WO2010125670A1 - Ion detection device and ion detection method - Google Patents

Ion detection device and ion detection method Download PDF

Info

Publication number
WO2010125670A1
WO2010125670A1 PCT/JP2009/058464 JP2009058464W WO2010125670A1 WO 2010125670 A1 WO2010125670 A1 WO 2010125670A1 JP 2009058464 W JP2009058464 W JP 2009058464W WO 2010125670 A1 WO2010125670 A1 WO 2010125670A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion
electrode
electron
electron conversion
conversion electrode
Prior art date
Application number
PCT/JP2009/058464
Other languages
French (fr)
Japanese (ja)
Inventor
恵 中村
善郎 塩川
強 彭
Original Assignee
キヤノンアネルバ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノンアネルバ株式会社 filed Critical キヤノンアネルバ株式会社
Priority to PCT/JP2009/058464 priority Critical patent/WO2010125670A1/en
Publication of WO2010125670A1 publication Critical patent/WO2010125670A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J43/00Secondary-emission tubes; Electron-multiplier tubes
    • H01J43/04Electron multipliers
    • H01J43/06Electrode arrangements

Definitions

  • the present invention relates to an ion detection device and an ion detection method for detecting ions at a very high S / N (signal / noise ratio) in a mass spectrometer.
  • the mass spectrometer is an analyzer that quantifies and determines each component constituting the mixed sample by the difference in mass, and is extremely characterized in that it has extremely high sensitivity (low detection limit) as compared with other analyzers.
  • One of the elements that realizes this is a unit that detects ions separated by mass, and has a plate-shaped ion-to-electron conversion electrode, a secondary electron multiplying electrode of about 15 stages (SEM, It also has a collector, etc.).
  • Mass-fractionated ions vertically collide with the ion-electron conversion electrode.
  • the collision energy becomes approximately 1.9 keV
  • electrons generate from the surface of the ion-electron conversion electrode by this energy, and ion-electron conversion is performed.
  • the yield (efficiency) is about 0.1 to 0.2 and is not largely influenced by the material or surface state of the ion electron conversion electrode, but is generally proportional to the collision energy, so the ion energy is important for ion / electron conversion. .
  • Electrons generated from the ion-electron conversion electrode to which a voltage of about -1.9 kV is usually applied are incident on the first stage electrode of the SEM in which a positive potential difference is applied to the ion-electron conversion electrode.
  • a voltage is applied to each of the electrodes constituting the SEM sequentially with a potential difference of about 100 to 200 V from the first stage electrode to the last stage electrode.
  • Each of these voltages is often supplied by dividing the applied voltage supplied to the first stage electrode by the resistance provided inside the detection unit.
  • a voltage of about -1.5 kV is usually applied to the first stage electrode, and electrons incident on the SEM first stage electrode from the ion electron conversion electrode generate secondary electrons on the first stage electrode surface.
  • the yield of secondary electron generation due to electron collision is very high, and with this energy, it is about 1.5 to 2.0 in an appropriate surface state. Therefore, amplification of electrons is realized. Thereafter, electron amplification is similarly performed in the second stage electrode, third stage electrode..., And amplification of 5 to 6 digits is performed in the final stage.
  • An SEM capable of performing such extremely high amplification is essential for mass spectrometric analysis.
  • a typical ionization method is electron ionization, which uses thermions generated from the filament of the ion source to give energy to neutral molecules to remove shell electrons and ionize them (in addition to plasma and ionisation, There are many ways to use electric fields etc)).
  • electron ionization uses thermions generated from the filament of the ion source to give energy to neutral molecules to remove shell electrons and ionize them (in addition to plasma and ionisation, There are many ways to use electric fields etc)).
  • vacuum ultraviolet light has no charge, it is not separated by the mass separation function and arrives at the ion electron conversion electrode, and when it is irradiated, it emits electrons (also called photoelectrons because of light).
  • Vacuum ultraviolet light and soft X-rays generated in this manner are called "stray light” because they cause noise for the mass spectrometer. Since the stray light greatly lowers the basic performance of the mass spectrometer by lowering the S / N of the mass spectrometer, the device described in the following document is to convert only ions to electrons as SEM and to convert stray light to electrons as much as possible. Although it is described in, it is not always sufficient.
  • FIG. 20A is a schematic view showing the whole of a conventional mass spectrometer
  • FIG. 20B is an enlarged view of the vicinity of an ion detection unit of the mass spectrometer shown in FIG. 20A
  • FIG. 20C is ion electrons shown in FIG. It is the detail figure which showed conversion electrode vicinity by trigonometry.
  • a mass spectrometer 1 disposed in a vacuum vessel 1 a includes an ion source 2, a mass separation mechanism 3, and an ion detection unit 4.
  • the ion source 2 has a filament 5 and ionizes a neutral molecule containing a molecule to be measured using the thermoelectrons 6 generated by the filament, and introduces the generated ion to the mass fractionator 3.
  • the mass analysis mechanism 3 has a quadrupole electrode 7 consisting of four cylindrical electrodes. By electrically connecting opposing electrode sets of the quadrupole electrodes 7 and applying a DC voltage and a high frequency AC voltage to each electrode set, only ions having a mass number corresponding to each voltage, frequency, etc. Is made to pass in the long axis direction of the quadrupole electrode 7.
  • an aperture plate 8 in which an aperture is formed as a quadrupole exit electrode in which an aperture is formed is disposed at an outlet portion of the mass analysis mechanism 3. Although the aperture plate 8 is set to a predetermined potential, it is normally at the ground potential (earth potential, 0 V).
  • the ion detection unit 4 has a deflection mechanism 9 for bending the trajectory of ions, a secondary electron multiplier (SEM) 11, and an ion electron conversion electrode 10.
  • the secondary electron multiplier 11 has a plurality of electrodes and a collector 12.
  • a potential of -1.9 kV is applied to the ion electron conversion electrode 10.
  • a potential of -1.5 kV is applied to the first stage electrode of the secondary electron multiplier tube 11.
  • stray light 16 such as vacuum ultraviolet light may be incident on the mass separation mechanism 3 from the ion source 2 in addition to the ions.
  • the potential of the aperture plate 8 is usually the ground potential (earth potential: 0 V), and the ion detection unit 4 detects the ions that have passed through the aperture plate 8.
  • the ion detection unit 4 is located on the same axis as the aperture formed in the aperture plate 8 if only ion detection is considered, then 16 stray lights will be detected as well. Therefore, by arranging only the ion detection unit 4 at a position away from the aperture and bending only the trajectory of the ions 13 by the electric field of the deflection mechanism 9 or the ion electron conversion electrode 10, the ions can be detected without much loss Thus, the stray light 16 does not directly irradiate the ion electron conversion electrode 10.
  • This structure is widely spread as an off-axis structure.
  • the off-axis structure By adopting the off-axis structure in this way, it is possible to reduce the incidence of stray light 16 on the ion-electron conversion electrode, but as shown in FIG. 20B, stray light 16 is generated by being reflected in deflection mechanism 9 or the like. Stray light (hereinafter also referred to as reflected stray light) 17 may occur.
  • the off-axis structure is effective for stray light 16 traveling straight, but is not valid for reflected stray light 17 due to the reflectance of 20 to 30% of vacuum ultraviolet light and soft X-rays.
  • the reason is that since the ion electron conversion electrode 10 has a plate shape, the area receiving the reflected stray light 17 is equal to the cross-sectional area of the stray light, and all of them are detected (FIG. 20C upper right). This has become a major problem for the improvement of the S / N for the latest mass spectrometer, and there has been a demand to reduce the influence of stray light, that is, to reduce the influence of external stray light.
  • the secondary electron multiplier (SEM) shown in FIG. 20A is a front entry type in which electrons are incident from the front of the SEM assembly axis, other than this, a side entry type in which electrons are incident from the side surface of the SEM assembly axis is is there.
  • the present invention has been made in view of such problems, and the object of the present invention is to be attributed to stray light in an ion detector having a mechanism for converting ions into electrons and amplifying the converted electrons.
  • An object of the present invention is to provide an ion detector capable of reducing noise.
  • a first aspect of the present invention is an ion detector, comprising: an ion electron conversion electrode for converting mass-separated ions into electrons; and an amplification mechanism configured to amplify electrons, the ion electrons And an amplification mechanism for drawing in and converting the electrons converted by the conversion electrode by an electric field, and the ion electron conversion electrode is any one of a needle shape, a ribbon shape, a mesh shape, and a slit shape. .
  • a second aspect of the present invention is an ion detection method, which comprises the steps of mass separating incident ions, and any of needle-shaped, ribbon-shaped, mesh-shaped, and slit-shaped ions subjected to mass separation. It has a step of converting into an electron by an ion-electron conversion electrode having one shape, and a step of amplifying the converted electron.
  • stray light incident on the ion conversion electrode can be reduced, and an improvement in the S / N ratio can be realized.
  • FIG. 17A It is a front view of the ion detection apparatus shown to FIG. 17A. It is the figure which showed a part of mass spectrometer which concerns on one Embodiment of this invention by trigonometry.
  • FIG. 5 is a type diagram of each type of secondary electron multiplier according to an embodiment of the present invention. It is a schematic diagram which shows the whole of the conventional mass spectrometer. It is an enlarged view of ion detection apparatus vicinity of the mass spectrometer shown to FIG. 20A. It is the figure which showed the ion electron conversion electrode vicinity shown to FIG. 20A by the trigonometry.
  • stray light reflected stray light or stray light incident from the outside of the ion detector
  • stray light is received by changing the shape of the ion electron conversion electrode from a conventional plate to a needle shape, ribbon shape, mesh shape, slit shape or the like. Reduce the area. The influence of stray light can be reduced by this area reduction.
  • the amount of noise based on stray light is proportional to the area of the ion-electron conversion electrode that receives stray light.
  • stray light is an electromagnetic wave such as vacuum ultraviolet light or soft x-ray and has no charge, it is not affected by an electric field and goes straight.
  • the area in which the ion-electron conversion electrode receives stray light is equal to the cross-sectional area of the ion-electron conversion electrode (irradiation area of the stray light flux on the ion-electron conversion electrode) estimated by the irradiated stray light flux. Therefore, reducing the cross-sectional area will reduce noise.
  • Stray light that has not been irradiated to the ion-to-electron conversion electrode passes by and is eventually irradiated to the vacuum chamber of the ground potential, but the electrons (photoelectrons) generated there are set to the negative potential because they have the potential of the ground potential. It does not enter the electrode of the secondary electron multiplier and does not become noise. However, a part of the stray light is reflected as it is to become reflected stray light, which may be irradiated to the ion-electron conversion electrode to become noise. That is, although the stray light irradiated to the ion electron conversion electrode is high in intensity from the original arrival direction, there are other stray lights irradiated from all directions by reflection.
  • the principle 1 ⁇ reduction of the real area> is effective for “stray light from all directions” after reflection, and the noise amount thereof is approximately proportional to the surface area of the ion-electron conversion electrode.
  • Principle 2 ⁇ Reduction of the expected area> is effective for the “stray light from the original arrival direction before reflection” mentioned at the beginning, and the noise amount is the initial arrival at the ion electron conversion electrode Proportional to the expected area from the direction.
  • This "stray light from the original arrival direction” is high in strength, but the effect is great if the measures are successful, and it is practical to make the prospect area significantly smaller, so this practicality is high.
  • part of the stray light is also irradiated to the other electrodes (for example, the ion suppressor electrode and the shield electrode) coexisting in the ion detection unit, and since a deep negative potential is applied to those electrodes as well.
  • the electrons generated from H.sub.2 can enter the secondary electron multiplier and become noise. Therefore, it is effective to reduce the light receiving area of stray light by making these electrodes into needle shape, ribbon shape, mesh shape, slit shape or the like.
  • an ion suppressor electrode having for example, -600 V
  • the energy in the direction perpendicular to the ion flux incident direction which reduces the collection efficiency, is small as long as it is an ion flux (it can not be an ion flux if it has one).
  • the attractive force of the ions is exactly proportional to the product of the Coulomb force and the time for which it is applied (the impulse), and the ions fly parallel to the distracting ion-electron conversion electrode, so The time for passing the vicinity of the electron conversion electrode is long, and as a result, a large impulse toward the ion conversion electrode is received.
  • the ions are collected at the ion conversion electrode while maintaining sufficient energy in the ion incident direction. This is principle 4 ⁇ coexistence of collection efficiency and conversion efficiency>, which makes it possible to achieve the same detection efficiency as in the case of the plate shape of the prior art.
  • the influence of stray light can be reduced (Principle 1) without sacrificing ion detection (Principle 3). Further, the ion detection electrode can be kept at the same level as the conventional plate shape by, for example, placing the extending direction of the ion-electron conversion electrode parallel to the ion incident direction and causing the ions to enter along the extending direction. (Principle 4) The influence of stray light can be significantly reduced (Principle 2). Furthermore, in the prior art, the ions are incident on the front of the ion-electron conversion electrode, but in the present invention, the oblique incidence causes an effect of improving the ion collection efficiency.
  • FIG. 1A is a diagram showing a part of the mass spectrometer according to the present embodiment by trigonometry
  • FIG. 1B is a three-dimensional perspective view of a part of the ion detection unit according to the present embodiment.
  • These are the figures which showed a part of ion detection unit which concerns on this embodiment by trigonometry.
  • the stray light receiving area and stray light cross-sectional area of the ion electron conversion electrode are shown in the upper right of FIG. 1C. Further, in order to make the drawing easy to see, the top plate portion of the shield electrode is omitted in FIG. 1B.
  • a deflection mechanism 114 and a structure shown in FIG. 1B are provided downstream of a mass separation mechanism 111 having a quadrupole electrode 112 and an aperture plate 113 formed with an aperture 113a as an outlet electrode of the mass separation mechanism.
  • the ion detection unit 101 which has is provided.
  • the ion flux 107 introduced from the mass analysis mechanism 111 via the aperture 113 a changes its trajectory toward the ion electron conversion electrode 103 by the action of the deflection mechanism 114.
  • the ion bundle 107 is incident on the ion electron conversion electrode 103, electrons 109 are generated at the ion electron conversion electrode 103 by ion / electron conversion.
  • the electrons 109 are incident into the secondary electron multiplier tube 101 through the electron incident port 102 formed in the secondary electron multiplier tube 101 as a secondary electron multiplier, and the secondary electron multiplier tube It is amplified by
  • the conventional secondary electron multiplier can detect not only ions but also electrons and (high energy) light, and the electrode at the first stage performs ion electron conversion, secondary electron generation, and photoelectron generation, respectively. Since the basic function and operation are the same, the first stage electrode and the electrodes after that have substantially the same shape and structure.
  • an ion-electron conversion electrode having a completely novel structure as described below has a mechanism for converting ions into electrons and amplifying the converted electrons (hereinafter referred to as “ion electron amplification mechanism”).
  • ion electron amplification mechanism By arranging in the first stage, it is possible to drastically improve the performance of ion electron conversion to reduce stray light noise and improve S / N. That is, in the present embodiment, the first stage electrode of the ion electron amplification mechanism is used as the ion electron conversion electrode which is characteristic of the present invention.
  • the “first-stage electrode of the ion electron amplification mechanism” is an electrode that generates an electron serving as a signal by the ion to be detected when the ion is incident.
  • the ion electron conversion electrode 103 disposed immediately in front of the electron entrance 102 of the secondary electron multiplier tube 101 becomes a signal when the ion flux 107 to be detected is incident. Since the next electron 109 is generated, it becomes the first stage electrode of the ion electron amplification mechanism.
  • the ion electron amplification mechanism has a secondary electron multiplier tube 101 as an amplification mechanism configured to amplify electrons, and an ion electron conversion electrode 103, An ion electron conversion electrode 103 is disposed at the first stage of the ion electron amplification mechanism.
  • the diameter of the ion electron conversion electrode 103 is about 0.1 to 1.0 mm, for example, 0.5 mm, and the length is about 5 to 20 mm, for example 10 mm.
  • the material is preferably a material resistant to deterioration such as stainless steel or molybdenum.
  • the shape of the ion electron conversion electrode 103 may not be a needle, but may be a shape having a slit (slit shape), a mesh shape, or the like.
  • the shape of the ion electron conversion electrode 103 is a needle, even if the ion electron conversion electrode 103 is provided in the ion bundle 107 or the stray light flux 108 as shown in FIGS.
  • the area (light receiving area) on which the stray light flux 108 is effectively incident can be reduced. That is, since the stray light flux 108 arrives with the ion flux 107 due to various factors, conventionally, a plate-like electrode (the ion-electron conversion electrode of the present invention for converting ions into electrons so as to be contained in the stray light flux).
  • the plate-like electrode If the plate-like electrode is disposed, the amount of irradiation of stray light increases, and the S / N ratio is lowered.
  • the needle-shaped electrode since the needle-shaped electrode is used as the ion electron conversion electrode, the stray light receiving area itself can be reduced. Therefore, even if the ion electron conversion electrode 103 is provided so as to be included in the stray light flux 108, the decrease in S / N ratio can be reduced.
  • the stray light flux 108 is the “stray light from the original arrival direction” described above, and reducing the incidence of the stray light flux 108 to the ion-electron conversion electrode 103 is effective from the viewpoint of noise reduction. . Therefore, in the present embodiment, by causing the ion flux 107 to be incident along the extension direction of the ion electron conversion electrode 103, the amount of incident stray light flux 108 to the ion electron conversion electrode 103 can be further reduced. Therefore, even if the ion-electron conversion electrode 103 is present on the way of the stray light flux 108, as shown in FIG. 1C, ion-electron conversion of the stray light flux 108 incident from the same direction as the ion flux 107. The amount of incident light to the electrode 103 can be further reduced.
  • a mesh-shaped ion suppressor electrode 104 is provided around the ion electron conversion electrode 103 and at a position surrounding the ion flux 107.
  • a potential of -1.0 kV is applied to the ion suppressor electrode 104.
  • the incident ion flux 107 can be focused on the ion electron conversion electrode 103, and since the shape is a mesh, secondary electrons generated from the ion electron conversion electrode 103 can be passed.
  • the optical transmittance of the ion suppressor electrode 104 is about 60 to 95%, for example 90%, and the length is a dimension surrounding the ion electron conversion electrode 103, and the material is preferably a material resistant to deterioration such as stainless steel or molybdenum.
  • the shape may be a shape having a slit instead of a mesh, a needle shape, or the like.
  • the ion electron Secondary electrons generated from the conversion electrode 103 are taken, multiplied and detected.
  • the shield electrode 105 is provided at a position surrounding the ion-electron conversion electrode 103 and the ion suppressor electrode 104.
  • a potential of -2.0 kV to the shield electrode 105, the secondary electrons generated from the ion electron conversion electrode 103 are not diffused to the wall of the vacuum vessel which is the ground potential, and the electron incidence of the secondary electron multiplier tube 101 It can be incident on the mouth 102.
  • the shape of the shield electrode 105 may be a plate shape, a slit shape, or a mesh shape.
  • the material of the shield electrode 105 may be an electrode material used in vacuum such as stainless steel or nickel.
  • a focus electrode 106 having a hole in the center is provided between the opening of the shield electrode 105 and the secondary electron multiplier tube 101.
  • the ion-electron conversion electrode 103 at the deep negative potential is surrounded by the ion suppressor electrode 104 at a shallower potential than that, as shown in FIG. Even if the ion flux 107 can be collected. Then, as shown in FIG. 1C, the secondary electrons 109 generated at the ion electron conversion electrode 103 pass through the mesh-like ion suppressor electrode 104, but there is a shield with a potential deeper than that of the ion electron conversion electrode 103.
  • the light is transported to the electron incident port 102 of the secondary electron multiplier tube 101 at a potential shallower than the ion electron conversion electrode 103 on one side without being diffused around the ground potential by the electrode 105 and amplified.
  • the focus electrode 106 has a potential between the ion electron conversion electrode 103 and the electron entrance 102 of the SEM, and helps the secondary electrons 109 to be transported to the electron entrance 102.
  • the potentials to be applied to the ion electron conversion electrode 103, the ion suppressor electrode 104, the shield electrode 105, and the focus electrode 106 can be separately supplied, or the division resistances of the respective electrodes of the secondary electron multiplier tube 101 can be used. It is also possible to use the potential applied at the same time.
  • FIG. 2 is a diagram showing a part of the ion detection unit according to the present embodiment by trigonometry.
  • the entire configuration is the same as that of the first embodiment, but the installation place of the ion electron conversion electrode is outside the stray light flux so that the shape is a ribbon (thin plate) shape.
  • reference numeral 201 denotes a ribbon-shaped ion electron conversion electrode.
  • the ion electron conversion electrode 201 is arranged outside the stray light flux 108, and a potential of -1.9 kV is applied.
  • the ion electron conversion electrode 201 is disposed so that the ion flux 107 is incident along the extension direction (long axis direction in FIG. 2).
  • the ion flux 107 to be incident along the extension direction of the ion electron conversion electrode 201, as shown in FIG. 2, the ion electrons of the stray light flux 108 incident from the same direction as the ion flux 107.
  • the amount of light incident on the conversion electrode 103 can be reduced.
  • the installation place of the ion electron conversion electrode 201 by setting the installation place of the ion electron conversion electrode 201 outside the stray light flux 108, generation of noise based on stray light can be further reduced, but the installation place is inside the ion suppressor electrode 104. It is still in the shape of a ribbon. Therefore, since the electrode surface area is increased and the ion collection efficiency is increased as compared with the needle-shaped ion-electron conversion electrode described in the first embodiment, the ion collection efficiency does not decrease much.
  • the ion electron conversion electrode 201 is placed apart from the secondary electron multiplier tube 101, it may be placed close to it.
  • the shape of the ion electron conversion electrode 201 is not limited to the ribbon shape, and may be a mesh shape.
  • the outer shape of the ion-electron conversion electrode 201 is not limited to the rectangular shape, and the outer shape may be any shape such as a circle, an ellipse, or a star.
  • FIG. 3A is a diagram showing a part of the ion detection unit according to the present embodiment by trigonometry.
  • the use of a needle-shaped ion-electron conversion electrode is the same as that of the first embodiment, but as shown in FIG. 3, a plurality of needle-shaped ion electron exchange electrodes 103 are used. This can increase the collection efficiency of ions.
  • the ion electron conversion electrode not all of them are used as the ion electron conversion electrode, but some of them are used with the same potential as the ion suppressor electrode, and if the ion electron conversion electrode in use is deteriorated, the same potential as the ion suppressor electrode is used.
  • the life can be extended by replacing it with the setting.
  • FIG. 3B This potential switching will be described using FIG. 3B.
  • a potential of -1.9 kV is applied as the ion electron conversion potential to the ion electron conversion electrodes 103a, 103b and 103d, and -1.0 kv as the ion suppressor potential is applied to the ion electron conversion electrode 103c.
  • Apply a potential Then, at a predetermined timing, the applied potential to any one of the ion-electron conversion electrodes 103a, 103b, and 103d is changed to the ion suppressor potential, and the applied potential to the ion-electron conversion electrode 103c is changed to the ion-electron conversion potential .
  • the potential switching may be performed in this manner.
  • FIG. 4 is a diagram showing a part of the ion detection unit according to the present embodiment by trigonometry.
  • the use of the ion suppressor electrode is the same as that of the first embodiment, but the shape is used as a needle and arranged in parallel with the ion incident direction.
  • the number of needles as ion suppressor electrodes can be about 6 to 10, for example, eight.
  • the diameter of the needle may be about 0.05 to 1.0 mm, for example, 0.1 mm, and the length may be a dimension that surrounds the ion electron conversion electrode.
  • the material of the needle is preferably a material resistant to deterioration such as stainless steel or molybdenum.
  • FIG. 4 eight needle-shaped ion suppressor electrodes 401 a to 401 h are disposed so as to surround the ion electron conversion electrode 103.
  • the ion suppressor electrodes 401a to 401h are arranged such that the ion flux 107 is incident along the extending direction.
  • a potential of -1.0 kV is applied to each of the eight ion suppressor electrodes 401a to 401h.
  • the ion suppressor electrode is constituted by a plurality of needles, the area is reduced as compared with the mesh-shaped ion suppressor electrode (the first embodiment). Therefore, the probability that the secondary electrons 109 generated from the ion electron conversion electrode 103 are absorbed by the ion suppressor electrode decreases with the reduction of the area, so the secondary electron multiplier tube 101 of the secondary electrons 109 The incident efficiency can be increased.
  • FIG. 5 is a diagram showing a part of the ion detection unit according to the present embodiment by trigonometry.
  • the use of a needle-shaped ion suppressor electrode is the same as in the fourth embodiment, but in this embodiment, the voltage applied to the ion suppressor electrodes 401 e to 401 h closer to the secondary electron multiplier tube 101 is far
  • the depth is set to be approximately 100 V shallow (in the positive direction) with respect to the ion suppressor electrodes 401a to 401d on the side.
  • a potential of -1.0 kV is applied to each of the ion suppressor electrodes 401a to 401d, and a potential of -0.9 kV is applied to each of the ion suppressor electrodes 401e to 401h.
  • the applied potentials to the ion suppressor electrodes 401a to 401h are all the same potential (-1.0 kV), so the force for transporting the secondary electrons 109 to the secondary electron multiplier tube 101 ( The electric potential) is generated only at the electric potential at the inlet of the secondary electron multiplier tube 101.
  • the potential applied to the ion suppressor electrode disposed on the secondary electron multiplier tube 101 side is opposite to that of the secondary electron multiplier tube 101 It is smaller than the applied potential to the ion suppressor electrode arranged on the side.
  • the applied potential is set and a potential difference is made to direct the ion suppressor electrode itself toward the secondary electron multiplier tube 101 side, the secondary electrons 109 generated from the ion electron conversion electrode 103 become the secondary electron multiplier tube.
  • the efficiency of incidence to 101 can be increased.
  • FIG. 6 is a diagram showing a part of the ion detection unit according to the present embodiment by trigonometry.
  • the portion closest to the secondary electron multiplier tube 101 in the ion suppressor electrode 104 is deleted.
  • the efficiency with which the secondary electrons 109 generated from the ion electron conversion electrode 103 enter the secondary electron multiplier tube 101 can be increased.
  • reference numeral 601 is an ion suppressor electrode.
  • the cylindrical shape in the ion suppressor electrode 104 of the first embodiment is changed to a rectangular shape in order to facilitate manufacture.
  • it in order to improve the incident efficiency of the secondary electron 109 to the secondary electron multiplier tube 101, it has a notch structure in which the surface closest to the rectangular parallelepiped secondary electron multiplier tube 101 is deleted. Note that a potential of -1.0 kV is applied to the ion suppressor electrode 601 having a notch.
  • FIG. 7 is a diagram showing a part of the ion detection unit according to the present embodiment by trigonometry.
  • the ion suppressor electrodes 4401f and 401g closest to the secondary electron multiplier tube 101 among the plurality of needle-shaped ion suppressor electrodes 401a to 401h are deleted.
  • the efficiency with which the secondary electrons 109 generated from the ion electron conversion electrode 103 enter the secondary electron multiplier tube 101 can be increased.
  • FIG. 8 is a diagram showing a part of the mass spectrometer according to the present embodiment by trigonometry.
  • the ion electron conversion electrode 103 of the first embodiment shown in FIG. 1 is coaxially adjacent to the aperture 113 a formed in the aperture plate 113 which is the exit electrode of the mass sorting mechanism 111.
  • the ion electron conversion electrode 103 is less susceptible to the influence of the stray light flux 108, the noise does not become serious, while the S / N can be improved by further increasing the collection efficiency of the ion flux 107.
  • the apparatus can be miniaturized by using a secondary electron multiplier as a side entry type secondary electron multiplier 801 provided with an electron incident surface 802 on the side as shown in FIG. it can.
  • FIG. 9A is a diagram showing a part of the mass spectrometer according to the present embodiment by trigonometry.
  • FIG. 9B is a diagram showing a part of the ion detection device shown in FIG. 9A by trigonometry.
  • the side entry type secondary electron multiplier tube 801 is used, and the electron incident surface 802 is positioned at a position not directly visible from the ion electron conversion electrode 103.
  • Next electron multiplier tube 801 is arranged.
  • the electron incident port 802 of the secondary electron multiplier tube 801 is the ion electron conversion electrode 103. Arrange so as not to overlook. Therefore, the amount of incident stray light on the secondary electron multiplier tube 801 can be further reduced, and noise can be further reduced.
  • the secondary electrons 109 generated from the ion electron conversion electrode 103 can be transported to the electron incident port 802 of the secondary electron multiplier tube 801 by controlling with the electric field, and the signal amount can be maintained.
  • the surface of the ion-electron conversion electrode 103 can be cleaned by heating by energizing the ion-electron conversion electrode 103. Since ions of the molecule to be measured collide with the ion-to-electron conversion electrode 103, a part thereof may become molecules and may be fixed. Therefore, the surface state different from the original state is obtained, and the ion electron conversion efficiency changes. However, for example, when the ion electron conversion electrode 103 is heated to 1500 ° C. or more, most of the fixed molecules can be evaporated and returned to the same surface state as the initial state.
  • the conduction current 1001 of order A is supplied to the ion electron conversion electrode 103.
  • the ion electron conversion electrode 103 can be heated in the range of 500 ° C. to 2000 ° C. Therefore, when the cleaning is necessary, the surface of the ion-electron conversion electrode 103 can be cleaned by heating the ion-electron conversion electrode 103 to a predetermined temperature by supplying the current 1001 in the order of A or the like.
  • a thermal filament is provided outside the ion suppressor electrode 104, and at least one of the ion suppressor electrode 104 and the ion electron conversion electrode 103 is heated by electron impact or radiant heat by energizing the thermal filament. , Can clean the surface.
  • FIGS. 11A and 11B are diagrams for explaining the manner of heating and cleaning at least one of the ion-electron conversion electrode and the ion suppressor electrode according to the present embodiment.
  • a thermal filament 1101 is provided outside the ion suppressor electrode 104. During ion measurement, this filament 1101 is extinguished.
  • the applied potential to the shield electrode 105 is 0 V
  • the applied potential to the ion electron conversion electrode 103 is +500 V
  • the applied potential to the ion suppressor electrode 104 is +100 V. Further, by setting the potential applied to the thermal filament 1101 to 0 V, electrons 1102 are generated from the thermal filament 1101.
  • the electron 1102 is on the order of mA, the electron 1102 directed to the ion electron conversion electrode 103 has an energy of 500 eV, and the electron 1102 directed to the ion suppressor electrode 104 has an energy of 100 eV.
  • the ion electron conversion electrode 103 can be heated in the range of 500 ° C. to 2000 ° C. to clean the ion electron conversion electrode 103.
  • the ion suppressor electrode 104 can be heated in the range of 200 ° C. to 1000 ° C. to clean the ion suppressor electrode 104.
  • FIG. 12A is a diagram showing a part of the ion detection device according to the present embodiment by trigonometry.
  • FIG. 12B is a figure for demonstrating a mode that ion injects into the ion conversion electrode shown to FIG. 12A.
  • the ion electron conversion electrode 1201 is configured by spacing a plurality of needle-shaped needle electrodes apart, and the axial direction of the needle electrode constituting the ion electron conversion electrode 1201
  • the ion-to-electron conversion electrode 1201 is disposed so as to be oblique to the traveling direction of the ion flux 107. That is, the ion electron conversion electrode 1201 composed of a plurality of needle electrodes is installed so as to diagonally cross the ion bundle 107, and a voltage of -1.9 kV is applied to each needle electrode. Further, the voltage applied to the shield electrode 105 is set to the same ⁇ 1.9 V as that of the ion electron conversion electrode 103. Further, a potential of ⁇ 1.5 kV is applied to the electron entrance surface 102 of the secondary electron multiplier tube 101.
  • the ion flux 107 that has passed through the region (opening portion) between the needle electrodes constituting the ion electron exchange electrode 1201 and has exited to the secondary electron multiplier tube 101 is electron incident
  • the trajectory is bent by the electric field resulting from the -1.5 kVV applied to the port 102.
  • the ions whose orbits are bent can collide with the ion electron exchange electrode 103 to generate secondary electrons 109.
  • the ion suppressor electrode is not necessary because the trajectory change of the ions is locally performed.
  • FIG. 13 is a diagram showing a part of the ion detector according to the present embodiment by trigonometry.
  • the ion electron conversion electrode 1301 is configured by spacing and arranging a plurality of needle-shaped needle electrodes. Specifically, each needle electrode is installed so that the axial direction of the needle electrode constituting the ion electron conversion electrode 1301 is perpendicular to the traveling direction of the ion bundle 107, and the plurality of needle electrodes are arranged in the ion bundle
  • the ion bundle 107 is installed so as to cross the ion bundle 107 at an angle with respect to the traveling direction of the electron beam 107.
  • a potential of -1.9 kV is applied to each of the plurality of needle electrodes constituting the ion electron conversion electrode 1301. Further, a potential of -2.0 kV is applied to the shield electrode 105, and a potential of -1.5 kV is applied to the electron entrance surface of the secondary electron multiplier tube 101.
  • the trajectory change and collection efficiency of ions are almost the same as in the twelfth embodiment.
  • the ion electron conversion electrode 1301 since the ion electron conversion electrode 1301 has the plurality of needle electrodes spaced apart, an opening is formed in the ion electron conversion electrode 1301. Therefore, most of the stray light flux 108 passes through the opening formed between the needle electrodes, so that noise due to the stray light flux 108 can be reduced.
  • FIG. 14 is a diagram showing a part of the ion detector according to the present embodiment by trigonometry.
  • the ion electron conversion electrode 1401 is changed to a plurality of needle electrodes of the ion electron conversion electrode 1301 of FIG. 13 into ribbons or meshes, and The area portion is positioned so as to be parallel to the traveling direction of the stray light flux 108.
  • the collection efficiency of ions is improved compared to the thirteenth embodiment.
  • FIG. 15 is a front view showing a part of the mass spectrometer according to the present embodiment.
  • FIG. 15B is a top view showing a part of the mass spectrometer shown in FIG. 15A.
  • FIG. 15C is a front view of the ion detector shown in FIG. 15A.
  • the microchannel plate is a type of secondary electron multiplier tube having an electron incident surface on one side of a disk shape by arranging ultra-small continuous type SEMs horizontally.
  • a microchannel plate type having ion passage openings (openings) is used as a secondary electron multiplier, and the electron incident surface is set to face in the same direction as the traveling direction of stray light. Thus, stray light can be prevented from entering the electron incident surface.
  • the ion electron amplification mechanism has a microchannel plate (MCP) 1501 as an amplification mechanism configured to amplify electrons, and an ion electron conversion electrode 103. doing.
  • the MCP 1501 has a donut shape as shown in FIG. 15B, and an opening 1502 as an ion passage port is formed.
  • the ion bundle 107 and the stray light beam 108 pass through the opening 1502.
  • the electron incident port 1503 of the MCP 1501 is positioned on the side of the ion flux 107 and the stray light flux 108 facing the incident side of the MCP 1501.
  • a potential of -1.9 kV is applied to the ion electron conversion electrode 103 disposed downstream of the traveling direction of the ion flux 107 of the MCP 1501, and a potential of -1.8 kV is applied to the ion suppressor electrode 104, A potential of ⁇ 2.0 kV is applied to the shield electrode 105. Further, a potential of -1.6 kV is applied to the electron incident surface 1503 of the MCP 1501. With such a configuration, the ion flux 107 is drawn to the ion electron conversion electrode 103, and the ion flux 107 generates secondary electrons 109 in the ion electron conversion electrode 103.
  • the generated secondary electrons 109 are incident on the electron incident surface 1503 by the potential formed by the potential applied to the ion suppressor electrode 104 and the electron incident surface 1503, and the incident electrons are amplified in the SEM constituting the MCP 1501. Be done.
  • the surface of the MCP 1501 facing the incident surface of the ions 108 is the electron incident surface 1503. Therefore, as shown in FIG. 15C, since the stray light flux 108 which has passed through the opening 1502 goes straight as it is, it does not enter the electron incident surface 1503 of the MP 1501. On the other hand, secondary electrons 109 generated at the ion electron conversion electrode 103 can be favorably incident on the electron incident surface 1503 by the above-described action.
  • the MCP 1501 is disposed at the front stage of the traveling direction of the ion flux 107 and the ion-electron conversion electrode 103 is disposed at the rear stage. Then, it passes through the MCP 1501 and enters the ion electron conversion electrode 103.
  • the ion-electron conversion electrode 103 since the ion-electron conversion electrode 103 generates the secondary electrons 109 serving as a signal when the ion bundle 107 to be detected is incident, the ion-electron conversion electrode 103 is also an ion electron in this embodiment. It is the first stage electrode of the amplification mechanism.
  • FIG. 16 is a front view of the ion detector according to the present embodiment.
  • the ion suppressor electrode is installed in such a manner that the diameter of the arrangement portion increases (the shape of a wrapper) as it goes to the tip. That is, in the present embodiment, using the trumpet-like ion suppressor electrode 1601 whose width gradually widens in the predetermined direction, the predetermined direction is made to coincide with the traveling direction of the ion bundle 107 and the wide part is the ion
  • the ion suppressor electrode 1601 is disposed so as to be positioned downstream of the traveling direction of the bundle 107. A potential of -1.8 kV is applied to the ion suppressor electrode 1601.
  • the stray luminous flux 108 is a parallel bundle (cylindrical shape due to irregular reflection etc. It is not a bundle but a bunch (wrapper type) with a spread. Therefore, in the present embodiment, the ion suppressor electrode is shaped like a trumpet like the spread of the stray light flux 108, and its width is spread along the traveling direction of the ion flux 107, that is, the traveling direction of the stray light flux 108. Therefore, the stray light flux 108 can be prevented from being received by the trumpet shaped ion suppressor electrode 1601. Therefore, noise can be reduced.
  • FIG. 17A is a front view showing a part of the mass spectrometer according to the present embodiment.
  • FIG. 17B is a top view showing a part of the mass spectrometer shown in FIG. 17A.
  • the ion electron conversion electrode 103 and the MCP 1501 according to the fifteenth embodiment shown in FIGS. 15A to 15C are coaxially arranged adjacent to each other on an aperture 113a formed in the aperture plate 113.
  • the collection efficiency of the ion flux 107 can be further improved, and the S / N can be further improved.
  • FIG. 18 is a diagram showing a part of the mass spectrometer according to the present embodiment by trigonometry.
  • the light shielding case 1801 is installed around the ion electron conversion mechanism having the ion electron conversion electrode 103 and the secondary electron multiplier tube 101. This can prevent stray light 108 from entering each electrode of the secondary electron multiplier tube 101.
  • the respective embodiments have been described above, but the embodiments of the present invention are not limited to these, and it is natural that the respective elements of the respective embodiments can be combined and replaced.
  • the voltage applied to each electrode is not limited to the said embodiment, According to a dimension, a shape, the objective, etc., it can select arbitrarily.
  • the secondary electron multiplier in the first to fourteenth and eighteenth embodiments, a multistage secondary electron multiplier tube (such as reference numerals 1901 and 1902 in FIG. 19) is used. In the fifteenth to seventeenth embodiments, a microchannel plate type photomultiplier is used. However, the secondary electron multiplier is not limited to these, and may be a continuous type or scintillator / photomultiplier. That is, in the embodiment of the present invention, any configuration may be used as long as the incident electrons are amplified and output.
  • FIG. 19 shows an example of a secondary electron multiplier according to an embodiment of the present invention.
  • reference numeral 1901a denotes a side entry type secondary electron multiplier having a plurality of electrodes
  • reference numeral 1901b denotes a front entry type secondary electron multiplier having a plurality of electrodes
  • reference numeral 1901c denotes a side entry type continuous photomultiplier tube
  • reference numeral 1901d denotes a front entry type continuous photomultiplier tube.
  • Reference numeral 1902 denotes an electron incident surface
  • reference numeral 1903 denotes an electron
  • reference 1904 denotes a collector.
  • the secondary electron multipliers 1901a and 1901b have 16 electrodes, and the electrode D1 is disposed in the first stage of each of the secondary electron multipliers 1901a and 1901b. Then, secondary electrons generated at the electrode D1 are incident on the electrode D2, and secondary electrons generated at the electrode D2 are incident on the electrode D3.
  • Each electrode is arranged to be incident on the In each electrode, an applied potential to each electrode is set so as to be amplified when secondary electrons are incident from the front stage and to emit secondary electrons to the rear stage.
  • the continuous photomultiplier tubes 1901c and 1901d respectively have continuous channel structures 1905 and 1906 made of, for example, lead glass, and when the electron 1903 is incident from the electron incident surface 1902, the channel structures It is configured to amplify electrons in 1905 and 1906.
  • the ions to be measured in the above-described embodiments are positive ions, it is possible to apply not only positive ions but also negative ions by inverting the positive and negative of the set potential.
  • the voltage applied to the shield electrode may be the same potential as the voltage applied to the ion electron changing electrode.
  • the ion detection device is an ion detection unit capable of obtaining high S / N in a mass spectrometer, and is suitable for various mass spectrometers for a wide range of applications.
  • the first electrode of the ion electron amplification mechanism configured to convert ions into electrons and amplify the converted electrons is a needle-shaped electrode, It is characterized in that it has a ribbon shape or a mesh shape. That is, the ion electron conversion electrode having a needle shape, ribbon shape or mesh shape is used as the first stage electrode of the ion electron amplification mechanism, and an amplification mechanism configured to amplify electrons is provided downstream of the ion electron conversion electrode. It is important to form the above ion electron amplification mechanism.
  • the first stage electrode of the ion electron amplification mechanism as a needle-shaped, ribbon-shaped or mesh-shaped ion-electron converting electrode, it is possible to obtain the effects according to the principles 1 to 4 described above.
  • the amplification mechanism may be, for example, the secondary electron multipliers 1901a and 1901b shown in FIG. 19 themselves, or the second and subsequent stages of the secondary electron multipliers 1901a and 1901b (electrodes D2 to D16). ) May be.
  • the ion electron amplification mechanism of the present invention can be easily formed, so that the ion detector can be easily manufactured.
  • the ion electron conversion electrode may be provided at a stage prior to the packaged secondary electron multipliers 1901 a and 1901 b (corresponding to the former).
  • the ion electron amplification mechanism includes packaged secondary electron multipliers 1901 a and 1901 b and an ion electron conversion electrode provided in the front stage thereof. This design concept is used in the above embodiments.
  • the electrode D1 positioned at the first stage of the packaged secondary electron multipliers 1901a and 1901b may be changed to the above-described ion electron conversion electrode characteristic of the present invention (corresponding to the above-mentioned latter).
  • the packaged secondary electron multipliers 1901a and 1901b themselves constitute an ion electron amplification mechanism
  • the electrodes D2 to 16 constitute an amplification mechanism configured to amplify electrons.
  • the ion to be detected is converted into electrons, and the converted electrons are amplified and output, the ion to be detected is first incident and signaled. It is essential to apply the structure of the ion-electron conversion electrode described in each of the above embodiments to the electrode that emits electrons.

Abstract

Provided is an ion detection device comprising a mechanism for converting ions into electrons and amplifying the electrons obtained by the conversion, which enables a reduction in noise caused by stray light. The ion detection device is provided with an ion-electron conversion electrode which converts mass-fractionated ions into electrons, and an amplification mechanism which is configured so as to amplify the electrons, the amplification mechanism leading the electrons obtained by the conversion by the ion-electron conversion electrode thereinto by an electric field and amplifying the electrons.  The ion-electron conversion electrode has any one of a needle shape, a ribbon shape, a mesh shape, or a slit shape.

Description

イオン検出装置及びイオン検出方法Ion detector and ion detection method
 本発明は、質量分析装置においてイオンを極めて高いS/N(シグナル/ノイズ比)で検出するイオン検出装置及びイオン検出方法に関するものである。 The present invention relates to an ion detection device and an ion detection method for detecting ions at a very high S / N (signal / noise ratio) in a mass spectrometer.
 質量分析装置は、混合試料を構成する各成分を質量の違いにより定性・定量する分析装置であり、他の分析装置に比べて極めて感度が高い(検出限界が低い)ことが大きな特長である。このことを実現している要素のひとつは質量ごとに分別されたイオンを検出するユニットであり、板形状のイオン電子変換電極、15段程度の2次電子増倍電極(Secondary Electron Multiplier;SEM、以降SEMとも呼ぶ)とコレクタなどを備えている。 The mass spectrometer is an analyzer that quantifies and determines each component constituting the mixed sample by the difference in mass, and is extremely characterized in that it has extremely high sensitivity (low detection limit) as compared with other analyzers. One of the elements that realizes this is a unit that detects ions separated by mass, and has a plate-shaped ion-to-electron conversion electrode, a secondary electron multiplying electrode of about 15 stages (SEM, It also has a collector, etc.).
 質量分別されたイオンがイオン電子変換電極に垂直に衝突する。その際、もしもイオン電子変換電極に-1.9kVが印加されていれば衝突エネルギーはほぼ1.9keVとなり、このエネルギーによりイオン電子変換電極の表面から電子が発生し、イオン/電子変換が行なわれる。この収率(効率)は0.1~0.2程度であり、イオン電子変換電極の材質や表面状態にはあまり影響されないが衝突エネルギーに概ね比例するので、イオン/電子変換にとってはイオンのエネルギーが重要となる。 Mass-fractionated ions vertically collide with the ion-electron conversion electrode. At this time, if -1.9 kV is applied to the ion-electron conversion electrode, the collision energy becomes approximately 1.9 keV, electrons generate from the surface of the ion-electron conversion electrode by this energy, and ion-electron conversion is performed. The yield (efficiency) is about 0.1 to 0.2 and is not largely influenced by the material or surface state of the ion electron conversion electrode, but is generally proportional to the collision energy, so the ion energy is important for ion / electron conversion. .
 通常-1.9kV程度の電圧が印加されているイオン電子変換電極から発生した電子は、イオン電子変換電極に対してプラスの電位差が印加されているSEMの初段電極に入射する。SEMを構成する各電極には初段電極から最終段電極まで100~200V程度の電位差で順に電圧が印加されている。この各電圧は初段電極へ供給された印加電圧を検出ユニット内部に設置した抵抗で分割して供給されることが多い。初段電極には通常-1.5kV程度の電圧が印加されており、イオン電子変換電極からSEM初段電極に入射した電子は初段電極表面で2次電子を発生させる。電子衝突による2次電子発生の収率は大変高く、この程度のエネルギーでは適切な表面状態において1.5~2.0程度となる。したがって、電子の増幅が実現しているのである。これ以降、2段目電極、3段目電極・・・で同じように電子増幅が行なわれ、最終段では5~6桁もの増幅が行なわれる。このように極めて高い増幅を行うことができるSEMは質量分析によっては必要対不可欠となっている。 Electrons generated from the ion-electron conversion electrode to which a voltage of about -1.9 kV is usually applied are incident on the first stage electrode of the SEM in which a positive potential difference is applied to the ion-electron conversion electrode. A voltage is applied to each of the electrodes constituting the SEM sequentially with a potential difference of about 100 to 200 V from the first stage electrode to the last stage electrode. Each of these voltages is often supplied by dividing the applied voltage supplied to the first stage electrode by the resistance provided inside the detection unit. A voltage of about -1.5 kV is usually applied to the first stage electrode, and electrons incident on the SEM first stage electrode from the ion electron conversion electrode generate secondary electrons on the first stage electrode surface. The yield of secondary electron generation due to electron collision is very high, and with this energy, it is about 1.5 to 2.0 in an appropriate surface state. Therefore, amplification of electrons is realized. Thereafter, electron amplification is similarly performed in the second stage electrode, third stage electrode..., And amplification of 5 to 6 digits is performed in the final stage. An SEM capable of performing such extremely high amplification is essential for mass spectrometric analysis.
 しかしながら、イオン電子変換電極には検出して信号とするべきイオンだけでなくノイズの原因となる光も到来する。イオン電子変換電極では光もイオン同様、電子に変換されるので、該光により生じた電子もSEMでシグナルと同じように増幅されてしまい、印加電圧の増加により電子増幅率を高くしてもS/Nは改善されない。質量分析装置では5~6桁もの濃度差を持つ混合試料を分析する必要があるため、S/Nも5~6桁が求められ、如何にノイズを抑えるかがその性能を決定付ける重要な要素となる。 However, not only ions to be detected and signaled but also light that causes noise come to the ion electron conversion electrode. At the ion-to-electron conversion electrode, light is also converted into electrons as well as ions, so the electrons generated by the light are also amplified by the SEM in the same manner as the signal, and the electron amplification factor is increased by increasing the applied voltage. / N is not improved. Since mass spectrometers need to analyze mixed samples with concentration differences of 5 to 6 digits, S / N can also be 5 to 6 digits, and how to suppress noise is an important factor that determines its performance. It becomes.
 質量分別をするにあたっては、まず測定する中性分子をイオン化する必要がある。代表的なイオン化法は電子イオン化であり、イオン源のフィラメントから発生させた熱電子を用いて中性分子にエネルギーを与えて外殻電子を除去しイオン化する(電子イオン化の他にも、プラズマや電界などを用いる数多くの方法がある)。しかし、この過程でイオン化までには到らず励起されただけの分子も多く発生し、これらはしばらくして数~十数eVのエネルギーを持つ真空紫外光を放出して安定化する。この真空紫外光は電荷を持たないために質量分別機能では分別されずにイオン電子変換電極に到来し、照射されると電子(光起因のため光電子とも言われる)を放出する。 In mass separation, it is first necessary to ionize neutral molecules to be measured. A typical ionization method is electron ionization, which uses thermions generated from the filament of the ion source to give energy to neutral molecules to remove shell electrons and ionize them (in addition to plasma and ionisation, There are many ways to use electric fields etc)). However, in this process, a large number of molecules which are only excited are generated without reaching ionization, and these molecules release and stabilize vacuum ultraviolet light having energy of several to several tens of eV after a while. Since this vacuum ultraviolet light has no charge, it is not separated by the mass separation function and arrives at the ion electron conversion electrode, and when it is irradiated, it emits electrons (also called photoelectrons because of light).
 さらに、質量分析計の部品からもノイズの原因となる光が放出される可能性が知られている。さらに、質量分析計として最も代表的な四重極質量分析計においては、マイナスの高電圧が印加された四重極電極にイオンが衝突することにより、真空紫外光よりもエネルギーの高い軟X線が発生する。 Furthermore, it is also known that light that causes noise may be emitted from parts of the mass spectrometer. Furthermore, in the quadrupole mass spectrometer most representative of mass spectrometers, soft x-rays having higher energy than vacuum ultraviolet light due to the collision of ions with the quadrupole electrode to which a negative high voltage is applied. Occurs.
 このようにして発生した真空紫外光と軟X線は質量分析装置にとってノイズの原因となるので“迷光”と呼ばれている。迷光は質量分析装置のS/Nを低下させることでその基本的性能を大きく低下させるため、SEMとしてはイオンのみを電子に変換し、迷光をできるだけ電子に変換しないようにする工夫が下記の文献に記載されているが、必ずしも充分ではない。 Vacuum ultraviolet light and soft X-rays generated in this manner are called "stray light" because they cause noise for the mass spectrometer. Since the stray light greatly lowers the basic performance of the mass spectrometer by lowering the S / N of the mass spectrometer, the device described in the following document is to convert only ions to electrons as SEM and to convert stray light to electrons as much as possible. Although it is described in, it is not always sufficient.
特開平8-7832号公報JP-A-8-7832 特開2001-351565号公報JP, 2001-351565, A
 イオン検出装置としてのイオン検出ユニットが迷光をノイズとして検出しないようにするため、特許文献2および非特許文献1では以下のような工夫がなされている。 
 図20Aは、従来の質量分析装置の全体を示す模式図であり、図20Bは、図20Aに示す質量分析装置のイオン検出ユニット付近の拡大図であり、図20Cは、図20Aに示すイオン電子変換電極付近を三角法で示した詳細図である。
In order that the ion detection unit as the ion detection device does not detect stray light as noise, the following measures are taken in Patent Document 2 and Non-Patent Document 1.
FIG. 20A is a schematic view showing the whole of a conventional mass spectrometer, FIG. 20B is an enlarged view of the vicinity of an ion detection unit of the mass spectrometer shown in FIG. 20A, and FIG. 20C is ion electrons shown in FIG. It is the detail figure which showed conversion electrode vicinity by trigonometry.
 図20Aにおいて、真空容器1a内に配置された質量分析装置1は、イオン源2、質量分別機構3、およびイオン検出ユニット4を備えている。 
 イオン源2は、フィラメント5を有し、該フィラメントにより発生した熱電子6を用いて測定対象の分子を含む中性分子をイオン化し、該生成されたイオンを質量分別計3へと導入する。
In FIG. 20A, a mass spectrometer 1 disposed in a vacuum vessel 1 a includes an ion source 2, a mass separation mechanism 3, and an ion detection unit 4.
The ion source 2 has a filament 5 and ionizes a neutral molecule containing a molecule to be measured using the thermoelectrons 6 generated by the filament, and introduces the generated ion to the mass fractionator 3.
 質量分析機構3は、4本の円柱状電極からなる四重極電極7を有している。四重極電極7のうち対向する電極セットを電気的に結合し、それぞれの電極セットに直流電圧と高周波交流電圧とを印加することにより、各電圧、周波数等に応じた質量数を有するイオンのみを、四重極電極7の長軸方向に通過させるようにしている。また、質量分析機構3の出口部分には、アパーチャが形成された四重極出口電極としての、アパーチャが形成されたアパーチャ板8が配置されている。アパーチャ板8は、所定の電位に設定されるが、通常グランド電位(アース電位、0V)となっている。 The mass analysis mechanism 3 has a quadrupole electrode 7 consisting of four cylindrical electrodes. By electrically connecting opposing electrode sets of the quadrupole electrodes 7 and applying a DC voltage and a high frequency AC voltage to each electrode set, only ions having a mass number corresponding to each voltage, frequency, etc. Is made to pass in the long axis direction of the quadrupole electrode 7. In addition, an aperture plate 8 in which an aperture is formed as a quadrupole exit electrode in which an aperture is formed is disposed at an outlet portion of the mass analysis mechanism 3. Although the aperture plate 8 is set to a predetermined potential, it is normally at the ground potential (earth potential, 0 V).
 イオン検出ユニット4は、イオンの軌道を曲げるための偏向機構9と、二次電子増倍管(SEM)11と、イオン電子変換電極10とを有している。図20Aにおいて、二次電子増倍管11は、複数の電極、およびコレクタ12を有している。上記イオン電子変換電極10には-1.9kVの電位が印加されている。また、2次電子増倍管11の初段電極には-1.5kVの電位が印加されている。 The ion detection unit 4 has a deflection mechanism 9 for bending the trajectory of ions, a secondary electron multiplier (SEM) 11, and an ion electron conversion electrode 10. In FIG. 20A, the secondary electron multiplier 11 has a plurality of electrodes and a collector 12. A potential of -1.9 kV is applied to the ion electron conversion electrode 10. Further, a potential of -1.5 kV is applied to the first stage electrode of the secondary electron multiplier tube 11.
 このような構成において、イオン源2にて発生したイオンが質量分別機構3に入射されると、所望の質量数を有するイオン13が質量分別機構3を通過し、該イオン13がイオン検出ユニット4に入射される。イオン検出ユニット4に入射したイオン13は、偏向機構9の作用により、イオン電子変換電極10側へとその軌道を変化させる。イオン電子変換電極10にイオン13が入射すると、該イオン電子変換電極10にてイオン/電子変換により電子15を発生する。該電子15が2次電子増倍管11の初段電極に入射すると、該電極にて2次電子が発生し、該2次電子が後段の電極にて順次増幅されてコレクタ12に入射する。コレクタ12では入射された2次電子に応じた信号14を出力する。 In such a configuration, when ions generated in the ion source 2 are incident on the mass separation mechanism 3, ions 13 having a desired mass number pass through the mass separation mechanism 3 and the ions 13 are detected by the ion detection unit 4 It is incident on The ion 13 incident on the ion detection unit 4 changes its trajectory toward the ion electron conversion electrode 10 by the action of the deflection mechanism 9. When the ions 13 are incident on the ion-to-electron conversion electrode 10, the ion-to-electron conversion electrode 10 generates electrons 15 by ion / electron conversion. When the electrons 15 are incident on the first stage electrode of the secondary electron multiplier tube 11, secondary electrons are generated at the electrode, and the secondary electrons are sequentially amplified by the subsequent stage electrode and are incident on the collector 12. The collector 12 outputs a signal 14 according to the incident secondary electrons.
 このような質量分析の際には、上述のようにイオン源2から質量分別機構3にはイオンの他に真空紫外線といった迷光16が入射することがある。 In such a mass analysis, as described above, stray light 16 such as vacuum ultraviolet light may be incident on the mass separation mechanism 3 from the ion source 2 in addition to the ions.
 上述のようにアパーチャ板8の電位は通常グランド電位(アース電位:0V)であり、イオン検出ユニット4はこのアパーチャ板8を通過したイオンを検出する。イオンの検出だけを考えればイオン検出ユニット4はアパーチャ板8に形成されたアパーチャと同じ軸上に位置するのが効率的ではあるが、それでは16迷光もまともに検出してしまう。そこで、イオン検出ユニット4を上記アパーチャから外した位置に設置し、偏向機構9やイオン電子変換電極10の電界によりイオン13の軌道のみを曲げることにより、イオンはあまり損失無く検出することができる一方で、迷光16がイオン電子変換電極10に直接照射しない構造になっている。この構造はOff-Axis構造として広く普及している。 
 このようにOff-Axis構造を採用することで迷光16のイオン電子変換電極への入射を低減することができるが、図20Bに示すように、該迷光16が偏向機構9等において反射して生じる迷光(以下、反射迷光とも呼ぶ)17が生じることがある。
As described above, the potential of the aperture plate 8 is usually the ground potential (earth potential: 0 V), and the ion detection unit 4 detects the ions that have passed through the aperture plate 8. Although it is efficient that the ion detection unit 4 is located on the same axis as the aperture formed in the aperture plate 8 if only ion detection is considered, then 16 stray lights will be detected as well. Therefore, by arranging only the ion detection unit 4 at a position away from the aperture and bending only the trajectory of the ions 13 by the electric field of the deflection mechanism 9 or the ion electron conversion electrode 10, the ions can be detected without much loss Thus, the stray light 16 does not directly irradiate the ion electron conversion electrode 10. This structure is widely spread as an off-axis structure.
By adopting the off-axis structure in this way, it is possible to reduce the incidence of stray light 16 on the ion-electron conversion electrode, but as shown in FIG. 20B, stray light 16 is generated by being reflected in deflection mechanism 9 or the like. Stray light (hereinafter also referred to as reflected stray light) 17 may occur.
 上記Off-Axis構造は直進する迷光16には有効だが、20~30%におよぶ真空紫外光や軟X線の反射率に起因する反射迷光17には無効である。なぜならばイオン電子変換電極10が板形状であるため、反射迷光17を受ける面積は迷光の断面積に等しく、その全てが検出されていたからである(図20C右上)。これは最新の質量分析装置にとってはS/Nの改善を阻む大きな問題になっており、さらに迷光の影響を減らすこと、すなわち外部迷光の影響を低減することが求められていた。 The off-axis structure is effective for stray light 16 traveling straight, but is not valid for reflected stray light 17 due to the reflectance of 20 to 30% of vacuum ultraviolet light and soft X-rays. The reason is that since the ion electron conversion electrode 10 has a plate shape, the area receiving the reflected stray light 17 is equal to the cross-sectional area of the stray light, and all of them are detected (FIG. 20C upper right). This has become a major problem for the improvement of the S / N for the latest mass spectrometer, and there has been a demand to reduce the influence of stray light, that is, to reduce the influence of external stray light.
 なお、図20Aで示した2次電子増倍管(SEM)は電子がSEM組立軸の正面から入射するフロントエントリー型であるが、これ以外にもSEM組立軸の側面から入射するサイドエントリー型がある。 Although the secondary electron multiplier (SEM) shown in FIG. 20A is a front entry type in which electrons are incident from the front of the SEM assembly axis, other than this, a side entry type in which electrons are incident from the side surface of the SEM assembly axis is is there.
 本発明は、このような課題に鑑みてなされたもので、その目的とするところは、イオンを電子に変換し、該変換された電子を増幅する機構を有するイオン検出装置において、迷光に起因するノイズを低減可能なイオン検出装置を提供することにある。 The present invention has been made in view of such problems, and the object of the present invention is to be attributed to stray light in an ion detector having a mechanism for converting ions into electrons and amplifying the converted electrons. An object of the present invention is to provide an ion detector capable of reducing noise.
 本発明の第1の態様は、イオン検出装置であって、質量分別されたイオンを電子に変換するイオン電子変換電極と、電子を増幅するように構成された増幅機構であって、前記イオン電子変換電極で変換された電子を電界で引き込み増幅する増幅機構とを備え、前記イオン電子変換電極は、ニードル形状、リボン形状、メッシュ形状、およびスリット形状のいずれか1つであることを特徴とする。 A first aspect of the present invention is an ion detector, comprising: an ion electron conversion electrode for converting mass-separated ions into electrons; and an amplification mechanism configured to amplify electrons, the ion electrons And an amplification mechanism for drawing in and converting the electrons converted by the conversion electrode by an electric field, and the ion electron conversion electrode is any one of a needle shape, a ribbon shape, a mesh shape, and a slit shape. .
 本発明の第2の態様は、イオン検出方法であって、入射されたイオンを質量分別する工程と、前記質量分別されたイオンを、ニードル形状、リボン形状、メッシュ形状、およびスリット形状のいずれか1つの形状を有するイオン電子変換電極により電子に変換する工程と、前記変換された電子を増幅する工程とを有することを特徴とする。 A second aspect of the present invention is an ion detection method, which comprises the steps of mass separating incident ions, and any of needle-shaped, ribbon-shaped, mesh-shaped, and slit-shaped ions subjected to mass separation. It has a step of converting into an electron by an ion-electron conversion electrode having one shape, and a step of amplifying the converted electron.
 本発明によれば、イオン電子変換電極を有するイオン検出装置において、該イオン変換電極に入射する迷光を低減することができ、S/N比の向上を実現することができる。 According to the present invention, in an ion detector having an ion electron conversion electrode, stray light incident on the ion conversion electrode can be reduced, and an improvement in the S / N ratio can be realized.
本発明の一実施形態に係る質量分析装置の一部を三角法で示した図である。It is the figure which showed a part of mass spectrometer which concerns on one Embodiment of this invention by trigonometry. 本発明の一実施形態に係るイオン検出装置の一部の3次元透視図である。It is a three-dimensional perspective view of a part of ion detector concerning one embodiment of the present invention. 本発明の一実施形態に係るイオン検出装置の一部を三角法で示した図である。It is the figure which showed a part of ion detector which concerns on one Embodiment of this invention by the trigonometry. 本発明の一実施形態に係るイオン検出装置の一部を三角法で示した図である。It is the figure which showed a part of ion detector which concerns on one Embodiment of this invention by the trigonometry. 本発明の一実施形態に係るイオン検出装置の一部を三角法で示した図である。It is the figure which showed a part of ion detector which concerns on one Embodiment of this invention by the trigonometry. 図3Aに示すイオン電子変換電極の電位切り替えを説明するための図である。It is a figure for demonstrating the electric potential switching of the ion electron conversion electrode shown to FIG. 3A. 本発明の一実施形態に係るイオン検出装置の一部を三角法で示した図である。It is the figure which showed a part of ion detector which concerns on one Embodiment of this invention by the trigonometry. 本発明の一実施形態に係るイオン検出装置の一部を三角法で示した図である。It is the figure which showed a part of ion detector which concerns on one Embodiment of this invention by the trigonometry. 本発明の一実施形態に係るイオン検出装置の一部を三角法で示した図である。It is the figure which showed a part of ion detector which concerns on one Embodiment of this invention by the trigonometry. 本発明の一実施形態に係るイオン検出装置の一部を三角法で示した図である。It is the figure which showed a part of ion detector which concerns on one Embodiment of this invention by the trigonometry. 本発明の一実施形態に係る質量分析装置の一部を三角法で示した図である。It is the figure which showed a part of mass spectrometer which concerns on one Embodiment of this invention by trigonometry. 本発明の一実施形態に係る質量分析装置の一部を三角法で示した図である。It is the figure which showed a part of mass spectrometer which concerns on one Embodiment of this invention by trigonometry. 本発明の一実施形態に係るイオン検出装置の一部を三角法で示した図である。It is the figure which showed a part of ion detector which concerns on one Embodiment of this invention by the trigonometry. 本発明の一実施形態に係るイオン検出装置のクリーニングを説明するための図である。It is a figure for demonstrating the cleaning of the ion detector which concerns on one Embodiment of this invention. 本発明の一実施形態に係るイオン検出装置のクリーニングを説明するための図であって、イオン検出装置の正面図である。It is a figure for demonstrating cleaning of the ion detector which concerns on one Embodiment of this invention, Comprising: It is a front view of an ion detector. 図11Aに示すイオン検出装置の上面図である。It is a top view of the ion detection apparatus shown to FIG. 11A. 本発明の一実施形態に係るイオン検出装置の一部を三角法で示した図である。It is the figure which showed a part of ion detector which concerns on one Embodiment of this invention by the trigonometry. 図12Aに示すイオン変換電極にイオンが入射される様子を説明するための図である。It is a figure for demonstrating a mode that ion injects into the ion conversion electrode shown to FIG. 12A. 本発明の一実施形態に係るイオン検出装置の一部を三角法で示した図である。It is the figure which showed a part of ion detector which concerns on one Embodiment of this invention by the trigonometry. 本発明の一実施形態に係るイオン検出装置の一部を三角法で示した図である。It is the figure which showed a part of ion detector which concerns on one Embodiment of this invention by the trigonometry. 本発明の一実施形態に係る質量分析装置の一部を示す正面図である。It is a front view showing a part of mass spectrometer concerning one embodiment of the present invention. 図15Aに示す質量分析装置の一部を示す上面図である。It is a top view which shows a part of mass spectrometer shown to FIG. 15A. 図15Aに示すイオン検出装置の正面図である。It is a front view of the ion detection apparatus shown to FIG. 15A. 本発明の一実施形態に係るイオン検出装置の正面図である。It is a front view of the ion detector concerning one embodiment of the present invention. 本発明の一実施形態に係る質量分析装置の一部を示す正面図である。It is a front view showing a part of mass spectrometer concerning one embodiment of the present invention. 図17Aに示すイオン検出装置の正面図である。It is a front view of the ion detection apparatus shown to FIG. 17A. 本発明の一実施形態に係る質量分析装置の一部を三角法で示した図である。It is the figure which showed a part of mass spectrometer which concerns on one Embodiment of this invention by trigonometry. 本発明の一実施形態に係る2次電子増倍器の各形式の類型図である。FIG. 5 is a type diagram of each type of secondary electron multiplier according to an embodiment of the present invention. 従来の質量分析装置の全体を示す模式図である。It is a schematic diagram which shows the whole of the conventional mass spectrometer. 図20Aに示す質量分析装置のイオン検出装置付近の拡大図である。It is an enlarged view of ion detection apparatus vicinity of the mass spectrometer shown to FIG. 20A. 図20Aに示すイオン電子変換電極付近を三角法で示した図である。It is the figure which showed the ion electron conversion electrode vicinity shown to FIG. 20A by the trigonometry.
 以下、図面を参照して本発明の実施形態を詳細に説明する。なお、以下で説明する図面で、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings described below, components having the same function are denoted by the same reference numerals, and the repetitive description thereof will be omitted.
 (本発明の原理) 
 本発明は以下のような原理に基づいている。 
 原理1;<実面積の縮小> 
 本発明では、イオン電子変換電極の形状を従来の板からニードル形状、リボン形状、メッシュ形状、スリット形状などとすることにより、迷光(反射迷光やイオン検出装置の外部から入射した迷光)を受光する面積を小さくする。この面積縮小分だけ迷光の影響を低減できる。 
(Principle of the present invention)
The present invention is based on the following principle.
Principle 1: <reduction of real area>
In the present invention, stray light (reflected stray light or stray light incident from the outside of the ion detector) is received by changing the shape of the ion electron conversion electrode from a conventional plate to a needle shape, ribbon shape, mesh shape, slit shape or the like. Reduce the area. The influence of stray light can be reduced by this area reduction.
 原理2;<見込み面積の縮小>
 迷光の到来方向からの見込み面積(迷光が照射される面積)が小さくなるようにイオン電子変換電極を配置することにより、該イオン電子変換電極の、到来方向からの高強度の迷光が照射される面積を少なくする。迷光の影響を大幅に低減することができる。 
Principle 2; <reduction of expected area>
By arranging the ion-electron conversion electrode so that the expected area (area to which stray light is irradiated) from the arrival direction of stray light is reduced, high-intensity stray light from the arrival direction of the ion-electron conversion electrode is irradiated Reduce the area. The effects of stray light can be significantly reduced.
 原理3;<クーロン力によるイオン収集>
 ニードル形状、リボン形状、メッシュ形状、スリット形状などのイオン電子変換電極にイオンが引きつけられるような電界を形成することにより、面積縮小に伴うイオン検出効率低下を補い、イオン電子変換電極へとイオンを引き付ける効果を従来の板型と同等にすることができる。 
Principle 3: <Coron force-based ion collection>
By forming an electric field that attracts ions to the ion electron conversion electrode such as needle shape, ribbon shape, mesh shape, slit shape, etc., the decrease in ion detection efficiency due to the area reduction is compensated, and the ion to the ion electron conversion electrode The attractive effect can be made equal to that of the conventional plate type.
 原理4;<収集効率と変換効率の両立>
 ニードル形状、リボン形状、メッシュ形状、スリット形状などのイオン電子変換電極をイオンの入射方向にそって伸びるように設置することにより、イオンの収集効率を良好に確保したままイオン電子変換効率を良好に確保する。
Principle 4: <Both collection efficiency and conversion efficiency>
By installing an ion electron conversion electrode such as a needle shape, ribbon shape, mesh shape, slit shape or the like so as to extend along the incident direction of ions, the ion electron conversion efficiency can be excellent while securing good ion collection efficiency. Secure.
 以下、これらについて説明を行なう。 
 迷光に基づくノイズ量はイオン電子変換電極が迷光を受光する面積に比例する。一方、迷光は真空紫外光や軟X線などの電磁波であり電荷を持たないため、電界の影響を受けることはなく直進する。その結果、イオン電子変換電極が迷光を受光する面積は、照射される迷光束が見込んだイオン電子変換電極の断面積(迷光束の、イオン電子変換電極への照射面積)に等しくなる。そこで、この断面積を少なくすることがノイズを低減することになる。
These will be described below.
The amount of noise based on stray light is proportional to the area of the ion-electron conversion electrode that receives stray light. On the other hand, since stray light is an electromagnetic wave such as vacuum ultraviolet light or soft x-ray and has no charge, it is not affected by an electric field and goes straight. As a result, the area in which the ion-electron conversion electrode receives stray light is equal to the cross-sectional area of the ion-electron conversion electrode (irradiation area of the stray light flux on the ion-electron conversion electrode) estimated by the irradiated stray light flux. Therefore, reducing the cross-sectional area will reduce noise.
 イオン電子変換電極に照射されなかった迷光は通り過ぎて、いずれはグランド電位の真空チャンバーに照射されるが、そこで発生する電子(光電子)はグランド電位のポテンシャルを持つためマイナスの電位に設定されている2次電子増倍管の電極には入射せず、ノイズにはならない。しかし、迷光の一部分は光のまま反射して反射迷光となり、イオン電子変換電極に照射されノイズになり得る。すなわち、イオン電子変換電極に照射される迷光は、当初の到来方向からのものが高強度であるが、その他に反射によりあらゆる方向から照射する迷光も存在する。 Stray light that has not been irradiated to the ion-to-electron conversion electrode passes by and is eventually irradiated to the vacuum chamber of the ground potential, but the electrons (photoelectrons) generated there are set to the negative potential because they have the potential of the ground potential. It does not enter the electrode of the secondary electron multiplier and does not become noise. However, a part of the stray light is reflected as it is to become reflected stray light, which may be irradiated to the ion-electron conversion electrode to become noise. That is, although the stray light irradiated to the ion electron conversion electrode is high in intensity from the original arrival direction, there are other stray lights irradiated from all directions by reflection.
 上記原理1<実面積の縮小>は、反射後の「あらゆる方向からの迷光」に対して有効であり,そのノイズ量はイオン電子変換電極の表面積に概ね比例する。次に原理2<見込みの面積の縮小>は、最初に挙げた反射前の「当初の到来方向からの迷光」に対して効果的であり、ノイズ量は、イオン電子変換電極における、当初の到来方向からの見込み面積に比例する。「当初の到来方向からの迷光」は強度が高いがそれだけに対策が奏功した場合の効果は高く、しかも見込み面積を大幅に小さくすることは現実的であるため、この実用性は高い。 The principle 1 <reduction of the real area> is effective for “stray light from all directions” after reflection, and the noise amount thereof is approximately proportional to the surface area of the ion-electron conversion electrode. Next, Principle 2 <Reduction of the expected area> is effective for the “stray light from the original arrival direction before reflection” mentioned at the beginning, and the noise amount is the initial arrival at the ion electron conversion electrode Proportional to the expected area from the direction. This "stray light from the original arrival direction" is high in strength, but the effect is great if the measures are successful, and it is practical to make the prospect area significantly smaller, so this practicality is high.
 なお、迷光の一部はイオン検出ユニット内に並存するその他の電極(例えば、イオンサプレッサ電極、シールド電極)にも照射され、しかもそれらの電極にもマイナスの深い電位が印加されているため、そこから発生する電子が2次電子増倍管に入射するなどしてノイズになり得る。そこで、これらの電極もニードル形状、リボン形状、メッシュ形状、スリット形状などにして迷光の受光面積を小さくすることが有効である。 It should be noted that part of the stray light is also irradiated to the other electrodes (for example, the ion suppressor electrode and the shield electrode) coexisting in the ion detection unit, and since a deep negative potential is applied to those electrodes as well. The electrons generated from H.sub.2 can enter the secondary electron multiplier and become noise. Therefore, it is effective to reduce the light receiving area of stray light by making these electrodes into needle shape, ribbon shape, mesh shape, slit shape or the like.
 一方、電荷を持つイオンは、高電位のイオン電子変換電極へ向かってクーロン力により軌道を曲げながら引きつけられる(正イオンの検出にあたって、イオン電子変換電極は例えば-2kVのようにマイナスの高電位である)。このため、ニードル形状、リボン形状、メッシュ形状、スリット形状などのイオン電子変換電極の実面積は小さくなっているものの、イオンの検出効率は迷光ほど低下しない。イオン電子変換電極から離れた所を通過するイオンに対しては引きつける力が弱くなるが、イオン束の外側にイオン電子変換電極よりも絶対値の小さな負低電位、言い換えるとイオンに対して押し出し電位(例えば-600V)を持つイオンサプレッサ電極を設置することにより、その押し出し効果によりイオンの収集効率を高くすることが可能である。また、ニードル形状、リボン形状、メッシュ形状、あるいはスリット形状等のイオン電子変換電極を複数本設置し、イオン束全体に分散して配置することも有効である。これらの効果が、原理3<クーロン力によるイオンの収集>から得ることができる。 On the other hand, charged ions are attracted toward the high potential ion-electron conversion electrode while bending the orbit by Coulomb force (in detecting positive ions, the ion-electron conversion electrode has a negative high potential such as -2 kV). is there). For this reason, although the actual area of the ion electron conversion electrode such as needle shape, ribbon shape, mesh shape, and slit shape is small, the detection efficiency of ions is not as low as that of stray light. The attractive force is weak for ions passing away from the ion-electron conversion electrode, but the ion bundle has a negative low potential smaller in absolute value than the ion-electron conversion electrode, in other words, the extrusion potential for ions. By installing an ion suppressor electrode having (for example, -600 V), it is possible to increase the collection efficiency of ions by the pushing effect. It is also effective to dispose a plurality of ion electron conversion electrodes of needle shape, ribbon shape, mesh shape, slit shape or the like and disperse them in the whole ion flux. These effects can be obtained from principle 3 <collection of ions by Coulomb force>.
 ところで、停止状態(イオンの初期エネルギーがゼロ)のイオンはより低い電位を持つ電極に必ず収集される(収集効率が100%)が、垂直方向の初期エネルギーを持つと収集効率は低下する。これは、地球に引きつけられた物体が必ずしも地球に衝突せずに宇宙空間に弾き飛ばされることと同様である。そこで、イオンの検出効率を高くするにはイオンの初期エネルギーをより小さくすることが有効である。しかしながら、イオン電子変換を起こすのに必要とされるイオンのエネルギーは数百eV以上と相当高い。 By the way, although ions in the stopped state (zero initial energy of ions) are necessarily collected on the electrode having a lower potential (100% collection efficiency), collection efficiency decreases when the initial energy in the vertical direction is obtained. This is similar to the fact that an object attracted to the earth is repelled into space without necessarily colliding with the earth. Therefore, to increase the detection efficiency of ions, it is effective to make the initial energy of ions smaller. However, the energy of ions required to cause ion-to-electron conversion is as high as several hundred eV or more.
 この二つの要請は矛盾しているが、針形状のイオン電子変換電極をイオン束の入射方向と平行に設置すること、すなわち、イオン電子変換電極の延在方向に沿ってイオンを入射することにより解決することが可能である。 Although these two requirements are contradictory, by installing the needle-shaped ion-electron conversion electrode in parallel with the incident direction of the ion flux, that is, by injecting ions along the extending direction of the ion-electron conversion electrode It is possible to solve.
 イオンの収集について考えると、収集効率を低下させるイオン束入射方向に対して垂直方向のエネルギーは、それがイオン束である以上、わずかしかない(もしも持っていたらイオン束にはなり得ない)。次に、イオンの引きつけ力は正確にはクーロン力とそれが加わる時間の積(力積)に比例することになり、伸延しているイオン電子変換電極に平行してイオンが飛行するので、イオン電子変換電極近傍を通過する時間が長くなり、その結果イオン変換電極に向かう大きな力積を受ける。最終的に、イオン入射方向に充分なエネルギーを維持しつつ、イオン変換電極に収集される。これが原理4<収集効率と変換効率の両立>であり、これにより従来技術の板形状の場合と同程度の検出効率を達成することが可能となる。 Considering the collection of ions, the energy in the direction perpendicular to the ion flux incident direction, which reduces the collection efficiency, is small as long as it is an ion flux (it can not be an ion flux if it has one). Next, the attractive force of the ions is exactly proportional to the product of the Coulomb force and the time for which it is applied (the impulse), and the ions fly parallel to the distracting ion-electron conversion electrode, so The time for passing the vicinity of the electron conversion electrode is long, and as a result, a large impulse toward the ion conversion electrode is received. Finally, the ions are collected at the ion conversion electrode while maintaining sufficient energy in the ion incident direction. This is principle 4 <coexistence of collection efficiency and conversion efficiency>, which makes it possible to achieve the same detection efficiency as in the case of the plate shape of the prior art.
 以上まとめると、イオン電子変換電極をニードル形状、リボン形状、メッシュ形状、またはスリット形状とすることでイオン検出をあまり犠牲せず(原理3)に迷光の影響を低減でき(原理1)る。また、イオン電子変換電極の延在方向をイオン入射方向に平行に設置するなどして、上記延在方向に沿ってイオンを入射させることでイオン検出を従来の板形状と同程度を維持したまま(原理4)迷光の影響を大幅に低減することができる(原理2)。 
 さらに、従来技術では、イオンはイオン電子変換電極の正面に入射していたが、本発明では斜めに入射することによりイオン収集効率が向上する効果がある。
In summary, by forming the ion electron conversion electrode into a needle shape, a ribbon shape, a mesh shape, or a slit shape, the influence of stray light can be reduced (Principle 1) without sacrificing ion detection (Principle 3). Further, the ion detection electrode can be kept at the same level as the conventional plate shape by, for example, placing the extending direction of the ion-electron conversion electrode parallel to the ion incident direction and causing the ions to enter along the extending direction. (Principle 4) The influence of stray light can be significantly reduced (Principle 2).
Furthermore, in the prior art, the ions are incident on the front of the ion-electron conversion electrode, but in the present invention, the oblique incidence causes an effect of improving the ion collection efficiency.
 (第1の実施形態) 
 図1Aは、本実施形態に係る質量分析装置の一部を三角法で示した図であり、図1Bは、本実施形態に係るイオン検出ユニットの一部の3次元透視図であり、図1Cは、本実施形態に係るイオン検出ユニットの一部を三角法で示した図である。なお、図1Cの右上にイオン電子変換電極の迷光受光面積と迷光断面積を示す。また、図面を見易くするため、図1Bにおいてシールド電極の天板部分を省略した。
First Embodiment
FIG. 1A is a diagram showing a part of the mass spectrometer according to the present embodiment by trigonometry, and FIG. 1B is a three-dimensional perspective view of a part of the ion detection unit according to the present embodiment. These are the figures which showed a part of ion detection unit which concerns on this embodiment by trigonometry. The stray light receiving area and stray light cross-sectional area of the ion electron conversion electrode are shown in the upper right of FIG. 1C. Further, in order to make the drawing easy to see, the top plate portion of the shield electrode is omitted in FIG. 1B.
 図1Aにおいて、四重極電極112、および質量分別機構の出口電極としての、アパーチャ113aが形成されたアパーチャ板113を有する質量分別機構111の後段に、偏向機構114、および図1Bに示す構造を有するイオン検出ユニット101が設けられている。このような構成において、質量分析機構111からアパーチャ113aを介して導入されたイオン束107は、偏向機構114の作用によりその軌道をイオン電子変換電極103側へと変化する。イオン束107がイオン電子変換電極103に入射すると、イオン/電子変換によりイオン電子変換電極103にて電子109が発生する。該電子109は、2次電子増倍器としての2次電子増倍管101に形成された電子入射口102を介して2次電子増倍管101内に入射され、該2次電子増倍管内にて増幅される。 In FIG. 1A, a deflection mechanism 114 and a structure shown in FIG. 1B are provided downstream of a mass separation mechanism 111 having a quadrupole electrode 112 and an aperture plate 113 formed with an aperture 113a as an outlet electrode of the mass separation mechanism. The ion detection unit 101 which has is provided. In such a configuration, the ion flux 107 introduced from the mass analysis mechanism 111 via the aperture 113 a changes its trajectory toward the ion electron conversion electrode 103 by the action of the deflection mechanism 114. When the ion bundle 107 is incident on the ion electron conversion electrode 103, electrons 109 are generated at the ion electron conversion electrode 103 by ion / electron conversion. The electrons 109 are incident into the secondary electron multiplier tube 101 through the electron incident port 102 formed in the secondary electron multiplier tube 101 as a secondary electron multiplier, and the secondary electron multiplier tube It is amplified by
 従来の2次電子増倍管はイオンだけでなく電子や(高エネルギー)光を検出することが可能で、初段の電極ではそれぞれイオン電子変換、2次電子発生、光電子発生を行なうが、いずれも基本的な機能・動作は同じであるため初段電極とそれ以後の電極はほぼ同じ形状・構造となっている。しかし、本実施形態では、以下のように全く新規な構造のイオン電子変換電極を、イオンを電子に変換し該変換された電子を増幅する機構(以下、“イオン電子増幅機構”と呼ぶ)の初段に配置することにより、イオン電子変換の性能を抜本的に改良して迷光ノイズを下げS/Nを向上させることができる。すなわち、本実施形態では、イオン電子増幅機構の初段電極を本発明に特徴的なイオン電子変換電極としている。 The conventional secondary electron multiplier can detect not only ions but also electrons and (high energy) light, and the electrode at the first stage performs ion electron conversion, secondary electron generation, and photoelectron generation, respectively. Since the basic function and operation are the same, the first stage electrode and the electrodes after that have substantially the same shape and structure. However, in this embodiment, an ion-electron conversion electrode having a completely novel structure as described below has a mechanism for converting ions into electrons and amplifying the converted electrons (hereinafter referred to as “ion electron amplification mechanism”). By arranging in the first stage, it is possible to drastically improve the performance of ion electron conversion to reduce stray light noise and improve S / N. That is, in the present embodiment, the first stage electrode of the ion electron amplification mechanism is used as the ion electron conversion electrode which is characteristic of the present invention.
 なお、「イオン電子増幅機構の初段電極」とは、検出すべきイオンが入射されると、該イオンによりシグナルとなる電子を生成する電極である。例えば、図1A~1Cにおいては、2次電子増倍管101の電子入射口102の直前に配置されたイオン電子変換電極103が、検出すべきイオン束107が入射されると、シグナルとなる2次電子109を生成するので、イオン電子増幅機構の初段電極となる。 The “first-stage electrode of the ion electron amplification mechanism” is an electrode that generates an electron serving as a signal by the ion to be detected when the ion is incident. For example, in FIGS. 1A to 1C, the ion electron conversion electrode 103 disposed immediately in front of the electron entrance 102 of the secondary electron multiplier tube 101 becomes a signal when the ion flux 107 to be detected is incident. Since the next electron 109 is generated, it becomes the first stage electrode of the ion electron amplification mechanism.
 本実施形態では、図1Bに示すように、イオン電子増幅機構は、電子を増幅するように構成された増幅機構としての2次電子増倍管101と、イオン電子変換電極103とを有し、イオン電子変換電極103がイオン電子増幅機構の初段に配置されている。 In the present embodiment, as shown in FIG. 1B, the ion electron amplification mechanism has a secondary electron multiplier tube 101 as an amplification mechanism configured to amplify electrons, and an ion electron conversion electrode 103, An ion electron conversion electrode 103 is disposed at the first stage of the ion electron amplification mechanism.
 本実施形態では、イオンを電子に変換する電極であるイオン電子変換電極103をニードル形状にし、その延在方向(ここでは、長手方向=軸方向)が迷光束108の中にその進行方向と平行になるように設置し、-1.9kVの電位を印加する。すなわち、イオン電子変換電極103の延在方向がイオン束107の進行方向と平行となるようにイオン電子変換電極103を配置する。その際の、イオン電子変換電極103の直径は0.1~1.0mm程度、例えば0.5mmで、長さは5~20mm程度、例えば10mmである。材質はステンレスやモリブデンなど、変質に強い材料が好ましい。また、イオン電子変換電極103の形状はニードルでなくても、スリットを有する形状(スリット形状)、メッシュ形状などでもよい。 In this embodiment, the ion electron conversion electrode 103, which is an electrode for converting ions into electrons, is formed into a needle shape, and its extension direction (here, longitudinal direction = axial direction) is parallel to the traveling direction in the stray light flux 108. And set a potential of -1.9 kV. That is, the ion electron conversion electrode 103 is disposed such that the extending direction of the ion electron conversion electrode 103 is parallel to the traveling direction of the ion flux 107. At that time, the diameter of the ion electron conversion electrode 103 is about 0.1 to 1.0 mm, for example, 0.5 mm, and the length is about 5 to 20 mm, for example 10 mm. The material is preferably a material resistant to deterioration such as stainless steel or molybdenum. Further, the shape of the ion electron conversion electrode 103 may not be a needle, but may be a shape having a slit (slit shape), a mesh shape, or the like.
 このように、本実施形態では、イオン電子変換電極103の形状をニードルとしているので、例え図1A~1Cに示すようにイオン電子変換電極103をイオン束107や迷光束108内に設けても、迷光束108が実効的に入射される面積(受光面積)を小さくすることができる。すなわち、迷光束108は様々な要因によりイオン束107と共に到来するので、従来では、該迷光束内に含まれるようにイオンを電子に変換するための板状の電極(本発明のイオン電子変換電極に相当)を配置すると、板状の電極へ迷光の照射量が多くなってしまい、S/N比を低下させてしまう。しかしながら、本実施形態では、ニードル形状の電極をイオン電子変換電極として用いているので、迷光の受光面積自体を小さくすることができる。従って、迷光束108内に含まれるようにイオン電子変換電極103を設けても、S/N比の低下を低減することができる。  As described above, in the present embodiment, since the shape of the ion electron conversion electrode 103 is a needle, even if the ion electron conversion electrode 103 is provided in the ion bundle 107 or the stray light flux 108 as shown in FIGS. The area (light receiving area) on which the stray light flux 108 is effectively incident can be reduced. That is, since the stray light flux 108 arrives with the ion flux 107 due to various factors, conventionally, a plate-like electrode (the ion-electron conversion electrode of the present invention for converting ions into electrons so as to be contained in the stray light flux). If the plate-like electrode is disposed, the amount of irradiation of stray light increases, and the S / N ratio is lowered. However, in the present embodiment, since the needle-shaped electrode is used as the ion electron conversion electrode, the stray light receiving area itself can be reduced. Therefore, even if the ion electron conversion electrode 103 is provided so as to be included in the stray light flux 108, the decrease in S / N ratio can be reduced.
 ここで、迷光束108は、上述した「当初の到来方向からの迷光」であり、この迷光束108のイオン電子変換電極103への入射を小さくすることは、ノイズ量低減の観点から有効である。そこで、本実施形態では、イオン電子変換電極103の延在方向に沿ってイオン束107を入射させることにより、迷光束108のイオン電子変換電極103への入射量をより一層低減することができる。従って、例えイオン電子変換電極103が迷光束108の進行途中に存在することになっても、図1Cに示すように、イオン束107と同一の方向から入射される迷光束108の、イオン電子変換電極103への入射量をさらに低減することができる。 Here, the stray light flux 108 is the “stray light from the original arrival direction” described above, and reducing the incidence of the stray light flux 108 to the ion-electron conversion electrode 103 is effective from the viewpoint of noise reduction. . Therefore, in the present embodiment, by causing the ion flux 107 to be incident along the extension direction of the ion electron conversion electrode 103, the amount of incident stray light flux 108 to the ion electron conversion electrode 103 can be further reduced. Therefore, even if the ion-electron conversion electrode 103 is present on the way of the stray light flux 108, as shown in FIG. 1C, ion-electron conversion of the stray light flux 108 incident from the same direction as the ion flux 107. The amount of incident light to the electrode 103 can be further reduced.
 また、図1Bに示すように、イオン電子変換電極103の周囲に、かつイオン束107を囲む位置にメッシュ形状のイオンサプレッサ電極104設けられている。このイオンサプレッサ電極104には-1.0kVの電位が印加される。この電位により、入射したイオン束107がイオン電子変換電極103に集束させることができるとともに、その形状がメッシュであるためイオン電子変換電極103から発生された2次電子を通過させることができる。イオンサプレッサ電極104の光学的透過率は60~95%程度、例えば90%で、長さはイオン電子変換電極103を囲む寸法で、材質はステンレスやモリブデンなど、変質に強い材料が好ましい。形状はメッシュでなくてもスリットを有する形状、ニードル形状などでもよい。 Further, as shown in FIG. 1B, a mesh-shaped ion suppressor electrode 104 is provided around the ion electron conversion electrode 103 and at a position surrounding the ion flux 107. A potential of -1.0 kV is applied to the ion suppressor electrode 104. By this potential, the incident ion flux 107 can be focused on the ion electron conversion electrode 103, and since the shape is a mesh, secondary electrons generated from the ion electron conversion electrode 103 can be passed. The optical transmittance of the ion suppressor electrode 104 is about 60 to 95%, for example 90%, and the length is a dimension surrounding the ion electron conversion electrode 103, and the material is preferably a material resistant to deterioration such as stainless steel or molybdenum. The shape may be a shape having a slit instead of a mesh, a needle shape, or the like.
 次に、イオンサプレッサ電極104の側面近傍に設置された2次電子増倍管101の初段電極(電子入射口102)にイオン電子変換電極103よりプラス方向の-1.5kVを印加することでイオン電子変換電極103から発生した2次電子を取り込み、増倍して検出する。 Next, by applying −1.5 kV in the positive direction from the ion electron conversion electrode 103 to the first stage electrode (electron entrance 102) of the secondary electron multiplier tube 101 installed near the side surface of the ion suppressor electrode 104, the ion electron Secondary electrons generated from the conversion electrode 103 are taken, multiplied and detected.
 また本実施形態では、イオン電子変換電極103とイオンサプレッサ電極104とを囲む位置にシールド電極105を設けている。該シールド電極105に-2.0kVの電位を印加することによりイオン電子変換電極103から発生した2次電子がグラウンド電位である真空容器の壁に放散せずに2次電子増倍管101の電子入射口102に入射させることができる。シールド電極105の形状は板形状でもスリット形状でもメッシュ形状でもよく、材質はステンレス、ニッケルなど、真空中で使用される電極材料を用いることができる。 Further, in the present embodiment, the shield electrode 105 is provided at a position surrounding the ion-electron conversion electrode 103 and the ion suppressor electrode 104. By applying a potential of -2.0 kV to the shield electrode 105, the secondary electrons generated from the ion electron conversion electrode 103 are not diffused to the wall of the vacuum vessel which is the ground potential, and the electron incidence of the secondary electron multiplier tube 101 It can be incident on the mouth 102. The shape of the shield electrode 105 may be a plate shape, a slit shape, or a mesh shape. The material of the shield electrode 105 may be an electrode material used in vacuum such as stainless steel or nickel.
 さらに、シールド電極105の開口部と2次電子増倍管101との間に、中心に穴を有するフォーカス電極106が設置されている。フォーカス電極106に-1.8kVの電位を印加することにより2次電子が2次電子増倍管101に入射する効率を上げることが可能である。 Further, a focus electrode 106 having a hole in the center is provided between the opening of the shield electrode 105 and the secondary electron multiplier tube 101. By applying a potential of -1.8 kV to the focus electrode 106, it is possible to increase the efficiency with which the secondary electrons enter the secondary electron multiplier tube 101.
 以上要点を整理すると、深いマイナス電位のイオン電子変換電極103は、それよりも浅い電位のイオンサプレッサ電極104に囲まれているので、図1Cに示すように、迷光束108を受けにくいニードル状であってもイオン束107を収集することが出来る。そして、図1Cに示すように、イオン電子変換電極103で発生した2次電子109は、メッシュ状のイオンサプレッサ電極104を透過するがその回りにあってイオン電子変換電極103よりも深い電位のシールド電極105によってグランド電位の周辺には放散されることなく、片側にあってイオン電子変換電極103よりも浅い電位の2次電子増倍管101の電子入射口102に輸送されて増幅される。なお、フォーカス電極106はイオン電子変換電極103とSEMの電子入射口102の間の電位を持ち、2次電子109が電子入射口102に輸送されるのを助ける。 In summary of the main points, since the ion-electron conversion electrode 103 at the deep negative potential is surrounded by the ion suppressor electrode 104 at a shallower potential than that, as shown in FIG. Even if the ion flux 107 can be collected. Then, as shown in FIG. 1C, the secondary electrons 109 generated at the ion electron conversion electrode 103 pass through the mesh-like ion suppressor electrode 104, but there is a shield with a potential deeper than that of the ion electron conversion electrode 103. The light is transported to the electron incident port 102 of the secondary electron multiplier tube 101 at a potential shallower than the ion electron conversion electrode 103 on one side without being diffused around the ground potential by the electrode 105 and amplified. The focus electrode 106 has a potential between the ion electron conversion electrode 103 and the electron entrance 102 of the SEM, and helps the secondary electrons 109 to be transported to the electron entrance 102.
 なお、これらイオン電子変換電極103、イオンサプレッサ電極104、シールド電極105、フォーカス電極106へ印加する電位は個別に供給することもできるし、一方で2次電子増倍管101の各電極に分割抵抗で印加している電位を流用することもできる。 The potentials to be applied to the ion electron conversion electrode 103, the ion suppressor electrode 104, the shield electrode 105, and the focus electrode 106 can be separately supplied, or the division resistances of the respective electrodes of the secondary electron multiplier tube 101 can be used. It is also possible to use the potential applied at the same time.
 (第2の実施形態) 
 図2は、本実施形態に係るイオン検出ユニットの一部を三角法で示した図である。本実施形態において、全体の構成は第1の実施形態と同じであるが,イオン電子変換電極の設置場所を迷光束の外側にして形状をリボン(薄板)形状にしている。
Second Embodiment
FIG. 2 is a diagram showing a part of the ion detection unit according to the present embodiment by trigonometry. In the present embodiment, the entire configuration is the same as that of the first embodiment, but the installation place of the ion electron conversion electrode is outside the stray light flux so that the shape is a ribbon (thin plate) shape.
 図2において、符号201は、リボン形状のイオン電子変換電極である。該イオン電子変換電極201は、迷光束108の外に配置されており、-1.9kVの電位が印加される。また、イオン電子変換電極201は、その延在方向(図2では、長軸方向)に沿ってイオン束107が入射されるように配置されている。 In FIG. 2, reference numeral 201 denotes a ribbon-shaped ion electron conversion electrode. The ion electron conversion electrode 201 is arranged outside the stray light flux 108, and a potential of -1.9 kV is applied. In addition, the ion electron conversion electrode 201 is disposed so that the ion flux 107 is incident along the extension direction (long axis direction in FIG. 2).
 このように、イオン電子変換電極201の延在方向に沿ってイオン束107を入射させることにより、図2に示すように、イオン束107と同一の方向から入射される迷光束108の、イオン電子変換電極103への入射量を低減することができる。 Thus, by causing the ion flux 107 to be incident along the extension direction of the ion electron conversion electrode 201, as shown in FIG. 2, the ion electrons of the stray light flux 108 incident from the same direction as the ion flux 107. The amount of light incident on the conversion electrode 103 can be reduced.
 本実施形態では、イオン電子変換電極201の設置場所を迷光束108の外側にしたことにより、迷光に基づくノイズの発生をさらに低減することができるが、その設置場所がイオンサプレッサ電極104の内部にとどまっており、さらにリボン形状である。従って、第1の実施形態にて説明したニードル形状のイオン電子変換電極よりも電極表面積が増えてイオン収集効率が増大することから、イオンの収集効率はあまり低下しない。なお、図2ではイオン電子変換電極201を2次電子増倍管101から離れるように設置したが、近くなるように設置してもよい。
 また、本実施形態では、イオン電子変換電極201の形状はリボン形状に限定されるものではなく、メッシュ形状であっても良い。
 さらに、本実施形態では、イオン電子変換電極201の外形は矩形型に限定されるものではなく、円形、楕円形、星型などその外形はいずれの形であっても良い。
In this embodiment, by setting the installation place of the ion electron conversion electrode 201 outside the stray light flux 108, generation of noise based on stray light can be further reduced, but the installation place is inside the ion suppressor electrode 104. It is still in the shape of a ribbon. Therefore, since the electrode surface area is increased and the ion collection efficiency is increased as compared with the needle-shaped ion-electron conversion electrode described in the first embodiment, the ion collection efficiency does not decrease much. Although in FIG. 2 the ion electron conversion electrode 201 is placed apart from the secondary electron multiplier tube 101, it may be placed close to it.
Further, in the present embodiment, the shape of the ion electron conversion electrode 201 is not limited to the ribbon shape, and may be a mesh shape.
Furthermore, in the present embodiment, the outer shape of the ion-electron conversion electrode 201 is not limited to the rectangular shape, and the outer shape may be any shape such as a circle, an ellipse, or a star.
 (第3の実施形態) 
 図3Aは、本実施形態に係るイオン検出ユニットの一部を三角法で示した図である。本実施形態では、ニードル形状のイオン電子変換電極を用いることは第1の実施形態と同じであるが,図3に示すように、ニードル形状のイオン電子交換電極103を複数本用いる。これにより、イオンの収集効率を上げることができる。
Third Embodiment
FIG. 3A is a diagram showing a part of the ion detection unit according to the present embodiment by trigonometry. In this embodiment, the use of a needle-shaped ion-electron conversion electrode is the same as that of the first embodiment, but as shown in FIG. 3, a plurality of needle-shaped ion electron exchange electrodes 103 are used. This can increase the collection efficiency of ions.
 そして、その全てをイオン電子変換電極として使用するのではなく、一部をイオンサプレッサ電極と同じ電位に設定して使用し、使用中のイオン電子変換電極が劣化してきたらイオンサプレッサ電極と同じ電位に設定していたものと入れ替えると、寿命を延ばすことができる。 Then, not all of them are used as the ion electron conversion electrode, but some of them are used with the same potential as the ion suppressor electrode, and if the ion electron conversion electrode in use is deteriorated, the same potential as the ion suppressor electrode is used. The life can be extended by replacing it with the setting.
 この電位切り替えについて図3Bを用いて説明する。 
 図3Bにおいて、例えば、イオン電子変換電極103a、103b、103dには、イオン電子変換電位として-1.9kVの電位を印加し、イオン電子変換電極103cには、イオンサプレッサ電位として-1.0kvの電位を印加する。そして、所定のタイミングにおいて、イオン電子変換電極103a、103b、103dのいずれか1つへの印加電位をイオンサプレッサ電位に変更し、イオン電子変換電極103cへの印加電位をイオン電子変換電位に変更する。このようにして上記電位切り替えを行えばよい。
This potential switching will be described using FIG. 3B.
In FIG. 3B, for example, a potential of -1.9 kV is applied as the ion electron conversion potential to the ion electron conversion electrodes 103a, 103b and 103d, and -1.0 kv as the ion suppressor potential is applied to the ion electron conversion electrode 103c. Apply a potential. Then, at a predetermined timing, the applied potential to any one of the ion- electron conversion electrodes 103a, 103b, and 103d is changed to the ion suppressor potential, and the applied potential to the ion-electron conversion electrode 103c is changed to the ion-electron conversion potential . The potential switching may be performed in this manner.
 (第4の実施形態) 
 図4は、本実施形態に係るイオン検出ユニットの一部を三角法で示した図である。本実施形態では、イオンサプレッサ電極を用いることは第1の実施形態と同じであるが、その形状をニードルにしてイオン入射方向と平行に並べる。イオンサプレッサ電極としてのニードルの本数は6~10本程度、例えば8本とすることができる。またニードルの直径は0.05~1.0mm程度、例えば0.1mmとすることができ、長さはイオン電子変換電極を囲む寸法であれば良い。さらに、ニードルの材質はステンレスやモリブデンなど、変質に強い材料が好ましい。
Fourth Embodiment
FIG. 4 is a diagram showing a part of the ion detection unit according to the present embodiment by trigonometry. In the present embodiment, the use of the ion suppressor electrode is the same as that of the first embodiment, but the shape is used as a needle and arranged in parallel with the ion incident direction. The number of needles as ion suppressor electrodes can be about 6 to 10, for example, eight. Further, the diameter of the needle may be about 0.05 to 1.0 mm, for example, 0.1 mm, and the length may be a dimension that surrounds the ion electron conversion electrode. Furthermore, the material of the needle is preferably a material resistant to deterioration such as stainless steel or molybdenum.
 図4では、イオン電子変換電極103を囲むように8本のニードル形状のイオンサプレッサ電極401a~401hを配置している。これらイオンサプレッサ電極401a~401hは、その延在方向に沿ってイオン束107が入射されるように配置されている。上記8本のイオンサプレッサ電極401a~401hのそれぞれに、-1.0kVの電位が印加される。 In FIG. 4, eight needle-shaped ion suppressor electrodes 401 a to 401 h are disposed so as to surround the ion electron conversion electrode 103. The ion suppressor electrodes 401a to 401h are arranged such that the ion flux 107 is incident along the extending direction. A potential of -1.0 kV is applied to each of the eight ion suppressor electrodes 401a to 401h.
 このように本実施形態では、イオンサプレッサ電極を複数のニードルにより構成しているので、メッシュ形状のイオンサプレッサ電極(第1の実施形態)と比べて面積が減少する。よって、イオン電子変換電極103から発生した2次電子109がイオンサプレッサ電極に吸収される確率は、上記面積の減少に伴って低下するため、2次電子109の、2次電子増倍管101に入射する効率を上げることができる。 As described above, in the present embodiment, since the ion suppressor electrode is constituted by a plurality of needles, the area is reduced as compared with the mesh-shaped ion suppressor electrode (the first embodiment). Therefore, the probability that the secondary electrons 109 generated from the ion electron conversion electrode 103 are absorbed by the ion suppressor electrode decreases with the reduction of the area, so the secondary electron multiplier tube 101 of the secondary electrons 109 The incident efficiency can be increased.
 (第5の実施形態) 
 図5は、本実施形態に係るイオン検出ユニットの一部を三角法で示した図である。ニードル形状のイオンサプレッサ電極を用いることは第4の実施形態と同じであるが、本実施形態では、2次電子増倍管101に近い側のイオンサプレッサ電極401e~401hに印加する電圧を、遠い側のイオンサプレッサ電極401a~401dに対して100V程度浅く(プラス方向に)設定する。すなわち、イオンサプレッサ電極401a~401dのそれぞれには-1.0kVの電位を印加し、イオンサプレッサ電極401e~401hのそれぞれには-0.9kVの電位を印加する。
Fifth Embodiment
FIG. 5 is a diagram showing a part of the ion detection unit according to the present embodiment by trigonometry. The use of a needle-shaped ion suppressor electrode is the same as in the fourth embodiment, but in this embodiment, the voltage applied to the ion suppressor electrodes 401 e to 401 h closer to the secondary electron multiplier tube 101 is far The depth is set to be approximately 100 V shallow (in the positive direction) with respect to the ion suppressor electrodes 401a to 401d on the side. That is, a potential of -1.0 kV is applied to each of the ion suppressor electrodes 401a to 401d, and a potential of -0.9 kV is applied to each of the ion suppressor electrodes 401e to 401h.
 第4の実施形態(図4)では、イオンサプレッサ電極401a~401hへの印加電位はすべて同じ電位(-1.0kV)なので、2次電子109を2次電子増倍管101側へ輸送する力(電位)は2次電子増倍管101の入口の電位のみで発生させている。これに対して本実施形態では、ニードル形状の複数のイオンサプレッサ電極のうち、2次電子増倍管101側に配置されたイオンサプレッサ電極への印加電位を、2次電子増倍管101と反対側に配置されたイオンサプレッサ電極への印加電位よりも小さくしている。このように印加電位を設定し、イオンサプレッサ電極自体に2次電子増倍管101側に向かわせる電位差を付けたので、イオン電子変換電極103から発生した2次電子109が2次電子増倍管101に入射する効率を上げることができる。 In the fourth embodiment (FIG. 4), the applied potentials to the ion suppressor electrodes 401a to 401h are all the same potential (-1.0 kV), so the force for transporting the secondary electrons 109 to the secondary electron multiplier tube 101 ( The electric potential) is generated only at the electric potential at the inlet of the secondary electron multiplier tube 101. On the other hand, in the present embodiment, among the plurality of needle-shaped ion suppressor electrodes, the potential applied to the ion suppressor electrode disposed on the secondary electron multiplier tube 101 side is opposite to that of the secondary electron multiplier tube 101 It is smaller than the applied potential to the ion suppressor electrode arranged on the side. Thus, since the applied potential is set and a potential difference is made to direct the ion suppressor electrode itself toward the secondary electron multiplier tube 101 side, the secondary electrons 109 generated from the ion electron conversion electrode 103 become the secondary electron multiplier tube. The efficiency of incidence to 101 can be increased.
 (第6の実施形態) 
 図6は、本実施形態に係るイオン検出ユニットの一部を三角法で示した図である。本実施形態では、第1の実施形態において、イオンサプレッサ電極104のうち2次電子増倍管101に最も近い部分を削除する。これにより、イオンサプレッサ電極がメッシュ形状であっても、イオン電子変換電極103から発生した2次電子109が2次電子増倍管101に入射する効率を上げることができる。
Sixth Embodiment
FIG. 6 is a diagram showing a part of the ion detection unit according to the present embodiment by trigonometry. In the present embodiment, in the first embodiment, the portion closest to the secondary electron multiplier tube 101 in the ion suppressor electrode 104 is deleted. As a result, even if the ion suppressor electrode has a mesh shape, the efficiency with which the secondary electrons 109 generated from the ion electron conversion electrode 103 enter the secondary electron multiplier tube 101 can be increased.
 図6において、符号601は、イオンサプレッサ電極である。該イオンサプレッサ電極601では、製作を容易にするために、第1の実施形態のイオンサプレッサ電極104における円筒形状から直方体形状に変えている。そして、2次電子109の2次電子増倍管101への入射効率を向上させるために、直方体形状の2次電子増倍管101に最も近い面を削除した切り欠き構造を有している。なお、切り欠きを有するイオンサプレッサ電極601には、-1.0kVの電位が印加される。 In FIG. 6, reference numeral 601 is an ion suppressor electrode. In the ion suppressor electrode 601, the cylindrical shape in the ion suppressor electrode 104 of the first embodiment is changed to a rectangular shape in order to facilitate manufacture. And in order to improve the incident efficiency of the secondary electron 109 to the secondary electron multiplier tube 101, it has a notch structure in which the surface closest to the rectangular parallelepiped secondary electron multiplier tube 101 is deleted. Note that a potential of -1.0 kV is applied to the ion suppressor electrode 601 having a notch.
 (第7の実施形態) 
 図7は、本実施形態に係るイオン検出ユニットの一部を三角法で示した図である。本実施形態では、第5の実施形態において、複数のニードル形状のイオンサプレッサ電極401a~401hのうち、2次電子増倍管101に最も近いイオンサプレッサ電極4401fと401gを削除する。これにより、イオン電子変換電極103から発生した2次電子109が2次電子増倍管101に入射する効率を上げることができる。
Seventh Embodiment
FIG. 7 is a diagram showing a part of the ion detection unit according to the present embodiment by trigonometry. In the present embodiment, in the fifth embodiment, the ion suppressor electrodes 4401f and 401g closest to the secondary electron multiplier tube 101 among the plurality of needle-shaped ion suppressor electrodes 401a to 401h are deleted. As a result, the efficiency with which the secondary electrons 109 generated from the ion electron conversion electrode 103 enter the secondary electron multiplier tube 101 can be increased.
 (第8の実施形態) 
 図8は、本実施形態に係る質量分析装置の一部を三角法で示した図である。本実施形態では、図1に示す第1の実施形態のイオン電子変換電極103を質量分別機構111の出口電極であるアパーチャ板113に形成されたアパーチャ113aと同軸上に隣接して配置する。しかし、イオン電子変換電極103は迷光束108の影響を受けにくくなっているため、ノイズは深刻にはならず、一方イオン束107の収集効率をさらに上げることによりS/Nを向上させることができる。その際、2次電子増倍管を、図8に示すように、側面に電子入射面802が設けられたサイドエントリー型の2次電子増倍管801にすることにより装置を小型化することができる。
Eighth Embodiment
FIG. 8 is a diagram showing a part of the mass spectrometer according to the present embodiment by trigonometry. In this embodiment, the ion electron conversion electrode 103 of the first embodiment shown in FIG. 1 is coaxially adjacent to the aperture 113 a formed in the aperture plate 113 which is the exit electrode of the mass sorting mechanism 111. However, since the ion electron conversion electrode 103 is less susceptible to the influence of the stray light flux 108, the noise does not become serious, while the S / N can be improved by further increasing the collection efficiency of the ion flux 107. . At this time, the apparatus can be miniaturized by using a secondary electron multiplier as a side entry type secondary electron multiplier 801 provided with an electron incident surface 802 on the side as shown in FIG. it can.
 (第9の実施形態) 
 図9Aは、本実施形態に係る質量分析装置の一部を三角法で示した図である。また、図9Bは、図9Aに示すイオン検出装置の一部を三角法で示した図である。
Ninth Embodiment
FIG. 9A is a diagram showing a part of the mass spectrometer according to the present embodiment by trigonometry. FIG. 9B is a diagram showing a part of the ion detection device shown in FIG. 9A by trigonometry.
 本実施形態では、図9Aおよび9Bに示すように、サイドエントリー型の2次電子増倍管801を用い、電子入射面802がイオン電子変換電極103から直接見通せない位置に位置するように、2次電子増倍管801を配置する。本実施形態では、図1A~図1Cに示した第1の実施形態からさらに迷光の影響を低減する必要がある場合、2次電子増倍管801の電子入射口802がイオン電子変換電極103から見通せないように配置する。従って、迷光の2次電子増倍管801への入射量を更に減らすことができ、よりノイズを低減することができる。一方、イオン電子変換電極103から発生する2次電子109は電界により制御することで、2次電子増倍管801の電子入射口802に輸送可能であり、信号量を維持することができる。 In this embodiment, as shown in FIGS. 9A and 9B, the side entry type secondary electron multiplier tube 801 is used, and the electron incident surface 802 is positioned at a position not directly visible from the ion electron conversion electrode 103. Next electron multiplier tube 801 is arranged. In this embodiment, when it is necessary to further reduce the influence of stray light from the first embodiment shown in FIGS. 1A to 1C, the electron incident port 802 of the secondary electron multiplier tube 801 is the ion electron conversion electrode 103. Arrange so as not to overlook. Therefore, the amount of incident stray light on the secondary electron multiplier tube 801 can be further reduced, and noise can be further reduced. On the other hand, the secondary electrons 109 generated from the ion electron conversion electrode 103 can be transported to the electron incident port 802 of the secondary electron multiplier tube 801 by controlling with the electric field, and the signal amount can be maintained.
 (第10の実施形態) 
 第1の実施形態において、イオン電子変換電極103に通電することにより加熱し、該イオン電子変換電極103の表面をクリーニングすることができる。イオン電子変換電極103には計測対象分子のイオンが衝突するため、その一部が分子になり固着することがある。そのため、当初とは異なる表面状態になりイオン電子変換効率は変化する。しかし、例えば、イオン電子変換電極103を1500℃以上に加熱すれば固着したほとんどの分子は蒸発し、当初と同じ表面状態に戻すことができる。
Tenth Embodiment
In the first embodiment, the surface of the ion-electron conversion electrode 103 can be cleaned by heating by energizing the ion-electron conversion electrode 103. Since ions of the molecule to be measured collide with the ion-to-electron conversion electrode 103, a part thereof may become molecules and may be fixed. Therefore, the surface state different from the original state is obtained, and the ion electron conversion efficiency changes. However, for example, when the ion electron conversion electrode 103 is heated to 1500 ° C. or more, most of the fixed molecules can be evaporated and returned to the same surface state as the initial state.
 そこで、本実施形態では、図10に示すように、例えば、イオン電子変換電極103をモリブデン等の高融点物質で構成する場合、イオン電子変換電極103にAオーダの通電電流1001を流すことにより、イオン電子変換電極103を500℃~2000℃の範囲で加熱することができる。よって、クリーニングが必要な時に、通電電流1001をAオーダで流すなどして、イオン電子変換電極103を所定の温度まで加熱することにより、イオン電子変換電極103の表面のクリーニングを行うことができる。 Therefore, in the present embodiment, as shown in FIG. 10, for example, when the ion electron conversion electrode 103 is made of a high melting point material such as molybdenum, the conduction current 1001 of order A is supplied to the ion electron conversion electrode 103. The ion electron conversion electrode 103 can be heated in the range of 500 ° C. to 2000 ° C. Therefore, when the cleaning is necessary, the surface of the ion-electron conversion electrode 103 can be cleaned by heating the ion-electron conversion electrode 103 to a predetermined temperature by supplying the current 1001 in the order of A or the like.
 (第11の実施形態) 
 第1の実施形態に熱フィラメントをイオンサプレッサ電極104の外側に設置し、該熱フィラメントを通電加熱することでイオンサプレッサ電極104およびイオン電子変換電極103の少なくとも一方を電子衝撃または放射熱により加熱し、表面をクリーニングすることができる。
Eleventh Embodiment
In the first embodiment, a thermal filament is provided outside the ion suppressor electrode 104, and at least one of the ion suppressor electrode 104 and the ion electron conversion electrode 103 is heated by electron impact or radiant heat by energizing the thermal filament. , Can clean the surface.
 図11A、11Bは、本実施形態に係るイオン電子変換電極およびイオンサプレッサ電極の少なくとも一方を加熱クリーニングする様子を説明するための図である。 
 図11A、11Bにおいて、イオンサプレッサ電極104の外側に熱フィラメント1101を設けている。イオン計測中においては、このフィラメント1101は消灯される。実際のクリーニング時には、シールド電極105への印加電位を0Vとし、イオン電子変換電極103への印加電位を+500Vとし、イオンサプレッサ電極104への印加電位を+100Vとする。さらに、熱フィラメント1101への印加電位を0Vとすることで、熱フィラメント1101から電子1102が発生する。電子1102はmAオーダであり、イオン電子変換電極103へ向かう電子1102は500eVのエネルギーを持ち、イオンサプレッサ電極104へ向かう電子1102は100eVのエネルギーを持つことになる。このようなエネルギーを持った電子1102がイオン電子変換電極103に入射すると、該イオン電子変換電極103を500℃~2000℃の範囲で加熱し、イオン電子変換電極103のクリーニングを行うことができる。また、上記電子1102がイオンサプレッサ電極104に入射すると、該イオンサプレッサ電極104を200℃~1000℃の範囲で加熱し、イオンサプレッサ電極104をクリーニングすることができる。
FIGS. 11A and 11B are diagrams for explaining the manner of heating and cleaning at least one of the ion-electron conversion electrode and the ion suppressor electrode according to the present embodiment.
In FIGS. 11A and 11B, a thermal filament 1101 is provided outside the ion suppressor electrode 104. During ion measurement, this filament 1101 is extinguished. At the time of actual cleaning, the applied potential to the shield electrode 105 is 0 V, the applied potential to the ion electron conversion electrode 103 is +500 V, and the applied potential to the ion suppressor electrode 104 is +100 V. Further, by setting the potential applied to the thermal filament 1101 to 0 V, electrons 1102 are generated from the thermal filament 1101. The electron 1102 is on the order of mA, the electron 1102 directed to the ion electron conversion electrode 103 has an energy of 500 eV, and the electron 1102 directed to the ion suppressor electrode 104 has an energy of 100 eV. When the electron 1102 having such energy enters the ion electron conversion electrode 103, the ion electron conversion electrode 103 can be heated in the range of 500 ° C. to 2000 ° C. to clean the ion electron conversion electrode 103. Further, when the electrons 1102 are incident on the ion suppressor electrode 104, the ion suppressor electrode 104 can be heated in the range of 200 ° C. to 1000 ° C. to clean the ion suppressor electrode 104.
 (第12の実施形態) 
 図12Aは、本実施形態に係るイオン検出装置の一部を三角法で示した図である。また、図12Bは、図12Aに示すイオン変換電極にイオンが入射される様子を説明するための図である。
Twelfth Embodiment
FIG. 12A is a diagram showing a part of the ion detection device according to the present embodiment by trigonometry. Moreover, FIG. 12B is a figure for demonstrating a mode that ion injects into the ion conversion electrode shown to FIG. 12A.
 図12Aに示すように、本実施形態では、複数のニードル形状のニードル電極を離間して配置することによりイオン電子変換電極1201を構成し、該イオン電子変換電極1201を構成するニードル電極の軸方向がイオン束107の進行方向に対して斜めとなるようにイオン電子変換電極1201を配置している。すなわち、複数のニードル電極からなるイオン電子変換電極1201を、イオン束107を斜めに横切るように設置し、それぞれのニードル電極に-1.9kVの電圧を印加する。さらにシールド電極105への印加電圧をイオン電子変換電極103と同じ-1.9Vに設定する。また、2次電子増倍管101の電子入口面102には-1.5kVの電位が印加されている。 As shown in FIG. 12A, in the present embodiment, the ion electron conversion electrode 1201 is configured by spacing a plurality of needle-shaped needle electrodes apart, and the axial direction of the needle electrode constituting the ion electron conversion electrode 1201 The ion-to-electron conversion electrode 1201 is disposed so as to be oblique to the traveling direction of the ion flux 107. That is, the ion electron conversion electrode 1201 composed of a plurality of needle electrodes is installed so as to diagonally cross the ion bundle 107, and a voltage of -1.9 kV is applied to each needle electrode. Further, the voltage applied to the shield electrode 105 is set to the same −1.9 V as that of the ion electron conversion electrode 103. Further, a potential of −1.5 kV is applied to the electron entrance surface 102 of the secondary electron multiplier tube 101.
 これにより、図12Bに示すように、イオン電子交換電極1201を構成する各ニードル電極間の領域(開口部分)を通過して2次電子増倍管101側に出たイオン束107は、電子入射口102に印加された-1.5kVVに起因する電界により軌道が曲げられる。この軌道が曲げられたイオンは、イオン電子交換電極103に衝突し、2次電子109を発生することができる。本実施形態では、イオンの軌道変更が局所的に行われるため、イオンサプレッサ電極は不要である。 As a result, as shown in FIG. 12B, the ion flux 107 that has passed through the region (opening portion) between the needle electrodes constituting the ion electron exchange electrode 1201 and has exited to the secondary electron multiplier tube 101 is electron incident The trajectory is bent by the electric field resulting from the -1.5 kVV applied to the port 102. The ions whose orbits are bent can collide with the ion electron exchange electrode 103 to generate secondary electrons 109. In the present embodiment, the ion suppressor electrode is not necessary because the trajectory change of the ions is locally performed.
 一方、迷光束108についてはその大部分が、イオン電子交換電極103を構成するニードル電極間に形成された開口部分を通過するので、迷光束108に起因するノイズを低減することができる。 On the other hand, most of the stray light flux 108 passes through the opening portion formed between the needle electrodes constituting the ion electron exchange electrode 103, so that noise due to the stray light flux 108 can be reduced.
 (第13の実施形態) 
 図13は、本実施形態に係るイオン検出装置の一部を三角法で示した図である。 
 図13では、複数のニードル形状のニードル電極を離間して配置することによりイオン電子変換電極1301を構成する。具体的には、イオン電子変換電極1301を構成するニードル電極の軸方向がイオン束107束の進行方向に対して垂直になるように各ニードル電極を設置し、かつ複数のニードル電極並べ方がイオン束107の進行方向に対して斜めとなって、イオン束107を横断するように設置する。また、イオン電子変換電極1301を構成する複数のニードル電極のそれぞれには-1.9kVの電位が印加される。また、シールド電極105には-2.0kVの電位が印加され、2次電子増倍管101の電子入口面には-1.5kVの電位が印加される。イオンの軌道変更や収集効率は第12の実施形態とほぼ同じである。
Thirteenth Embodiment
FIG. 13 is a diagram showing a part of the ion detector according to the present embodiment by trigonometry.
In FIG. 13, the ion electron conversion electrode 1301 is configured by spacing and arranging a plurality of needle-shaped needle electrodes. Specifically, each needle electrode is installed so that the axial direction of the needle electrode constituting the ion electron conversion electrode 1301 is perpendicular to the traveling direction of the ion bundle 107, and the plurality of needle electrodes are arranged in the ion bundle The ion bundle 107 is installed so as to cross the ion bundle 107 at an angle with respect to the traveling direction of the electron beam 107. Further, a potential of -1.9 kV is applied to each of the plurality of needle electrodes constituting the ion electron conversion electrode 1301. Further, a potential of -2.0 kV is applied to the shield electrode 105, and a potential of -1.5 kV is applied to the electron entrance surface of the secondary electron multiplier tube 101. The trajectory change and collection efficiency of ions are almost the same as in the twelfth embodiment.
 このように、イオン電子変換電極1301は、複数のニードル電極を離間して配置しているので、イオン電子変換電極1301には開口部が形成されることになる。従って、迷光束108の多くは、上記ニードル電極間に形成された開口部分を通過するので、迷光束108に起因するノイズを低減することができる。 As described above, since the ion electron conversion electrode 1301 has the plurality of needle electrodes spaced apart, an opening is formed in the ion electron conversion electrode 1301. Therefore, most of the stray light flux 108 passes through the opening formed between the needle electrodes, so that noise due to the stray light flux 108 can be reduced.
 (第14の実施形態) 
 図14は、本実施形態に係るイオン検出装置の一部を三角法で示した図である。 
 本実施形態では、図14に示すように、イオン電子変換電極1401を、図13のイオン電子変換電極1301の複数のニードル電極をリボンまたはメッシュに変更し、かつそられリボンまたはメッシュを、その大面積部が迷光束108の進行方向に平行となるように位置させる。このように配置することにより、本実施形態では、イオンの収集効率は第13の実施形態より向上している。
Fourteenth Embodiment
FIG. 14 is a diagram showing a part of the ion detector according to the present embodiment by trigonometry.
In the present embodiment, as shown in FIG. 14, the ion electron conversion electrode 1401 is changed to a plurality of needle electrodes of the ion electron conversion electrode 1301 of FIG. 13 into ribbons or meshes, and The area portion is positioned so as to be parallel to the traveling direction of the stray light flux 108. By arranging in this manner, in the present embodiment, the collection efficiency of ions is improved compared to the thirteenth embodiment.
 (第15の実施形態) 
 上述の実施形態では、電子を増幅するように構成された増幅機構として、多段に電極を配置して構成した2次電子増倍管を用いる形態を説明した。本実施形態では、電子を増幅するように構成された増幅機構としてマルチチャンネルプレート型の光電子増倍管を用いる。
(Fifteenth Embodiment)
In the above-described embodiment, as the amplification mechanism configured to amplify electrons, the embodiment using the secondary electron multiplier tube configured by arranging the electrodes in multiple stages has been described. In this embodiment, a multichannel plate type photomultiplier tube is used as an amplification mechanism configured to amplify electrons.
 図15は、本実施形態に係る質量分析装置の一部を示す正面図である。図15Bは、図15Aに示す質量分析装置の一部を示す上面図である。さらに、図15Cは、図15Aに示すイオン検出装置の正面図である。 FIG. 15 is a front view showing a part of the mass spectrometer according to the present embodiment. FIG. 15B is a top view showing a part of the mass spectrometer shown in FIG. 15A. Furthermore, FIG. 15C is a front view of the ion detector shown in FIG. 15A.
 マイクロチャンネルプレートとは、超小型の連続型SEMを水平に並べることにより、円盤形状の片面に電子入射面を持つ2次電子増倍管の一種である。本実施形態では、2次電子増倍器としてイオン通過口(開口部)を持ったマイクロチャンネルプレート型を用い、かつ電子入射面が迷光の進行方向と同じ方向を向くように設置する。これにより、電子入射面に迷光が入射しないようにすることができる。 The microchannel plate is a type of secondary electron multiplier tube having an electron incident surface on one side of a disk shape by arranging ultra-small continuous type SEMs horizontally. In this embodiment, a microchannel plate type having ion passage openings (openings) is used as a secondary electron multiplier, and the electron incident surface is set to face in the same direction as the traveling direction of stray light. Thus, stray light can be prevented from entering the electron incident surface.
 本実施形態では、図15A~Cに示すように、イオン電子増幅機構は、電子を増幅するように構成された増幅機構としてのマイクロチャンネルプレート(MCP)1501と、イオン電子変換電極103とを有している。上記MCP1501は、図15Bに示すように、ドーナツ状であり、イオン通過口としての開口部1502が形成されている。該開口部1502をイオン束107および迷光束108が通過することになる。また、MCP1501の電子入射口1503は、イオン束107および迷光束108のMCP1501の入射側と対向する側に、該電子入射面1503が位置する。 In this embodiment, as shown in FIGS. 15A to 15C, the ion electron amplification mechanism has a microchannel plate (MCP) 1501 as an amplification mechanism configured to amplify electrons, and an ion electron conversion electrode 103. doing. The MCP 1501 has a donut shape as shown in FIG. 15B, and an opening 1502 as an ion passage port is formed. The ion bundle 107 and the stray light beam 108 pass through the opening 1502. Further, the electron incident port 1503 of the MCP 1501 is positioned on the side of the ion flux 107 and the stray light flux 108 facing the incident side of the MCP 1501.
 MCP1501の、イオン束107の進行方向の後段に配置されたイオン電子変換電極103には、-1.9kVの電位が印加され、イオンサプレッサ電極104には、-1.8kVの電位が印加され、シールド電極105には、-2.0kVの電位が印加される。また、MCP1501の電子入射面1503には、-1.6kVの電位が印加される。このような構成により、イオン束107はイオン電子変換電極103に引き寄せられ、該イオン束107によりイオン電子変換電極103に2次電子109が発生する。該発生した2次電子109は、イオンサプレッサ電極104や電子入射面1503に印加された電位により形成された電位により電子入射面1503に入射し、該入射した電子はMCP1501を構成するSEM中で増幅される。 A potential of -1.9 kV is applied to the ion electron conversion electrode 103 disposed downstream of the traveling direction of the ion flux 107 of the MCP 1501, and a potential of -1.8 kV is applied to the ion suppressor electrode 104, A potential of −2.0 kV is applied to the shield electrode 105. Further, a potential of -1.6 kV is applied to the electron incident surface 1503 of the MCP 1501. With such a configuration, the ion flux 107 is drawn to the ion electron conversion electrode 103, and the ion flux 107 generates secondary electrons 109 in the ion electron conversion electrode 103. The generated secondary electrons 109 are incident on the electron incident surface 1503 by the potential formed by the potential applied to the ion suppressor electrode 104 and the electron incident surface 1503, and the incident electrons are amplified in the SEM constituting the MCP 1501. Be done.
 本実施形態では、MCP1501におけるイオン108の入射面と対向する面を電子入射面1503としている。従って、図15Cに示すように、開口部1502を通過した迷光束108はそのまま直進することになるので、MP1501の電子入射面1503に入射することはない。一方、イオン電子変換電極103にて生じた2次電子109は、上記作用により電子入射面1503に良好に入射することができる。 In the present embodiment, the surface of the MCP 1501 facing the incident surface of the ions 108 is the electron incident surface 1503. Therefore, as shown in FIG. 15C, since the stray light flux 108 which has passed through the opening 1502 goes straight as it is, it does not enter the electron incident surface 1503 of the MP 1501. On the other hand, secondary electrons 109 generated at the ion electron conversion electrode 103 can be favorably incident on the electron incident surface 1503 by the above-described action.
 なお、本実施形態では、イオン電子変換機構において、イオン束107の進行方向の前段にMCP1501が配置され、後段にイオン電子変換電極103が配置されているが、イオン束107は開口部1502を介して一旦MCP1501を通過してイオン電子変換電極103に入射する。本実施形態において、イオン電子変換電極103は、検出すべきイオン束107が入射されると、シグナルとなる2次電子109を生成するので、本実施形態においても、イオン電子変換電極103はイオン電子増幅機構の初段電極である。 In this embodiment, in the ion-electron conversion mechanism, the MCP 1501 is disposed at the front stage of the traveling direction of the ion flux 107 and the ion-electron conversion electrode 103 is disposed at the rear stage. Then, it passes through the MCP 1501 and enters the ion electron conversion electrode 103. In the present embodiment, since the ion-electron conversion electrode 103 generates the secondary electrons 109 serving as a signal when the ion bundle 107 to be detected is incident, the ion-electron conversion electrode 103 is also an ion electron in this embodiment. It is the first stage electrode of the amplification mechanism.
 (第16の実施形態) 
 図16は、本実施形態に係るイオン検出装置の正面図である。 
 本実施形態では、第15の実施形態において、先端に進むに従って配置箇所の直径が広がるよう(ラッパ状)にイオンサプレッサ電極を設置する。すなわち、本実施形態では、所定の方向に向かって徐々に幅が広がるラッパ状のイオンサプレッサ電極1601を用い、上記所定の方向をイオン束107の進行方向と一致させ、かつ幅が広い部分がイオン束107の進行方向の後段側に位置するようにイオンサプレッサ電極1601を配置する。なお、イオンサプレッサ電極1601には、-1.8kVの電位が印加される。
Sixteenth Embodiment
FIG. 16 is a front view of the ion detector according to the present embodiment.
In the present embodiment, in the fifteenth embodiment, the ion suppressor electrode is installed in such a manner that the diameter of the arrangement portion increases (the shape of a wrapper) as it goes to the tip. That is, in the present embodiment, using the trumpet-like ion suppressor electrode 1601 whose width gradually widens in the predetermined direction, the predetermined direction is made to coincide with the traveling direction of the ion bundle 107 and the wide part is the ion The ion suppressor electrode 1601 is disposed so as to be positioned downstream of the traveling direction of the bundle 107. A potential of -1.8 kV is applied to the ion suppressor electrode 1601.
 さて、イオン電子変換電極103と同様マイナスの深い電位が印加されているイオンサプレッサ電極に迷光が照射されてもノイズの原因となる一方、迷光束108は乱反射などもあって平行な束(円筒型)ではなく広がりを持った束(ラッパ型)となっている。そこで、本実施形態では、イオンサプレッサ電極を、上記迷光束108の広がりと同様にラッパ状とし、かつその幅がイオン束107の進行方向、すなわち迷光束108の進行方向に沿って広がるように構成したので、迷光束108が、ラッパ状のイオンサプレッサ電極1601に受光されないようにすることができる。従って、ノイズを低減することができる。 Now, even if stray light is irradiated to the ion suppressor electrode to which a deep negative potential as in the ion electron conversion electrode 103 is applied, it causes noise, while the stray luminous flux 108 is a parallel bundle (cylindrical shape due to irregular reflection etc. It is not a bundle but a bunch (wrapper type) with a spread. Therefore, in the present embodiment, the ion suppressor electrode is shaped like a trumpet like the spread of the stray light flux 108, and its width is spread along the traveling direction of the ion flux 107, that is, the traveling direction of the stray light flux 108. Therefore, the stray light flux 108 can be prevented from being received by the trumpet shaped ion suppressor electrode 1601. Therefore, noise can be reduced.
 (第17の実施形態)
 図17Aは、本実施形態に係る質量分析装置の一部を示す正面図である。図17Bは、図17Aに示す質量分析装置の一部を示す上面図である。本実施形態では、図15A~15Cに示した第15の実施形態のイオン電子変換電極103およびMCP1501をアパーチャ板113に形成されたアパーチャ113aの同軸上に隣接して配置する。しかし、本実施形態では、迷光束108の影響を受けにくくなっているため、ノイズは深刻にはならない。一方、イオン束107の収集効率をさらに上げることができ、S/Nをさらに向上させることができる。
(Seventeenth embodiment)
FIG. 17A is a front view showing a part of the mass spectrometer according to the present embodiment. FIG. 17B is a top view showing a part of the mass spectrometer shown in FIG. 17A. In this embodiment, the ion electron conversion electrode 103 and the MCP 1501 according to the fifteenth embodiment shown in FIGS. 15A to 15C are coaxially arranged adjacent to each other on an aperture 113a formed in the aperture plate 113. However, in the present embodiment, since the influence of the stray light flux 108 is less likely to occur, the noise does not become serious. On the other hand, the collection efficiency of the ion flux 107 can be further improved, and the S / N can be further improved.
 (第18の実施形態) 
 図18は、本実施形態に係る質量分析装置の一部を三角法で示した図。本実施形態では、第1の実施形態に加えて、イオン電子変換電極103および2次電子増倍管101を有するイオン電子変換機構の周囲に遮光ケース1801を設置する。これにより、迷光108が2次電子増倍管101の各電極に入射することを妨げることができる。
Eighteenth Embodiment
FIG. 18 is a diagram showing a part of the mass spectrometer according to the present embodiment by trigonometry. In the present embodiment, in addition to the first embodiment, the light shielding case 1801 is installed around the ion electron conversion mechanism having the ion electron conversion electrode 103 and the secondary electron multiplier tube 101. This can prevent stray light 108 from entering each electrode of the secondary electron multiplier tube 101.
 以上各実施形態を説明してきたが、本発明の実施形態はこれらに限定されることはなく、それぞれの実施形態の各要素を組み合わせること、入れ替えることが可能なのは当然である。 
 また、それぞれの電極に印加する電圧は上記実施形態に限定されることはなく、寸法・形状・目的などにより任意に選ぶことができる。
The respective embodiments have been described above, but the embodiments of the present invention are not limited to these, and it is natural that the respective elements of the respective embodiments can be combined and replaced.
Moreover, the voltage applied to each electrode is not limited to the said embodiment, According to a dimension, a shape, the objective, etc., it can select arbitrarily.
 さらに、上述の各実施形態では、2次電子増倍器として、第1~第14、および第18の実施形態では多段型の2次電子増倍管(図19における符号1901や1902など)を用い、第15~17の実施形態ではマイクロチャンネルプレート型の光電子増倍管を用いている。しかしながら、2次電子増倍器はこれらに限定されるものではなく、連続型、シンチレータ/光電子増倍管であってもよい。すなわち、本発明の一実施形態では、入射された電子を増幅して出力可能であれば、いずれの構成を用いても良い。 Furthermore, in each of the above-described embodiments, as the secondary electron multiplier, in the first to fourteenth and eighteenth embodiments, a multistage secondary electron multiplier tube (such as reference numerals 1901 and 1902 in FIG. 19) is used. In the fifteenth to seventeenth embodiments, a microchannel plate type photomultiplier is used. However, the secondary electron multiplier is not limited to these, and may be a continuous type or scintillator / photomultiplier. That is, in the embodiment of the present invention, any configuration may be used as long as the incident electrons are amplified and output.
 図19に、本発明の一実施形態に係る2次電子増倍器の一例を示す。 
 図19において、符号1901aは、複数の電極を有する、サイドエントリー型の2次電子増倍管であり、符号1901bは、複数の電極を有する、フロントエントリー型の2次電子増倍管である。また、符号1901cは、サイドエントリー型の連続型光電子増倍管であり、符号1901dは、フロントエントリー型の連続型光電子増倍管である。また、符号1902は電子入射面であり、符号1903は電子であり、符号1904はコレクタである。
FIG. 19 shows an example of a secondary electron multiplier according to an embodiment of the present invention.
In FIG. 19, reference numeral 1901a denotes a side entry type secondary electron multiplier having a plurality of electrodes, and reference numeral 1901b denotes a front entry type secondary electron multiplier having a plurality of electrodes. Further, reference numeral 1901c denotes a side entry type continuous photomultiplier tube, and reference numeral 1901d denotes a front entry type continuous photomultiplier tube. Reference numeral 1902 denotes an electron incident surface, reference numeral 1903 denotes an electron, and reference 1904 denotes a collector.
 例えば、2次電子増倍管1901a、1901bは、16個の電極を有しており、2次電子増倍管1901a、1901bのそれぞれの初段には電極D1が配置されている。そして、電極D1にて発生した2次電子が電極D2に入射され、該電極D2にて発生した2次電子が電極D3に入射されるというように、前段にて発生した2次電子がその後段に入射されるように各電極は配置されている。また、各電極には、前段から2次電子が入射されると増幅して後段に2次電子を出射するように各電極への印加電位が設定されている。 For example, the secondary electron multipliers 1901a and 1901b have 16 electrodes, and the electrode D1 is disposed in the first stage of each of the secondary electron multipliers 1901a and 1901b. Then, secondary electrons generated at the electrode D1 are incident on the electrode D2, and secondary electrons generated at the electrode D2 are incident on the electrode D3. Each electrode is arranged to be incident on the In each electrode, an applied potential to each electrode is set so as to be amplified when secondary electrons are incident from the front stage and to emit secondary electrons to the rear stage.
 一方、連続型光電子増倍管1901c、1901dはそれぞれ、例えば鉛ガラス等により構成された、連続したチャネル構造1905、1906を有し、電子入射面1902から電子1903が入射されると、該チャネル構造1905、1906内にて電子を増幅するように構成されている。 On the other hand, the continuous photomultiplier tubes 1901c and 1901d respectively have continuous channel structures 1905 and 1906 made of, for example, lead glass, and when the electron 1903 is incident from the electron incident surface 1902, the channel structures It is configured to amplify electrons in 1905 and 1906.
 さらに、上述の各実施形態では測定するイオンは正イオンを前提としたが、正イオンのみならず負イオンに対しても、設定電位の正負を反転させることで適用することができる。 
 なお、シールド電極に印加する電圧はイオン電子変化電極への印加電圧と同電位でもよい。
Furthermore, although the ions to be measured in the above-described embodiments are positive ions, it is possible to apply not only positive ions but also negative ions by inverting the positive and negative of the set potential.
The voltage applied to the shield electrode may be the same potential as the voltage applied to the ion electron changing electrode.
 本発明の一実施形態に係るイオン検出装置は、質量分析装置において高いS/Nを得ることができるイオン検出ユニットであり、幅広い用途向けの多種の質量分析装置に好適となる。 The ion detection device according to one embodiment of the present invention is an ion detection unit capable of obtaining high S / N in a mass spectrometer, and is suitable for various mass spectrometers for a wide range of applications.
 さて、本発明では、イオン検出装置内の、イオンを電子に変換し、該変換された電子を増幅するように構成されたイオン電子増幅機構の、最初にイオンが入射される電極をニードル形状、リボン形状、またはメッシュ形状にすることを特徴としている。すなわち、ニードル形状、リボン形状、またはメッシュ形状のイオン電子変換電極をイオン電子増幅機構の初段電極とし、該イオン電子変換電極の後段に電子を増幅するように構成された増幅機構を設けることにより、上記イオン電子増幅機構を形成することが重要なのである。このようにイオン電子増幅機構の初段電極を、ニードル形状、リボン形状、またはメッシュ形状のイオン電子変換電極とすることにより、上述した原理1~4による効果を得ることができる。 Now, in the present invention, in the ion detection device, the first electrode of the ion electron amplification mechanism configured to convert ions into electrons and amplify the converted electrons is a needle-shaped electrode, It is characterized in that it has a ribbon shape or a mesh shape. That is, the ion electron conversion electrode having a needle shape, ribbon shape or mesh shape is used as the first stage electrode of the ion electron amplification mechanism, and an amplification mechanism configured to amplify electrons is provided downstream of the ion electron conversion electrode. It is important to form the above ion electron amplification mechanism. By thus forming the first stage electrode of the ion electron amplification mechanism as a needle-shaped, ribbon-shaped or mesh-shaped ion-electron converting electrode, it is possible to obtain the effects according to the principles 1 to 4 described above.
 従って、上記増幅機構は、例えば図19に示す2次電子増倍管1901a、1901b自体であっても良いし、2次電子増倍管1901a、1901bの2段目以降の構造(電極D2~D16)であっても良い。 Therefore, the amplification mechanism may be, for example, the secondary electron multipliers 1901a and 1901b shown in FIG. 19 themselves, or the second and subsequent stages of the secondary electron multipliers 1901a and 1901b (electrodes D2 to D16). ) May be.
 例えば、パッケージ化された2次電子増倍管1901a、1901bを用いれば、本発明のイオン電子増幅機構を簡単に形成することができるので、イオン検出装置を簡単に作製することができる。パッケージ化された2次電子増倍管を用いる場合、パッケージ化された2次電子増倍管1901a、1901bの前段に上記イオン電子変換電極を設けても良い(上記前者に相当)。この場合、イオン電子増幅機構は、パッケージ化された2次電子増倍管1901a、1901bとその前段に設けられたイオン電子変換電極とを備えることになる。この設計概念は、上記各実施形態において用いられている。 For example, by using the packaged secondary electron multipliers 1901a and 1901b, the ion electron amplification mechanism of the present invention can be easily formed, so that the ion detector can be easily manufactured. In the case of using a packaged secondary electron multiplier, the ion electron conversion electrode may be provided at a stage prior to the packaged secondary electron multipliers 1901 a and 1901 b (corresponding to the former). In this case, the ion electron amplification mechanism includes packaged secondary electron multipliers 1901 a and 1901 b and an ion electron conversion electrode provided in the front stage thereof. This design concept is used in the above embodiments.
 また、パッケージ化された2次電子増倍管1901a、1901bの初段に位置する電極D1を、上述した本発明に特徴的なイオン電子変換電極に変更しても良い(上記後者に相当)。この場合は、パッケージ化された2次電子増倍管1901a、1901b自体がイオン電子増幅機構となり、電極D2~電極16が、電子を増幅するように構成された増幅機構となる。 In addition, the electrode D1 positioned at the first stage of the packaged secondary electron multipliers 1901a and 1901b may be changed to the above-described ion electron conversion electrode characteristic of the present invention (corresponding to the above-mentioned latter). In this case, the packaged secondary electron multipliers 1901a and 1901b themselves constitute an ion electron amplification mechanism, and the electrodes D2 to 16 constitute an amplification mechanism configured to amplify electrons.
 このように、本発明においては、イオン検出装置の、検出すべきイオンを電子に変換し、該変換された電子を増幅して出力するメカニズムにおいて、検出すべきイオンが最初に入射されて、シグナルとなる電子を出射する電極に、上記各実施形態にて説明したイオン電子変換電極の構造を適用することが本質である。 As described above, in the present invention, in the mechanism of the ion detection device, the ion to be detected is converted into electrons, and the converted electrons are amplified and output, the ion to be detected is first incident and signaled. It is essential to apply the structure of the ion-electron conversion electrode described in each of the above embodiments to the electrode that emits electrons.

Claims (20)

  1.  質量分別されたイオンを電子に変換するイオン電子変換電極と、
     電子を増幅するように構成された増幅機構であって、前記イオン電子変換電極で変換された電子を電界で引き込み増幅する増幅機構とを備え、
     前記イオン電子変換電極は、ニードル形状、リボン形状、メッシュ形状、およびスリット形状のいずれか1つであることを特徴とするイオン検出装置。
    An ion-electron conversion electrode that converts mass-fractionated ions into electrons;
    An amplification mechanism configured to amplify electrons, the amplification mechanism configured to draw in and amplify an electron converted by the ion-electron conversion electrode by an electric field;
    The ion detector according to claim 1, wherein the ion electron conversion electrode is any one of a needle shape, a ribbon shape, a mesh shape, and a slit shape.
  2.  前記イオン電子変換電極の周囲に、かつイオン束を囲む位置に、前記イオン電子変換電極にて発生した2次電子が通過可能な形状で設置されたイオンサプレッサ電極をさらに備え、
     前記イオンサプレッサ電極には、入射したイオンが前記イオン電子変換電極に集束する電位が印加されることを特徴とする請求項1に記載のイオン検出装置。
    The ion suppressor electrode is further provided at a position surrounding the ion electron conversion electrode and surrounding the ion bundle, in which the secondary electron generated at the ion electron conversion electrode can pass therethrough.
    2. The ion detector according to claim 1, wherein a potential is applied to the ion suppressor electrode to focus the incident ions on the ion electron conversion electrode.
  3.  前記イオンサプレッサ電極は、メッシュ形状、スリット形状、およびニードル形状のいずれか1つであることを特徴とする請求項2のイオン検出ユニット。 The ion detection unit according to claim 2, wherein the ion suppressor electrode is any one of a mesh shape, a slit shape, and a needle shape.
  4.  前記イオンサプレッサ電極が複数のニードル形状の電極により形成されており、
     前記複数のニードル形状の電極に印加する電圧は、前記イオン電子変換電極にて発生した2次電子を前記増幅機構に導くような電位差をもつことを特徴とする請求項2に記載のイオン検出装置。
    The ion suppressor electrode is formed of a plurality of needle-shaped electrodes,
    3. The ion detector according to claim 2, wherein the voltage applied to the plurality of needle-shaped electrodes has a potential difference which leads secondary electrons generated at the ion electron conversion electrode to the amplification mechanism. .
  5.  前記イオンサプレッサ電極の一部に電子が通過するための切り欠きが形成されていることを特徴とする請求項2に記載のイオン検出装置。 3. The ion detector according to claim 2, wherein a notch for passing electrons is formed in a part of the ion suppressor electrode.
  6.  前記イオン電子変換電極は複数個配置され、
     前記複数のイオン電子変換電極のうち任意に選択した一部を前記イオンサプレッサ電極と同じ電位に設定することを特徴とする請求項2に記載のイオン検出装置。
    A plurality of the ion electron conversion electrodes are arranged,
    3. The ion detector according to claim 2, wherein an arbitrarily selected part of the plurality of ion electron conversion electrodes is set to the same potential as the ion suppressor electrode.
  7.  電子衝撃または放射熱により前記イオン電子変換電極および前記イオンサプレッサ電極の少なくとも一方を加熱する熱フィラメントをさらに備えることを特徴とする請求項2に記載のイオン検出装置。 The ion detection device according to claim 2, further comprising a thermal filament that heats at least one of the ion electron conversion electrode and the ion suppressor electrode by electron impact or radiant heat.
  8.  前記イオン電子変換電極と前記イオンサプレッサ電極とを囲む位置に設置されたシールド電極をさらに備え、
     前記シールド電極には、前記イオン電子変換電極から放出された2次電子が放散せずに前記増幅機構に入射する電位が印加されることを特徴とする請求項2に記載のイオン検出装置。
    And a shield electrode disposed at a position surrounding the ion electron conversion electrode and the ion suppressor electrode.
    3. The ion detection device according to claim 2, wherein a potential that is incident on the amplification mechanism is applied to the shield electrode without the secondary electrons emitted from the ion electron conversion electrode being diffused.
  9.  前記イオン電子変換電極が複数個配置されていることを特徴とする請求項1に記載のイオン検出装置。 The ion detector according to claim 1, wherein a plurality of the ion electron conversion electrodes are arranged.
  10.  前記イオン電子変換電極は、該イオン電子変換電極の延在方向が、イオン束進行方向に対して平行になるように設置されていることを特徴とする請求項1に記載のイオン検出装置。 2. The ion detection device according to claim 1, wherein the ion electron conversion electrode is disposed such that the extending direction of the ion electron conversion electrode is parallel to the ion flux traveling direction.
  11.  前記イオン電子変換電極は、該イオン電子変換電極の延在方向が、イオン束の進行方向に対して斜めとなって、該イオン束を横断するように設置されていることを特徴とする請求項1に記載のイオン検出装置。 The ion-to-electron conversion electrode is disposed such that the extending direction of the ion-to-electron conversion electrode is oblique to the traveling direction of the ion flux to cross the ion flux. The ion detector according to 1.
  12.  前記複数のイオン電子変換電極は、該イオン電子変換電極の延在方向が、イオン束の進行方向に対して垂直に設置し、かつ前記複数のイオン電子変換電極を、前記イオン束の進行方向に対して斜めとなって、該イオン束を横断するように並べられていることを特徴とする請求項9に記載のイオン検出装置。 In the plurality of ion electron conversion electrodes, the extending direction of the ion electron conversion electrode is disposed perpendicular to the traveling direction of the ion bundle, and the plurality of ion electron conversion electrodes are arranged in the traveling direction of the ion bundle 10. The ion detector according to claim 9, wherein the ion detector is arranged obliquely across the ion flux.
  13.  前記イオン電子変換電極は、迷光束の外に設置されていることを特徴とする請求項1に記載のイオン検出装置。 The ion detection device according to claim 1, wherein the ion electron conversion electrode is disposed outside the stray light flux.
  14.  前記イオン電子変換電極は、通電により加熱可能であることを特徴とする請求項1に記載のイオン検出装置。 The ion detection device according to claim 1, wherein the ion electron conversion electrode can be heated by energization.
  15.  電子衝撃または放射熱により前記イオン電子変換電極を加熱する熱フィラメントをさらに備えることを特徴とする請求項1に記載のイオン検出装置。 The ion detection device according to claim 1, further comprising a thermal filament that heats the ion-electron conversion electrode by electron impact or radiant heat.
  16.  前記イオン電子交換電極と前記増幅機構の電子入射面との間に設置されたフォーカス電極であって、前記イオン電子交換電極にて発生した2次電子を前記電子入射面に集束させるためのフォーカス電極をさらに備えることを特徴とする請求項1に記載のイオン検出装置。 A focus electrode disposed between the ion electron exchange electrode and the electron incident surface of the amplification mechanism, for focusing secondary electrons generated by the ion electron exchange electrode onto the electron incident surface The ion detection device according to claim 1, further comprising:
  17.  前記増幅機構の周囲に設置された遮光ケースをさらに備えることを特徴とする請求項1に記載のイオン検出装置。 The ion detector according to claim 1, further comprising a light shielding case installed around the amplification mechanism.
  18.  前記増幅機構の電子入射面は、前記イオン電子変換電極から直接見通せない位置に設置されていることを特徴とする請求項1に記載のイオン検出装置。 The ion detection device according to claim 1, wherein the electron incident surface of the amplification mechanism is disposed at a position not directly visible from the ion-electron conversion electrode.
  19.  前記増幅機構は、イオン通過口を有し、かつ電子入射面がイオン束の進行方向と同じ方向を向くマイクロチャンネルプレートであることを特徴とする請求項1に記載のイオン検出装置。 The ion detection device according to claim 1, wherein the amplification mechanism is a microchannel plate having an ion passage and having an electron incident surface oriented in the same direction as a traveling direction of the ion bundle.
  20.  入射されたイオンを質量分別する工程と、
     前記質量分別されたイオンを、ニードル形状、リボン形状、メッシュ形状、およびスリット形状のいずれか1つの形状を有するイオン電子変換電極により電子に変換する工程と、
     前記変換された電子を増幅する工程と
     を有することを特徴とするイオン検出方法。
    Mass fractionating the incident ions;
    Converting the mass-fractionated ions into electrons by means of an ion to electron conversion electrode having any one of a needle shape, a ribbon shape, a mesh shape, and a slit shape;
    And D. amplifying the converted electrons.
PCT/JP2009/058464 2009-04-30 2009-04-30 Ion detection device and ion detection method WO2010125670A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/058464 WO2010125670A1 (en) 2009-04-30 2009-04-30 Ion detection device and ion detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/058464 WO2010125670A1 (en) 2009-04-30 2009-04-30 Ion detection device and ion detection method

Publications (1)

Publication Number Publication Date
WO2010125670A1 true WO2010125670A1 (en) 2010-11-04

Family

ID=43031835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058464 WO2010125670A1 (en) 2009-04-30 2009-04-30 Ion detection device and ion detection method

Country Status (1)

Country Link
WO (1) WO2010125670A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6240147A (en) * 1985-08-14 1987-02-21 Shimadzu Corp Ion detector
JPH087832A (en) * 1994-06-20 1996-01-12 Ulvac Japan Ltd Quadrupole mass spectrometry device
JP2001351565A (en) * 2000-06-08 2001-12-21 Hamamatsu Photonics Kk Mass spectrometer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6240147A (en) * 1985-08-14 1987-02-21 Shimadzu Corp Ion detector
JPH087832A (en) * 1994-06-20 1996-01-12 Ulvac Japan Ltd Quadrupole mass spectrometry device
JP2001351565A (en) * 2000-06-08 2001-12-21 Hamamatsu Photonics Kk Mass spectrometer

Similar Documents

Publication Publication Date Title
US9543138B2 (en) Ion optical system for MALDI-TOF mass spectrometer
US7141785B2 (en) Ion detector
JP6423615B2 (en) Axial magnetic ion source and associated ionization method
US8288735B2 (en) Photoemission induced electron ionization
CA2738053C (en) Photoemission induced electron ionization
GB2535591A (en) Ion source for soft electron ionization and related systems and methods
US6906318B2 (en) Ion detector
EP2107591A1 (en) Multistage gas cascade amplifier
US4988869A (en) Method and apparatus for electron-induced dissociation of molecular species
JP7261243B2 (en) Particle detector with improved performance and service life
JP5396225B2 (en) Conversion type ion detection unit
WO2014149847A2 (en) Ionization within ion trap using photoionization and electron ionization
JP5175388B2 (en) Ion detection device for mass spectrometry, ion detection method, and method of manufacturing ion detection device
JP2007520048A (en) Parallel plate electron multiplier with suppressed ion feedback
JP5582493B2 (en) Microchannel plate assembly and microchannel plate detector
WO2010125670A1 (en) Ion detection device and ion detection method
CN112599397B (en) Storage type ion source
US7714299B2 (en) Particle detector
CA2457522C (en) Ion detector
JP2007234595A (en) Tandem continuous channel electron multiplier
JP6717429B2 (en) Ion detector and mass spectrometer
JP3572256B2 (en) Chemical substance detection device
US11217437B2 (en) Electron capture dissociation (ECD) utilizing electron beam generated low energy electrons
US11640005B2 (en) Daly detector operable in negative ion and positive ion detection modes
US11854777B2 (en) Ion-to-electron conversion dynode for ion imaging applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09844014

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09844014

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP