WO2010125626A1 - Electromagnetic absorber for anechoic chamber - Google Patents

Electromagnetic absorber for anechoic chamber Download PDF

Info

Publication number
WO2010125626A1
WO2010125626A1 PCT/JP2009/058245 JP2009058245W WO2010125626A1 WO 2010125626 A1 WO2010125626 A1 WO 2010125626A1 JP 2009058245 W JP2009058245 W JP 2009058245W WO 2010125626 A1 WO2010125626 A1 WO 2010125626A1
Authority
WO
WIPO (PCT)
Prior art keywords
mhz
wave absorber
anechoic chamber
frequency
electromagnetic wave
Prior art date
Application number
PCT/JP2009/058245
Other languages
French (fr)
Japanese (ja)
Inventor
守 中野
一男 石塚
Original Assignee
株式会社リケン
株式会社リケン環境システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社リケン, 株式会社リケン環境システム filed Critical 株式会社リケン
Priority to PCT/JP2009/058245 priority Critical patent/WO2010125626A1/en
Publication of WO2010125626A1 publication Critical patent/WO2010125626A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2658Other ferrites containing manganese or zinc, e.g. Mn-Zn ferrites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof

Definitions

  • the present invention relates to a radio wave absorber for an anechoic chamber, and more particularly to a radio wave absorber that exhibits excellent radio wave absorption characteristics in a frequency range of 30 MHz to 1 GHz and can be applied to a small and high performance anechoic chamber.
  • Mn—Zn ferrite and Ni—Zn ferrite have been mainly used as the electromagnetic wave absorber material.
  • Mn—Zn ferrite has a high permeability at frequencies from 10 kHz to 30 MHz
  • Ni—Zn ferrite has been widely used in these frequency ranges because it exhibits high permeability at frequencies from 30 MHz to 300 MHz.
  • a response to weaker electromagnetic waves is required, and a higher performance anechoic chamber is required.
  • the electromagnetic wave absorption performance can be improved.
  • Non-Patent Document 1 Li-Zn ferrite with high magnetic permeability is adopted, the relationship between the Li-ferrite content in the material and the complex magnetic permeability spectrum is evaluated, and its application to a single-layer type wave absorber is studied. ing.
  • the value ⁇ ”of the imaginary part of the complex relative permeability in the frequency range of 30 MHz to 1 GHz of the ferrite described in Non-Patent Document 1 is about 100 (see Non-Patent Document 1 Fig. 1 (b)).
  • the imaginary part of the complex relative permeability in the frequency range of 30 MHz to 1 GHz of the ferrite described in Non-Patent Document 1 is about 100 (see Non-Patent Document 1 Fig. 1 (b)).
  • Non-Patent Document 1 when Li is added within the range described in Non-Patent Document 1, the shrinkage rate during ferrite sintering increases, warping or cracking occurs in the sintered body, and the desired dimensional accuracy cannot be obtained. There is a possibility.
  • a radio wave absorber material having a value of an imaginary part ⁇ ′′ of a high complex relative permeability that can be applied to a small and high-performance anechoic chamber that can cope with extremely weak electromagnetic waves has been obtained. Absent.
  • an object of the present invention is to provide a radio wave absorber that is excellent in radio wave absorption characteristics, and is optimal for designing a small and high performance anechoic chamber.
  • the electromagnetic wave absorber for an anechoic chamber of the present invention is a ferrite-based electromagnetic wave absorber containing Mn, Zn and Li, and the Li content is 0.005 to 0.5 mass% with respect to the total amount of the absorber. It is characterized by.
  • an electromagnetic wave absorber for an anechoic chamber having a high ⁇ ′′ is obtained, and a small and high-performance anechoic chamber is realized.
  • the electromagnetic wave absorber of the present invention has the highest electromagnetic wave absorption.
  • the thickness of the absorber matches the ideal thickness in terms of the strength, weight and cost of the absorber, which makes it possible to manufacture a high-performance anechoic chamber with good workability and at a lower cost.
  • the matching thickness of the electromagnetic wave absorber of the present invention is maintained almost constant regardless of the frequency, an anechoic chamber having excellent electromagnetic wave absorption characteristics can be efficiently manufactured in a wide frequency range. can do.
  • the thickness (plate thickness) of the ferrite (tile) serving as the electromagnetic wave absorber is important from the viewpoint of cost and workability. If the thickness of the ferrite increases, the material cost increases, the weight of the radio wave absorber increases, and the workability deteriorates. For this reason, it is preferable that the thickness of the radio wave absorber is 7.5 mm or less. On the other hand, if the ferrite tile is thin, the strength is insufficient, and problems such as breakage may occur during construction, which may interfere with the production of the anechoic chamber. For the above reasons, it is desirable to design the thickness of the electromagnetic wave absorber to 3 mm to 7.5 mm.
  • the radio wave absorption characteristics of the radio wave absorber depend on the thickness of the radio wave absorber. Assuming an electromagnetic wave absorber with a metal plate lined on a ferrite tile, the thickness (matching thickness) d of the electromagnetic wave absorber when the electromagnetic wave absorption amount of the electromagnetic wave absorber is maximized is expressed by the following equation from the theory of electromagnetics: (Yoshitaka Shimizu, “Latest absorption and shielding of electromagnetic waves”, Nikkei Technical Books, p. 120-121).
  • the most efficient anechoic chamber can be designed by using the above-described electromagnetic wave absorber, ie, an electromagnetic wave absorber having a matching thickness of 3 mm to 7.5 mm.
  • an electromagnetic wave absorber having a matching thickness of 3 mm to 7.5 mm.
  • FIG. 1 shows the relationship between the Li content of an Mn—Zn ferrite absorber (thickness: 7.0 mm) and ⁇ ′′ at a frequency of 30 MHz.
  • the preparation of Li-containing ferrite and the calculation of ⁇ ′′ were performed as follows. .
  • a predetermined amount of Mn—Zn ferrite powder (manufactured by Fair Light Co., Ltd.) was immersed in lithium nitrate aqueous solutions having different concentrations and adjusted so that the Li content became a desired value, and then dried at 80 ° C.
  • Each of the obtained powders was put into a mold and subjected to pressure molding under a pressure of 2 t / cm 2 , then heated at 300 ° C./hr in an electric furnace and baked at 1250 ° C. for 1 hour.
  • the firing atmosphere is from normal temperature to 600 ° C. in the atmosphere, from 600 ° C. to 1250 ° C. in nitrogen, while holding at 1250 ° C., under 10 Pa of oxygen, and when cooled down from 1250 ° C. to 900 ° C. under 50 Pa of oxygen
  • the atmosphere was from 900 ° C. to room temperature.
  • the obtained Li-added Mn—Zn ferrite sintered bodies were each processed into a plate shape of 100 ⁇ 100 ⁇ 7 mm and used as samples for evaluation. In addition, it was confirmed by atomic absorption method that the Li content of each sample had a desired value.
  • the magnetic permeability of each sample was measured by a coaxial tube method using a network analyzer (8753A manufactured by HEWLETTWPACKARD).
  • the sample for evaluation is processed into a donut shape with an outer diameter of 38.8 mm and an inner diameter of 16.9 mm (thickness 7 mm), set in a coaxial tube as shown in Fig. 2, and the amplitude and phase of the reflected and transmitted waves are measured with a network analyzer. Measured ⁇ ”.
  • the Li content in the radio wave absorber is preferably 0.007 to 0.1% by mass, more preferably 0.01 to 0.05% by mass. In this range, ⁇ ′′ increases significantly, and it is possible to cope with a thinner wave absorber, which is effective for reducing the cost, size and performance of the anechoic chamber.
  • the electromagnetic wave absorber for an anechoic chamber of the present invention is a ferrite-based electromagnetic wave absorber containing Mn, Zn and Li, and the Li content is 0.005 to 0.5 mass% with respect to the total mass of the electromagnetic wave absorber. That's fine.
  • Mn—Zn ferrite containing 10 to 20% by mass of Mn and 10 to 20% by mass of Zn is particularly preferable.
  • the anechoic chamber is required to effectively absorb electromagnetic waves in a predetermined frequency range for the purpose of use, and naturally, the performance of the electromagnetic wave absorber is also required. Since the wavelength ⁇ is inversely proportional to the frequency f, in the expression (1), if ⁇ ′′ is not inversely proportional to the frequency, the matching thickness d will vary depending on the frequency. The thickness of the electromagnetic wave absorber is varied depending on the frequency. Since it cannot be changed in practice, it is desirable that the matching thickness be kept constant regardless of the frequency.
  • the matching thickness d 30 MHz at 30 MHz is expressed by the following equation.
  • the matching thickness d is constant regardless of the frequency, and an efficient anechoic chamber capable of exhibiting excellent wave absorption characteristics in a wide frequency range is designed. it can.
  • the frequency characteristic of ⁇ ′′ is 32.7 M / f, which is out of the above frequency range.
  • Ferrite has a frequency characteristic of ⁇ ′′ of 30.4 M / f and falls within the range of the formula (4), and it can be seen that excellent radio wave absorption characteristics can be obtained in the above frequency range.
  • the thickness of the radio wave absorber that the radio wave absorber can exhibit the most radio wave absorption performance is obtained from the equation (1) as follows.
  • Example Mn-Zn ferrite powder was adjusted by the above-described method so that the Li content with respect to the total amount of the ferrite absorber was 0.02% by mass, pressure-molded, and then fired (Example).
  • the obtained Li-added Mn—Zn ferrite sintered body was processed, and the magnetic permeability was measured by a coaxial tube method using a network analyzer (8753A manufactured by HEWLETT PACKARD). Further, as a comparative example, evaluation was similarly performed using Ni—Zn ferrite (30 MHz to 300 MHz) showing higher magnetic permeability on the higher frequency side than Mn—Zn ferrite (10 kHz to 30 MHz).
  • FIG. 3A shows the result of evaluating the frequency dependence of ⁇ ′′ of the radio wave absorber of the example in the frequency range of 30 MHz to 300 MHz.
  • FIG. 3B similarly shows the radio wave of the comparative example.
  • the result of having evaluated the frequency dependence of ⁇ ”of the absorber is shown.
  • the electromagnetic wave absorber of the comparative example has a deviation from the equation (3), but the electromagnetic wave absorber of the example has almost the same as the equation (3). This confirms that the radio wave absorber of the present invention can exhibit excellent radio wave absorption characteristics over a wider range than the conventional radio wave absorber.
  • FIG. 4 shows the relationship between the frequency and the matching thickness of the radio wave absorbers of the example and the comparative example.
  • the matching thickness changes by about 25% from 7.8 mm to 6.2 mm in the frequency range from 30 MHz to 300 MHz.
  • FIG. 5 shows the results of evaluating the radio wave absorption characteristics of samples of matching thicknesses at 30 MHz and 300 MHz for the radio wave absorbers of the example and the comparative example, respectively.
  • the matching thickness of the radio wave absorber of the example is 6.5 mm at 30 MHz and 6.2 mm at 300 MHz
  • the matching thickness of the radio wave absorber of the comparative example is 7.8 mm at 30 MHz and 6.2 mm at 300 MHz.
  • the radio wave absorption amount shown as the reflection amount in the figure greatly changed depending on the frequency to be matched.
  • FIG. 5 shows the evaluation results for frequencies from 30 MHz to 300 MHz. It was confirmed that the radio wave absorbers of the examples can obtain good radio wave absorption characteristics even at frequencies of 300 MHz to 1000 MHz (1 GHz).
  • FIG. 6 shows the results of calculating the performance of each anechoic chamber when the anechoic chamber was designed using the electromagnetic wave absorbers of the example and the comparative example.
  • the length L of the anechoic chamber is 21m
  • the height H is 8.5m
  • the measurement distance is 10m
  • the diameter of the turntable is 3m
  • the width W of the room is changed between 12m and 17m. went.
  • the anechoic chamber performance becomes better as the deviation from the open site theoretical value is smaller.
  • W 12 m
  • the deviation from the open site theoretical value was about 4 dB when using the electromagnetic wave absorber of the comparative example, and about 2 dB when using the electromagnetic wave absorber of the example. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

Disclosed is an electromagnetic absorber that has excellent electromagnetic absorption properties and is best suited for design of an anechoic chamber having a small size and a high performance. In a ferritic electromagnetic absorber containing Mn, Zn and Li, the content of Li is 0.005 to 0.5% by mass of the total amount of the electromagnetic absorber. In this case, the value μ" of an imaginary part in a complex relative permeability of the electromagnetic absorber at a frequency of 30 MHz and the value μ" of an imaginary part in a complex relative permeability of the electromagnetic absorber at a frequency of 30 to 70 MHz are set so as to satisfy 213 to 530 and 28.5 to 31.5 M/f, respectively, wherein M represents the imaginary part in the complex relative permeability of the electromagnetic absorber at 30 MHz; and f represents frequency, MHz. The plate thickness of the electromagnetic absorber is 1.51 to 1.67/M (m) wherein M represents the imaginary part in the complex relative permeability of the electromagnetic absorber at 30 MHz.

Description

電波暗室用電波吸収体Electromagnetic wave absorber for anechoic chamber
 本発明は、電波暗室用の電波吸収体に関し、さらに詳しくは、30MHzから1GHzの周波数範囲で優れた電波吸収特性を示し、小型で高性能な電波暗室に適用可能な電波吸収体に関する。 The present invention relates to a radio wave absorber for an anechoic chamber, and more particularly to a radio wave absorber that exhibits excellent radio wave absorption characteristics in a frequency range of 30 MHz to 1 GHz and can be applied to a small and high performance anechoic chamber.
 近年、高度情報化の進展に伴い、各種通信機器や電子機器から発生する微弱電磁波がテレビ・ラジオ、通信、医療、船舶、及び航空機等の計器類等に誤動作を引き起こす電磁波障害(EMI)が問題となり、国際的にも電磁波の規制が求められている。そのため、電磁波障害等の原因となり得るノイズを発生する各種通信機器やパソコン等のメーカーには、電子機器から発生するノイズを正確に計測し、その対策を講じることが要求されている。即ち、電子機器等から発生する極微弱な電磁波を高性能な計測器で高精度に測定し、有害な電磁波の発生を防止する対策が求められている。ここで、問題となるのが、電磁波を計測する環境であり、極微弱な電磁波を正確に計測するためにはノイズ等外乱のない高性能な電波暗室が必要となる。 In recent years, with the advancement of advanced information technology, weak electromagnetic waves generated from various types of communication devices and electronic devices have a problem with electromagnetic interference (EMI) causing malfunctions in instruments such as televisions, radios, communications, medical care, ships, and aircraft. Therefore, regulations on electromagnetic waves are also required internationally. Therefore, manufacturers of various communication devices and personal computers that generate noise that may cause electromagnetic interference are required to accurately measure noise generated from electronic devices and take countermeasures. That is, there is a demand for measures for preventing the generation of harmful electromagnetic waves by measuring extremely weak electromagnetic waves generated from electronic devices or the like with a high-performance measuring instrument with high accuracy. Here, the problem is the environment for measuring electromagnetic waves, and in order to accurately measure extremely weak electromagnetic waves, a high-performance anechoic chamber free from disturbances such as noise is required.
 従来の電波暗室では、主にMn-ZnフェライトやNi-Znフェライト等の磁性材料が電波吸収体材料として用いられてきた。Mn-Znフェライトは、10kHzから30MHzの周波数で、一方、Ni-Znフェライトは、30MHzから300MHzの周波数で高い透磁率を示すため、これらの周波数範囲で多く使用されてきた。しかしながら、昨今、より微弱な電磁波への対応が求められ、より高性能な電波暗室が要求されている。一般的に、電波暗室の寸法を大きくすることにより、電波吸収性能を向上させることができる。このため、より高精度の計測を可能とするためには、従来のMn-ZnフェライトやNi-Znフェライト等の電波吸収体を用いて、電波暗室を大型化し、高性能化を図る方法も考えられる。しかし、施工の困難性や設備費等を考慮すると電波暗室の大型化には限界がある。 In conventional anechoic chambers, magnetic materials such as Mn—Zn ferrite and Ni—Zn ferrite have been mainly used as the electromagnetic wave absorber material. Mn—Zn ferrite has a high permeability at frequencies from 10 kHz to 30 MHz, whereas Ni—Zn ferrite has been widely used in these frequency ranges because it exhibits high permeability at frequencies from 30 MHz to 300 MHz. However, recently, a response to weaker electromagnetic waves is required, and a higher performance anechoic chamber is required. Generally, by increasing the size of the anechoic chamber, the electromagnetic wave absorption performance can be improved. For this reason, in order to enable more accurate measurement, a method of increasing the performance of the anechoic chamber by using a conventional wave absorber such as Mn-Zn ferrite or Ni-Zn ferrite is also considered. It is done. However, considering the difficulty of construction and equipment costs, there is a limit to the increase in size of the anechoic chamber.
 非特許文献1では、透磁率の高いLi-Znフェライトを採用し、材料中のLi-フェライト含有量と複素透磁率スペクトルとの関係を評価し、単層型電波吸収体への応用を検討している。しかしながら、非特許文献1に記載されているフェライトの30MHzから1GHzの周波数範囲での複素比透磁率の虚数部の値μ"は100程度である(非特許文献1 Fig.1 (b)参照)。このようなμ"値の電波吸収体を用いて、近年要求されている極微弱な電磁波に対応するためには、電波暗室の大型化は避けられない。さらに、非特許文献1に記載の範囲でLiを添加した場合には、フェライト焼結時の収縮率が大きくなり、焼結体に反りや割れ等が発生し、所望の寸法精度が得られない可能性もある。このように、現状では、極微弱な電磁波にも対応可能な、小型で高性能な電波暗室に適用し得る高い複素比透磁率の虚数部の値μ"を有する電波吸収体材料は得られていない。 In Non-Patent Document 1, Li-Zn ferrite with high magnetic permeability is adopted, the relationship between the Li-ferrite content in the material and the complex magnetic permeability spectrum is evaluated, and its application to a single-layer type wave absorber is studied. ing. However, the value μ ”of the imaginary part of the complex relative permeability in the frequency range of 30 MHz to 1 GHz of the ferrite described in Non-Patent Document 1 is about 100 (see Non-Patent Document 1 Fig. 1 (b)). In order to cope with the extremely weak electromagnetic waves that have been demanded in recent years by using such a radio wave absorber of μ ”value, it is inevitable that the anechoic chamber is enlarged. Furthermore, when Li is added within the range described in Non-Patent Document 1, the shrinkage rate during ferrite sintering increases, warping or cracking occurs in the sintered body, and the desired dimensional accuracy cannot be obtained. There is a possibility. Thus, at present, a radio wave absorber material having a value of an imaginary part μ ″ of a high complex relative permeability that can be applied to a small and high-performance anechoic chamber that can cope with extremely weak electromagnetic waves has been obtained. Absent.
 従って、本発明の目的は、電波吸収特性に優れ、小型で高性能な電波暗室の設計に最適な電波吸収体を提供することである。 Accordingly, an object of the present invention is to provide a radio wave absorber that is excellent in radio wave absorption characteristics, and is optimal for designing a small and high performance anechoic chamber.
 上記目的に鑑み鋭意研究の結果、本発明者らは、Mn-Zn系フェライトにLiを添加すると、Liの含有量が極微量な範囲で、複素比透磁率の虚数部の値μ"(以下、「μ"」という)が大幅に増加することを見出し、本発明に想到した。即ち、本発明の電波暗室用電波吸収体はMn、Zn及びLiを含有するフェライト系電波吸収体であって、吸収体の全量に対して、Liの含有量が0.005~0.5質量%であることを特徴とする。 As a result of diligent research in view of the above object, the present inventors, when adding Li to Mn—Zn ferrite, have a value μ ″ (hereinafter referred to as “mu”) of complex relative permeability within a very small amount of Li. , "Μ" ") was found to increase significantly, and the present invention was conceived. That is, the electromagnetic wave absorber for an anechoic chamber of the present invention is a ferrite-based electromagnetic wave absorber containing Mn, Zn and Li, and the Li content is 0.005 to 0.5 mass% with respect to the total amount of the absorber. It is characterized by.
 本発明によれば、高いμ"を有する電波暗室用電波吸収体が得られ、小型で高性能な電波暗室が実現される。また、本発明の電波吸収体では、電波吸収量が最も高くなる吸収体の板厚(整合厚さ)が、吸収体の強度及び重量とコストの観点から理想的な厚さに一致する。このため、高性能な電波暗室を施工性よく、より低コストで製造することが可能となる。さらに、本発明の電波吸収体では、周波数によらず、整合厚さがほぼ一定に維持されるため、広い周波数範囲において、電波吸収特性に優れる電波暗室を効率よく製造することができる。 According to the present invention, an electromagnetic wave absorber for an anechoic chamber having a high μ ″ is obtained, and a small and high-performance anechoic chamber is realized. Further, the electromagnetic wave absorber of the present invention has the highest electromagnetic wave absorption. The thickness of the absorber (matching thickness) matches the ideal thickness in terms of the strength, weight and cost of the absorber, which makes it possible to manufacture a high-performance anechoic chamber with good workability and at a lower cost. Furthermore, since the matching thickness of the electromagnetic wave absorber of the present invention is maintained almost constant regardless of the frequency, an anechoic chamber having excellent electromagnetic wave absorption characteristics can be efficiently manufactured in a wide frequency range. can do.
 以下に本発明の電波暗室用電波吸収体について詳細に説明する。
 電波暗室の設計においては、コスト及び施工性の観点から電波吸収体となるフェライト(タイル)の厚さ(板厚)が重要である。フェライトの厚さが増せば、材料コストが上昇し、また、電波吸収体の重量が増加し、施工性が悪化する。このため、電波吸収体の厚さは7.5mm以下であることが好ましい。一方、フェライトタイルが薄いと強度が不足し、施工中に破損などの問題が発生し、電波暗室の製造に支障を生じる恐れがある。上記の理由から電波吸収体の厚さは3mm~7.5mmに設計するのが望ましい。
The electromagnetic wave absorber for an anechoic chamber of the present invention will be described in detail below.
In the design of the anechoic chamber, the thickness (plate thickness) of the ferrite (tile) serving as the electromagnetic wave absorber is important from the viewpoint of cost and workability. If the thickness of the ferrite increases, the material cost increases, the weight of the radio wave absorber increases, and the workability deteriorates. For this reason, it is preferable that the thickness of the radio wave absorber is 7.5 mm or less. On the other hand, if the ferrite tile is thin, the strength is insufficient, and problems such as breakage may occur during construction, which may interfere with the production of the anechoic chamber. For the above reasons, it is desirable to design the thickness of the electromagnetic wave absorber to 3 mm to 7.5 mm.
 一方、電波吸収体の電波吸収特性は、電波吸収体の厚さに依存する。フェライトタイルに金属板を裏打ちした電波吸収体を想定した場合、電波吸収体の電波吸収量が最も大きくなる時の電波吸収体の厚さ(整合厚さ)dは、電磁気学の理論より下式で表すことができる(清水康敬編,「最新 電磁波の吸収と遮蔽」,日経技術図書(株),p. 120-121)。
  d=λ/(2πμ") -------------------(1)
     λは自由空間の波長:λ=300/f、  fは周波数(MHz)
 (1)式を変形すると、
  μ"=λ/(2πd) -------------------(2)
となる。
On the other hand, the radio wave absorption characteristics of the radio wave absorber depend on the thickness of the radio wave absorber. Assuming an electromagnetic wave absorber with a metal plate lined on a ferrite tile, the thickness (matching thickness) d of the electromagnetic wave absorber when the electromagnetic wave absorption amount of the electromagnetic wave absorber is maximized is expressed by the following equation from the theory of electromagnetics: (Yoshitaka Shimizu, “Latest absorption and shielding of electromagnetic waves”, Nikkei Technical Books, p. 120-121).
d = λ / (2πμ ") ------------------- (1)
λ is free space wavelength: λ = 300 / f, f is frequency (MHz)
When transforming equation (1),
μ "= λ / (2πd) ------------------- (2)
It becomes.
 上述した電波吸収体の厚さ 、即ち、3mm~7.5mmが整合厚さとなる電波吸収体を用いれば、最も効率的な電波暗室を設計することができる。ここで、(2)式のdに3mm~7.5mmを代入すると、周波数30MHzにおけるμ" = 213~530となる。従って、周波数30MHzにおけるμ" が 213~530の電波吸収体を用いれば最も効率的な電波暗室の設計が可能となる。しかしながら、従来のフェライト系電波吸収体ではこのようなμ"を有する材料は得られていない。 The most efficient anechoic chamber can be designed by using the above-described electromagnetic wave absorber, ie, an electromagnetic wave absorber having a matching thickness of 3 mm to 7.5 mm. Here, substituting 3 mm to 7.5 mm for d in Equation (2) yields μ "= 213 to 530 at a frequency of 30 MHz. Therefore, if a radio wave absorber with μ" at a frequency of 30 MHz is 213 to 530, it is most efficient. It is possible to design a typical anechoic chamber. However, a material having such a μ ″ has not been obtained with a conventional ferrite-based electromagnetic wave absorber.
 図1にMn-Znフェライト吸収体(厚さ7.0mm)のLi含有量と周波数30MHzにおけるμ"との関係を示す。なお、Li含有フェライトの作製及びμ"の算出は以下の通りに行った。
 Li含有量が所望の値になるように調整した濃度の異なる硝酸リチウム水溶液中に所定量のMn-Znフェライト粉末(フェア・ライト社製)を浸漬し、攪拌した後、80℃で乾燥した。得られた粉末をそれぞれ型に入れ、2t/cm2の圧力下で加圧成型した後、電気炉中で、300℃/hrで昇温し、1250℃で1時間焼成した。ここで、焼成雰囲気は、常温から600℃までは大気中、600℃から1250℃までは窒素中、1250℃保持中は10Paの酸素下、1250℃から900℃の降温時は50Paの酸素下、900℃から室温までは大気中とした。得られたLi添加Mn-Znフェライト焼結体をそれぞれ100×100×7mmの板状に加工し、評価用試料とした。なお、原子吸光法により、各試料のLi含有量が所望の値となっていることを確認した。
FIG. 1 shows the relationship between the Li content of an Mn—Zn ferrite absorber (thickness: 7.0 mm) and μ ″ at a frequency of 30 MHz. The preparation of Li-containing ferrite and the calculation of μ ″ were performed as follows. .
A predetermined amount of Mn—Zn ferrite powder (manufactured by Fair Light Co., Ltd.) was immersed in lithium nitrate aqueous solutions having different concentrations and adjusted so that the Li content became a desired value, and then dried at 80 ° C. Each of the obtained powders was put into a mold and subjected to pressure molding under a pressure of 2 t / cm 2 , then heated at 300 ° C./hr in an electric furnace and baked at 1250 ° C. for 1 hour. Here, the firing atmosphere is from normal temperature to 600 ° C. in the atmosphere, from 600 ° C. to 1250 ° C. in nitrogen, while holding at 1250 ° C., under 10 Pa of oxygen, and when cooled down from 1250 ° C. to 900 ° C. under 50 Pa of oxygen The atmosphere was from 900 ° C. to room temperature. The obtained Li-added Mn—Zn ferrite sintered bodies were each processed into a plate shape of 100 × 100 × 7 mm and used as samples for evaluation. In addition, it was confirmed by atomic absorption method that the Li content of each sample had a desired value.
 各試料の透磁率の測定は、ネットワーク・アナライザー(HEWLETT PACKARD社製8753A)を用いて同軸管法により行った。評価用試料を外径38.8 mm、内径16.9mm(厚さ7mm)のドーナツ状に加工し、図2に示すように同軸管内にセットし、ネットワーク・アナライザーで反射波・透過波の振幅及び位相を測定し、μ"を求めた。 The magnetic permeability of each sample was measured by a coaxial tube method using a network analyzer (8753A manufactured by HEWLETTWPACKARD). The sample for evaluation is processed into a donut shape with an outer diameter of 38.8 mm and an inner diameter of 16.9 mm (thickness 7 mm), set in a coaxial tube as shown in Fig. 2, and the amplitude and phase of the reflected and transmitted waves are measured with a network analyzer. Measured μ ”.
 図1より、Li含有量が0.005~0.5質量%と極微量の範囲で、最適なμ"が得られることが確認された。この時のμ"は213~530の範囲となり、コスト及び施工性の観点から算出された理想的なフェライトの厚さ(3mm~7.5mm)が、電波吸収体の整合厚さとなることがわかる。従って、Mn-Znフェライト中のLi含有量を0.005~0.5質量%とすることにより、小型で電波吸収特性に優れた電波暗室を低コストで効率的に製造することが可能となる。また、Li含有量がこのように微量な範囲では、焼結時の収縮が問題となることはなく、反りやクラックの発生も抑えられ、優れた寸法精度で、フェライト焼結体を製造できる。
 電波吸収体中のLi含有量は、0.007~0.1質量%が好ましく、0.01~0.05質量%がより好ましい。この範囲では、μ"が大幅に上昇し、より薄い電波吸収体での対応が可能となり、電波暗室の低コスト化、小型化及び高性能化に有効である。
From Fig. 1, it was confirmed that the optimum μ "was obtained when the Li content was 0.005 to 0.5 mass%, and the range was 213 to 530, and the cost and workability were excellent. It can be seen that the ideal ferrite thickness (3 mm to 7.5 mm) calculated from the above viewpoint is the matching thickness of the wave absorber. Therefore, by setting the Li content in the Mn—Zn ferrite to 0.005 to 0.5% by mass, it is possible to efficiently produce a small anechoic chamber having excellent radio wave absorption characteristics at low cost. In addition, when the Li content is in such a small range, shrinkage during sintering does not become a problem, generation of warpage and cracks can be suppressed, and a ferrite sintered body can be manufactured with excellent dimensional accuracy.
The Li content in the radio wave absorber is preferably 0.007 to 0.1% by mass, more preferably 0.01 to 0.05% by mass. In this range, μ ″ increases significantly, and it is possible to cope with a thinner wave absorber, which is effective for reducing the cost, size and performance of the anechoic chamber.
 本発明の電波暗室用電波吸収体は、Mn、Zn及びLiを含有するフェライト系電波吸収体であって、電波吸収体の全質量に対して、Liの含有量が0.005~0.5質量%であればよい。これらのフェライトの中でも、特に、Mnを10~20質量%、Znを10~20質量%含有するMn-Znフェライトが好ましい。 The electromagnetic wave absorber for an anechoic chamber of the present invention is a ferrite-based electromagnetic wave absorber containing Mn, Zn and Li, and the Li content is 0.005 to 0.5 mass% with respect to the total mass of the electromagnetic wave absorber. That's fine. Among these ferrites, Mn—Zn ferrite containing 10 to 20% by mass of Mn and 10 to 20% by mass of Zn is particularly preferable.
 次に、本発明の電波暗室用電波吸収体の電波吸収特性の周波数依存性について検討する。電波暗室はその使用目的から、所定の周波数範囲の電磁波を効果的に吸収することが求められており、当然、電波吸収体にもその性能が要求される。波長λは周波数fに反比例するため、(1)式において、μ"が周波数に反比例しなければ、整合厚さdは、周波数により変化することとなる。電波吸収体の厚さを、周波数によって変えることは現実的にはできないため、整合厚さが周波数によらず一定に維持されることが望ましい。 Next, the frequency dependence of the radio wave absorption characteristics of the electromagnetic wave absorber for an anechoic chamber of the present invention will be examined. The anechoic chamber is required to effectively absorb electromagnetic waves in a predetermined frequency range for the purpose of use, and naturally, the performance of the electromagnetic wave absorber is also required. Since the wavelength λ is inversely proportional to the frequency f, in the expression (1), if μ ″ is not inversely proportional to the frequency, the matching thickness d will vary depending on the frequency. The thickness of the electromagnetic wave absorber is varied depending on the frequency. Since it cannot be changed in practice, it is desirable that the matching thickness be kept constant regardless of the frequency.
 (1)式より30MHzでの整合厚さd30MHzは次式で表される。
    d30MHz =(300/30)/(2πμ"30MHz
           =5/(πμ"30MHz)
  これを(2)式に代入して
   μ"=λ/(2πd30MHz)
       =λμ"30MHz /10
       =(300/f) μ"30MHz /10
       =30μ"30MHz/f
  ここで、M =μ"30MHzとおくと、
    μ"=30M/f -------------------(3)
  となる。
From equation (1), the matching thickness d 30 MHz at 30 MHz is expressed by the following equation.
d 30MHz = (300/30) / ( 2πμ "30MHz)
= 5 / (πμ "30MHz)
This (2) are substituted into the formula μ "= λ / (2πd 30MHz )
= λμ " 30MHz / 10
= (300 / f) μ " 30MHz / 10
= 30μ " 30MHz / f
Here, if M = μ " 30MHz ,
μ "= 30M / f ------------------- (3)
It becomes.
 従って、電波吸収体がこのような周波数特性を有していれば、整合厚さdは周波数によらず一定となり、広い周波数範囲において優れた電波吸収特性を発揮し得る効率のよい電波暗室を設計できる。 電波暗室の性能は、低周波数側の方が問題になることが多い。このため、30~70MHzの周波数範囲において、(3)式の5%以内となるのが望ましい。 即ち、
   
  μ" = 28.5M/f~31.5M/f -------------------(4) 
となり、μ"が上記の範囲であることが望ましい。
 ここで、Liを添加していない従来のMn-Znフェライトではμ"の周波数特性が32.7M/fとなり、上記周波数範囲外となる。一方、Liを0.02質量% 含有する本発明のMn-Znフェライトは、μ"の周波数特性が30.4M/f で、(4)式の範囲となり、上記周波数範囲で、優れた電波吸収特性が得られることがわかる。
Therefore, if the wave absorber has such frequency characteristics, the matching thickness d is constant regardless of the frequency, and an efficient anechoic chamber capable of exhibiting excellent wave absorption characteristics in a wide frequency range is designed. it can. The performance of the anechoic chamber is often a problem on the low frequency side. For this reason, it is desirable that it be within 5% of the expression (3) in the frequency range of 30 to 70 MHz. That is,

μ "= 28.5M / f to 31.5M / f ------------------- (4)
Therefore, it is desirable that μ ″ is in the above range.
Here, in the conventional Mn—Zn ferrite to which no Li is added, the frequency characteristic of μ ″ is 32.7 M / f, which is out of the above frequency range. Ferrite has a frequency characteristic of μ ″ of 30.4 M / f and falls within the range of the formula (4), and it can be seen that excellent radio wave absorption characteristics can be obtained in the above frequency range.
 また、電波吸収体が最も電波吸収性能を発揮し得る電波吸収体の厚みは(1)式より、以下の通り求められる。
    d=(300/30)/(2πM)
     =1.59/M -------------------(5)
  ここで、M:30MHzにおける複素比透磁率の虚数部
 電波吸収体の厚みは(5)式の5%以内であることが望ましく、
  d=1.51/M~1.67/M (m) -------------------(6)
 となる。
In addition, the thickness of the radio wave absorber that the radio wave absorber can exhibit the most radio wave absorption performance is obtained from the equation (1) as follows.
d = (300/30) / (2πM)
= 1.59 / M ------------------- (5)
Here, the thickness of the imaginary part of the complex relative permeability at M: 30 MHz is desirably within 5% of the equation (5),
d = 1.51 / M ~ 1.67 / M (m) ------------------- (6)
It becomes.
 本発明の効果を以下の実施例によりさらに詳細に説明する。
 実施例
  上述の方法でフェライト吸収体全量に対するLi含有量が0.02質量%となるようにMn-Znフェライト粉末を調整し、加圧成型した後、焼成した(実施例)。得られたLi添加Mn-Znフェライト焼結体を加工し、ネットワーク・アナライザー(HEWLETT PACKARD社製8753A)を用いて同軸管法により透磁率を測定した。また、比較例としては、Mn-Znフェライト(10kHzから30MHz)より高周波数側で高い透磁率を示すNi-Znフェライト(30MHzから300MHz)を用いて、同様に評価を行った。
The effects of the present invention will be described in more detail with reference to the following examples.
Example Mn-Zn ferrite powder was adjusted by the above-described method so that the Li content with respect to the total amount of the ferrite absorber was 0.02% by mass, pressure-molded, and then fired (Example). The obtained Li-added Mn—Zn ferrite sintered body was processed, and the magnetic permeability was measured by a coaxial tube method using a network analyzer (8753A manufactured by HEWLETT PACKARD). Further, as a comparative example, evaluation was similarly performed using Ni—Zn ferrite (30 MHz to 300 MHz) showing higher magnetic permeability on the higher frequency side than Mn—Zn ferrite (10 kHz to 30 MHz).
 図3(A)に、30MHzから300MHzの周波数範囲における実施例の電波吸収体のμ"の周波数依存性を評価した結果を示す。また、図3(B)には、同様に比較例の電波吸収体のμ"の周波数依存性を評価した結果を示す。ここで、直線は式(3)、即ち、
μ"=30M/fを示す。前述の通り、電波吸収体が、(3)式を満たす電波吸収特性を有していれば、周波数に依存せず、整合厚さが一定となるため、広い周波数範囲で効果的に電波を吸収できる。図3より、比較例の電波吸収体では、(3)式との間にずれが生じるが、実施例の電波吸収体では、(3)式にほぼ一致することが確認された。このことから、本発明の電波吸収体では、従来の電波吸収体に比べ、より広範囲で、優れた電波吸収特性を発揮できることがわかる。
FIG. 3A shows the result of evaluating the frequency dependence of μ ″ of the radio wave absorber of the example in the frequency range of 30 MHz to 300 MHz. FIG. 3B similarly shows the radio wave of the comparative example. The result of having evaluated the frequency dependence of μ ”of the absorber is shown. Here, the straight line is the equation (3), that is,
μ "= 30M / f. As described above, if the wave absorber has a wave absorption characteristic satisfying the equation (3), the matching thickness is constant regardless of the frequency, so that it is wide. 3, the electromagnetic wave absorber of the comparative example has a deviation from the equation (3), but the electromagnetic wave absorber of the example has almost the same as the equation (3). This confirms that the radio wave absorber of the present invention can exhibit excellent radio wave absorption characteristics over a wider range than the conventional radio wave absorber.
 図4には、実施例及び比較例の電波吸収体の周波数と整合厚さとの関係を示す。比較例では、30MHzから300MHzの周波数範囲において、整合厚さが7.8mm~6.2mmと25%程度変化している。一方、実施例では、6.2mm~6.5mmと5%程度しか変化しないことが確認された。 FIG. 4 shows the relationship between the frequency and the matching thickness of the radio wave absorbers of the example and the comparative example. In the comparative example, the matching thickness changes by about 25% from 7.8 mm to 6.2 mm in the frequency range from 30 MHz to 300 MHz. On the other hand, in the examples, it was confirmed that only 5% changed from 6.2 mm to 6.5 mm.
 図5には、実施例及び比較例の電波吸収体について、それぞれ30MHz及び300MHzにおける整合厚さの試料を作製して電波吸収特性を評価した結果を示す。ここで、実施例の電波吸収体の整合厚さは、30MHzで6.5mm、300MHzで6.2mmであり、比較例の電波吸収体の整合厚さは、30MHzで7.8mm、300MHzで6.2mmである。
 比較例の電波吸収体では、整合させる周波数によって、電波吸収量(図中には反射量として示す))が大きく変化した。一方、実施例の電波吸収体では、いずれの周波数に整合させた場合も電波吸収特性に大きな変化は認められず、殆どすべての周波数範囲において、比較例の電波吸収体より、優れた電波吸収特性を示した。なお、図5では、周波数30MHz~300MHzまでの評価結果を示すが、実施例の電波吸収体では、周波数300MHz~1000MHz(1GHz)においても良好な電波吸収特性が得られることを確認した。
FIG. 5 shows the results of evaluating the radio wave absorption characteristics of samples of matching thicknesses at 30 MHz and 300 MHz for the radio wave absorbers of the example and the comparative example, respectively. Here, the matching thickness of the radio wave absorber of the example is 6.5 mm at 30 MHz and 6.2 mm at 300 MHz, and the matching thickness of the radio wave absorber of the comparative example is 7.8 mm at 30 MHz and 6.2 mm at 300 MHz. .
In the radio wave absorber of the comparative example, the radio wave absorption amount (shown as the reflection amount in the figure) greatly changed depending on the frequency to be matched. On the other hand, in the radio wave absorber of the example, no significant change was observed in the radio wave absorption characteristics when matched to any frequency, and in almost all frequency ranges, the radio wave absorption characteristics were superior to those of the comparative example. showed that. FIG. 5 shows the evaluation results for frequencies from 30 MHz to 300 MHz. It was confirmed that the radio wave absorbers of the examples can obtain good radio wave absorption characteristics even at frequencies of 300 MHz to 1000 MHz (1 GHz).
 図6に、実施例及び比較例の電波吸収体を用いて、電波暗室を設計した場合の、それぞれの電波暗室の性能を計算した結果を示す。ここで、電波暗室の長さLは 21m、高さHは 8.5m、測定距離は、10m、ターンテーブルの直径は、3mとして、部屋の幅Wを12m~17mの間で変えて、計算を行った。電波暗室性能は、オープンサイト理論値との偏差が小さいほど良好となる。
 図6より、W=12mの場合、オープンサイト理論値との偏差は、比較例の電波吸収体を用いた場合は約4dB、実施例の電波吸収体を用いた場合は、約2dBであった。従って、同一サイズの暗室であれば、実施例の電波吸収体を用いると、比較例の電波吸収体を用いた場合に比べ、約2倍の性能が得られることがわかる。
 逆に、実施例の電波吸収体を用いたW=12mの電波暗室と同等の性能を、比較例の電波吸収体を用いて得ようとすると、W=17mが必要となる。その結果、暗室体積を40%増加させ、フェライト使用量を20%増加させなければならない。上記の結果から、実施例の電波吸収体を用いた場合には、建設費用も含めると、比較例の電波吸収体を用いた場合に比べ、約30%のコスト低減が可能となることが確認された。
FIG. 6 shows the results of calculating the performance of each anechoic chamber when the anechoic chamber was designed using the electromagnetic wave absorbers of the example and the comparative example. Here, the length L of the anechoic chamber is 21m, the height H is 8.5m, the measurement distance is 10m, the diameter of the turntable is 3m, and the width W of the room is changed between 12m and 17m. went. The anechoic chamber performance becomes better as the deviation from the open site theoretical value is smaller.
From FIG. 6, when W = 12 m, the deviation from the open site theoretical value was about 4 dB when using the electromagnetic wave absorber of the comparative example, and about 2 dB when using the electromagnetic wave absorber of the example. . Therefore, it can be seen that in a dark room of the same size, when the radio wave absorber of the example is used, about twice the performance can be obtained as compared with the case where the radio wave absorber of the comparative example is used.
On the other hand, if an attempt is made to obtain a performance equivalent to that of a anechoic chamber of W = 12 m using the electromagnetic wave absorber of the embodiment using the electromagnetic wave absorber of the comparative example, W = 17 m is required. As a result, the darkroom volume must be increased by 40% and the ferrite usage must be increased by 20%. From the above results, when using the radio wave absorber of the example, including construction costs, it is confirmed that the cost can be reduced by about 30% compared to the case of using the radio wave absorber of the comparative example. It was done.
Mn-Znフェライト吸収体中のLi含有量と30MHzにおけるμ"との関係を示す図である。It is a figure which shows the relationship between Li content in a Mn-Zn ferrite absorber, and μ "at 30 MHz. 透磁率の測定に用いた装置の概略図である。It is the schematic of the apparatus used for the measurement of magnetic permeability. 実施例(A)及び比較例(B)の電波吸収体のμ"の周波数依存性を示す図である。It is a figure which shows the frequency dependence of (micro | micron | mu) "of the electromagnetic wave absorber of an Example (A) and a comparative example (B). 実施例及び比較例の電波吸収体の整合厚さの周波数依存性を示す図である。It is a figure which shows the frequency dependence of the matching thickness of the electromagnetic wave absorber of an Example and a comparative example. 30MHz(A)及び300MHz(B)における整合厚さとしたときの実施例及び比較例の電波吸収体の電波吸収特性を示す図である。It is a figure which shows the electromagnetic wave absorption characteristic of the electromagnetic wave absorber of an Example and a comparative example when it is set as the matching thickness in 30 MHz (A) and 300 MHz (B). 実施例及び比較例の電波吸収体で電波暗室を設計した時のオープンサイト理論値との偏差を計算した結果を示す図である。It is a figure which shows the result of having calculated the deviation with an open site theoretical value when an anechoic chamber is designed with the electromagnetic wave absorber of an Example and a comparative example.
10・・・試料
20・・・ネットワーク・アナライザー
10 ... Sample 20 ... Network analyzer

Claims (4)

  1.  Mn、Zn及びLiを含有するフェライト系電波吸収体であって、前記電波吸収体の全量に対して、Liの含有量が0.005~0.5質量%であることを特徴とする電波暗室用電波吸収体。 A ferrite-based electromagnetic wave absorber containing Mn, Zn and Li, wherein the Li content is 0.005 to 0.5% by mass with respect to the total amount of the electromagnetic wave absorber. .
  2.  
      周波数30MHzにおける複素比透磁率の虚数部の値μ" が 213~530であることを特徴とする請求項1に記載の電波暗室用電波吸収体。

    2. The electromagnetic wave absorber for an anechoic chamber according to claim 1, wherein the value ″ of the imaginary part of the complex relative permeability at a frequency of 30 MHz is 213 to 530.
  3.  
      周波数30MHz~70MHzにおける複素比透磁率の虚数部の値μ" が 28.5M/f~31.5M/f[ただし、Mは30MHzにおける複素比透磁率の虚数部、fは周波数(MHz)である]を満たすことを特徴とする請求項1又は2に記載の電波暗室用電波吸収体。

    The value of the imaginary part of the complex relative permeability at a frequency of 30 MHz to 70 MHz μ "is 28.5 M / f to 31.5 M / f [where M is the imaginary part of the complex relative permeability at 30 MHz and f is the frequency (MHz)] The electromagnetic wave absorber for an anechoic chamber according to claim 1 or 2, wherein:
  4.  
      前記電波吸収体の板厚が、1.51/M~1.67/M (m)(ただし、Mは30MHzにおける複素比透磁率の虚数部である)を満たすことを特徴とする請求項1~3のいずれかに記載の電波暗室用電波吸収体。

    The thickness of the radio wave absorber satisfies 1.51 / M to 1.67 / M (m) (where M is an imaginary part of the complex relative permeability at 30 MHz). The electromagnetic wave absorber for an anechoic chamber according to claim 1.
PCT/JP2009/058245 2009-04-27 2009-04-27 Electromagnetic absorber for anechoic chamber WO2010125626A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/058245 WO2010125626A1 (en) 2009-04-27 2009-04-27 Electromagnetic absorber for anechoic chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/058245 WO2010125626A1 (en) 2009-04-27 2009-04-27 Electromagnetic absorber for anechoic chamber

Publications (1)

Publication Number Publication Date
WO2010125626A1 true WO2010125626A1 (en) 2010-11-04

Family

ID=43031794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058245 WO2010125626A1 (en) 2009-04-27 2009-04-27 Electromagnetic absorber for anechoic chamber

Country Status (1)

Country Link
WO (1) WO2010125626A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63265895A (en) * 1987-04-23 1988-11-02 Shin Etsu Chem Co Ltd Single crystalline ferrite
JP2001151565A (en) * 1999-11-19 2001-06-05 Minebea Co Ltd Mn-Zn FERRITE AND METHOD OF PRODUCING THE SAME
WO2008047854A1 (en) * 2006-10-19 2008-04-24 Hitachi Metals, Ltd. Radio wave absorption material and radio wave absorber
JP2009073724A (en) * 2007-08-31 2009-04-09 Hitachi Metals Ltd Ferrite material and method for producing ferrite material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63265895A (en) * 1987-04-23 1988-11-02 Shin Etsu Chem Co Ltd Single crystalline ferrite
JP2001151565A (en) * 1999-11-19 2001-06-05 Minebea Co Ltd Mn-Zn FERRITE AND METHOD OF PRODUCING THE SAME
WO2008047854A1 (en) * 2006-10-19 2008-04-24 Hitachi Metals, Ltd. Radio wave absorption material and radio wave absorber
JP2009073724A (en) * 2007-08-31 2009-04-09 Hitachi Metals Ltd Ferrite material and method for producing ferrite material

Similar Documents

Publication Publication Date Title
JP4488051B2 (en) Radio wave absorber
JP5780408B2 (en) Soft magnetic resin composition and electromagnetic wave absorber
JP4935824B2 (en) Radio wave absorbing material and radio wave absorber
JP4488078B2 (en) Radio wave absorber
CN110550944A (en) BaLaFeO wave-absorbing material and preparation method thereof
JP2000169217A (en) Electric wave absorbent
JP4752934B2 (en) Radio wave absorber and manufacturing method thereof
CN115784317A (en) LaCaFeO wave-absorbing material and preparation method thereof
JP4512919B2 (en) Electromagnetic wave absorbing material for high frequency band using iron oxide containing waste
JP5165996B2 (en) Electromagnetic wave absorber for anechoic chamber
WO2010125626A1 (en) Electromagnetic absorber for anechoic chamber
WO1999016090A1 (en) Radio wave absorbent
CN105502513A (en) Preparation method of hollow ferroferric oxide wave-absorbing material
US20240079172A1 (en) Magnetic composite
JP2012184122A (en) Dielectric ceramic, and dielectric filter having the same
Kakirde et al. Development and characterization of nickel-zinc spinel ferrite for microwave absorption at 2· 4 GHz
JP2806528B2 (en) Magnesium-zinc ferrite material for radio wave absorber
Prasath et al. Miniaturization of patch antennas using magneto-dielectric materials
JPH05129123A (en) Oxide magnetic material and electromagnetic wave absorber
JPH0222130A (en) Nickel-zinc-based ferrite material
JP2706772B2 (en) Magnesium-zinc ferrite material for radio wave absorber
JPH03200303A (en) Oxide magnetic material for wave absorber
WO2023189359A1 (en) Magnetic composite
CN116534902A (en) PrCaFeO wave-absorbing material and preparation method thereof
CN116848600A (en) Magnetic composite body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09843970

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09843970

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP