e. testing apparatus requiring the active assistance of the patient
    • A61B3/08Subjective types, i.e. testing apparatus requiring the active assistance of the patient for testing binocular or stereoscopic vision, e.g. strabismus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/02Subjective types, i.e. testing apparatus requiring the active assistance of the patient
    • A61B3/028Subjective types, i.e. testing apparatus requiring the active assistance of the patient for testing visual acuity; for determination of refraction, e.g. phoropters
    • A61B3/032Devices for presenting test symbols or characters, e.g. test chart projectors

Definitions

  • the present invention relates to an optometry apparatus in which a target display device for displaying a target on the left and right eyes of a subject is incorporated in an inspection optical system in the left inspection unit and the right inspection unit.
  • a conventional optometry apparatus includes an optical apparatus main body provided with a refractive correction optical system and the like, and a target display apparatus that presents (displays) a target to the eye to be examined via the optical apparatus main body.
  • Subjective optometry system is known (see, for example, Patent Document 1).
  • a vertically extending support column is attached to an optometry table so that it can be moved up and down and swiveled around a vertical axis, and an arm extending in the horizontal direction is held by the support column, and the optical device main body is supported by this arm.
  • the optical device main body includes a left inspection unit having a visual recognition window (optometry window) and a right inspection unit having a visual recognition window. In each inspection unit, refractive correction optical components such as a correction lens are incorporated.
  • an optotype display device is arranged in front of the examination unit, and the optotype is displayed on the left and right eyes (left and right examination eyes) of the subject through the viewing windows of the left and right examination units.
  • the examiner asks the subject how to see the target and makes the examiner respond to the appearance, so that the refraction examination of the eye to be examined is performed. .
  • the correction lens is arranged at a position separated by a predetermined distance d (mm) from the corneal apex of the eye to be examined as a design of the refractive correction optical system including the correction lens.
  • the correction lens is arranged at a position conjugate with the pupil, so that the same effect as in the case where the lens is arranged on the pupil, like a contact lens, can be obtained. Is possible.
  • the visual recognition size (visual recognition state) of the visual target does not change depending on the refractive power, so the above-described problem does not occur.
  • the difference in the visual size of the image that can be seen with the left and right eyes may be recognized for the first time when the glasses are actually created at the measured frequency.
  • the above-described subjective optometry apparatus has a problem that the binocular vision function cannot be correctly confirmed in the case of a subject whose contrast sensitivity (viewing state) between the left and right eyes is different for some reason, such as cataract.
  • vergence / divergence test inspection of eyeball rotation
  • misalignment test displaying different images on the left and right eyes and superimposing each image at the center position
  • an object of the present invention is to provide an optometry apparatus capable of individually correcting a visual target so that a visual check state by an eye to be examined can be correctly inspected.
  • the present invention includes a left inspection unit that incorporates a left inspection optical system that inspects the subject's left eye and a right inspection optical system that inspects the subject's right eye.
  • a built-in right examination unit, a left image display device for displaying a left visual target on the left eye to be examined via the left examination optical system, and a right visual target to the right eye to be examined via the right examination optical system The left image so that the visual inspection state of the right image displayed by the left eye and the right eye visually recognized by the right eye is the optimum inspection condition.
  • the optometrist device is provided with an optotype display state correction unit that individually corrects the left optotype displayed on the display device and the right optotype displayed on the right image display device.
  • FIG. 9 is a block diagram of a control system showing a modification in which the target selection unit and the target display state correction unit shown in FIG. 8 are provided in an arithmetic control circuit. It is explanatory drawing which shows the connection state of the lens meter and monitor apparatus which were arrange
  • FIG. 9B is an explanatory diagram showing a state in which a plurality of optometry apparatuses and monitor apparatuses in FIG. 9A are installed and a lens meter is connected to the monitor apparatus via a LAN.
  • FIG. 9B is an external view of the lens meter shown in FIGS. 9A to 9C. It is explanatory drawing of the left target for a size confirmation each displayed on the liquid crystal display of a left test
  • It is chart explanatory drawing which shows the relationship between the optotype shown to the right eye of the cross chart in an oblique test, and a fusion frame. It is explanatory drawing when it is visible to a subject in the state which the target shown in FIG. 21A and FIG. 21B fused. It is explanatory drawing which shows the left target shown in FIG. It is explanatory drawing which shows the right optotype shown in FIG. It is explanatory drawing which shows a visual target visual recognition state when making a subject visually recognize the left visual target and the right visual target shown to FIG. 23A and FIG. 23B, and another example. It is explanatory drawing which shows the Landol ring as a left target and a right target presented to the left eye and the right eye. It is explanatory drawing which shows the example of a visual target visual recognition state when making a subject visually recognize the left visual target and the right visual target of FIG. 24A simultaneously.
  • FIG. 1 is an optometry table whose height can be adjusted up and down
  • 2 is an optometry apparatus disposed on the optometry table
  • 3 is an optometry chair used together with the optometry table
  • 4 is an examination seated on the optometry chair 3. It is a person.
  • the optometry apparatus 2 includes a pedestal portion 5a, an inspection unit driving device 5b disposed on the pedestal portion 5a, and a left eye disposed on the left and right sides of the inspection unit driving device 5b.
  • Inspection unit (left inspection unit) 5L and right-eye inspection unit (right inspection unit) 5R In the apparatus main body of the left eye inspection unit 5L and the right eye inspection unit 5R, a left eye measurement optical system (left eye inspection optical system) and a right eye measurement optical system (right eye inspection optical system), which will be described later, are provided. System) is built in each.
  • the left-eye inspection unit 5L and the right-eye inspection unit 5R are simply abbreviated as the inspection unit 5L and the inspection unit 5R as necessary.
  • the measurement optical system for the left eye (the inspection optical system for the left eye) and the measurement optical system for the right eye (the inspection optical system for the right eye) are abbreviated as the inspection optical system and used for the description.
  • the components used in the left-eye inspection unit 5L and the right-eye inspection unit 5R will be described using terms that do not distinguish between the left-eye and right-eye as necessary.
  • the optometry apparatus 2 shown in FIG. 2 extends in the vertical direction, supports 5p and 5q supporting the inspection units 5L and 5R on the inspection unit driving device 5b, and the inspection position of the face of the subject 4 with respect to the inspection units 5L and 5R. And a face receiving device 6 to be supported.
  • the face receiving device 6 is provided with a pair of struts 6a and 6b and a chin rest 6d.
  • An arc-shaped forehead pad 6c is provided on the pair of columns 6a and 6b.
  • the chin rest 6d can be adjusted up and down by a knob 6e.
  • the forehead pad 6c can also be adjusted in the front-rear direction.
  • a left support base BL and a right support base BR as shown in FIG.
  • the left support base BL and the right support base BR are provided so as to be independently movable in a three-dimensional direction (front and rear, left and right, up and down) by an XYZ drive mechanism (not shown).
  • the left support base BL and the right support base BR are respectively attached (supported and held) to the vertical support columns 5p and 5q that extend in the vertical direction around the vertical axes (axis lines) UoL and UoR in FIG. 2A. )ing.
  • a swing driving mechanism for rotating the pillars 5p and 5q in a horizontal direction independently from each other with respect to the left and right support bases (not shown). (Not shown) is built-in.
  • a three-dimensional drive device (three-dimensional drive unit) including a drive motor such as a pulse drive motor, and a feed screw that is rotationally driven by the three-dimensional drive device are used.
  • a known configuration can be adopted for the XYZ drive mechanism.
  • the turning drive mechanism includes a combination of a turning drive unit including a turning drive motor (turning drive device) such as a pulse motor (turning drive motor) and a gear operated by the turning drive unit. Is used. A known configuration can also be adopted for this turning drive mechanism.
  • a turning drive motor turning drive device
  • a pulse motor turning drive motor
  • the inspection units 5L and 5R can be independently driven in a three-dimensional direction, and can be turned in the horizontal direction around the eyeball rotation axis of the left and right eye to be examined.
  • the inspection units 5L and 5R have the functions of objective eye refractive power measurement and subjective eye refractive power measurement simultaneously for both eyes.
  • the subject response input apparatus 6LR is provided in the base part 5a.
  • the subject response input device 6LR includes a joystick lever 6h and a button 6g provided on the joystick lever 6h.
  • the above-described inspection optical system of the inspection unit 5L includes an anterior ocular segment imaging optical system 30L shown in FIGS. 3 to 5 and an XY alignment optical system used for forming a bright spot image for alignment shown in FIGS. 31L, the fixation optical system 32L and the refractive power measurement optical system 33L shown in FIG.
  • the inspection optical system of the inspection unit 5R includes an anterior ocular segment imaging optical system 30R shown in FIGS. 3 and 6, an XY alignment optical system 31R used for forming a bright spot image for alignment, and a fixation optical system 32R shown in FIG. And a refractive power measurement optical system 33R.
  • the inspection optical system of the inspection unit 5L and the inspection optical system of the inspection unit 5R are symmetric and have the same configuration. First, the inspection optical system of this inspection unit 5L will be described.
  • the anterior ocular segment imaging optical system 30L of the inspection unit 5L includes the anterior ocular segment illumination optical system 34 and the imaging optical system 35 shown in FIG.
  • the anterior segment illumination optical system 34 includes an illumination light source 36 for anterior segment illumination, a diaphragm 36a, and a projection lens 37 that projects light from the illumination light source 36 onto the anterior segment of the eye E to be examined.
  • the imaging optical system 35 includes a prism P on which reflected light from the anterior segment of the eye E is incident, an objective lens 38, a dichroic mirror 39, an aperture 40, a dichroic mirror 41, relay lenses 42 and 43, a dichroic mirror 44, and a CCD lens. (Imaging lens) 45 and CCD (imaging part) 46 are provided.
  • the XY alignment optical system 31L includes an alignment illumination optical system 47 and a photographing optical system 35 as an alignment light receiving optical system.
  • the alignment illumination optical system 47 includes an alignment illumination light source 48, an aperture 49 as an alignment target, a relay lens 50, a dichroic mirror 41, an aperture 40, a dichroic mirror 39, an objective lens 38, and a prism. P.
  • the fixation optical system 32 ⁇ / b> L is a target such as a fixation target for fixing the eye to be inspected or a chart for subjective optometry (including a cross oblique chart for oblique examination).
  • the moving lens 57 can be moved in the optical axis direction by the pulse motor PMa according to the refractive power of the eye to be examined. Thereby, it is possible to cause the eye to be inspected to fixate.
  • the fixation optical system 32L is provided with a fusion target presenting optical system 32L 'shown in FIG.
  • the fusion target presenting optical system 32L ′ includes an LED 53A as an illumination light source, a collimator lens 53B, a fusion frame chart 53D, and a total reflection mirror 53E.
  • the target display position adjustment operation of the present invention can be executed using the inspection optical system of FIG. 5, the fusion target presentation optical system 32L ′ and the liquid crystal display 53 of FIG. 5 are omitted.
  • the 3LCD 300 can be provided as an image display device.
  • the 3LCD 300 is a combination of three LCDs (liquid crystal displays) so that images such as targets can be displayed in color on the three LCDs (liquid crystal displays).
  • the rotary prisms 55A and 55B described above can be omitted as shown in FIG. 7A.
  • FIG. 7A a part of the optical components of FIGS. 5 and 7 is schematically shown. In the case of such a configuration of FIG. 7A, since a large number of optical components can be omitted, the whole can be reduced in size. However, in the case of using the inspection optical system of FIGS. The position adjustment operation will be described.
  • the refractive power measurement optical system 33L includes the measurement light beam projection optical system 62 and the measurement light beam reception optical system 63 shown in FIG.
  • the measurement light beam projection optical system 62 includes a measurement light source 64 such as an infrared LED, a collimator lens 65, a conical prism 66, a ring target 67, a relay lens 68, a ring-shaped stop 69, and a hole in which a through hole 70a is formed in the center.
  • a perforated prism 70, dichroic mirrors 61 and 39, an objective lens 38, and a prism P are included.
  • the measurement light beam receiving optical system 63 includes a prism P that receives reflected light from the fundus oculi Ef of the eye E, an objective lens 38, dichroic mirrors 39 and 61, a through hole 70a of a perforated prism 70, a reflection mirror 71, and a relay.
  • a lens 72, a moving lens 73, a reflection mirror 74, a dichroic mirror 44, a CCD lens 45, and a CCD 46 are included.
  • the liquid crystal display 53 used in the inspection optical system of the right-eye inspection unit 5R is a right-eye liquid crystal display (right image display device), and a fixation target or a chart for subjective optometry (oblique position).
  • a visual target (right visual target) such as a cross oblique chart for inspection) is displayed.
  • XYZ drive mechanism As described above, the inspection units 5L and 5R are independently driven in the three-dimensional direction by the left and right XYZ drive mechanisms.
  • the left and right XYZ drive mechanisms include the left three-dimensional drive device and the right three-dimensional drive device shown in FIG.
  • the left three-dimensional drive device includes a left unit drive device Ld and a sub (auxiliary) arithmetic control circuit 62 '(L) for controlling the operation of the left unit drive device Ld.
  • the right three-dimensional drive device also includes a right unit drive device Rd and a sub (auxiliary) arithmetic control circuit 62 '(R) that controls the operation of the right unit drive device Rd.
  • the left unit drive device Ld includes a drive device (X drive device) 20 that drives a support base (not shown) in the left-right direction (X direction), and a support base (not shown) in the vertical direction (Y direction).
  • a driving device (Y driving device) 24 for driving and a driving device (Z driving device) 26 for driving a support base (not shown) in the front-rear direction (Z direction) are provided.
  • Each of these drive devices 20, 24, and 26 includes a drive motor such as a pulse drive motor and a feed screw that is rotationally driven by the drive motor.
  • the inspection units 5L and 5R are swiveled around the vertical axes of the columns 5p and 5q in FIG. 2 by the left and right swivel drive mechanisms (horizontal swivel drive devices) 28 and 28 in FIG. It has become.
  • Each of the turning drive mechanisms (horizontal turning drive devices) 28, 28 has a combination of a turning drive means such as a pulse motor (turning drive motor) and a gear operated by the turning drive means as described above. It is used.
  • a turning drive means such as a pulse motor (turning drive motor)
  • a gear operated by the turning drive means as described above. It is used.
  • the optometry apparatus 2 of FIG. 2 including the inspection units 5L and 5R includes a control circuit which is the control system shown in FIG. This control circuit controls the operation of the left and right sub (auxiliary) arithmetic control circuits 62 '(L) and 62' (R) and the sub arithmetic control circuits 62 '(L) and 62' (R).
  • a main arithmetic control circuit 63 ' is provided.
  • the sub (auxiliary) arithmetic control circuits 62 ′ (L) and 62 ′ (R) shown in FIG. 8 include an anterior illumination light source 36, a liquid crystal display 53, a measurement light source 64, and a pulse motor. PMa and the like are controlled to operate. Further, detection signals from the CCD 46 are input to the sub (auxiliary) arithmetic control circuits 62 ′ (L) and 62 ′ (R).
  • the inspection units 5L and 5R respectively have left and right inspection optical systems, and when the inspection units 5L and 5R are set at the initial positions, the optical axes of the left and right inspection optical systems are set.
  • the optical axes on the front side (face receiving device 6 side) of the prisms P and P are set to be parallel to each other.
  • This initial position is determined when the left and right eyes of the subject visually recognize the liquid crystal displays 53 and 53 in the left and right inspection units 5L and 5R via the inspection optical systems of the inspection units 5L and 5R. It is set so that the visual axes of the optometry are parallel to each other and can be viewed at infinity.
  • the rotation angle detection sensors PsL and PsR provided on the left and right inspection units 5L and 5R detect the rotation angles of the columns 5p and 5q, thereby confirming that the inspection units 5L and 5R are set at the initial positions. Can be detected.
  • Initial position detection signals from these rotation angle detection sensors PsL and PsR are inputted to sub (auxiliary) arithmetic control circuits 62 '(L) and 62' (R), respectively.
  • a rotary encoder, a potentiometer, or the like can be used as these rotation angle detection sensors PsL and PsR.
  • the sub (auxiliary) arithmetic control circuits 62 '(L) and 62' (R) control the operation of the same components and the like. Accordingly, in the description of the operation of the inspection units 5L and 5R described below, the description of (L), (R), etc. in the sub (auxiliary) arithmetic control circuit 62 '(L) and arithmetic control circuit 62' (R) Used as needed for explanation.
  • the pedestal portion 5a is provided with a subject response input device 6LR as a subject response portion.
  • This subject response input device 6LR has a joystick lever 6h and a button (switch) 6g provided at the upper end of the joystick lever 6h.
  • the joystick lever 6h is provided so as to be tiltable and rotatable about an axis.
  • the button (switch) 6g is used for selection of menus and targets, photographing, and the like.
  • the subject response input device 6LR includes a tilt detection sensor 12b that detects a tilt operation of the joystick lever 6h, and a rotation that detects a rotation operation of the joystick lever 6h about the axis.
  • This patient response input device 6LR is connected to the arithmetic control circuit 63 'of FIG. 8, and is an ON / OFF operation signal of the button 6g, a tilt signal from the tilt detection sensor 12b, a rotation signal from the rotation sensor 12c, and the like. Is input to the arithmetic control circuit 63 '.
  • a target control device (target control unit) CLR is connected to the arithmetic control circuit 63 ′ shown in FIG.
  • the target operation device CLR includes a target selection unit 81 and a target display state correction unit 82.
  • the target display state correction unit 82 further includes a target size correction unit 83.
  • a target contrast correction unit 84 and an eye position correction unit 85 are provided.
  • an input operation device Pc composed of a personal computer or the like as shown in FIG. 2A is used for the target operation device CLR.
  • the input operation device Pc includes a display unit Dsp and an examiner operation unit K.
  • the examiner operation unit K includes a keyboard Kb including a cursor button and a plurality of selection buttons, and a dial Da.
  • target selection unit 81 and the target display state correction unit 82 are provided in the target operation device CLR. However, as shown in FIG. 8A, these may be provided in the arithmetic control circuit 63 ′.
  • a monitor device 64q is connected to the arithmetic control circuit 63 ′. As shown in FIG. 2, the monitor device 64q is attached to a column 64s provided upright on the pedestal portion 5a. The monitor device 64q displays information necessary for the examination such as examination data, a chart, and an anterior eye image of the eye to be examined on the monitor screen 64q ′.
  • a memory M as a target recording unit is connected to the arithmetic control circuit 63 ′.
  • This memory M records (stores) a landscape chart used as a visual target, a large number of visual targets used for refractive power measurement, a large number of visual targets and charts used for binocular vision function, oblique inspection, and the like. Has been.
  • a cross oblique test chart as shown in FIG. 19 can be used as a target used for the oblique inspection.
  • a left eye misalignment detection target (left eye oblique detection target) Lm and a right eye misalignment detection target (right eye oblique detection target) Rm are used.
  • the left-eye shift detection target Lm is composed of a pair of horizontal target lines Lm1 and Lm2 spaced laterally
  • the right-eye shift detection target Rm is a pair of vertical views spaced vertically. It consists of marked lines Rm1, Rm2.
  • the left-eye deviation detection target Lm is displayed on the liquid crystal display 53 of the inspection unit 5L
  • the right-eye deviation detection target Rm is displayed on the liquid crystal display 53 of the inspection unit 5R. Yes.
  • the left-eye deviation detection target Lm can be displayed on the liquid crystal display 53 of the inspection unit 5R, and the right-eye deviation detection target Rm can be displayed on the liquid crystal display 53 of the inspection unit 5L.
  • the target used for the oblique position inspection or the like is not limited to the cross oblique position test chart, but other displays as used in the past can be used. In the following description, the left side shown in FIG. An eye misalignment detection target Lm and a right eye misalignment detection target Rm are used.
  • these targets, charts, and the like can be selected by a target operation device CLR that serves both as a target selection unit 81 and a target display state correction unit 82, and the display position. Etc. can be adjusted.
  • this optotype operating device CLR a dial type (dial Da) may be used, a cursor key of the keyboard Kb may be used, a mouse, a touch pen, or the like may be used, or a touch panel. May be used.
  • the test target, chart, and the like can be arbitrarily selected by the examiner, and are sequentially selected and displayed according to the optometry program.
  • the optometry program or the like is recorded (stored) in a memory (not shown) of the arithmetic control circuit 63 ', for example.
  • the single optotype operating device CLR can operate the optotypes of the left and right liquid crystal displays 53 and 53 according to the optometry program. It is also possible to perform the above operations with separate target control devices.
  • the parts of the inspection units 5L and 5R, the parts assembly part, and the parts such as the liquid crystal display units 53 and 53 incorporated as part of the parts in the inspection units 5L and 5R have dimensional tolerances. It is manufactured with high accuracy within the range. However, even if it is within the range of dimensional tolerances, dimensional variations occur in the component assembly portion, the liquid crystal display 53, and the like. In addition to such dimensional variations of components, adjustment variations that occur when such components are incorporated into the inspection units 5L, 5R, etc. are particularly problematic.
  • the size of the liquid crystal display 53 is reduced with the miniaturization of the optometry apparatus, the chart portion displayed on the liquid crystal display 53 is reduced, and the chart portion is enlarged through the lens of the optical system.
  • the display center is adjusted so that the display center of the liquid crystal display 53 coincides with the optical axis of the optical system of the inspection unit 5L (5R) when the liquid crystal displays 53 and 53 are assembled to the inspection units 5L and 5R. (Assembly adjustment) is very difficult.
  • the display center of the liquid crystal display 53 and the inspection in the inspection unit 5L (5R) are caused due to dimensional variations of the liquid crystal display 53 and the component assembling part.
  • the optical axis of the optical system is shifted in a direction perpendicular to the optical axis.
  • a turning drive motor (not shown) of the turning drive mechanisms (horizontal rotation drive devices) 28, 28 is predetermined by the arithmetic control circuit 63 'so that the inspection unit 5L (5R) turns by a predetermined angle in the horizontal direction. Even when the drive pulse is controlled and stopped, the inspection unit 5L (5R) stops from a predetermined angle due to individual differences in the gear (not shown) of the horizontal rotation drive device 28 and the turning drive motor. Shift.
  • the arithmetic control circuit 63 ′ displays an operation menu or the like on the monitor screen (display unit) 64q ′ of the monitor device 64q when the optometry apparatus 2 is turned on and started.
  • the operation menu includes an initial setting menu and the like.
  • the arithmetic control circuit 63 ' displays the initial setting screen on the monitor screen 64q' when the initial setting menu is selected by tilting the joystick lever 6h from the operation menu for initial display setting.
  • a display position correction menu (item) in the far vision state a display position correction menu (item) in the congestion state, and the like can be displayed.
  • the display position correction menu (item) when the display position correction menu (item) is selected, the display center position of an image such as a target displayed on the liquid crystal display 53 of the left inspection unit 5L is corrected.
  • the calculation control circuit 63 ' When the left display position correction menu (item) is selected from the correction menu (item) by tilting the joystick lever 6h, the calculation control circuit 63 'operates the sub (auxiliary) calculation control circuit 62' (L). Then, the sub (auxiliary) arithmetic control circuit 62 '(L) displays the mark reference point indicating the initial display center position on the liquid crystal display 53 of the left inspection unit 5L.
  • the calculation control circuit 63 controls the operation of the calculation control circuit 62' (R) to perform calculation.
  • the control circuit 62 ′ (R) displays a mark indicating the initial display center position on the liquid crystal display 53 of the right inspection unit 5L.
  • the arithmetic control circuit 63 moves and controls the mark indicating the display center position by tilting the joystick lever 6h, and moves the mark indicating the display center position by pressing the button 6g after the movement control.
  • the position can be set.
  • the initial display setting operation can also be performed by an input unit such as a mouse or a keyboard of a personal computer.
  • a lens meter 1000 is connected to the optometry apparatus 2 as another device.
  • the lens meter 1000 may be connected in any of FIGS. 9A to 9C.
  • the appearance of the lens meter 1000 is shown in FIG. 10, for example.
  • the lens meter 1000 has a function of simultaneously measuring the optical characteristics of the left and right framed spectacle lenses 1006L and 1006R of the spectacles 1006.
  • reference numerals 1007L and 1007R denote pressing levers for the spectacle lenses 1006L and 1006R.
  • a detection pin (not shown) installed on the eyeglass set base 1001 detects the set of eyeglasses 1006.
  • the holding levers 1007L and 1007R are automatically lowered, and the glasses 1006 are fixed by the holding claws 1008L and 1008R. It is obtained at the same time. Further, based on the optical characteristic data of the left and right eyeglass lenses 1006L and 1006R, a PD value that is the distance between the pupils of the subject (eyeglass wearer) is obtained.
  • the structure of the measurement optical system of the lens meter 1000 can in principle be configured using two known measurement optical systems, and the detailed configuration is described in, for example, Japanese Patent Application Laid-Open No. 2002-202219.
  • the lens meter shown in FIG. 10 is used, but a known auto lens meter having a PD measurement function can also be used.
  • the optical characteristic data of the spectacle lens of the lens meter 1000 is input to the arithmetic control circuit 63 ′.
  • the arithmetic control circuit 63 ' also plays a role of displaying the optical characteristic value and PD value of the spectacle lens on the monitor screen 64q' of the monitor device 64q. In the case of a spectacle lens wearer, it is desirable to perform initial setting of the inspection units 5L and 5R using this PD value. [Action] Next, the control action by the arithmetic control circuit 63 'of the optometry apparatus having such a configuration will be described. (1).
  • the optical axis of the inspection optical system of the left inspection unit 5L of the optometry apparatus 2 is closer to the front side than the prism P (the face receiving device 6 side).
  • the optical axis on the near side (face receiving device 6 side) from the prism P among the optical axes of the inspection optical system of the right inspection unit 5R is the right face receiving side optical axis.
  • the arithmetic control circuit 63 controls the left and right unit drive devices Rd and Rd of the XYZ drive mechanism and controls the left and right horizontal rotation drive devices 28, 28. To control the inspection units 5L and 5R to the initial position (return to the initial position).
  • the arithmetic control circuit 63 ′ determines the driving amount in the three-dimensional direction of the inspection unit 5L by the left unit driving device Ld and the inspection unit 5R by the right unit driving device Rd, and the left unit driving device Ld and the right unit driving device. It can be detected from the number of Rd drive pulses.
  • a movement amount detection sensor (X direction movement amount detection sensor, Y direction movement amount detection sensor, Z direction movement amount detection sensor) for detecting the movement amount of the inspection units 5L and 5R in the three-dimensional direction is provided. It is also possible to detect the driving amount (movement amount) of the inspection units 5L and 5R in the three-dimensional direction from the amount detection sensor.
  • the arithmetic control circuit 63 ′ obtains the positions of the inspection units 5L and 5R in the three-dimensional direction from the drive amount (movement amount) and the like.
  • the arithmetic control circuit 63 ′ detects the rotation angles and the like of the columns 5p and 5q by the rotation angle detection sensors PsL and PsR, and turns angles (turning positions) of the inspection units 5L and 5R integrated with the columns 5p and 5q, respectively. Etc. are detected.
  • the arithmetic control circuit 63 ′ controls the left face receiving side optical axis part and the right face receiving side optical axis part from the position of the inspection units 5 L, 5 R in the three-dimensional direction when returning the inspection units 5 L, 5 R to the initial positions.
  • This initial position setting can also be executed when a reset command is sent from the arithmetic control circuit 63 'to the sub (auxiliary) arithmetic control circuit 62' of the optometer 2.
  • (2). Input of interpupillary distance PD for refractive power measurement The interpupillary distance PD of the subject is input to the arithmetic control circuit 63 '.
  • the inter-pupil distance PD is obtained by measuring the distance between the optical centers of the right and left eyeglass lenses of the glasses (the inter-pupil distance PD of the eyeglass wearer) with the lens meter 1000, or is measured with a PD meter or the like.
  • the interpupillary distance PD obtained by the lens meter 1000 is input from the lens meter 1000 to the arithmetic control circuit 63 'through a connection line such as a data line.
  • the interpupillary distance PD measured by a PD meter or the like can be input to the arithmetic control circuit 63 ′ from a personal computer (data input device) connected to the optometry apparatus 2, or a keyboard (data input) can be input to the optometry apparatus 2.
  • the device can be input to the arithmetic control circuit 63 'from this keyboard.
  • the inter-pupil distance PD can be input to the PD input frame on the input screen by tilting the joystick lever 6h or the like by displaying the PD input screen on the monitor screen 64q ′ of the monitor device 64q.
  • the left and right sub (auxiliary) arithmetic control circuits 62 '(L) and 62' (R) are controlled by the arithmetic control circuit 63 'so that the sub (auxiliary) arithmetic control circuits 62' (L) and 62 'are operated.
  • ′ (R) causes the target to be displayed at the center of the liquid crystal displays 53, 53 of the left and right inspection units 5L, 5R, and the left unit driving device Ld, right to the position where the target of the liquid crystal displays 53, 53 can be seen.
  • the unit drive device Rd By causing the unit drive device Rd to move the inspection units 5L and 5R to the left and right, the distance between the inspection units 5L and 5R is input to the arithmetic control circuit 63 ′ as the inter-pupil distance PD of the subject from this movement control amount. be able to. (3). Correction of target display size (correction of unequal image vision)
  • A. Unequal image vision When the left and right eyes of the subject (ie, the left and right eye) are examined by an optometer with a refractive correction optical system, there is a large difference in the refractive correction values of the left and right eyes (depending on the refractive correction optical system).
  • the initial position of the inspection optical system of the inspection units 5L and 5R is set as described in (1) above, and the interpupillary distance is measured for refractive power measurement as in (2).
  • the PD enters the PD.
  • the subject inspects the visual target size with the left eye and the right eye while wearing a refraction correcting lens.
  • the inverted U-shaped display size confirmation target (left target) 100L shown in FIG. 11A is displayed on the liquid crystal display 53 of the left inspection unit 5L, and the liquid crystal display of the right inspection unit 5R. 53, the U-shaped display size confirmation target (right target) 100R shown in FIG. 11B is displayed.
  • the display size confirmation targets 100L and 100R are displayed in the same size except for the left and right directions.
  • the display size confirmation target 100L is displayed on the liquid crystal display 53 of the left inspection unit 5L so as to be positioned on the left side of the center line O1 in the horizontal direction
  • the display size confirmation target 100R is displayed on the liquid crystal display of the right inspection unit 5R.
  • the device 53 is displayed on the right side of the center line O1 in the left-right direction.
  • the display positions in the vertical direction of the display size confirmation targets 100L and 100R are set to the same position.
  • the left eye of the subject is made to visually recognize the display size confirmation target 100 displayed on the left liquid crystal display 53 via the inspection optical system of the inspection unit 5L, and the right eye of the subject is examined.
  • the display size confirmation target 100R displayed on the right liquid crystal display 53 is visually recognized through the inspection optical system of the inspection unit 5R.
  • the subject displays the display size confirmation targets 100L and 100R visually recognized by the left eye and the right eye, respectively, as shown in FIGS.
  • the images are recognized in the state of simultaneous viewing and fusion (the state where the same point viewed with both eyes is viewed as one point).
  • the display size confirmation targets 100L and 100R are recognized with the same size as shown in FIG.
  • the display size confirmation targets 100L and 100R are shown in FIGS. Are recognized in different sizes.
  • the unequal image viewing rate is 3.5%, as shown in FIG.
  • the unequal image viewing rate is measured to be 7.0%. It is not always necessary to set the sizes of the display size confirmation targets 100L and 100R under such conditions.
  • the display size confirmation target 100L recognized by the left eye (left eye) is Ls
  • the display size confirmation target 100R recognized by the right eye (right eye) is Rs.
  • the size of the target may be changed so as to cancel this size difference.
  • the size is changed by, for example, multiplying the left-eye image by 1.07 when both the left and right eyes are myopic, and multiplying the right-eye image by 1 / 1.07 when both the left and right eyes are farsighted. Further, if one of the left and right eyes is farsighted and the other is myopic, it is desirable to enlarge and reduce the left and right images almost equally. ) Times and 2 / (M + 1) times for hyperopic eyes.
  • the correcting lens is arranged at a position conjugate with the pupil (that is, a position that brings about the same effect as when the lens is arranged on the pupil).
  • the size difference during optometry does not occur. However, when actual glasses are worn, a size difference may occur.
  • the size of the left eye is simply multiplied by 1 / 1.07 if the myopia is myopia, and the right eye is 1.07 if the myopia is farsighted. If one of the left and right eyes is hyperopic and the other is myopic, it is desirable to enlarge and reduce the left and right images almost equally.
  • the magnification obtained from the rate of unequal image vision is M, and the hyperopic eye is 2M / ( M + 1) times and myopic eyes should be 2 / (M + 1) times.
  • the change in the display size as described above is performed by operating the examiner operation unit K of the input operation device Pc, which is the target operation device CLR shown in FIG. 2A, in the view shown in FIG. 8 (or FIG. 8A).
  • the standard size correction unit 83 can perform this. That is, the operation at this time can be performed by the keyboard Kb or dial Da of the examiner operation unit K or the keyboard Kb and dial Da.
  • the magnification M of the glasses is given by the following equation. That is, the magnification M of the glasses (glasses) is
  • D 1 is the front refractive power of the lens
  • D b is the rear refractive power of the lens
  • t is the center thickness of the lens
  • n is the refractive index of the lens
  • VD is the distance between the lens and the corneal apex.
  • the refractive power of the lens is D
  • the magnification M can be expressed by the following equation. That is, the magnification M is
  • an optometry apparatus having a conventional optical system that is, an optical system in which unequal image vision occurs due to a difference in power
  • left eye +3 When a correction lens of .00 (D) is set, 6.2% unequal image vision occurs between the left and right eyes.
  • the present invention has a function of displaying the target separately on the left and right sides and changing the size of the target, so that the size difference between the left and right targets can be corrected during the optometry.
  • the correction may be performed so that the magnification of each eye becomes 1, so that each eye target (right and left eyes) visually recognizes the reciprocal of the magnification obtained in (Expression 2) as the magnification of the following (Expression 3). It is sufficient to apply to the display.
  • this adjustment may be performed by setting the unequal image viewing rate as a threshold and automatically adjusting the size when the unequal image viewing rate calculated from the lens power exceeds the set value. Further, such a change in the display size is performed by operating the examiner operation unit K of the input operation device Pc which is the target operation device CLR shown in FIG. 2A, and the target shown in FIG. 8 (or FIG. 8A). This can be performed by the size correction unit 83. That is, the operation at this time can be performed by the keyboard Kb or dial Da of the examiner operation unit K or the keyboard Kb and dial Da.
  • the examiner asks the subject how to see the visual target (the size of the left and right visual targets is the same or which is larger) and responds to the response. It can also be executed by operating the examiner operation unit K by the examiner.
  • the magnification calculated in (Equation 1) may be applied to the target to be visually recognized by each eye (left and right eyes).
  • Contrast correction (change) for left and right targets The contrast sensitivity of the human eye gradually decreases with aging, but if the contrast sensitivity decreases significantly on the left and right sides, the binocular visual function may be adversely affected and correct binocular vision may not be achieved. .
  • the left target Ldx whose left half is projected only to the left eye (left eye to be examined) is displayed on the left side of the left and right center line O2 on the liquid crystal display 53 of the left examination unit 5L.
  • the right target Rdx whose right half is projected only to the right eye (right eye to be examined) is displayed on the right side of the left and right center line O2 on the liquid crystal display 53 of the right examination unit 5R.
  • the alphabet “ABC” is used for the left target Ldx and the right target Rdx.
  • the contrast of the left target Ldx is brighter than the contrast of the right target Rdx (high sensitivity). ) State.
  • such a contrast change is performed by operating the examiner operation unit K of the input operation device Pc, which is the target operation device CLR shown in FIG. 2A, and the target contrast shown in FIG. 8 (or FIG. 8A).
  • This can be performed by the correction unit 84. That is, the operation at this time can be performed by the keyboard Kb or dial Da of the examiner operation unit K or the keyboard Kb and dial Da.
  • the change of the contrast in this case is as follows. The examiner asks the subject how to see the target (whether the left and right target are the same brightness, which is brighter, etc.) and responds to the response. This can be executed by the examiner operating the examiner operation unit K.
  • the finally adjusted value is stored, and in the binocular visual function test to be performed thereafter, it is preferable to display the visual target while maintaining this contrast state.
  • the transmittance of the eye can be measured by measuring the difference between the intensity of the incident light and the intensity of the reflected light.
  • the contrast adjustment function may be automatically performed by examining the correlation of how much difference occurs in the transmittance between the left and right eyes and how much difference occurs as the contrast sensitivity.
  • Change (correction) of target display position A About the visual recognition state of the optotype due to eye misalignment The eye misalignment measurement is performed by using a composite image obtained by displaying different optotypes for the left eye and the right eye as shown in FIG. 18A and viewing them simultaneously.
  • the left eye misalignment detection target Lm which is a horizontal target line
  • the vertical target is displayed on the liquid crystal display 53 of the inspection unit 5R.
  • the right eye misalignment detection target Rm which is a line
  • the left eye misalignment detection target Lm and the right eye misalignment detection target Rm are simultaneously recognized by the left and right eyes of the subject, respectively, and the left eye misalignment detection target Lm and the right eye misalignment are detected.
  • the eye position deviation is measured by causing the subject to recognize the detection target Rm as a composite image fused as shown in (i) to (iii) of FIG. 18B.
  • the left-eye misalignment detection target Lm has horizontal visual target lines Lm1 and Lm2 arranged in series at intervals in the left and right directions, and the right-eye misalignment detection target Rm is serially arranged at intervals in the vertical direction.
  • the left eye misalignment detection target (horizontal target line) Lm) and the right eye misalignment detection target (vertical target line) Rm are Both cross at the center as shown in (i), but when there is a horizontal oblique position, an image shifted in the horizontal direction as shown in (ii), and when there is a vertical oblique position, it is shown in (iii). As shown, an image shifted in the vertical direction is observed.
  • FIG. 19 an example of the horizontal oblique position is shown in FIG.
  • the left-eye shift detection target Lm horizontal view target lines Lm1, Lm2
  • the right-eye shift detection target Rm vertical view target lines Rm1, Rm2
  • the target perceived by the subject is the left eye
  • the horizontal line (left eye misalignment detection target Lm) displayed on the (left eye to be examined) appears to be shifted to the right by the amount of misalignment x1
  • the vertical line (right eye misalignment detection) displayed on the right eye (right eye to be examined) Since the target Rm) appears to be shifted to the left side by the amount of deviation x2, it can be seen that the subject is in the outer oblique position.
  • a prism lens is used to correct the visual target deviation as shown in FIG. 19, but in the optometry apparatus according to the present embodiment, it is displayed on the left and right eyes.
  • the prism lens can be substituted by changing the display position of the target.
  • the right-eye image (right-eye shift detection target Rm vertical visual target line Rm1, Rm2) indicated by a number of points is moved to the right by the shift amount x2, and the left-eye shift detection target (horizontal view)
  • the standard line Lm and the right-eye misalignment detection target (vertical visual line) Rm may be adjusted to intersect at the center.
  • the prism lens unit is usually a prism diopter, but this definition is “1 prism diopter is the frequency of the prism that displaces an object located 1 m in front of the eye by 1 cm”.
  • x1 and x2 can be converted into the correction data of the prism diopter from the displacement amount of the target and displayed. If this prism adaptation amount (prism diopter correction data) is determined, the prism adaptation amounts (prism diopter correction data) of the shift amounts x1 and x2 are stored in the memory M.
  • the prism adaptation amount (prism diopter correction data) stored in the memory M the left target displayed on the left inspection unit 5L and the liquid crystal display 53 is shown in FIG. As shown in FIG. 20B, the left target to be displayed on the right inspection unit 5R and the liquid crystal display 53 is shifted to the right by the amount x2 and displayed.
  • the shift amounts x1 and x2 can be referred to as correction amounts.
  • the visual target for example, characters A and A
  • the visual target for example, characters A and A
  • the composite image when simultaneously viewed with both eyes appears to be displayed in the center without deviation as shown in FIG. 20C.
  • Such correction of eye misalignment is performed by operating the examiner operation unit K of the input operation device Pc, which is the optotype operation device CLR shown in FIG. 2A, to display the eye shown in FIG. 8 (or FIG. 8A).
  • the misalignment correction unit 85 That is, the operation at this time can be performed by the keyboard Kb or dial Da of the examiner operation unit K or the keyboard Kb and dial Da.
  • the examiner asks the examinee how to see the target (whether or not the left and right targets are misaligned, etc.) and responds to the response. It can be executed by operating the examiner operation unit K by the examiner. C.
  • FIG. 21A shows a left-eye cruciform test chart target 71A that is the same as the left-eye misalignment detection target Lm
  • FIG. 21B shows the above-described target 71A.
  • the target 71B of the right-eye cruciform test chart which is the same as the right-eye misalignment detection target Rm, is shown, and FIG. 22 shows how the targets 71A and 71B appear when viewed with both eyes with normal eyes.
  • Table 2 shows how the oblique position looks.
  • the arithmetic control circuit 63 ′ displays the visual targets 71A and 71B on the liquid crystal displays 53 and 53 of the left and right inspection units 5L and 5R, respectively.
  • the targets displayed on the liquid crystal displays 53 and 53 of the inspection units 5L and 5R are the left eye (left eye) and the right eye via the rotary prisms 55A and 55B and the measurement optical system of the inspection units 5L and 5R, respectively. (Right eye to be examined) respectively.
  • the normal eye 71A and the visual target 71B intersect at the center, but are separated when there is an oblique position. Further, the rotary prisms 55A and 55B are used for the oblique test, that is, for measuring the amount of prism necessary for the target 71A and the target 71B to intersect at the center as shown in FIG.
  • the arithmetic control circuit 63 ′ is tilted (tilted) to the left or right (tilted) or tilted (tilted) according to the oblique test program (optimized program).
  • the prism amount is continuously changed by rotating the rotary prisms 55A and 55B in opposite directions from the tilt signal from the tilt detection sensor 12b of the joystick lever 6h.
  • the rotary prisms 55A and 55B are provided so as to be rotatable in the reverse direction or the same direction by a drive motor Pdm such as a pulse motor as a drive device.
  • the prism amount by the rotary prisms 55A and 55B can be detected from the number of drive pulses (drive amount) of the drive motor Pdm that rotates the rotary prisms 55A and 55B, respectively.
  • a rotation detection device (rotation angle detection unit) Rps such as a potentiometer or a rotary encoder linked to each of the rotary prisms 55A and 55B is provided, and an output signal (rotation signal) from the rotation angle detection device Rps is used as a rotary prism.
  • the prism amount by 55A and 55B can also be detected.
  • the target 71A of the cross oblique chart shown in FIG. 21A is displayed as the left eye misalignment detection target Lm on the liquid crystal display 53 of the inspection unit 5L, and the liquid crystal of the inspection unit 5R is displayed.
  • the indicator 53B of the cross oblique chart shown in FIG. 21B is displayed on the display 53 as the right-eye shift detection target Rm.
  • the cross oblique charts 71A and 71B of the cross oblique chart shown in FIGS. 21A and 21B are displayed on both eyes of the subject (the left examinee and the right examinee), respectively, and the cross oblique chart is set. .
  • Oblique position refers to a misalignment of the eye position in which the eyes of both eyes are correctly directed to the gazing object in daily life and the binocular single vision is always performed.
  • strabismus refers to a misalignment of the eye position in which the line of sight always shifts regardless of whether one eye is covered or not, and the gaze object is always double-viewed.
  • the minimum unit of prism conversion is 0.25 ( ⁇ ).
  • C3 When four lines are visible and there is a horizontal oblique position (c3a).
  • the joystick lever 6h tilted to the right, “tilt the joystick lever 6h to the right or left until the vertical line matches the center position of the horizontal line, and then press the button 6g on the joystick lever 6h. . " (C3b). Further, the number of times the joystick lever 6h is tilted to the right or left is counted until the button 6g of the joystick lever 6h is pressed. After defeating to the right and defeating to the left, deduct 0 times.
  • the deviation amount of the target is calculated from the prism amount of the oblique test, and the correction of the target display center (target display position) on the liquid crystal display 53 of the target inspection units 5L and 5R. Is different for each subject, and is recorded as subject data in the database of the memory M together with the subject ID.
  • the arithmetic control circuit 63 ′ reads the prism amount of the oblique test corresponding to the ID from the subject data when the subject's ID is inputted from a personal computer or the like, and the read oblique test.
  • the display position of the target to be displayed on the liquid crystal displays 53, 53 of the inspection units 5L, 5R is corrected from the prism amount.
  • the fixation target or the image is displayed only on the liquid crystal display 53 of the inspection unit 5L, and the moving lens 57 of the inspection unit 5L is moved in the optical axis direction by the pulse motor PMa so that the fixation target or the image is displayed.
  • the moving lens 57 is set at a position visible to the subject's left eye.
  • the fixation target or image or the like is displayed only on the liquid crystal display 53 of the inspection unit 5R, and the moving lens 57 of the inspection unit 5R is moved in the optical axis direction by the pulse motor PMa to fix the fixation target or image or the like.
  • the moving lens 57 is set at a position that can be seen by the subject's right eye. These sets are performed separately for the left eye and the right eye.
  • the left-eye misalignment detection target Lm is displayed on the liquid crystal display 53 of the inspection unit 5L, and at the same time, the right side is displayed on the liquid crystal display 53 of the inspection unit 5R.
  • the eye misalignment detection target Rm is displayed.
  • the left eye misalignment detection target Lm and the right eye misalignment detection target Rm are displayed on both eyes of the subject (the left test eye and the right test eye), respectively, and a cross oblique chart set. Is done.
  • the left-eye shift detection target Lm is composed of a pair of horizontal target lines Lm1 and Lm2 that are horizontally spaced, and the right-eye shift detection target Rm is vertically spaced. It consists of a pair of vertical viewing marks Rm1, Rm2.
  • the left eye misalignment detection target Lm and the right eye misalignment detection target Rm are visually recognized and fused by the left eye and the right eye, respectively, as shown in FIG. 23C, the left eye misalignment is detected. If the center of the detection target Lm (center between the horizontal target lines Lm1 and Lm2) Lo and the center of the right eye misalignment detection target Rm (center between the vertical target lines Rm1 and Rm2) Ro match As shown in FIG. 18B (i), there is no oblique position, and the oblique position test is completed by pressing the button 6g of the joystick lever 6h.
  • the joystick lever 6h When there is this oblique position, the joystick lever 6h is used to determine the amount of oblique position. At this time, when the joystick lever 6h is tilted to the left or right, the arithmetic control circuit 63 ′ shifts the display positions of the vertical visual lines Rm1 and Rm2 displayed on the liquid crystal display 53 of the inspection unit 5R to the left or right. When it is moved and the joystick lever 6h is tilted forward or backward, the display positions of the horizontal viewing lines Lm1 and Lm2 displayed on the liquid crystal display 53 of the inspection unit 5L are moved up or down.
  • the center of the left-eye misalignment detection target Lm (center between the horizontal target lines Lm1 and Lm2) Lo and the center of the right-eye misalignment detection target Rm (vertical target line Rm1, (Center of Rm2)
  • the button 6g of the joystick lever 6h is pressed to shift the left-eye displacement detection target Lm in the vertical direction (the oblique amount) and the right-eye displacement.
  • a deviation amount (an oblique amount) of the detection target Rm in the left-right direction is obtained.
  • the obtained shift amount (tilt amount) is stored in the subject data of the memory M together with the subject ID.
  • the subject with this ID it is displayed on the liquid crystal displays 53 and 53 of the examination units 5L and 5R based on the deviation amount (the oblique amount) stored in the subject data of the memory M. Correct the display position of the target.
  • the right-eye inspection unit opens the optical axis of the optical system to the outside, that is, turns the left-eye optical system built in the left-eye inspection unit 5L counterclockwise. What is necessary is just to rotate the optical system for right eyes incorporated in 5R clockwise, and to adjust to the state where a vertical line and a horizontal line cross in the center.
  • the prism power Pn can be obtained by the following (formula 4).
  • Pn 100 ⁇ tan ⁇ (Formula 4)
  • Pn Prism power
  • Rotation angle of the device from the normal position When obtaining the left and right total prisms, ⁇ is the total value of the right rotation angle and the left rotation angle.
  • the optometry apparatus includes the left inspection unit (left-eye inspection unit 5L) including the left inspection optical system that inspects the subject's left eye.
  • a right inspection unit (right eye inspection unit 5R) having a built-in right inspection optical system for inspecting the examiner's right eye, and a left for displaying a left target on the left eye through the left inspection optical system
  • An image display device (liquid crystal display 53 of the left eye inspection unit 5L) and a right image display device (of the right eye inspection unit 5R) that displays a right target on the right eye through the right inspection optical system.
  • the optometry apparatus includes the left image display device so that the visual inspection state of the left target visually recognized by the left eye and the right target visually recognized by the right eye is an optimal examination condition.
  • An optotype display state correction unit 82 for individually correcting is provided.
  • the liquid crystal display 53 which is an image display device, can also be called a visual target display device.
  • the target recording unit (memory M) that records a plurality of targets and the plurality of targets recorded in the target recording unit (memory M).
  • a target selection unit 81 that selects the left target and the right target, and the left image display device and the right image display device that select the left target and the right target selected by the target selection unit 81.
  • An arithmetic control circuit 63 ′ is provided for causing the liquid crystal displays 53 and 53 to display each independently.
  • the target selection unit 81 selects a left target and a right target from a plurality of pre-recorded targets, and the arithmetic control circuit 63 ′ selects the selected left target and right target, respectively. Since it is displayed independently, the target can be easily corrected.
  • an optotype recording unit (memory M) in which a plurality of optotypes are recorded, and the plurality of optotypes recorded in the optotype recording unit (memory M).
  • a target selection unit 81 that selects the left target and the right target, and the left image display device and the right image display device that select the left target and the right target selected by the target selection unit 81.
  • An arithmetic control circuit 63 ′ is provided for causing the liquid crystal displays 53 and 53 to display each independently.
  • the target can be individually corrected.
  • a visual target operation unit CLR that serves as both the visual target display state correction unit 82 and the visual target selection unit 81 is provided.
  • the visual recognition state is the left visual target visual size of the left visual target based on the refractive power of the left examined eye and the right visual target based on the refractive power of the right examined eye. It is the right target visual recognition size.
  • the optotype display state correcting unit 82 sets the left image display device (the left eye inspection unit 5L of the left eye inspection unit 5L) such that the left visual target visual recognition size and the right visual target visual recognition size are the same as the optimal inspection condition.
  • the display size of the left target displayed on the liquid crystal display 53) and the display size of the right target displayed on the right image display device (the liquid crystal display 53 of the right-eye test unit 5R) are set to the left.
  • a target size correction unit 83 that individually corrects based on the refractive power of the eye to be examined and the refractive power of the right eye to be examined is provided.
  • the size of the target image can be individually changed between the left and right eyes, so that an unequal image is obtained during the optometry.
  • the target size can be changed and presented so as to negate the view.
  • the visual recognition state is the left visual target visual recognition size of the left visual target based on the correction power of the left test eye and the right visual test based on the correction power of the right test eye.
  • the right target visual recognition size is set.
  • the optotype display state correcting unit 82 sets the left image display device (the left eye inspection unit 5L of the left eye inspection unit 5L) such that the left visual target visual recognition size and the right visual target visual recognition size are the same as the optimal inspection condition.
  • the display size of the left target displayed on the liquid crystal display 53) and the display size of the right target displayed on the right image display device (the liquid crystal display 53 of the right-eye test unit 5R) are set to the left.
  • a target size correction unit 83 that individually corrects based on the correction power of the eye to be examined and the correction power of the right eye to be examined is provided.
  • the size of the target image can be changed individually by the left and right eyes, so that the frequency after completion of the optometry At the time of confirmation, it can be presented in the size when wearing glasses.
  • the visual recognition states are a left visual target visual contrast of the left visual target by the left eye and a right visual visual recognition contrast of the right eye by the right eye.
  • the optotype display state correcting unit 82 sets the left image display device (inspection unit 5L for the left eye) so that the left visual target visual contrast and the right visual target visual contrast become the same as the optimal inspection condition.
  • the contrast of the left visual target displayed on the liquid crystal display 53) and the contrast of the right visual target displayed on the right image display device are individually corrected.
  • a target contrast correction unit 84 is provided.
  • the brightness and contrast of the target image can be changed individually for the left and right eyes, making it possible to perform optometry while reducing the difference in contrast sensitivity between the left and right eyes, especially during binocular visual function testing.
  • Works functions.
  • the visual recognition state is a visual target visual position shift caused by a positional shift between the left eye to be examined and the right eye to be examined, and the left visual target by the left eye to be examined.
  • the left visual target visual recognition position and the right visual target visual recognition position of the right visual target by the right eye to be examined are misaligned.
  • the optotype display state correcting unit 82 is configured to use the left image display device (left) so that the visual target visual position shift between the left visual target visual recognition position and the right visual target visual recognition position does not occur as the optimum inspection condition.
  • An eye misalignment correction unit 85 that individually corrects the display position is provided.
  • the vergence / divergence test inspection of eyeball rotation
  • the misalignment test, etc. can be performed without using the prism lens, and the misalignment can be corrected without using the prism lens during the inspection. Therefore, inspection can be performed without being affected by chromatic aberration caused by the prism lens.
  • the visual recognition state is a visual target visual position shift caused by a lateral shift of the left eye and the right eye, and depends on the left eye. It is a visual target visual position shift in the fusion state of the left visual target visual recognition position of the left visual target and the right visual target visual recognition position of the right visual target by the right eye to be examined.
  • a left unit driving device (Ld) that horizontally rotates the left examination unit (left eye examination unit 5L) around the center of rotation of the left eye to be examined, and the right examination unit (right eye examination unit 5R) are arranged to the right.
  • the optotype display state correcting unit 82 is configured so that the left visual unit visual position does not shift in the left-right direction between the left visual target visual recognition position and the right visual target visual recognition position as the optimum inspection condition.
  • the left inspection unit (left eye inspection unit 5L) and the right inspection unit (right eye inspection unit 5R) are individually horizontally turned by controlling the drive device (Ld) and the right unit drive device (Rd). By doing so, the left target displayed on the left image display device (liquid crystal display 53 of the left eye inspection unit 5L) and the right image display device (liquid crystal display 53 of the right eye inspection unit 5R) are displayed.
  • An eye misalignment correction unit 85 that individually corrects the position of the displayed right visual target is provided.
  • the vergence / divergence test inspection of eyeball rotation
  • the misalignment test, etc. can be performed without using the prism lens, and the misalignment can be corrected without using the prism lens during the inspection. Therefore, inspection can be performed without being affected by chromatic aberration caused by the prism lens.
  • the present invention is applied to the optometry apparatus 2 including the inspection units 5L and 5R provided with the refractive power measurement optical systems 33L and 33R.
  • the present invention is not necessarily limited thereto.
  • the present invention may be applied to a configuration in which the refractive power measurement optical systems 33L and 33R are excluded from the inspection units 5L and 5R of the inspection unit 2.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

Disclosed is an eye examination device capable of correcting the visually recognized state of an eye to be examined to an examinable state. The eye examination device is provided with an input operation device (Pc) for separately correcting the positions of a left optotype displayed on a liquid crystal display unit (53) of a left-eye examination unit (5L) and a right optotype displayed on a liquid crystal display unit (53) of a right-eye examination unit (5R) in order that the visually recognized states of the left optotype visually recognized by the left eye to be examined and the right optotype visually recognized by the right eye to be examined will satisfy the optimum examination condition under which both eyes to be examined can be examined.

Description

検眼装置Optometry equipment
 この発明は、被検者の左右眼に視標を表示する視標表示装置が左検査ユニット及び右検査ユニット内の検査光学系に組み込まれている検眼装置に関するものである。 The present invention relates to an optometry apparatus in which a target display device for displaying a target on the left and right eyes of a subject is incorporated in an inspection optical system in the left inspection unit and the right inspection unit.
 従来の検眼装置には、屈折矯正光学系等が設けられた光学装置本体と、光学装置本体を介して視標を被検眼に呈示(表示)させる視標表示装置と、を有する自覚式検眼装置(自覚式検眼システム)が知られている(例えば、特許文献1参照)。 2. Description of the Related Art A conventional optometry apparatus includes an optical apparatus main body provided with a refractive correction optical system and the like, and a target display apparatus that presents (displays) a target to the eye to be examined via the optical apparatus main body. (Subjective optometry system) is known (see, for example, Patent Document 1).
 この自覚式検眼装置では、上下に延びる支柱を上下動可能且つ鉛直軸周りに旋回可能に検眼テーブルに取り付け、この支柱に水平方向に延びるアームを保持させ、このアームに光学装置本体を支持させるようにしている。この光学装置本体は、視認窓(検眼窓)を有する左の検査ユニットと、視認窓を有する右の検査ユニットを有する。そして、各検査ユニット内には、矯正レンズ等の屈折矯正光学部品が組み込まれている。 In this subjective optometry apparatus, a vertically extending support column is attached to an optometry table so that it can be moved up and down and swiveled around a vertical axis, and an arm extending in the horizontal direction is held by the support column, and the optical device main body is supported by this arm. I have to. The optical device main body includes a left inspection unit having a visual recognition window (optometry window) and a right inspection unit having a visual recognition window. In each inspection unit, refractive correction optical components such as a correction lens are incorporated.
 このような自覚式検眼装置では、検査ユニットの前側に視標表示装置を配置して、被検者の左右眼(左右の被検眼)に、左右の検査ユニットの視認窓を介して視標表示装置の視標を視認させると共に、検者が被検者に視標の見え方を質問して検者に見え方を応答させることで、被検眼の屈折検査等が行われるようになっている。 In such a subjective optometry apparatus, an optotype display device is arranged in front of the examination unit, and the optotype is displayed on the left and right eyes (left and right examination eyes) of the subject through the viewing windows of the left and right examination units. While recognizing the target of the apparatus, the examiner asks the subject how to see the target and makes the examiner respond to the appearance, so that the refraction examination of the eye to be examined is performed. .
 このような自覚式検眼装置では、矯正レンズを備える屈折矯正光学系の設計として、被検眼の角膜頂点から所定距離d(mm)離した位置に矯正レンズを配置するようにした例がある。例えば、通常、アジア人の場合d=12、欧米人の場合d=13.75の位置に矯正レンズを配置するようにしている。 In such a subjective optometry apparatus, there is an example in which the correction lens is arranged at a position separated by a predetermined distance d (mm) from the corneal apex of the eye to be examined as a design of the refractive correction optical system including the correction lens. For example, a correction lens is usually arranged at a position where d = 12 for Asians and d = 13.75 for Westerners.
特開2007-61380号公報JP 2007-61380 A
 しかし、このような従来の自覚式検眼装置では、屈折矯正光学系による左右眼の矯正値の差が大きいと、左右眼で見える物の大きさ(視認状態)に差が生じ、正しく両眼視出来なかったり、正しい視力測定を行えなかったりと言った不都合が生じていた。 However, in such a conventional subjective optometry apparatus, if the difference between the correction values of the left and right eyes by the refractive correction optical system is large, a difference in the size (viewing state) of an object that can be seen by the left and right eyes causes a correct binocular vision. There were inconveniences such as not being able to do it and not being able to measure the correct eyesight.
 一方、上述した自覚式検眼装置では、矯正レンズを瞳と共役となる位置に配置することにより、コンタクトレンズのように、瞳上にレンズを配置している状態と同じ効果をもたらすような設計も可能である。 On the other hand, in the above-described subjective optometry apparatus, the correction lens is arranged at a position conjugate with the pupil, so that the same effect as in the case where the lens is arranged on the pupil, like a contact lens, can be obtained. Is possible.
 このような設計を行った場合、屈折度数に依って視標の視認サイズ(視認状態)が変わることはないので、上述したような問題は発生しない。しかし、測定された度数で実際に眼鏡を作成した段階で、初めて左右眼で見える像の視認サイズの違いを認識することがあるという問題があった。 When such a design is performed, the visual recognition size (visual recognition state) of the visual target does not change depending on the refractive power, so the above-described problem does not occur. However, there is a problem that the difference in the visual size of the image that can be seen with the left and right eyes may be recognized for the first time when the glasses are actually created at the measured frequency.
 また、上述した自覚式検眼装置では、白内障など、何らかの原因により左右眼のコントラスト感度(視認状態)が異なる被検者の場合、両眼視機能の確認を正しく行えない問題があった。 In addition, the above-described subjective optometry apparatus has a problem that the binocular vision function cannot be correctly confirmed in the case of a subject whose contrast sensitivity (viewing state) between the left and right eyes is different for some reason, such as cataract.
 更に、輻輳・開散テスト(眼球の回旋の検査)や眼位ずれテスト(左眼、右眼に異なる像を表示し、各像を中心位置で重ね合わせる作業を行ったときの位置ずれの検査)は、通常はプリズムレンズを使用して行うが、従来の自覚式検眼装置では、プリズム度数が強くなるにつれ色収差が大きくなり、視標の輪郭を正しく認識できないなど、検査結果に影響を与える問題があった。 Furthermore, vergence / divergence test (inspection of eyeball rotation) and misalignment test (displaying different images on the left and right eyes and superimposing each image at the center position) ) Is usually performed using a prism lens, but with conventional subjective optometry devices, the chromatic aberration increases as the prism power increases, and the contour of the target cannot be recognized correctly. was there.
 そこで、この発明は、被検眼による視認状態を正しく検査することのできる状態に視標を個別に補正することができる検眼装置を提供することを目的とするものである。 Therefore, an object of the present invention is to provide an optometry apparatus capable of individually correcting a visual target so that a visual check state by an eye to be examined can be correctly inspected.
 この目的を達成するため、この発明は、被検者の左被検眼を検査させる左検査光学系が内蔵された左検査ユニットと、前記被検者の右被検眼を検査させる右検査光学系が内蔵された右検査ユニットと、前記左検査光学系を介して左視標を前記左被検眼に表示させる左画像表示装置と、前記右の検査光学系を介して右視標を前記右被検眼に表示させる右画像表示装置と、前記左被検眼により視認される前記左視標と前記右被検眼により視認される前記右視標との視認状態が最適検査条件となるように、前記左画像表示装置に表示される前記左視標と前記右画像表示装置に表示される前記右視標とを個別に補正させる視標表示状態補正部と、が設けられている検眼装置としたことを特徴とする。 In order to achieve this object, the present invention includes a left inspection unit that incorporates a left inspection optical system that inspects the subject's left eye and a right inspection optical system that inspects the subject's right eye. A built-in right examination unit, a left image display device for displaying a left visual target on the left eye to be examined via the left examination optical system, and a right visual target to the right eye to be examined via the right examination optical system The left image so that the visual inspection state of the right image displayed by the left eye and the right eye visually recognized by the right eye is the optimum inspection condition. The optometrist device is provided with an optotype display state correction unit that individually corrects the left optotype displayed on the display device and the right optotype displayed on the right image display device. And
 この構成によれば、被検眼による視認状態を正しく検査するための補正を容易に行うことができる。 According to this configuration, correction for correctly inspecting the visual recognition state by the eye to be examined can be easily performed.
本発明の一実施例に係わる検眼装置の概要を示す説明図である。It is explanatory drawing which shows the outline | summary of the optometry apparatus concerning one Example of this invention. 図1に示す検眼装置の外観図である。It is an external view of the optometry apparatus shown in FIG. 図2の検査ユニットの旋回中心を説明する概略説明図である。It is a schematic explanatory drawing explaining the turning center of the test | inspection unit of FIG. 図1に示す検眼装置の光学系を示す図である。It is a figure which shows the optical system of the optometry apparatus shown in FIG. 図3に示す光学系の左眼用のものを拡大して示す図である。It is a figure which expands and shows the thing for left eyes of the optical system shown in FIG. 図4に示す左眼用光学系の平面図である。It is a top view of the optical system for left eyes shown in FIG. 図3に示す光学系の右眼用のものを拡大して示す図である。It is a figure which expands and shows the thing for right eyes of the optical system shown in FIG. 図6に示す右眼用光学系の平面図である。It is a top view of the optical system for right eyes shown in FIG. この発明の一実施例に係る検眼装置の検査光学系の他の例を示す説明図である。It is explanatory drawing which shows the other example of the test | inspection optical system of the optometry apparatus which concerns on one Example of this invention. 本発明の一実施例に係わる検眼装置の制御系のブロック図である。It is a block diagram of the control system of the optometry apparatus concerning one Example of this invention. 図8に示した視標選択部及び視標表示状態補正部が演算制御回路に設けられた変形例を示す制御系のブロック図である。FIG. 9 is a block diagram of a control system showing a modification in which the target selection unit and the target display state correction unit shown in FIG. 8 are provided in an arithmetic control circuit. 検眼装置の近傍に配設したレンズメータ及びモニター装置と検眼装置との接続状態を示す説明図である。It is explanatory drawing which shows the connection state of the lens meter and monitor apparatus which were arrange | positioned in the vicinity of the optometry apparatus, and an optometry apparatus. 図9Aのレンズメータを検眼装置から遠くに置いてレンズメータとモニター装置とを接続した状態を示す説明図である。It is explanatory drawing which shows the state which placed the lens meter of FIG. 9A in the distance from the optometry apparatus, and connected the lens meter and the monitor apparatus. 図9Aの検眼装置とモニター装置とを複数台設置し、レンズメータをLANを介してモニター装置に接続した状態を示す説明図である。FIG. 9B is an explanatory diagram showing a state in which a plurality of optometry apparatuses and monitor apparatuses in FIG. 9A are installed and a lens meter is connected to the monitor apparatus via a LAN. 図9A~図9Cに示すレンズメータの外観図である。FIG. 9B is an external view of the lens meter shown in FIGS. 9A to 9C. 左の検査ユニットの液晶表示器にそれぞれ表示されるサイズ確認用の左視標の説明図である。It is explanatory drawing of the left target for a size confirmation each displayed on the liquid crystal display of a left test | inspection unit. 右の検査ユニットの液晶表示器にそれぞれ表示されるサイズ確認用の右視標の説明図である。It is explanatory drawing of the right visual target for size confirmation each displayed on the liquid crystal display of a right test | inspection unit. 図11A及び図11Bの左視標及び右視標及び図12の右視標を被検者に同時に視認させたときの視標視認状態の一例を示す説明図である。It is explanatory drawing which shows an example of a visual target visual recognition state when making a subject visually recognize the left visual target of FIG. 11A and FIG. 11B, the right visual target, and the right visual target of FIG. 図11A及び図11Bの左視標及び右視標及び図12の右視標を被検者に同時に視認させたときの視標視認状態の他の例を示す説明図である。It is explanatory drawing which shows the other example of a visual target visual recognition state when making a subject visually recognize simultaneously the left visual target of FIG. 11A and FIG. 11B, and the right visual target of FIG. 図11A及び図11Bの左視標及び右視標及び図12の右視標を被検者に同時に視認させたときの視標視認状態の更に他の例を示す説明図である。It is explanatory drawing which shows the further another example of a visual target visual recognition state when making a subject visually recognize the left visual target of FIG. 11A and FIG. 11B, and the right visual target of FIG. 左の検査ユニットの液晶表示器にそれぞれ表示されるコントラスト確認用の左視標の説明図である。It is explanatory drawing of the left target for contrast confirmation displayed on the liquid crystal display of a left test | inspection unit, respectively. 右の検査ユニットの液晶表示器にそれぞれ表示されるコントラスト確認用の右視標の説明図である。It is explanatory drawing of the right visual target for contrast confirmation displayed on the liquid crystal display of a right test | inspection unit, respectively. 図15A及び図15Bの左視標及び右視標及び図16の右視標を被検者に同時に視認させたときの正常な視標視認状態を示す説明図である。It is explanatory drawing which shows a normal visual target visual recognition state when making a subject visually recognize the left visual target of FIG. 15A and FIG. 15B, and the right visual target of FIG. 16 simultaneously. 図15A及び図15Bの左視標及び右視標及び図16の右視標を被検者に同時に視認させたときのコントラストが異なる視標視認状態の一例を示す説明図である。It is explanatory drawing which shows an example of the visual target visual recognition state from which the contrast differs when making a subject visually recognize the left visual target of FIG. 15A and FIG. 15B, and the right visual target of FIG. 斜位テストにおける十字チャートの左眼及び右眼に呈示する左視標及び右視標を示す説明図である。It is explanatory drawing which shows the left target and the right target which are presented to the left eye and the right eye of the cross chart in the oblique test. 図18Aの左視標及び右視標を被検者に同時に視認させる合成像を示す説明図である。It is explanatory drawing which shows the synthesized image which makes a subject visually recognize the left target and the right target of FIG. 18A simultaneously. 図18Aに示した左視標及び右視標を被検者に同時に視認させたときの視標視認状態の一例を示す説明図である。It is explanatory drawing which shows an example of a visual target visual recognition state when making a subject visually recognize the left visual target and the right visual target shown to FIG. 18A simultaneously. 左眼に呈示する左視標としての文字Aを示す説明図である。It is explanatory drawing which shows the character A as a left target shown to a left eye. 右眼に呈示する右視標としての文字Aを示す説明図である。It is explanatory drawing which shows the character A as a right target shown to a right eye. 図20Aの左視標及び図20Bの右視標を被検者に同時に視認させたときの視標視認状態の例を示す説明図である。It is explanatory drawing which shows the example of a visual target visual recognition state when making a subject visually recognize the left visual target of FIG. 20A and the right visual target of FIG. 20B simultaneously. 斜位テストにおける十字チャートの左眼に呈示する視標と融像枠との関係を示すチャート説明図である。It is chart explanatory drawing which shows the relationship between the optotype shown to the left eye of the cross chart in an oblique test, and a fusion frame. 斜位テストにおける十字チャートの右眼に呈示する視標と融像枠との関係を示すチャート説明図である。It is chart explanatory drawing which shows the relationship between the optotype shown to the right eye of the cross chart in an oblique test, and a fusion frame. 図21A,図21Bに示した視標が融像した状態で被検者に見えたときの説明図である。It is explanatory drawing when it is visible to a subject in the state which the target shown in FIG. 21A and FIG. 21B fused. 図19に示した左視標を示す説明図である。It is explanatory drawing which shows the left target shown in FIG. 図19に示した右視標を示す説明図である。It is explanatory drawing which shows the right optotype shown in FIG. 図23A及び図23Bに示した左視標及び右視標を被検者に同時に視認させたときの視標視認状態および他の例を示す説明図である。It is explanatory drawing which shows a visual target visual recognition state when making a subject visually recognize the left visual target and the right visual target shown to FIG. 23A and FIG. 23B, and another example. 左眼及び右眼に呈示する左視標及び右視標としてのランドル環を示す説明図である。It is explanatory drawing which shows the Landol ring as a left target and a right target presented to the left eye and the right eye. 図24Aの左視標及び右視標を被検者に同時に視認させたときの視標視認状態の例を示す説明図である。It is explanatory drawing which shows the example of a visual target visual recognition state when making a subject visually recognize the left visual target and the right visual target of FIG. 24A simultaneously.
 以下、この発明の実施の形態を図面に基づいて説明する。
[構成]
 図1において、1は高さが上下調節可能な検眼テーブル、2は検眼テーブル1に配設された検眼装置、3は検眼テーブル1と共に用いられる検眼椅子、4は検眼椅子3に着座した被検者である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[Constitution]
In FIG. 1, 1 is an optometry table whose height can be adjusted up and down, 2 is an optometry apparatus disposed on the optometry table 1, 3 is an optometry chair used together with the optometry table 1, and 4 is an examination seated on the optometry chair 3. It is a person.
 この検眼装置2は、図2に示すように台座部5aと、この台座部5a上に配設された検査ユニット駆動装置5bと、検査ユニット駆動装置5bの左右上にそれぞれ配設された左眼用検査ユニット(左検査ユニット)5L及び右眼用検査ユニット(右検査ユニット)5Rを有する。この左眼用検査ユニット5Lおよび右眼用検査ユニット5Rの装置本体内には、後述する左眼用測定光学系(左眼用検査光学系)及び右眼用測定光学系(右眼用検査光学系)がそれぞれ内蔵されている。 As shown in FIG. 2, the optometry apparatus 2 includes a pedestal portion 5a, an inspection unit driving device 5b disposed on the pedestal portion 5a, and a left eye disposed on the left and right sides of the inspection unit driving device 5b. Inspection unit (left inspection unit) 5L and right-eye inspection unit (right inspection unit) 5R. In the apparatus main body of the left eye inspection unit 5L and the right eye inspection unit 5R, a left eye measurement optical system (left eye inspection optical system) and a right eye measurement optical system (right eye inspection optical system), which will be described later, are provided. System) is built in each.
 以下の説明では説明の便宜上、必要に応じて、左眼用検査ユニット5Lおよび右眼用検査ユニット5Rを単に検査ユニット5Lおよび検査ユニット5Rと省略して説明に用いる。また、左眼用測定光学系(左眼用検査光学系)及び右眼用測定光学系(右眼用検査光学系)を検査光学系と省略して説明に用いる。 In the following description, for convenience of explanation, the left-eye inspection unit 5L and the right-eye inspection unit 5R are simply abbreviated as the inspection unit 5L and the inspection unit 5R as necessary. In addition, the measurement optical system for the left eye (the inspection optical system for the left eye) and the measurement optical system for the right eye (the inspection optical system for the right eye) are abbreviated as the inspection optical system and used for the description.
 更に、以下の説明では、必要に応じて、左眼用検査ユニット5Lおよび右眼用検査ユニット5Rに用いる各部品について左眼用および右眼用の区別をしない用語を用いて説明する。 Furthermore, in the following description, the components used in the left-eye inspection unit 5L and the right-eye inspection unit 5R will be described using terms that do not distinguish between the left-eye and right-eye as necessary.
 図2に示す検眼装置2は、鉛直方向に延びて検査ユニット5L,5Rを検査ユニット駆動装置5bにそれぞれ支持させる支柱5p,5qと、被検者4の顔を検査ユニット5L,5Rに対する検査位置に支持させる顔受け装置6と、を有する。 The optometry apparatus 2 shown in FIG. 2 extends in the vertical direction, supports 5p and 5q supporting the inspection units 5L and 5R on the inspection unit driving device 5b, and the inspection position of the face of the subject 4 with respect to the inspection units 5L and 5R. And a face receiving device 6 to be supported.
 この顔受け装置6には、一対の支柱6a、6bと顎受け6dとが設けられている。一対の支柱6a、6bには円弧状の額当て6cが設けられている。顎受け6dはノブ6eにより上下方向に調節可能である。また、額当て6cも前後方向に調節可能である。 The face receiving device 6 is provided with a pair of struts 6a and 6b and a chin rest 6d. An arc-shaped forehead pad 6c is provided on the pair of columns 6a and 6b. The chin rest 6d can be adjusted up and down by a knob 6e. The forehead pad 6c can also be adjusted in the front-rear direction.
 また、検査ユニット駆動装置5bの装置本体5b1内には、図2Aに示したような左支持ベースBL,右支持ベースBRが左右に間隔をおいて配設されている。これらの左支持ベースBL及び右支持ベースBRは、XYZ駆動機構(図示せず)により、三次元方向(前後・左右・上下)にそれぞれ独立して移動可能に設けられている。そして、この左支持ベースBL,右支持ベースBRには、上述した鉛直方向に延びる支柱5p,5qが図2Aの鉛直軸(軸線)UoL,UoR周りにそれぞれ回転可能に取り付けられ(支持、保持され)ている。これらの鉛直軸(軸線)UoL,UoRは、被検者が顎受け6dに顔の顎を載せると共に額当て6cに顔の額を当てるように支持された状態で、被検者の左右の被検眼の眼球回旋軸(眼球旋回中心軸、眼球中心位置)となるように配置されている。 Further, in the apparatus main body 5b1 of the inspection unit driving apparatus 5b, a left support base BL and a right support base BR as shown in FIG. The left support base BL and the right support base BR are provided so as to be independently movable in a three-dimensional direction (front and rear, left and right, up and down) by an XYZ drive mechanism (not shown). The left support base BL and the right support base BR are respectively attached (supported and held) to the vertical support columns 5p and 5q that extend in the vertical direction around the vertical axes (axis lines) UoL and UoR in FIG. 2A. )ing. These vertical axes (axis lines) UoL and UoR are supported on the left and right subjects of the subject in a state in which the subject places his / her face on the chin rest 6d and supports the forehead on the forehead 6c. It is arranged so as to be the eyeball rotation axis (eyeball rotation center axis, eyeball center position) of the optometry.
 また、検査ユニット駆動装置5bの装置本体5b1内には、支柱5p,5qを左右の支持ベース(図示せず)に対してそれぞれ独立に水平方向に旋回駆動(回転駆動)させる旋回駆動機構(図示せず)が内蔵されている。 Further, in the apparatus main body 5b1 of the inspection unit driving apparatus 5b, a swing driving mechanism (rotating drive) for rotating the pillars 5p and 5q in a horizontal direction independently from each other with respect to the left and right support bases (not shown). (Not shown) is built-in.
 XYZ駆動機構には、例えばパルス駆動モータ等の駆動モータを備える三次元駆動装置(三次元駆動部)、及び、この三次元駆動装置で回転駆動される送りネジ等が用いられている。このXYZ駆動機構には公知の構成が採用できる。 For the XYZ drive mechanism, for example, a three-dimensional drive device (three-dimensional drive unit) including a drive motor such as a pulse drive motor, and a feed screw that is rotationally driven by the three-dimensional drive device are used. A known configuration can be adopted for the XYZ drive mechanism.
 また、旋回駆動機構には、例えばパルスモータ(旋回駆動モータ)等の旋回用駆動モータ(旋回用駆動装置)を備える旋回用駆動部と、この旋回用駆動部により作動させられるギヤと、の組み合わせが用いられている。この旋回駆動機構にも公知の構成が採用できる。 The turning drive mechanism includes a combination of a turning drive unit including a turning drive motor (turning drive device) such as a pulse motor (turning drive motor) and a gear operated by the turning drive unit. Is used. A known configuration can also be adopted for this turning drive mechanism.
 このような構成により、検査ユニット5L,5Rはそれぞれ独立して三次元方向に駆動可能になっていると共に、左右被検眼の眼球回旋軸を中心として水平方向に旋回可能になっている。 With such a configuration, the inspection units 5L and 5R can be independently driven in a three-dimensional direction, and can be turned in the horizontal direction around the eyeball rotation axis of the left and right eye to be examined.
 また、検査ユニット5L,5Rは、両眼同時の他覚眼屈折力測定及び自覚眼屈折力測定の機能を有している。 Also, the inspection units 5L and 5R have the functions of objective eye refractive power measurement and subjective eye refractive power measurement simultaneously for both eyes.
 そして、図2Aに示すように、台座部5aには被検者応答入力装置6LRが設けられている。この被検者応答入力装置6LRは、ジョイステックレバー6hと、このジョイステックレバー6hに設けられたボタン6gを有する。 And as shown to FIG. 2A, the subject response input apparatus 6LR is provided in the base part 5a. The subject response input device 6LR includes a joystick lever 6h and a button 6g provided on the joystick lever 6h.
 更に、上述した検査ユニット5Lの検査光学系は、図3~図5に示した前眼部撮影光学系30L、図3,図4に示したアライメント用の輝点像形成に用いるXYアライメント光学系31L、図5に示した固視光学系32Lおよび屈折力測定光学系33Lを有する。 Further, the above-described inspection optical system of the inspection unit 5L includes an anterior ocular segment imaging optical system 30L shown in FIGS. 3 to 5 and an XY alignment optical system used for forming a bright spot image for alignment shown in FIGS. 31L, the fixation optical system 32L and the refractive power measurement optical system 33L shown in FIG.
 検査ユニット5Rの検査光学系は、図3、図6に示した前眼部撮影光学系30R、アライメント用の輝点像形成に用いるXYアライメント光学系31R、図7に示した固視光学系32R、屈折力測定光学系33Rを有する。 The inspection optical system of the inspection unit 5R includes an anterior ocular segment imaging optical system 30R shown in FIGS. 3 and 6, an XY alignment optical system 31R used for forming a bright spot image for alignment, and a fixation optical system 32R shown in FIG. And a refractive power measurement optical system 33R.
 尚、検査ユニット5Lの検査光学系と検査ユニット5Rの検査光学系は、左右対称であると共に、構成が同一である。先ず、この検査ユニット5Lの検査光学系について説明する。
(検査ユニット5Lの検査光学系)
 この検査ユニット5Lの前眼部撮影光学系30Lは、図3に示した前眼部照明光学系34と、撮影光学系35を有する。前眼部照明光学系34は、前眼部照明用の照明光源36、絞り36a、照明光源36からの光を被検眼Eの前眼部に投影する投影レンズ37を有する。
The inspection optical system of the inspection unit 5L and the inspection optical system of the inspection unit 5R are symmetric and have the same configuration. First, the inspection optical system of this inspection unit 5L will be described.
(Inspection optical system of inspection unit 5L)
The anterior ocular segment imaging optical system 30L of the inspection unit 5L includes the anterior ocular segment illumination optical system 34 and the imaging optical system 35 shown in FIG. The anterior segment illumination optical system 34 includes an illumination light source 36 for anterior segment illumination, a diaphragm 36a, and a projection lens 37 that projects light from the illumination light source 36 onto the anterior segment of the eye E to be examined.
 撮影光学系35は、被検眼Eの前眼部からの反射光が入射するプリズムP、対物レンズ38、ダイクロイックミラー39、絞り40、ダイクロイックミラー41、リレーレンズ42、43、ダイクロイックミラー44、CCDレンズ(結像レンズ)45、CCD(撮像部)46を有する。 The imaging optical system 35 includes a prism P on which reflected light from the anterior segment of the eye E is incident, an objective lens 38, a dichroic mirror 39, an aperture 40, a dichroic mirror 41, relay lenses 42 and 43, a dichroic mirror 44, and a CCD lens. (Imaging lens) 45 and CCD (imaging part) 46 are provided.
 XYアライメント光学系31Lは、アライメント照明光学系47、アライメント受光光学系としての撮影光学系35を有する。アライメント照明光学系47は、図4に示したように、アライメント用の照明光源48、アライメント視標としての絞り49、リレーレンズ50、ダイクロイックミラー41、絞り40、ダイクロイックミラー39、対物レンズ38、プリズムPを有する。 The XY alignment optical system 31L includes an alignment illumination optical system 47 and a photographing optical system 35 as an alignment light receiving optical system. As shown in FIG. 4, the alignment illumination optical system 47 includes an alignment illumination light source 48, an aperture 49 as an alignment target, a relay lens 50, a dichroic mirror 41, an aperture 40, a dichroic mirror 39, an objective lens 38, and a prism. P.
 固視光学系32Lは、図5に示すように、被検眼を固視させるための固視標や自覚式検眼用のチャート(斜位検査用の十字斜位チャートを含む)等の視標(左視標)を表示させるカラーの液晶表示器(左画像表示装置である左眼用液晶表示器)53、ハーフミラー54、コリメータレンズ55、ロータリープリズム55A、55B、反射ミラー56、移動レンズ57、リレーレンズ58、59、クロスシリンダレンズ(VCCレンズ)59A、59B、反射ミラー60、ダイクロイックミラー61、39、対物レンズ38、プリズム(ミラーでも良い)Pを有する。 As shown in FIG. 5, the fixation optical system 32 </ b> L is a target such as a fixation target for fixing the eye to be inspected or a chart for subjective optometry (including a cross oblique chart for oblique examination). Color liquid crystal display (left-eye liquid crystal display as a left image display device) 53, a half mirror 54, a collimator lens 55, rotary prisms 55A and 55B, a reflection mirror 56, a moving lens 57, Relay lenses 58 and 59, cross cylinder lenses (VCC lenses) 59A and 59B, reflection mirror 60, dichroic mirrors 61 and 39, objective lens 38, and prism (which may be a mirror) P are included.
 ロータリープリズム55A,55Bやクロスシリンダレンズ(VCCレンズ)59A,59B等には特許文献1に開示されたような公知のものが用いられる。 As the rotary prisms 55A and 55B and the cross cylinder lenses (VCC lenses) 59A and 59B, known ones as disclosed in Patent Document 1 are used.
 固視光学系32Lにおいては、移動レンズ57が被検眼の屈折力に応じてパルスモータPMaにより光軸方向に移動可能となっている。これにより、被検眼に固視雲霧させることができる。 In the fixation optical system 32L, the moving lens 57 can be moved in the optical axis direction by the pulse motor PMa according to the refractive power of the eye to be examined. Thereby, it is possible to cause the eye to be inspected to fixate.
 その固視光学系32Lには、図5に示した融像視標提示光学系32L′が設けられている。融像視標提示光学系32L′は、照明光源としてのLED53A、コリメータレンズ53B、融像枠チャート53D、全反射ミラー53Eを備えている。 The fixation optical system 32L is provided with a fusion target presenting optical system 32L 'shown in FIG. The fusion target presenting optical system 32L ′ includes an LED 53A as an illumination light source, a collimator lens 53B, a fusion frame chart 53D, and a total reflection mirror 53E.
 尚、図5の検査光学系を用いてこの発明の視標表示位置の調整操作を実行することができるが、図5の融像視標提示光学系32L′及び液晶表示器53を省略して、これらに代えて図7Aに示したように3LCD300を画像表示装置として設けることもできる。この3LCD300は、3つのLCD(液晶表示器)を組み合わせて、3つのLCD(液晶表示器)によりカラーで視標等の画像を表示できるようにしたものである。上述したロータリープリズム55A,55Bを図7Aのように省略することもできる。尚、図7Aでは、図5,図7の光学部品の一部を概略的に図示している。このような図7Aの構成とした場合には、光学部品を多数省略できるので、全体を小型化できるが、以下、図5,図7の検査光学系を用いた場合においてこの発明の視標表示位置の調整操作を説明する。 Although the target display position adjustment operation of the present invention can be executed using the inspection optical system of FIG. 5, the fusion target presentation optical system 32L ′ and the liquid crystal display 53 of FIG. 5 are omitted. Alternatively, as shown in FIG. 7A, the 3LCD 300 can be provided as an image display device. The 3LCD 300 is a combination of three LCDs (liquid crystal displays) so that images such as targets can be displayed in color on the three LCDs (liquid crystal displays). The rotary prisms 55A and 55B described above can be omitted as shown in FIG. 7A. In FIG. 7A, a part of the optical components of FIGS. 5 and 7 is schematically shown. In the case of such a configuration of FIG. 7A, since a large number of optical components can be omitted, the whole can be reduced in size. However, in the case of using the inspection optical system of FIGS. The position adjustment operation will be described.
 屈折力測定光学系33Lは、図5に示した測定光束投影光学系62、測定光束受光光学系63を有する。測定光束投影光学系62は、赤外LED等の測定用光源64、コリメータレンズ65、円錐プリズム66、リング視標67、リレーレンズ68、リング状絞り69、中央に透孔70aが形成された穴あきプリズム70、ダイクロイックミラー61、39、対物レンズ38、プリズムPを有する。 The refractive power measurement optical system 33L includes the measurement light beam projection optical system 62 and the measurement light beam reception optical system 63 shown in FIG. The measurement light beam projection optical system 62 includes a measurement light source 64 such as an infrared LED, a collimator lens 65, a conical prism 66, a ring target 67, a relay lens 68, a ring-shaped stop 69, and a hole in which a through hole 70a is formed in the center. A perforated prism 70, dichroic mirrors 61 and 39, an objective lens 38, and a prism P are included.
 また、測定光束受光光学系63は、被検眼Eの眼底Efからの反射光を受光するプリズムP、対物レンズ38、ダイクロイックミラー39、61、穴あきプリズム70の透孔70a、反射ミラー71、リレーレンズ72、移動レンズ73、反射ミラー74、ダイクロイックミラー44、CCDレンズ45、CCD46を有する。
(検査ユニット5Rの検査光学系)
 また、右眼用の検査ユニット5Rの検査光学系は、上述したように検査ユニット5Lの検査光学系と同一であるので、検査ユニット5Lに用いた符号を付して、その詳細な説明は省略する。尚、右眼用の検査ユニット5Rの検査光学系に用いられる液晶表示器53は、右眼用液晶表示器(右画像表示装置)であり、固視標や自覚式検眼用のチャート(斜位検査用の十字斜位チャートを含む)等の視標(右視標)が表示される。
(XYZ駆動機構)
 検査ユニット5L,5Rは、上述したように左右のXYZ駆動機構によりそれぞれ三次元方向に独立に駆動されるようになっている。この左右のXYZ駆動機構は、図8に示した左三次元駆動装置と、右三次元駆動装置を備えている。
The measurement light beam receiving optical system 63 includes a prism P that receives reflected light from the fundus oculi Ef of the eye E, an objective lens 38, dichroic mirrors 39 and 61, a through hole 70a of a perforated prism 70, a reflection mirror 71, and a relay. A lens 72, a moving lens 73, a reflection mirror 74, a dichroic mirror 44, a CCD lens 45, and a CCD 46 are included.
(Inspection optical system of inspection unit 5R)
Further, since the inspection optical system of the right-eye inspection unit 5R is the same as the inspection optical system of the inspection unit 5L as described above, the reference numerals used for the inspection unit 5L are attached and detailed description thereof is omitted. To do. The liquid crystal display 53 used in the inspection optical system of the right-eye inspection unit 5R is a right-eye liquid crystal display (right image display device), and a fixation target or a chart for subjective optometry (oblique position). A visual target (right visual target) such as a cross oblique chart for inspection) is displayed.
(XYZ drive mechanism)
As described above, the inspection units 5L and 5R are independently driven in the three-dimensional direction by the left and right XYZ drive mechanisms. The left and right XYZ drive mechanisms include the left three-dimensional drive device and the right three-dimensional drive device shown in FIG.
 この左三次元駆動装置は、左ユニット駆動装置Ldと、この左ユニット駆動装置Ldを作動制御するサブ(補助)の演算制御回路62′(L)を有する。また、右三次元駆動装置は、右ユニット駆動装置Rdと、この右ユニット駆動装置Rdを作動制御するサブ(補助)の演算制御回路62′(R)を有する。 The left three-dimensional drive device includes a left unit drive device Ld and a sub (auxiliary) arithmetic control circuit 62 '(L) for controlling the operation of the left unit drive device Ld. The right three-dimensional drive device also includes a right unit drive device Rd and a sub (auxiliary) arithmetic control circuit 62 '(R) that controls the operation of the right unit drive device Rd.
 また、左ユニット駆動装置Ldは、支持ベース(図示せず)を左右方向(X方向)に駆動させる駆動装置(X駆動装置)20、支持ベース(図示せず)を上下方向(Y方向)に駆動させる駆動装置(Y駆動装置)24、及び支持ベース(図示せず)を前後方向(Z方向)に駆動させる駆動装置(Z駆動装置)26を備えている。これらの各駆動装置20,24,26は、パルス駆動モータ等の駆動モータ及びこの駆動モータ回転駆動される送りネジをそれぞれ備えている。
(旋回駆動機構)
 更に、上述したように検査ユニット5L,5Rは、図8の左右の旋回駆動機構(水平旋回駆動装置)28,28によりそれぞれ図2の支柱5p,5qの鉛直軸の周りに旋回駆動されるようになっている。
Further, the left unit drive device Ld includes a drive device (X drive device) 20 that drives a support base (not shown) in the left-right direction (X direction), and a support base (not shown) in the vertical direction (Y direction). A driving device (Y driving device) 24 for driving and a driving device (Z driving device) 26 for driving a support base (not shown) in the front-rear direction (Z direction) are provided. Each of these drive devices 20, 24, and 26 includes a drive motor such as a pulse drive motor and a feed screw that is rotationally driven by the drive motor.
(Swivel drive mechanism)
Further, as described above, the inspection units 5L and 5R are swiveled around the vertical axes of the columns 5p and 5q in FIG. 2 by the left and right swivel drive mechanisms (horizontal swivel drive devices) 28 and 28 in FIG. It has become.
 この各旋回駆動機構(水平旋回駆動装置)28,28には、上述したようにパルスモータ(旋回駆動モータ)等の旋回用駆動手段と、この旋回用駆動手段により作動させられるギヤとの組み合わせが用いられている。
<制御回路>
 更に、検査ユニット5L,5Rを備える図2の検眼装置2は、図8に示した制御系である制御回路を備えている。この制御回路は、上述した左右のサブ(補助)の演算制御回路62′(L),62′(R)と、サブの演算制御回路62′(L),62′(R)を作動制御するメインの演算制御回路63′を備えている。
(演算制御回路62′(L),62′(R))
 これらのサブ(補助)の演算制御回路62′(L),62′(R)は、メインの演算制御回路63′により動作制御されて、駆動装置20,24,26,28の図示しないパルスモータ等の駆動モータを駆動制御するようになっている。
Each of the turning drive mechanisms (horizontal turning drive devices) 28, 28 has a combination of a turning drive means such as a pulse motor (turning drive motor) and a gear operated by the turning drive means as described above. It is used.
<Control circuit>
Further, the optometry apparatus 2 of FIG. 2 including the inspection units 5L and 5R includes a control circuit which is the control system shown in FIG. This control circuit controls the operation of the left and right sub (auxiliary) arithmetic control circuits 62 '(L) and 62' (R) and the sub arithmetic control circuits 62 '(L) and 62' (R). A main arithmetic control circuit 63 'is provided.
(Calculation control circuit 62 '(L), 62' (R))
These sub (auxiliary) arithmetic control circuits 62 ′ (L) and 62 ′ (R) are controlled by the main arithmetic control circuit 63 ′ so that the pulse motors (not shown) of the driving devices 20, 24, 26 and 28 are not shown. The drive motor is controlled to be driven.
 更に、図8に示したサブ(補助)の演算制御回路62′(L),62′(R)は、前眼部観察用の照明光源36、液晶表示器53、測定用光源64、パルスモータPMa等を作動制御するようになっている。また、サブ(補助)の演算制御回路62′(L),62′(R)にはCCD46からの検出信号が入力される。 Further, the sub (auxiliary) arithmetic control circuits 62 ′ (L) and 62 ′ (R) shown in FIG. 8 include an anterior illumination light source 36, a liquid crystal display 53, a measurement light source 64, and a pulse motor. PMa and the like are controlled to operate. Further, detection signals from the CCD 46 are input to the sub (auxiliary) arithmetic control circuits 62 ′ (L) and 62 ′ (R).
 また、上述したように検査ユニット5L,5Rは内部に左右の検査光学系をそれぞれ有していて、この検査ユニット5L,5Rが初期位置にセットされたときには、左右の検査光学系の光軸のうちプリズムP,Pより手前側(顔受け装置6側)の光軸が互いに平行になるように設定されている。 Further, as described above, the inspection units 5L and 5R respectively have left and right inspection optical systems, and when the inspection units 5L and 5R are set at the initial positions, the optical axes of the left and right inspection optical systems are set. Of these, the optical axes on the front side (face receiving device 6 side) of the prisms P and P are set to be parallel to each other.
 この初期位置は、被検者の左右眼に、検査ユニット5L,5Rの検査光学系を介して左右の検査ユニット5L,5R内の液晶表示器53,53を視認させたときに、左右の被検眼の視軸が互いに平行となって無限遠方視できる状態になるように設定される。 This initial position is determined when the left and right eyes of the subject visually recognize the liquid crystal displays 53 and 53 in the left and right inspection units 5L and 5R via the inspection optical systems of the inspection units 5L and 5R. It is set so that the visual axes of the optometry are parallel to each other and can be viewed at infinity.
 また、左右の検査ユニット5L、5Rに設けられた回転角度検出センサPsL,PsRにより支柱5p、5qの回転角等を検出することで、検査ユニット5L,5Rが初期位置にセットされていることを検出することができる。これらの回転角度検出センサPsL,PsRからの初期位置検出信号はサブ(補助)の演算制御回路62′(L),62′(R)にそれぞれ入力されるようになっている。これらの回転角度検出センサPsL,PsRには、ロータリーエンコーダやポテンショメータ等を用いることができる。 Further, the rotation angle detection sensors PsL and PsR provided on the left and right inspection units 5L and 5R detect the rotation angles of the columns 5p and 5q, thereby confirming that the inspection units 5L and 5R are set at the initial positions. Can be detected. Initial position detection signals from these rotation angle detection sensors PsL and PsR are inputted to sub (auxiliary) arithmetic control circuits 62 '(L) and 62' (R), respectively. A rotary encoder, a potentiometer, or the like can be used as these rotation angle detection sensors PsL and PsR.
 尚、上述したようにサブ(補助)の演算制御回路62′(L),62′(R)は、それぞれ同じ構成要素等を作動制御するようになっている。従って、以下に説明する検査ユニット5L,5Rの動作説明において、サブ(補助)の演算制御回路62′(L),演算制御回路62′(R)における(L)や(R)等の記載は説明の必要に応じて用いる。
(演算制御回路63′)
(a).接続関係
 演算制御回路63′は、図8に示すように、検査ユニット5L,5Rの演算制御回路62′、62′を制御するようになっている。
As described above, the sub (auxiliary) arithmetic control circuits 62 '(L) and 62' (R) control the operation of the same components and the like. Accordingly, in the description of the operation of the inspection units 5L and 5R described below, the description of (L), (R), etc. in the sub (auxiliary) arithmetic control circuit 62 '(L) and arithmetic control circuit 62' (R) Used as needed for explanation.
(Calculation control circuit 63 ')
(A). Connection Relationship As shown in FIG. 8, the arithmetic control circuit 63 ′ controls the arithmetic control circuits 62 ′ and 62 ′ of the inspection units 5L and 5R.
 また、図2に示したように、台座部5aには、被検者応答入力装置6LRが被検者応答部として設けられている。この被検者応答入力装置6LRは、ジョイステックレバー6hと、ジョイステックレバー6hの上端部に設けられたボタン(スイッチ)6gを有する。このジョイステックレバー6hは、傾動操作可能かつ軸線周りに回転可能に設けられている。また、ボタン(スイッチ)6gは、メニューや視標の選択や撮影等に用いる。しかも、被検者応答入力装置6LRは、図8に示したように、ジョイステックレバー6hの傾動操作を検出する傾動検出センサ12b、ジョイステックレバー6hの軸線回りへの回動操作を検出する回転センサ12cを有する。この被検者応答入力装置6LRは、図8の演算制御回路63′に接続されていて、ボタン6gのON・OFF操作信号,傾動検出センサ12bからの傾動信号,回転センサ12cからの回転信号等が演算制御回路63′に入力されるようになっている。 In addition, as shown in FIG. 2, the pedestal portion 5a is provided with a subject response input device 6LR as a subject response portion. This subject response input device 6LR has a joystick lever 6h and a button (switch) 6g provided at the upper end of the joystick lever 6h. The joystick lever 6h is provided so as to be tiltable and rotatable about an axis. The button (switch) 6g is used for selection of menus and targets, photographing, and the like. In addition, as shown in FIG. 8, the subject response input device 6LR includes a tilt detection sensor 12b that detects a tilt operation of the joystick lever 6h, and a rotation that detects a rotation operation of the joystick lever 6h about the axis. It has a sensor 12c. This patient response input device 6LR is connected to the arithmetic control circuit 63 'of FIG. 8, and is an ON / OFF operation signal of the button 6g, a tilt signal from the tilt detection sensor 12b, a rotation signal from the rotation sensor 12c, and the like. Is input to the arithmetic control circuit 63 '.
 更に、図8に示した演算制御回路63′には、視標操作装置(視標操作部)CLRが接続されている。そして、この視標操作装置CLRには、視標選択部81と視標表示状態補正部82とが備えられており、さらに、この視標表示状態補正部82には、視標サイズ補正部83と、視標コントラスト補正部84と、眼位ズレ補正部85と、が備えられている。
また、この視標操作装置CLRには、図2Aに示したようなパソコン等からなる入力操作装置Pcが用いられている。そして、この入力操作装置Pcは、表示部Dspと検者操作部Kを有する。この検者操作部Kは、カーソルボタンや複数の選択ボタン等を備えるキーボードKbや、ダイヤルDaを有する。なお、図8の視標選択部81及び視標表示状態補正部82(視標サイズ補正部83、視標コントラスト補正部84、眼位ずれ補正部85)は視標操作装置CLRに備えられているが、図8Aに示すように、これらは演算制御回路63′に備えられている構成とすることも可能である。
Furthermore, a target control device (target control unit) CLR is connected to the arithmetic control circuit 63 ′ shown in FIG. The target operation device CLR includes a target selection unit 81 and a target display state correction unit 82. The target display state correction unit 82 further includes a target size correction unit 83. And a target contrast correction unit 84 and an eye position correction unit 85 are provided.
In addition, an input operation device Pc composed of a personal computer or the like as shown in FIG. 2A is used for the target operation device CLR. The input operation device Pc includes a display unit Dsp and an examiner operation unit K. The examiner operation unit K includes a keyboard Kb including a cursor button and a plurality of selection buttons, and a dial Da. Note that the target selection unit 81 and the target display state correction unit 82 (target size correction unit 83, target contrast correction unit 84, eye misalignment correction unit 85) of FIG. 8 are provided in the target operation device CLR. However, as shown in FIG. 8A, these may be provided in the arithmetic control circuit 63 ′.
 また、演算制御回路63′にはモニター装置64qが接続されている。このモニター装置64qは、図2に示したように台座部5aに立設された支柱64sに取り付けられている。そのモニター装置64qは、そのモニター画面64q′に検査データやチャート,被検眼前眼部像など検査に必要な情報を表示する。 Further, a monitor device 64q is connected to the arithmetic control circuit 63 ′. As shown in FIG. 2, the monitor device 64q is attached to a column 64s provided upright on the pedestal portion 5a. The monitor device 64q displays information necessary for the examination such as examination data, a chart, and an anterior eye image of the eye to be examined on the monitor screen 64q ′.
 更に、演算制御回路63′には、視標記録部としてのメモリMが接続されている。このメモリMには、視標として用いる風景チャートや、屈折力の測定に用いる多数の視標や、両眼視機能や斜位検査等に用いる多数の視標やチャート等その他が記録(記憶)されている。 Further, a memory M as a target recording unit is connected to the arithmetic control circuit 63 ′. This memory M records (stores) a landscape chart used as a visual target, a large number of visual targets used for refractive power measurement, a large number of visual targets and charts used for binocular vision function, oblique inspection, and the like. Has been.
 例えば、斜位検査等に用いる視標としては例えば図19に示したような十字斜位テストチャートを用いることができる。この十字斜位テストチャートには、左眼用ズレ検出用視標(左眼用斜位検出視標)Lmおよび右眼用ズレ検出視標(右眼用斜位検出視標)Rmを用いる。ここでは、左眼用ズレ検出用視標Lmは横に間隔をおいた一対の横視標線Lm1,Lm2からなり、右眼用ズレ検出視標Rmは縦に間隔をおいた一対の縦視標線Rm1,Rm2からなっている。そして、左眼用ズレ検出用視標Lmは検査ユニット5Lの液晶表示器53に表示され、右眼用ズレ検出用視標Rmは検査ユニット5Rの液晶表示器53に表示されるようになっている。 For example, as a target used for the oblique inspection, for example, a cross oblique test chart as shown in FIG. 19 can be used. In this cross oblique test chart, a left eye misalignment detection target (left eye oblique detection target) Lm and a right eye misalignment detection target (right eye oblique detection target) Rm are used. Here, the left-eye shift detection target Lm is composed of a pair of horizontal target lines Lm1 and Lm2 spaced laterally, and the right-eye shift detection target Rm is a pair of vertical views spaced vertically. It consists of marked lines Rm1, Rm2. The left-eye deviation detection target Lm is displayed on the liquid crystal display 53 of the inspection unit 5L, and the right-eye deviation detection target Rm is displayed on the liquid crystal display 53 of the inspection unit 5R. Yes.
 尚、左眼用ズレ検出用視標Lmを検査ユニット5Rの液晶表示器53に表示させ、右眼用ズレ検出用視標Rmを検査ユニット5Lの液晶表示器53に表示させることもできる。また、斜位検査等に用いる視標としては、十字斜位テストチャートに限らず、従来から用いられているようなその他の表示を用いることもできるが、以下の説明では図19に示した左眼用ズレ検出視標Lm,右眼用ズレ検出視標Rmを用いる。 It should be noted that the left-eye deviation detection target Lm can be displayed on the liquid crystal display 53 of the inspection unit 5R, and the right-eye deviation detection target Rm can be displayed on the liquid crystal display 53 of the inspection unit 5L. In addition, the target used for the oblique position inspection or the like is not limited to the cross oblique position test chart, but other displays as used in the past can be used. In the following description, the left side shown in FIG. An eye misalignment detection target Lm and a right eye misalignment detection target Rm are used.
 そして、これらの視標やチャート等は、図8に示すように、視標選択部81と視標表示状態補正部82を兼用する視標操作装置CLRにより選択可能となっていると共に、表示位置等を調整操作可能となっている。 As shown in FIG. 8, these targets, charts, and the like can be selected by a target operation device CLR that serves both as a target selection unit 81 and a target display state correction unit 82, and the display position. Etc. can be adjusted.
 尚、この視標操作装置CLRとしては、ダイヤル式(ダイヤルDa)のものを用いても良いし、キーボードKbのカーソルキーを用いても良いし、マウスやタッチペン等を用いても良いし、タッチパネルを用いても良い。また、視標やチャート等は、検者が任意に選択できる他、検眼プログラム等に従って順次選択表示されるようになっている。この検眼プログラム等は、例えば演算制御回路63′の図示しないメモリに記録(記憶)されている。更に、視標操作装置CLRは一つで左右の液晶表示器53,53の視標の操作を検眼プログラムに従って行うことができるようになっているが、左右の液晶表示器53,53の視標の操作を別々の視標操作装置で行うようにすることもできる。 In addition, as this optotype operating device CLR, a dial type (dial Da) may be used, a cursor key of the keyboard Kb may be used, a mouse, a touch pen, or the like may be used, or a touch panel. May be used. In addition, the test target, chart, and the like can be arbitrarily selected by the examiner, and are sequentially selected and displayed according to the optometry program. The optometry program or the like is recorded (stored) in a memory (not shown) of the arithmetic control circuit 63 ', for example. Further, the single optotype operating device CLR can operate the optotypes of the left and right liquid crystal displays 53 and 53 according to the optometry program. It is also possible to perform the above operations with separate target control devices.
 以下の説明では、一つの視標操作装置CLR及び被検者応答入力装置6LRのジョイステックレバー6hとボタン6gの操作による視標操作の例を説明する。
(b).初期設定の操作
 ところで、検査ユニット5L,5Rの各部品や部品組付部、この検査ユニット5L,5R内に部品の一部としてそれぞれ組み込まれた液晶表示器53,53等の部品は、寸法公差の範囲内で高い精度で製造されている。しかし、寸法公差の範囲内とはいっても部品組付部や液晶表示器53等には寸法バラツキが生じる。このような部品の寸法バラツキに加えて、この様な部品を検査ユニット5L,5R等に組み込むときに生じる調整バラツキが特に問題となる。即ち、検眼装置の小型化に伴い液晶表示器53を小型化して、この液晶表示器53に表示されるチャート部を小さくすると共に、このチャート部を光学系のレンズを介して拡大して被検者に表示しているため、液晶表示器53,53の検査ユニット5L,5Rへの組付時に液晶表示器53の表示中心と検査ユニット5L(5R)の光学系の光軸とを一致させる調整(組付調整)が非常に難しくなっている。
In the following description, an example of a target operation by operating the joystick lever 6h and the button 6g of one target control device CLR and the subject response input device 6LR will be described.
(B). By the way, the parts of the inspection units 5L and 5R, the parts assembly part, and the parts such as the liquid crystal display units 53 and 53 incorporated as part of the parts in the inspection units 5L and 5R have dimensional tolerances. It is manufactured with high accuracy within the range. However, even if it is within the range of dimensional tolerances, dimensional variations occur in the component assembly portion, the liquid crystal display 53, and the like. In addition to such dimensional variations of components, adjustment variations that occur when such components are incorporated into the inspection units 5L, 5R, etc. are particularly problematic. That is, the size of the liquid crystal display 53 is reduced with the miniaturization of the optometry apparatus, the chart portion displayed on the liquid crystal display 53 is reduced, and the chart portion is enlarged through the lens of the optical system. The display center is adjusted so that the display center of the liquid crystal display 53 coincides with the optical axis of the optical system of the inspection unit 5L (5R) when the liquid crystal displays 53 and 53 are assembled to the inspection units 5L and 5R. (Assembly adjustment) is very difficult.
 このような部品組付部に液晶表示器53を組み付けた場合に、液晶表示器53や部品組付部の寸法バラツキのために液晶表示器53の表示中心と検査ユニット5L(5R)内の検査光学系の光軸とが光軸に対して直交する方向にずれる。 When the liquid crystal display 53 is assembled to such a component assembling part, the display center of the liquid crystal display 53 and the inspection in the inspection unit 5L (5R) are caused due to dimensional variations of the liquid crystal display 53 and the component assembling part. The optical axis of the optical system is shifted in a direction perpendicular to the optical axis.
 また、検査ユニット5L(5R)が水平方向に所定角度だけ旋回するように、旋回駆動機構(水平回転駆動装置)28,28の旋回用駆動モータ(図示せず)を演算制御回路63′により所定の駆動パルスで駆動制御して停止させたときにも、水平回転駆動装置28のギヤ(図示せず)や旋回用駆動モータ等の個体差により検査ユニット5L(5R)の停止位置が所定角度からずれる。 Further, a turning drive motor (not shown) of the turning drive mechanisms (horizontal rotation drive devices) 28, 28 is predetermined by the arithmetic control circuit 63 'so that the inspection unit 5L (5R) turns by a predetermined angle in the horizontal direction. Even when the drive pulse is controlled and stopped, the inspection unit 5L (5R) stops from a predetermined angle due to individual differences in the gear (not shown) of the horizontal rotation drive device 28 and the turning drive motor. Shift.
 このようなずれ(ズレ)は、検査ユニット5L,5Rに対してそれぞれ生じるため、後述のように、検査ユニット5L,5Rに対してそれぞれズレの補正を行う。 Since such a deviation (displacement) occurs in each of the inspection units 5L and 5R, the displacement is corrected for each of the inspection units 5L and 5R as described later.
 なお、演算制御回路63′は、検眼装置2の電源をONさせて起動させたときに、モニター装置64qのモニター画面(表示部)64q′に操作メニュー等を表示させるようになっている。そして、この操作メニューには、初期設定メニュー等も含まれている。 Note that the arithmetic control circuit 63 ′ displays an operation menu or the like on the monitor screen (display unit) 64q ′ of the monitor device 64q when the optometry apparatus 2 is turned on and started. The operation menu includes an initial setting menu and the like.
 しかも、演算制御回路63′は、初期表示設定のために操作メニューから初期設定メニューをジョイステックレバー6hの傾動操作で選択すると、モニター画面64q′に初期設定画面を表示させるようになっている。この初期設定画面には、遠方視状態の表示位置補正メニュー(項目)、輻輳状態の表示位置補正メニュー(項目)等を表示させることができる。 Moreover, the arithmetic control circuit 63 'displays the initial setting screen on the monitor screen 64q' when the initial setting menu is selected by tilting the joystick lever 6h from the operation menu for initial display setting. On this initial setting screen, a display position correction menu (item) in the far vision state, a display position correction menu (item) in the congestion state, and the like can be displayed.
 また、モニター画面64q′には、表示位置補正メニュー(項目)を選択したときに、左の検査ユニット5Lの液晶表示器53に表示される視標等の画像の表示中心位置を補正するための左表示位置補正メニュー(項目)、右の検査ユニット5Rの液晶表示器53に表示される視標等の画像の表示中心位置を補正するための右側表示位置補正メニュー(項目)等を表示させることができる。 On the monitor screen 64q ′, when the display position correction menu (item) is selected, the display center position of an image such as a target displayed on the liquid crystal display 53 of the left inspection unit 5L is corrected. Display the left display position correction menu (item), the right display position correction menu (item), etc., for correcting the display center position of the image such as the target displayed on the liquid crystal display 53 of the right inspection unit 5R. Can do.
 そして、演算制御回路63′は、ジョイステックレバー6hの傾動操作により補正メニュー(項目)から左表示位置補正メニュー(項目)を選択すると、サブ(補助)の演算制御回路62′(L)を動作制御して、サブ(補助)の演算制御回路62′(L)により左の検査ユニット5Lの液晶表示器53に初期の表示中心位置を示すマーク基準点として表示させる。 When the left display position correction menu (item) is selected from the correction menu (item) by tilting the joystick lever 6h, the calculation control circuit 63 'operates the sub (auxiliary) calculation control circuit 62' (L). Then, the sub (auxiliary) arithmetic control circuit 62 '(L) displays the mark reference point indicating the initial display center position on the liquid crystal display 53 of the left inspection unit 5L.
 一方、演算制御回路63′は、ジョイステックレバー6hの傾動操作により補正メニュー(項目)から右表示位置補正メニュー(項目)を選択すると、演算制御回路62′(R)を動作制御して、演算制御回路62′(R)により右の検査ユニット5Lの液晶表示器53に初期の表示中心位置を示すマーク表示させる。 On the other hand, when the right display position correction menu (item) is selected from the correction menu (item) by tilting the joystick lever 6h, the calculation control circuit 63 'controls the operation of the calculation control circuit 62' (R) to perform calculation. The control circuit 62 ′ (R) displays a mark indicating the initial display center position on the liquid crystal display 53 of the right inspection unit 5L.
 このような表示状態において演算制御回路63′は、ジョイステックレバー6hの傾動操作で表示中心位置を示すマークを移動制御すると共に、移動制御後にボタン6gを押すことで表示中心位置を示すマークを移動位置に設定することができるようになっている。尚、この初期表示設定の操作は、パソコン等のマウスやキーボード等の入力部で行うこともできる。
<検眼装置2と他の機器との接続関係>
 検眼装置2には、他の機器としてレンズメータ1000が接続されている。このレンズメータ1000の接続態様は図9A~図9Cのいずれでも良い。そのレンズメータ1000の外観が例えば図10に示されている。このレンズメータ1000は眼鏡1006の左右のフレーム入り眼鏡レンズ1006L、1006Rの光学特性を同時に測定する機能を有する。
In such a display state, the arithmetic control circuit 63 'moves and controls the mark indicating the display center position by tilting the joystick lever 6h, and moves the mark indicating the display center position by pressing the button 6g after the movement control. The position can be set. The initial display setting operation can also be performed by an input unit such as a mouse or a keyboard of a personal computer.
<Connection between the optometry apparatus 2 and other devices>
A lens meter 1000 is connected to the optometry apparatus 2 as another device. The lens meter 1000 may be connected in any of FIGS. 9A to 9C. The appearance of the lens meter 1000 is shown in FIG. 10, for example. The lens meter 1000 has a function of simultaneously measuring the optical characteristics of the left and right framed spectacle lenses 1006L and 1006R of the spectacles 1006.
 この図10において、1007L、1007Rは眼鏡レンズ1006L、1006Rの押さえレバーである。眼鏡1006をこのレンズメータ1000の眼鏡セット台1001に置くと、眼鏡セット台1001に設置の検出ピン(図示を略す)が眼鏡1006のセットを検出する。 In FIG. 10, reference numerals 1007L and 1007R denote pressing levers for the spectacle lenses 1006L and 1006R. When the eyeglasses 1006 are placed on the eyeglass set base 1001 of the lens meter 1000, a detection pin (not shown) installed on the eyeglass set base 1001 detects the set of eyeglasses 1006.
 これにより、自動的に押さえレバー1007L、1007Rが下降して、押さえ爪1008L、1008Rにより眼鏡1006が固定され、レンズメータ1000に内蔵の測定光学系により左右の眼鏡レンズ1006L、1006Rの光学特性データが同時に得られる。また、左右の眼鏡レンズ1006L、1006Rの光学特性データに基づき、被検者(眼鏡装用者)の瞳孔間距離であるPD値が得られる。 As a result, the holding levers 1007L and 1007R are automatically lowered, and the glasses 1006 are fixed by the holding claws 1008L and 1008R. It is obtained at the same time. Further, based on the optical characteristic data of the left and right eyeglass lenses 1006L and 1006R, a PD value that is the distance between the pupils of the subject (eyeglass wearer) is obtained.
 このレンズメータ1000の測定光学系の構造については、原理的には2つの公知の測定光学系を用いて構成することができ、詳細構成は例えば特開2002-202219号に記載されている。本発明の実施の形態では、図10に示すレンズメータとしたが、PD測定機能を有する公知のオートレンズメータを用いることもできる。 The structure of the measurement optical system of the lens meter 1000 can in principle be configured using two known measurement optical systems, and the detailed configuration is described in, for example, Japanese Patent Application Laid-Open No. 2002-202219. In the embodiment of the present invention, the lens meter shown in FIG. 10 is used, but a known auto lens meter having a PD measurement function can also be used.
 そのレンズメータ1000の眼鏡レンズの光学特性データは、演算制御回路63′に入力される。演算制御回路63′はモニター装置64qのモニター画面64q′に眼鏡レンズの光学特性値、PD値を表示させる役割も果たす。このPD値を用いて、眼鏡レンズ装用者の場合には、検査ユニット5L,5Rの初期設定を行うようにするのが望ましい。
[作用]
 次に、このような構成の検眼装置の演算制御回路63′による制御作用について説明する。
(1).検査ユニット5L,5Rの検査光学系の初期位置へのセット
 この様な構成において、検眼装置2の左の検査ユニット5Lの検査光学系の光軸のうちプリズムPより手前側(顔受け装置6側)の光軸を左顔受け側光軸部とし、右の検査ユニット5Rの検査光学系の光軸のうちプリズムPより手前側(顔受け装置6側)の光軸を右顔受け側光軸部として、検査ユニット5L,5Rの検査光学系の初期位置のセット状態を説明する。
The optical characteristic data of the spectacle lens of the lens meter 1000 is input to the arithmetic control circuit 63 ′. The arithmetic control circuit 63 'also plays a role of displaying the optical characteristic value and PD value of the spectacle lens on the monitor screen 64q' of the monitor device 64q. In the case of a spectacle lens wearer, it is desirable to perform initial setting of the inspection units 5L and 5R using this PD value.
[Action]
Next, the control action by the arithmetic control circuit 63 'of the optometry apparatus having such a configuration will be described.
(1). Setting of inspection units 5L and 5R to the initial position of the inspection optical system In such a configuration, the optical axis of the inspection optical system of the left inspection unit 5L of the optometry apparatus 2 is closer to the front side than the prism P (the face receiving device 6 side). ) Is the left face receiving side optical axis portion, and the optical axis on the near side (face receiving device 6 side) from the prism P among the optical axes of the inspection optical system of the right inspection unit 5R is the right face receiving side optical axis. As a part, the setting state of the initial position of the inspection optical system of the inspection units 5L and 5R will be described.
 この検眼装置2の電源をONさせて起動させると演算制御回路63′は、XYZ駆動機構の左ユニット駆動装置Ld及び右ユニット駆動装置Rdを駆動制御すると共に、左右の水平回転駆動装置28,28を駆動制御して、検査ユニット5L,5Rを初期位置にセットする(初期位置に復帰させる)。 When the optometry apparatus 2 is turned on and started up, the arithmetic control circuit 63 'controls the left and right unit drive devices Rd and Rd of the XYZ drive mechanism and controls the left and right horizontal rotation drive devices 28, 28. To control the inspection units 5L and 5R to the initial position (return to the initial position).
 この制御において、演算制御回路63′は、左ユニット駆動装置Ldによる検査ユニット5L及び右ユニット駆動装置Rdによる検査ユニット5Rの三次元方向への駆動量を、左ユニット駆動装置Ld及び右ユニット駆動装置Rdの駆動パルス数から検出することができる。尚、検査ユニット5L,5Rの三次元方向への移動量を検出する移動量検出センサ(X方向移動量検出センサ,Y方向移動量検出センサ,Z方向移動量検出センサ)を設けて、この移動量検出センサから検査ユニット5L,5Rの三次元方向への駆動量(移動量)を検出することもできる。そして、演算制御回路63′は、この駆動量(移動量)等から検査ユニット5L,5Rの三次元方向の位置を求める。一方、演算制御回路63′は、支柱5p,5qの回転角等を回転角度検出センサPsL,PsRにより検出して、支柱5p,5qとそれぞれ一体の検査ユニット5L,5Rの旋回角度(旋回位置)等を検知する。 In this control, the arithmetic control circuit 63 ′ determines the driving amount in the three-dimensional direction of the inspection unit 5L by the left unit driving device Ld and the inspection unit 5R by the right unit driving device Rd, and the left unit driving device Ld and the right unit driving device. It can be detected from the number of Rd drive pulses. Incidentally, a movement amount detection sensor (X direction movement amount detection sensor, Y direction movement amount detection sensor, Z direction movement amount detection sensor) for detecting the movement amount of the inspection units 5L and 5R in the three-dimensional direction is provided. It is also possible to detect the driving amount (movement amount) of the inspection units 5L and 5R in the three-dimensional direction from the amount detection sensor. Then, the arithmetic control circuit 63 ′ obtains the positions of the inspection units 5L and 5R in the three-dimensional direction from the drive amount (movement amount) and the like. On the other hand, the arithmetic control circuit 63 ′ detects the rotation angles and the like of the columns 5p and 5q by the rotation angle detection sensors PsL and PsR, and turns angles (turning positions) of the inspection units 5L and 5R integrated with the columns 5p and 5q, respectively. Etc. are detected.
 そして、演算制御回路63′は、検査ユニット5L,5Rの初期位置への復帰制御に際して、検査ユニット5L,5Rの三次元方向の位置から左顔受け側光軸部と右顔受け側光軸部との間隔を被検者の標準瞳孔間距離(例えば、64mm)にセットすると共に、検査ユニット5L,5Rの旋回角度(旋回位置)に基づき左顔受け側光軸部と右顔受け側光軸部とが互いに平行(遠方視状態となる遠方視位置)にセットする。 Then, the arithmetic control circuit 63 ′ controls the left face receiving side optical axis part and the right face receiving side optical axis part from the position of the inspection units 5 L, 5 R in the three-dimensional direction when returning the inspection units 5 L, 5 R to the initial positions. Is set to the standard interpupillary distance (for example, 64 mm) of the subject, and the left face receiving side optical axis and the right face receiving side optical axis based on the turning angles (turning positions) of the examination units 5L and 5R. Are set parallel to each other (far-distance view position where the far-distance state is reached).
 尚、この初期位置のセットは、演算制御回路63′から検眼装置2のサブ(補助)の演算制御回路62′にリセット命令を発信したときに実行させることもできる。
(2).屈折力測定のための瞳孔間距離PDの入力
 演算制御回路63′には、被検者の瞳孔間距離PDが入力される。この瞳孔間距離PDは、レンズメータ1000でメガネの左右の眼鏡レンズの光学中心間距離(メガネ装用者の瞳孔間距離PD)を測定することにより得られ、或いはPDメータ等で測定される。このレンズメータ1000で得られた瞳孔間距離PDは、レンズメータ1000から演算制御回路63′にデータ線等の接続線を介して入力される。また、PDメータ等で測定された瞳孔間距離PDは、検眼装置2に接続されるパソコン(データ入力装置)から演算制御回路63′に入力することができ、又は検眼装置2にキーボード(データ入力装置)を設けておいて、このキーボードから演算制御回路63′に入力することができる。また、瞳孔間距離PDは、モニター装置64qのモニター画面64q′にPD入力画面を表示させておいて、ジョイステックレバー6hの傾動操作等で入力画面のPD入力枠に入力することもできる。
This initial position setting can also be executed when a reset command is sent from the arithmetic control circuit 63 'to the sub (auxiliary) arithmetic control circuit 62' of the optometer 2.
(2). Input of interpupillary distance PD for refractive power measurement The interpupillary distance PD of the subject is input to the arithmetic control circuit 63 '. The inter-pupil distance PD is obtained by measuring the distance between the optical centers of the right and left eyeglass lenses of the glasses (the inter-pupil distance PD of the eyeglass wearer) with the lens meter 1000, or is measured with a PD meter or the like. The interpupillary distance PD obtained by the lens meter 1000 is input from the lens meter 1000 to the arithmetic control circuit 63 'through a connection line such as a data line. The interpupillary distance PD measured by a PD meter or the like can be input to the arithmetic control circuit 63 ′ from a personal computer (data input device) connected to the optometry apparatus 2, or a keyboard (data input) can be input to the optometry apparatus 2. The device can be input to the arithmetic control circuit 63 'from this keyboard. Further, the inter-pupil distance PD can be input to the PD input frame on the input screen by tilting the joystick lever 6h or the like by displaying the PD input screen on the monitor screen 64q ′ of the monitor device 64q.
 また、演算制御回路63′により左右のサブ(補助)の演算制御回路62′(L),62′(R)を作動制御して、サブ(補助)の演算制御回路62′(L),62′(R)により左右の検査ユニット5L,5Rの液晶表示器53,53の中心に視標を表示させると共に、この液晶表示器53,53の視標が見える位置まで左ユニット駆動装置Ld,右ユニット駆動装置Rdで検査ユニット5L,5Rを左右に移動制御させることにより、この移動制御量から検査ユニット5L,5R間の距離を被検者の瞳孔間距離PDとして演算制御回路63′に入力することができる。
(3).視標の表示サイズの補正(不等像視の補正)
A.不等像視
 被検者の左右眼(すなわち左被検眼及び右被検眼)を、屈折矯正光学系を持つ検眼器で検眼した場合、左右眼の屈折矯正値に大きな差(屈折矯正光学系による左被検眼及び右被検眼の屈折矯正度数の違い)があると、左右眼で認識される像のサイズに違い(不等像視)が発生する。この左右眼の像のサイズの違いは、不等像視検査で確認できる。
Further, the left and right sub (auxiliary) arithmetic control circuits 62 '(L) and 62' (R) are controlled by the arithmetic control circuit 63 'so that the sub (auxiliary) arithmetic control circuits 62' (L) and 62 'are operated. ′ (R) causes the target to be displayed at the center of the liquid crystal displays 53, 53 of the left and right inspection units 5L, 5R, and the left unit driving device Ld, right to the position where the target of the liquid crystal displays 53, 53 can be seen. By causing the unit drive device Rd to move the inspection units 5L and 5R to the left and right, the distance between the inspection units 5L and 5R is input to the arithmetic control circuit 63 ′ as the inter-pupil distance PD of the subject from this movement control amount. be able to.
(3). Correction of target display size (correction of unequal image vision)
A. Unequal image vision When the left and right eyes of the subject (ie, the left and right eye) are examined by an optometer with a refractive correction optical system, there is a large difference in the refractive correction values of the left and right eyes (depending on the refractive correction optical system). If there is a difference in the refractive correction power between the left eye and the right eye), a difference in the size of the images recognized by the left and right eyes (unequal image vision) occurs. This difference in the size of the left and right eye images can be confirmed by unequal image inspection.
 この検査の前に、先ず上述した(1)のように検査ユニット5L,5Rの検査光学系の初期位置へのセットがされると共に、(2)のように屈折力測定のために瞳孔間距離PDを入力する。被検者は屈折異常の矯正レンズを装用した状態で左被検眼及び右被検眼による視標視標サイズの検査を行う。 Before this inspection, first, the initial position of the inspection optical system of the inspection units 5L and 5R is set as described in (1) above, and the interpupillary distance is measured for refractive power measurement as in (2). Enter the PD. The subject inspects the visual target size with the left eye and the right eye while wearing a refraction correcting lens.
 この場合、例えば、左の検査ユニット5Lの液晶表示器53に図11Aに示した逆コ字状の表示サイズ確認視標(左視標)100Lを表示させ、右の検査ユニット5Rの液晶表示器53に図11Bに示したコ字状の表示サイズ確認視標(右視標)100Rを表示させる。尚、表示サイズ確認視標100L,100Rは左右方向の向きが異なるのみでサイズは同じ大きさで表示されている。また、表示サイズ確認視標100Lは左の検査ユニット5Lの液晶表示器53に左右方向の中心線O1より左側に位置させて表示させ、表示サイズ確認視標100Rは右の検査ユニット5Rの液晶表示器53に左右方向の中心線O1より右側に位置させて表示させる。更に、表示サイズ確認視標100L,100Rの上下方向の表示位置は同じ位置に設定されている。 In this case, for example, the inverted U-shaped display size confirmation target (left target) 100L shown in FIG. 11A is displayed on the liquid crystal display 53 of the left inspection unit 5L, and the liquid crystal display of the right inspection unit 5R. 53, the U-shaped display size confirmation target (right target) 100R shown in FIG. 11B is displayed. The display size confirmation targets 100L and 100R are displayed in the same size except for the left and right directions. Further, the display size confirmation target 100L is displayed on the liquid crystal display 53 of the left inspection unit 5L so as to be positioned on the left side of the center line O1 in the horizontal direction, and the display size confirmation target 100R is displayed on the liquid crystal display of the right inspection unit 5R. The device 53 is displayed on the right side of the center line O1 in the left-right direction. Furthermore, the display positions in the vertical direction of the display size confirmation targets 100L and 100R are set to the same position.
 この状態で、被検者の左被検眼に検査ユニット5Lの検査光学系を介して左の液晶表示器53に表示された表示サイズ確認視標100を視認させ、被検者の右被検眼に検査ユニット5Rの検査光学系を介して右の液晶表示器53に表示された表示サイズ確認視標100Rをそれぞれ視認させる。
(視認状態)
 これに伴い、被検者は、左被検眼及び右被検眼に斜位等が無い場合、左被検眼及び右被検眼でそれぞれ視認された表示サイズ確認視標100L,100Rを図12~図14のように同時視及び融像された状態(左右両眼で見た同一の点を1つの点として視覚した状態)で認識する。
In this state, the left eye of the subject is made to visually recognize the display size confirmation target 100 displayed on the left liquid crystal display 53 via the inspection optical system of the inspection unit 5L, and the right eye of the subject is examined. The display size confirmation target 100R displayed on the right liquid crystal display 53 is visually recognized through the inspection optical system of the inspection unit 5R.
(Visible state)
Accordingly, when the left eye and the right eye do not have an oblique position or the like, the subject displays the display size confirmation targets 100L and 100R visually recognized by the left eye and the right eye, respectively, as shown in FIGS. As described above, the images are recognized in the state of simultaneous viewing and fusion (the state where the same point viewed with both eyes is viewed as one point).
 ここで、左被検眼及び右被検眼の視力値(屈折度数)が同じ場合(屈折矯正度数が同じ場合)には、表示サイズ確認視標100L,100Rが図12のように同じサイズで認識される。 Here, when the visual acuity values (refractive power) of the left eye and the right eye are the same (when the refractive correction power is the same), the display size confirmation targets 100L and 100R are recognized with the same size as shown in FIG. The
 また、左被検眼及び右被検眼の視力値が異なる場合(屈折矯正度数が異なる場合)、すなわち装用矯正レンズの度数が異なる場合には、表示サイズ確認視標100L,100Rが図13,図14のように異なるサイズで認識される。 Further, when the visual acuity values of the left eye and the right eye are different (when the refractive correction power is different), that is, when the power of the wearing correction lens is different, the display size confirmation targets 100L and 100R are shown in FIGS. Are recognized in different sizes.
 この際、図13のように表示サイズ確認視標100L,100Rが線幅の半分分のずれが確認された場合には不等像視の率としては3.5%であり、図14のように表示サイズ確認視標100L,100Rが線幅の1本分のずれが確認された場合には不等像視の率としては7.0%であると測定される。尚、必ずしもこのような条件で、表示サイズ確認視標100L,100Rのサイズが設定されている必要はない。
(サイズ変更)
 そして、左被検眼(左眼)で認識される表示サイズ確認視標100Lの表示サイズをLsとし、右被検眼(右眼)で認識される表示サイズ確認視標100Rの表示サイズをRsとすると、図13のように左被検眼が右被検眼より小さい状態(左被検眼<右被検眼)で 7.0%の不等像視の率が確認された場合、表示サイズLs:表示サイズRs=1:1.07の関係となる。例えば、このような関係がある場合、以下のように表示のサイズを変更する。
At this time, when the display size confirmation targets 100L and 100R are confirmed to be displaced by half the line width as shown in FIG. 13, the unequal image viewing rate is 3.5%, as shown in FIG. When the display size confirmation targets 100L and 100R are confirmed to be displaced by one line width, the unequal image viewing rate is measured to be 7.0%. It is not always necessary to set the sizes of the display size confirmation targets 100L and 100R under such conditions.
(Resize)
The display size confirmation target 100L recognized by the left eye (left eye) is Ls, and the display size confirmation target 100R recognized by the right eye (right eye) is Rs. In the state where the left eye is smaller than the right eye (left eye <right eye) as shown in FIG. 13, when 7.0% inequality image rate is confirmed, display size Ls: display size Rs = 1: 1.07. For example, when there is such a relationship, the display size is changed as follows.
 即ち、検眼中は、このサイズ差が無いことが好ましいので、このサイズの違いを打ち消すように視標のサイズを変更すればよい。 That is, since it is preferable that this size difference does not exist during optometry, the size of the target may be changed so as to cancel this size difference.
 サイズの変更は、例えば、左右眼とも近視なら左眼の像を1.07倍し、左右眼とも遠視なら、右眼の像を1/1.07倍する。また、左右眼の一方が遠視で他方が近視なら、左右の像をほぼ均等に拡大・縮小することが望ましく、不等像視の率より得られた倍率をMとして、近視眼は2M/(M+1)倍、遠視眼は2/(M+1)倍すると良い。 The size is changed by, for example, multiplying the left-eye image by 1.07 when both the left and right eyes are myopic, and multiplying the right-eye image by 1 / 1.07 when both the left and right eyes are farsighted. Further, if one of the left and right eyes is farsighted and the other is myopic, it is desirable to enlarge and reduce the left and right images almost equally. ) Times and 2 / (M + 1) times for hyperopic eyes.
 一方、上述した図3~図7,図7Aに示すような、矯正レンズを瞳と共役となる位置(すなわち、瞳上にレンズを配置している場合と同じ効果をもたらすような位置)に配置する光学系屈折光学系を持つ検眼器の場合は、検眼中サイズ差が発生しないのが特徴である。しかしながら、実際の眼鏡を装用したときはサイズ差が発生することがある。 On the other hand, as shown in FIG. 3 to FIG. 7 and FIG. 7A, the correcting lens is arranged at a position conjugate with the pupil (that is, a position that brings about the same effect as when the lens is arranged on the pupil). In the case of an optometer having a refractive optical system, the size difference during optometry does not occur. However, when actual glasses are worn, a size difference may occur.
 このため、検眼後の度数確認時においては、意図的に視標のサイズを変えて眼鏡装用時と同じ状態で表示させることが必要となる。その場合のサイズの変更は、上述した条件の場合、単純には左右眼とも近視なら左眼の像を1/1.07倍し、左右眼とも遠視なら右眼の像を1.07倍し、左右眼の一方が遠視で且つもう一方が近視なら左右の像をほぼ均等に拡大・縮小することが望ましく、不等像視の率より得られた倍率をMとして、遠視眼は2M/(M+1)倍、近視眼は2/(M+1)倍すると良い。 For this reason, when checking the frequency after optometry, it is necessary to intentionally change the size of the target and display it in the same state as when wearing glasses. In this case, in the case of the above-mentioned conditions, the size of the left eye is simply multiplied by 1 / 1.07 if the myopia is myopia, and the right eye is 1.07 if the myopia is farsighted. If one of the left and right eyes is hyperopic and the other is myopic, it is desirable to enlarge and reduce the left and right images almost equally. The magnification obtained from the rate of unequal image vision is M, and the hyperopic eye is 2M / ( M + 1) times and myopic eyes should be 2 / (M + 1) times.
 尚、上述したような表示サイズの変更は、図2Aに示した視標操作装置CLRである入力操作装置Pcの検者操作部Kを操作して、図8(又は図8A)に示した視標サイズ補正部83により行うことができる。即ち、この際の操作は、検者操作部KのキーボードKb又はダイヤルDa、又はキーボードKb及びダイヤルDaによって行うことができる。
B.矯正度数を元にした視標サイズ(表示サイズ確認視標)の変更
 また、眼鏡(メガネ)の倍率Mは、次式で与えられる。即ち、眼鏡(メガネ)の倍率Mは、
Note that the change in the display size as described above is performed by operating the examiner operation unit K of the input operation device Pc, which is the target operation device CLR shown in FIG. 2A, in the view shown in FIG. 8 (or FIG. 8A). The standard size correction unit 83 can perform this. That is, the operation at this time can be performed by the keyboard Kb or dial Da of the examiner operation unit K or the keyboard Kb and dial Da.
B. Changing the target size (display size confirmation target) based on the correction power The magnification M of the glasses is given by the following equation. That is, the magnification M of the glasses (glasses) is
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
となる。 It becomes.
 ここで、Dはレンズの前面屈折力、Dはレンズの後面屈折力、tはレンズの中心厚、nはレンズの屈折率、VDはレンズと角膜頂点の距離を示している。
ここで、レンズの中心厚tを無視すると、レンズの屈折力をDとして、倍率Mは次の式で表せる。即ち、倍率Mは、
Here, D 1 is the front refractive power of the lens, D b is the rear refractive power of the lens, t is the center thickness of the lens, n is the refractive index of the lens, and VD is the distance between the lens and the corneal apex.
Here, ignoring the center thickness t of the lens, the refractive power of the lens is D, and the magnification M can be expressed by the following equation. That is, the magnification M is
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
で表すことができる。 Can be expressed as
 この(式2)式を用い、例えば右眼-2.00(D)、左眼+3.00(D)の眼鏡を装用する場合、各眼のレンズを通して見る像の倍率、及び左右眼の像サイズを比較した時の倍率は、VD=12(mm)とした場合、表1のようになる。 For example, when wearing the glasses of the right eye −2.00 (D) and the left eye +3.00 (D) using this formula (Formula 2), the magnification of the image viewed through the lens of each eye, and the image of the left and right eyes The magnification when comparing the sizes is as shown in Table 1 when VD = 12 (mm).
Figure JPOXMLDOC01-appb-T000003
  
Figure JPOXMLDOC01-appb-T000003
  
 これはつまり、従来の光学系(すなわち、度数の違いにより不等像視が発生するような光学系)をもつ検眼装置に於いて、上記の右眼-2.00(D)、左眼+3.00(D)の矯正レンズをセットした場合、左右眼間で6.2%の不等像視が発生していることを示す。 That is, in an optometry apparatus having a conventional optical system (that is, an optical system in which unequal image vision occurs due to a difference in power), the above-mentioned right eye -2.00 (D), left eye +3 When a correction lens of .00 (D) is set, 6.2% unequal image vision occurs between the left and right eyes.
 一般に、3.5%以上の不等像視が発生した場合、良好な両眼視は得られないと言われているが、左右のレンズ度数の差を少なくするかVDの値を小さくする以外には、検眼中の不等像視を補正することは不可能であった。 In general, it is said that good binocular vision cannot be obtained when unequal image vision of 3.5% or more occurs, but other than reducing the difference in lens power between the left and right or reducing the value of VD However, it was impossible to correct unequal image vision during optometry.
 しかしながら、本発明では、左右個別に視標を表示でき視標の大きさを変えられる機能を有しており、検眼中に左右の視標のサイズ差を補正することが可能である。 However, the present invention has a function of displaying the target separately on the left and right sides and changing the size of the target, so that the size difference between the left and right targets can be corrected during the optometry.
 補正は各眼の倍率が1になるように行えばよいので、(式2)で求めた倍率の逆数を次の(式3)の倍率として、各眼(左右眼)に視認させる各視標に適用して表示すれば良い。 The correction may be performed so that the magnification of each eye becomes 1, so that each eye target (right and left eyes) visually recognizes the reciprocal of the magnification obtained in (Expression 2) as the magnification of the following (Expression 3). It is sufficient to apply to the display.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 なおこの調整は、閾値として不等像視の率を設定し、レンズ度数から算出された不等像視率が設定値を超える場合には、自動でサイズ調整を行うようにしても良い。また、このような表示サイズの変更は、図2Aに示した視標操作装置CLRである入力操作装置Pcの検者操作部Kを操作して、図8(又は図8A)に示した視標サイズ補正部83により行うことができる。即ち、この際の操作は、検者操作部KのキーボードKb又はダイヤルDa、又はキーボードKb及びダイヤルDaによって行うことができる。更に、この際のサイズの変更は、検者が被検者に視標の見え方(左右の視標の大きさが同じか、いずれが大きいか等)を質問して、その応答に応じて検者が検者操作部Kを操作することにより実行することもできる。 Note that this adjustment may be performed by setting the unequal image viewing rate as a threshold and automatically adjusting the size when the unequal image viewing rate calculated from the lens power exceeds the set value. Further, such a change in the display size is performed by operating the examiner operation unit K of the input operation device Pc which is the target operation device CLR shown in FIG. 2A, and the target shown in FIG. 8 (or FIG. 8A). This can be performed by the size correction unit 83. That is, the operation at this time can be performed by the keyboard Kb or dial Da of the examiner operation unit K or the keyboard Kb and dial Da. Furthermore, the size change at this time is as follows: The examiner asks the subject how to see the visual target (the size of the left and right visual targets is the same or which is larger) and responds to the response. It can also be executed by operating the examiner operation unit K by the examiner.
 次に図3~図7,図7Aに示すような、矯正レンズを瞳と共役となる位置に配置する光学系を持つ検眼装置では、VD=0となるので、(式2)に示す眼鏡の倍率Mは常に1となり、左右眼で像サイズの違いは発生しない。そのため、検眼中はこれらの不都合を解決することができる。一方で検眼後の確認の際には、矯正度数による左右の像のサイズ差に付いて確認する必要がある。 Next, in an optometry apparatus having an optical system in which the correction lens is arranged at a position conjugate with the pupil as shown in FIGS. 3 to 7 and 7A, VD = 0, so that the glasses shown in (Equation 2) The magnification M is always 1 and there is no difference in image size between the left and right eyes. Therefore, these inconveniences can be solved during optometry. On the other hand, at the time of confirmation after optometry, it is necessary to confirm the size difference between the left and right images depending on the correction power.
 そのため最終確認を行う際には、(式1)で算出した倍率を各眼(左右眼)に視認させる視標に適用して表示すれば良い。
(4).左右の視標のコントラスト補正(変更)
 加齢により、人の眼のコントラスト感度は徐々に低下するが、左右で著しく度合いの異なるコントラスト感度の低下が生じた場合、両眼視機能に悪影響を及ぼし正しく両眼視が出来なくなることもある。
Therefore, when performing the final confirmation, the magnification calculated in (Equation 1) may be applied to the target to be visually recognized by each eye (left and right eyes).
(4). Contrast correction (change) for left and right targets
The contrast sensitivity of the human eye gradually decreases with aging, but if the contrast sensitivity decreases significantly on the left and right sides, the binocular visual function may be adversely affected and correct binocular vision may not be achieved. .
 検眼中は、正しく両眼視が出来ない場合、その原因がコントラスト感度の低下によるものなのか、それ以外の原因によるものなのかを切り分けて検眼する必要がある。 During optometry, if binocular vision is not possible correctly, it is necessary to determine whether the cause is due to a decrease in contrast sensitivity or due to other causes.
 そして、以下に例示するようなコントラスト感度特性の検査により、左右眼のコントラスト感度に大きな隔たりが確認された際には、正しく両眼視が出来ない原因がコントラスト感度の低下によるものであるとして、左右の視標のコントラストを変える(補正する)ことで、左右眼のコントラスト感度についてある程度平衡を取ることが可能となる。 And, when a large gap is confirmed in the contrast sensitivity of the left and right eyes by inspection of the contrast sensitivity characteristics as exemplified below, the reason why binocular vision cannot be correctly performed is due to the decrease in contrast sensitivity, By changing (correcting) the contrast between the left and right visual targets, it is possible to achieve a certain balance between the contrast sensitivity of the left and right eyes.
 例えば、図15Aに示すように左半分が左眼(左被検眼)にのみ投影される左視標Ldxを左側の検査ユニット5Lの液晶表示器53に左右の中心線O2より左側に表示させ、図15Bに示すように右半分が右眼(右被検眼)にのみ投影される右視標Rdxを右側の検査ユニット5Rの液晶表示器53に左右の中心線O2より右側に表示させる。このような表示により、左視標Ldxおよび右視標Rdxを被検者の左右眼にそれぞれ表示して同時に視認させたときに、左右眼が正常で左右眼でコントラスト感度(視認状態)に差が無い場合には図16の様な見え方となるが、左右眼でコントラスト感度(視認状態)に大きな差がある場合には例えば図17の様な見え方となる。 For example, as shown in FIG. 15A, the left target Ldx whose left half is projected only to the left eye (left eye to be examined) is displayed on the left side of the left and right center line O2 on the liquid crystal display 53 of the left examination unit 5L. As shown in FIG. 15B, the right target Rdx whose right half is projected only to the right eye (right eye to be examined) is displayed on the right side of the left and right center line O2 on the liquid crystal display 53 of the right examination unit 5R. With such a display, when the left target Ldx and the right target Rdx are displayed on the left and right eyes of the subject and viewed simultaneously, the left and right eyes are normal and the left and right eyes are different in contrast sensitivity (viewing state). When there is no image, the appearance is as shown in FIG. 16, but when there is a large difference in contrast sensitivity (viewing state) between the left and right eyes, the appearance is as shown in FIG.
 尚、図15A及び図15Bでは左視標Ldx及び右視標Rdxに英文字「ABC」を用いており、図17では左視標Ldxのコントラストが右視標Rdxのコントラストより明るい(感度が高い)状態となっている。 In FIG. 15A and FIG. 15B, the alphabet “ABC” is used for the left target Ldx and the right target Rdx. In FIG. 17, the contrast of the left target Ldx is brighter than the contrast of the right target Rdx (high sensitivity). ) State.
 そこで、コントラスト感度が低い方の眼の視標のコントラストを上げ、左右でほぼ同等な見え方になるまで調節する。図17では、右視標Rdxのコントラストの感度が低いので、右視標Rdxのコントラストの感度を左視標Ldxの感度まで上げるような調節(変更)を行う。 Therefore, increase the contrast of the target of the eye with the lower contrast sensitivity and adjust it until it looks almost the same on the left and right. In FIG. 17, since the contrast sensitivity of the right target Rdx is low, adjustment (change) is performed to increase the contrast sensitivity of the right target Rdx to the sensitivity of the left target Ldx.
 また、このようなコントラストの変更は、図2Aに示した視標操作装置CLRである入力操作装置Pcの検者操作部Kを操作して、図8(又は図8A)に示した視標コントラスト補正部84により行うことができる。即ち、この際の操作は、検者操作部KのキーボードKb又はダイヤルDa、又はキーボードKb及びダイヤルDaによって行うことができる。更に、この際のコントラストの変更は、検者が被検者に視標の見え方(左右の視標の明るさが同じか、いずれが明るいか等)を質問して、その応答に応じて検者が検者操作部Kを操作することにより実行することができる。 In addition, such a contrast change is performed by operating the examiner operation unit K of the input operation device Pc, which is the target operation device CLR shown in FIG. 2A, and the target contrast shown in FIG. 8 (or FIG. 8A). This can be performed by the correction unit 84. That is, the operation at this time can be performed by the keyboard Kb or dial Da of the examiner operation unit K or the keyboard Kb and dial Da. Furthermore, the change of the contrast in this case is as follows. The examiner asks the subject how to see the target (whether the left and right target are the same brightness, which is brighter, etc.) and responds to the response. This can be executed by the examiner operating the examiner operation unit K.
 ここで最終的に調節された値を記憶し、以降行う両眼視機能検査に於いては、このコントラスト状態を保って視標を表示するようにすると良い。 Here, the finally adjusted value is stored, and in the binocular visual function test to be performed thereafter, it is preferable to display the visual target while maintaining this contrast state.
 なお、他覚屈折測定では、一般に眼に光を入射し、入射光の強度と反射光の強度の差を測定することで、眼の透過率を測定することが出来る。
そして、左右眼で透過率にどれくらいの差があれば、コントラスト感度としてどの程度の違いが発生するかの相関を調べることで、コントラスト調整機能を自動で行うようにしても良い。
(5).視標表示位置の変更(補正)
A.眼位ずれによる視標の視認状態について
 眼位ずれの測定は、図18Aに示すような左眼と右眼で異なる視標を表示し、これらを同時視したときの合成像により行われる。
In objective refraction measurement, generally, light is incident on the eye, and the transmittance of the eye can be measured by measuring the difference between the intensity of the incident light and the intensity of the reflected light.
Then, the contrast adjustment function may be automatically performed by examining the correlation of how much difference occurs in the transmittance between the left and right eyes and how much difference occurs as the contrast sensitivity.
(5). Change (correction) of target display position
A. About the visual recognition state of the optotype due to eye misalignment The eye misalignment measurement is performed by using a composite image obtained by displaying different optotypes for the left eye and the right eye as shown in FIG. 18A and viewing them simultaneously.
 即ち、図18Aに示したように、検査ユニット5Lの液晶表示器53に横視標線である左眼用ズレ検出用視標Lmを表示させ、検査ユニット5Rの液晶表示器53に縦視標線である右眼用ズレ検出用視標Rmを表示させる。そして、この左眼用ズレ検出用視標Lm,右眼用ズレ検出用視標Rmを被検者の左右眼にそれぞれ同時に視認させ、この左眼用ズレ検出用視標Lmと右眼用ズレ検出用視標Rmを被検者に図18Bの(i)~(iii)のように融像した合成像として認識させることにより、眼位ずれの測定が行われる。 That is, as shown in FIG. 18A, the left eye misalignment detection target Lm, which is a horizontal target line, is displayed on the liquid crystal display 53 of the inspection unit 5L, and the vertical target is displayed on the liquid crystal display 53 of the inspection unit 5R. The right eye misalignment detection target Rm, which is a line, is displayed. Then, the left eye misalignment detection target Lm and the right eye misalignment detection target Rm are simultaneously recognized by the left and right eyes of the subject, respectively, and the left eye misalignment detection target Lm and the right eye misalignment are detected. The eye position deviation is measured by causing the subject to recognize the detection target Rm as a composite image fused as shown in (i) to (iii) of FIG. 18B.
 この左眼用ズレ検出用視標Lmは左右に間隔をおいて直列に配列された横視標線Lm1,Lm2を有し、右眼用ズレ検出用視標Rmは上下に間隔をおいて直列に配列された縦視標線Rm1,Rm2を有する。 The left-eye misalignment detection target Lm has horizontal visual target lines Lm1 and Lm2 arranged in series at intervals in the left and right directions, and the right-eye misalignment detection target Rm is serially arranged at intervals in the vertical direction. Have vertical visual markings Rm1, Rm2.
 図18A及び図18Bの例では、眼位ずれが無い場合には左眼用ズレ検出用視標(横視標線)Lm)と右眼用ズレ検出用視標(縦視標線)Rmが共に(i)のように中央で交差するが、水平斜位がある場合には(ii)に示したように水平方向にずれた像が、垂直斜位がある場合には(iii)に示したように垂直方向にずれた像が観察される。 In the example of FIGS. 18A and 18B, when there is no misalignment, the left eye misalignment detection target (horizontal target line) Lm) and the right eye misalignment detection target (vertical target line) Rm are Both cross at the center as shown in (i), but when there is a horizontal oblique position, an image shifted in the horizontal direction as shown in (ii), and when there is a vertical oblique position, it is shown in (iii). As shown, an image shifted in the vertical direction is observed.
 ここで、水平斜位の一例を図19に示す。この図19では、多数の点で示した左眼用ズレ検出視標Lm(横視標線Lm1,Lm2),右眼用ズレ検出視標Rm(縦視標線Rm1,Rm2)が被検者の知覚している視標の見え方である。そして、眼位ずれが無い場合には斜線で示した左眼用ズレ検出視標Lm,右眼用ズレ検出視標Rmが見えるとすると、被検者の知覚している視標は、左眼(左被検眼)に表示される横線(左眼用ズレ検出視標Lm)が右側にズレ量x1だけずれて見えると共に右眼(右被検眼)に表示される縦線(右眼用ズレ検出視標Rm)が左側にズレ量x2だけずれて見えるので、被検者は外斜位の状態となっていることが分かる。
B.眼位ずれによる視標の見え方の表示補正
 図19のような視標の見え方のずれを補正するには、通常プリズムレンズが用いられるが、本実施例に係る検眼装置では左右眼に表示される視標の表示位置を変更することでプリズムレンズの代用となる。
Here, an example of the horizontal oblique position is shown in FIG. In FIG. 19, the left-eye shift detection target Lm (horizontal view target lines Lm1, Lm2) and the right-eye shift detection target Rm (vertical view target lines Rm1, Rm2) indicated by a large number of points This is how the target is perceived. If there is no eye misalignment and the left-eye misalignment detection target Lm and the right-eye misalignment detection target Rm indicated by diagonal lines are visible, the target perceived by the subject is the left eye The horizontal line (left eye misalignment detection target Lm) displayed on the (left eye to be examined) appears to be shifted to the right by the amount of misalignment x1, and the vertical line (right eye misalignment detection) displayed on the right eye (right eye to be examined). Since the target Rm) appears to be shifted to the left side by the amount of deviation x2, it can be seen that the subject is in the outer oblique position.
B. Display Correction of Visual Target Appearance Due to Eye Position Deviation Normally, a prism lens is used to correct the visual target deviation as shown in FIG. 19, but in the optometry apparatus according to the present embodiment, it is displayed on the left and right eyes. The prism lens can be substituted by changing the display position of the target.
 つまり、図19の例に於いては、多数の点で示した左眼の像(左眼用ズレ検出視標Lm=横視標線Lm1,Lm2)をズレ量x1だけ左に移動させると共に、多数の点で示した右眼の像(右眼用ズレ検出視標Rm=縦視標線Rm1,Rm2)をズレ量x2だけ右に移動させて、左眼用ズレ検出用視標(横視標線)Lmと右眼用ズレ検出用視標(縦視標線)Rmが中央で交差する状態に調節すればよい。 That is, in the example of FIG. 19, the left-eye image (left-eye shift detection target Lm = horizontal target line Lm1, Lm2) indicated by a number of points is moved to the left by a shift amount x1. The right-eye image (right-eye shift detection target Rm = vertical visual target line Rm1, Rm2) indicated by a number of points is moved to the right by the shift amount x2, and the left-eye shift detection target (horizontal view) The standard line Lm and the right-eye misalignment detection target (vertical visual line) Rm may be adjusted to intersect at the center.
 尚、プリズムレンズの単位は通常プリズムディオプターが用いられるが、この定義は「1プリズムディオプターは、眼前1mの所に位置する物を1cm変位させるプリズムの度数」とされているので、ズレ量x1,x2は視標の変位量からプリズムディオプターの補正データに換算して表示することが可能である。このプリズム適応量(プリズムディオプターの補正データ)が決定すれば、ズレ量x1,x2のプリズム適応量(プリズムディオプターの補正データ)をメモリMに記憶させておく。そして、その後の検査に於いては、メモリMに記憶させたプリズム適応量(プリズムディオプターの補正データ)に基づいて、左側の検査ユニット5Lおよび液晶表示器53に表示させる左視標を図20Aのようにズレ量x1だけ左にずらして表示させると共に、図20Bのように右側の検査ユニット5Rおよび液晶表示器53に表示させる左視標をズレ量x2だけ右側にずらして表示させる。尚、ズレ量x1,x2は補正量ということができる。 The prism lens unit is usually a prism diopter, but this definition is “1 prism diopter is the frequency of the prism that displaces an object located 1 m in front of the eye by 1 cm”. x1 and x2 can be converted into the correction data of the prism diopter from the displacement amount of the target and displayed. If this prism adaptation amount (prism diopter correction data) is determined, the prism adaptation amounts (prism diopter correction data) of the shift amounts x1 and x2 are stored in the memory M. In the subsequent inspection, based on the prism adaptation amount (prism diopter correction data) stored in the memory M, the left target displayed on the left inspection unit 5L and the liquid crystal display 53 is shown in FIG. As shown in FIG. 20B, the left target to be displayed on the right inspection unit 5R and the liquid crystal display 53 is shifted to the right by the amount x2 and displayed. The shift amounts x1 and x2 can be referred to as correction amounts.
 従って、図20A,図20Bの様にあらかじめ左眼および右眼に表示させる視標(例えば、文字A,A)をズレ量x1,x2だけ左右に変位させた状態で被検者の左右眼にそれぞれ表示させることで、両眼で同時視したときの合成像は図20Cのようにずれなく中央に表示されているように見える。 Accordingly, as shown in FIGS. 20A and 20B, the visual target (for example, characters A and A) to be displayed on the left eye and the right eye in advance is shifted to the left and right eyes of the subject while being displaced left and right by the shift amounts x1 and x2. By displaying each of them, the composite image when simultaneously viewed with both eyes appears to be displayed in the center without deviation as shown in FIG. 20C.
 尚、このような眼位ずれの補正は、図2Aに示した視標操作装置CLRである入力操作装置Pcの検者操作部Kを操作して、図8(又は図8A)に示した眼位ずれ補正部85により行うことができる。即ち、この際の操作は、検者操作部KのキーボードKb又はダイヤルDa、又はキーボードKb及びダイヤルDaによって行うことができる。更に、この際の補正は、検者が被検者に視標の見え方(左右の視標にずれがあるか否か、どのようにずれているか等)を質問して、その応答に応じて検者が検者操作部Kを操作することにより実行することができる。
C.上述したAの眼位ずれの測定例及びBの視標の見え方の表示補正の例
 上述したような眼位ずれの測定例として斜位テスト(十字斜位テスト)がある。この斜位テストでは、上述した検査ユニット5L,5R内の検査光学系のロータリープリズム55A,55Bを用いて斜位量測定が行われる。
(C-a).ロータリープリズム55A,55Bを用いての斜位量測定
 図21Aは上述した左眼用ズレ検出用視標Lmと同じ左眼用の十字斜位テストチャートの視標71Aを示し、図21Bは上述した右眼用ズレ検出用視標Rmと同じ右眼用の十字斜位テストチャートの視標71Bを示し、図22は正常眼で両眼視したときの視標71A、71Bの見え方を示す。表2にその斜位の見え方を示す。
Note that such correction of eye misalignment is performed by operating the examiner operation unit K of the input operation device Pc, which is the optotype operation device CLR shown in FIG. 2A, to display the eye shown in FIG. 8 (or FIG. 8A). This can be done by the misalignment correction unit 85. That is, the operation at this time can be performed by the keyboard Kb or dial Da of the examiner operation unit K or the keyboard Kb and dial Da. Furthermore, in this case, the examiner asks the examinee how to see the target (whether or not the left and right targets are misaligned, etc.) and responds to the response. It can be executed by operating the examiner operation unit K by the examiner.
C. An example of the above-described measurement of eye misalignment of A and an example of display correction of the appearance of the target of B include an oblique test (cross oblique test) as an example of the above-described measurement of eye misalignment. In this oblique test, the oblique amount is measured using the rotary prisms 55A and 55B of the inspection optical system in the inspection units 5L and 5R described above.
(Ca). 21. FIG. 21A shows a left-eye cruciform test chart target 71A that is the same as the left-eye misalignment detection target Lm, and FIG. 21B shows the above-described target 71A. The target 71B of the right-eye cruciform test chart, which is the same as the right-eye misalignment detection target Rm, is shown, and FIG. 22 shows how the targets 71A and 71B appear when viewed with both eyes with normal eyes. Table 2 shows how the oblique position looks.
Figure JPOXMLDOC01-appb-T000005
  
Figure JPOXMLDOC01-appb-T000005
  
 演算制御回路63′は、左右の検査ユニット5L,5Rの液晶表示器53,53には視標71A,71Bをそれぞれ表示させるようになっている。この検査ユニット5L,5Rの液晶表示器53,53にそれぞれ表示される視標は、ロータリープリズム55A,55B及び検査ユニット5L,5Rの測定光学系を介して左眼(左被検眼)及び右眼(右被検眼)にそれぞれ表示される。 The arithmetic control circuit 63 ′ displays the visual targets 71A and 71B on the liquid crystal displays 53 and 53 of the left and right inspection units 5L and 5R, respectively. The targets displayed on the liquid crystal displays 53 and 53 of the inspection units 5L and 5R are the left eye (left eye) and the right eye via the rotary prisms 55A and 55B and the measurement optical system of the inspection units 5L and 5R, respectively. (Right eye to be examined) respectively.
 そして、正常眼は図22に示すように視標71Aと視標71Bとは中心で交差するが、斜位があると分離する。また、ロータリープリズム55A、55Bは、斜位のテストに用いられ、即ち図22に示すように視標71Aと視標71Bとが中心で交わるために必要なプリズム量を測定するために用いられる。 As shown in FIG. 22, the normal eye 71A and the visual target 71B intersect at the center, but are separated when there is an oblique position. Further, the rotary prisms 55A and 55B are used for the oblique test, that is, for measuring the amount of prism necessary for the target 71A and the target 71B to intersect at the center as shown in FIG.
 尚、斜位テストの検眼プログラムにおいて演算制御回路63′は、斜位テストプログラム(検眼プログラム)に従って、ジョイステックレバー6hが左又は右に倒される(傾動させられる)若しくは前又は後に倒される(傾動させられる)と、ジョイステックレバー6hの傾動検出センサ12bからの傾動信号から、ロータリープリズム55A,55Bを互いに逆方向に回転させてプリズム量を連続的に変更させるようになっている。 Incidentally, in the optometry program for the oblique test, the arithmetic control circuit 63 ′ is tilted (tilted) to the left or right (tilted) or tilted (tilted) according to the oblique test program (optimized program). The prism amount is continuously changed by rotating the rotary prisms 55A and 55B in opposite directions from the tilt signal from the tilt detection sensor 12b of the joystick lever 6h.
 尚、ロータリープリズム55A,55Bは、駆動装置としてのパルスモータ等の駆動モータPdmでそれぞれ逆方向または同方向に回転駆動可能に設けられている。そして、ロータリープリズム55A,55Bによるプリズム量は、ロータリープリズム55A,55Bをそれぞれ回転させる駆動モータPdmの駆動パルス数(駆動量)から検出できる。また、ロータリープリズム55A,55Bにそれぞれ連動するポテンショメータやロータリーエンコーダ等の回転検出装置(回転角検出部)Rpsを設けておいて、この回転角検出装置Rpsからの出力信号(回転信号)からロータリープリズム55A,55Bによるプリズム量を検出することもできる。
(C-b).十字斜位チャートのセット
 先ず、検査ユニット5Lの液晶表示器53に上述した図21Aに示す十字斜位チャートの視標71Aを左眼用ズレ検出用視標Lmとして表示させ、検査ユニット5Rの液晶表示器53に図21Bに示す十字斜位チャートの視標71Bを右眼用ズレ検出用視標Rmとして表示させる。これにより、被検者の両眼(左被検眼及び右被検眼)に図21A,図21Bに示す十字斜位チャートの視標71A,71Bをそれぞれ表示させて、十字斜位チャートがセットされる。
The rotary prisms 55A and 55B are provided so as to be rotatable in the reverse direction or the same direction by a drive motor Pdm such as a pulse motor as a drive device. The prism amount by the rotary prisms 55A and 55B can be detected from the number of drive pulses (drive amount) of the drive motor Pdm that rotates the rotary prisms 55A and 55B, respectively. Further, a rotation detection device (rotation angle detection unit) Rps such as a potentiometer or a rotary encoder linked to each of the rotary prisms 55A and 55B is provided, and an output signal (rotation signal) from the rotation angle detection device Rps is used as a rotary prism. The prism amount by 55A and 55B can also be detected.
(Cb). First, the target 71A of the cross oblique chart shown in FIG. 21A is displayed as the left eye misalignment detection target Lm on the liquid crystal display 53 of the inspection unit 5L, and the liquid crystal of the inspection unit 5R is displayed. The indicator 53B of the cross oblique chart shown in FIG. 21B is displayed on the display 53 as the right-eye shift detection target Rm. Thus, the cross oblique charts 71A and 71B of the cross oblique chart shown in FIGS. 21A and 21B are displayed on both eyes of the subject (the left examinee and the right examinee), respectively, and the cross oblique chart is set. .
 この際に、図5,図7に示すLED53Aを点灯させ、融像枠53Fを両眼にそれぞれ表示させる。その理由を以下に説明する。 At this time, the LED 53A shown in FIGS. 5 and 7 is turned on to display the fusion frame 53F on both eyes. The reason will be described below.
 眼位ズレには斜位と斜視がある。斜位は、日常の私生活で両眼とも視線は正しく注視物体に向き常に両眼単一視を行っているが、片眼を覆った場合、覆われた方の視線がずれる眼位ズレをいう。また、斜視は、片眼を覆っても覆わなくても常に視線のずれが生じ、注視物体は常に複視となる眼位ズレをいう。 眼 There are oblique and oblique eye positions. Oblique position refers to a misalignment of the eye position in which the eyes of both eyes are correctly directed to the gazing object in daily life and the binocular single vision is always performed. . Further, the strabismus refers to a misalignment of the eye position in which the line of sight always shifts regardless of whether one eye is covered or not, and the gaze object is always double-viewed.
 斜視ではなく斜位のある人は、自然界の物体を注視しているときには、物体は二重像とはならず、重なって見えるので日常生活には支障はない。しかしながら、左目用の光学系と右目用の光学系とを別々に設けて各光学系を通じて、融像刺激(被検者の意識が視標に集中しづらく、検査に支障をきたすような目立つ物体)のない像を両眼に表示させると、眼位ズレがあることが明らかになる。 When a person with an oblique position, not a strabismus, looks at an object in nature, the object does not become a double image, but appears to overlap, so there is no problem in daily life. However, a left-eye optical system and a right-eye optical system are provided separately, and through each optical system, fusion stimulation (the subject's consciousness is difficult to concentrate on the target, and a conspicuous object that interferes with the examination) When an image without) is displayed on both eyes, it becomes clear that there is a misalignment.
 また、左目に表示される視標と右目に表示される視標とのズレが明らかでない場合でも、視野の狭い一文字視標による視力検査の場合や、更に輻湊させて行う近用視力テストでは、左目で見た視標と右目で見た視標とを融像できないことが起こり得る。
(C-c).斜位検査
(c1).2本線のみ視認可能なとき
(c1a).「4本の線[垂直な2本線(縦線)と水平な2本線(横線)]が見えますか?見えたらジョイステックレバー6hのボタン6gを押して下さい。水平な2本線のみが見えるなら、ジョイステックレバー6hを右又は左に、垂直の2本線のみが見えるなら、ジョイステックレバー6hを前又は後方に倒して下さい。」とアナウンスする。
(c1b).そして、ジョイステックレバー6hが右又は左に倒されたら右眼に、前又は後方に倒されたら左眼に像が視認されておらず、正しく斜位検査を行うことができない。このような場合には、“斜位:要精検(斜位の精密検査要)”とメモリーして斜位検査を終了する。
(c2).4本線が視認可能で正位(斜位がない正常)なとき
(c2a). ジョイステックレバー6hのボタン6gが押されたら、「横線と縦線の中心は重なっていますか?重なっていたら、ジョイステックレバー6hのボタン6gを押して下さい。縦線が右に寄っているならジョイステックレバー6hを右に、左に寄っているならジョイステックレバー6hを左に倒して下さい。」とアナウンスする。
(c2b).ボタン6gが押されたら、“斜位:正常”とメモリーして、斜位検査を終了する。そして、ジョイステックレバー6hが右に倒されたら両眼同時にBOプリズム(内斜位であるベースアウトプリズム)とし、左に倒されたら両眼同時にBIプリズム(外斜位であるベースインプリズム)とする(表2)。なお、このときのプリズム変換の最小単位は、0.25(△)となる。
(c3).4本線が視認可能で水平方向の斜位があるとき
(c3a).一方、ジョイステックレバー6hが右に倒された場合、「縦線が横線の中心位置と一致するまで、ジョイステックレバー6hを右または左に倒し、一致したらジョイステックレバー6hのボタン6gを押して下さい。」とアナウンスする。
(c3b).さらに、ジョイステックレバー6hのボタン6gが押されるまで、ジョイステックレバー6hを右或いは左に倒した回数をカウントする。右に倒した後に左に倒したら差引きで0回とする。右に倒した場合にはBO(内斜位)、左に倒した場合にはBI(外斜位)となり、倒した回数×0.25がプリズム量(△)となる。
(c3c).そして、水平斜位“BO(又は、BI)△”とメモリーする。
(c3d).ジョイステックレバー6hのボタン6gが押されたら、「横線と縦線の中心は重なっていますか?重なっていたら、ジョイステックレバー6hのボタン6gを押して下さい。横線が上に寄っているならジョイステックレバー6hを上に、下に寄っているならジョイステックレバー6hを下に倒して下さい。」とアナウンスする。
(c4).4本線が視認可能で垂直方向の斜位があるとき
(c4a).ジョイステックレバー6hが上に倒されたら、右眼はBDプリズム、左眼はBUプリズムとし、下に倒されたら、右眼はBUプリズム(ベースアッププリズム)、左眼はBDプリズム(ベースダウンプリズム)とする(表2)。
(c4b).「縦線が横線の中心が重なるまで、ジョイステックレバー6hを上または下に倒し、一致したらジョイステックレバー6hのボタン6gを押して下さい。」とアナウンスする。
(c4c).ジョイステックレバー6hのボタン6gが押されるまで、ジョイステックレバー6hを上或いは下に倒した回数をカウントする。上に倒した後、下に倒したら差引きで0回とする。上が右眼上斜位、下が左眼上斜位となり、各方向に倒した回数×0.25がプリズム量(△)となる。
(c4d).そして、垂直斜位“右眼BD△”または“左眼BD△”とメモリーする。
D.斜位テストのプリズム量から視標のずれ量を算出し、視標の検査ユニット5L,5Rの液晶表示器53への視標表示中心(視標表示位置)の補正
 この斜位テストのプリズム量は、被検者毎に異なるので、被検者のIDとともにメモリMのデータベースに被検者データとして記録しておく。
In addition, even when the deviation between the visual target displayed on the left eye and the visual target displayed on the right eye is not clear, in the case of a visual acuity test with a single-character visual target with a narrow field of view, or in a near vision test performed with further convergence, It may happen that the target viewed with the left eye and the target viewed with the right eye cannot be fused.
(Cc). Oblique inspection (c1). When only two lines are visible (c1a). "Can you see four lines [vertical two lines (vertical line) and horizontal two lines (horizontal line)]? When you see, press button 6g on joystick lever 6h. If you see only two horizontal lines, If you can see the joystick lever 6h to the right or left and only the two vertical lines, push the joystick lever 6h forward or backward. "
(C1b). When the joystick lever 6h is tilted to the right or left, the image is not visually recognized by the right eye, and when the joystick lever 6h is tilted forward or backward, the oblique inspection cannot be performed correctly. In such a case, “tilt: precise examination (necessary inspection for oblique position required)” is stored and the oblique inspection is completed.
(C2). When the four lines are visible and normal (no normal position) (c2a). When the button 6g of the joystick lever 6h is pressed, “Do the centers of the horizontal and vertical lines overlap? If so, press the button 6g of the joystick lever 6h. If the tech lever 6h is to the right or left, please push the joystick lever 6h to the left. "
(C2b). When the button 6g is pressed, “skew: normal” is memorized and the skew check is terminated. When the joystick lever 6h is tilted to the right, both eyes are simultaneously set to the BO prism (inner oblique base out prism), and when it is tilted to the left, both eyes are simultaneously set to the BI prism (exterior oblique base in prism). (Table 2). At this time, the minimum unit of prism conversion is 0.25 (Δ).
(C3). When four lines are visible and there is a horizontal oblique position (c3a). On the other hand, when the joystick lever 6h is tilted to the right, “tilt the joystick lever 6h to the right or left until the vertical line matches the center position of the horizontal line, and then press the button 6g on the joystick lever 6h. . "
(C3b). Further, the number of times the joystick lever 6h is tilted to the right or left is counted until the button 6g of the joystick lever 6h is pressed. After defeating to the right and defeating to the left, deduct 0 times. When it is tilted to the right, it is BO (inner oblique position). When it is tilted to the left, it is BI (outer oblique position), and the number of times of tilting × 0.25 is the prism amount (Δ).
(C3c). Then, the horizontal oblique position “BO (or BI) Δ” is memorized.
(C3d). When the button 6g of the joystick lever 6h is pressed, “If the center of the horizontal line and the vertical line overlap? If it overlaps, press the button 6g of the joystick lever 6h. If the horizontal line is up, then joystick. If the lever 6h is up and down, please push down the joystick lever 6h. "
(C4). When four lines are visible and there is a vertical oblique position (c4a). When the joystick lever 6h is tilted up, the right eye is a BD prism, the left eye is a BU prism, and when it is tilted down, the right eye is a BU prism (base-up prism), and the left eye is a BD prism (base-down prism). (Table 2).
(C4b). “Turn the joystick lever 6h up or down until the vertical line and the center of the horizontal line overlap, and press the button 6g of the joystick lever 6h when they match.”
(C4c). Until the button 6g of the joystick lever 6h is pressed, the number of times the joystick lever 6h is tilted up or down is counted. After defeating up, if defeated down, deduct 0 times. The upper is an oblique position on the right eye, the lower is an oblique position on the upper left eye, and the number of times tilted in each direction × 0.25 is the prism amount (Δ).
(C4d). Then, the vertical oblique position “right eye BDΔ” or “left eye BDΔ” is stored.
D. The deviation amount of the target is calculated from the prism amount of the oblique test, and the correction of the target display center (target display position) on the liquid crystal display 53 of the target inspection units 5L and 5R. Is different for each subject, and is recorded as subject data in the database of the memory M together with the subject ID.
 そして、演算制御回路63′は、被検者のIDがパソコン等から入力されたときに、被検者データからIDに対応する斜位テストのプリズム量を読み出して、この読み出した斜位テストのプリズム量から検査ユニット5L,5Rの液晶表示器53,53に表示させる視標の表示位置を補正する。 Then, the arithmetic control circuit 63 ′ reads the prism amount of the oblique test corresponding to the ID from the subject data when the subject's ID is inputted from a personal computer or the like, and the read oblique test. The display position of the target to be displayed on the liquid crystal displays 53, 53 of the inspection units 5L, 5R is corrected from the prism amount.
 このようにすることで斜位のある被検者の場合には、一度斜位検査をしておけば、次回からはロータリープリズム55A,55Bによる斜位テストを行う必要はなく、屈折力テストや視機能検査のための視標を被検者の左右の被検眼に迅速に表示させることができる。 In this way, in the case of a subject with an oblique position, once the oblique position is inspected, it is not necessary to perform an oblique position test with the rotary prisms 55A and 55B from the next time. The visual target for the visual function test can be quickly displayed on the left and right eyes of the subject.
 尚、上述したような斜位テストによるプリズム量の記録(記憶)は必ずしも必要ではない。すなわち、斜位テストごとにプリズム量を測定すると共に、測定された斜位量を視標移動量に換算して、この換算した視標移動量に基づいて視標を表示させることが可能だからである。
E.図7Aの測定光学系(検査光学系)を備える検眼装置の場合
 この場合には、斜位テストプログラムにおいて、検査ユニット5L,5Rの水平方向の向きは遠方視状態の位置にセットする。
It is not always necessary to record (store) the prism amount by the oblique position test as described above. In other words, it is possible to measure the prism amount for each oblique test and convert the measured oblique amount to the target movement amount and display the target based on the converted target movement amount. is there.
E. In the case of an optometry apparatus provided with the measurement optical system (inspection optical system) in FIG. 7A In this case, in the oblique position test program, the horizontal direction of the inspection units 5L and 5R is set to the position of the far vision state.
 そして、検査ユニット5Lの液晶表示器53のみに固視標又は画像等を表示させると共に、検査ユニット5Lの移動レンズ57をパルスモータPMaにより光軸方向に移動させて、固視標又は画像等が被検者の左被検眼に見える位置に移動レンズ57をセットする。同様に、検査ユニット5Rの液晶表示器53のみに固視標又は画像等を表示させると共に、検査ユニット5Rの移動レンズ57をパルスモータPMaにより光軸方向に移動させて、固視標又は画像等が被検者の右被検眼に見える位置に移動レンズ57をセットする。これらのセットは、左被検眼と右被検眼とで別々に行われる。 Then, the fixation target or the image is displayed only on the liquid crystal display 53 of the inspection unit 5L, and the moving lens 57 of the inspection unit 5L is moved in the optical axis direction by the pulse motor PMa so that the fixation target or the image is displayed. The moving lens 57 is set at a position visible to the subject's left eye. Similarly, the fixation target or image or the like is displayed only on the liquid crystal display 53 of the inspection unit 5R, and the moving lens 57 of the inspection unit 5R is moved in the optical axis direction by the pulse motor PMa to fix the fixation target or image or the like. The moving lens 57 is set at a position that can be seen by the subject's right eye. These sets are performed separately for the left eye and the right eye.
 このセットが完了した状態で、図18Aに示したように、検査ユニット5Lの液晶表示器53に左眼用ズレ検出用視標Lmを表示させると同時に、検査ユニット5Rの液晶表示器53に右眼用ズレ検出視標Rmを表示させる。これにより、被検者の両眼(左被検眼及び右被検眼)には左眼用ズレ検出用視標Lmおよび右眼用ズレ検出視標Rmがそれぞれ表示されて、十字斜位チャートのセットが行われる。尚、ここでは、上述したように、左眼用ズレ検出用視標Lmは横に間隔をおいた一対の横視標線Lm1,Lm2からなり、右眼用ズレ検出視標Rmは縦に間隔をおいた一対の縦視標線Rm1,Rm2からなっている。 When this setting is completed, as shown in FIG. 18A, the left-eye misalignment detection target Lm is displayed on the liquid crystal display 53 of the inspection unit 5L, and at the same time, the right side is displayed on the liquid crystal display 53 of the inspection unit 5R. The eye misalignment detection target Rm is displayed. As a result, the left eye misalignment detection target Lm and the right eye misalignment detection target Rm are displayed on both eyes of the subject (the left test eye and the right test eye), respectively, and a cross oblique chart set. Is done. Here, as described above, the left-eye shift detection target Lm is composed of a pair of horizontal target lines Lm1 and Lm2 that are horizontally spaced, and the right-eye shift detection target Rm is vertically spaced. It consists of a pair of vertical viewing marks Rm1, Rm2.
 この左眼用ズレ検出用視標Lmと右眼用ズレ検出視標Rmを左被検眼および右被検眼にそれぞれ視認させて融像させたときに、図23Cに示したように左眼用ズレ検出用視標Lmの中心(横視標線Lm1,Lm2間の中心)Loと右眼用ズレ検出視標Rmの中心(縦視標線Rm1,Rm2間の中心)Roが一致していれば、図18Bの(i)のように斜位がない正位となるので、ジョイステックレバー6hのボタン6gを押すことで、斜位テストが完了する。 When the left eye misalignment detection target Lm and the right eye misalignment detection target Rm are visually recognized and fused by the left eye and the right eye, respectively, as shown in FIG. 23C, the left eye misalignment is detected. If the center of the detection target Lm (center between the horizontal target lines Lm1 and Lm2) Lo and the center of the right eye misalignment detection target Rm (center between the vertical target lines Rm1 and Rm2) Ro match As shown in FIG. 18B (i), there is no oblique position, and the oblique position test is completed by pressing the button 6g of the joystick lever 6h.
 また、左眼用ズレ検出用視標Lmと右眼用ズレ検出視標Rmを左被検眼および右被検眼にそれぞれ視認させて融像させたときに、図18B(ii)又は(iii)のようにずれていれば、即ち図23A及び図23Bに示したように左眼用ズレ検出用視標Lmの中心(横視標線Lm1,Lm2間の中心)Loと右眼用ズレ検出視標Rmの中心(縦視標線Rm1,Rm2間の中心)Roが左右または上下にx又はyずれていれば、斜位があることになる。 18B (ii) or (iii) when the left eye misalignment detection target Lm and the right eye misalignment detection target Rm are visually recognized by the left eye and the right eye, respectively, and fused. In other words, as shown in FIGS. 23A and 23B, the center of the left eye misalignment detection target Lm (the center between the horizontal target lines Lm1 and Lm2) Lo and the right eye misalignment detection target. If the center of Rm (the center between the vertical viewing marks Rm1 and Rm2) Ro is shifted x or y in the left-right or up-down direction, there is an oblique position.
 この斜位がある場合において斜位量を求めるにはジョイステックレバー6hを用いる。この際、演算制御回路63′は、ジョイステックレバー6hを左又は右に傾動させると、検査ユニット5Rの液晶表示器53に表示された縦視標線Rm1,Rm2の表示位置を左又は右に移動させ、ジョイステックレバー6hを前又は後に傾動させると、検査ユニット5Lの液晶表示器53に表示された横視標線Lm1,Lm2の表示位置を上又は下に移動させる。 When there is this oblique position, the joystick lever 6h is used to determine the amount of oblique position. At this time, when the joystick lever 6h is tilted to the left or right, the arithmetic control circuit 63 ′ shifts the display positions of the vertical visual lines Rm1 and Rm2 displayed on the liquid crystal display 53 of the inspection unit 5R to the left or right. When it is moved and the joystick lever 6h is tilted forward or backward, the display positions of the horizontal viewing lines Lm1 and Lm2 displayed on the liquid crystal display 53 of the inspection unit 5L are moved up or down.
 そして、図23Cのように左眼用ズレ検出用視標Lmの中心(横視標線Lm1,Lm2間の中心)Loと、右眼用ズレ検出視標Rmの中心(縦視標線Rm1,Rm2間の中心)Roが一致したときに、ジョイステックレバー6hのボタン6gを押すことで、左眼用ズレ検出用視標Lmの上下方向へのズレ量(斜位量)および右眼用ズレ検出視標Rmの左右方向へのズレ量(斜位量)を求める。この求められたズレ量(斜位量)はメモリMの被検者データに被検者のIDと共に記憶される。 Then, as shown in FIG. 23C, the center of the left-eye misalignment detection target Lm (center between the horizontal target lines Lm1 and Lm2) Lo and the center of the right-eye misalignment detection target Rm (vertical target line Rm1, (Center of Rm2) When the Ro matches, the button 6g of the joystick lever 6h is pressed to shift the left-eye displacement detection target Lm in the vertical direction (the oblique amount) and the right-eye displacement. A deviation amount (an oblique amount) of the detection target Rm in the left-right direction is obtained. The obtained shift amount (tilt amount) is stored in the subject data of the memory M together with the subject ID.
 また、このIDの被検者の場合には、メモリMの被検者データに記憶させたズレ量(斜位量)に基づいて、検査ユニット5L,5Rの液晶表示器53,53に表示される視標の表示位置を補正する。 Further, in the case of the subject with this ID, it is displayed on the liquid crystal displays 53 and 53 of the examination units 5L and 5R based on the deviation amount (the oblique amount) stored in the subject data of the memory M. Correct the display position of the target.
 従って、この補正に基づき左右の検査ユニット5L,5Rの液晶表示器53,53に図24Aのように同じランドルト環を表示させて、左右の液晶表示器53,53のランドルト環を同時に左被検眼及び右被検眼で視認させたときに、被検者には図24Bのように一つのランドルト環として見えることになる。
(6)水平回旋角の変更
「(5)の視標表示位置の変更」に記載した眼位ずれ補正は、水平斜位に関しては視標の表示位置を変更する代わりに、図2Aに示す検査ユニット5L,5Rを回転させることで同様の効果を得ることも可能である。
Therefore, based on this correction, the same Landolt ring is displayed on the liquid crystal displays 53, 53 of the left and right inspection units 5L, 5R as shown in FIG. 24A, and the Landolt rings of the left and right liquid crystal displays 53, 53 are simultaneously displayed on the left eye. When viewed with the right eye, the subject sees it as one Landolt ring as shown in FIG. 24B.
(6) Change in horizontal rotation angle The eye misalignment correction described in “(5) Change in target display position” is the inspection shown in FIG. 2A instead of changing the display position of the target with respect to horizontal oblique position. It is also possible to obtain the same effect by rotating the units 5L and 5R.
 図20に示すような眼位ずれの場合、正位の状態と比較すると左眼に表示される像が右側に、右眼に表示される像が左側にずれて見える外斜位の状態となっている。従って、この見え方を補正するには、光学系の光軸を外に開くように、つまり、左眼用検査ユニット5Lに内蔵された左眼用光学系を左回りに、右眼用検査ユニット5Rに内蔵された右眼用光学系を右回りに回旋させ、縦線と横線が中央で交差する状態に調節すればよい。 In the case of an eye position shift as shown in FIG. 20, the image displayed on the left eye is shifted to the right side and the image displayed to the right eye is shifted to the left side compared to the normal position. ing. Therefore, in order to correct this appearance, the right-eye inspection unit opens the optical axis of the optical system to the outside, that is, turns the left-eye optical system built in the left-eye inspection unit 5L counterclockwise. What is necessary is just to rotate the optical system for right eyes incorporated in 5R clockwise, and to adjust to the state where a vertical line and a horizontal line cross in the center.
 プリズム度数の定義から、光学系の回旋角が求まれば次の(式4)でプリズム度数Pnを求めることが可能である。 If the rotation angle of the optical system is obtained from the definition of the prism power, the prism power Pn can be obtained by the following (formula 4).
 Pn=100×tanθ(式4)
 Pn:プリズム度数
 θ:正位の状態からの装置の回旋角
 なお、左右の合計プリズムを求める場合には、θは右回旋角と左回旋角の合計値となる。
Pn = 100 × tan θ (Formula 4)
Pn: Prism power θ: Rotation angle of the device from the normal position When obtaining the left and right total prisms, θ is the total value of the right rotation angle and the left rotation angle.
 以上説明したように、この発明の実施の形態の検眼装置は、被検者の左被検眼を検査させる左検査光学系が内蔵された左検査ユニット(左眼用検査ユニット5L)と、前記被検者の右被検眼を検査させる右検査光学系が内蔵された右検査ユニット(右眼用検査ユニット5R)と、前記左検査光学系を介して左視標を前記左被検眼に表示させる左画像表示装置(左眼用検査ユニット5Lの液晶表示器53)と、前記右の検査光学系を介して右視標を前記右被検眼に表示させる右画像表示装置(右眼用検査ユニット5Rの液晶表示器53)と、を備えている。しかも、検眼装置には、前記左被検眼により視認される前記左視標と前記右被検眼により視認される前記右視標との視認状態が最適検査条件となるように、前記左画像表示装置(左眼用検査ユニット5Lの液晶表示器53)に表示される前記左視標と前記右画像表示装置(右眼用検査ユニット5Rの液晶表示器53)に表示される前記右視標とを個別に補正させる視標表示状態補正部82が設けられている。尚、画像表示装置である液晶表示器53は視標表示装置と言うこともできる。 As described above, the optometry apparatus according to the embodiment of the present invention includes the left inspection unit (left-eye inspection unit 5L) including the left inspection optical system that inspects the subject's left eye. A right inspection unit (right eye inspection unit 5R) having a built-in right inspection optical system for inspecting the examiner's right eye, and a left for displaying a left target on the left eye through the left inspection optical system An image display device (liquid crystal display 53 of the left eye inspection unit 5L) and a right image display device (of the right eye inspection unit 5R) that displays a right target on the right eye through the right inspection optical system. A liquid crystal display 53). In addition, the optometry apparatus includes the left image display device so that the visual inspection state of the left target visually recognized by the left eye and the right target visually recognized by the right eye is an optimal examination condition. The left target displayed on the liquid crystal display 53 of the left eye inspection unit 5L and the right target displayed on the right image display device (the liquid crystal display 53 of the right eye inspection unit 5R). An optotype display state correction unit 82 for individually correcting is provided. The liquid crystal display 53, which is an image display device, can also be called a visual target display device.
 この構成によれば、被検眼による視認状態を正しく検査することのできる状態に視標を個別に補正することができる。 According to this configuration, it is possible to individually correct the visual target so that the visual recognition state by the eye to be examined can be correctly inspected.
 また、この発明の実施の形態の検眼装置において、複数の視標を記録させた視標記録部(メモリM)と、前記視標記録部(メモリM)に記録された前記複数の視標から前記左視標及び前記右視標を選択する視標選択部81と、前記視標選択部81により選択される前記左視標及び前記右視標を前記左画像表示装置及び前記右画像表示装置(液晶表示器53,53)にそれぞれ独立して表示させる演算制御回路63′と、が設けられている。 Further, in the optometry apparatus according to the embodiment of the present invention, the target recording unit (memory M) that records a plurality of targets and the plurality of targets recorded in the target recording unit (memory M). A target selection unit 81 that selects the left target and the right target, and the left image display device and the right image display device that select the left target and the right target selected by the target selection unit 81. An arithmetic control circuit 63 ′ is provided for causing the liquid crystal displays 53 and 53 to display each independently.
 この構成によれば、視標選択部81が予め記録された複数の視標から左視標及び右視標を選択し、演算制御回路63′が選択された左視標及び右視標をそれぞれ独立して表示させるため、視標の補正を容易に行うことができる。 According to this configuration, the target selection unit 81 selects a left target and a right target from a plurality of pre-recorded targets, and the arithmetic control circuit 63 ′ selects the selected left target and right target, respectively. Since it is displayed independently, the target can be easily corrected.
 さらに、この発明の実施の形態の検眼装置において、複数の視標が記録された視標記録部(メモリM)と、前記視標記録部(メモリM)に記録された前記複数の視標から前記左視標及び前記右視標を選択する視標選択部81と、前記視標選択部81により選択される前記左視標及び前記右視標を前記左画像表示装置及び前記右画像表示装置(液晶表示器53,53)にそれぞれ独立して表示させる演算制御回路63′と、が設けられている。 Furthermore, in the optometry apparatus according to the embodiment of the present invention, an optotype recording unit (memory M) in which a plurality of optotypes are recorded, and the plurality of optotypes recorded in the optotype recording unit (memory M). A target selection unit 81 that selects the left target and the right target, and the left image display device and the right image display device that select the left target and the right target selected by the target selection unit 81. An arithmetic control circuit 63 ′ is provided for causing the liquid crystal displays 53 and 53 to display each independently.
 この構成によれば、視標操作装置CLRを操作しない場合であっても、視標を個別に補正することができる。 According to this configuration, even when the target operating device CLR is not operated, the target can be individually corrected.
 また、この発明の実施の形態の検眼装置において、前記視標表示状態補正部82と前記視標選択部81とを兼用する視標操作部CLRが設けられている。 Further, in the optometry apparatus according to the embodiment of the present invention, a visual target operation unit CLR that serves as both the visual target display state correction unit 82 and the visual target selection unit 81 is provided.
 この構成によれば、視標を補正するための操作及び視標の選択するための操作を視標操作部CLRにより行うことができるため、これらの操作を容易にすることができる。 According to this configuration, since the operation for correcting the target and the operation for selecting the target can be performed by the target operation unit CLR, these operations can be facilitated.
 また、この発明の実施の形態の検眼装置において、前記視認状態は前記左被検眼の屈折度数に基づく前記左視標の左視標視認サイズ及び前記右被検眼の屈折度数に基づく前記右視標の右視標視認サイズである。しかも、前記視標表示状態補正部82は、前記最適検査条件として前記左視標視認サイズと前記右視標視認サイズとが同じになるように前記左画像表示装置(左眼用検査ユニット5Lの液晶表示器53)に表示された前記左視標の表示サイズと前記右画像表示装置(右眼用検査ユニット5Rの液晶表示器53)に表示された前記右視標の表示サイズとを前記左被検眼の屈折度数及び右被検眼の屈折度数に基づいて個別に補正させる視標サイズ補正部83が設けられている。 Further, in the optometry apparatus according to the embodiment of the present invention, the visual recognition state is the left visual target visual size of the left visual target based on the refractive power of the left examined eye and the right visual target based on the refractive power of the right examined eye. It is the right target visual recognition size. Moreover, the optotype display state correcting unit 82 sets the left image display device (the left eye inspection unit 5L of the left eye inspection unit 5L) such that the left visual target visual recognition size and the right visual target visual recognition size are the same as the optimal inspection condition. The display size of the left target displayed on the liquid crystal display 53) and the display size of the right target displayed on the right image display device (the liquid crystal display 53 of the right-eye test unit 5R) are set to the left. A target size correction unit 83 that individually corrects based on the refractive power of the eye to be examined and the refractive power of the right eye to be examined is provided.
 この構成によれば、眼鏡と同様に、眼前に屈折異常補正光学系を持つ検査装置に於いては、左右眼で個別に視標像のサイズの変更が行えることにより、検眼中は不等像視を打ち消すように視標サイズを変更して提示することが可能となる。 According to this configuration, in the inspection apparatus having the refractive error correction optical system in front of the eyes, like the glasses, the size of the target image can be individually changed between the left and right eyes, so that an unequal image is obtained during the optometry. The target size can be changed and presented so as to negate the view.
 そして、この発明の実施の形態の検眼装置において、前記視認状態は前記左被検眼の矯正度数に基づく前記左視標の左視標視認サイズ及び前記右被検眼の矯正度数に基づく前記右視標の右視標視認サイズである。しかも、前記視標表示状態補正部82は、前記最適検査条件として前記左視標視認サイズと前記右視標視認サイズとが同じになるように前記左画像表示装置(左眼用検査ユニット5Lの液晶表示器53)に表示された前記左視標の表示サイズと前記右画像表示装置(右眼用検査ユニット5Rの液晶表示器53)に表示された前記右視標の表示サイズとを前記左被検眼の矯正度数及び右被検眼の矯正度数に基づいて個別に補正させる視標サイズ補正部83が設けられている。 In the optometry apparatus according to the embodiment of the present invention, the visual recognition state is the left visual target visual recognition size of the left visual target based on the correction power of the left test eye and the right visual test based on the correction power of the right test eye. The right target visual recognition size. Moreover, the optotype display state correcting unit 82 sets the left image display device (the left eye inspection unit 5L of the left eye inspection unit 5L) such that the left visual target visual recognition size and the right visual target visual recognition size are the same as the optimal inspection condition. The display size of the left target displayed on the liquid crystal display 53) and the display size of the right target displayed on the right image display device (the liquid crystal display 53 of the right-eye test unit 5R) are set to the left. A target size correction unit 83 that individually corrects based on the correction power of the eye to be examined and the correction power of the right eye to be examined is provided.
 この構成によれば、屈折異常補正光学系を瞳と共役となる位置に配置した検査装置に於いては、左右眼で個別に視標像のサイズの変更が行えることにより、検眼終了後の度数確認時に眼鏡装用時のサイズで提示することが可能となる。 According to this configuration, in the inspection apparatus in which the refractive error correction optical system is arranged at a position conjugate with the pupil, the size of the target image can be changed individually by the left and right eyes, so that the frequency after completion of the optometry At the time of confirmation, it can be presented in the size when wearing glasses.
 更に、この発明の実施の形態の検眼装置において、前記視認状態は前記左被検眼による前記左視標の左視標視認コントラスト及び前記右被検眼による前記右視標の右視標視認コントラストである。しかも、前記視標表示状態補正部82は、前記最適検査条件として前記左視標視認コントラストと前記右視標視認コントラストとが同じになるように、前記左画像表示装置(左眼用検査ユニット5Lの液晶表示器53)に表示された前記左視標のコントラストと前記右画像表示装置(右眼用検査ユニット5Rの液晶表示器53)に表示された前記右視標のコントラストとを個別に補正させる視標コントラスト補正部84が設けられている。 Furthermore, in the optometry apparatus according to the embodiment of the present invention, the visual recognition states are a left visual target visual contrast of the left visual target by the left eye and a right visual visual recognition contrast of the right eye by the right eye. . Moreover, the optotype display state correcting unit 82 sets the left image display device (inspection unit 5L for the left eye) so that the left visual target visual contrast and the right visual target visual contrast become the same as the optimal inspection condition. The contrast of the left visual target displayed on the liquid crystal display 53) and the contrast of the right visual target displayed on the right image display device (the liquid crystal display 53 of the right eye inspection unit 5R) are individually corrected. A target contrast correction unit 84 is provided.
 この構成によれば左右眼で個別に視標像の明るさ・コントラストの変更が行えることにより、左右眼のコントラスト感度の違いを少なくした状態で検眼が可能となり、特に両眼視機能検査時に有効に働く(機能する)。 According to this configuration, the brightness and contrast of the target image can be changed individually for the left and right eyes, making it possible to perform optometry while reducing the difference in contrast sensitivity between the left and right eyes, especially during binocular visual function testing. Works (functions).
 また、この発明の実施の形態の検眼装置において、前記視認状態は前記左被検眼と前記右被検眼との眼位ズレによって生じる視標視認位置ズレであって前記左被検眼による前記左視標の左視標視認位置と前記右被検眼による前記右視標の右視標視認位置との融合状態における視標視認位置ズレである。しかも、前記視標表示状態補正部82は、前記最適検査条件として前記左視標視認位置と前記右視標視認位置との視標視認位置ズレが生じないように、前記左画像表示装置(左眼用検査ユニット5Lの液晶表示器53)に表示された前記左視標の表示位置と前記右画像表示装置(右眼用検査ユニット5Rの液晶表示器53)に表示された前記右視標の表示位置を個別に補正させる眼位ズレ補正部85が設けられている。 In the optometry apparatus according to the embodiment of the present invention, the visual recognition state is a visual target visual position shift caused by a positional shift between the left eye to be examined and the right eye to be examined, and the left visual target by the left eye to be examined. The left visual target visual recognition position and the right visual target visual recognition position of the right visual target by the right eye to be examined are misaligned. Moreover, the optotype display state correcting unit 82 is configured to use the left image display device (left) so that the visual target visual position shift between the left visual target visual recognition position and the right visual target visual recognition position does not occur as the optimum inspection condition. The display position of the left target displayed on the liquid crystal display 53 of the eye inspection unit 5L and the right target displayed on the right image display device (the liquid crystal display 53 of the right eye inspection unit 5R). An eye misalignment correction unit 85 that individually corrects the display position is provided.
 この構成によれば、輻輳・開散テスト(眼球の回旋の検査)、眼位ずれテスト等がプリズムレンズを用いずに行え、かつ検査中は眼位ずれの補正がプリズムレンズを用いずに行えるため、プリズムレンズによる色収差の影響を受けずに検査を行える。 According to this configuration, the vergence / divergence test (inspection of eyeball rotation), the misalignment test, etc. can be performed without using the prism lens, and the misalignment can be corrected without using the prism lens during the inspection. Therefore, inspection can be performed without being affected by chromatic aberration caused by the prism lens.
 また、この発明の実施の形態の検眼装置において、前記視認状態は前記左被検眼と前記右被検眼との左右方向への眼位ズレによって生じる視標視認位置ズレであって前記左被検眼による前記左視標の左視標視認位置と前記右被検眼による前記右視標の右視標視認位置の融合状態における視標視認位置ズレである。また、前記左検査ユニット(左眼用検査ユニット5L)を前記左被検眼の回旋中心に水平回旋させる左ユニット駆動装置(Ld)と、前記右検査ユニット(右眼用検査ユニット5R)を前記右被検眼の回旋中心に水平回旋させる右ユニット駆動装置(Rd)と、が設けられている。しかも、前記視標表示状態補正部82は、前記最適検査条件として前記左視標視認位置と前記右視標視認位置との左右方向への視標視認位置ズレが生じないように、前記左ユニット駆動装置(Ld)及び前記右ユニット駆動装置(Rd)を作動制御して前記左検査ユニット(左眼用検査ユニット5L)と前記右検査ユニット(右眼用検査ユニット5R)とを個別に水平旋回させることにより、前記左画像表示装置(左眼用検査ユニット5Lの液晶表示器53)に表示された前記左視標と前記右画像表示装置(右眼用検査ユニット5Rの液晶表示器53)に表示された前記右視標の位置とを個別に補正させる眼位ズレ補正部85が設けられているようになっている。 Further, in the optometry apparatus according to the embodiment of the present invention, the visual recognition state is a visual target visual position shift caused by a lateral shift of the left eye and the right eye, and depends on the left eye. It is a visual target visual position shift in the fusion state of the left visual target visual recognition position of the left visual target and the right visual target visual recognition position of the right visual target by the right eye to be examined. Also, a left unit driving device (Ld) that horizontally rotates the left examination unit (left eye examination unit 5L) around the center of rotation of the left eye to be examined, and the right examination unit (right eye examination unit 5R) are arranged to the right. A right unit driving device (Rd) that rotates horizontally around the rotation center of the eye to be examined; In addition, the optotype display state correcting unit 82 is configured so that the left visual unit visual position does not shift in the left-right direction between the left visual target visual recognition position and the right visual target visual recognition position as the optimum inspection condition. The left inspection unit (left eye inspection unit 5L) and the right inspection unit (right eye inspection unit 5R) are individually horizontally turned by controlling the drive device (Ld) and the right unit drive device (Rd). By doing so, the left target displayed on the left image display device (liquid crystal display 53 of the left eye inspection unit 5L) and the right image display device (liquid crystal display 53 of the right eye inspection unit 5R) are displayed. An eye misalignment correction unit 85 that individually corrects the position of the displayed right visual target is provided.
 この構成によれば、輻輳・開散テスト(眼球の回旋の検査)、眼位ずれテスト等がプリズムレンズを用いずに行え、かつ検査中は眼位ずれの補正がプリズムレンズを用いずに行えるため、プリズムレンズによる色収差の影響を受けずに検査を行える。 According to this configuration, the vergence / divergence test (inspection of eyeball rotation), the misalignment test, etc. can be performed without using the prism lens, and the misalignment can be corrected without using the prism lens during the inspection. Therefore, inspection can be performed without being affected by chromatic aberration caused by the prism lens.
 上述した実施例では、この発明を屈折力測定光学系33L,33R等が設けられた検査ユニット5L,5Rを備える検眼装置2に適用した例を示したが、必ずしもこれに限定されるものではない。この発明は、検査ユニット2の検査ユニット5L,5Rから屈折力測定光学系33L,33R等を除いた構成に適用しても良い。
[関連出願への相互参照]
In the above-described embodiments, the present invention is applied to the optometry apparatus 2 including the inspection units 5L and 5R provided with the refractive power measurement optical systems 33L and 33R. However, the present invention is not necessarily limited thereto. . The present invention may be applied to a configuration in which the refractive power measurement optical systems 33L and 33R are excluded from the inspection units 5L and 5R of the inspection unit 2.
[Cross-reference to related applications]
 本出願は、2009年4月30日に日本国特許庁に出願された特願2009-110872に基づいて優先権を主張し、その全ての開示は完全に本明細書で参照により組み込まれる。 This application claims priority based on Japanese Patent Application No. 2009-110872 filed with the Japan Patent Office on April 30, 2009, the entire disclosure of which is fully incorporated herein by reference.

Claims (9)

  1.  被検者の左被検眼を検査させる左検査光学系が内蔵された左検査ユニットと、
    前記被検者の右被検眼を検査させる右検査光学系が内蔵された右検査ユニットと、
     前記左検査光学系を介して左視標を前記左被検眼に表示させる左画像表示装置と、
     前記右の検査光学系を介して右視標を前記右被検眼に表示させる右画像表示装置と、
    前記左被検眼により視認される前記左視標と前記右被検眼により視認される前記右視標との視認状態が最適検査条件となるように、前記左画像表示装置に表示される前記左視標と前記右画像表示装置に表示される前記右視標とを個別に補正させる視標表示状態補正部と、
    が設けられていることを特徴とする検眼装置。
    A left inspection unit with a built-in left inspection optical system that inspects the left eye of the subject;
    A right inspection unit with a built-in right inspection optical system for inspecting the subject's right eye;
    A left image display device for displaying a left target on the left eye to be examined via the left inspection optical system;
    A right image display device for displaying a right target on the right eye through the right examination optical system;
    The left vision displayed on the left image display device so that the visual inspection state of the left visual target visually recognized by the left eye and the right visual target visually recognized by the right eye is an optimal examination condition. A target display state correction unit that individually corrects the target and the right target displayed on the right image display device;
    An optometry apparatus is provided.
  2.  複数の視標が記録された視標記録部と、
     前記視標記録部に記録された前記複数の視標から前記左視標及び前記右視標を選択する視標選択部と、
     前記視標選択部により選択される前記左視標及び前記右視標を前記左画像表示装置及び前記右画像表示装置にそれぞれ独立して表示させる演算制御回路と、
    が設けられていることを特徴とする請求項1に記載の検眼装置。
    A target recording unit in which a plurality of targets are recorded;
    A target selection unit that selects the left target and the right target from the plurality of targets recorded in the target recording unit;
    An arithmetic control circuit that causes the left image display device and the right image display device to independently display the left target and the right target selected by the target selection unit;
    The optometry apparatus according to claim 1, wherein the optometry apparatus is provided.
  3.  請求項2に記載の検眼装置において、前記視標表示状態補正部と前記視標選択部とを兼用する視標操作部が設けられていることを特徴とする検眼装置。 3. The optometry apparatus according to claim 2, further comprising an optotype operation unit that serves as both the optotype display state correction unit and the optotype selection unit.
  4.  複数の視標が記録された視標記録部と、
     前記視標記録部に記録された前記複数の視標から前記左視標及び前記右視標を選択する視標選択部と、
     前記視標選択部及び前記視標表示状態補正部を有し、前記視標選択部により選択される前記左視標及び前記右視標を前記左画像表示装置及び前記右画像表示装置にそれぞれ独立して表示させる演算制御回路と、
    が設けられていることを特徴とする請求項1に記載の検眼装置。
    A target recording unit in which a plurality of targets are recorded;
    A target selection unit that selects the left target and the right target from the plurality of targets recorded in the target recording unit;
    The optotype selection unit and the optotype display state correction unit have the left optotype and the right optotype selected by the optotype selection unit independent of the left image display device and the right image display device, respectively. A calculation control circuit to be displayed,
    The optometry apparatus according to claim 1, wherein the optometry apparatus is provided.
  5.  請求項1から請求項4のいずれか1項に記載の検眼装置において、前記視認状態は前記左被検眼の屈折度数に基づく前記左視標の左視標視認サイズ及び前記右被検眼の屈折度数に基づく前記右視標の右視標視認サイズであり、
     前記視標表示状態補正部は、前記最適検査条件として前記左視標視認サイズと前記右視標視認サイズとが同じになるように、前記左画像表示装置に表示された前記左視標の表示サイズと前記右画像表示装置に表示された前記右視標の表示サイズとを前記左被検眼の屈折度数及び右被検眼の屈折度数に基づいて個別に補正させる視標サイズ補正部が設けられていることを特徴とする検眼装置。
    5. The optometry apparatus according to claim 1, wherein the visual recognition state is a left visual target visual recognition size of the left visual target and a refractive power of the right test eye based on the refractive power of the left examined eye. The right target visual recognition size of the right target based on
    The target display state correcting unit displays the left target displayed on the left image display device so that the left target visual recognition size and the right target visual recognition size are the same as the optimum inspection condition. There is provided a target size correction unit that individually corrects the size and the display size of the right target displayed on the right image display device based on the refractive power of the left eye and the refractive power of the right eye. An optometry apparatus characterized by comprising:
  6.  請求項1から請求項4のいずれか1項に記載の検眼装置において、前記視認状態は前記左被検眼の矯正度数に基づく前記左視標の左視標視認サイズ及び前記右被検眼の矯正度数に基づく前記右視標の右視標視認サイズであり、
     前記視標表示状態補正部は、前記最適検査条件として前記左視標視認サイズと前記右視標視認サイズとが同じになるように、前記左画像表示装置に表示された前記左視標の表示サイズと前記右画像表示装置に表示された前記右視標の表示サイズとを前記左被検眼の矯正度数及び右被検眼の矯正度数に基づいて個別に補正させる視標サイズ補正部が設けられていることを特徴とする検眼装置。
    5. The optometry apparatus according to claim 1, wherein the visual recognition state is a left visual target visual recognition size of the left visual target based on a correction power of the left test eye and a correction power of the right test eye. The right target visual recognition size of the right target based on
    The target display state correcting unit displays the left target displayed on the left image display device so that the left target visual recognition size and the right target visual recognition size are the same as the optimum inspection condition. There is provided a target size correction unit for individually correcting the size and the display size of the right target displayed on the right image display device based on the correction power of the left eye and the correction power of the right eye. An optometry apparatus characterized by comprising:
  7.  請求項1から請求項4のいずれか1項に記載の検眼装置において、前記視認状態は前記左被検眼による前記左視標の左視標視認コントラスト及び前記右被検眼による前記右視標の右視標視認コントラストであり、
     前記視標表示状態補正部は、前記最適検査条件として前記左視標視認コントラストと前記右視標視認コントラストとが同じになるように、前記左画像表示装置に表示された前記左視標のコントラストと前記右画像表示装置に表示された前記右視標のコントラストとを個別に補正させる視標コントラスト補正部が設けられていることを特徴とする検眼装置。
    5. The optometry apparatus according to claim 1, wherein the visual recognition state includes a left visual target visual contrast of the left visual target by the left eye and a right eye of the right visual target by the right eye. The visual target contrast,
    The visual target display state correction unit is configured to contrast the left visual target displayed on the left image display device so that the left visual target visual contrast and the right visual target visual contrast become the same as the optimal inspection condition. And an eye contrast correction unit for individually correcting the contrast of the right eye displayed on the right image display device.
  8.  請求項1から請求項4のいずれか1項に記載の検眼装置において、
     前記視認状態は前記左被検眼と前記右被検眼との眼位ズレによって生じる視標視認位置ズレであって前記左被検眼による前記左視標の左視標視認位置と前記右被検眼による前記右視標の右視標視認位置との融合状態における視標視認位置ズレであり、
     前記視標表示状態補正部は、前記最適検査条件として前記左視標視認位置と前記右視標視認位置との視標視認位置ズレが生じないように、前記左画像表示装置に表示された前記左視標の表示位置と前記右画像表示装置に表示された前記右視標の表示位置を個別に補正させる眼位ズレ補正部が設けられていることを特徴とする検眼装置。
    In the optometry apparatus according to any one of claims 1 to 4,
    The visual recognition state is a visual target visual position shift caused by an eye position shift between the left eye to be examined and the right eye to be examined, and the left visual target visually recognized position of the left visual target by the left eye to be examined and the right eye to be examined. It is a visual target visual position shift in a fusion state with the right visual target visual recognition position of the right visual target,
    The target display state correction unit is displayed on the left image display device so as not to cause a target target visual position shift between the left target visual recognition position and the right target visual recognition position as the optimum inspection condition. An optometry apparatus, comprising an eye misalignment correction unit that individually corrects a display position of a left visual target and a display position of the right visual target displayed on the right image display device.
  9.  請求項1から請求項4のいずれか1項に記載の検眼装置において、
     前記視認状態は前記左被検眼と前記右被検眼との左右方向への眼位ズレによって生じる視標視認位置ズレであって前記左被検眼による前記左視標の左視標視認位置と前記右被検眼による前記右視標の右視標視認位置の融合状態における視標視認位置ズレであり、
     前記左検査ユニットを前記左被検眼の回旋中心に水平回旋させる左ユニット駆動装置と、前記右検査ユニットを前記右被検眼の回旋中心に水平回旋させる右ユニット駆動装置と、が設けられていると共に、
     前記視標表示状態補正部は、前記最適検査条件として前記左視標視認位置と前記右視標視認位置との左右方向への視標視認位置ズレが生じないように、前記左ユニット駆動装置及び前記右ユニット駆動装置を作動制御して前記左検査ユニットと前記右検査ユニットとを個別に水平旋回させることにより、前記左画像表示装置に表示された前記左視標と前記右画像表示装置に表示された前記右視標の位置とを個別に補正させる眼位ズレ補正部が設けられていることを特徴とする検眼装置。
     
    In the optometry apparatus according to any one of claims 1 to 4,
    The visual recognition state is a visual target visual position shift caused by a horizontal positional shift between the left eye to be examined and the right eye to be examined. The left visual target visually recognized position of the left visual target by the left examined eye and the right eye The visual target visual position shift in the fusion state of the right visual target visual recognition position of the right visual target by the eye to be examined,
    A left unit driving device that horizontally rotates the left examination unit to the center of rotation of the left eye and a right unit driving device that horizontally rotates the right examination unit to the center of rotation of the right eye. ,
    The target display state correction unit includes the left unit driving device and the left unit driving device so as not to cause a target target visual position shift in a left-right direction between the left target visual recognition position and the right target visual recognition position as the optimum inspection condition. Displaying the left target displayed on the left image display device and the right image display device by horizontally controlling the left inspection unit and the right inspection unit individually by controlling the operation of the right unit driving device. An optometry apparatus, comprising: an eye misalignment correction unit that individually corrects the position of the right visual target.
PCT/JP2010/056571 2009-04-30 2010-04-13 Eye examination device WO2010125908A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009110872A JP5386224B2 (en) 2009-04-30 2009-04-30 Optometry equipment
JP2009-110872 2009-04-30

Publications (1)

Publication Number Publication Date
WO2010125908A1 true WO2010125908A1 (en) 2010-11-04

Family

ID=43032061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056571 WO2010125908A1 (en) 2009-04-30 2010-04-13 Eye examination device

Country Status (2)

Country Link
JP (1) JP5386224B2 (en)
WO (1) WO2010125908A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2505126A1 (en) * 2011-03-31 2012-10-03 Nidek Co., Ltd Optotype presenting apparatus
JP2019069049A (en) * 2017-10-10 2019-05-09 株式会社ニデック Ophthalmologic apparatus
CN116211235A (en) * 2023-04-06 2023-06-06 江苏鸿晨集团有限公司 Unequal visual target

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5746875B2 (en) * 2011-02-10 2015-07-08 株式会社トプコン Optometry system
JP6771345B2 (en) * 2016-09-23 2020-10-21 株式会社トプコン Optometry device
JP6922338B2 (en) * 2017-03-31 2021-08-18 株式会社ニデック Subjective optometry device
JP7263985B2 (en) * 2019-09-02 2023-04-25 株式会社ニデック Subjective optometric device
JP7216218B2 (en) 2019-09-11 2023-01-31 株式会社トプコン ophthalmic equipment
CN114364304A (en) 2019-09-11 2022-04-15 株式会社拓普康 Ophthalmologic apparatus, control method therefor, and program
EP4094675A1 (en) 2020-01-23 2022-11-30 Topcon Corporation Ophthalmic device and method for controlling same
JP2021142173A (en) 2020-03-13 2021-09-24 株式会社トプコン Ophthalmologic device, control method thereof, and program
JP2021142172A (en) 2020-03-13 2021-09-24 株式会社トプコン Ophthalmologic device, control method thereof, and program
JP7469090B2 (en) 2020-03-19 2024-04-16 株式会社トプコン Ophthalmic device, control method thereof, and program
EP4133993A4 (en) 2020-04-06 2024-05-08 Topcon Corporation Ophthalmological device
JP2023060421A (en) 2021-10-18 2023-04-28 株式会社トプコン Ophthalmologic apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002186586A (en) * 2000-10-13 2002-07-02 Topcon Corp Ophthalmoscopic instrument
WO2003041572A1 (en) * 2001-11-15 2003-05-22 Kabushiki Kaisha Topcon Ophthalmologic apparatus and ophthalmologic chart
WO2003041571A1 (en) * 2001-11-13 2003-05-22 Kabushiki Kaisha Topcon Optometric device
JP2005342042A (en) * 2004-05-31 2005-12-15 Topcon Corp Optometer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030099745A1 (en) * 2001-11-28 2003-05-29 Diversey Lever, Inc. Food washing composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002186586A (en) * 2000-10-13 2002-07-02 Topcon Corp Ophthalmoscopic instrument
WO2003041571A1 (en) * 2001-11-13 2003-05-22 Kabushiki Kaisha Topcon Optometric device
WO2003041572A1 (en) * 2001-11-15 2003-05-22 Kabushiki Kaisha Topcon Ophthalmologic apparatus and ophthalmologic chart
JP2005342042A (en) * 2004-05-31 2005-12-15 Topcon Corp Optometer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2505126A1 (en) * 2011-03-31 2012-10-03 Nidek Co., Ltd Optotype presenting apparatus
CN102727171A (en) * 2011-03-31 2012-10-17 尼德克株式会社 Optotype presenting apparatus
JP2019069049A (en) * 2017-10-10 2019-05-09 株式会社ニデック Ophthalmologic apparatus
JP7024304B2 (en) 2017-10-10 2022-02-24 株式会社ニデック Ophthalmic equipment
CN116211235A (en) * 2023-04-06 2023-06-06 江苏鸿晨集团有限公司 Unequal visual target
CN116211235B (en) * 2023-04-06 2023-09-19 江苏鸿晨集团有限公司 Unequal visual target

Also Published As

Publication number Publication date
JP2010259495A (en) 2010-11-18
JP5386224B2 (en) 2014-01-15

Similar Documents

Publication Publication Date Title
JP5386224B2 (en) Optometry equipment
JP4302525B2 (en) Optometry equipment
JP4252902B2 (en) Optometry apparatus and optometry chart
US7458686B2 (en) Optometry apparatus
JP6537843B2 (en) Optometry device, awareness measurement method using chart for optometry
JP6277295B2 (en) Optometry equipment
JP4494075B2 (en) Optometry equipment
JP5635976B2 (en) Optometry equipment
US20230255473A1 (en) Integrated apparatus for visual function testing and method thereof
JP4267302B2 (en) Optometry equipment
JP4133480B2 (en) Optometry equipment
JP7263985B2 (en) Subjective optometric device
JP7166080B2 (en) ophthalmic equipment
JP7127333B2 (en) Optometry equipment
WO2023233411A1 (en) Eye examination device and method for eye examination
JP2024021350A (en) Subjective optometer
JP2024006535A (en) Optometer and optometry program
JP2020069201A (en) Optometry system
JP2020039849A (en) Ophthalmologic apparatus
JP2020005821A (en) Target display device and ophthalmologic apparatus
JP2018047093A (en) Optometer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10769607

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10769607

Country of ref document: EP

Kind code of ref document: A1