WO2010124414A1 - 多天线发射机以及用于多天线发射机中的数据发送方法 - Google Patents

多天线发射机以及用于多天线发射机中的数据发送方法 Download PDF

Info

Publication number
WO2010124414A1
WO2010124414A1 PCT/CN2009/000458 CN2009000458W WO2010124414A1 WO 2010124414 A1 WO2010124414 A1 WO 2010124414A1 CN 2009000458 W CN2009000458 W CN 2009000458W WO 2010124414 A1 WO2010124414 A1 WO 2010124414A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
data blocks
transmitter
mapping
time slots
Prior art date
Application number
PCT/CN2009/000458
Other languages
English (en)
French (fr)
Inventor
孟艳
尤明礼
刘瑾
Original Assignee
上海贝尔股份有限公司
阿尔卡特朗讯
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海贝尔股份有限公司, 阿尔卡特朗讯 filed Critical 上海贝尔股份有限公司
Priority to KR1020117028133A priority Critical patent/KR101301017B1/ko
Priority to EP09843826.0A priority patent/EP2426881B1/en
Priority to JP2012507559A priority patent/JP5717722B2/ja
Priority to US13/266,298 priority patent/US8995420B2/en
Priority to BRPI0924999-0A priority patent/BRPI0924999B1/pt
Priority to CN200980157549.9A priority patent/CN102334318B/zh
Priority to PCT/CN2009/000458 priority patent/WO2010124414A1/zh
Publication of WO2010124414A1 publication Critical patent/WO2010124414A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2634Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
    • H04L27/2636Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation with FFT or DFT modulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] transmitter or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0697Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using spatial multiplexing

Definitions

  • the present invention relates to communication techniques, and more particularly to discrete Fourier transform extended orthogonal frequency division multiplexing techniques. Background technique
  • Clustered Discrete Fourier Transform Extended Orthogonal Frequency Division Multiplexing (Clustered DFT-S-OFDM) has been adopted as the uplink multiple access scheme for LTE-A. For the sake of simplicity, it is expressed as a clustered DFT. Extended OFDM. In the clustered DFT extended OFDM scheme, the output of the DFT block is divided into clusters, each of which is individually mapped onto a subband. This discontinuous band allocation is a feature of clustered DFT extended OFDM that is different from SC-FDMA. Although this feature brings about frequency diversity gain, it increases the power peak-to-average ratio.
  • Figure 1 shows a prior art clustered DFT extended OFDM transmitter architecture.
  • the data is subjected to Turbo coding, signal modulation, and discrete Fourier transform of 2M points.
  • the output of the discrete Fourier transform block is divided into two clusters, and the two cluster data blocks are respectively mapped to subband 1 and subband 2, and finally It is transmitted by an antenna.
  • the transmitter scheme shown in Fig. 1 is referred to as the prior scheme 1.
  • the disadvantage of this scheme is that the power peak ratio is relatively large.
  • FIG. 2 shows the transmitter structure of the scheme.
  • the data is divided into two clusters after Turbo coding and signal modulation.
  • the two clusters of data are respectively subjected to independent discrete Fourier transform, and the first cluster data is mapped to Subband 1 is transmitted by antenna 1, and the second cluster data is mapped to subband 2 and transmitted by antenna 2.
  • each transmit antenna corresponds to a cluster of data, thus reducing the power peak-to-average ratio.
  • some of the frequency diversity gain is lost.
  • the transmitter side shown in Figure 2 The case is called existing option 2. Summary of the invention
  • the present invention proposes a data transmission scheme for a multi-antenna transmitter, which is especially suitable for clustered DFT-spread OFDM technology.
  • a method of transmitting data in a multi-antenna transmitter comprising the steps of: A. acquiring a plurality of data streams, wherein each data stream comprises data blocks of a plurality of time slots; Performing group mapping on each data block, wherein data blocks of the same time slot of each data stream are grouped according to the number of antennas and each packet is mapped to one of the multiple antennas, and different data blocks in the same group are respectively mapped.
  • the packet mapping mode includes a data block grouping manner, a mapping manner of each packet to an antenna, and a sub-band mapping manner;
  • a plurality of data block packets of the plurality of time slots are respectively transmitted via the plurality of antennas.
  • a transmitter having a plurality of antennas comprising: data block obtaining means for acquiring a plurality of data streams, wherein each data stream comprises data blocks of a plurality of time slots; a mapping device, configured to perform group mapping on each data block, wherein data blocks of the same time slot of each data stream are grouped according to the number of antennas, and each packet is respectively mapped to one of the multiple antennas, and different in the same group
  • the data blocks are respectively mapped to different sub-bands; wherein the data blocks of different time slots are not completely identical, and the packet mapping mode includes a data block grouping manner, a mapping manner of each group to an antenna, and a sub-band mapping manner.
  • a plurality of data block packets of the plurality of time slots are respectively transmitted via the plurality of antennas.
  • the diversity gain can be obtained while reducing the power peak-to-average ratio of data transmission.
  • Description 1 is a block diagram showing the structure of a transmitter of a prior art clustered DFT-spread OFDM
  • FIG. 2 is a block diagram showing the structure of a transmitter of a prior art multi-antenna clustering DFT-spread OFDM technology
  • FIG. 3 shows a flow chart of a method of transmitting data in a multi-antenna transmitter, in accordance with one embodiment of the present invention
  • FIG. 4 is a block diagram showing the structure of a multi-antenna transmitter according to an embodiment of the present invention
  • FIG. 5 is a block diagram showing a data block acquiring device in a transmitter according to an embodiment of the present invention
  • Figure 6 is a block diagram showing a data block acquiring device in a transmitter according to an embodiment of the present invention.
  • Figure 7 is a block diagram showing the structure of a multi-antenna transmitter according to an embodiment of the present invention
  • Figure 8 is a block diagram showing the structure of a multi-antenna transmitter according to an embodiment of the present invention. Power peak-to-average ratio simulation comparison chart;
  • Figure 10 shows a block error rate simulation comparison of several transmitter schemes; wherein the same or similar reference numerals indicate the same or similar step features or means (modules). detailed description
  • FIG. 3 shows a flow chart of a method of transmitting data in a multi-antenna transmitter in accordance with one embodiment of the present invention.
  • step S1 a plurality of data streams will be acquired, wherein each data stream includes data blocks of a plurality of time slots.
  • each data block is subjected to packet mapping, wherein data blocks of the same time slot of each data stream are grouped according to the number of antennas and each packet is respectively mapped to one of the plurality of antennas, in the same group
  • the different data blocks are respectively mapped to different sub-bands; wherein the data blocks of different time slots are not completely identical, and the packet mapping mode includes a data block grouping manner, a mapping manner of each group to an antenna, and a sub-block. Band mapping method.
  • step S3 a plurality of data block packets of the plurality of time slots are respectively transmitted via the plurality of antennas.
  • An embodiment of a data transmission method in a multi-antenna transmitter according to the present invention wherein the data transmission uses a clustered DFT-spread OFDM technique.
  • step S2 each data block of the same time slot is mapped to a different sub-band, respectively.
  • all sub-bands are discontinuous.
  • step S2 the same data block grouping manner and different packet-to-antenna mapping manners are adopted for the data blocks of different time slots.
  • step S2 data blocks of different time slots are used in the same data block grouping manner, and data in the same multi-antenna transmitter according to the present invention is used.
  • step S1 the acquired plurality of data streams respectively comprise data blocks of two time slots.
  • the data transmitting method is used for uplink data transmission.
  • the multi-antenna transmitter comprises two antennas.
  • step S1 two data streams are acquired, respectively comprising data blocks of a plurality of time slots; in step S2, the same time slot is used
  • the two data blocks are mapped to one of the two antennas and mapped to different sub-bands, respectively.
  • step S2 the data blocks of the two data streams acquired in step S1 are respectively mapped to one of the two antennas, and Data blocks of two time slots of the same data stream are mapped to Different sub-bands.
  • step S2 data blocks of two slots of the same data stream are respectively mapped to one of the two antennas.
  • step S1 An embodiment of the data transmission method in the multi-antenna transmitter according to the present invention, wherein, in step S1, four data streams are acquired, respectively comprising data blocks of a plurality of time slots; in step S2, the same time slot is used
  • the four data blocks are divided into two groups, each group consisting of two data blocks, two data block groups are respectively mapped to one of the two antennas, and two data blocks in the same data block group are respectively mapped to different sub-bands. on.
  • step S2 the same data block grouping manner and different packet-to-antenna mapping manner are adopted for the data blocks of different time slots.
  • step S2 An embodiment of a data transmission method in a multi-antenna transmitter according to the present invention, wherein in step S2, data blocks of different time slots are used in the same data block grouping manner, in the multi-antenna transmitter according to the present invention
  • step S1 An embodiment of the data transmission method, wherein, in step S1, the acquired plurality of data streams are respectively obtained by independent discrete Fourier transform.
  • step S1 the acquired plurality of data streams are obtained by dividing the data after the same discrete Fourier transform.
  • the transmitter in this embodiment includes a data block acquiring means 10, a packet mapping means 30, and a plurality of antennas 50-1 to 50-m.
  • the data block obtaining means 10 is for acquiring a plurality of data streams, such as the data stream 20-1 to the data stream 20-n as shown in the figure.
  • Each data stream contains data blocks of multiple time slots, for example, data stream 20-1 includes data blocks of k time slots, denoted as 20-1-1 to 20-1-k, respectively; data stream 20-n also includes The data blocks of k time slots are represented as 20-nl to 20-nk, respectively.
  • Technical in the field Personnel should be able to understand that the invention is not limited to the case where each data stream contains data blocks of the same number of time slots.
  • the packet mapping device 30 is configured to perform group mapping on each data block.
  • the data blocks of the same slot of each data stream are divided into a plurality of packets according to the number of antennas, and each packet is mapped to one of the antennas 50-1 to 50-m, respectively. Different data blocks in the same packet are mapped to different sub-bands, respectively.
  • the data blocks of different time slots are not completely identical, and the group mapping mode includes a data block grouping manner, a mapping manner of each group to an antenna, and a sub-band mapping manner.
  • the number n of data streams is greater than or equal to the number m of antennas.
  • the transmitter in this embodiment adopts orthogonal frequency division multiplexing, and the transmitter further includes m fast inverse Fourier transform modules corresponding to m antennas, for group mapping according to the packet mapping device 30.
  • the corresponding data is modulated to the antennas 50-1 to 50-m.
  • the m fast inverse Fourier transform modules 40-1 to 40-m are shown in FIG. 35-1-1 to 35-1-i shown in the figure represent i sub-bands, and i data blocks are respectively mapped onto the i sub-bands of the antenna 50-1; similarly, 35-ml is shown in the figure. Up to 35-mj represents j subbands, and j data blocks are mapped onto the "subbands" of the antenna 50-m, respectively.
  • the sub-bands 35-1-1 to 35-1-i are discontinuous with each other, and similarly, the sub-bands 35-m-1 to 35-m-j are also discontinuous with each other. More preferably, all of the sub-bands are discontinuous with each other.
  • the data blocks of each of the aforementioned n data streams are transmitted via the antennas 50-1 to 50-m.
  • the multi-antenna transmitter comprises two antennas.
  • the transmitter is especially suitable for the UE of the LTE-A system, that is, for uplink data transmission. It will be understood by those skilled in the art that the multi-antenna transmitter of the present invention is not limited to a transmitter having two antennas.
  • each data stream acquired by the data block obtaining means 10 in the transmitter corresponds to one data sub-frame in the orthogonal frequency division multiplexing system, and each data sub-frame includes two times. Gap, that is, each data stream includes data blocks of two time slots.
  • FIG. 5 is a block diagram showing a data block acquiring apparatus in a transmitter according to an embodiment of the present invention. As shown in FIG. 5, the data block obtaining means 10 in the transmitter includes a signal modulation module 13 and a plurality of discrete Fourier transform modules 15-1 to 15-n. The data modulated by the signal modulation module 13 is divided into n ways, each of which is transformed by a discrete Fourier transform module to obtain data streams 20-1 to 20-n, respectively.
  • the signal modulation module 13 may also include a source coding module or a source/channel joint coding module before, and the coding used by the coding module may be a turbo code.
  • a Turbo coding module is used before the signal modulation module in the transmitter.
  • Fig. 6 is a block diagram showing a data block acquiring device in a transmitter according to an embodiment of the present invention.
  • the data block obtaining means 10 in the transmitter comprises a signal modulation module 13 and a discrete Fourier transform module 15.
  • the data modulated by the signal modulation module 13 is input to the discrete Fourier transform module 15, and the data after the discrete Fourier transform is divided into n ways, thereby obtaining the data streams 20-1 to 20-n, respectively.
  • the signal modulation module 13 may also include a source coding module or a source/channel joint coding module before, and the coding used by the coding module may be a Turbo code.
  • the Turbo coding module is used before the signal modulation module in the transmitter.
  • the transmitter comprises two antennas, and the data block acquisition means outputs two data streams.
  • Fig. 7 is a block diagram showing the structure of the transmitter of this embodiment.
  • the data block obtaining means 10 includes two discrete Fourier transform modules 15-1 and 15-2 which respectively obtain data streams 20-1 and 20-2, and the data stream 20-1 includes two The data blocks 20-1 -1 and 20-1-2 of the time slot, the data stream 20-2 includes data blocks 20-2-1 and 20-2-2 of two time slots.
  • the four data blocks are packetized and mapped by the packet mapping device 30, and then modulated by the inverse fast Fourier transform modules 40-1 and 40-2 onto different sub-bands of the antennas 50-1 and 50-2 for transmission.
  • the subbands occupied on the antenna 50-1 include subbands 35-1-1 and 35-1-2, and the subbands occupied on the antenna 50-2 include subbands 35-2-1 and 35-2-2, Where subbands 35-1-1 and 35-2-1 are the same subbands corresponding to the two antennas, and subbands 35-1-2 and 35-2-2 are also corresponding to the two antennas. The same subband.
  • the packet mapping device 30 can employ multiple packet mapping methods for the four data blocks. Since there are only two data blocks per time slot, two data blocks of the same time slot are naturally divided into two packets, one for each packet. The same data block grouping is of course used for data blocks of different time slots.
  • the packet mapping device 30 maps different data blocks of the same time slot to different sub-bands, and uses the same packet-to-antenna mapping mode for data blocks of different time slots. For example, in the first time slot, data block 20-1-1 is mapped to subband 35-1-1 on antenna 50-1, and data block 20-2-1 is mapped to child on antenna 50-2. Band 35-2-2; In the second time slot, data block 20-1-2 is mapped to sub-band 35-1-2 on antenna 50-1, and data block 20-2-2 is mapped to antenna 50 Subband 35-2-1 on -2. In this way, data blocks of different time slots of one data stream are mapped to different sub-bands and transmitted by the same antenna, so that the frequency diversity gain can be obtained. The data for the two data streams is transmitted by one of the two antennas, reducing the power peak-to-average ratio on each antenna. Those skilled in the art will appreciate that this approach is more suitable for situations where different data streams occupy the same size of resource blocks.
  • the packet mapping device 30 maps different data blocks of the same time slot to different sub-bands, and uses different packet-to-antenna mapping modes for data blocks of different time slots. For example, in the first time slot, data block 20-1-1 is mapped to subband 35-1-1 on antenna 50-1, and data block 20-2-1 is mapped to child on antenna 50-2. Band 35-2-2; In the second time slot, data block 20-1-2 is mapped to sub-band 35-2-1 on antenna 50-2, and data block 20-2-2 is mapped to antenna 50 Subband 35-1-2 on -1. In this way, data blocks of different time slots of one data stream are mapped to the same sub-band but are transmitted by different antennas, so that spatial diversity gain can be obtained. Each of the two data streams is transmitted on each of the two antennas, thereby reducing the power peak-to-average ratio on each antenna.
  • the occupied band resources on the two antennas 50-1 and 50-2 are the same.
  • the occupied band resources on the two antennas may also be different, that is, subbands 35-1-1, 35-1-2 and subbands 35-2-1, 35-2-2 Different from each other, In this case, the packet mapping device 30 can take a more flexible mapping of data blocks to sub-bands.
  • the transmitter comprises two antennas, and the data block acquisition means outputs four data streams.
  • Fig. 8 is a block diagram showing the structure of the transmitter of this embodiment.
  • the data block obtaining apparatus 10 includes four discrete Fourier transform modules 15-1, 15-2, 15-3, and 15-4, which respectively obtain data streams 20-1, 20-2 by discrete Fourier transform. 20-3 and 20-4.
  • the data stream 20-1 includes two time slots of data blocks 20-1-1 and 20-1-2
  • the data stream 20-2 includes two time slot data blocks 20-2-1 and 20-2-2.
  • Data stream 20-3 includes two time slot data blocks 20-3-1 and 20-3-2
  • data stream 20-4 includes two time slot data blocks 20-4-1 and 20-4-2.
  • the eight data blocks are subjected to grouping and mapping by the packet mapping means 30, and are modulated by the inverse fast Fourier transform modules 40-1 and 40-2 to different sub-bands of the antennas 50-1 and 50-2 for transmission.
  • the subbands occupied on the antenna 50-1 include subbands 35-1-1, 35-1-2, 35-1-3, 35-1 -4, and subbands occupied on the antenna 50-2 include subbands 35-2-1, 35-2-2, 35-2-3, 35-2-4; wherein subbands 35-1-1 and 35-2-1 are the same subbands corresponding to the two antennas,
  • the sub-bands 35-1-2 and 35-2-2 are also the same sub-band corresponding to the two antennas, and the sub-bands 35-1-3 and 35-2-3 are also the same sub-band corresponding to the two antennas, Subbands 35-1-4 and 35-2-4 are also the same subbands corresponding to the two antennas.
  • the packet mapping device 30 can employ multiple packet mapping methods for the four data blocks. Since there are four data blocks per time slot, the four data blocks of the same time slot are divided into two groups in a plurality of grouping manners.
  • One grouping method is that two packets of the same time slot each contain two data blocks, for example, data blocks 20-1-1 and 20-2-1 are divided into one packet, and data blocks 20-3-1 and 20- 4-1 is divided into another group.
  • Another grouping method is that two packets of the same time slot respectively contain three data blocks and one data block, for example, data blocks 20-1-1, 20-2-1 and 20-3-1 are divided into one group, Data block 20-4-1 is split into another packet.
  • the same data block grouping manner may be adopted, or different data block grouping manners may be adopted.
  • the packet mapping device 30 will have four of the same time slots.
  • the data block is divided into two packets each containing two data blocks, and the same data block grouping manner and the same packet-to-antenna mapping manner are adopted for the data blocks of different time slots.
  • data blocks 20-1-1, 20-2-1 are divided into one packet and mapped to subbands 35-1-1, 35-1-1 on antenna 50-1, respectively.
  • Data blocks 20-3-1, 20-4-1 are divided into another packet and mapped to subbands 35-2-3, 35-2-4 on antenna 50-2, respectively;
  • the time slots, data blocks 20-1-2, 20-2-2 are divided into one packet and mapped to sub-bands 35-1-3, 35-1-4 on antenna 50-1, respectively,
  • data block 20- 3-2, 20-4-2 are split into another packet and mapped to subbands 35-2-1, 35-2-2 on antenna 50-2, respectively.
  • data blocks of different time slots of one data stream are mapped to different sub-bands and transmitted by the same antenna, so that the frequency diversity gain can be obtained.
  • the data of the four data streams are respectively transmitted by one of the two antennas, which reduces the power peak-to-average ratio on each antenna.
  • this method is more suitable for the case where different data streams occupy resource blocks of the same size.
  • the packet mapping device 30 divides four data blocks of the same time slot into two packets each including two data blocks, and uses the same data block grouping manner for data blocks of different time slots. And different grouping to antenna mapping. For example, in the first time slot, data blocks 20-1-1, 20-2-1 are divided into one packet and mapped to subbands 35-1-1, 35-1-1 on antenna 50-1, respectively. 2.
  • Data blocks 20-3-1, 20-4-1 are divided into another packet and mapped to subbands 35-2-3, 35-2-4 on antenna 50-2, respectively;
  • the time slots, data blocks 20-1-2, 20-2-2 are divided into one packet and mapped to subbands 35-2-2, 35-2-1 on antenna 50-2, respectively,
  • data block 20- 3-2, 20-4-2 are split into another packet and mapped to subbands 35-1-4, 35-1-3 on antenna 50-1, respectively.
  • data blocks of different time slots of one data stream are mapped to different sub-bands and transmitted by different antennas, so that frequency diversity gain and spatial diversity gain can be obtained.
  • a portion of the total data of the four data streams is transmitted on each of the two antennas, reducing the power peak-to-average ratio on each antenna.
  • the occupied band resources on the two antennas 50-1 and 50-2 are the same.
  • the occupied frequency band resources on the two antennas may also be different, that is, the sub-bands 35-1-1, 35-1-2, 35-1-3, 35-1-4, and sub-bands.
  • Band 35-2-1, 35-2-2 35-2-3, 35-2-4 are different from each other, in which case the packet mapping device 30 can take a more flexible mapping of data blocks to sub-bands.
  • the data transmission method in the present invention is not limited to being implemented by the multi-antenna transmitter disclosed in the present invention.
  • FIG. 9 shows a power peak-to-average ratio simulation comparison diagram of the existing scheme 1, the existing scheme 2, and the transmitter scheme shown in FIG. 7.
  • the 15-1, 15-2 shown in Fig. 7 are M-point discrete Fourier transform modules, and the data block acquiring device 10 further includes a signal modulation module.
  • the simulation conditions are as follows:
  • the signal modulation modules of the three schemes all adopt 16QAM modulation, and the existing scheme 1 includes a 2M point discrete Fourier transform module.
  • the existing schemes 2 and 7 all include two M-point discrete Fourier transform modules.
  • the value of M is 60.
  • the inverse fast Fourier transform module in the three schemes uses a 1024-point transform.
  • the abscissa is the power peak-to-average ratio
  • the unit is dB
  • the ordinate is the probability of reaching or exceeding the corresponding power peak-to-average ratio.
  • the cross-symbol connected curve is the performance curve of the existing scheme 1, and the square symbol is connected.
  • the curve is the performance curve of the prior scheme 2, and the curve formed by the circular symbol is the performance curve of the scheme shown in FIG.
  • the simulation results show that the power peak-to-average ratio performance of the scheme shown in Figure 7 is close to that of the existing scheme 2 and is superior to the existing scheme 1.
  • FIG. 10 is a block diagram showing a comparison of data block error rates of the first packet mapping mode and the second packet mapping mode of the prior scheme 2 and the transmitter scheme shown in FIG. 7.
  • the 15-1 and 15-2 shown in FIG. 7 are both M-point discrete Fourier transform modules, and the data block obtaining apparatus 10 further includes a turbo coding module and a signal modulation module, and the sub-bands 35-1-1 and 35-2-1 correspond to each other.
  • Subband 1 in the prior schemes 1, 2, subbands 35-1-2, 35-2-2 correspond to subband 2 in the prior schemes 1, 2.
  • the simulation conditions include: OFDM signal carrier frequency is 2GHz; transmission bandwidth is 10MHz, using 1024-point fast Fourier transform; one data stream, that is, one subframe has a length of 1ms; each data stream is allocated 10 resource units;
  • the leaf transform module is determined according to M being 60; the signal modulation module adopts 16QAM modulation; the coding module adopts Turbo coding with a code rate of 1/2; each data stream is 2880 bits; the subband mapping adopts centralized mapping; two subband intervals 600 subcarriers, that is, approximately 6 MHz; the channel model uses a 3GPP extended spatial channel model with fixed parameters;
  • the application scenario selects an urban non-line-of-sight scene; the antenna is configured such that the two antennas of the transmitter (mobile station) are separated by half wavelength, and the two antennas of the receiver (base station) are separated by 10 wavelengths; the moving speed of the transmitter is set to 30 thousand m/h; channel estimation uses ideal channel estimation; signal-to-noise ratio is defined as the ratio of
  • the abscissa is the signal-to-noise ratio
  • the unit is dB
  • the ordinate is the data block error rate.
  • the curves in the graph are the performance curves of the data block error rate versus signal-to-noise ratio.
  • the curve formed by the cross symbol is the performance curve of the existing scheme 2
  • the curve formed by the circular symbol is the performance curve of the first group mapping mode of the scheme shown in FIG. 7, and the curve of the block symbol is shown in FIG.
  • the performance curve of the second group mapping method of the scheme The simulation results show that the data block error rate performance of the scheme shown in Figure 7 is better than the existing scheme 2.
  • each device referred to in the present invention can be implemented by a hardware module, a functional module in software, or a hardware module integrated with a software function module.
  • the transmitter of the present invention can be applied to clustered DFT extended OFDM technology, and is particularly suitable for uplink data transmission.

Description

多天线发射机以及
用于多天线发射机中的数据发送方法 技术领域
本发明涉及通信技术, 尤其涉及离散傅立叶变换扩展正交频分复 用技术。 背景技术
分簇式离散傅立叶变换扩展正交频分复用 ( clustered DFT-S-OFDM )已经被采纳为 LTE-A的上行多址接入方案,为简便计, 下文中将其表示为分簇式 DFT扩展 OFDM。在分簇式 DFT扩展 OFDM 方案中, DFT块的输出被分成若干簇, 每一簇数据被单独地映射到一 个子频带上。 这种非连续的频带分配是分簇式 DFT扩展 OFDM区别 于 SC-FDMA的特征。 尽管这种特征带来了频率分集增益, 但是它增 大了功率峰均比。
图 1示出了一种现有技术的分簇式 DFT扩展 OFDM的发射机结 构。 如图 1所示, 数据经过 Turbo编码、 信号调制以及 2M点的离散 傅立叶变换, 离散傅立叶变换块的输出被分成两簇, 这两簇数据块被 分别映射到子频带 1和子频带 2上, 最后由一条天线发射出去。 在下 文中, 图 1所示的发射机方案被称为现有方案 1 , 如前所述, 这种方 案的缺点在于功率峰均比比较大。
已经提出了一种用于分簇式 DFT扩展 OFDM的分组方法, 在该 方案中, 两簇调制后的数据被分配给两条天线, 每簇数据通过其中一 条天线发射从而降低了功率峰均比。图 2示出了该方案的发射机结构, 如图 2所示, 数据经过 Turbo编码、 信号调制以后分为两簇, 两簇数 据分别经过独立的离散傅里叶变换, 第一簇数据映射到子频带 1并由 天线 1发射出去, 第二簇数据映射到子频带 2并由天线 2发射出去。 在该方案中,每条发射天线对应于一簇数据,因此降低了功率峰均比。 然而, 却失去了部分频率分集增益。 在下文中, 图 2所示的发射机方 案被称为现有方案 2。 发明内容
为了克服现有技术中的问题, 本发明提出一种用于多天线发射机 的数据发送方案, 该方案尤其适用于分簇式 DFT扩展 OFDM技术。
根据本发明的第一方面, 提供了一种在多天线发射机中发送数据 的方法, 包括以下步骤: A. 获取多个数据流, 其中每个数据流包含 多个时隙的数据块; B. 对各数据块进行分组映射, 其中将各数据流 的相同时隙的数据块根据天线数量分组并将各分组分别映射到所述 多条天线之一, 将相同分组中的不同数据块分别映射到不同子频带 上; 其中对不同时隙的数据块采用不完全相同的分组映射方式, 所述 分组映射方式包括数据块分组方式、各分组到天线的映射方式以及子 频带映射方式; C. 将所述多个时隙的多个数据块分组分别经由所述 多条天线发射。
根据本发明的第二方面, 提供了一种具有多条天线的发射机, 包 括: 数据块获取装置, 用于获取多个数据流, 其中每个数据流包含多 个时隙的数据块; 分组映射装置, 用于对各数据块进行分组映射, 其 中将各数据流的相同时隙的数据块根据天线数量分组并将各分组分 别映射到所述多条天线之一, 将相同分组中的不同数据块分别映射到 不同子频带上; 其中对不同时隙的数据块采用不完全相同的分组映射 方式, 所述分组映射方式包括数据块分组方式、 各分组到天线的映射 方式以及子频带映射方式; 所述多个时隙的多个数据块分组分别经由 所述多条天线发射。
通过使用本发明的技术方案, 可以在降低数据发送的功率峰均比 的同时获得分集增益。 附图说明
通过阅读以下参照附图对非限制性实施例所作的详细描述, 本发 明的其它特征、 目的和优点将会变得更明显。 图 1示出了一种现有技术的分簇式 DFT扩展 OFDM的发射机结 构框图;
图 2示出了一种现有技术的多天线分簇式 DFT扩展 OFDM技术 的发射机结构框图;
图 3示出了根据本发明一个实施例的在多天线发射机中发送数据 的方法的流程图;
图 4示出了根据本发明一个实施例的多天线发射机的结构框图; 图 5示出了根据本发明的一个实施例的发射机中的数据块获取装 置的结构图;
图 6示出了根据本发明的一个实施例的发射机中的数据块获取装 置的结构图;
图 7示出了根据本发明一个实施例的多天线发射机的结构框图; 图 8示出了根据本发明一个实施例的多天线发射机的结构框图; 图 9示出了几种发射机方案的功率峰均比仿真对比图;
图 10示出了几种发射机方案的数据块错误率仿真对比图; 其中, 相同或相似的附图标记表示相同或相似的步骤特征或装置 (模块)。 具体实施方式
图 3示出了根据本发明一个实施例的在多天线发射机中发送数据 的方法的流程图。
首先, 在步骤 S1 中, 将获取多个数据流, 其中每个数据流包括 多个时隙的数据块。
然后, 在步骤 S2 中, 将对各数据块进行分组映射, 其中将各数 据流的相同时隙的数据块根据天线数量分组并将各分组分别映射到 所述多条天线之一, 相同分组中的不同数据块被分别映射到不同子频 带上; 其中对不同时隙的数据块采用不完全相同的分组映射方式, 所 述分组映射方式包括数据块分组方式、各分组到天线的映射方式以及 子频带映射方式。 最后, 在步骤 S3 中, 所述多个时隙的多个数据块分组将分别经 由所述多条天线发射出去。
根据本发明的多天线发射机中的数据发送方法的一个实施例, 其 中的数据发射采用分簇式 DFT扩展 OFDM技术。
根据本发明的多天线发射机中的数据发送方法的一个实施例, 在 步骤 S2中, 将相同时隙的各数据块分别映射到不同的子频带。
根据本发明的多天线发射机中的数据发送方法的一个实施例, 所 有子频带之间都是非连续的。
根据本发明的多天线发射机中的数据发送方法的一个实施例, 在 步骤 S2 中, 对不同时隙的数据块采用相同的数据块分组方式、 不同 的分组到天线的映射方式。
根据本发明的多天线发射机中的数据发送方法的一个实施例, 在 步骤 S2 中, 对不同时隙的数据块采用相同的数据块分组方式、 相同 根据本发明的多天线发射机中的数据发送方法的一个实施例, 在 步骤 S1中, 所获取的多个数据流分别包括两个时隙的数据块。
根据本发明的多天线发射机中的数据发送方法的一个实施例, 该 数据发送方法用于上行数据发送。
根据本发明的多天线发射机中的数据发送方法的一个实施例, 所 述多天线发射机包括两条天线。
根据本发明的多天线发射机中的数据发送方法的一个实施例, 其 中, 在步骤 S1 中, 获取两个数据流, 分别包括多个时隙的数据块; 在步骤 S2 中, 将相同时隙的两个数据块分别映射到两条天线之一, 并且分别映射到不同子频带上。
根据本发明的多天线发射机中的数据发送方法的一个实施例, 其 中, 在步骤 S1中获取的两个数据流分别包含两个时隙的数据块。
根据本发明的多天线发射机中的数据发送方法的一个实施例, 其 中, 在步骤 S2中, 将步骤 S1中所获取的两个数据流的数据块分别映 射到两条天线之一, 并将相同数据流的两个时隙的数据块分别映射到 不同子频带。
根据本发明的多天线发射机中的数据发送方法的一个实施例, 其 中, 在步骤 S2 中, 将相同数据流的两个时隙的数据块分别映射到两 条天线之一。
根据本发明的多天线发射机中的数据发送方法的一个实施例, 其 中, 在步骤 S1 中, 获取四个数据流, 分别包括多个时隙的数据块; 在步骤 S2 中, 将相同时隙的四个数据块分为两组, 每组包括两个数 据块, 将两个数据块分组分别映射到两条天线之一, 将相同数据块分 组中的两个数据块分别映射到不同子频带上。
根据本发明的多天线发射机中的数据发送方法的一个实施例, 其 中, 在步骤 S2中, 对不同时隙的数据块采用相同的数据块分组方式、 不同的分组到天线的映射方式。
根据本发明的多天线发射机中的数据发送方法的一个实施例, 其 中, 在步骤 S2中, 对不同时隙的数据块采用相同的数据块分组方式、 根据本发明的多天线发射机中的数据发送方法的一个实施例, 其 中, 在步骤 S1 中, 所获取的多个数据流是分别经过独立的离散傅立 叶变换后得到。
根据本发明的多天线发射机中的数据发送方法的一个实施例, 其 中, 在步骤 S1 中, 所获取的多个数据流是同一个离散傅立叶变换后 的数据经过划分后得到。
以下将结合具体的发射机结构来说明本发明。
图 4示出了根据本发明一个实施例的多天线发射机的结构框图。 如图 4所示, 该实施例中的发射机包括数据块获取装置 10、分组映射 装置 30以及多条天线 50-1至 50-m。
数据块获取装置 10用于获取多个数据流,如图中所示数据流 20-1 至数据流 20-n。每个数据流包含多个时隙的数据块, 例如数据流 20-1 包括 k个时隙的数据块, 分别表示为 20-1-1至 20-1-k; 数据流 20-n 也包括 k个时隙的数据块, 分别表示为 20-n-l至 20-n-k。 本领域技术 人员应能理解, 本发明不限于各数据流包含相同数目个时隙的数据块 的情形。
分组映射装置 30 用于对各数据块进行分组映射。 各数据流的相 同时隙的数据块根据天线数量被分为多个分组, 并且各分组被分别映 射到天线 50-1至 50-m其中之一。 相同分组中的不同数据块被分别映 射到不同子频带上。 其中对不同时隙的数据块采用不完全相同的分组 映射方式, 所述分组映射方式包括数据块分组方式、 各分组到天线的 映射方式以及子频带映射方式。
通常, 数据流的数量 n大于等于天线的数量 m。
优选地, 该实施例中的发射机采用正交频分复用, 该发射机还包 括与 m条天线——对应的 m个快速傅立叶反变换模块, 用于根据分 组映射装置 30的分组映射方式将相应数据调制到天线 50-1至 50-m。 图 4 中示出了 m个快速傅立叶反变换模块 40-1 至 40-m。 图中所示 35-1-1至 35-1-i表示 i个子频带,有 i个数据块被分别映射到天线 50-1 的这 i个子频带上; 类似地, 图中所示 35-m-l至 35-m-j表示 j个子频 带, 有 j个数据块被分别映射到天线 50-m的这」个子频带上。 通常, 子频带 35-1-1至 35-1-i是彼此不连续的, 类似地, 子频带 35-m-l至 35-m-j也是彼此不连续的。 更优选地, 所有子频带之间均是彼此不连 续的。
最后, 经过快速傅立叶反变换模块的变换, 前述 n个数据流中的 各时隙的数据块经由天线 50-1至 50-m被发射出去。
根据本发明的一个实施例, 多天线发射机包括两条天线。 该发射 机尤其适用于 LTE-A系统的用户端, 即用于上行数据发送。本领域技 术人员应能理解, 本发明中的多天线发射机不限于具有两条天线的发 射机。
根据本发明的一个实施例, 发射机中的数据块获取装置 10 所获 取的每一个数据流对应于正交频分复用系统中的一个数据子帧, 而每 一个数据子帧包括两个时隙, 也就是说, 每一个数据流包括两个时隙 的数据块。 图 5示出了根据本发明的一个实施例的发射机中的数据块获取装 置的结构图。 如图 5所示, 该发射机中的数据块获取装置 10包括信 号调制模块 13和多个离散傅立叶变换模块 15-1至 15-n。 经过信号调 制模块 13调制后的数据被分为 n路, 每一路数据经由一个离散傅立 叶变换模块的变换, 从而分别得到数据流 20-1 至 20-n。 本领域技术 人员应能理解, 信号调制模块 13之前还可能包括信源编码模块或者 信源 /信道联合编码模块, 编码模块所采用的编码可以是 Turbo码。 例 如,根据 LTE-A的一些提案,在发射机中的信号调制模块之前即采用 了 Turbo编码模块。
图 6示出了根据本发明的一个实施例的发射机中的数据块获取装 置的结构图。 如图 6所示, 该发射机中的数据块获取装置 10包括信 号调制模块 13和一个离散傅立叶变换模块 15。 经过信号调制模块 13 调制后的数据输入离散傅立叶变换模块 15 ,经过离散傅立叶变换之后 的数据被分为 n路, 从而分别得到数据流 20-1至 20-n。 本领域技术 人员应能理解, 信号调制模块 13之前还可能包括信源编码模块或者 信源 /信道联合编码模块, 编码模块所采用的编码可以是 Turbo码。 例 如,根据 LTE-A的一些提案,在发射机中的信号调制模块之前即采用 了 Turbo编码模块。
根据本发明的发射机的一个实施例, 发射机包括两条天线, 数据 块获取装置输出两个数据流。 图 7示出了该实施例的发射机的结构框 图。 如图 7所示, 数据块获取装置 10包括两个离散傅立叶变换模块 15-1和 15-2 , 经过离散傅立叶变换分别得到数据流 20-1和 20-2, 数 据流 20-1包括两个时隙的数据块 20-1 -1和 20-1-2 , 数据流 20-2包括 两个时隙的数据块 20-2-1 和 20-2-2。 四个数据块经过分组映射装置 30的分组和映射, 再由快速傅立叶反变换模块 40-1和 40-2调制到天 线 50-1和 50-2的不同子频带上发送出去。 天线 50-1上被占用的子频 带包括子频带 35-1-1和 35-1-2, 天线 50-2上被占用的子频带包括子 频带 35-2-1和 35-2-2 , 其中子频带 35-1-1和 35-2-1是对应于两条天 线的相同的子频带, 子频带 35-1-2和 35-2-2也是对应于两条天线的 相同的子频带。
分组映射装置 30 可以对这四个数据块采用多种分组映射方式。 因为每个时隙只有两个数据块, 因此相同时隙的两个数据块很自然地 被分为两个分组, 每个分组各一个数据块。 对不同时隙的数据块理所 当然地采用相同的数据块分组方式。
在第一种映射方式中, 分组映射装置 30将相同时隙的不同数据 块映射到不同子频带, 并且对不同时隙的数据块采用相同的分组到天 线映射方式。 例如, 在第一个时隙, 数据块 20-1-1被映射到天线 50-1 上的子频带 35-1-1 , 数据块 20-2-1 被映射到天线 50-2 上的子频带 35-2-2; 在第二个时隙, 数据块 20-1-2被映射到天线 50-1上的子频带 35-1-2 , 数据块 20-2-2被映射到天线 50-2上的子频带 35-2-1。 在该方 式下, 一个数据流的不同时隙的数据块映射到不同的子频带上由同一 条天线发射出去, 从而可以获得频率分集增益。 两个数据流的数据分 别由两条天线之一发射, 降低了每条天线上的功率峰均比。 本领域技 术人员应能理解, 该方式比较适合用于不同的数据流占用相同大小的 资源块的情形。
在第二种映射方式中, 分组映射装置 30将相同时隙的不同数据 块映射到不同子频带, 并且对不同时隙的数据块采用不同的分组到天 线映射方式。 例如, 在第一个时隙, 数据块 20-1-1被映射到天线 50-1 上的子频带 35-1-1 , 数据块 20-2-1 被映射到天线 50-2 上的子频带 35-2-2; 在第二个时隙, 数据块 20-1-2被映射到天线 50-2上的子频带 35-2-1 , 数据块 20-2-2被映射到天线 50-1上的子频带 35-1-2。 在该方 式下, 一个数据流的不同时隙的数据块被映射到相同的子频带但由不 同天线发射出去, 从而可以获得空间分集增益。 两条天线上分别发射 两个数据流的其中一部分数据, 从而降低了每条天线上的功率峰均 比。
在该实施例中,两条天线 50-1和 50-2上被占用的频带资源相同。 本领域技术人员应能理解, 两条天线上被占用的频带资源也可以不 同, 亦即子频带 35-1-1、 35-1-2与子频带 35-2-1、 35-2-2彼此不同, 在此情况下, 分组映射装置 30可以采取更加灵活的数据块到子频带 的映射。
根据本发明的发射机的一个实施例, 发射机包括两条天线, 数据 块获取装置输出四个数据流。 图 8示出了该实施例的发射机的结构框 图。 如图 8所示, 数据块获取装置 10包括四个离散傅立叶变换模块 15-1、 15-2、 15-3和 15-4 , 经过离散傅立叶变换分别得到数据流 20-1、 20-2、 20-3 和 20-4。 数据流 20-1 包括两个时隙的数据块 20-1-1 和 20-1-2 , 数据流 20-2包括两个时隙的数据块 20-2-1和 20-2-2 , 数据流 20-3包括两个时隙的数据块 20-3-1和 20-3-2, 数据流 20-4包括两个 时隙的数据块 20-4-1和 20-4-2。 八个数据块经过分组映射装置 30的 分组和映射,再由快速傅立叶反变换模块 40-1和 40-2调制到天线 50-1 和 50-2的不同子频带上发送出去。 天线 50-1上被占用的子频带包括 子频带 35-1-1、 35-1-2、 35-1-3、 35-1 -4, 天线 50-2上被占用的子频 带包括子频带 35-2-1、 35-2-2、 35-2-3、 35-2-4; 其中子频带 35-1-1和 35-2-1 是对应于两条天线的相同的子频带, 子频带 35-1-2和 35-2-2 也是对应于两条天线的相同的子频带, 子频带 35-1-3和 35-2-3也是 对应于两条天线的相同的子频带, 子频带 35-1-4和 35-2-4也是对应 于两条天线的相同的子频带。
分组映射装置 30可以对这四个数据块采用多种分组映射方式。 因为每个时隙有四个数据块, 因此将相同时隙的四个数据块分为 两个分组有多种分组方式。 一种分组方式是相同时隙的两个分组中各 包含两个数据块, 例如数据块 20-1-1和 20-2-1被分入一个分组, 数 据块 20-3-1 和 20-4-1被分入另一个分组。 另一种分组方式是相同时 隙的两个分组分别包含三个数据块和一个数据块, 例如数据块 20-1-1、 20-2-1和 20-3-1被分入一个分组, 数据块 20-4-1被分入另一 个分组。
对于不同时隙的数据块, 可以采用相同的数据块分组方式, 也可 以采用不同的数据块分组方式。
在第一种分组映射方式中, 分组映射装置 30将相同时隙的四个 数据块分为各包含两个数据块的两个分组, 并且对不同时隙的数据块 采用相同的数据块分组方式以及相同的分组到天线映射方式。 例如, 在第一个时隙, 数据块 20-1-1、 20-2-1被分入一个分组并被分别映射 到天线 50-1上的子频带 35-1-1、 35-1-2, 数据块 20-3-1、 20-4-1被分 入另一个分组并被分别映射到天线 50-2上的子频带 35-2-3、 35-2-4; 在第二个时隙, 数据块 20-1-2、 20-2-2被分入一个分组并被分别映射 到天线 50-1上的子频带 35-1-3、 35-1-4, 数据块 20-3-2、 20-4-2被分 入另一个分组并被分别映射到天线 50-2上的子频带 35-2-1、 35-2-2。 在该方式下, 一个数据流的不同时隙的数据块映射到不同的子频带上 由同一条天线发射出去, 从而可以获得频率分集增益。 四个数据流的 数据分别由两条天线之一发射, 降低了每条天线上的功率峰均比。 本 领域技术人员应能理解, 该方式比较适合用于不同的数据流占用相同 大小的资源块的情形。
在第二种分组映射方式中, 分组映射装置 30将相同时隙的四个 数据块分为各包含两个数据块的两个分组, 并且对不同时隙的数据块 采用相同的数据块分组方式以及不同的分组到天线映射方式。 例如, 在第一个时隙, 数据块 20-1-1、 20-2-1被分入一个分组并被分别映射 到天线 50-1上的子频带 35-1-1、 35-1-2, 数据块 20-3-1、 20-4-1被分 入另一个分组并被分别映射到天线 50-2上的子频带 35-2-3、 35-2-4; 在第二个时隙, 数据块 20-1-2、 20-2-2被分入一个分组并被分别映射 到天线 50-2上的子频带 35-2-2、 35-2-1 , 数据块 20-3-2、 20-4-2被分 入另一个分组并被分别映射到天线 50-1上的子频带 35-1-4、 35-1-3。 在该方式下, 一个数据流的不同时隙的数据块被映射到不同的子频带 并由不同天线发射出去, 从而可以获得频率分集增益和空间分集增 益。 两条天线上分别发射四个数据流的总数据中的一部分, 降低了每 条天线上的功率峰均比。
在该实施例中,两条天线 50-1和 50-2上被占用的频带资源相同。 本领域技术人员应能理解, 两条天线上被占用的频带资源也可以不 同,亦即子频带 35-1-1、35-1-2、35-1-3、35-1-4与子频带 35-2-1、 35-2-2、 35-2-3、 35-2-4彼此不同, 在此情况下, 分组映射装置 30可以采取更 加灵活的数据块到子频带的映射。 方法, 本领域技术人员应能理解, 本发明中的数据发送方法不限于采 用本发明中揭示的多天线发射机来实现。
图 9示出了现有方案 1、 现有方案 2以及图 7所示发射机方案的 功率峰均比仿真对比图。 图 7中所示 15-1、 15-2均为 M点离散傅立 叶变换模块, 数据块获取装置 10还包括信号调制模块。 仿真条件为: 三种方案的信号调制模块均采用 16QAM调制, 现有方案 1中包括一 个 2M点离散傅立叶变换模块, 现有方案 2和图 7所示方案均包括两 个 M点离散傅立叶变换模块, M取值为 60, 三种方案中的快速傅立 叶反变换模块均采用 1024点的变换。 图 9中, 横坐标为功率峰均比、 单位为 dB, 纵坐标为达到或超过相应功率峰均比的概率, 交叉符号 连成的曲线是现有方案 1的性能曲线, 方块符号连成的曲线是现有方 案 2的性能曲线, 圆形符号连成的曲线是图 7所示方案的性能曲线。 仿真结果显示, 图 7所示方案的功率峰均比性能接近现有方案 2而优 于现有方案 1。
图 10示出了现有方案 2以及图 7所示发射机方案的第一种分组 映射方式和第二种分组映射方式的数据块错误率仿真对比图。 图 7中 所示 15-1、 15-2均为 M点离散傅立叶变换模块, 数据块获取装置 10 还包括 Turbo编码模块和信号调制模块, 子频带 35-1-1、 35-2-1对应 于现有方案 1、 2中的子频带 1 , 子频带 35-1-2、 35-2-2对应于现有方 案 1、 2中的子频带 2。仿真条件包括: OFDM信号载波频率为 2GHz; 传输带宽为 10MHz, 采用 1024点的快速傅立叶变换; 一个数据流, 也就是一个子帧的长度为 1ms; 每数据流分配 10个资源单元; 离散 傅里叶变换模块根据 M为 60来确定; 信号调制模块采用 16QAM调 制;编码模块采用码率为 1/2的 Turbo编码;每个数据流为 2880比特; 子频带映射采用集中式映射; 两个子频带间隔 600个子载波, 也就是 大概 6MHz;信道模型采用具有固定参数的 3GPP扩展空间信道模型; 应用场景选择市区非视距场景; 天线配置为发射机(移动台) 的两条 天线间隔半波长, 接收机(基站) 的两条天线间隔 10个波长; 发射 机的移动速度设置为 30千米 /小时; 信道估计采用理想信道估计; 信 噪比定义为频域中接收天线上的接收总功率与噪声功率的比值。图 10 中, 横坐标为信噪比、 单位为 dB, 纵坐标为数据块错误率, 图中的 曲线均为数据块错误率对信噪比的性能曲线。 交叉符号连成的曲线是 现有方案 2的性能曲线, 圆形符号连成的曲线是图 7所示方案的第一 种分组映射方式的性能曲线, 方块符号连成的曲线是图 7所示方案的 第二种分组映射方式的性能曲线。 仿真结果显示, 图 7所示方案的数 据块错误率性能优于现有方案 2。
本领域技术人员应能理解, 本发明中所称的各装置既可以由硬件 模块实现, 也可以由软件中的功能模块实现, 还可以由集成了软件功 能模块的硬件模块实现。
本发明中的发射机可以适用于分簇式 DFT扩展 OFDM技术, 尤 其适用于上行数据发送。
以上对本发明的非限定性实施例进行了描述, 但是本发明并不局 限于特定的系统、 设备和具体协议, 本领域内技术人员可以在所附权 利要求的范围内做出各种变形或修改。

Claims

权 利 要 求 书
1. 一种在多天线发射机中发送数据的方法, 包括以下步骤:
A. 获取多个数据流, 其中每个数据流包含多个时隙的数据块;
B. 对各数据块进行分组映射, 其中将各数据流的相同时隙的数 据块根据天线数量分组并将各分组分别映射到所述多条天线之一, 将 相同分组中的不同数据块分别映射到不同子频带上; 其中对不同时隙 的数据块采用不完全相同的分组映射方式, 所述分组映射方式包括数 据块分组方式、 各分组到天线的映射方式以及子频带映射方式;
C. 将所述多个时隙的多个数据块分组分别经由所述多条天线发 射。
2. 根据权利要求 1 所述的方法, 其特征在于, 所述发射采用分 簇式离散傅里叶变换扩展正交频分复用。
3. 根据权利要求 1所述的方法, 其特征在于, 所述步骤 B中, 相同时隙的各数据块分别映射到不同的子频带。
4. 根据权利要求 1 所述的方法, 其特征在于, 所有子频带之间 都是非连续的。
5. 根据权利要求 1所述的方法, 其特征在于, 所述步骤 B中, 对不同时隙的数据块采用相同的数据块分组方式、 不同的分组到天线 的映射方式。
6. 根据权利要求 1所述的方法, 其特征在于, 所述步骤 B中, 对不同时隙的数据块采用相同的数据块分组方式、相同的分组到天线 的映射方式以及不同的子频带映射方式。
7. 根据权利要求 1所述的方法, 其特征在于, 所述步骤 A中, 获取的多个数据流分别包括两个时隙的数据块。
8. 根据权利要求 1 所述的方法, 其特征在于, 所述方法用于上 行数据发送。
9. 根据权利要求 1 所述的方法, 其特征在于, 所述多天线发射 机包括两条天线。
10. 根据权利要求 9所述的方法, 其特征在于,
所述步骤 A中, 获取两个数据流, 分别包括多个时隙的数据块; 所述步骤 B中,将相同时隙的两个数据块分别映射到所述两条天 线, 并且分别映射到不同子频带上。
11. 根据权利要求 10 所述的方法, 其特征在于, 所述两个数据 流分别包含两个时隙的数据块。
12. 根据权利要求 11所述的方法, 其特征在于,
所述步骤 B中,将所述两个数据流的数据块分别映射到所述两条 天线, 并将相同数据流的两个时隙的数据块分别映射到不同子频带。
13. 根据权利要求 11所述的方法, 其特征在于,
所述步骤 B中,将相同数据流的两个时隙的数据块分别映射到所 述两条天线。
14. 根据权利要求 9所述的方法, 其特征在于,
所述步骤 A中, 获取四个数据流, 分别包括多个时隙的数据块; 所述步骤 B中, 将相同时隙的四个数据块分为两组, 每组包括两 个数据块, 将两个数据块分组分别映射到所述两条天线之一, 将相同 数据块分组中的两个数据块分别映射到不同子频带上。
15. 根据权利要求 14所述的方法, 其特征在于, 所述步骤 B中, 对不同时隙的数据块采用相同的数据块分组方式、 不同的分组到天线 的映射方式。
16. 根据权利要求 14所述的方法, 其特征在于, 所述步骤 B中, 对不同时隙的数据块采用相同的数据块分组方式、相同的分组到天线 的映射方式以及不同的子频带映射方式。
17. 根据权利要求 1至 16中任一项所述的方法, 其特征在于, 所述步骤 A中,所述多个数据流是分别经过独立的离散傅立叶变换后 得到。
18. 根据权利要求 1 至 16中任一项所述的方法, 其特征在于, 所述步骤 A中,所述多个数据流是同一个离散傅立叶变换后的数据经 过划分后得到。
19. 一种具有多条天线的发射机, 包括:
数据块获取装置, 用于获取多个数据流, 其中每个数据流包含多 个时隙的数据块;
分组映射装置, 用于对各数据块进行分组映射, 其中将各数据流 的相同时隙的数据块根据天线数量分组并将各分组分别映射到所述 多条天线之一, 将相同分组中的不同数据块分别映射到不同子频带 上; 其中对不同时隙的数据块采用不完全相同的分组映射方式, 所述 分组映射方式包括数据块分组方式、各分组到天线的映射方式以及子 频带映射方式;
所述多个时隙的多个数据块分组分别经由所述多条天线发射。
20. 根据权利要求 19 所述的发射机, 其特征在于, 所述发射采 用分簇式离散傅里叶变换扩展正交频分复用。
21. 根据权利要求 19 所述的发射机, 其特征在于, 所述分组映 射装置将相同时隙的各数据块分别映射到不同的子频带。
22. 根据权利要求 19 所述的发射机, 其特征在于, 所有子频带 之间都是非连续的。
23. 根据权利要求 19 所述的发射机, 其特征在于, 所述分组映 射装置对不同时隙的数据块采用相同的数据块分组方式、 不同的分组 到天线的映射方式。
24. 根据权利要求 19 所述的发射机, 其特征在于, 所述分组映 射装置对不同时隙的数据块采用相同的数据块分组方式、相同的分组
25. 根据权利要求 19 所述的发射机, 其特征在于, 所述数据块 获取装置获取的多个数据流分别包括两个时隙的数据块。
26. 根据权利要求 19 所述的发射机, 其特征在于, 所述发射机 用于上行数据发送。
27. 根据权利要求 19 所述的发射机, 其特征在于, 所述发射机 包括两条天线。
28. 根据权利要求 27所述的发射机, 其特征在于, 所述数据块获取装置用于获取两个数据流, 分别包括多个时隙的 数据块;
所述分组映射装置将相同时隙的两个数据块分别映射到所述两 条天线, 并且分别映射到不同子频带上。
29. 根据权利要求 28 所述的发射机, 其特征在于, 所述两个数 据流分别包含两个时隙的数据块。
30. 根据权利要求 29所述的发射机, 其特征在于,
所述分组映射装置将所述两个数据流的数据块分别映射到所述 两条天线, 并将相同数据流的两个时隙的数据块分别映射到不同子频 带。
31. 根据权利要求 29所述的发射机, 其特征在于,
所述分组映射装置将相同数据流的两个时隙的数据块分别映射 到所述两条天线。
32. 根据权利要求 27所述的发射机, 其特征在于,
所述数据块获取装置用于获取四个数据流, 分别包括多个时隙的 数据块;
所述分组映射装置将相同时隙的四个数据块分为两组, 每组包括 两个数据块, 将两个数据块分组分别映射到所述两条天线之一, 将相 同数据块分组中的两个数据块分别映射到不同子频带上。
33. 根据权利要求 32所述的发射机, 其特征在于, 所述分组映 射装置对不同时隙的数据块采用相同的数据块分组方式、 不同的分组 到天线的映射方式。
34. 根据权利要求 32所述的发射机, 其特征在于, 所述分组映 射装置对不同时隙的数据块采用相同的数据块分组方式、相同的分组
35.根据权利要求 19至 34中任一项所述的发射机,其特征在于, 所述数据块获取装置包括多个离散傅立叶变换模块, 所述多个数据流 是分别经由所述多个离散傅立叶变换模块之一的变换后得到。
36.根据权利要求 19至 34中任一项所述的发射机,其特征在于, 所述数据块获取装置包括一个离散傅立叶变换模块, 所述多个数据流 是由离散傅立叶变换模块的输出数据经过划分后得到。
37.根据权利要求 19至 34中任一项所述的发射机,其特征在于, 还包括与所述多条天线——对应的多个快速傅立叶反变换模块, 用于 根据所述分组映射装置的分组映射方式将相应数据映射到所述多条 天线上。
PCT/CN2009/000458 2009-04-28 2009-04-28 多天线发射机以及用于多天线发射机中的数据发送方法 WO2010124414A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020117028133A KR101301017B1 (ko) 2009-04-28 2009-04-28 멀티 안테나들을 갖는 송신기 및 멀티 안테나들을 갖는 송신기에서의 송신 방법
EP09843826.0A EP2426881B1 (en) 2009-04-28 2009-04-28 Transmitter with multiple antennas and data transmission method in the transmitter with multiple antennas
JP2012507559A JP5717722B2 (ja) 2009-04-28 2009-04-28 複数のアンテナを有する送信機および複数のアンテナを有する送信機でのデータ送信方法
US13/266,298 US8995420B2 (en) 2009-04-28 2009-04-28 Transmitter with multiple antennas and data transmission method in the transmitter with multiple antennas
BRPI0924999-0A BRPI0924999B1 (pt) 2009-04-28 2009-04-28 método para transmitir dados por meio de um transmissor de antenas múltiplas e transmissor com antenas múltiplas
CN200980157549.9A CN102334318B (zh) 2009-04-28 2009-04-28 多天线发射机以及用于多天线发射机中的数据发送方法
PCT/CN2009/000458 WO2010124414A1 (zh) 2009-04-28 2009-04-28 多天线发射机以及用于多天线发射机中的数据发送方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/000458 WO2010124414A1 (zh) 2009-04-28 2009-04-28 多天线发射机以及用于多天线发射机中的数据发送方法

Publications (1)

Publication Number Publication Date
WO2010124414A1 true WO2010124414A1 (zh) 2010-11-04

Family

ID=43031637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/000458 WO2010124414A1 (zh) 2009-04-28 2009-04-28 多天线发射机以及用于多天线发射机中的数据发送方法

Country Status (7)

Country Link
US (1) US8995420B2 (zh)
EP (1) EP2426881B1 (zh)
JP (1) JP5717722B2 (zh)
KR (1) KR101301017B1 (zh)
CN (1) CN102334318B (zh)
BR (1) BRPI0924999B1 (zh)
WO (1) WO2010124414A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9438318B2 (en) 2013-04-17 2016-09-06 Commscope Technologies Llc Extracting sub-bands from signals in a frequency domain
CN107947829B (zh) * 2017-12-27 2023-07-25 上海道生物联技术有限公司 一种结合扩频和窄带mimo的时分双工通信系统及方法
CN109995692A (zh) 2017-12-30 2019-07-09 华为技术有限公司 发送数据的方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1223702A1 (en) * 2000-12-29 2002-07-17 Lucent Technologies Inc. Open-loop diversity technique for systems employing four transmitter antennas
CN1717889A (zh) * 2002-10-25 2006-01-04 高通股份有限公司 多天线通信系统的发送分集处理
CN1951031A (zh) * 2004-03-05 2007-04-18 高通股份有限公司 基于ofdm的多天线通信系统的发射分集和空间扩频
WO2008114158A1 (en) * 2007-03-19 2008-09-25 Koninklijke Philips Electronics N.V. Method of precoding in a multi-antenna system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8605687B2 (en) * 2007-07-05 2013-12-10 Qualcomm Incorporated Method for channel estimation in a point-to-point communication network
JP5385990B2 (ja) * 2008-12-08 2014-01-08 ノキア シーメンス ネットワークス オサケユキチュア セルラー電話通信システムにおけるアップリンク制御シグナリング
CN101764636B (zh) * 2008-12-25 2013-06-19 普天信息技术研究院有限公司 块空时分组编码的dft-s-ofdm传输方法和装置
JP2010206547A (ja) * 2009-03-03 2010-09-16 Sharp Corp 無線通信システム、受信装置、送信装置、無線通信システムの通信方法、制御プログラムおよび自律分散型ネットワーク

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1223702A1 (en) * 2000-12-29 2002-07-17 Lucent Technologies Inc. Open-loop diversity technique for systems employing four transmitter antennas
CN1717889A (zh) * 2002-10-25 2006-01-04 高通股份有限公司 多天线通信系统的发送分集处理
CN1951031A (zh) * 2004-03-05 2007-04-18 高通股份有限公司 基于ofdm的多天线通信系统的发射分集和空间扩频
WO2008114158A1 (en) * 2007-03-19 2008-09-25 Koninklijke Philips Electronics N.V. Method of precoding in a multi-antenna system

Also Published As

Publication number Publication date
KR101301017B1 (ko) 2013-08-29
KR20120024650A (ko) 2012-03-14
EP2426881A4 (en) 2014-03-26
EP2426881B1 (en) 2018-03-07
EP2426881A1 (en) 2012-03-07
BRPI0924999B1 (pt) 2020-11-03
US20120069807A1 (en) 2012-03-22
JP5717722B2 (ja) 2015-05-13
JP2012525728A (ja) 2012-10-22
CN102334318B (zh) 2014-02-12
US8995420B2 (en) 2015-03-31
CN102334318A (zh) 2012-01-25

Similar Documents

Publication Publication Date Title
US10554464B2 (en) Method and system for combining DFT-transformed OFDM and non-transformed OFDM
CN103348645B (zh) 上行基带信号压缩方法、解压缩方法、装置和系统
CN103986682B (zh) 一种无线mimo通信系统的通信方法
US20170257250A1 (en) Methods and devices for transmission/reception of data for hybrid carrier modulation mimo system
CN110771105B (zh) 适配于不同子载波间隔配置的频域发射器和接收器
US11212025B2 (en) Transmitting apparatus, receiving apparatus, method, and recording medium
KR20130088028A (ko) Wlan 프레임 헤더 내 신호 필드의 변조
CN111050399B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
KR20070052654A (ko) Ofdma에서의 패킷 데이터 전송 방법 및 장치
JP2007336497A (ja) 可変帯域で通信するための装置及び方法
JP2962299B2 (ja) マルチキャリア信号伝送装置
CN112236984A (zh) 电子设备和通信方法
JP2023516122A (ja) 複数のリソースユニットの組合せを介して送信する通信装置および通信方法
WO2017047210A1 (ja) 装置及び方法
JP2023525703A (ja) Ofdmベースの圧縮データ拡散送信方法及び装置
WO2010124414A1 (zh) 多天线发射机以及用于多天线发射机中的数据发送方法
WO2017190289A1 (zh) 数据处理方法及装置
WO2010105541A1 (zh) 用于多信息流通信的数据交错通信方法
KR20130110208A (ko) 직교 주파수 분할 다중화 시스템에서의 이산 주파수 스펙트럼의 사용, 및 이산 주파수 스펙트럼을 이용하는 수신 방법 및 장치
Vora et al. Index Modulation with PAPR and Beamforming for 5G MIMO-OFDM
US10411862B2 (en) Inserting and extracting control data using frequency components
JP2008278125A (ja) 無線基地局装置
KR20150007161A (ko) 무선 통신 시스템의 부반송파간 간섭 제거 방법 및 이를 수행하는 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980157549.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09843826

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009843826

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13266298

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012507559

Country of ref document: JP

Ref document number: 7917/CHENP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20117028133

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI0924999

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI0924999

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20111027