WO2010123283A2 - Fluorescently marked cohesin marker, and a cellulosome-forming-enzyme detection method employing the same - Google Patents

Fluorescently marked cohesin marker, and a cellulosome-forming-enzyme detection method employing the same Download PDF

Info

Publication number
WO2010123283A2
WO2010123283A2 PCT/KR2010/002508 KR2010002508W WO2010123283A2 WO 2010123283 A2 WO2010123283 A2 WO 2010123283A2 KR 2010002508 W KR2010002508 W KR 2010002508W WO 2010123283 A2 WO2010123283 A2 WO 2010123283A2
Authority
WO
WIPO (PCT)
Prior art keywords
domain
protein
cohisine
cellulose
dockerine
Prior art date
Application number
PCT/KR2010/002508
Other languages
French (fr)
Korean (ko)
Other versions
WO2010123283A3 (en
WO2010123283A9 (en
Inventor
한성옥
조우재
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2010123283A2 publication Critical patent/WO2010123283A2/en
Publication of WO2010123283A9 publication Critical patent/WO2010123283A9/en
Publication of WO2010123283A3 publication Critical patent/WO2010123283A3/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6845Methods of identifying protein-protein interactions in protein mixtures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/573Immunoassay; Biospecific binding assay; Materials therefor for enzymes or isoenzymes

Definitions

  • the present invention relates to a cochine biomarker and a method for screening a cellulosome-forming enzyme using the same, and more particularly, a binding between a dockerine domain of a cellulosome-forming enzyme, a cellulosome-forming mechanism, and a cochine domain of a support protein.
  • the present invention relates to a method of selectively searching for cellulosome-forming enzymes by using cohysine of heavy support protein as a biomarker.
  • Wood fiber is a constituent of the cell walls of plants and consists of a complex of cellulose and hemicellulose.
  • Cellulose is a ⁇ -1,4-glucose complex and is the most abundant renewable material in nature (Reiter et al. Curr Opin Plant Biol 5 (2002) 536-42). Although its chemical composition is simple, the action of several different enzymes is required to efficiently degrade cellulose (Ximenes et al. Hemicellulases and biotechnology. Recent Res Develop Microbiol 2 (1998) 165-176).
  • Hemicelluloses include xylan, ⁇ -1.4-xylose, and glucomannan, ⁇ -1,4-glucose and mannose.
  • cellulose Anaerobic microorganisms that can degrade most cellulose form an enzyme complex called cellulose (Roy H. Doi, The Chemical Record 1 (2001) 24-32).
  • Cellulosomes act against various substrates such as crystalline cellulose, xylan, met, pectin and consist of cellulosome-forming enzymes and support proteins.
  • the formation of cellulosomes consists of binding the dockerin domain of one cellulosome forming enzyme and one of several cohisine domains of the support protein. All cellulosome forming enzymes have dockerin domains and those without dockerin domains are non-cellulosome forming enzymes (Bayer et al. Annual Review of Microbiol 58 (2004) 521-554).
  • the present invention can identify cellulosome forming enzymes simply by one binding step using fluorescently labeled cohissine markers rather than several steps.
  • proteomics is the study of all proteins expressed in a certain state of life, that is, the proteome.
  • the interaction and function between expression proteomics and proteins that study the expression of protein bodies There are functional proteomics that study interactions, post-translational modifications, etc. (Blackstock, et al. Proteomics: quantitative and physical mapping of cellular proteins. Trends Biotechnol 17 (1999) 121-7).
  • the most used proteomics technology to date is two-dimensional polyacrylamide gel electrophoresis (2-DE). In this method, proteins are first separated according to isoelectric focusing (IEF) and then separated according to molecular weight on sodium dodecylsulfate-polyacrylamide gel electrophoresis (O'Farrell et al.
  • the present inventors have completed the present invention by confirming that the fluorescently labeled cohisine biomarker can easily and selectively search for cellulosome forming enzymes.
  • the present invention has been made in view of the above necessity, and an object of the present invention is to provide a biomarker capable of selectively searching for cellulosome forming genes.
  • Another object of the present invention is to provide a method for selectively searching for cellulosome forming enzymes.
  • Another object of the present invention is to provide a method for easily separating and purifying a target protein.
  • Another object of the present invention is to provide a method for detecting a target substance interacting with cohissin.
  • the present invention provides a marker composition for searching for cellulose-forming enzyme having a cohesin (cohesin) domain as an active ingredient.
  • the cohisine domain is preferably labeled with a labeling means selected from the group consisting of fluorescent material and radioisotope, and more preferably labeled with a fluorescent material, but is not limited thereto.
  • the fluorescent substance for fluorescently labeling the cohisine domain of the present invention is not particularly limited, but Alexa Fluor® 647, TAMRA (carboxytetramethylhodamine), TMR (tetramethylhodamine), and rhodamine green (Rhodamine Green) ), Alexa fluor (registered trademark) 488, YOYO1, EVOblue (registered trademark) 50, phycoerythrin (PE), Texas red (TR), tetramethylrhodamine isothiocyanate , TRITC), fluorescein carboxylic acid (FCA), fluorescein thiourea (FTH), 7-acetoxycoumarin-3-1, fluorescein-5-1, flu Oresin-6-1, 2 ', 7'-dichlorofluorescein-5-1, 2', 7'-dichlorofluorescein-6-1, dehydrotetramethylosamine- 4-1, tetramethylrhodamine
  • Alexa Fluoro 647 is used.
  • the fluorescent material has a succinimidyl ester structure and effectively binds to primary amines of the cohysine protein to form stable fluorescent dye-protein bonds.
  • the protein of the present invention may or may not include a linker connecting the protein and the fluorescent material.
  • the linker serves to facilitate the measurement of fluorescence polarization, and any material having such an effect can be used as the linker, for example, aminocaproic acid or the like can be used as the linker.
  • radioactive isotopes labelable in the cohisine domain of the present invention are 2 H, 3 H, 13 C, 14 C, 15 N, 17 O, 18 0, 35 S, 18 F, 36 Cl, 123 I, 76 Isotopes of hydrogen, carbon, nitrogen, oxygen, halogens such as Br, 124 I or 75 Br. These isotopes can be added during culture or labeled by substituting hydrogen or the like present in the protein.
  • the method of separating and purifying the cochsine domain of the present invention is not particularly limited, but methods using charge differences such as dialysis, ultrafiltration, and ion-exchange column chromatography, such as affinity chromatography or reverse phase high performance liquid chromatography, A method using the hydrophilic difference can be used.
  • the cohysine domain is different for each anaerobic microorganism forming a cellulosome, but cochine domain 1 to domain 9 of support protein CbpA of Clostridium cellulovorans, an anaerobic microorganism used in the present invention (Roy H. Doi , The Clostridium cellulovorans cellulosome: An enzyme complex with plant cell wall degrading activity.
  • the chemical record 1 (2001) 24-32) is preferably at least one domain, more preferably domain 6, but a cellosome-forming enzyme
  • These fragments having a search function or their mutants having one or more deletions, substitutions, inversions, etc. of these domains are also included in the marker composition for searching for cellosome-forming enzymes of the present invention.
  • the domain 6 has a sequence identity of at least 80%, at least 85%, at least 90%, at least 93%, with the amino acid sequence set forth in SEQ ID NO: 1 and the amino acid sequence set forth in SEQ ID NO: 1, At least 94%, at least 95%, at least 96%, at least 97%, at least 98%, and at least 99%.
  • the polypeptide has a certain ratio (eg, 80%, 85%, 90%, 95%, or 99%) of sequence identity to another sequence, when aligning the two sequences, By comparison it is meant that the amino acid residues in this ratio are identical.
  • the alignment and percent homology or identity may be determined by any suitable software program known in the art, such as those described in CURRENT PROTOCOLS IN MOLECULAR BIOLOGY (FM Ausubel et al. (Eds) 1987 Supplement 30 section 7.7.18). Can be determined using Preferred programs include the GCG Pileup program, FASTA (Pearson et al. 1988 Proc. Natl Acad.
  • BLAST BLAST Manual, Altschul et al., Natl. Cent. Biotechnol. Inf., Natl Lib. Med. (NCIB NLM NIH), Bethesda, MD, and Altschul et al. 1997 NAR25: 3389-3402.
  • NCIB NLM NIH NCIB NLM NIH
  • ALIGN Plus Scientific and Educational Software, PA
  • Another sequence software program that can be used is the TFASTA Data Searching Program available from Sequence Software Package Version 6.0 (Genetics Computer Group, University of Wisconsin, Madison, Wis.).
  • the present invention is a) culturing cellulose degradation microorganisms to obtain proteins; b) isolating the proteins; c) the cohesin domain of claim 1 or 2 effective in the isolated protein Treating the marker composition as a component; And d) identifying a complex of the marker and the protein.
  • the cellulose-degrading microorganism is preferably an anaerobic bacterium, and the cellulose-degrading microorganism is Clostridium cellulose, Clostridium thermocell, Clostridium cellulose lightycum, Closs Tridium acetobutylraicum, Clostridium joshua, clostridium papyrosolves, acetiviorio cellulolytics, bacteroids cellulose solbens, luminococos albus, luminococos flab passance, lumi More preferred are, but are not limited to, nococos succinogins, butyliviobrio fibrisolvenes, neocolystic patricial column, offinomyces joyonyl, or offinomiysis PC-2.
  • the method of separating the protein is preferably electrophoresis, two-dimensional electrophoresis, but is not limited thereto.
  • the present invention also provides a recombinant vector pET22b-Coh6 inserted with a cohsin 6 domain gene isolated from Clostridium cellulose boranth.
  • the present invention provides a method for producing a protein comprising a) adding a dockerine domain to a target protein; And b) treating the cohesin domain of the present invention with the target protein-docerine domain complex.
  • the present invention artificially aids in lipases, for example, when using the cell-somal formation principle, cohysine-docorin binding, without restricting the cellulose to cellulose according to the principle of cellulose formation.
  • the invention can be used to search the movement path of the lip phase in real time using the cohesine marker, or to search at which site the specific phase is concentrated.
  • a method for separating and purifying a protein of interest using the cohsin domain of the present invention from a fusion protein produced by fusion of a gene encoding a protein of interest with a dockerine sequence of the present invention in vivo Docker peptide consisting of 15-21 amino acids between the target protein and other peptides or proteins by introducing a DNA sequence encoding 15-21 amino acids at the junction of the coding gene and other peptides or genes encoding the gene.
  • the DNA sequence encoding 7-15 amino acids behind the gene encoding other peptides or proteins of the present invention is a dockerine gene, which binds the dockerine sequence (SEQ ID NO: 8) to the back of the encoding protein. Thereby purifying through the interaction of docerin and cohysine.
  • cleave the fusion protein it is preferable to cleave the other protein fused to the target protein to include an affinity peptide, and then isolate and purify the target protein using an affinity screening method using a metal salt. It is not limited.
  • the present invention (i) providing at least one cohysine domain and dockerine selected from the nano-complex forming material, cohysine domain 1 to domain 9 in the same field or system; (ii) the cohysine and dockerine Forming nano-high complexes by interaction; And (iii) determining whether the nano-high complex is formed to determine the interaction.
  • 'nano high unit complex means a large complex that can be easily observed through the interaction of the affinity peptide sequence cohysine and dockerine,
  • Nano high unit complex forming material' refers to any material having the properties and functions capable of forming the nano high unit complex.
  • an example of the nano-high unit complex forming material is a cellosome-forming enzyme
  • the nano-high unit complex is preferably a cellosome, but is not limited thereto.
  • the present invention (i) providing a library of nano-assembly matrix forming material, dockerine and cohysine in the same field or system; (ii) the dockerine and nose Forming a nano-high unit complex by interaction of hisine libraries; (iii) determining whether the nano-high unit complex is formed to determine the interaction between dockerine and cohisine; And (iv) selecting, separating, and identifying dockerine that interacts with the cohysine to form a nano-high complex, as a target material.
  • the present invention provides a simple method using cellulosome-forming enzymes, which are cellulosic complexes produced from the anaerobic microorganism Clostridial cellulose boron, which degrades wood-based fibrin, using the relationship between the docurin domain and the cohysine domain. It is a technique to detect only cellulosome forming enzymes. More specifically, anaerobic microorganisms using wood fiber as an energy source form cellulosomes, cellulosome complexes, unlike aerobic microorganisms, in order to decompose fibers more effectively (Bayer et al.
  • the cellulosome multienzyme machines for degradation of plant cell wall polysaccharides.Annual Review of Microbiol 58 (2004) 521-554).
  • the principle of cellulosome formation is a complex formed by the mutual binding between the dockerine domain of the cellulosome-forming enzyme and the cohisine domain of the support protein.
  • non-cellosome-forming enzymes are also produced, and a combination of the two enzymes has a synergistic effect, which breaks down the fiber more efficiently.
  • the technique can selectively detect only cellulosome-forming enzymes by only one step of binding by fluorescently labeling the cohysine domain of the support protein.
  • Cellulosome-forming enzymes in the present invention has a protein sequence (docranine domain) that is repeated twice differently from non-cellosome-forming enzymes, and the dockerine domain is a protein-protein binding to the co-cycin domain of the support protein. Enzymes forming cellulosomes (Bayer et al. The cellulosome: multienzyme machines for degradation of plant cell wall polysaccharides.Annual Review of Microbiol 58 (2004) 521-554).
  • the present invention can easily search for cellulosome-forming enzymes of anaerobic microorganisms using wood-based fibrils that have not been genetically analyzed as an energy source, and furthermore, by artificially manipulating the found cellulosome-forming enzymes, they are enriched on the planet. It will be an efficient screening technique to build an efficient fibrinolysis system that converts fiber into a valuable energy source, sugar or ethanol.
  • Anaerobic microorganisms which use wood fiber as an energy source, form cellulose complexes, cellulase complexes, in order to break down cellulose more efficiently.
  • Cellulosomes are not found in aerobic microorganisms and are expressed only in anaerobic microorganisms utilizing fiber.
  • the formation of cellulosomes consists of the cross-linking between the dockerin domain of the cellulosome-forming enzyme and the cohisine domain of the support protein.
  • a cohysine 6 domain gene was obtained through a PCR reaction using Clostridium cellulose boron genomicdiene as a template, and a recombinant vector was produced by subcloning the obtained gene into an E. coli protein expression vector. .
  • E. coli was transformed using the recombinant vector into which the cohysine 6 domain gene was inserted. Afterwards, the gene was expressed and purified to obtain a pure protein at all times, and the extracellular secreted protein generated from Clostridium cellulose boronase was labeled with fluorescent dyes using an IPG (immobilized pH gradient) strip of pH 4-7. Two-dimensional polyacrylamide gel electrophoresis was performed. Then, the gel was subjected to Coomassie Blue staining to examine the expression of the protein and to bind with fluorescently labeled cohisine markers to selectively identify only cellulosome-forming enzymes with dockerine. As a result, the cellulosome-forming enzyme of 14 ⁇ 3 out of 40 ⁇ 10 spots could be detected. After that, the analyzed spots were identified by cellulose-forming enzymes by LC / MS / MS analysis.
  • the biomarkers are preferably detected by two-dimensional electrophoresis, but are not limited thereto.
  • the fusion protein attached to the back of the coding protein to confirm the use of the cohysine marker developed in the present invention to confirm the purification of the protein and the formation of nano-high complex complex is EgE activity of thermocellum derived from Clostridium
  • the 5 'of the forward primer is referred to as the base sequence excluding the signal peptide portion.
  • the primer was synthesized such that the restriction enzyme Spe1 recognition sequence was inserted into 5 'of the primer and the overlapping sequence was inserted into 5' of the overlapping primer.
  • PCR was performed by using a Splice Overlap Extension (SOE) technique using the synthesized primer, and the skeletal protein including the cochine and cellulose binding module is a basic skeleton of cellulose boranth derived from Clostridium.
  • CBM Cellulose binding module
  • Referase restriction enzyme Spe1 recognition sequence inserted into reverse primer
  • Reverse primer reverse primer Synthesized with a primer.
  • cellulosome-forming enzymes produced in Clostridium cellulose boranth can be easily and selectively searched by using fluorescently labeled cohissine markers.
  • the present invention can be effectively used to search for cellulosome forming enzymes of microorganisms that produce cellulosomes that have not yet completed gene sequencing. It is expected to be useful for developing artificial enzymatic complex systems that can efficiently decompose the most abundant and renewable wood-based biomass in the natural state into high value products.
  • 1 is a figure confirming the PCR product of the cohisine 6 domain gene of the support protein CbpA of Clostridium cellulose by performing agarose gel electrophoresis in the present invention
  • FIG. 2 is a schematic diagram of the recombinant vector pET22b-Coh6 into which the cohsin 6 domain gene of the support protein CbpA of Clostridium cellulose boranth as shown in the present invention is inserted;
  • FIG. 3 is a diagram illustrating purification of cohysine 6 domain from support protein CbpA of Clostridium cellulose boron in the present invention and separated by 15% SDS-PAGE;
  • Figure 4 is an illustration of purified extracellular secretion enzymes of Clostridium cellulose boron in the present invention and separated by 10% Chemical gradient SDS-PAGE;
  • Figure 5 is an illustration of the two-dimensional electrophoresis of the extracellular secretion protein of anaerobic microorganism Clostridium cellulose boranth in the present invention.
  • FIG. 6 is a diagram of selectively detecting extracellular secreted proteins of anaerobic microorganism Clostridial cellulose boron bores by two-dimensional electrophoresis and attaching fluorescently labeled cohiscin markers to selectively detect only cellulose-forming proteins.
  • Figure 7 is a figure confirming the PCR product of the chimeric endo-beta-1,4-glucanase-gene by performing agarose gel electrophoresis in the present invention, (A) Lane 1, 1kbp DNA marker; Lane 2, chimeric CelE PCR product,
  • Figure 7 is a figure confirming the PCR product of the small cellulose binding protein A gene by performing agarose gel electrophoresis in the present invention, (B) Lane 1, 1kbp DNA marker; Lane 2, miniCbpA PCR product.
  • FIG. 8 is a diagram illustrating a method for purifying affinity proteins using the interaction between cohissin and dockerine in the present invention.
  • FIG. 9 is a view showing the formation of enzyme complexes using Native PAGE for use in the formation of polymer nanocomposites using the interaction of cohisine and dockerine in the present invention, Figure 9 Lanes: 1, EngE; 2, EngD, 3, Coh 6; 4, EngE and Coh6 mixtures; 5, represents a mixture of EngD and Coh6,
  • FIG 10 is a view confirming the interaction of cochine and dockerine through the enzyme-linked interaction assay (ELIA) method for use in the formation of polymer nanocomposites using the interaction of cochine and dockerine in the present invention.
  • ELIA enzyme-linked interaction assay
  • the cohysine amplification product obtained in Example 1 was electrophoresed on a 0.8% agarose gel and DNA fragments on the agarose gel were recovered using a gel extraction kit (Elpis, Korea). After digestion with restriction enzymes BamHI, XhoI , ligation was performed on the E. coli protein expression vector pET-22b (Novagen, USA) to transform Escherichia coli (E. coli ) BL21 DE3 and completed. The vector is shown in FIG. Thereafter, the transformed E. coli was inoculated into a Luria-Butani culture solution containing empicillin (50 ⁇ g / mL), and then cultured at 37 ° C.
  • IPTG isopropyl- ⁇ -D-thiogalactopi Lanoside
  • the insoluble proteins were then removed by centrifugation (10,000 X g, 30 minutes), and the water soluble proteins were separated to purify the cohisine 6 domain using affinity chromatography using histidine labels contained in the recombinant protein and SDS-PAGE. Checking the size of 17kDa was confirmed and shown in FIG.
  • Example 2 In order to use the cohisine domain obtained in Example 2 as a biomarker for the search for cellulosome-forming enzymes, light labeling was performed using Alexa Fluor 647 protein labeling kit (Molecular Probes, USA). Fluorescently labeled cohysine was explored with a ProXPRESS 2D (Perkin Elmer, USA) imaging device. Fluorescent dyes absorb the 650 nm wavelength as much as possible and emit 668 nm.
  • Clostridium cellulose boranth (ATCC 35269) was incubated at 37 ° C. for 6 days using a culture solution containing 1% Avicel (crystalline cellulose) in an anaerobic state. Thereafter, the culture was purified by affinity chromatography using Avicel. The culture solution was poured into a column packed with Avicel, washed with 50 mM phosphate buffer (pH 7.0), and then washed with 12.5 mM phosphate buffer (pH 7.0). Thereafter, the enzymes were purified with water. Then, ultrafiltration (Milipore, USA, cut off 10 kDa) was concentrated and confirmed by SDS-PAGE and shown in FIG.
  • IPG immobilized pH gradient strips (pH 4-7) (GE Healthcare BioSci, USA) were rehydrated for 16 hours by adding 125 ⁇ l of Destreak rehydration solution (GE Healthcare BioSci, USA). Isoelectric focusing (IEF) was performed at 20 ° C. using an Ettan IPGphor II electrophoresis system (GE Healthcare BioSci, USA) as follows.
  • the first step allowed the protein to enter the gel from 100 V to 100 Vhr, 200 V to 200 Vhr, 300 V to 300 Vhr, 500 V to 500 Vhr, and 1000 V to 1000 Vhr and 1000 V to 5000 Vhr. We increased until it was and fully focused from 5000 V to 23000 Vhr.
  • the strips Prior to two-dimensional electrophoresis, the strips were kept for 15 minutes in equilibration buffer (75 mM Tris-HCl, 6 M urea, 2% SDS, 29.3% glycerol, 0.002% Bromophenol blue) containing 1% dithiothreitol (DTT). The reaction was carried out for 15 minutes in an equilibration buffer containing 4% iodoacetamide.
  • the equilibrated strip was placed on top of the SDS-PAGE gel (10 cm, 10%) and subjected to electrophoresis using a Mini protean tetra cell two-dimensional electrophoresis system (Bio-Rad, USA). Two-dimensional electrophoresis gels immobilized the protein with fixative solution (10% acetic acid, 25% isoprophanol). As a result, about 40 ⁇ 10 spots per gel were obtained and shown in FIG.
  • the 2D electrophoresis-treated gel obtained in Example 5 was blotting onto a PVDF membrane, followed by 2% blocking solution (TBS-T (5 mM Tris-Cl pH 8.0, 0.138 mM NaCl, 1% Tween 20) buffer + 2% skim milk powder). ) was blocked on the shaker for 1 hour and the solution was removed. Then, add 2 ⁇ g fluorescent labeled cohissin to the 2% blocking solution, bind on the shaker for 1 hour and remove the solution. Then add TBS-T buffer and replace with fresh TBS-T once every 10 minutes for 30 minutes on the shaker. Cohysine markers remaining without binding were removed.
  • TBS-T 5 mM Tris-Cl pH 8.0, 0.138 mM NaCl, 1% Tween 20
  • NC is a protein suspected of a new cellulosome forming enzyme
  • NU represents a new cellulosome forming protein of unknown function
  • b NS means no matching information.
  • the fusion protein that gave the dockerine tail to the back of the coding protein was prepared as follows.
  • endo-beta-1,4-glucanase-E (CelE) gene of Clostridium-derived thermocell and the endo-beta-1,4-glucanase-ratio (EngB) of cellulose boron derived from Clostridium
  • EngB endo-beta-1,4-glucanase-ratio
  • the 5 'of the forward primer is limited by reference to the nucleotide sequence of the chimeric CelE.
  • a restriction enzyme NotI recognition sequence is inserted into each of primers (Forward primer - 5'AAA GGATCC GTCGGGAACAAAGCTTTTG3 ' 5 of the enzyme BamHI, a reverse primer (reverse primer) (SEQ ID NO: 4); reverse primer - 5'CCC GCGGCCGC TCATAAAAGCATTTTTTTAAGAACA3' ( SEQ ID NO: Number 5), underscores indicate restriction enzyme sites). Thereafter, PCR was performed using the synthesized primers. As a result, a PCR band containing the chimeric CelE gene derived from Clostridium of 1.3 kbp was identified, which is shown in FIG. 7 (A).
  • miniCbpA small cellulose binding protein A
  • the restriction enzyme BamHI was identified at 5 'of the forward primer with reference to the base sequence of miniCbpA.
  • reverse primer of (reverse primer) 5 ' the restriction enzyme NotI recognition sequence
  • each insert primer Forward primer - 5'CCC GGATCC AGCAGCGACATCATCAATGTC3' ( SEQ ID NO: 6); reverse primer - 5'CCC GCGGCCGC TCATATAGGATCTCCAATATTTA3 '( SEQ ID NO: 7 ), Underscores indicate restriction sites).
  • a PCR band containing a 1.6 kbp clostridium-derived cellulose boranth miniCbpA gene was identified, which is shown in FIG. 7 (B).
  • Cellulose (Sigmacell Type 50, SIGMA) was added and reacted at room temperature for 1 hour for protein purification using the interaction between cellulose-binding module (CBM) and cellulose. After the reaction, the mixture was rinsed three times with 1 mol sodium chloride 0.02 mol Tris buffer (pH 8.0) and eluted with 0.05 mol Tris buffer (pH 12.5). SDS-PAGE electrophoresed the enzyme protein using 10% poly-acrylamide gel.
  • miniCbpA protein band purified at the 58 kDa position was confirmed. This result is shown in FIG.
  • a fusion protein was prepared by attaching a dockerine tail that interacts with cohysine at the back of the coding protein.
  • Cellulose a primary scaffolding subunit of cellulose boranth-derived cellulose boranth, a skeletal protein prepared for complexation between cohisine and the present protein for protein purification and confirmation of formation of nanopolymer complexes in the present invention.
  • Mini-Cellulose-binding protein A with Cellulose binding module (CBM) and two Cohesin modules in Cellulose-binding protein A By using the binding of cellulose to CBD contained in the gene, the same method as described above in the method of protein expression and purification was also used, and Ca 2+ ions were used to elute the fusion protein.
  • nano-higher complexes by confirming the binding of cohysine and dockerine through native PAGE It was found to be a peptide module suitable for formation. This result is shown in FIG.
  • Elia enzyme-linked interaction assay
  • TrisNC buffer 50 mM Tris, 100 mM NaCl, 2 mM CaCl 2 , and 0.02% sodium azide, pH 7.5
  • TrisNC buffer 50 mM Tris, 100 mM NaCl, 2 mM CaCl 2 , and 0.02% sodium azide, pH 7.5
  • a cellulase including dockerine was added to react with cohicin and dockerine for 2 hours.
  • After washing three times after the reaction by specifying the cellulase activity was confirmed the activity of cohysine and tokerin. This result is shown in FIG.

Abstract

The present invention relates to a cohesin biomarker and to a cellulosome-forming-enzyme detection method employing the same, and more specifically it relates to a method for selectively detecting only cellulosome-forming enzymes by using a biomarker comprising the cohesin of a scaffold protein in the bond between the cohesin domain of the scaffold protein and the dockerin domain of the cellulosome-forming enzyme which is a cellulosome-forming mechanism.

Description

형광 표지된 코히신 마커 및 그것을 이용한 셀룰로좀 형성 효소 탐색방법Fluorescently Labeled Cohysine Markers and Methods for Screening Cellulosomal Enzymes Using the Same
본 발명은 코히신 바이오마커 및 이를 이용한 셀룰로좀 형성 효소의 탐색 방법에 관한 것으로, 더욱 상세하게는 셀룰로좀 형성 기작인 셀룰로좀 형성 효소의 도커린 도메인과 지지체 단백질의 코히신 도메인간의 결합 중 지지체 단백질의 코히신을 바이오마커로 이용하여 선택적으로 셀룰로좀 형성 효소만을 탐색하는 방법에 관한 것이다. The present invention relates to a cochine biomarker and a method for screening a cellulosome-forming enzyme using the same, and more particularly, a binding between a dockerine domain of a cellulosome-forming enzyme, a cellulosome-forming mechanism, and a cochine domain of a support protein. The present invention relates to a method of selectively searching for cellulosome-forming enzymes by using cohysine of heavy support protein as a biomarker.
목질계 섬유소는 식물의 세포벽의 구성 성분이며 셀룰로우즈와 헤미셀룰로우즈의 복합체로 이루어져 있다. 셀룰로우즈는 β-1,4-glucose 복합체이며 자연상태에서 가장 풍부한 재생가능한 물질이다 (Reiter et al. Curr Opin Plant Biol 5 (2002) 536-42). 비록 화학적 구성은 단순하지만 효율적으로 셀룰로우즈를 분해하기 위해서는 여러개의 다른 효소들의 작용이 필요 하다 (Ximenes et al. Hemicellulases and biotechnology. Recent Res Develop Microbiol 2 (1998) 165-176). 헤미셀룰로우즈에는 β-1.4-xylose 인 자일란과 β-1,4-glucose,mannose인 글루코만난 등이 있다. 대부분의 셀룰로우즈를 분해 할수 있는 혐기성 미생물들은 셀룰로좀이라는 효소복합체를 형성한다 ( Roy H. Doi, The Chemical Record 1(2001) 24-32). 셀룰로좀은 결정형 셀룰로우즈나 자일란, 만난, 펙틴과 같은 다양한 기질에 대하여 작용하고 셀룰로좀 형성 효소들과 지지체 단백질로 이루어져 있다. 셀룰로좀의 형성은 하나의 셀룰로좀 형성 효소의 도커린 도메인과 지지체 단백질의 여러개의 코히신 도메인중 하나의 결합으로 이루어진다. 모든 셀룰로좀 형성 효소들은 도커린 도메인을 가지고 있고 도커린 도메인이 없는 효소들은 비 셀룰로좀 형성 효소이다 (Bayer et al. Annual Review of Microbiol 58 (2004) 521-554).Wood fiber is a constituent of the cell walls of plants and consists of a complex of cellulose and hemicellulose. Cellulose is a β-1,4-glucose complex and is the most abundant renewable material in nature (Reiter et al. Curr Opin Plant Biol 5 (2002) 536-42). Although its chemical composition is simple, the action of several different enzymes is required to efficiently degrade cellulose (Ximenes et al. Hemicellulases and biotechnology. Recent Res Develop Microbiol 2 (1998) 165-176). Hemicelluloses include xylan, β-1.4-xylose, and glucomannan, β-1,4-glucose and mannose. Anaerobic microorganisms that can degrade most cellulose form an enzyme complex called cellulose (Roy H. Doi, The Chemical Record 1 (2001) 24-32). Cellulosomes act against various substrates such as crystalline cellulose, xylan, met, pectin and consist of cellulosome-forming enzymes and support proteins. The formation of cellulosomes consists of binding the dockerin domain of one cellulosome forming enzyme and one of several cohisine domains of the support protein. All cellulosome forming enzymes have dockerin domains and those without dockerin domains are non-cellulosome forming enzymes (Bayer et al. Annual Review of Microbiol 58 (2004) 521-554).
본 발명은 여러 단계가 아닌 형광 표지된 코히신마커를 사용하여 한번의 결합 단계만으로도 간단하게 셀룰로좀 형성 효소들을 확인을 할 수 있다.The present invention can identify cellulosome forming enzymes simply by one binding step using fluorescently labeled cohissine markers rather than several steps.
한편, 프로테오믹스(proteomics)는 생명체의 어떤 특정 상태에서 발현되는 모든 단백질 즉 단백질체(proteome)를 연구하는 학문으로 단백질체의 발현을 연구하는 발현 프로테오믹스(expression proteomics)와 단백질 간의 상호작용 및 기능(protein-protein interactions, post-translational modification) 등을 연구하는 기능적 프로테오믹스(functional proteomics)가 있다 (Blackstock, et al. Proteomics: quantitative and physical mapping of cellular proteins. Trends Biotechnol 17 (1999) 121-7). 현재까지 가장 많이 사용되고 있는 프로테오믹스 기술은 이차원 전기영동(two-dimensional polyacrylamide gel electrophoresis : 2-DE)이다. 이 방법은 단백질을 먼저 등전점(isoelectric focusing : IEF)에 따라 분리한 후 SDS-PAGE(sodium dodecylsulfate-polyacrylamide gel electrophoresis) 상에서 분자량에 따라 분리하는 기술이다 (O'Farrell et al. High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250 (1975) 4007-21). 단백질을 2-DE 겔에서 분리한 후 염색을 하고 발현이 차이가 나는 단백질의 스팟을 오려내어 트립신(trypsin)으로 겔내 절단(in-gel digestion)을 수행한다. 얻어진 단백질을 펩타이드 단위로 절단한 후 질량분석기(LC-MS-MS)를 이용하여 질량값을 얻고, 얻어진 질량값을 데이타 베이스에서 조사하여 단백질을 동정한다. 이차원 전기영동법은 좋은 해상도와 번역 후 변이(post-translational modification)의 변화, 단백질 가수분해(proteolysis)에 의한 변화 등을 알 수 있다 (도면 4 참조).On the other hand, proteomics is the study of all proteins expressed in a certain state of life, that is, the proteome. The interaction and function between expression proteomics and proteins that study the expression of protein bodies There are functional proteomics that study interactions, post-translational modifications, etc. (Blackstock, et al. Proteomics: quantitative and physical mapping of cellular proteins. Trends Biotechnol 17 (1999) 121-7). The most used proteomics technology to date is two-dimensional polyacrylamide gel electrophoresis (2-DE). In this method, proteins are first separated according to isoelectric focusing (IEF) and then separated according to molecular weight on sodium dodecylsulfate-polyacrylamide gel electrophoresis (O'Farrell et al. High resolution two-dimensional electrophoresis). of proteins.J Biol Chem 250 (1975) 4007-21). The protein is separated from the 2-DE gel, stained, and the spots of the proteins with different expressions are cut out and subjected to in-gel digestion with trypsin. After the obtained protein is cleaved into peptide units, the mass value is obtained by using a mass spectrometer (LC-MS-MS), and the obtained mass value is investigated in a database to identify the protein. Two-dimensional electrophoresis reveals good resolution, changes in post-translational modifications, and changes due to proteolysis (see Figure 4).
이에, 본 발명자들은 형광 표지된 코히신 바이오마커를 사용하여 셀룰로좀 형성 효소들을 간편하고 선택적으로 탐색할 수 있음을 확임 함으로써 본 발명을 완성하였다.Thus, the present inventors have completed the present invention by confirming that the fluorescently labeled cohisine biomarker can easily and selectively search for cellulosome forming enzymes.
본 발명은 상기의 필요성에 의하여 안출된 것으로 본 발명의 목적은 셀룰로좀 형성 유전자를 선택적으로 탐색할 수 있는 바이오마커를 제공하는 것이다.The present invention has been made in view of the above necessity, and an object of the present invention is to provide a biomarker capable of selectively searching for cellulosome forming genes.
본 발명의 또 다른 목적은 셀룰로좀 형성 효소들을 선택적으로 탐색하는 방법을 제공하는 것이다.Another object of the present invention is to provide a method for selectively searching for cellulosome forming enzymes.
본 발명은 또 다른 목적은 타겟단백질을 용이하게 분리, 정제하는 방법을 제공하는 것이다.Another object of the present invention is to provide a method for easily separating and purifying a target protein.
본 발명의 다른 목적은 코히신과 상호작용하는 표적물질의 검출방법을 제공하는 것이다.Another object of the present invention is to provide a method for detecting a target substance interacting with cohissin.
상기 목적을 달성하기 위하여, 본 발명은 코히신(cohesin) 도메인을 유효성분으로 하는 셀룰로좀 형성 효소 탐색용 마커 조성물을 제공한다.In order to achieve the above object, the present invention provides a marker composition for searching for cellulose-forming enzyme having a cohesin (cohesin) domain as an active ingredient.
본 발명의 일 구체예에 있어서, 상기 코히신 도메인은 형광물질 및 방사성 동위원소로 구성된 군으로부터 선택된 표지수단이 표지된 것이 바람직하고 형광물질이 표지된 것이 더욱 바람직하나, 이에 한정되지 아니한다. In one embodiment of the present invention, the cohisine domain is preferably labeled with a labeling means selected from the group consisting of fluorescent material and radioisotope, and more preferably labeled with a fluorescent material, but is not limited thereto.
본 발명의 코히신 도메인을 형광표지하는 형광물질은 특별히 한정되는 것은 아니나, 알렉사 플루오르(등록상표) 647, TAMRA(카르복시테트라메틸로다민), TMR(테트라메틸로다민), 로다민그린(Rhodamine Green), 알렉사 플루오르(Alexa fluor)(등록상표) 488, YOYO1, 에보블루(EVOblue)(등록상표) 50, 피코에리스린(phycoerythrin, PE), 텍사스 레드(Texas Red, TR), 로다민(tetramethylrhodamine isothiocyanate, TRITC),플루오레신카복실산(fluorescein carboxylic acid, FCA), 플루오레신 티오우레아(fluorescein thiourea, FTH),7-아세톡시쿠마린(acethocycoumarin)-3-1, 플루오레신-5-1, 플루오레신-6-1, 2',7'-디클로로플루오레신(dichlorofluorescein)-5-1, 2',7'-디클로로플루오레신-6-1, 디하이드로테트라메틸로사민(dehydrotetramethylosamine)-4-1,테트라메틸로다민(tetramethylrhodamine)-5-1, 및 테트라메틸로다민-6-1로 이루어진 군으로부터 선택된 것일 수 있다. The fluorescent substance for fluorescently labeling the cohisine domain of the present invention is not particularly limited, but Alexa Fluor® 647, TAMRA (carboxytetramethylhodamine), TMR (tetramethylhodamine), and rhodamine green (Rhodamine Green) ), Alexa fluor (registered trademark) 488, YOYO1, EVOblue (registered trademark) 50, phycoerythrin (PE), Texas red (TR), tetramethylrhodamine isothiocyanate , TRITC), fluorescein carboxylic acid (FCA), fluorescein thiourea (FTH), 7-acetoxycoumarin-3-1, fluorescein-5-1, flu Oresin-6-1, 2 ', 7'-dichlorofluorescein-5-1, 2', 7'-dichlorofluorescein-6-1, dehydrotetramethylosamine- 4-1, tetramethylrhodamine-5-1, and tetramethylrhodamine-6-1 Can be .
본 발명의 바람직한 실시예에서는 알렉사 플루오로 647을 사용하였다. 상기 형광 물질은 석시니미딜 에스터구조(succinimidyl ester)를 가지고 있어 효과적으로 상기 코히신 단백질의 일차 아민(amine)들에게 결합하여 안정적인 형광염료-단백질 결합을 형성 한다.In a preferred embodiment of the present invention Alexa Fluoro 647 is used. The fluorescent material has a succinimidyl ester structure and effectively binds to primary amines of the cohysine protein to form stable fluorescent dye-protein bonds.
또한 본 발명의 단백질은 상기 단백질과 형광물질을 연결시켜주는 링커를 포함하거나 포함하지 않을 수 있다. 상기 링커는 형광편광 측정을 용이하게 하는 역할을 하는 것으로, 이러한 효과를 갖는 어떠한 물질도 링커로서 사용가능하며, 예컨대, 아미노카프로산 등을 링커로 사용할 수 있다.In addition, the protein of the present invention may or may not include a linker connecting the protein and the fluorescent material. The linker serves to facilitate the measurement of fluorescence polarization, and any material having such an effect can be used as the linker, for example, aminocaproic acid or the like can be used as the linker.
본 발명의 코히신 도메인에 표지가능한 방사성 동위원소의 예는 각각 2H,3H,13C,14C,15N,17O,180,35S,18F,36Cl, 123I, 76Br, 124I 또는 75Br과 같은 수소, 탄소, 질소, 산소, 할로겐족 의 동위원소를 포함한다. 이들 동위원소들은 배양 중에 첨가되거나, 단백질에 존재하는 수소 등과 치환하여 표지될 수 있다.Examples of radioactive isotopes labelable in the cohisine domain of the present invention are 2 H, 3 H, 13 C, 14 C, 15 N, 17 O, 18 0, 35 S, 18 F, 36 Cl, 123 I, 76 Isotopes of hydrogen, carbon, nitrogen, oxygen, halogens such as Br, 124 I or 75 Br. These isotopes can be added during culture or labeled by substituting hydrogen or the like present in the protein.
또한 본 발명의 코히신 도메인을 분리 및 정제방법은 특별히 한정되는 것은 아니나, 투석, 한외여과, 및 이온-교환 컬럼 크로마토그래피와 같은 전하 차이를 이용하는 방법, 친화 크로마토그래피 또는 역상 고성능 액체 크로마토그래피와 같은 친수성 차이를 이용하는 방법을 이용할 수 있다.In addition, the method of separating and purifying the cochsine domain of the present invention is not particularly limited, but methods using charge differences such as dialysis, ultrafiltration, and ion-exchange column chromatography, such as affinity chromatography or reverse phase high performance liquid chromatography, A method using the hydrophilic difference can be used.
본 발명의 일 구체예에 있어서, 상기 코히신 도메인은 셀룰로좀을 형성하는 혐기성 미생물마다 다르나 본 발명에서 사용한 혐기성 미생물인 Clostridium cellulovorans의 지지체 단백질 CbpA의 코히신 도메인 1내지 도메인 9( Roy H. Doi, The Clostridium cellulovorans cellulosome: An enzyme complex with plant cell wall degrading activity. The Chemical Record 1(2001) 24-32) 중에서 선택된 하나 이상의 도메인인 것이 바람직하고, 도메인 6인 것이 더욱 바람직하나, 셀로로좀 형성 효소 탐색 기능을 가지는 이들의 절편이나 이들 도메인의 하나 이상의 결손, 치환, 역위 등을 가지는 이들의 돌연변이체도 본 발명의 셀로로좀 형성 효소 탐색용 마커 조성물에 포함된다.In one embodiment of the present invention, the cohysine domain is different for each anaerobic microorganism forming a cellulosome, but cochine domain 1 to domain 9 of support protein CbpA of Clostridium cellulovorans, an anaerobic microorganism used in the present invention (Roy H. Doi , The Clostridium cellulovorans cellulosome: An enzyme complex with plant cell wall degrading activity.The chemical record 1 (2001) 24-32) is preferably at least one domain, more preferably domain 6, but a cellosome-forming enzyme These fragments having a search function or their mutants having one or more deletions, substitutions, inversions, etc. of these domains are also included in the marker composition for searching for cellosome-forming enzymes of the present invention.
본 발명의 바람직한 실시예에 있어서, 상기 도메인 6는 서열번호 1에 기재된 아미노산 서열 및 서열번호: 1에 개시된 아미노산 서열과의 서열 동일성이 80% 이상, 85% 이상, 90% 이상, 93% 이상, 94% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상 및 99% 이상인 아미노산 서열을 포함한다. In a preferred embodiment of the invention, the domain 6 has a sequence identity of at least 80%, at least 85%, at least 90%, at least 93%, with the amino acid sequence set forth in SEQ ID NO: 1 and the amino acid sequence set forth in SEQ ID NO: 1, At least 94%, at least 95%, at least 96%, at least 97%, at least 98%, and at least 99%.
본 발명에서 폴리펩티드가 또 다른 서열에 대하여 특정 비율 (예컨대, 80%, 85%, 90%, 95%, 또는 99%) 의 서열 동일성을 가진다는 것은, 상기 두 서열을 정렬시킬 때, 상기 서열들의 비교시에 상기 비율의 아미노산 잔기가 동일함을 의미한다. 상기 정렬 및 백분율 상동성 또는 동일성은, 당업계에 공지된 임의의 적당한 소프트웨어 프로그램, 예를 들어 문헌[CURRENT PROTOCOLS IN MOLECULAR BIOLOGY (F. M. Ausubel 등 (eds) 1987 Supplement 30 section 7.7.18)]에 기재된 것들을 사용하여 결정할 수 있다. 바람직한 프로그램으로는, GCG Pileup 프로그램, FASTA(Pearson 등 1988 Proc. Natl Acad. Sci USA85:2444-2448), 및 BLAST (BLAST Manual, Altschul 등, Natl. Cent. Biotechnol. Inf., Natl Lib. Med. (NCIB NLM NIH), Bethesda, MD, 및 Altschul 등 1997 NAR25:3389-3402)이 있다. 또 다른 바람직한 정렬 프로그램은 ALIGN Plus(Scientific and Educational Software, PA) 로서, 바람직하게는 기본 매개변수를 사용하는 것이다. 사용가능한 또 다른 서열 소프트웨어 프로그램은 Sequence Software Package Version 6.0 (Genetics Computer Group, University of Wisconsin, Madison, WI) 에서 이용가능한 TFASTA Data Searching Program 이다.In the present invention, the polypeptide has a certain ratio (eg, 80%, 85%, 90%, 95%, or 99%) of sequence identity to another sequence, when aligning the two sequences, By comparison it is meant that the amino acid residues in this ratio are identical. The alignment and percent homology or identity may be determined by any suitable software program known in the art, such as those described in CURRENT PROTOCOLS IN MOLECULAR BIOLOGY (FM Ausubel et al. (Eds) 1987 Supplement 30 section 7.7.18). Can be determined using Preferred programs include the GCG Pileup program, FASTA (Pearson et al. 1988 Proc. Natl Acad. Sci USA 85: 2444-2448), and BLAST (BLAST Manual, Altschul et al., Natl. Cent. Biotechnol. Inf., Natl Lib. Med. (NCIB NLM NIH), Bethesda, MD, and Altschul et al. 1997 NAR25: 3389-3402. Another preferred alignment program is ALIGN Plus (Scientific and Educational Software, PA), which preferably uses basic parameters. Another sequence software program that can be used is the TFASTA Data Searching Program available from Sequence Software Package Version 6.0 (Genetics Computer Group, University of Wisconsin, Madison, Wis.).
또한 본 발명은 a) 셀룰로우즈 분해 미생물을 배양하여 단백질들을 얻는 단계;b) 상기 단백질들을 분리하는 단계;c) 상기 분리된 단백질에 제1항 또는 제2항의 코히신(cohesin) 도메인을 유효성분으로 하는 마커 조성물을 처리하는 단계; 및 d)상기 마커와 단백질의 복합체를 확인하는 단계를 포함하는 셀로로좀 형성 효소 탐색 방법을 제공한다. In another aspect, the present invention is a) culturing cellulose degradation microorganisms to obtain proteins; b) isolating the proteins; c) the cohesin domain of claim 1 or 2 effective in the isolated protein Treating the marker composition as a component; And d) identifying a complex of the marker and the protein.
본 발명의 탐색 방법에 있어서, 상기 셀룰로우즈 분해 미생물은 혐기성 균인 것이 바람직하고, 상기 셀룰로우즈 분해 미생물은 클로스트리디움 셀룰로보란스, 클로스트리디움 써모셀럼, 클로스트리디움 셀룰로라이티쿰, 클로스트리디움 아세토뷰틸라이쿰, 클로스티리디움 조슈, 클로스티리디움 파피로솔벤스, 아세티비브리오 셀룰로라이티커스, 박테로이즈 셀룰로솔벤스, 루미노코코스 알버스, 루미노코코스 플라브파시언스, 루미노코코스 석시노진스, 뷰틸리비브리오 피브리솔벤스, 네오콜리마스틱 파트리시얼럼, 오피노마이시즈 조이오닐, 또는 오피노마이시즈 피씨-2 인 것이 더욱 바람직하나 이에 한정되지 아니한다.In the search method of the present invention, the cellulose-degrading microorganism is preferably an anaerobic bacterium, and the cellulose-degrading microorganism is Clostridium cellulose, Clostridium thermocell, Clostridium cellulose lightycum, Closs Tridium acetobutylraicum, Clostridium joshua, clostridium papyrosolves, acetiviorio cellulolytics, bacteroids cellulose solbens, luminococos albus, luminococos flab passance, lumi More preferred are, but are not limited to, nococos succinogins, butyliviobrio fibrisolvenes, neocolystic patricial column, offinomyces joyonyl, or offinomiysis PC-2.
본 발명의 탐색방법에 있어서, 상기 단백질을 분리하는 방법은 전기영동, 이차원 전기영동인 것이 바람직하나 이에 한정되지 아니한다.In the search method of the present invention, the method of separating the protein is preferably electrophoresis, two-dimensional electrophoresis, but is not limited thereto.
또한 본 발명은 클로스트리디움 셀룰로보란스부터 분리된 코히신 6 도메인 유전자가 삽입된 재조합 백터 pET22b-Coh6를 제공한다.The present invention also provides a recombinant vector pET22b-Coh6 inserted with a cohsin 6 domain gene isolated from Clostridium cellulose boranth.
또한 본 발명은 a) 표적 단백질에 도커린 도메인을 추가하는 단계; 및 b) 상기 표적 단백질-도커린 도메인 복합체에 본 발명의 코히신(cohesin) 도메인을 처리하는 단계를 포함하는 도커린 재조합체의 탐색 방법을 제공한다.In another aspect, the present invention provides a method for producing a protein comprising a) adding a dockerine domain to a target protein; And b) treating the cohesin domain of the present invention with the target protein-docerine domain complex.
본 발명은 예를 들면 셀룰로좀 형성 원리에 따라 셀룰로좀을 셀룰레이즈에 국한 시키지 않고 셀룰로좀 형성원리인 코히신-도커린 결합을 이용한다고 하였을 때, 라이페이즈 (lipase)에 인공적으로 도커린 도메인을 추가하였을 경우 상기 발명한 코히신 마커를 이용하여 라이페이즈의 이동 경로를 실시간으로 탐색하거나 특정 라이페이즈가 어느 부위에서 집중되어 작용하는지 탐색 할 수 있다. The present invention artificially aids in lipases, for example, when using the cell-somal formation principle, cohysine-docorin binding, without restricting the cellulose to cellulose according to the principle of cellulose formation. When the curin domain is added, the invention can be used to search the movement path of the lip phase in real time using the cohesine marker, or to search at which site the specific phase is concentrated.
또한 목적단백질을 코딩하는 유전자를 본 발명의 도커린 서열과 융합시켜 생체내에서 발현시켜 생성된 융합 단백질로부터 본 발명의 코히신 도메인을 이용하여 목적단백질을 분리, 정제하는 방법에 있어서, 목적단백질을 코딩하는 유전자와 기타의 펩티드나 단백질을 코딩하는 유전자의 연결점에 15-21개의 아미노산을 코딩하는 DNA서열을 도입하여 목적단백질과 기타의 펩티드나 단백질의 사이에 15-21개의 아미노산으로 구성된 도커린펩티드를 생성하고 이에 의한 단백질 물성 변화를 이용하여 등전점침전정, 금속염의 친화성 선별정제, 극성 이용정제, 소수성 이용정제, 친수성 이용정제, 항체친화성 이용정제, 및 유기용매 분별정제법 중 하나이상의 공정을 거쳐 융합단백질로부터 목적단백질을 분리, 정제하는 방법을 제공한다.In addition, in a method for separating and purifying a protein of interest using the cohsin domain of the present invention from a fusion protein produced by fusion of a gene encoding a protein of interest with a dockerine sequence of the present invention in vivo, Docker peptide consisting of 15-21 amino acids between the target protein and other peptides or proteins by introducing a DNA sequence encoding 15-21 amino acids at the junction of the coding gene and other peptides or genes encoding the gene. Process using one or more of isoelectric point sedimentation tablets, affinity screening tablets for metal salts, polar tablets, hydrophobic tablets, hydrophilic tablets, antibody affinity tablets, and organic solvent fractionation. It provides a method for separating and purifying the target protein from the fusion protein through.
예를 들어 본 발명의 기타의 펩티드나 단백질을 코딩하는 유전자의 뒤쪽으로 7-15개의 아미노산을 코딩하는 DNA서열은 도커린 유전자로, 코딩하는 단백질의 뒤쪽으로 도커린 서열(서열번호 8)을 결합함으로써 도커린과 코히신의 상호작용을 통한 정제할 수 있다.For example, the DNA sequence encoding 7-15 amino acids behind the gene encoding other peptides or proteins of the present invention is a dockerine gene, which binds the dockerine sequence (SEQ ID NO: 8) to the back of the encoding protein. Thereby purifying through the interaction of docerin and cohysine.
상기 분리정제 방법에 있어서, 융합 단백질을 절단 반응하여 목적 단백질에 융합된 기타 단백질에 친화펩티드가 포함되도록 절단한 후 금속염을 이용한 친화성 선별방법을 이용하여 목적단백질을 분리, 정제하는 것이 바람직하나 이에 한정되지 아니한다.In the separation and purification method, it is preferable to cleave the fusion protein to cleave the other protein fused to the target protein to include an affinity peptide, and then isolate and purify the target protein using an affinity screening method using a metal salt. It is not limited.
또한 본 발명은 (i) 나노고단위복합체 형성 물질, 코히신 도메인 1내지 도메인 9 중에서 선택된 하나 이상의 코히신 도메인과 도커린을 동일한 장 또는 계에 제공하는 단계;(ii) 상기 코히신과 도커린의 상호작용에 의해 나노고단위복합체를 형성하는 단계; 및 (iii) 상기 나노고단위복합체의 형성여부를 측정하여 상기 상호작용을 판별하는 단계를 포함하는 친화펩타이드를 이용한 물질의 상호작용 탐색 방법을 제공한다. In another aspect, the present invention (i) providing at least one cohysine domain and dockerine selected from the nano-complex forming material, cohysine domain 1 to domain 9 in the same field or system; (ii) the cohysine and dockerine Forming nano-high complexes by interaction; And (iii) determining whether the nano-high complex is formed to determine the interaction.
본 발명에서 '나노고단위복합체'란 친화펩타이드 서열인 코히신과 도커린의 상호작용을 통하여 쉽게 관찰할 수 있는 거대한 복합체를 의미하고, In the present invention, 'nano high unit complex' means a large complex that can be easily observed through the interaction of the affinity peptide sequence cohysine and dockerine,
'나노고단위복합체 형성물질'은 상기 나노고단위복합체를 형성할 수 있는 성질 및 기능을 가지고 있는 모든물질을 의미한다.'Nano high unit complex forming material' refers to any material having the properties and functions capable of forming the nano high unit complex.
본 발명의 일 구체예에 있어서, 나노고단위복합체 형성 물질의 예는 셀로로좀 형성 효소이고, 나노고단위복합체는 셀로로좀인 것이 바람직하나 이에 한정되지 아니한다.In one embodiment of the present invention, an example of the nano-high unit complex forming material is a cellosome-forming enzyme, the nano-high unit complex is preferably a cellosome, but is not limited thereto.
또한 본 발명은 (i) 나노고단위복합체(nano-assembly matrix) 형성 물질, 도커린 및 코히신의 라이브러리를 동일한 장(field) 또는 계(system)에 제공하는 단계;(ii) 상기 도커린 및 코히신 라이브러리의 상호작용에 의해 나노고단위복합체를 형성하는 단계;(iii) 상기 나노고단위복합체의 형성여부를 측정하여 도커린과 코히신간 상호작용을 판별하는 단계; 및 (iv) 상기 코히신과 상호작용하여 나노고단위복합체를 형성하는 도커린을 표적물질로, 선택, 분리 및 동정하는 단계를 포함하는 코히신과 상호작용하는 표적물질의 검출방법을 제공한다.In another aspect, the present invention (i) providing a library of nano-assembly matrix forming material, dockerine and cohysine in the same field or system; (ii) the dockerine and nose Forming a nano-high unit complex by interaction of hisine libraries; (iii) determining whether the nano-high unit complex is formed to determine the interaction between dockerine and cohisine; And (iv) selecting, separating, and identifying dockerine that interacts with the cohysine to form a nano-high complex, as a target material.
이하, 본 발명을 설명한다.Hereinafter, the present invention will be described.
본 발명은 목질계 섬유소를 분해하는 혐기성 미생물 클로스트리디움 셀룰로보란스에서 생성되는 셀룰레이즈 복합체인 셀룰로좀 형성 효소들을 셀룰조좀 형성 원리인 도커린 도메인과 코히신 도메인과의 관계를 이용하여 간단하게 셀룰로좀 형성 효소들만을 탐색하는 기법이다. 보다 자세하게는 목질계 섬유소를 에너지원으로 사용하는 혐기성 미생물들은 섬유소들을 더욱 효과적으로 분해하기 위하여 호기성 미생물과는 다르게 셀룰레이즈 복합체인 셀룰로좀을 형성한다 (Bayer et al. The cellulosome: multienzyme machines for degradation of plant cell wall polysaccharides. Annual Review of Microbiol 58 (2004) 521-554). 셀룰로좀의 형성원리는 셀룰로좀 형성 효소의 도커린 도메인과 지지체 단백질의 코히신 도메인간의 상호 결합으로 복합체를 형성한다. 물론 셀룰로좀 형성 효소들 외에도 비 셀룰로좀 형성 효소들도 같이 생성되고 이 두가지의 효소들의 조합이 상승효과를 가져와 더욱 효율적으로 섬유소를 분해하게 된다. 상기 기법은 지지체 단백질의 코히신 도메인을 형광표지하여 한 단계의 결합 과정만으로 셀룰로좀 형성 효소들만을 선택적으로 탐색할 수 있다. The present invention provides a simple method using cellulosome-forming enzymes, which are cellulosic complexes produced from the anaerobic microorganism Clostridial cellulose boron, which degrades wood-based fibrin, using the relationship between the docurin domain and the cohysine domain. It is a technique to detect only cellulosome forming enzymes. More specifically, anaerobic microorganisms using wood fiber as an energy source form cellulosomes, cellulosome complexes, unlike aerobic microorganisms, in order to decompose fibers more effectively (Bayer et al. The cellulosome: multienzyme machines for degradation of plant cell wall polysaccharides.Annual Review of Microbiol 58 (2004) 521-554). The principle of cellulosome formation is a complex formed by the mutual binding between the dockerine domain of the cellulosome-forming enzyme and the cohisine domain of the support protein. Of course, in addition to cellulosome-forming enzymes, non-cellosome-forming enzymes are also produced, and a combination of the two enzymes has a synergistic effect, which breaks down the fiber more efficiently. The technique can selectively detect only cellulosome-forming enzymes by only one step of binding by fluorescently labeling the cohysine domain of the support protein.
본 발명에서 "셀룰로좀 형성 효소들"은 비 셀룰로좀 형성 효소들과는 다르게 두번 반복된 단백질 서열(도커린 도메인)을 가지고 있고 이 도커린 도메인이 지지체 단백질의 코히신 도메인과의 단백질-단백질 결합으로 셀룰로좀을 형성하는 효소들을 의미한다 (Bayer et al. The cellulosome: multienzyme machines for degradation of plant cell wall polysaccharides. Annual Review of Microbiol 58 (2004) 521-554)."Cellulosome-forming enzymes" in the present invention has a protein sequence (docranine domain) that is repeated twice differently from non-cellosome-forming enzymes, and the dockerine domain is a protein-protein binding to the co-cycin domain of the support protein. Enzymes forming cellulosomes (Bayer et al. The cellulosome: multienzyme machines for degradation of plant cell wall polysaccharides.Annual Review of Microbiol 58 (2004) 521-554).
본 발명으로 유전자서열 분석이 끝나지 않은 목질계 섬유소를 에너지원으로 이용하는 혐기성 미생물들의 셀룰로좀 형성 효소들을 쉽게 탐색하고 더 나아가 발견된 셀룰로좀 형성 효소들을 인위적으로 조작하여 지구상에 풍부한 재생 가능한 목질계 섬유소를 가치 있는 에너지원인 당이나 에탄올로 변환하는 효율적인 섬유소 분해 시스템 구축에 효율적인 탐색 기법이 될 것이다.The present invention can easily search for cellulosome-forming enzymes of anaerobic microorganisms using wood-based fibrils that have not been genetically analyzed as an energy source, and furthermore, by artificially manipulating the found cellulosome-forming enzymes, they are enriched on the planet. It will be an efficient screening technique to build an efficient fibrinolysis system that converts fiber into a valuable energy source, sugar or ethanol.
목질계 섬유소를 에너지원으로 사용하는 혐기성 미생물들은 더욱 효율적으로 섬유소를 분해하기 위하여 셀룰레이즈 복합체인 셀룰로좀을 형성한다. 셀룰로좀은 호기성 미생물에게서는 발견되지 않으며 섬유소 이용 혐기성 미생물에만 발현되는 특징이 있다. 셀룰로좀의 형성은 셀룰로좀 형성 효소의 도커린 도메인과 지지체 단백질의 코히신 도메인간의 상호 결합으로 이루어진다.Anaerobic microorganisms, which use wood fiber as an energy source, form cellulose complexes, cellulase complexes, in order to break down cellulose more efficiently. Cellulosomes are not found in aerobic microorganisms and are expressed only in anaerobic microorganisms utilizing fiber. The formation of cellulosomes consists of the cross-linking between the dockerin domain of the cellulosome-forming enzyme and the cohisine domain of the support protein.
본 발명에서는 유전자 서열분석이 끝나지 않은 혐기성 미생물인 클로스트리디움 셀룰로보란스의 지지체 단백질에서 코히신 도메인을 분리하고 형광표지 하여 셀룰로좀 형성 효소만을 간편하고 효과적으로 탐색할 수 있음을 확인하였다.In the present invention, it was confirmed that only the cellulosome-forming enzyme can be easily and effectively searched by separating and fluorescently labeling the cohine domain from the support protein of Clostridium cellulose boronase, an anaerobic microorganism that has not been ended in gene sequencing.
본 발명의 일 실시예에서는 클로스트리디움 셀룰로보란스의 지노믹디엔에이를 주형으로한 PCR반응을 통하여 코히신 6 도메인 유전자를 얻었고, 얻어진 상기 유전자를 대장균 단백질 발현 백터에 서브 클로닝하여 재조합 백터를 제작하였다.In one embodiment of the present invention, a cohysine 6 domain gene was obtained through a PCR reaction using Clostridium cellulose boron genomicdiene as a template, and a recombinant vector was produced by subcloning the obtained gene into an E. coli protein expression vector. .
이후, 상기 코히신 6도메인 유전자가 삽입된 재조합 벡터를 이용하여 대장균에 형질 전환 시켰다. 이후, 상기 유전자를 발현하고 정제하여 순수한 상시 단백질을 얻었으며 형광염료로 표지하고 클로스트리디움 셀룰로보란스에서 생성되는 세포밖 분비 단백질을 pH 4 ~ 7 범위의 IPG (immobilized pH gradient) 스트립을 이용하여 이차원 전기영동 (two-dimensional polyacrylamide gel electrophoresis)을 수행하였다. 이후 겔 (gel)을 코마시 블루 (Coomassie Blue) 염색을하여 단백질의 발현 양상을 조사하고 형광표지된 코히신 마커와 결합시켜 도커린을 가진 셀룰로좀 형성 효소들만을 선택적으로 확인 하였다. 그 결과 40 ± 10 스팟들중 14 ± 3의 셀룰로좀 형성 효소를 탐색 할 수 있었다. 이 후 분석된 스팟을 LC/MS/MS기기 분석으로 신규 셀룰로좀 형성 효소들을 동정 하였다.Subsequently, E. coli was transformed using the recombinant vector into which the cohysine 6 domain gene was inserted. Afterwards, the gene was expressed and purified to obtain a pure protein at all times, and the extracellular secreted protein generated from Clostridium cellulose boronase was labeled with fluorescent dyes using an IPG (immobilized pH gradient) strip of pH 4-7. Two-dimensional polyacrylamide gel electrophoresis was performed. Then, the gel was subjected to Coomassie Blue staining to examine the expression of the protein and to bind with fluorescently labeled cohisine markers to selectively identify only cellulosome-forming enzymes with dockerine. As a result, the cellulosome-forming enzyme of 14 ± 3 out of 40 ± 10 spots could be detected. After that, the analyzed spots were identified by cellulose-forming enzymes by LC / MS / MS analysis.
상기 바이오마커들은 이차원 전기영동법으로 검출하는 것이 바람직하나 이에 한정되는 것은 아니다.The biomarkers are preferably detected by two-dimensional electrophoresis, but are not limited thereto.
또한, 상기 셀룰로좀 효소 탐색법을 사용하면 기존의 방법과는 다르게 한번의 결합 단계로 매우 효율적으로 탐색할 수 있음을 확인 할 수 있었다.In addition, using the cellulosome enzyme screening method, it was confirmed that it can be very efficiently searched in one binding step, unlike the existing method.
또한 본 발명에서 개발되어진 코히신 마커의 이용을 확인하여 단백질의 정제 및 나노 고단위복합체 형성을 확인하기 위한 코딩단백질의 뒤쪽에 도커린 꼬리를 달아준 융합단백질은 클로스트리디움 유래의 써모셀럼의 EgE 활성부위 유전자와 클로스트리디움 유래의 EngB 유전자의 도커린 모듈을 연결한 키메라 EgE 유전자를 클로닝하기 위하여 시그널 펩타이드 부분을 제외한 염기서열을 참고로 하여 정방향 프라이머(Forward primer)의 5’에는 제한효소 Not1, 역방향프라이머(Reverse primer)의 5’에는 제한효소 Spe1 인식서열이, 중첩프라이머 (Overlap primer)의 5'에는 각각 중첩 서열이 삽입되도록 프라이머를 합성하였다. 이후, 상기 합성된 프라이머를 이용하여 스플라이스 중첩 연장 (SOE: Splice Overlap Extension) 기술에 의해 PCR을 수행하였고 코히신과 셀룰로오스 결합 모듈이 포함되어진 골격단백질은 클로스트리디움 유래의 셀룰로보란스의 기본 골격 소단위체 (primary scaffolding subunit)인 셀룰로즈-결합 단백질-에이(Cellulose-binding protein A) 중 셀룰로즈 결합 모듈 (Cellulose binding module; CBM)과 두 개의 코히즌 모듈(Cohesin module)을 가진 소형 셀룰로즈-결합 단백질-에이(Mini-Cellulose-binding protein A) 유전자를 클로닝하기 위해 염기서열을 참고로 하여 정방향 프라이머 (Forward primer)의 5‘에는 제한효소 Not1, 역방향 프라이머(Reverse primer)에는 제한효소 Spe1 인식서열이 각각 삽입된 프라이머로 합성하였다. In addition, the fusion protein attached to the back of the coding protein to confirm the use of the cohysine marker developed in the present invention to confirm the purification of the protein and the formation of nano-high complex complex is EgE activity of thermocellum derived from Clostridium In order to clone the chimeric EgE gene linking the region gene and the dockerine module of the Clostridium-derived EngB gene, the 5 'of the forward primer is referred to as the base sequence excluding the signal peptide portion. The primer was synthesized such that the restriction enzyme Spe1 recognition sequence was inserted into 5 'of the primer and the overlapping sequence was inserted into 5' of the overlapping primer. Subsequently, PCR was performed by using a Splice Overlap Extension (SOE) technique using the synthesized primer, and the skeletal protein including the cochine and cellulose binding module is a basic skeleton of cellulose boranth derived from Clostridium. Small cellulose-binding protein-A with a Cellulose binding module (CBM) and two Cohesin modules in Cellulose-binding protein A, a primary scaffolding subunit (Mini-Cellulose-binding protein A) In order to clone the gene, the base sequence was referred to with reference enzyme 5 'of restriction enzyme (Referase) and restriction enzyme Spe1 recognition sequence inserted into reverse primer (Reverse primer) Synthesized with a primer.
이상 살펴본 바와 같이, 본 발명에서는 클로스트리디움 셀룰로보란스에서 생성되는 셀룰로좀 형성 효소들을 상시 형광 표지된 코히신마커를 이용하여 간단하고 선택적으로 탐색할 수 있음을 확인하였다. 본 발명에 따라 아직까지 유전자 서열분석이 완료 되지 않은 셀룰로좀을 생성하는 미생물의 셀룰로좀 형성 효소 탐색에 효과적으로 사용될 수 있음을 확인하였으며, 상기 방법으로의 탐색을 통하여 더욱 많은 셀룰로좀 형성 효소에 관한 정보를 얻을 수 있을 것으로 예상되고 이는 자연상태에서 가장 풍부하고 재생가능한 목질계 바이오매스를 효율적으로 분해하여 고부가 가치의 산물로 바꿀수 있는 인공적 효소 복합시스템 개발에 매우 유용한 발명인 것으로 기대된다.As described above, in the present invention, it was confirmed that cellulosome-forming enzymes produced in Clostridium cellulose boranth can be easily and selectively searched by using fluorescently labeled cohissine markers. According to the present invention, it has been confirmed that the present invention can be effectively used to search for cellulosome forming enzymes of microorganisms that produce cellulosomes that have not yet completed gene sequencing. It is expected to be useful for developing artificial enzymatic complex systems that can efficiently decompose the most abundant and renewable wood-based biomass in the natural state into high value products.
도 1은 본 발명에서 아가로스 겔 전기영동을 수행하여 클로스트리디움 셀룰로보란스의 지지체 단백질 CbpA의 코히신 6 도메인 유전자의 PCR 산물을 확인한 그림이며;1 is a figure confirming the PCR product of the cohisine 6 domain gene of the support protein CbpA of Clostridium cellulose by performing agarose gel electrophoresis in the present invention;
도 2는 본 발명에서 제시된 클로스트리디움 셀룰로보란스의 지지체 단백질 CbpA의 코히신 6 도메인 유전자가 삽입된 재조합 벡터 pET22b-Coh6의 모식도이며;FIG. 2 is a schematic diagram of the recombinant vector pET22b-Coh6 into which the cohsin 6 domain gene of the support protein CbpA of Clostridium cellulose boranth as shown in the present invention is inserted;
도 3은 본 발명에서 클로스트리디움 셀룰로보란스의 지지체 단백질 CbpA에서 코히신 6 도메인을 정제하고 15% SDS-PAGE로 분리한 그림이며;FIG. 3 is a diagram illustrating purification of cohysine 6 domain from support protein CbpA of Clostridium cellulose boron in the present invention and separated by 15% SDS-PAGE; FIG.
도 4는 본 발명에서 클로스트리디움 셀룰로보란스의 세포밖 분비 효소들을 정제하고 10% Chemical gradient SDS-PAGE로 분리한 그림이며;Figure 4 is an illustration of purified extracellular secretion enzymes of Clostridium cellulose boron in the present invention and separated by 10% Chemical gradient SDS-PAGE;
도 5는 본 발명에서 혐기성 미생물 클로스트리디움 셀룰로보란스의 세포밖 분비 단백질을 이차원 전기영동으로 분리한 그림이며; 그리고Figure 5 is an illustration of the two-dimensional electrophoresis of the extracellular secretion protein of anaerobic microorganism Clostridium cellulose boranth in the present invention; And
도 6은 본 발명에서 혐기성 미생물 클로스트리디움 셀룰로보란스의 세포밖 분비 단백질을 이차원 전기영동으로 분리한 하고 형광 표지된 코히신마커를 부착 시켜 셀룰로좀 형성 단백질만을 선택적으로 탐색한 그림이다.FIG. 6 is a diagram of selectively detecting extracellular secreted proteins of anaerobic microorganism Clostridial cellulose boron bores by two-dimensional electrophoresis and attaching fluorescently labeled cohiscin markers to selectively detect only cellulose-forming proteins.
도 7(A)는 본 발명에서 아가로스 젤 전기영동을 수행하여 키메라 엔도-베타-1,4-글루칸아제-이 유전자의 PCR 산물을 확인한 그림이고, (A) Lane 1, 1kbp DNA 마커; Lane 2, 키메릭 CelE PCR 산물이며,Figure 7 (A) is a figure confirming the PCR product of the chimeric endo-beta-1,4-glucanase-gene by performing agarose gel electrophoresis in the present invention, (A) Lane 1, 1kbp DNA marker; Lane 2, chimeric CelE PCR product,
도 7(B)는 본 발명에서 아가로스 젤 전기영동을 수행하여 소형 셀룰로오즈 결합단백질 에이 유전자의 PCR 산물을 확인한 그림이고, (B) Lane 1, 1kbp DNA 마커; Lane 2, miniCbpA PCR 산물이다.Figure 7 (B) is a figure confirming the PCR product of the small cellulose binding protein A gene by performing agarose gel electrophoresis in the present invention, (B) Lane 1, 1kbp DNA marker; Lane 2, miniCbpA PCR product.
도 8은 본 발명에서 코히신과 도커린의 상호작용을 이용한 친화성단백질 정제 방법을 도식화 하였으며 이의 결과를 나타낸 그림이며,8 is a diagram illustrating a method for purifying affinity proteins using the interaction between cohissin and dockerine in the present invention.
도 9는 본 발명에서 코히신과 도커린의 상호작용을 이용한 고분자나노복합체 형성에의 이용을 위한 Native PAGE를 이용한 효소 복합체의 형성 확인을 나타낸 그림이고, 도 9에서 Lanes: 1, EngE; 2, EngD, 3, Coh6; 4, EngE와 Coh6 혼합물; 5, EngD와 Coh6의 혼합물을 나타내고, 9 is a view showing the formation of enzyme complexes using Native PAGE for use in the formation of polymer nanocomposites using the interaction of cohisine and dockerine in the present invention, Figure 9 Lanes: 1, EngE; 2, EngD, 3, Coh 6; 4, EngE and Coh6 mixtures; 5, represents a mixture of EngD and Coh6,
도 10은 본 발명에서 코히신과 도커린의 상호작용을 이용한 고분자나노복합체 형성에의 이용을 위한 ELIA (enzyme-Linked interaction assay)방법을 통한 코히신과 도커린의 상호작용을 확인한 그림이다.10 is a view confirming the interaction of cochine and dockerine through the enzyme-linked interaction assay (ELIA) method for use in the formation of polymer nanocomposites using the interaction of cochine and dockerine in the present invention.
이하 비한정적인 실시예에 의하여 본 발명을 더욱 상세하게 설명한다. 단 하기의 실시예는 본 발명을 설명하기 위한 의도로 기재된 것으로서, 본 발명의 범위는 하기 실시예에 의하여 제한되는 것으로 해석되지 아니한다.The present invention will be described in more detail with reference to the following non-limiting examples. However, the following examples are intended to illustrate the present invention, and the scope of the present invention is not to be construed as being limited by the following examples.
실시예 1: 클로스트리디움 셀룰로보란스의 지지체 단백질 CbpA의 코히신 도메인 6 번 유전자의 증폭Example 1 Amplification of the Cohysine Domain No. 6 Gene of the Support Protein CbpA of Clostridium cellulose Borland
코히신 마커를 제작하기 위하여 코히신 도메인을 대량으로 획득하기 위해 클로스트리디움 셀룰로보란스의 지노믹디엔에이로부터 코히신 도메인 6 부분의 염기서열을 참고로 하여 정방향 프라이머 (Forward primer) GGGGATCCTGTTAAAACTGTAACAGCTACA(서열번호 2)의 5에는 제한효소 BamHI , 역방향프라이머 (Reverse primer) CCCCTCGAGTTGACTTGGTTCTATTGTAACGC(서열번호 3)의 5에는 제한효소 XhoI 인식 서열이 삽입되도록 프라이머를 디자인하여 합성하였다. 이후 상기 합성된 프라이머를 이용하여 PCR을 수행하였다. 그 결과 436 bp의 코히신 6 도메인 유전자가 포함되어 있는 PCR밴드를 확인 할 수 있었고 도면 1에 도시하였다.Forward primer GG GGATCC TGTTAAAACTGTAACAGCTACA (SEQ ID NO: 6) with reference to the base sequence of 6 parts of cohisine domain from the genomic DNA of Clostridium cellulose in order to obtain a large amount of cohysine domains for the production of the cohysine marker. In No. 2) 5, restriction enzyme BamHI and reverse primer CCC CTCGAG TTGACTTGGTTCTATTGTAACGC (SEQ ID NO: 3) were designed to synthesize primers to insert the restriction enzyme XhoI recognition sequence. Then, PCR was performed using the synthesized primers. As a result, the PCR band containing the 436 bp cohysine 6 domain gene was identified and is shown in FIG.
실시예 2: 코히신 도메인 유전자의 클로닝 및 정제Example 2: Cloning and Purification of Cohysine Domain Genes
상기 실시예 1에서 얻은 코히신 증폭산물을 0.8% 아가로즈 겔 상에서 전기 영동하였고 아가로즈 겔 상의 DNA 절편은 gel extraction kit (Elpis, Korea)를 사용하여 회수하였다. 이후, 제한효소 BamHI, XhoI으로 절단한후 대장균 단백질 발현 벡터인 pET-22b (Novagen, USA)에 라이게이션 (ligation)시켜 에스세리시아 콜라이 (대장균, E.coli) BL21 DE3에 형질전환 하였고 완성된 벡터는 도 2에 도시하였다. 이후, 형질 전환된 대장균을 엠피실린 (50 μg/mL)이 포함된 루리아-버타니 배양액에 접종하여 37℃에서 A600 = 0.6이 될 때 까지 배양 후 아이소 프로필-β-D-시오갈락토파이라노사이드 (IPTG)를 전체 농도가 0.5 mM이 되게 첨가한후 30 ℃에서 8 시간 배양했다. 이후, 대장균을 원심분리 (4,000 X g, 20 분)하여 분리한후 10 mL 라이시스 버퍼 (50 mM NaH2PO4, 300 mM NaCl, 10 mM Imidazole, pH 8.0)로 녹인후 초음파로 분쇄 하였다. 이후, 불용성 단백질들은 원심분리 (10,000 X g, 30 분) 하여 제거하고 수용성 단백질을 분리하여 재조합 단백질에 포함된 히스티딘 표지를 사용하여 친화성 크로마토 그래피를 사용하여 코히신 6 도메인을 정제하였고 SDS-PAGE를 확인하여 17kDa의 크기를 확인하고 도 3에 도시하였다.The cohysine amplification product obtained in Example 1 was electrophoresed on a 0.8% agarose gel and DNA fragments on the agarose gel were recovered using a gel extraction kit (Elpis, Korea). After digestion with restriction enzymes BamHI, XhoI , ligation was performed on the E. coli protein expression vector pET-22b (Novagen, USA) to transform Escherichia coli (E. coli ) BL21 DE3 and completed. The vector is shown in FIG. Thereafter, the transformed E. coli was inoculated into a Luria-Butani culture solution containing empicillin (50 μg / mL), and then cultured at 37 ° C. until A 600 = 0.6, and then isopropyl-β-D-thiogalactopi Lanoside (IPTG) was added to a total concentration of 0.5 mM and incubated at 30 ° C. for 8 hours. Then, E. coli was separated by centrifugation (4,000 X g, 20 minutes), and then dissolved in 10 mL lysis buffer (50 mM NaH 2 PO 4 , 300 mM NaCl, 10 mM Imidazole, pH 8.0), and then ground by ultrasound. The insoluble proteins were then removed by centrifugation (10,000 X g, 30 minutes), and the water soluble proteins were separated to purify the cohisine 6 domain using affinity chromatography using histidine labels contained in the recombinant protein and SDS-PAGE. Checking the size of 17kDa was confirmed and shown in FIG.
실시예 3: 코히신 도메인의 형광표지 및 검출Example 3: Fluorescent Labeling and Detection of Cohysine Domains
상기 실시예 2에서 확보한 코히신 도메인을 셀룰로좀 형성 효소들의 탐색을 위한 바이오마커로 사용하기 위하여 Alexa Fluor 647 단백질 표지 키트 (Molecular Probes, USA)를 사용하여 향광 표지 하였다. 형광 표지된 코히신은 ProXPRESS 2D (Perkin Elmer, USA) 이미지 장치로 탐색 하였다. 형광 염료는 650 nm파장을 최대한 흡수 하고 668 nm의 파장을 방출한다.In order to use the cohisine domain obtained in Example 2 as a biomarker for the search for cellulosome-forming enzymes, light labeling was performed using Alexa Fluor 647 protein labeling kit (Molecular Probes, USA). Fluorescently labeled cohysine was explored with a ProXPRESS 2D (Perkin Elmer, USA) imaging device. Fluorescent dyes absorb the 650 nm wavelength as much as possible and emit 668 nm.
실시예 4: 클로스트리디움 셀룰로보란스 에서의 세포밖 분비 효소의 획득Example 4 Acquisition of Extracellular Secretion Enzyme in Clostridium Celluloboranth
클로스트리디움 셀룰로보란스 (ATCC 35269)를 혐기성 상태에서 1 % Avicel (결정형 셀룰로우즈)가 들어간 배양액을 사용하여 6 일간 37℃에서 배양하였다. 이후, 배양액을 Avicel을 이용하여 친화력 크로마토그래피 방법으로 정제 하였다. 배양액을 Avicel이 패킹 되어 있는 컬럼에 넣어 흘려보낸 후 50 mM phosphate buffer (pH 7.0)으로 세척 후 다시한번 12.5 mM phosphate buffer (pH7.0)으로 세척 하였다. 이후, 물로 효소들을 정제 받았다. 이후, 울트라 필터레이션 (Milipore, USA, cut off 10 kDa)을 하여 농축 하고 SDS-PAGE로 확인하였고 도 4에 도시하였다.Clostridium cellulose boranth (ATCC 35269) was incubated at 37 ° C. for 6 days using a culture solution containing 1% Avicel (crystalline cellulose) in an anaerobic state. Thereafter, the culture was purified by affinity chromatography using Avicel. The culture solution was poured into a column packed with Avicel, washed with 50 mM phosphate buffer (pH 7.0), and then washed with 12.5 mM phosphate buffer (pH 7.0). Thereafter, the enzymes were purified with water. Then, ultrafiltration (Milipore, USA, cut off 10 kDa) was concentrated and confirmed by SDS-PAGE and shown in FIG.
실시예 5: 이차원 전기영동 (two-dimensional polyacrylamide gel electrophoresis)Example 5: two-dimensional polyacrylamide gel electrophoresis
상기 실시예 4에서 확보한 효소들을 각각의 효소들 하나하나로 분리시키기 위하여 이차원 전기영동 (two-dimensional polyacrylamide gel electrophoresis)을 실시하였다. IPG (immobilized pH gradient) 스트립 (pH 4 ~ 7) (GE Healthcare BioSci, USA)은 Destreak rehydration solution (GE Healthcare BioSci, USA) 125 ㎕를 첨가하여 16 시간 동안 재수화(rehydration)하였다. IEF (Isoelectric focusing)는 Ettan IPGphor II 전기영동 시스템 (GE Healthcare BioSci, USA)을 이용하여 20 ℃에서 다음과 같이 수행하였다. 첫 번째 단계로 전압을 100 V에서 100 Vhr, 200 V에서 200 Vhr, 300 V에서 300 Vhr, 500 V에서 500 Vhr로 단백질이 겔 내로 들어가게 하였으며 1000 V에서 1000 Vhr, 1000 V에서 5000 V까지 5000 Vhr가 될 때까지 증가시키고 5000 V에서 23000 Vhr가 될 때까지 완전히 포커싱 (focusing) 하였다. 이차원 전기영동을 하기 전에, 스트립은 1% dithiothreitol (DTT)가 포함된 평형 버퍼(equilibration buffer: 75 mM Tris-HCl, 6 M urea, 2 % SDS, 29.3% glycerol, 0.002% Bromophenol blue)에서 15 분간 반응시켰고, 4% 요오드아세트아마이드(iodoacetamide)가 포함된 평형 버퍼에서 15분간 반응시켰다. 평형이 끝난 스트립은 SDS-PAGE 겔(10 cm, 10%)의 윗부분에 넣고 Mini protean tetra cell 이차원 전기영동 시스템(Bio-Rad, USA)을 이용하여 전기영동을 수행하였다. 이차원 전기영동한 겔은 고정 용액으로 단백질을 고정시켰다 (10 % acetic acid, 25 % isoprophanol). 그 결과, 겔 당 약 40 ± 10 스팟을 수득 하였고 도 5에 도시 하였다.In order to separate the enzymes obtained in Example 4 into each of the enzymes, two-dimensional polyacrylamide gel electrophoresis was performed. IPG (immobilized pH gradient) strips (pH 4-7) (GE Healthcare BioSci, USA) were rehydrated for 16 hours by adding 125 μl of Destreak rehydration solution (GE Healthcare BioSci, USA). Isoelectric focusing (IEF) was performed at 20 ° C. using an Ettan IPGphor II electrophoresis system (GE Healthcare BioSci, USA) as follows. The first step allowed the protein to enter the gel from 100 V to 100 Vhr, 200 V to 200 Vhr, 300 V to 300 Vhr, 500 V to 500 Vhr, and 1000 V to 1000 Vhr and 1000 V to 5000 Vhr. We increased until it was and fully focused from 5000 V to 23000 Vhr. Prior to two-dimensional electrophoresis, the strips were kept for 15 minutes in equilibration buffer (75 mM Tris-HCl, 6 M urea, 2% SDS, 29.3% glycerol, 0.002% Bromophenol blue) containing 1% dithiothreitol (DTT). The reaction was carried out for 15 minutes in an equilibration buffer containing 4% iodoacetamide. The equilibrated strip was placed on top of the SDS-PAGE gel (10 cm, 10%) and subjected to electrophoresis using a Mini protean tetra cell two-dimensional electrophoresis system (Bio-Rad, USA). Two-dimensional electrophoresis gels immobilized the protein with fixative solution (10% acetic acid, 25% isoprophanol). As a result, about 40 ± 10 spots per gel were obtained and shown in FIG.
실시예 6: 형광표지된 코히신마커를 이용한 셀룰로좀 형성 효소들의 탐색Example 6: Screening of Cellulosome-forming Enzymes Using Fluorescently Labeled Cohissine Markers
상기 실시예 5에서 얻은 이차원 전기영동이 완료된 겔을 PVDF membrane에 blotting 후 2 % blocking 용액 ( TBS-T (5 mM Tris-Cl pH 8.0, 0.138 mM NaCl, 1 % Tween 20) 완충액 + 2 % 탈지분유)에 1시간동안 쉐이커 위에서 blocking 시키고 용액을 제거하였다. 이후, 2 % blocking 용액에 2 ㎍ 형광표지된 코히신을 첨가하고 1시간 동안 쉐이커 위에서 결합 시키고 용액을 제거한다 이후, TBS-T 완충액을 첨가하고 쉐이커 위에서 30 분간 10 분마다 한번씩 새로운 TBS-T 로 교체해주며 결합하지 않고 남아있는 코히신 마커들을 제거하였다. 이후, 이미지 장치인 ProXPRESS 2D (Perkin Elmer, USA)를 사용하여 검출하고 탐색된 단백질은 LC/MS/MS기기를 이용하여 서열분석을 통한 동정하고 표기하고 도 6에 도시하였다. 그 결과 간단한 방법으로 기존에 알려진 셀룰로좀 형성 효소 외에도 아직 발견되지 않은 신규 셀룰레이즈로 추정되는 셀룰로좀 형성 효소를 발견하였고 표 1에 정리 하였다.The 2D electrophoresis-treated gel obtained in Example 5 was blotting onto a PVDF membrane, followed by 2% blocking solution (TBS-T (5 mM Tris-Cl pH 8.0, 0.138 mM NaCl, 1% Tween 20) buffer + 2% skim milk powder). ) Was blocked on the shaker for 1 hour and the solution was removed. Then, add 2 μg fluorescent labeled cohissin to the 2% blocking solution, bind on the shaker for 1 hour and remove the solution. Then add TBS-T buffer and replace with fresh TBS-T once every 10 minutes for 30 minutes on the shaker. Cohysine markers remaining without binding were removed. Then, the protein detected and detected using an image device, ProXPRESS 2D (Perkin Elmer, USA), was identified and labeled through sequencing using an LC / MS / MS instrument and shown in FIG. 6. As a result, in addition to the known cellulosome-forming enzymes in a simple manner, it was found that cellulosome-forming enzymes, which are presumed to be new celluloses that have not yet been found, are summarized in Table 1.
표 1
단백질a 분자량(kDa) pI 부분적 서열 상동성 b
NC1 75 4.9 SQIDYALGSTGR Clostridium cellulolyticumEndoglucanase G
NC2 70 4.7 TTYNSPYVVTLDELFLGSFVDCPGSDSFTVVYPSNYTDVALFLVA Clostridium cellulolyticum H10Glycoside hydrolase family 26 (Precursor)
NU1 70 4.7 DESLTSLGL DTVWSASNVC NS
NU2 48 5.8 MFKTLEPVQSTSNDLSCLQTW NS
NU2 48 6 MKTSNDLLY NS
NU3 45 4.8 SSGLFDYNMTTTLVELLFGSETLVT NS
NU4 65 4.5 WQEVGELEVELDVGELMVLGSSLVGGWADLGLN NS
Table 1
Protein a Molecular weight (kDa) pI Partial sequence Homology b
NC1 75 4.9 SQIDYALGSTGR Clostridium cellulolyticum Endoglucanase G
NC2
70 4.7 TTYNSPYVVTLDELFLGSFVDCPGSDSFTVVYPSNYTDVALFLVA Clostridium cellulolyticum H10Glycoside hydrolase family 26 (Precursor)
NU1 70 4.7 DESLTSLGL DTVWSASNVC NS
NU2 48 5.8 MFKTLEPVQSTSNDLSCLQTW NS
NU2 48 6 MKTSNDLLY NS
NU3 45 4.8 SSGLFDYNMTTTLVELLFGSETLVT NS
NU4 65 4.5 WQEVGELEVELDVGELMVLGSSLVGGWADLGLN NS
상기 표 1은 본 발명의 방법에 의하여 클로스트리디움 셀룰로보란스에서 신규 발견된 셀룰로좀 형성 효소를 나열한 것이다. 표에서 a NC는 신규 셀룰로좀 형성효소로 추정되는 단백질 이고 NU는 기능을 알지 못하는 신규 셀룰로좀 형성 단백질을 나타내고, b NS는 일치 하는 정보가 없음을 의미한다.Table 1 above lists the newly discovered cellulosome forming enzymes in Clostridium cellulose boranth by the method of the present invention. In the table, a NC is a protein suspected of a new cellulosome forming enzyme, NU represents a new cellulosome forming protein of unknown function, and b NS means no matching information.
실시예 7: 펩타이드의 상호작용 통한 단백질 정제 및 나노고단위복합체 형성 확인Example 7: Confirmation of protein purification and nano-high complex formation through interaction of peptides
본 발명에서 개발되어진 코히신 마커의 이용을 확인하기 위하여 단백질의 정제 및 나노 고단위복합체 형성을 확인 하였다. 코딩단백질의 뒤쪽에 도커린 꼬리를 달아준 융합단백질은 다음과 같이 제조되었다.In order to confirm the use of the cohysine marker developed in the present invention, the purification of the protein and the formation of the nano-high complex were confirmed. The fusion protein that gave the dockerine tail to the back of the coding protein was prepared as follows.
클로스트리디움 유래의 서머셀럼의 엔도-베타-1,4-글루칸아제-이 (CelE) 유전자와 클로스트리디움 유래의 셀룰로보란스의 엔도-베타-1,4-글루칸아제-비 (EngB)의 도커린 (dokerin) 부위를 갖는 키메라 엔도-베타-1,4-글루칸아제-이 (chimeric CelE) 유전자를 클로닝하기 위하여 키메라 CelE의 염기서열을 참고로 하여 정방향 프라이머 (Forward primer)의 5'에는 제한효소 BamHI, 역방향 프라이머 (Reverse primer)의 5'에는 제한효소 NotI 인식서열이 각각 삽입된 프라이머 (Forward primer - 5'AAAGGATCCGTCGGGAACAAAGCTTTTG3'(서열번호 4); Reverse primer - 5'CCCGCGGCCGCTCATAAAAGCATTTTTTTAAGAACA3'(서열번호 5), 밑줄은 제한효소 자리를 의미)를 합성하였다. 이 후, 상기 합성된 프라이머를 이용하여 PCR을 수행하였다. 그 결과 1.3kbp의 클로스트리디움 유래의 키메라 CelE 유전자가 포함되어 있는 PCR 밴드를 확인할 수 있었고 이를 도면 7(A)에 도시하였다.Of the endo-beta-1,4-glucanase-E (CelE) gene of Clostridium-derived thermocell and the endo-beta-1,4-glucanase-ratio (EngB) of cellulose boron derived from Clostridium In order to clone a chimeric endo-beta-1,4-glucanase-di gene with a dokerin site, the 5 'of the forward primer is limited by reference to the nucleotide sequence of the chimeric CelE. "a restriction enzyme NotI recognition sequence is inserted into each of primers (Forward primer - 5'AAA GGATCC GTCGGGAACAAAGCTTTTG3 ' 5 of the enzyme BamHI, a reverse primer (reverse primer) (SEQ ID NO: 4); reverse primer - 5'CCC GCGGCCGC TCATAAAAGCATTTTTTTAAGAACA3' ( SEQ ID NO: Number 5), underscores indicate restriction enzyme sites). Thereafter, PCR was performed using the synthesized primers. As a result, a PCR band containing the chimeric CelE gene derived from Clostridium of 1.3 kbp was identified, which is shown in FIG. 7 (A).
클로스트리디움 유래의 셀룰로보란스의 셀룰로좀 기본골격소단위인 소형 셀룰로오즈 결합단백질 에이 (miniCbpA) 유전자를 클로닝하기 위하여 miniCbpA의 염기서열을 참고로 하여 정방향 프라이머 (Forward primer) 의 5'에는 제한효소 BamHI, 역방향 프라이머 (Reverse primer)의 5'에는 제한효소 NotI 인식서열이 각각 삽입된 프라이머 (Forward primer - 5'CCCGGATCCAGCAGCGACATCATCAATGTC3'(서열번호 6); Reverse primer - 5'CCCGCGGCCGCTCATATAGGATCTCCAATATTTA3'(서열번호 7), 밑줄은 제한효소 자리를 의미)를 합성하였다. 그 결과 1.6kbp의 클로스트리디움 유래의 셀룰로보란스의 miniCbpA 유전자가 포함되어 있는 PCR 밴드를 확인할 수 있었고 이를 도면 7(B)에 도시하였다.In order to clone the small cellulose binding protein A (miniCbpA) gene, which is a cellulosome basic skeletal subunit of cellulose boron derived from Clostridium, the restriction enzyme BamHI was identified at 5 'of the forward primer with reference to the base sequence of miniCbpA. , and the reverse primer of (reverse primer) 5 ', the restriction enzyme NotI recognition sequence, each insert primer (Forward primer - 5'CCC GGATCC AGCAGCGACATCATCAATGTC3' ( SEQ ID NO: 6); reverse primer - 5'CCC GCGGCCGC TCATATAGGATCTCCAATATTTA3 '( SEQ ID NO: 7 ), Underscores indicate restriction sites). As a result, a PCR band containing a 1.6 kbp clostridium-derived cellulose boranth miniCbpA gene was identified, which is shown in FIG. 7 (B).
상기 융합단백질을 이용하여, 소형 셀룰로즈-결합 단백질이 가진 셀룰로스-결합 모듈(Cellulse binding module; CBM)과 셀룰로즈 사이의 상호작용을 이용한 단백질 정제를 실행하였다. Using this fusion protein, protein purification was performed using the interaction between the cellulose-binding module (CBM) and cellulose of the small cellulose-binding protein.
셀룰로스-결합 모듈(Cellulse binding module; CBM)과 셀룰로즈 사이의 상호작용을 이용한 단백질 정제를 위해 셀룰로즈 (Sigmacell Type 50, SIGMA) 를 첨가하여 1시간동안 실온에서 반응시켰다. 반응 후 1몰 소듐 클로라이드(sodium chloride) 0.02몰 트리스 버퍼 (pH 8.0)로 세 번 헹구어 낸 후 0.05몰 트리스 버퍼 (pH 12.5)로 용리하였다. 이의 SDS-PAGE는 10% poly-acrylamide gel을 사용하여 효소 단백질을 전기영동하였다. Cellulose (Sigmacell Type 50, SIGMA) was added and reacted at room temperature for 1 hour for protein purification using the interaction between cellulose-binding module (CBM) and cellulose. After the reaction, the mixture was rinsed three times with 1 mol sodium chloride 0.02 mol Tris buffer (pH 8.0) and eluted with 0.05 mol Tris buffer (pH 12.5). SDS-PAGE electrophoresed the enzyme protein using 10% poly-acrylamide gel.
그 결과 58kDa위치에 정제되어진 miniCbpA 단백질 밴드를 확인하였다. 이 결과를 도면 8에 도시하였다. 단백질의 정제를 위하여 코딩단백질의 뒤쪽에 코히신과 상호결합을 하는 도커린 꼬리를 달아서 융합단백질을 제조하였다. As a result, the miniCbpA protein band purified at the 58 kDa position was confirmed. This result is shown in FIG. For the purification of the protein, a fusion protein was prepared by attaching a dockerine tail that interacts with cohysine at the back of the coding protein.
본 발명에서의 단백질 정제 및 나노고분자복합체의 형성 확인을 위하여 코히신과 본 단백질과의 복합체 형성을 위하여 제작되어진 골격단백질인 클로스트리디움 유래의 셀룰로보란스의 기본 골격 소단위체 (primary scaffolding subunit)인 셀룰로즈-결합 단백질-에이(Cellulose-binding protein A) 중 셀룰로즈 결합 모듈 (Cellulose binding module; CBM)과 두 개의 코히즌 모듈(Cohesin module)을 가진 소형 셀룰로즈-결합 단백질-에이(Mini-Cellulose-binding protein A) 유전자에 포함되어진 CBD와의 cellulose와의 결합을 이용한 것으로써 또한 이의 단백질 발현 및 정제 방법의 위에서 언급한 것과 같은 동일한 방법을 이용하였으며 융합단백질의 용출을 위하여 Ca2+이온을 이용하였다. Cellulose, a primary scaffolding subunit of cellulose boranth-derived cellulose boranth, a skeletal protein prepared for complexation between cohisine and the present protein for protein purification and confirmation of formation of nanopolymer complexes in the present invention. Mini-Cellulose-binding protein A with Cellulose binding module (CBM) and two Cohesin modules in Cellulose-binding protein A By using the binding of cellulose to CBD contained in the gene, the same method as described above in the method of protein expression and purification was also used, and Ca 2+ ions were used to elute the fusion protein.
또한 본 발명에서의 코히신 마커의 나노고단위복합체 형성으로의 이용을 위하여 코히신과 도커린의 결합을 확인하기위한 실험으로써는 native PAGE를 통한 코히신, 도커린의 결합을 확인함으로써 나노고단위복합체 형성에 적합한 펩타이드 모듈임을 확인하였다. 이 결과를 도면 9에 도시하였다. 또한 엘리아(enzyme-linked interaction assay)를 통하여 펩타이드의 상호작용을 확인하였다. 마이크로 플래이트에 2시간동안 25℃에서 코히신을 코팅하여 3%의 BSA 단백질이 포함되어진 TrisNC buffer(50mM Tris, 100mM NaCl, 2mM CaCl2, 및 0.02% sodium azide, pH 7.5)에서 다른 물질들과의 결합을 저해하였다. TrisNC buffer를 이용하여 3회 세척 후 코히신과 도커린의 결합을 위하여 도커린을 포함한 셀룰라아제를 첨가하여 이를 2시간 동안 반응하였다. 반응후 3번의 세척 후 셀룰라아제 활성을 특정함으로써 코히신과 토커린의 활성을 확인하였다. 이 결과를 도면 10에 도시하였다. In addition, as an experiment for confirming the binding of cohysine and dockerine for the use of cohysine markers in the formation of nano-higher complexes in the present invention, nano-higher complexes by confirming the binding of cohysine and dockerine through native PAGE It was found to be a peptide module suitable for formation. This result is shown in FIG. In addition, Elia (enzyme-linked interaction assay) confirmed the interaction of the peptides. Cohesine coated on microplate at 25 ° C. for 2 hours to bind with other substances in TrisNC buffer (50 mM Tris, 100 mM NaCl, 2 mM CaCl 2 , and 0.02% sodium azide, pH 7.5) containing 3% BSA protein Inhibited. After washing three times with TrisNC buffer, a cellulase including dockerine was added to react with cohicin and dockerine for 2 hours. After washing three times after the reaction by specifying the cellulase activity was confirmed the activity of cohysine and tokerin. This result is shown in FIG.

Claims (15)

  1. 코히신(cohesin) 도메인을 유효성분으로 하는 셀로로좀 형성 효소 탐색용 마커 조성물.Marker composition for searching for cellosome-forming enzyme having a cohesin (cohesin) domain as an active ingredient.
  2. 제 1항에 있어서, 상기 코히신 도메인은 형광물질 및 방사성 동위원소로 구성된 군으로부터 선택된 표지수단이 표지된 것을 특징으로 하는 셀로로좀 형성 효소 탐색용 마커 조성물. [Claim 2] The marker composition of claim 1, wherein the cohisine domain is labeled with a labeling means selected from the group consisting of a fluorescent substance and a radioisotope.
  3. 제 1항 또는 제2항에 있어서, 상기 코히신 도메인은 코히신 도메인 1내지 도메인 9 중에서 선택된 하나 이상의 도메인인 것을 특징으로 하는 셀로로좀 형성 효소 탐색용 마커 조성물. [Claim 3] The marker composition of claim 1 or 2, wherein the cohisine domain is one or more domains selected from cohisine domain 1 to domain 9.
  4. 제 3항에 있어서, 상기 코히신 도메인은 도메인 6인 것을 특징으로 하는 셀로로좀 형성 효소 탐색용 마커 조성물. 4. The marker composition of claim 3, wherein the cohysine domain is domain 6.
  5. 제 4항에 있어서, 상기 도메인 6는 서열번호 1에 기재된 아미노산 서열을 가지는 것을 특징으로 하는 셀로로좀 형성 효소 탐색용 마커 조성물. [Claim 5] The marker composition of claim 4, wherein the domain 6 has the amino acid sequence of SEQ ID NO.
  6. a) 셀룰로우즈 분해 미생물을 배양하여 단백질들을 얻는 단계;a) culturing the cellulose degrading microorganism to obtain proteins;
    b) 상기 단백질들을 분리하는 단계;b) separating the proteins;
    c) 상기 분리된 단백질에 제1항 또는 제2항의 코히신(cohesin) 도메인을 유효성분으로 하는 마커 조성물을 처리하는 단계; 및c) treating the isolated protein with a marker composition comprising the cohesin domain of claim 1 or 2 as an active ingredient; And
    d)상기 마커와 단백질의 복합체를 확인하는 단계를 포함하는 셀로로좀 형성 효소 탐색 방법. d) A method for searching for cellosome-forming enzyme comprising identifying the complex of the marker and the protein.
  7. 제 6항에 있어서, 상기 코히신 도메인은 형광물질로 표지된 것을 특징으로 하는 셀로로좀 형성 효소 탐색 방법. The method of claim 6, wherein the cohisine domain is labeled with a fluorescent material.
  8. 제 6항에 있어서, 상기 셀룰로우즈 분해 미생물은 혐기성 균인 것을 특징으로 하는 셀로로좀 형성 효소 탐색 방법. The method of claim 6, wherein the cellulose-degrading microorganism is an anaerobic bacterium.
  9. 제 6항 또는 제8항에 있어서, 상기 셀룰로우즈 분해 미생물은 클로스트리디움 셀룰로보란스, 클로스트리디움 써모셀럼, 클로스트리디움 셀룰로라이티쿰, 클로스트리디움 아세토뷰틸라이쿰, 클로스티리디움 조슈, 클로스티리디움 파피로솔벤스, 아세티비브리오 셀룰로라이티커스, 박테로이즈 셀룰로솔벤스, 루미노코코스 알버스, 루미노코코스 플라브파시언스, 루미노코코스 석시노진스, 뷰틸리비브리오 피브리솔벤스, 네오콜리마스틱 파트리시얼럼, 오피노마이시즈 조이오닐, 및 오피노마이시즈 피씨-2로 구성된 군으로부터 선택된 하나 이상의 균주인 것을 특징으로 하는 셀로로좀 형성 효소 탐색 방법. The method according to claim 6 or 8, wherein the cellulose degrading microorganisms are Clostridium cellulose borrose, Clostridium thermocelum, Clostridium cellulose lyumcum, Clostridium acetobutyl lycum, Clostridium joshua , Clostridium papyrosolves, acetibrio cellulolytics, bacteroids cellulose solvates, luminococos albus, luminococos flavfacience, luminococos succinogins, butylivibrio fibris And at least one strain selected from the group consisting of Solvents, Neocolimatic Partial Column, Opinomyces Zoionyl, and Opinomyces C-2.
  10. 제 6항에 있어서, 상기 코히신 도메인은 코히신 도메인 1내지 도메인 9 중에서 선택된 하나 이상의 도메인인 것을 특징으로 하는 셀로로좀 형성 효소 탐색 방법. 7. The method of claim 6, wherein the cohisine domain is at least one domain selected from cohisine domain 1 to domain 9.
  11. 제 10항에 있어서, 상기 코히신 도메인은 도메인 6인 것을 특징으로 하는 셀로로좀 형성 효소 탐색 방법. 11. The method of claim 10, wherein said cohisine domain is domain 6.
  12. a) 표적 단백질에 도커린 도메인을 추가하는 단계; 및 a) adding a dockerine domain to the target protein; And
    b) 상기 표적 단백질-도커리 도메인 복합체에 제1항 또는 제2항의 코히신(cohesin) 도메인 마커를 처리하는 단계를 포함하는 도커린 재조합체의 탐색 방법. b) treating the target protein-docory domain complex with a cohesin domain marker of claim 1 or 2;
  13. 목적단백질을 코딩하는 유전자를 도커린 서열과 융합시켜 생체내에서 발현시켜 생성된 융합 단백질로부터 코히신 도메인을 처리하여 목적단백질을 분리, 정제하는 방법에 있어서, In the method for separating and purifying the protein of interest by processing the cohysine domain from the fusion protein generated by fusion of the gene encoding the protein of interest with the dockerine sequence in vivo,
    목적단백질을 코딩하는 유전자와 상기 목적단백질과는 다른 펩티드나 단백질을 코딩하는 유전자의 연결점에 15-21 개의 아미노산을 코딩하는 유전자 서열을 도입하여 목적단백질과 다른 펩티드나 단백질의 사이에 15-21개의 아미노산으로 구성된 도커린 펩티드를 생성하고 이에 의한 단백질 물성 변화를 이용하여 융합단백질로부터 목적단백질을 분리, 정제하는 방법.A gene sequence encoding 15-21 amino acids is introduced at the junction of a gene encoding a protein of interest and a gene encoding a peptide or protein different from the protein of interest, thereby providing 15-21 amino acids between the target protein and another peptide or protein. A method for producing a dockerine peptide consisting of amino acids and separating and purifying the protein of interest from the fusion protein by using the protein properties thereof.
  14. a) 나노고단위복합체 형성 물질, 코히신 도메인 1내지 도메인 9 중에서 선택된 하나 이상의 코히신 도메인과 도커린을 동일한 장 또는 계에 제공하는 단계;a) providing at least one cohisine domain and dockerine selected from the nano-complex forming material, cohisine domain 1 to domain 9, in the same field or system;
    b) 상기 코히신과 도커린의 상호작용에 의해 나노고단위복합체를 형성하는 단계; 및 b) forming a nano-high complex by the interaction of the cohysine and dockerine; And
    c) 상기 나노고단위복합체의 형성여부를 측정하여 상기 상호작용을 판별하는 단계를 포함하는 친화펩타이드를 이용한 물질의 상호작용 탐색 방법.c) A method of searching for an interaction of a substance using an affinity peptide, comprising determining the interaction by measuring whether the nano-high complex is formed.
  15. a) 나노고단위복합체(nano-assembly matrix) 형성 물질, 도커린 및 코히신의 라이브러리를 동일한 장(field) 또는 계(system)에 제공하는 단계;a) providing a library of nano-assembly matrix forming materials, dockerine and cohisine in the same field or system;
    b) 상기 도커린 및 코히신 라이브러리의 상호작용에 의해 나노고단위복합체를 형성하는 단계;b) forming a nano-high complex by the interaction of the dockerine and cohisine library;
    c) 상기 나노고단위복합체의 형성여부를 측정하여 도커린과 코히신간 상호작용을 판별하는 단계; 및c) determining whether the nano-high complex is formed to determine the interaction between dockerine and cohysine; And
    d) 상기 코히신과 상호작용하여 나노고단위복합체를 형성하는 도커린을 표적물질로, 선택, 분리 및 동정하는 단계를 포함하는 코히신과 상호작용하는 표적물질의 검출방법.d) a method of detecting a target substance interacting with cohissin comprising the step of selecting, separating and identifying a docurin that interacts with the cohysine to form a nano-high complex as a target substance.
PCT/KR2010/002508 2009-04-24 2010-04-21 Fluorescently marked cohesin marker, and a cellulosome-forming-enzyme detection method employing the same WO2010123283A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0035895 2009-04-24
KR20090035895 2009-04-24

Publications (3)

Publication Number Publication Date
WO2010123283A2 true WO2010123283A2 (en) 2010-10-28
WO2010123283A9 WO2010123283A9 (en) 2011-03-17
WO2010123283A3 WO2010123283A3 (en) 2011-04-28

Family

ID=43011616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/002508 WO2010123283A2 (en) 2009-04-24 2010-04-21 Fluorescently marked cohesin marker, and a cellulosome-forming-enzyme detection method employing the same

Country Status (2)

Country Link
KR (1) KR101269596B1 (en)
WO (1) WO2010123283A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111850005A (en) * 2020-07-27 2020-10-30 齐鲁工业大学 Cellulosome docking protein combined mutant 36863 suitable for low calcium ion concentration and application
CN111848759A (en) * 2020-07-27 2020-10-30 齐鲁工业大学 Cellulosomal dockerin mutant 36741 with improved activity and application thereof
CN111848758A (en) * 2020-07-27 2020-10-30 齐鲁工业大学 Cellulosome docking protein mutant suitable for low calcium ion concentration and application

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101678067B1 (en) * 2013-02-15 2016-11-21 고려대학교 산학협력단 Cellulosome Complex Containing Endoglucanase from Clostridium cellulovorans and Use therof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009025475A2 (en) * 2007-08-17 2009-02-26 Korea Advanced Institute Of Science And Technology The methods for detecting molecular interactions

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
CARVALHO, A. ET AL. PROC. NATL. ACAD. SCI. USA vol. 100, no. 24, 2003, pages 13809 - 13814 *
CRAIG, S. ET AL. J. BIOTECHNOL. vol. 121, no. 2, 2006, pages 165 - 173 *
LYTLE, B. ET AL. J. BACTERIOL. vol. 180, no. 24, 1998, pages 6581 - 6585 *
MECHALY, A. ET AL. THE JOURNAL OF BIOLOGICAL CHEMISTRY vol. 276, no. 12, 2001, pages 9883 - 9888 *
PAGES. S. ET AL. PROTEINS vol. 29, no. 4, 1997, pages 517 - 527 *
YARON, S. ET AL. FEBS LETT. vol. 360, no. 2, 1995, pages 121 - 124 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111850005A (en) * 2020-07-27 2020-10-30 齐鲁工业大学 Cellulosome docking protein combined mutant 36863 suitable for low calcium ion concentration and application
CN111848759A (en) * 2020-07-27 2020-10-30 齐鲁工业大学 Cellulosomal dockerin mutant 36741 with improved activity and application thereof
CN111848758A (en) * 2020-07-27 2020-10-30 齐鲁工业大学 Cellulosome docking protein mutant suitable for low calcium ion concentration and application
CN111848759B (en) * 2020-07-27 2022-03-29 齐鲁工业大学 Cellulosomal dockerin mutant 36741 with improved activity and application thereof

Also Published As

Publication number Publication date
KR101269596B1 (en) 2013-06-05
KR20100117526A (en) 2010-11-03
WO2010123283A3 (en) 2011-04-28
WO2010123283A9 (en) 2011-03-17

Similar Documents

Publication Publication Date Title
Horne et al. Isolation and characterization of 5S RNA-protein complexes from Bacillus stearothermophilus and Escherichia coli ribosomes
Payne et al. Fungal cellulases
Shoemaker et al. Characterization and properties of cellulases purified from Trichoderma reesei strain L27
Kazemi‐Pour et al. The secretome of the plant pathogenic bacterium Erwinia chrysanthemi
US8309324B2 (en) Promoters and proteins from Clostridium thermocellum and uses thereof
Juncosa et al. Identification of active site carboxylic residues in Bacillus licheniformis 1, 3-1, 4-beta-D-glucan 4-glucanohydrolase by site-directed mutagenesis.
Calvo et al. Analysis of the Listeria cell wall proteome by two‐dimensional nanoliquid chromatography coupled to mass spectrometry
WO2010123283A2 (en) Fluorescently marked cohesin marker, and a cellulosome-forming-enzyme detection method employing the same
Liu et al. CLR‐4, a novel conserved transcription factor for cellulase gene expression in ascomycete fungi
Linger et al. A constitutive expression system for glycosyl hydrolase family 7 cellobiohydrolases in Hypocrea jecorina
AU2018334254A1 (en) Function-based probes for environmental microbiome analysis and methods of making and using the same
Kolbe et al. Quantification and identification of the main components of the Trichoderma cellulase complex with monoclonal antibodies using an enzyme-linked immunosorbent assay (ELISA)
Maaty et al. Global analysis of viral infection in an archaeal model system
Wakarchuk et al. Proteomic analysis of the secretome of Cellulomonas fimi ATCC 484 and Cellulomonas flavigena ATCC 482
WO2003057138A2 (en) Expression of lysosomal hydrolase in cells expressing pro-n-acetylglucosamine-1-phosphodiester alpha-n-acetyl glucosimanidase
Wu et al. Identification of glutaminyl cyclase genes involved in pyroglutamate modification of fungal lignocellulolytic enzymes
CN109321551B (en) Novel gene of Trx-beta-glucosidase, protein expression, vector and application thereof
Zhivin-Nissan et al. Unraveling essential cellulosomal components of the (Pseudo) Bacteroides cellulosolvens reveals an extensive reservoir of novel catalytic enzymes
Hochuli et al. Interaction of hexahistidine fusion proteins with nitrilotriacetic acid-chelated Ni2+ ions
US11884954B2 (en) Protein complex based on DNA enzymes of E family of Escherichia coli and application thereof in artificial protein scaffolds
Sprey Complexity of cellulases from Trichoderma reesei with acidic isoelectric points: a two-dimensional gel electrophoretic study using immunoblotting
US9353364B2 (en) β-glucosidase
US10435680B2 (en) Thermostable cellobiohydrolase
US20150017692A1 (en) Beta-glucosidase
EP2995687B1 (en) Thermostable beta-glucosidase

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10767297

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10767297

Country of ref document: EP

Kind code of ref document: A2