WO2010124465A1 - 一种上行信号的处理方法、基站和用户终端 - Google Patents

一种上行信号的处理方法、基站和用户终端 Download PDF

Info

Publication number
WO2010124465A1
WO2010124465A1 PCT/CN2009/071589 CN2009071589W WO2010124465A1 WO 2010124465 A1 WO2010124465 A1 WO 2010124465A1 CN 2009071589 W CN2009071589 W CN 2009071589W WO 2010124465 A1 WO2010124465 A1 WO 2010124465A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
signal
tti
type
configuration information
Prior art date
Application number
PCT/CN2009/071589
Other languages
English (en)
French (fr)
Inventor
周明宇
万蕾
宋巍巍
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP09843877.3A priority Critical patent/EP2418885B1/en
Priority to PCT/CN2009/071589 priority patent/WO2010124465A1/zh
Priority to CN2009801249061A priority patent/CN102077627B/zh
Publication of WO2010124465A1 publication Critical patent/WO2010124465A1/zh
Priority to US13/284,444 priority patent/US20120039182A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method for processing an uplink signal, a base station, and a user terminal. Background technique
  • CP Cyclic Prefix
  • ISI Inter-Symbol-Interference
  • existing systems can use regular CP (normal CP) or extended CP (extended CP).
  • regular CP normal CP
  • extended CP extended CP
  • the conventional CP has limited ability to reduce ISI, but the overhead of the CP is small; the extended CP can effectively reduce the ISI, but it will bring a large overhead.
  • CoMP Coordinated Multi-Point Transmission
  • This technology is an important means to improve the overall performance of the cell and the performance of the cell edge user.
  • Multiple cells can be jointly transmitted and received. Data from the UE (User Equipment), these coordinated cells can be connected to the same eNodeB (Evolved NodeB, Evolved NodeB), or can be connected to different eNodeBs.
  • a cell that cooperatively transmits and receives data from the UE is referred to as a serving cell of the UE; wherein a serving cell having one or all of the following functions is referred to as a primary cell of the UE: determining parameters of uplink transmission of the UE, and transmitting signaling to the UE
  • the uplink signal of the UE is jointly processed, and other serving cells are referred to as secondary cells.
  • the system determines the serving cell of the UE mainly according to the channel condition between the UE and the cell.
  • the uplink signal transmitted by the UE may reach multiple serving cells at different times; if the time when the uplink signal arrives at the cell is too much or delayed too much than the expected time, the signal is received.
  • the uplink delay problem Subject to severe intersymbol interference, even if the channel condition between the UE and a cell Good, the cell still cannot receive the signal of the UE normally, and the problem is hereinafter referred to as the uplink delay problem. If an extended CP is used, this problem can be better alleviated, but the extended CP introduces a large overhead. Summary of the invention
  • the embodiment of the invention provides a method for processing an uplink signal, a base station and a user terminal, which are used to solve the uplink delay problem without introducing excessive overhead.
  • an embodiment of the present invention provides a method for processing an uplink signal, including:
  • an uplink signal formed according to the CP configuration information where the CP configuration information is used to identify a correspondence between a TTI (Transmission Time Interval) and a CP type used by the uplink signal;
  • the embodiment of the invention further provides a method for processing an uplink signal, including:
  • the uplink signal When the uplink type of the uplink signal sent by the UE is different from the current type of the TTI that receives the uplink signal, the uplink signal is processed according to the setting mode, and the setting mode is discarding. And performing, by the uplink signal, the uplink signal according to a TTI corresponding CP type that receives the uplink signal in the CP configuration information.
  • the embodiment of the invention further provides a method for processing an uplink signal, including:
  • the CP configuration information that is sent by the primary cell, where the CP configuration information is used to identify a correspondence between each TTI and a cyclic extended CP type used by the uplink signal;
  • the embodiment of the invention further provides a base station, including:
  • a first receiving module configured to receive an uplink signal that is sent by the UE according to the configuration information of the CP, where the CP configuration information is used to identify a corresponding processing mode of the CP type that is used by the TTI and the uplink signal, and is used by the first processing module according to the CP.
  • the configuration information determines that the uplink signal is received
  • the CP type corresponding to the TTI and processing the uplink signal according to the determined CP type.
  • the embodiment of the invention further provides a base station, including:
  • a second receiving module configured to receive CP configuration information of the primary cell
  • a second processing module configured to: when the CP type used by the uplink signal sent by the UE is different from the transmission time interval TTI of the uplink signal, and the CP type is different, The processing is performed by discarding the uplink signal or processing the uplink signal according to a TTI corresponding CP type that receives the uplink signal in the CP configuration information.
  • the embodiment of the invention further provides a user terminal, including:
  • a receiving module configured to receive a cyclic extended CP configuration sent by the primary cell, where the CP configuration information is used to identify a correspondence between each transmission time interval TTI and a CP type used by the uplink signal; and a processing module, configured to receive according to the receiving module
  • the obtained CP configuration information determines the corresponding CP type in the TTI for transmitting the uplink signal, and forms an uplink signal according to the determined CP type and transmits.
  • the UE can adopt different CP types in different TTIs, so the uplink delay problem can be solved without introducing excessive overhead.
  • FIG. 1 is a flowchart of a method for processing an uplink signal performed by a primary cell or its corresponding processing device according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a method for processing an uplink signal performed by a UE according to an embodiment of the present invention
  • FIG. 3 is a CP configuration information scheme 1 in Embodiment 1;
  • Figure 4 is a CP configuration information scheme 2 in the first embodiment
  • FIG. 5 is a flowchart of a method for processing an uplink signal of a serving cell in the first embodiment
  • FIG. 6 is a schematic diagram of a TTI using different CP types in an example of the first embodiment
  • FIG. 7 is a base station in the second embodiment.
  • Embodiment 8 is a block diagram of another base station in Embodiment 2.
  • FIG. 9 is a block diagram of a user terminal in Embodiment 2. detailed description
  • a primary cell corresponding to one UE is taken as an example, but not limited to one primary cell of one UE.
  • This embodiment provides a method for processing an uplink signal performed by a primary cell of a UE or a corresponding processing device thereof. As shown in FIG. 1, the method includes the following steps:
  • Step S101 Receive an uplink signal that is sent by the UE according to the CP configuration information.
  • the CP configuration information is used to identify the correspondence between each TTI and the cyclic extended CP type used by the uplink signal.
  • the CP configuration information may be from the primary cell to the UE, but is not limited to the specific implementation, as long as the primary cell and the UE therein are configured to use the same CP configuration information.
  • Step S102 Determine, according to the CP configuration information, a CP type corresponding to the TTI that receives the uplink signal, and process the uplink signal according to the determined CP type.
  • the uplink signal is processed according to the determined CP type, that is, the corresponding information is read from the uplink signal according to the format of the CP type.
  • the processing method of the uplink signal performed by the UE includes the following steps:
  • Step S201 Receive CP configuration information sent by the primary cell.
  • the CP configuration information can refer to the above description.
  • Step S202 Determine, according to the CP configuration information, a CP type corresponding to a TTI that sends an uplink signal, and form an uplink signal according to the determined CP type and send the uplink signal.
  • the primary cell sends configuration signaling including the CP configuration information to the UE, and the UE forms an uplink signal in each TTI according to the CP configuration information, and sends the uplink signal, and the cell that receives the uplink signal may
  • the CP type corresponding to the current TTI is determined according to the locally saved CP configuration information, so that the uplink signal is processed according to the determined CP type.
  • the UE can adopt different CP types in different TTIs, and the long CP can solve the uplink delay problem, and the short CP has less overhead. Therefore, the technical solution of the embodiment of the present invention can be solved.
  • the uplink delay problem does not introduce too much overhead.
  • the CPs of different lengths used by the UEs in different TTIs are used as an example for the CPs of different lengths, but the CP types are not limited to the lengths. The following are different CP types to reflect different CP types. No longer.
  • the primary cell may schedule the UE with the uplink delay problem to use the TTI of the long CP to avoid the uplink delay problem, and schedule the UE without the uplink delay problem to use the short CP. TTI, so the overhead will not increase for these UEs.
  • the above scheduling and other operations of the primary cell do not have a certain order, and the proportion of TTIs corresponding to different CP lengths can be adjusted according to the system's own conditions, thereby providing high flexibility.
  • the primary cell may be configured with a UE capable of communicating with the uplink, and the CP configuration information configured for the UE may be sent to the UE by using configuration signaling, where the CP configuration information is used to identify each TTI and the uplink signal.
  • the CP configuration information is used to identify each TTI and the uplink signal.
  • Correspondence of CP lengths that is, different CP lengths are used in different TTIs.
  • the two different CP lengths are taken as an example, which may be referred to as a first CP length and a second CP length, respectively, corresponding to the first CP type and the second CP type, where If the length of the CP type is greater than the second CP type, that is, the first CP length is greater than the second CP length, the CP configuration information may include any one of the following information:
  • the predetermined rule may be: the first TTI number using the first CP length is 10, the second TTI number using the first CP length is 5, and the third adopts the first The TTI number of the CP length is 1.
  • the UE configures the TTI numbered 10 to use the first CP length, if the TTI of the first CP type is adopted. If the number is 2, the UE configures the TTIs numbered 5 and 10 to adopt the first CP length, and so on.
  • the long CP used may be an extended CP
  • the short CP used may be a regular CP.
  • the CP configuration information it may be identified that a short CP is used in some TTIs and a long CP is used in other TTIs.
  • the UEs corresponding to the same primary cell adopt the same CP configuration, and different primary cells may adopt different CP configurations or the same CP configuration.
  • the CP configuration information is allocated to the primary cell, the allocation may be performed in units of cells, or may be allocated in units of cell clusters, that is, each cell may have its own CP configuration, or each cell cluster may have its own CP configuration.
  • the cell cluster may include one or more cells, and the cells included in the cell cluster may be semi-static or dynamically changed.
  • the cells in the cell cluster have a unique number, for example, a cell cluster ID (Identity).
  • the configuration signaling used by the primary cell to configure the UE may be, for example, air interface signaling, and the air interface signaling may be transmitted through a BCH (Broadcasting Channel) or a higher layer signaling.
  • the BCH may be, for example, a PBCH (Physical BCH, Physical Broadcast Channel) or a DBCH (Dynamic BCH, Dynamic Broadcast Channel).
  • the primary cell may, for example, notify the UE of the CP configuration information by configuration signaling during the UE access to the cell, and/or the handover, and/or the change of the serving cell.
  • the UE may perform the processing of the uplink signal by using the method shown in FIG. 2, where the uplink signal may include, for example, a signal carrying uplink data, a signal carrying uplink control information, and a signal used for detection.
  • the signal carrying the uplink data may be transmitted, for example, on a PUSCH (Physical Uplink Share Channel), and the signal carrying the uplink control information may be transmitted on a PUCCH (Physical Uplink Control Channel), for example.
  • the signal used for detection may be, for example, an SRS (Sounding Reference Signal).
  • the uplink signal sent by the UE may be received by multiple serving cells, and since the multiple serving cells may adopt different CP configurations, in some or some TTIs, the UE sends signals according to the long/short CP.
  • the processing method of the uplink signal of each serving cell is as shown in FIG. 5, and the following steps are included: Step S301: Receive CP configuration information of the primary cell; Specifically, after receiving the CP configuration information of the primary cell, the CP configuration information may be saved. In this step, the primary cell may transmit the CP configuration information of the primary cell to the neighboring cell of the primary cell.
  • the transfer can be made, for example, by one of a wireless connection, an optical fiber, an X2 interface, an S1 interface, or any combination thereof.
  • the foregoing neighboring cell may include, for example, a cell geographically adjacent to the cell and/or a cell having a cooperative relationship with the cell.
  • the collaboration relationship is collaboratively transmitted and/or received.
  • the configuration information can also be carried in a neighbor list in the SON (Self-Optimization Network).
  • Step S302 when receiving the uplink signal sent by the UE, determining, according to the CP configuration information, whether the CP length used by the uplink signal of the UE is the same as the length of the CP used by the TTI of the current cell receiving the uplink signal, and if so, Go to step S303, otherwise, to determine the difference, proceed to step S304;
  • Step S303 processing the uplink signal according to the length of the CP used by the TTI receiving the uplink signal, and ending;
  • Step S304 performing reception adjustment, and processing the uplink signal according to a setting manner.
  • the setting manner can be, for example:
  • the serving cell may receive the processing mode notification information of the primary cell, and determine the setting manner of the processing of the uplink signal according to the processing mode notification information. It is received and determined that there is no specific sequence for the setting of the uplink signal processing and the execution of each of the above steps.
  • the CP configuration allocated for each cell or each cell cluster may have a certain overlap, that is, only a small number of TTIs in each cell/cell cluster have different CP lengths, and different cell/cell clusters At least part of the CP configuration uses a TTI of the same CP length. For example, in one example, cell 1 adopts the CP configuration in scheme 1 shown in FIG. 3, and cell 2 adopts the CP configuration in scheme 2 shown in FIG. 4, and FIG.
  • FIG. 3 and FIG. 4 respectively identify The CP length adopted by each TTI in each frame of Scheme 1 and Scheme 2, where the white portion indicates a short CP, the shaded portion indicates a long CP, and each frame includes 10 TTIs.
  • the scheme 1 shown in Fig. 3 is compared with the scheme 2 shown in Fig. 4, and only one ⁇ (the fifth ⁇ ) uses a different CP length. It can be seen that when the cell 1 and the cell 2 need to cooperate to receive the uplink signal sent by the UE, only the length of the CP used in the fifth TTI in each frame is different, that is, only the fifth TTI needs to be adjusted.
  • each cell/cell cluster adopts an overlapping CP configuration, which can reduce the processing capacity of the serving cell and reduce the possibility of error.
  • the receiving adjustment means that the received uplink signal is discarded, and the uplink signal is not processed. Or processing the uplink signal according to the CP length of the uplink signal.
  • the serving cells of the UE during the first transmission and retransmission may be the same or different, and the first transmission is referred to as initial transmission.
  • the UE may be served only by the cell 1 and the cell 2, because if multiple serving cells are used for the UE, there may be A large delay, while the short CP reduces the ISI's limited capacity, which causes the signal reception to be subjected to more serious ISI.
  • the UE when a short CP is used, only two cells are selected to serve the UE; when the UE retransmission occurs in the UE In a TTI with a long CP, in order to obtain better performance, the UE can be served by the cell 1, the cell 2, and the cell 3. This is because the long CP can effectively reduce the ISI, so multiple serving cells can be used to serve the UE.
  • the primary cell needs to notify the secondary cell of the UE of the uplink transmission related information of the UE, and the uplink transmission related information includes that the serving cell should receive at the time of initial transmission and/or during retransmission.
  • the uplink transmission related information includes the CP configuration information of the UE, where the uplink signal of the UE, the resource of the uplink signal of the UE, and the ID of the UE.
  • the secondary cell includes a serving cell for initial transmission and a serving cell for retransmission, so that the initial serving cell and the retransmission serving cell respectively obtain the UE during initial transmission and retransmission.
  • the primary cell may first determine the secondary cell of the UE, and notify the secondary cell of the UE of the uplink transmission related information of the UE by using an interface between the cells.
  • the main cell can also Determining each of the initial serving cell and the retransmission serving cell of the UE, and notifying the uplink transmission related information when the serving cell UE is initially transmitted, and notifying the serving cell used for retransmission of the uplink when the UE retransmits The relevant information is transmitted, so that each notification can save some interactive signaling.
  • the primary cell determines the secondary cell of the UE, the CP configuration information of the primary cell may be sent to the secondary cell of the UE.
  • the manner in which the primary cell determines the secondary cell of the UE may include one of the following or any combination thereof.
  • the UE detects a downlink signal of each cell, for example, an RS (Reference Signal), determines a serving cell of the UE by calculation, and reports information of the obtained serving cell set to the primary cell by using uplink feedback,
  • the cell determines the serving cell of the UE according to the feedback, and may include the serving cell at the time of initial transmission and/or the serving cell at the time of retransmission, and notify the serving cell of the UE by using an interface between the cells to enable the serving cell to learn the uplink.
  • RS Reference Signal
  • Transmitting relevant information including the serving cell should receive the uplink signal of the UE, the resource of the UE uplink signal, and the ID of the UE, etc., at the time of initial transmission and/or at the time of retransmission. It can be seen that the UE sends the information of the serving cell set to the primary cell in order to let the primary cell know the set of serving cells of the UE, and the operation of transmitting the information of the serving cell set to the primary cell does not have any other operations of the primary cell itself.
  • each cell detects an uplink signal of the UE, and determines whether the cell is serving the UE by using a calculation, and may include serving the UE when serving and/or retransmitting the UE when the initial transmission, and whether the cell is A notification message of the serving cell of the UE is sent to the primary cell of the UE, and each cell may determine, according to the signal quality of the received signal of the UE, whether the serving cell of the UE is the primary cell, and the primary cell passes the interface between the UE to the UE.
  • the serving cell informs relevant information to make the serving cell know relevant information
  • the small-area interface includes, for example,: wireless connection, optical fiber, X2 Interface and/or SI interface, etc.
  • related information includes, for example: resources of the UE uplink signal, ID of the UE
  • each cell receives an uplink signal of the UE, and transmits information about channel conditions between the UE and the cell to the primary cell through an interface between the cells, where the interface includes a wireless connection, an optical fiber, an X2 interface, and/or Or the S1 interface, etc.
  • the primary cell determines whether the cell serves the UE according to the information, where the primary cell may serve the UE when serving and/or retransmitting in the initial transmission; the primary cell uses the interface between the cells to the UE.
  • the serving cell notification information is such that the serving cell learns related information, including the resource of the UE uplink signal, the ID of the UE, and the like, and the serving cell is an uplink signal that receives the UE at the time of initial transmission and/or at the time of retransmission.
  • the serving cell receives the uplink signal of the UE according to the information of the uplink signal of the UE and the ID of the UE, and may decode the signal and transmit the signal to the primary cell for joint processing; or directly transmit the received signal to the primary cell without decoding the received signal. After receiving the primary cell, the primary cell performs decoding.
  • the primary cell notifies the serving cell UE of the uplink transmission related information in order to enable the serving cell to perform subsequent operations, and the notification operation does not have a certain sequential relationship with other operations of the primary cell itself.
  • the UE may form and transmit a signal by using a parameter different from the initial transmission during retransmission, where the parameter may include a coding rate, an interleaving manner, etc.; or the UE may adopt a truncation or padding or other manner. Form and send a signal.
  • the CP type of the uplink initial transmission signal sent by the UE is the first CP type
  • the preset CP type corresponding to the TTI for transmitting the uplink retransmission signal is the second CP type
  • a coding rate lower than that when the uplink initial transmission signal is formed is used.
  • the CP type of the uplink initial transmission signal sent by the UE is the second CP type
  • the CP type corresponding to the preset TTI for transmitting the uplink retransmission signal is the first CP type
  • the TTI for transmitting the uplink retransmission signal is re-determined.
  • the re-determined TTI is after the preset transmission of the uplink retransmission signal, and adopts the same CP type as the uplink initial transmission signal.
  • the length of one TTI in the system 14 symbols in the TTI using the short CP, and only 12 symbols in the TTI using the long CP;
  • the TTI adopts a short CP, and the preset TTI for transmitting the uplink retransmission signal adopts a long CP, and the available resources in the retransmission are less, the UE can adopt a higher coding rate than the initial transmission, or adopt a truncation without changing the coding rate.
  • the UE In a short manner, only a part of the bit-level data or a part of the symbol-level data is transmitted; if the TTI of the uplink initial transmission signal of the UE adopts a long CP, and the TTI of the preset uplink retransmission signal adopts a short CP, the retransmission is available. If there are more resources, the UE can adopt a lower coding rate than the initial transmission, or use a padding method without changing the coding rate.
  • the filling method can fill some unnecessary information in redundant resources; or not in redundant resources. Transfer any signal; or transfer other information in excess resources.
  • the system can support multiple modes, and can notify the UE of the manner of the downlink signaling.
  • the specific implementation may include, for example, the primary cell determining the processing mode that the UE should adopt, and notifying the corresponding serving cell of the UE by using the inter-cell interface. And notifying the UE through the air interface; when the situation occurs, the UE forms and sends a signal according to the processing manner of the primary cell notification by using truncation or padding or other manner, and the serving cell of the UE receives according to the corresponding manner.
  • the retransmission may be delayed by one or more TTIs. For example, the retransmission can be deferred until the next TTI with the same CP length as the initial transmission.
  • the UE After deferring the retransmission to the next TTI with the same CP length as the initial transmission, the UE does not need to use a different encoding rate for the retransmission signal or use padding or truncation information, the initial transmission signal
  • the coding rate and the amount of information of the retransmission signal are consistent, which simplifies the processing of the UE.
  • the way to postpone retransmissions can be:
  • the primary cell monitors the length of the initial transmission signal and the retransmission signal CP of the UE to which it belongs, if the preset CP length of the TTI for transmitting the uplink retransmission signal and the CP used for the uplink initial transmission signal sent by the UE are used. If the lengths are inconsistent, the TTI for transmitting the uplink retransmission signal is re-determined, and the re-determined TTI is after the TTI of the preset uplink retransmission signal, and uses the same CP length as the uplink initial transmission signal.
  • the re-determined TTI that sends the uplink retransmission signal is notified to the UE by explicit signaling, and the retransmitted uplink retransmission signal is to be determined again.
  • the TTI notifies the secondary cell, and the secondary cell learns the ⁇ corresponding to the uplink retransmission signal after receiving the notification.
  • the UE sends the uplink initial transmission signal, and then receives the explicit signaling used by the primary cell to notify the uplink retransmission signal corresponding to the uplink initial transmission signal, and adopts the CP according to the uplink initial transmission signal.
  • the length forms the uplink retransmission signal, and transmits the retransmission signal in the ⁇ of the explicit signaling.
  • the UE itself performs the monitoring of the length of the initial transmission signal and the retransmission signal CP. If the preset CP length of the TTI for transmitting the uplink retransmission signal is inconsistent with the CP length used by the uplink transmission signal sent by the UE, The preset TTI of the CP length corresponding to the uplink initial transmission signal after the TTI for transmitting the uplink retransmission signal is determined as the TTI for transmitting the uplink retransmission signal, and the CP length used according to the uplink initial transmission signal. Forming the uplink retransmission signal, and transmitting the retransmission signal at the determined TTI.
  • the base station after the initial transmission data is sent by the UE at the nth (n>0) time, if the base station cannot correctly decode the data, it is generally required to use the downlink signaling to the UE at the time of the n+n1 n1>n:).
  • Feedback NACK Negative Acknowledgement
  • the downlink signaling can be transmitted on the hybrid automatic repeat request indication channel); if the UE receives the NACK, it is retransmitted at the n+n2th time.
  • the monitoring of the CP length of the initial transmission signal and the retransmission signal of the UE to which the primary cell belongs is described as an example:
  • the NACK may be fed back through the downlink signaling at the n+n1th time, and at the time of the ⁇ + ⁇ 3 (3> ⁇ ;) Feedback NACK; and notify the UE of this adjustment by explicit signaling.
  • the UE receives the NACK at the n+n3th time; if the NACK is received, the retransmission is performed at the n+n4th time, where preferably the n+n4th time is after the n+nl time
  • the first one adopts the same CP length as the nth time.
  • the NACK may be fed back through the downlink signaling at the n+n1th time, but the UE does not send the uplink retransmission signal at the TTI (ie, n + n 2 time) of the predetermined uplink retransmission signal, but waits for the preset transmission.
  • the TTI of the CP length of the next corresponding uplink initial transmission signal of the uplink retransmission signal (ie, n + n 3 time) transmits the uplink retransmission signal, and forms the uplink weight according to the CP length adopted by the uplink initial transmission signal.
  • Signal For example, in an example, in the configuration information of the primary cell of the UE, only TTI1 and TTI10 in one frame adopt a long CP, and the UE transmits an initial transmission signal in TTI1, and the initial transmission signal adopts a long CP, and receives a NACK.
  • the retransmission signal should be sent in the preset TTI9, and the TTI9 corresponds to the short CP, which is inconsistent with the CP length of the initial transmission signal, and the retransmission signal can still be formed by the long CP, and the first one after the TTI9 is adopted.
  • the long CP's TTI (TTI10) sends the retransmission signal.
  • the relationship between n2 and n1, and the relationship between n4 and n3 may be fixed, or the primary cell may notify the UE by using downlink signaling.
  • a base station 700 in this embodiment, as shown in FIG. 7, includes:
  • the first receiving module 701 is configured to receive an uplink signal that is sent by the UE according to the CP configuration information, where the CP configuration information is used to identify a corresponding processing type 702 of the CP type that is used by the TTI and the uplink signal, and is used by the first processing module 702.
  • the CP configuration information determines a CP type corresponding to the TTI that receives the uplink signal, and processes the uplink signal according to the determined CP type.
  • the base station 700 can determine the type of the CP used for the received uplink signal according to the same CP configuration information as the UE, so as to correctly process the uplink signal. It can be seen that the UE can use different CP types in different TTIs, and the base station 700 can correctly receive the uplink signals in each TTI. Therefore, the uplink delay problem can be solved without introducing excessive overhead.
  • the foregoing base station 700 may further include:
  • a secondary cell determining module configured to determine a secondary cell of the UE
  • the first notification module is configured to notify the CP configuration information of the UE of the secondary cell of the UE determined by the secondary cell determining module.
  • the method for determining the set of serving cells of the UE by the secondary cell determining module refer to the manners of determining the secondary cell of the UE in Embodiment 1.
  • the foregoing base station 700 may further include:
  • a retransmission monitoring module configured to: if the preset CP type of the TTI corresponding to the uplink retransmission signal is different from the CP type used by the uplink transmission signal sent by the UE, redetermining the TTI for transmitting the uplink retransmission signal Re-determining the TTI after the preset TTI for transmitting the uplink retransmission signal, and adopting the same CP type as the uplink initial transmission signal, and re-determining the transmission station.
  • the newly determined TTI that sends the uplink retransmission signal is notified to the UE by explicit signaling, and the newly determined TTI notification station that sends the uplink retransmission signal is re-determined.
  • the secondary cell of the UE configured to: if the preset CP type of the TTI corresponding to the uplink retransmission signal is different from the CP type used by the uplink transmission signal sent by the UE, redetermining the TTI for transmitting the uplink retransmission signal Re-determining the TTI after
  • the UE After deferring the retransmission to the next TTI with the same CP length as the initial transmission, the UE does not need to use a different encoding rate for the retransmission signal or use padding or truncation information, the initial transmission signal
  • the coding rate and the amount of information of the retransmission signal are consistent, which simplifies the processing of the UE.
  • the foregoing base station 700 may further include: a configuration module, configured to send CP configuration information to the UE.
  • Another base station 800 in this embodiment, as shown in FIG. 8, includes:
  • the second receiving module 801 is configured to receive CP configuration information of the primary cell.
  • the second processing module 802 is configured to: when the CP type used by the uplink signal sent by the UE is different from the transmission time interval TTI of the uplink signal, and the CP type is different, the uplink is determined according to the setting manner. The signal is processed, and the setting manner is to discard the uplink signal or process the uplink signal according to a TTI corresponding CP type that receives the uplink signal in the CP configuration information.
  • the base station 800 is a base station corresponding to the secondary cell.
  • the base station 800 since the CP configuration information of the primary cell is obtained, the uplink signal sent by the UE corresponding to the primary cell can be correctly processed.
  • base station 800 may further include:
  • the detecting module is configured to detect an uplink signal of the UE, determine whether it is a serving cell of the UE, and notify the primary cell of the determined result.
  • Whether the base station detects the serving cell or not can simplify the operation of the terminal.
  • base station 800 may further include:
  • the second notification module is configured to notify the primary cell of channel status information between the UE and itself. Since the detection of whether the serving cell is not performed by the secondary cell is not performed locally, the local operation of the secondary cell can be simplified.
  • base station 800 may further include:
  • a storage module configured to save the CP configuration information received by the receiving module, and provide the CP configuration information to the second processing module.
  • the user terminal 900 in this embodiment includes:
  • the receiving module 901 is configured to receive a cyclic extended CP configuration that is sent by the primary cell, where the CP configuration information is used to identify a corresponding time processing module 902 of each type of the transmission time interval TTI and the uplink signal used by the uplink signal, according to the receiving module.
  • the received CP configuration information determines the corresponding CP type in the TTI for transmitting the uplink signal, and forms an uplink signal according to the determined CP type and transmits.
  • the user terminal 900 uses the CP configuration information configured by the primary cell to form an uplink signal. Therefore, the primary cell and the secondary cell notified by the primary cell can determine the type of the CP used by the received uplink signal according to the CP configuration information, thereby The uplink signal is processed correctly. It can be seen that the UE can use different CP types in different TTIs, and the primary cell and the secondary cell can correctly receive uplink signals in each TTI. Therefore, the uplink delay problem can be solved without introducing excessive overhead.
  • the user terminal 900 may further include:
  • the detecting module is configured to detect a downlink signal of each cell, determine a serving cell of the UE, and send information about the obtained set of serving cells to the primary cell.
  • the detection of the serving cell served by the UE can simplify the operation of the base station.
  • the user terminal 900 may further include:
  • the retransmission monitoring module is configured to re-determine the sending station if the preset CP type corresponding to the TTI for transmitting the uplink retransmission signal is different from the CP type used by the uplink initial transmission signal sent by the UE
  • the re-determined ⁇ is after the preset transmission of the uplink retransmission signal, and adopts the same CP type as the uplink initial transmission signal.
  • the receiving module may be further configured to receive explicit signaling for notifying a TTI for transmitting an uplink retransmission signal corresponding to the uplink initial transmission signal; in this case, the user terminal may further Includes:
  • a retransmission module configured to: when the receiving module receives the explicit signaling, form the uplink retransmission signal according to a CP type adopted by the uplink initial transmission signal, and notify the explicit signaling
  • the TTI transmits the retransmission signal.
  • the UE After deferring the retransmission to the next TTI with the same CP length as the initial transmission, the UE does not need to use a different encoding rate for the retransmission signal or use padding or truncation information, the initial transmission signal It is consistent with the encoding rate and amount of information of the retransmitted signal, which simplifies
  • the processing of the UE, and processed by the terminal simplifies the operation of the base station.
  • the user terminal 900 may further include:
  • a storage module configured to save CP configuration information received by the receiving module, and provide the processing module to the processing module.
  • each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may exist physically separately, or two or more units may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the integrated modules, if implemented in the form of software functional modules and sold or used as separate products, may also be stored in a computer readable storage medium.
  • the above-mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • a person skilled in the art can understand that all or part of the steps carried by the method of the foregoing embodiment can be completed by a program to instruct related hardware, and the program can be stored in a computer readable storage medium, and the program is executed. The method of the method embodiment is included.
  • each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may exist physically separately, or two or more units may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the integrated modules, if implemented in the form of software functional modules and sold or used as separate products, may also be stored in a computer readable storage medium.
  • the above-mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like.

Description

一种上行信号的处理方法、 基站和用户终端 技术领域
本发明涉及通信技术领域, 尤其涉及一种上行信号的处理方法、 基站和 用户终端。 背景技术
目前的一些系统通常采用 CP (Cyclic Prefix , 循环扩展) 来降低 ISI (Inter-Symbol-Interference,符号间干扰) , 例如现有系统可以采用常规 CP (即 normal CP) 或者扩展 CP (即 extended CP) , 其中常规 CP降低 ISI的 能力有限, 但是 CP的开销较小; 扩展 CP能够有效降低 ISI, 但是会带来较 大开销。
在未来移动通信系统中, 引入了 CoMP ( Coordinated Multi-Point transmission, 协作多点传输) 技术, 该技术是提高小区整体性能及小区边 缘用户性能的一个重要手段, 其中多个小区可以协作发射和接收来自 UE (User Equipment, 用户终端) 的数据, 这些协作的小区可以连接至同一个 eNodeB (Evolved NodeB, 演进型基站) , 也可以连接至不同的 eNodeB。 我们将协作发射和接收来自 UE的数据的小区称为 UE的服务小区; 其中将 具有以下一个或全部功能的服务小区称为 UE的主小区: 确定 UE的上行传 输的参数、 发送信令给 UE、 联合处理 UE的上行信号, 将其它服务小区称 为辅小区。
在上行传输中, 多个小区协作接收来自 UE的数据, 通常系统主要根据 UE和小区之间的信道状况来确定 UE的服务小区。 然而由于 UE与服务小 区的距离可能不同, UE发射的上行信号可能在不同时刻到达多个服务小 区; 如果上行信号到达小区的时刻比预期的时刻提前太多或推迟太多, 会使 得信号的接收受到严重的符号间干扰, 即使 UE和某个小区之间的信道状况 良好, 该小区仍然无法正常接收 UE的信号, 下面将该问题称为上行时延问 题。 如果采用扩展 CP, 就可以较好缓解这个问题, 但扩展 CP会引入较大 的开销。 发明内容
本发明实施例提供一种上行信号的处理方法、 基站和用户终端, 用以解 决上行时延问题, 同时不会引入过多开销。
为了解决上述技术问题, 本发明实施例提供了一种上行信号的处理方 法,包括:
接收 UE发送的根据 CP配置信息形成的上行信号, 所述 CP配置信息 用于标识 TTI (Transmission Time Interval, 传输时间间隔) 与上行信号采用 的 CP类型的对应关系;
根据所述 CP配置信息确定接收所述上行信号的传输时间间隔 TTI对应 的 CP类型, 并根据确定出的 CP类型对所述上行信号进行处理。
本发明实施例还提供了一种上行信号的处理方法, 包括:
接收主小区的 CP配置信息, 所述 CP配置信息用于标识 TTI与上行信 号采用的 CP类型的对应关系;
当 UE发送的上行信号采用的 CP类型与接收到所述上行信号的 TTI对 应的本小区采用 CP类型不相同时, 则根据设定方式对所述上行信号进行处 理, 所述设定方式为丢弃所述上行信号或者按照所述 CP配置信息中接收到 所述上行信号的 TTI对应 CP类型对所述上行信号进行处理。
本发明实施例还提供了一种上行信号的处理方法, 包括:
UE接收主小区发送的包括 CP配置信息, 所述 CP配置信息用于标识各 TTI与上行信号采用的循环扩展 CP类型的对应关系;
根据所述 CP配置信息确定发送上行信号的 TTI对应的 CP类型, 并根 据确定出的 CP类型形成上行信号并发送。 本发明实施例还提供了一种基站, 包括:
第一接收模块, 用于接收 UE发送的根据 CP配置信息形成的上行信 号, 所述 CP配置信息用于标识 TTI与上行信号采用的 CP类型的对应关 第一处理模块, 用于根据所述 CP配置信息确定接收所述上行信号的
TTI对应的 CP类型, 并根据确定出的 CP类型对所述上行信号进行处理。
本发明实施例还提供了一种基站, 包括:
第二接收模块, 用于接收主小区的 CP配置信息;
第二处理模块, 用于当 UE发送的上行信号采用的 CP类型与接收到所 述上行信号的传输时间间隔 TTI对应的本小区采用 CP类型不相同时, 则根 据设定方式对所述上行信号进行处理, 所述设定方式为丢弃所述上行信号或 者按照所述 CP配置信息中接收到所述上行信号的 TTI对应 CP类型对所述 上行信号进行处理。
本发明实施例还提供了一种用户终端, 包括:
接收模块, 用于接收主小区发送的循环扩展 CP配置, 所述 CP配置信 息用于标识各传输时间间隔 TTI与上行信号采用的 CP类型的对应关系; 处理模块, 用于根据所述接收模块接收到的 CP配置信息确定发送上行 信号的 TTI内对应的 CP类型, 并根据确定出的 CP类型形成上行信号并发 送。
本发明实施例的有益效果在于:
由于采用本发明实施例的技术方案时, UE在不同的 TTI可以采用不同 的 CP类型, 所以, 可以解决上行时延问题, 同时不会引入过多开销。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面 描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明实施例中主小区或其对应的处理装置进行的上行信号的处 理方法的流程图;
图 2为本发明实施例中 UE进行的上行信号的处理方法的流程图; 图 3为实施例一中的 CP配置信息方案 1 ;
图 4为实施例一中的 CP配置信息方案 2;
图 5为实施例一中个服务小区的上行信号的处理方法的流程图; 图 6为实施例一的一个实例中采用不同 CP类型的 TTI的示意图; 图 7为实施例二中的一种基站的框图;
图 8为实施例二中的另一种基站的框图;
图 9为实施例二中的用户终端框图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而 不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做 出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
在本发明实施例中, 以一个 UE对应一个主小区为例进行说明, 但不限 于一个 UE只有一个主小区。 本实施例提供了 UE的主小区或其对应的处理 装置进行的上行信号的处理方法, 如图 1所示, 包括以下歩骤:
歩骤 S101 , 接收 UE发送的根据 CP配置信息形成的上行信号。
该 CP配置信息用于标识各 TTI与上行信号采用的循环扩展 CP类型的 对应关系。
该 CP配置信息可以由主小区向 UE, 但在具体实现时不限于此, 只要 保证主小区与其中的 UE采用相同 CP配置信息即可。 歩骤 S102, 根据该 CP配置信息确定接收该上行信号的 TTI对应的 CP 类型, 并根据确定出的 CP类型对该上行信号进行处理。
上述根据确定出的 CP类型对该上行信号进行处理, 即根据该 CP类型 的格式从该上行信号中读取相应信息。
在本发明实施例中, UE进行的上行信号的处理方法, 如图 2所示, 包 括以下歩骤:
歩骤 S201 , 接收主小区发送的 CP配置信息。 其中, CP配置信息可以 参照上述描述。
歩骤 S202, 根据该 CP配置信息确定发送上行信号的 TTI对应的 CP类 型, 并根据确定出的 CP类型形成上行信号并发送。
可见, 在本发明实施例提供的技术方案中, 主小区向 UE发送包括 CP 配置信息的配置信令, UE根据该 CP配置信息在各个 TTI形成上行信号并 发送; 接收到该上行信号的小区可以根据本地保存的该 CP配置信息确定当 前 TTI对应的 CP类型, 从而根据确定出的 CP类型对所述上行信号进行处 理。
通过本发明实施例提供的技术方案, UE在不同的 TTI可以采用不同的 CP类型, 而长 CP能够解决上行时延问题, 短 CP的开销较小, 因此, 本发 明实施例的技术方案可以解决上行时延问题, 同时不会引入过多开销。 在本 发明实施例中, 以 UE在不同的 TTI采用的不同的 CP类型为不同长度的 CP 为例进行说明, 但不限于按照长度区分 CP类型, 以下均以不同 CP长度来 体现不同 CP类型, 不再赘述。
在本发明实施例中, 主小区可以将存在上行时延问题的 UE调度到采用 长 CP的 TTI, 从而避免该上行时延问题; 而将不存在上行时延问题的 UE 调度在采用短 CP的 TTI, 从而对这些 UE而言开销不会增加。 上述调度与 主小区的其他操作没有一定的先后顺序, 而不同 CP长度对应的 TTI的比例 可以根据系统自身情况进行调节, 从而具有较高灵活性。 下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 详细描述。
实施例一
在本实施例中, 主小区可以配置能够与其上行通信的 UE, 对 UE进行 配置的 CP配置信息例如可以通过配置信令的方式发送给 UE, 该 CP配置信 息用于标识各 TTI与上行信号采用的 CP长度的对应关系, 即标识出在不同 的 TTI中采用不同的 CP长度。 在本实施例中, 以采用两种不同的 CP长度 为例进行说明, 可以将其分别称为第一 CP长度和第二 CP长度, 分别对应 第一 CP类型和第二 CP类型, 其中, 第一 CP类型的长度大于所述第二 CP 类型, 即第一 CP长度大于第二 CP长度, 则上述 CP配置信息中可以包括 以下的任意一种信息:
1、 采用第一 CP长度的 TTI的周期;
2、 采用第二 CP长度的 TTI的周期;
3、 设定时间长度内采用第一 CP长度或第二 CP长度的 TTI的编号, 或 设定时间长度内采用第一 CP长度或第二 CP长度的 TTI的数目以及预定的 配置规则。
例如, 第三种 CP配置信息中, 预定的规则可以是, 第一个采用第一 CP长度的 TTI编号为 10, 第二个采用第一 CP长度的 TTI编号为 5, 第三 个采用第一 CP长度的 TTI编号为 1, 按照上述设定若该采用第一 CP长度 的 TTI数目为 1, 则 UE将编号为 10的 TTI配置为采用第一 CP长度, 若该 采用第一 CP类型的 TTI数目为 2, 则 UE将编号为 5和 10的 TTI配置为采 用第一 CP长度, 依次类推。
在具体应用时, 例如采用的长 CP可以为扩展 CP, 采用的短 CP可以为 常规 CP。 在上述 CP配置信息中, 可以标识在某些 TTI中采用短 CP, 在其 它 TTI中采用长 CP。 在本实施例中, 同一主小区对应的 UE采用相同的 CP配置, 不同主小 区可以采用不同的 CP配置, 也可以采用相同的 CP配置。 在为主小区分配 CP配置信息时, 可以以小区为单位进行分配, 也可以以小区簇为单位进行 分配, 即可以是每个小区具有自己的 CP配置, 也可以是每个小区簇具有自 己的 CP配置。 其中, 一个小区簇可以包括一个或多个小区, 小区簇中包括 的小区可以是半静态或动态变化的, 小区簇中的小区拥有一个特有的编号, 例如为小区簇 ID (Identity, 标识) 。
上述主小区用于配置 UE的配置信令例如可以为空中接口信令, 该空中 接口信令可以通过 BCH (Broadcasting Channel, 广播信道) 或高层信令的 方式传递。 该 BCH例如可以是 PBCH (Physical BCH, 物理广播信道) 或 DBCH (Dynamic BCH, 动态广播信道) 。 主小区例如可以在 UE接入小 区、 和 /或发生切换、 和 /或改变服务小区的过程中通过配置信令将上述 CP 配置信息通知 UE。
在获得上述 CP配置信息后, UE可以采用如图 2所示的方法进行上行 信号的处理, 其中上行信号例如可以包括承载上行数据的信号、 承载上行控 制信息的信号、 用于探测的信号。 上述承载上行数据的信号例如可以在 PUSCH (Physical Uplink Share Channel, 物理上行共享信道) 上传输, 上述 承载上行控制信息的信号例如可以在 PUCCH (Physical Uplink Control Channel, 物理上行控制信道) 上传输, 上述用于探测的信号例如可以为 SRS ( Sounding Reference Signal, 探测参考信号) 。
在 CoMP系统中, UE发送的上行信号可以被多个服务小区接收, 而由 于该多个服务小区可能采用不同的 CP配置, 所以在某个或某些 TTI中, UE按照长 /短 CP发送信号时, 某个或某些服务小区可能采用短 /长 CP接 收, 从而导致无法正常接收信号。 因此, 为了保证在 CoMP系统的正常工 作, 各个服务小区的上行信号的处理方法如图 5所示, 包括以下歩骤: 歩骤 S301 , 接收主小区的 CP配置信息; 特别地, 在接收到主小区的 CP配置信息后, 可以保存所述 CP配置信 息。 在本歩骤中, 主小区可以将该主小区的 CP配置信息传递至该主小区的 邻小区。 该传递例如可以通过无线连接、 光纤、 X2接口、 S1接口中的一种 或其任意组合进行。 上述邻小区例如可以包括地理上与该小区相邻的小区和 /或与该小区具有协作关系的小区。 其中, 该协作关系即协作发送和 /或接 收。 特别地, 该配置信息还可以承载在 SON ( Self-Optimization Network, 自优化网络) 中的邻区列表中。
歩骤 S302, 在接收到 UE发送的上行信号时, 根据所述 CP配置信息确 定所述 UE的上行信号采用的 CP长度与本小区的接收该上行信号的 TTI采 用的 CP长度是否相同, 若是, 进行歩骤 S303 , 否则, 即确定出不同, 进行 歩骤 S304;
歩骤 S303 , 根据接收到该上行信号的 TTI所采用的 CP长度对该上行信 号进行处理, 结束;
歩骤 S304, 进行接收调整, 根据设定方式对所述上行信号进行处理。 所述设定方式例如可以为:
丢弃所述上行信号; 或者
按照主小区的 CP配置信息确定接收到所述上行信号的 TTI对应 CP类 型, 并根据确定出的 CP类型对所述上行信号进行处理。
在具体实现时, 服务小区可以接收主小区的处理方式通知信息, 根据该 处理方式通知信息确定对该上行信号的处理的设定方式。 接收并确定对于上 行信号处理的设定方式与上述各歩骤的执行没有特定的先后顺序。 在具体实现时, 为各个小区或者各个小区簇分配的 CP配置可以具有一 定的重叠性, 即每个小区 /小区簇的 CP配置中只有较少的 TTI采用不同的 CP长度, 不同小区 /小区簇的 CP配置中至少存在部分采用相同 CP长度的 TTI。 例如, 在一个实例中, 小区 1采用如图 3示出的方案 1中的 CP配 置, 小区 2采用如图 4示出的方案 2中的 CP配置, 图 3和图 4分别标识出 了方案 1和方案 2的每帧中各个 TTI所采用的 CP长度, 其中白色部分表示 短 CP, 斜线部分表示长 CP, 每帧包括 10个 TTI。 在一个帧中, 如图 3示 出的方案 1与如图 4示出的方案 2相比较, 仅有 1个 ΤΤΙ (第 5个 ΤΤΙ) 采 用不同的 CP长度。 可见, 在小区 1和小区 2需要协作接收 UE发送的上行 信号时, 仅在每个帧中的第 5个 TTI所采用的 CP长度不同, 即仅需要在第 5个 TTI进行接收调整。 由此可见, 各小区 /小区簇采用具有重叠性的 CP配 置, 能够减少服务小区的处理量, 并降低出错的可能性, 该接收调整即上述 丢弃接收到的上行信号, 不对该上行信号进行处理, 或者根据该上行信号的 CP长度对该上行信号进行处理。
在采用重传技术的 CoMP系统中, UE在第一次传输和重传过程中的服 务小区可以相同或不同, 后面将该第一次传输称为初传。 例如, 当 UE的初 传发生在采用短 CP的 TTI中, 为了避免上行时延问题, UE可以仅被小区 1 和小区 2服务, 这是由于若采用多个服务小区为 UE服务, 则可能存在较大 的时延, 而短 CP降低 ISI的能力有限, 会使得信号的接收受到较为严重的 ISI, 因此, 在采用短 CP时, 仅选择两个小区为 UE服务; 当 UE的重传发 生在采用长 CP的 TTI中, 为了获得更加良好的性能, UE可以被小区 1、 小 区 2和小区 3服务, 这是由于长 CP能够有效降低 ISI, 因此可以采用多个 服务小区为 UE服务。
为了使 UE的辅小区能够正确接收上行信号, 主小区需要将 UE的上行 传输相关信息通知 UE的辅小区, 该上行传输相关信息包括该服务小区应在 初传时和 /或在重传时接收 UE的上行信号、 UE上行信号的资源、 以及 UE 的 ID等, 在本发明实施例中, 该上行传输相关信息包括 UE的 CP配置信 息。 而在具有重传机制的系统中, 辅小区包括用于初传的服务小区和用于重 传的服务小区, 为了让初传服务小区和重传服务小区分别获得 UE在初传和 重传时的上行传输相关信息, 主小区可以先确定 UE的辅小区, 并通过小区 之间的接口通知该 UE的辅小区该 UE的上行传输相关信息。 主小区也可以 分别确定 UE的各初传服务小区和各重传服务小区, 并通知用于初传的服务 小区 UE初传时的上行传输相关信息, 通知用于重传的服务小区该 UE重传 时的上行传输相关信息, 这样分别通知可以节省一些交互信令。 主小区确定 UE的辅小区之后, 可以将主小区的 CP配置信息发送给 UE的辅小区。
其中, 主小区确定 UE的辅小区的方式可以包括以下之一或其任意组 合.
1、 接收 UE发送的服务小区集合消息, 根据所述服务小区集合信息确 定所述 UE的辅小区。
在采用本方式时, UE检测各小区的下行信号, 例如 RS (Reference Signal, 参考信号) , 通过计算确定 UE的服务小区, 并将获得的服务小区 集合的信息通过上行反馈报告给主小区, 主小区根据该反馈确定 UE的服务 小区, 可以包括在初传时的服务小区和 /或在重传时的服务小区, 并通过小 区之间的接口向 UE的服务小区通知信息以使得服务小区获知上行传输相关 信息, 包括该服务小区应在初传时和 /或在重传时接收 UE的上行信号、 UE 上行信号的资源、 以及 UE的 ID等。 可以看出, UE将服务小区集合的信息 发送给主小区是为了让主小区获知该 UE的服务小区集合, 该将服务小区集 合的信息发送给主小区的操作与主小区自身的其他操作并没有一定的先后关
2、 接收各小区发送的通知消息, 根据所述通知消息确定所述 UE的辅 小区, 其中通知信息用于表示所述小区是否为所述 UE的辅小区。
在采用本方式时, 各小区检测 UE的上行信号, 通过计算确定本小区是 否为该 UE服务, 可以包括初传时为该 UE服务和 /或重传时为该 UE服务, 并将本小区是否为该 UE的服务小区的通知消息发送给该 UE的主小区, 各 小区可以根据接收到的 UE的信号的信号质量来确定本小区是否 UE的服务 小区, 主小区通过小区之间的接口向 UE的服务小区通知相关信息以使得服 务小区获知相关信息, 其中, 小区间接口例如包括: 无线连接、 光纤、 X2 接口和 /或 SI接口等; 相关信息例如包括: UE上行信号的资源、 UE的 ID
3、 接收各小区发送的所述 UE与所述各小区之间的信道状况信息, 并 根据接收到的所述信道状况信息分别确定各小区是否所述 UE的辅小区。
在采用本方式时, 各小区接收 UE的上行信号, 将该 UE和该小区之间 信道状况的相关信息通过小区之间的接口传递至主小区, 该接口包括无线连 接、 光纤、 X2接口和 /或 S1接口等, 主小区根据该信息确定该小区是否为 该 UE服务, 其中可以包括初传时为该 UE服务和 /或重传时为该 UE服务; 主小区通过小区之间的接口向 UE的服务小区通知信息以使得服务小区获知 相关信息, 包括 UE上行信号的资源、 UE的 ID等, 以及该服务小区是在初 传时和 /或在重传时接收 UE的上行信号。
服务小区根据 UE上行信号的资源和 UE的 ID等信息接收 UE的上行信 号, 可以将该信号解码出来后传递给主小区进行联合处理; 或者不对接收到 的信号进行解码而直接传递给主小区, 主小区收到后联合进行解码。
可以看出, 主小区通知服务小区 UE的上行传输相关信息是为了让服务 小区能够进行后续的操作, 该通知操作与主小区自身的其他操作并没有一定 的先后关系。
由于 UE的初传信号所使用的 TTI和重传信号所使用的 TTI采用的 CP 长度可能不同, 因此, 初传信号和重传信号能够携带的信息量也不同, 初传 信号和重传信号的发送和接收需要协调。 在这种情况下, UE可以在重传时 采用与初传不同的参数来形成并发送信号, 其中该参数可以包括编码速率、 交织方式等; 或者 UE可以采用截短或填补或其它的方式来形成并发送信 号。
若所述 UE发送的上行初传信号采用的 CP类型为所述第一 CP类型, 而预设的发送上行重传信号的 TTI对应的 CP类型为所述第二 CP类型, 则 在形成所述上行重传信号时, 采用比形成所述上行初传信号时低的编码速 率。
若所述 UE发送的上行初传信号采用的 CP类型为所述第二 CP类型, 而预设的发送上行重传信号的 TTI对应的 CP类型为所述第一 CP类型, 则 在形成所述上行重传信号时, 采用比形成所述上行初传信号时高的编码速率 或者只传输比特级数据的一部分或者符号级数据的一部分。
若所述 UE发送的预设的发送上行重传信号的 TTI对应的 CP类型与所 述 UE发送的上行初传信号采用的 CP类型不一致, 则重新确定发送所述上 行重传信号的 TTI, 所述重新确定的 TTI在预设的发送上行重传信号的 ΤΉ 之后, 且与所述上行初传信号采用相同的 CP类型。
如图 6所示的本实施例的一个实例中, 系统中 1个 TTI的长度, 采用短 CP的 TTI中有 14个符号, 采用长 CP的 TTI中只有 12个符号; 若 UE上行 初传信号的 TTI采用短 CP、 而预设的发送上行重传信号的 TTI采用长 CP, 则重传中可用资源变少, UE可以采用比初传更高的编码速率, 或者不改变 编码速率而采用截短的方式, 只传输比特级数据的一部分或符号级数据的一 部分; 若 UE上行初传信号的 TTI采用长 CP、 而预设的上行重传信号的 TTI采用短 CP时, 则重传中可用资源变多, UE可以采用比初传更低的编码 速率, 或者不改变编码速率而采用填补的方式, 该填补的方式可以为在多余 的资源中填补一些无用信息; 或者在多余的资源中不传输任何信号; 或者在 多余的资源中传输其它信息。 特别地, 系统可以支持多种方式, 并可以通过 下行信令通知 UE所采取的方式, 具体实现例如可以包括: 主小区确定 UE 应采取的处理方式, 通过小区间接口通知 UE的相应服务小区, 并通过空中 接口通知 UE; 当这种情况发生时, UE按照主小区通知的处理方式采用截 短或填补或其它的方式来形成并发送信号, UE的服务小区按照相应的方式 来接收。 进一歩的, 当 UE初传信号的 TTI和重传信号的 TTI所采用的 CP长度 不同时, 还可以将重传推迟一个或多个 TTI进行。 例如, 可以将重传推迟至 下一个与初传采用相同 CP长度的 TTI进行传输。 在将重传推迟至下一个与 初传采用相同 CP长度的 TTI进行传输的情况下, UE不需要对重传信号采 用与初传信号不同的编码速率或者采用填补或截短信息, 初传信号和重传信 号的编码速率以及信息量都是一致的, 简化了 UE的处理。 特别地, 推迟重 传的方式可以为:
1、 主小区对其所属的 UE进行初传信号和重传信号 CP长度的监测, 若 预设的发送上行重传信号的 TTI对应的 CP长度与所述 UE发送的上行初传 信号采用的 CP长度不一致, 则重新确定发送所述上行重传信号的 TTI, 所 述重新确定的 TTI在预设的发送上行重传信号的 TTI之后, 且与所述上行 初传信号采用相同的 CP长度, 在重新确定发送所述上行重传信号的 TTI之 后, 通过显式信令将重新确定出的发送所述上行重传信号的 TTI通知所述 UE, 且将重新确定出的发送所述上行重传信号的 TTI通知辅小区, 辅小区 在接收到该通知后即获知上行重传信号对应的 ΤΉ。
相应的, UE发送上行初传信号, 并在之后接收主小区用于通知发送所 述上行初传信号对应的上行重传信号的 ΤΤΙ的显式信令, 根据所述上行初传 信号采用的 CP长度形成所述上行重传信号, 并在所述显式信令通知的 ΤΉ 发送所述重传信号。
2、 UE自身进行初传信号和重传信号 CP长度的监测, 若预设的发送上 行重传信号的 TTI对应的 CP长度与所述 UE发送的上行初传信号采用的 CP 长度不一致, 则将所述预设的发送上行重传信号的 TTI之后的对应所述上行 初传信号采用的 CP长度的 TTI确定为发送所述上行重传信号的 TTI, 根据 所述上行初传信号采用的 CP长度形成所述上行重传信号, 并在确定出的 TTI发送所述重传信号。 在具体实现时, 当在第 n(n>0)时刻 UE发送初传数据后, 基站如果不能 将数据正确解码, 一般地需要在第 n+nl nl>n:)时刻通过下行信令向 UE反馈 NACK (Negative Acknowledgement, 否定确认) , 例如, 该下行信令可以 理混合自动重复请求指示信道) 上传输; 如果 UE收到 NACK, 就在第 n+n2时刻重传。
以主小区对其所属的 UE进行初传信号和重传信号 CP长度的监测为例 进行说明:
如果在 UE的主小区中第 n时刻和第 n+n2时刻所采用的 CP长度不同, 可以不在第 n+nl时刻通过下行信令反馈 NACK, 而在第 η+η3( 3>ηΐ;)时刻 反馈 NACK; 并通过显式信令将这一调整通知 UE。 UE收到该显式信令之 后, 在第 n+n3时刻接收 NACK; 如果收到 NACK, 则在第 n+n4时刻进行 重传, 其中优选地第 n+n4时刻是第 n+nl时刻后的第 1个采用与第 n时刻相 同 CP长度的 ΤΉ。
如果在 UE的主小区中第 η时刻和第 η+η2时刻所采用的 CP长度不同, 即预设的发送上行重传信号的 TTI对应的 CP长度与上行初传信号采用的 CP长度不一致, 还可以仍然在第 n+nl时刻通过下行信令反馈 NACK, 但 UE不在预定的发送上行重传信号的 TTI (即 n+n2时刻) 发送该上行重传信 号, 而是等到在预设的发送上行重传信号的 TTI的下一个对应上行初传信号 采用的 CP长度的 TTI (即 n+n3时刻) 发送该上行重传信号, 并且根据上行 初传信号采用的 CP长度形成所述上行重传信号。 例如, 在一个实例中, 在 UE的主小区的配置信息中, 一个帧中只有 TTI1和 TTI10采用长 CP, 而 UE在 TTI1发送初传信号, 初传信号采用了长 CP, 而在接收到 NACK后, 应该在预设的 TTI9发送重传信号, 而 TTI9对应的是短 CP, 与初传信号的 CP长度不一致, 则可以仍然以长 CP形成重传信号, 并在 TTI9之后的第一 个采用长 CP的 TTI (TTI10) 发送该重传信号。 其中, n2和 nl的关系、 n4和 n3的关系可以是固定的, 也可以是主小 区通过下行信令通知 UE的。
实施例二
在本实施例中的一种基站 700, 如图 7所示, 包括:
第一接收模块 701, 用于接收 UE发送的根据 CP配置信息形成的上行 信号, 所述 CP配置信息用于标识 TTI与上行信号采用的 CP类型的对应关 第一处理模块 702, 用于根据所述 CP配置信息确定接收所述上行信号 的 TTI对应的 CP类型, 并根据确定出的 CP类型对所述上行信号进行处 理。
对于基站 700来说, 不论 UE采用何种 CP类型来形成上行信号, 基站 700都可以根据与 UE相同的 CP配置信息确定接收到的上行信号所采用的 CP类型, 从而对上行信号进行正确处理。 可见, UE在不同的 TTI可以采用 不同的 CP类型, 而基站 700在各个 TTI都能够正确接收上行信号, 所以, 可以解决上行时延问题, 同时不会引入过多开销。
进一歩地, 上述基站 700还可以包括:
辅小区确定模块, 用于确定所述 UE的辅小区;
第一通知模块, 用于通知所述辅小区确定模块确定的 UE的辅小区所述 UE的 CP配置信息。
其中, 辅小区确定模块确定 UE的服务小区的集合的方法可以参见实施 例一中确定 UE的辅小区的几种方式。
进一歩地, 上述基站 700还可以包括:
重传监测模块, 用于若预设的发送上行重传信号的 TTI对应的 CP类型 与所述 UE发送的上行初传信号采用的 CP类型不一致, 则重新确定发送所 述上行重传信号的 TTI, 所述重新确定的 TTI在预设的发送上行重传信号的 TTI之后, 且与所述上行初传信号采用相同的 CP类型, 在重新确定发送所 述上行重传信号的 TTI之后, 通过显式信令将重新确定出的发送所述上行重 传信号的 TTI通知所述 UE, 且将重新确定出的发送所述上行重传信号的 TTI通知所述 UE的辅小区。
在将重传推迟至下一个与初传采用相同 CP长度的 TTI进行传输的情况 下, UE不需要对重传信号采用与初传信号不同的编码速率或者采用填补或 截短信息, 初传信号和重传信号的编码速率以及信息量都是一致的, 简化了 UE的处理。
进一歩地, 上述基站 700还可以包括: 配置模块, 用于向 UE发送 CP 配置信息。
在本实施例中的另一种基站 800, 如图 8所示, 包括:
第二接收模块 801, 用于接收主小区的 CP配置信息;
第二处理模块 802, 用于当 UE发送的上行信号采用的 CP类型与接收 到所述上行信号的传输时间间隔 TTI对应的本小区采用 CP类型不相同时, 则根据设定方式对所述上行信号进行处理, 所述设定方式为丢弃所述上行信 号或者按照所述 CP配置信息中接收到所述上行信号的 TTI对应 CP类型对 所述上行信号进行处理。
在本实施例中, 基站 800是辅小区对应的基站, 对于基站 800来说, 由 于获得了主小区的 CP配置信息, 因此, 可以对主小区对应的 UE发送的上 行信号进行正确处理。
进一歩地, 上述基站 800还可以包括:
检测模块, 用于检测所述 UE的上行信号, 确定自身是否所述 UE的服 务小区, 并将确定出的结果通知所述主小区。
由基站来进行自身是否服务小区的检测, 能够简化终端的操纵。
进一歩地, 上述基站 800还可以包括:
第二通知模块, 用于将所述 UE与自身之间的信道状况信息通知所述主 小区。 由于不在辅小区本地进行自身是否服务小区的检测, 能够简化辅小区本 地的操纵。
进一歩地, 上述基站 800还可以包括:
存储模块, 用于保存所述接收模块接收到的所述 CP配置信息, 并提供 给所述第二处理模块。
在本实施例中的用户终端 900, 如图 9所示, 包括:
接收模块 901, 用于接收主小区发送的循环扩展 CP配置, 所述 CP配 置信息用于标识各传输时间间隔 TTI与上行信号采用的 CP类型的对应关 处理模块 902, 用于根据所述接收模块 901接收到的 CP配置信息确定 发送上行信号的 TTI内对应的 CP类型, 并根据确定出的 CP类型形成上行 信号并发送。
由于用户终端 900采用主小区配置的 CP配置信息来形成上行信号, 因 此, 主小区以及被主小区通知到了的辅小区可以根据该 CP配置信息来确定 接收到的上行信号所采用的 CP类型, 从而对上行信号进行正确处理。 可 见, UE在不同的 TTI可以采用不同的 CP类型, 而主小区和辅小区在各个 TTI都能够正确接收上行信号, 所以, 可以解决上行时延问题, 同时不会引 入过多开销。
进一歩地, 上述用户终端 900还可以包括:
检测模块, 用于检测各小区的下行信号, 确定 UE的服务小区, 并将获 得的服务小区集合的信息发送给所述主小区。
由 UE来进行为其服务的服务小区的检测, 能够简化基站的操作。
进一歩地, 上述用户终端 900还可以包括:
重传监测模块, 用于若预设的发送上行重传信号的 TTI对应的 CP类型 与所述 UE发送的上行初传信号采用的 CP类型不一致, 则重新确定发送所 述上行重传信号的 ΤΤΙ, 所述重新确定的 ΤΤΙ在预设的发送上行重传信号的 ΤΤΙ之后, 且与所述上行初传信号采用相同的 CP类型。
进一歩地, 所述接收模块, 还可以用于接收用于通知发送所述上行初传 信号对应的上行重传信号的 TTI的显式信令; 在这种情况下, 所述用户终端 还可以包括:
重传模块, 用于在所述接收模块接收到所述显式信令时, 根据所述上行 初传信号采用的 CP类型形成所述上行重传信号, 并在所述显式信令通知的 TTI发送所述重传信号。
在将重传推迟至下一个与初传采用相同 CP长度的 TTI进行传输的情况 下, UE不需要对重传信号采用与初传信号不同的编码速率或者采用填补或 截短信息, 初传信号和重传信号的编码速率以及信息量都是一致的, 简化了
UE的处理, 且由终端来处理, 简化了基站的操作。
进一歩地, 上述用户终端 900还可以包括:
存储模块, 用于保存所述接收模块接收到的 CP配置信息, 并提供给所 述处理模块。
本领域普通技术人员可以理解实现上述实施例方法携带的全部或部分歩 骤是可以通过程序来指令相关的硬件完成, 所述的程序可以存储于一种计算 机可读存储介质中, 该程序在执行时, 包括方法实施例的歩骤之一或其组 合。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理模块 中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一 个模块中。 上述集成的模块既可以采用硬件的形式实现, 也可以采用软件功 能模块的形式实现。 所述集成的模块如果以软件功能模块的形式实现并作为 独立的产品销售或使用时, 也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器, 磁盘或光盘等。 本领域普通技术人员可以理解实现上述实施例方法携带的全部或部分歩 骤是可以通过程序来指令相关的硬件完成, 所述的程序可以存储于一种计算 机可读存储介质中, 该程序在执行时, 包括方法实施例的歩骤。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理模块 中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一 个模块中。 上述集成的模块既可以采用硬件的形式实现, 也可以采用软件功 能模块的形式实现。 所述集成的模块如果以软件功能模块的形式实现并作为 独立的产品销售或使用时, 也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器, 磁盘或光盘等。
显然, 本领域的技术人员可以对本发明进行各种改动和变型而不脱离本 发明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要 求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权利 要 求 书
1、 一种上行信号的处理方法, 其特征在于, 包括:
接收用户设备 UE发送的根据循环扩展 CP配置信息形成的上行信号, 所述 CP配置信息用于标识传输时间间隔 TTI与上行信号采用的 CP类型的 对应关系;
根据所述 CP配置信息确定接收所述上行信号的传输时间间隔 TTI对应 的 CP类型, 并根据确定出的 CP类型对所述上行信号进行处理。
2、 如权利要求 1所述的方法, 其特征在于, 所述 CP类型包括第一 CP 类型和第二 CP类型; 所述方法进一歩包括:
若预设的发送上行重传信号的 TTI对应的 CP类型与所述 UE发送的所 述上行重传信号的上行初传信号采用的 CP类型不一致, 则重新确定发送所 述上行重传信号的 TTI, 所述重新确定的 TTI在预设的发送上行重传信号的 TTI之后, 且与所述上行初传信号采用相同的 CP类型;
在重新确定发送所述上行重传信号的 TTI之后, 通过显式信令将重新确 定出的发送所述上行重传信号的 TTI通知所述 UE, 且将重新确定出的发送 所述上行重传信号的 TTI通知所述 UE的辅小区。
3、 如权利要求 1所述的方法, 其特征在于, 还包括: 确定所述 UE的 辅小区, 并通知所述 UE的辅小区所述 UE的 CP配置信息。
4、 如权利要求 3所述的方法, 其特征在于, 所述辅小区包括用于初传 的服务小区和用于重传的服务小区; 以及
所述通知 UE的辅小区所述 UE的 CP配置信息, 包括:
通知所述用于初传的服务小区所述 UE初传时的 CP配置信息, 通知所 述用于重传的服务小区所述 UE重传时的 CP配置信息。
5、 如权利要求 2至 4中任一权利要求所述的方法, 其特征在于, 确定 所述 UE的辅小区包括以下之一或其任意组合: 接收所述 UE发送的服务小区集合信息, 根据所述服务小区集合信息确 定所述 UE的辅小区;
接收各小区发送的通知信息, 根据所述通知消息确定所述 UE的辅小 区, 其中通知信息用于表示所述小区是否为所述 UE的辅小区;
接收各小区发送的所述 UE与所述各小区之间的信道状况信息, 并根据 所述信道状况信息确定所述 UE的辅小区。
6、 如权利要求 1所述的方法, 其特征在于, 还包括:
当所述 UE存在上行时延问题时, 将所述 UE调度到采用长 CP的
TTI;
当所述 UE不存在上行时延问题时, 将所述 UE调度到采用短 CP的
TTI。
7、 如权利要求 1所述的方法, 其特征在于, 在接收 UE发送的上行信 号之前, 还包括: 向所述 UE发送所述 CP配置信息。
8、 一种上行信号的处理方法, 其特征在于, 包括:
接收主小区的循环扩展 CP配置信息, 所述 CP配置信息用于标识传输 时间间隔 TTI与上行信号采用的 CP类型的对应关系;
当用户终端 UE发送的上行信号采用的 CP类型与接收到所述上行信号 的 TTI对应的本小区采用 CP类型不相同时, 则根据设定方式对所述上行信 号进行处理。
9、 如权利要求 8所述的方法, 其特征在于, 还包括: 接收主小区的处 理方式通知信息, 根据所述处理方式通知信息确定所述设定方式, 所述设定 方式为丢弃所述上行信号或者按照所述 CP配置信息中接收到所述上行信号 的 TTI对应 CP类型对所述上行信号进行处理。
10、 如权利要求 8所述的方法, 其特征在于, 所述接收主小区的 CP配 置信息之前, 还包括: 检测所述 UE的上行信号, 确定自身是否所述 UE的服务小区, 并将确 定出的结果通知所述主小区; 或者
将所述 UE与自身之间的信道状况信息通知所述主小区。
11、 一种上行信号的处理方法, 其特征在于, 包括:
用户设备 UE接收主小区发送的包括循环扩展 CP配置信息, 所述 CP 配置信息用于标识各传输时间间隔 TTI与上行信号采用的循环扩展 CP类型 的对应关系;
根据所述 CP配置信息确定发送上行信号的 TTI对应的 CP类型, 并根 据确定出的 CP类型形成上行信号并发送。
12、 如权利要求 11所述的方法, 其特征在于, 还包括: 所述 UE检测 各小区的下行信号, 确定出所述 UE的服务小区, 并将获得的服务小区集合 的信息发送给所述主小区。
13、 如权利要求 11所述的方法, 其特征在于, 所述 CP类型包括第一 CP类型和第二 CP类型, 所述第一 CP类型的长度大于所述第二 CP类型; 所述方法还包括:
若所述 UE发送的上行初传信号采用的 CP类型为所述第一 CP类型, 而预设的发送上行重传信号的 TTI对应的 CP类型为所述第二 CP类型, 则 在形成所述上行重传信号时, 采用比形成所述上行初传信号时低的编码速 率; 或者
若所述 UE发送的上行初传信号采用的 CP类型为所述第二 CP类型, 而预设的发送上行重传信号的 TTI对应的 CP类型为所述第一 CP类型, 则 在形成所述上行重传信号时, 采用比形成所述上行初传信号时高的编码速率 或者只传输比特级数据的一部分或者符号级数据的一部分; 或者
若所述 UE发送的预设的发送上行重传信号的 TTI对应的 CP类型与所 述 UE发送的上行初传信号采用的 CP类型不一致, 则重新确定发送所述上 行重传信号的 TTI, 所述重新确定的 TTI在预设的发送上行重传信号的 ΤΉ 之后, 且与所述上行初传信号采用相同的 CP类型。
14、 如权利要求 11所述的方法, 其特征在于, 还包括:
接收用于通知发送上行重传信号的 TTI的显式信令, 根据所述上行初传 信号采用的 CP类型形成所述上行重传信号, 并在所述显式信令通知的 ΤΉ 发送所述重传信号。
15、 一种基站, 其特征在于, 包括:
第一接收模块, 用于接收用户设备 UE发送的根据循环扩展 CP配置信 息形成的上行信号, 所述 CP配置信息用于标识传输时间间隔 TTI与上行信 号采用的 CP类型的对应关系;
第一处理模块, 用于根据所述 CP配置信息确定接收所述上行信号的传 输时间间隔 TTI对应的 CP类型, 并根据确定出的 CP类型对所述上行信号 进行处理。
16、 如权利要求 15所述的基站, 其特征在于, 还包括:
辅小区确定模块, 用于确定所述 UE的辅小区;
第一通知模块, 用于通知所述辅小区确定模块确定的 UE的辅小区所述 UE的 CP配置信息。
17、 如权利要求 15所述的基站, 其特征在于, 还包括:
重传监测模块, 用于若预设的发送上行重传信号的 TTI对应的 CP类型 与所述 UE发送的上行初传信号采用的 CP类型不一致, 则重新确定发送所 述上行重传信号的 TTI, 所述重新确定的 TTI在预设的发送上行重传信号的 TTI之后, 且与所述上行初传信号采用相同的 CP类型, 在重新确定发送所 述上行重传信号的 TTI之后, 通过显式信令将重新确定出的发送所述上行重 传信号的 TTI通知所述 UE, 且将重新确定出的发送所述上行重传信号的 TTI通知所述 UE的辅小区。
18、 如权利要求 15所述的基站, 其特征在于, 还包括: 配置模块, 用于向 UE发送 CP配置信息。
19、 一种基站, 其特征在于, 包括:
第二接收模块, 用于接收主小区的 CP配置信息;
第二处理模块, 用于当 UE发送的上行信号采用的 CP类型与接收到所 述上行信号的传输时间间隔 TTI对应的本小区采用 CP类型不相同时, 则根 据设定方式对所述上行信号进行处理, 所述设定方式为丢弃所述上行信号或 者按照所述 CP配置信息中接收到所述上行信号的 TTI对应 CP类型对所述 上行信号进行处理。
20、 如权利要求 19所述的基站, 其特征在于, 还包括:
检测模块, 用于检测所述 UE的上行信号, 确定自身是否所述 UE的服 务小区, 并将确定出的结果通知所述主小区。
21、 如权利要求 19所述的基站, 其特征在于, 还包括:
第二通知模块, 用于将所述 UE与自身之间的信道状况信息通知所述主 小区。
22、 如权利要求 19所述的基站, 其特征在于, 还包括:
存储模块, 用于保存所述接收模块接收到的所述 CP配置信息, 并提供 给所述第二处理模块。
23、 一种用户终端, 其特征在于, 包括:
接收模块, 用于接收主小区发送的循环扩展 CP配置, 所述 CP配置信 息用于标识各传输时间间隔 TTI与上行信号采用的 CP类型的对应关系; 处理模块, 用于根据所述接收模块接收到的 CP配置信息确定发送上行 信号的 TTI内对应的 CP类型, 并根据确定出的 CP类型形成上行信号并发 送。
24、 如权利要求 23所述的用户终端, 其特征在于, 还包括:
检测模块, 用于检测各小区的下行信号, 确定出所述用户设备 UE的服 务小区, 并将获得的服务小区集合的信息发送给所述主小区。
25、 如权利要求 23所述的用户终端, 其特征在于, 还包括: 重传监测模块, 用于若预设的发送上行重传信号的 TTI对应的 CP类型 与所述 UE发送的上行初传信号采用的 CP类型不一致, 则重新确定发送所 述上行重传信号的 TTI, 所述重新确定的 TTI在预设的发送上行重传信号的 TTI之后, 且与所述上行初传信号采用相同的 CP类型。
26、 如权利要求 23所述的用户终端, 其特征在于, 所述接收模块, 还 用于接收用于通知发送所述上行初传信号对应的上行重传信号的 TTI的显式 信令;
所述用户终端还包括:
重传模块, 用于在所述接收模块接收到所述显式信令时, 根据所述上行 初传信号采用的 CP类型形成所述上行重传信号, 并在所述显式信令通知的 TTI发送所述重传信号。
27、 如权利要求 23所述的用户终端, 其特征在于, 还包括:
存储模块, 用于保存所述接收模块接收到的 CP配置信息, 并提供给所 述处理模块。
PCT/CN2009/071589 2009-04-30 2009-04-30 一种上行信号的处理方法、基站和用户终端 WO2010124465A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09843877.3A EP2418885B1 (en) 2009-04-30 2009-04-30 Uplink signal processing method, base station and user terminal
PCT/CN2009/071589 WO2010124465A1 (zh) 2009-04-30 2009-04-30 一种上行信号的处理方法、基站和用户终端
CN2009801249061A CN102077627B (zh) 2009-04-30 2009-04-30 一种上行信号的处理方法、基站和用户终端
US13/284,444 US20120039182A1 (en) 2009-04-30 2011-10-28 Method for processing uplink signal, base station, and user equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/071589 WO2010124465A1 (zh) 2009-04-30 2009-04-30 一种上行信号的处理方法、基站和用户终端

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/284,444 Continuation US20120039182A1 (en) 2009-04-30 2011-10-28 Method for processing uplink signal, base station, and user equipment

Publications (1)

Publication Number Publication Date
WO2010124465A1 true WO2010124465A1 (zh) 2010-11-04

Family

ID=43031687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/071589 WO2010124465A1 (zh) 2009-04-30 2009-04-30 一种上行信号的处理方法、基站和用户终端

Country Status (4)

Country Link
US (1) US20120039182A1 (zh)
EP (1) EP2418885B1 (zh)
CN (1) CN102077627B (zh)
WO (1) WO2010124465A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013064124A1 (zh) * 2011-11-04 2013-05-10 华为技术有限公司 传输时间间隔的确定方法、基站和无线网络控制器
CN108781422A (zh) * 2016-03-08 2018-11-09 IPCom两合公司 传输时间间隔控制

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011013962A2 (ko) 2009-07-26 2011-02-03 엘지전자 주식회사 중계기를 위한 제어 정보 및 시스템 정보를 송수신하는 장치 및 그 방법
KR102073027B1 (ko) * 2011-04-05 2020-02-04 삼성전자 주식회사 반송파 집적 기술을 사용하는 무선통신시스템에서 복수 개의 타임 정렬 타이머 운용 방법 및 장치
US20140112127A1 (en) * 2012-01-30 2014-04-24 Qualcomm Incorporated Method and apparatus for uplink channel capacity estimation and transmission control
WO2013191385A1 (ko) * 2012-06-17 2013-12-27 엘지전자 주식회사 무선 통신 시스템에 있어서 서브프레임 결정 방법
US10306594B2 (en) 2012-10-30 2019-05-28 Qualcomm Incorporated Uplink coverage enhancements
US9538515B2 (en) * 2013-03-28 2017-01-03 Samsung Electronics Co., Ltd. Downlink signaling for adaptation of an uplink-downlink configuration in TDD communication systems
CN111954266B (zh) * 2014-06-23 2024-04-09 北京三星通信技术研究有限公司 一种双连接中分割承载的数据分配方法和装置
US9893865B2 (en) 2014-12-22 2018-02-13 Industrial Technology Research Institute Method of handling communication operation in communication system and related apparatus
US10966194B2 (en) * 2015-04-15 2021-03-30 Qualcomm Incorporated Coordinated wireless communications using multiple transmission time intervals
US9554375B1 (en) * 2015-05-01 2017-01-24 Sprint Spectrum L.P. Sector selection for coordinated multipoint based on application type
EP3611985B1 (en) * 2015-07-17 2021-04-28 Huawei Technologies Co., Ltd. Uplink data packet transmission method, terminal device, base station, and communications system
CN106488567B (zh) * 2015-09-02 2019-06-07 中兴通讯股份有限公司 一种信息传递方法、装置及系统
JP6490308B2 (ja) * 2016-02-05 2019-03-27 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 基地局、端末及び通信方法
CN107231222B (zh) * 2016-03-25 2020-04-10 电信科学技术研究院 一种反馈信息的传输方法和装置
EP3240354A1 (en) * 2016-04-27 2017-11-01 ASUSTek Computer Inc. Method and apparatus for improving uplink transmission in a wireless communication system
EP3549372B1 (en) * 2016-11-30 2022-06-08 Telefonaktiebolaget LM Ericsson (publ) Method for handling users with different timing alignment requirements

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080084845A1 (en) * 2006-10-06 2008-04-10 Motorola, Inc. Wireless communication system frame structure having variable sized cyclic prefix
CN101213807A (zh) * 2005-07-01 2008-07-02 艾利森电话股份有限公司 在正交频分复用(ofdm)系统中使循环前缀适应的系统和方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7295509B2 (en) * 2000-09-13 2007-11-13 Qualcomm, Incorporated Signaling method in an OFDM multiple access system
EP1827039B1 (en) * 2004-12-14 2016-08-17 Fujitsu Limited Wireless communication device, and communication method
US20060176966A1 (en) * 2005-02-07 2006-08-10 Stewart Kenneth A Variable cyclic prefix in mixed-mode wireless communication systems
US7821913B2 (en) * 2005-03-29 2010-10-26 Qualcomm Incorporated Method and apparatus for data and pilot structures supporting equalization
KR100724949B1 (ko) * 2005-05-03 2007-06-04 삼성전자주식회사 주파수 분할 다중접속 기반 무선통신 시스템에서 데이터와제어 정보의 다중화 방법 및 장치
US8175021B2 (en) * 2005-11-04 2012-05-08 Texas Instruments Incorporated Method for transmission of unicast control in broadcast/multicast transmission time intervals
AU2007200185A1 (en) * 2006-02-08 2007-08-23 Nec Australia Pty Ltd Delivery of multicast and uni-cast services in an OFDMA system
KR101066151B1 (ko) * 2006-08-17 2011-09-20 인터디지탈 테크날러지 코포레이션 Mimo 무선 통신 시스템에서 효율적인 프리코딩 피드백을 제공하기 위한 방법 및 장치
EP1912374A1 (de) * 2006-10-10 2008-04-16 Nokia Siemens Networks Gmbh & Co. Kg Datenübertragung in einem Mehrnutzer-OFDM-System mit adaptiver Modulation
US20080225796A1 (en) * 2007-03-17 2008-09-18 Qualcomm Incorporated Handover in wireless communications
US8509791B2 (en) * 2007-03-17 2013-08-13 Qualcomm Incorporated Handover in wireless communications
KR101430462B1 (ko) * 2007-08-09 2014-08-19 엘지전자 주식회사 Rach 프리엠블 구성방법 및 전송방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101213807A (zh) * 2005-07-01 2008-07-02 艾利森电话股份有限公司 在正交频分复用(ofdm)系统中使循环前缀适应的系统和方法
US20080084845A1 (en) * 2006-10-06 2008-04-10 Motorola, Inc. Wireless communication system frame structure having variable sized cyclic prefix

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Further Advancements for E-UTRA Physical Layer Aspects (Release 9)", 3GPP TR 36.814 V0.4.1, February 2009 (2009-02-01), XP050380817 *
HUAWEI: "System performance evaluation for uplink CoMP", 3 GPP TSG RAN WG1 MEETING #56BIS, RL-091266, - 27 March 2009 (2009-03-27) *
HUAWEI: "System performance evaluation for uplink CoMP", 3GPP TSG RAN WGL MEETING #56BIS, R1-091618, - 27 March 2009 (2009-03-27), SEOUL, KOREA, XP050339161 *
See also references of EP2418885A4 *
SIEMENS: "Uplink Extended Cyclic Prefix Use Cases", 3GPP TSG-RAN WG1 #47BIS, R1-070306, 19 February 2007 (2007-02-19), SORRENTO, ITALY, XP050104341 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013064124A1 (zh) * 2011-11-04 2013-05-10 华为技术有限公司 传输时间间隔的确定方法、基站和无线网络控制器
EP2753137A1 (en) * 2011-11-04 2014-07-09 Huawei Technologies Co., Ltd. Method, base station and radio network controller for determining transmission time interval
EP2753137A4 (en) * 2011-11-04 2014-08-27 Huawei Tech Co Ltd METHOD, BASE STATION AND RADIOCOMMUNICATION NETWORK CONTROLLER FOR DETERMINING TRANSMISSION TIME INTERVAL
JP2014533024A (ja) * 2011-11-04 2014-12-08 ▲ホア▼▲ウェイ▼技術有限公司 送信時間間隔を決定するための方法、基地局、及び無線ネットワーク制御装置
US9538527B2 (en) 2011-11-04 2017-01-03 Huawei Technologies Co., Ltd Method for determining transmission time interval, base station, and radio network controller
CN108781422A (zh) * 2016-03-08 2018-11-09 IPCom两合公司 传输时间间隔控制

Also Published As

Publication number Publication date
CN102077627B (zh) 2013-03-27
CN102077627A (zh) 2011-05-25
EP2418885A1 (en) 2012-02-15
EP2418885B1 (en) 2014-02-12
EP2418885A4 (en) 2012-07-04
US20120039182A1 (en) 2012-02-16

Similar Documents

Publication Publication Date Title
WO2010124465A1 (zh) 一种上行信号的处理方法、基站和用户终端
US9143282B2 (en) Uplink hybrid-ARQ mechanism for cooperative base stations
EP2719110B1 (en) Controlling retransmissions
US8891378B2 (en) Method and system for hybrid automatic repeat request operation for uplink coordinated multi-point signaling
JP2019525652A (ja) 無線通信システムにおいて上りリンク送信のための方法及びそのための装置
WO2013136317A2 (en) Systems and methods for configuring redundant transmissions in a wireless network
WO2011150783A1 (zh) 无线网络中的数据传输方法和装置
WO2012089034A1 (zh) 一种确定harq模式的方法及装置
WO2012163170A1 (zh) 一种数据传输的方法及装置
CN108039939B (zh) 物联网组播业务的harq反馈方法及装置
WO2012163168A1 (zh) 一种数据传输的方法及装置
WO2011038648A1 (zh) 一种透明中继网络中的上行混合自动重传请求方法及装置
EP3965337A1 (en) Receiver, transmitter, system and method implementing a retransmission process responsive to an indication that encoded data on allocated resources is not decodable
JP6848056B2 (ja) 無線通信システムにおいて、複数の送信時間間隔、複数のサブキャリア間隔、又は複数のプロセッシング時間を支援するための方法及びそのための装置
WO2017167142A1 (zh) 一种窄带蜂窝通信的方法和装置
WO2018019103A1 (zh) 一种无线通信中的方法和装置
WO2012167830A1 (en) Retransmissions in a communication system using almost blank subframes
WO2014000288A1 (zh) 一种调度下行数据传输的方法和装置
WO2013107407A1 (zh) 一种传输子帧的确定方法、系统及设备
CN114363998A (zh) 旁路系统中的节能方法和装置
JP6397059B2 (ja) ユーザ装置及び基地局
WO2016189916A1 (ja) 基地局
WO2018058679A1 (zh) 多载波下的数据传输方法和装置
CN103532658A (zh) SR的处理方法、eNB及UE
WO2013064026A1 (zh) 周期性业务的通信方法及eNB和UE

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980124906.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09843877

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009843877

Country of ref document: EP