WO2010122797A1 - 固体撮像素子 - Google Patents

固体撮像素子 Download PDF

Info

Publication number
WO2010122797A1
WO2010122797A1 PCT/JP2010/002912 JP2010002912W WO2010122797A1 WO 2010122797 A1 WO2010122797 A1 WO 2010122797A1 JP 2010002912 W JP2010002912 W JP 2010002912W WO 2010122797 A1 WO2010122797 A1 WO 2010122797A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
color filter
solid
color
imaging device
Prior art date
Application number
PCT/JP2010/002912
Other languages
English (en)
French (fr)
Inventor
六車充
薄田学
香山信三
齋藤繁
廣瀬裕
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2010122797A1 publication Critical patent/WO2010122797A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14623Optical shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses

Definitions

  • the present invention relates to a solid-state image sensor, and more particularly to a filtering technique for a solid-state image sensor used for a digital camera or the like.
  • a color imaging device or a color electronic image input device includes an imaging optical system that forms an image of a subject, a solid-state imaging device that converts the subject image, that is, optical information, into electronic information, and image data obtained by the solid-state imaging device
  • a configuration is provided that includes a signal processing device that performs arithmetic processing and a display device that displays the obtained image data.
  • FIG. 8A is a graph showing transmission characteristics of a conventional filter
  • FIG. 8B is a diagram showing an arrangement of conventional filters.
  • the conventional imaging device has a structure in which filters having the spectral characteristics shown in FIG. 8A are arranged as shown in FIG. 8B called a Bayer array.
  • the spectral characteristics of the three-color filter that faithfully reproduces human color vision are called color matching functions.
  • the sensitivity curve becomes negative as shown in FIG. A wavelength region is generated (see, for example, Non-Patent Document 1). Accordingly, it is physically impossible to realize a color matching function with an RGB filter assuming such RGB tristimulus values, and a color filter mounted on a solid-state imaging device usually does not have a color matching function.
  • the CIE 1931 XYZ color matching function (hereinafter referred to as the XYZ color matching function) has a spectral sensitivity curve that is 0 or more over the entire wavelength region as shown in FIG.
  • a color filter having a color filter can be physically realized, and an image sensor having an XYZ color matching function has been proposed (see, for example, Patent Documents 2 and 3).
  • the color reproducible region of the input image data obtained by the image input device using such an image sensor covers all regions that can be sensed by human color vision, and assumes normal RGB tristimulus values, for example, sRGB And much larger than the AdobeRGB color gamut.
  • the spectral sensitivity characteristic of the image sensor be close to the human spectral sensitivity characteristic.
  • Patent Documents 2 and 3 construct XYZ color matching functions using reflective filters in which films made of different materials are alternately stacked, and the number of stacked layers is large, and the thickness of the image pickup device is large. Since it increases, there is a problem that mass production is difficult.
  • the image sensor described in Patent Document 4 has a high degree of freedom in color conversion processing due to the use of multi-color filters, but it does not become a perfect color matching function, so noise characteristics deteriorate as the color reproducibility increases. To do.
  • an object of the present invention is to provide a solid-state imaging device including a thin film color filter that realizes high color reproduction.
  • a solid-state imaging device includes a plurality of light receiving units arranged in a two-dimensional manner and a color filter having a light absorption characteristic arranged on each of the plurality of light receiving units.
  • the plurality of color filters include a first color filter having a transmission center wavelength in a blue region, a second color filter having a transmission center wavelength in a green region, and a first color filter having a transmission center wavelength in a red region.
  • a third color filter having a first transmission band and a second transmission band having a transmission center wavelength in a blue region, wherein the third color filter includes a fourth transmission band having the first transmission band.
  • the spectral characteristics of the plurality of color filters can reproduce XYZ color matching functions.
  • the third color filter includes a fourth color filter having a transmission center wavelength in the red region and a fifth color filter having a transmission center wavelength in the blue region, the spectral characteristics of the X filter Have
  • each color filter has a light absorption characteristic, and thus can be formed with a thin film thickness. Therefore, the solid-state imaging device according to the present invention can realize high color reproduction with a thin-film color filter.
  • the maximum transmittance of the second transmission band may be 10 to 50% with respect to the maximum transmittance of the first transmittance.
  • the spectral characteristics of the third color filter can be further approximated to the spectral characteristics of the X filter, so that color reproduction can be realized with high accuracy.
  • the thickness of the fourth color filter may be different from the thickness of the fifth color filter.
  • the transmittance of the fourth color filter and the fifth color filter can be controlled, so that high color reproduction can be easily realized.
  • the solid-state imaging device further includes a low refractive index layer having a refractive index lower than the refractive index of each of the first color filter, the second color filter, and the third color filter.
  • a low refractive index layer having a refractive index lower than the refractive index of each of the first color filter, the second color filter, and the third color filter.
  • Each of the color filter, the second color filter, and the third color filter may be spaced apart via the low refractive index layer.
  • the fourth color filter and the fifth color filter are arranged adjacent to each other, and the area where the fifth color filter is arranged is an area where the fourth color filter is arranged. It may be surrounded.
  • each of the first color filter, the second color filter, and the third color filter has a tapered shape in which a cross-sectional area in a thickness direction gradually decreases toward the light receiving portion, and the fourth color filter
  • the ratio of the cross-sectional area of the color filter and the cross-sectional area of the fifth color filter may be equal in any cross section.
  • each filter has a larger area on the light incident side than the area on the light receiving unit side, so this solid-state imaging device can convert more light into signal charges, The sensitivity is further improved. Further, as compared with the case where the shape is not a taper, light incident more obliquely can be guided to the light receiving portion, and the sensitivity is further improved.
  • the solid-state imaging device further includes a lens disposed on each of the first color filter, the second color filter, and the third color filter, and the lens corresponds to incident light. You may enter in parallel with respect to a color filter.
  • the lens includes a plurality of zone regions of a light transmission film having a concentric structure divided by a line width that is approximately the same as or shorter than the wavelength of incident light, and the central portion of the lens includes You may have a plane area
  • spectral characteristics obtained by the first color filter, the second color filter, and the third color filter may satisfy a color matching condition.
  • FIG. 1A is a plan view illustrating an example of an arrangement of color filters of the solid-state imaging device according to the first embodiment.
  • FIG. 1B is a cross-sectional view illustrating an example of the structure of the solid-state imaging device.
  • FIG. 2 is a structural formula showing an example of the molecular structure of the pigment used in each filter.
  • FIG. 3 is a graph showing the spectral characteristics of each filter.
  • FIG. 4 is a graph showing a color gamut that can express an XYZ color matching function.
  • FIG. 5A is a plan view illustrating an arrangement of color filters of the solid-state imaging device according to the second embodiment.
  • FIG. 5B is a cross-sectional view illustrating an example of the configuration of the solid-state imaging device.
  • FIG. 5A is a plan view illustrating an arrangement of color filters of the solid-state imaging device according to the second embodiment.
  • FIG. 5B is a cross-sectional view illustrating an example of the configuration of the solid-state imaging device.
  • FIG. 6A is a cross-sectional view illustrating an example of a configuration of a solid-state imaging device including an on-chip lens that allows light to enter in parallel.
  • FIG. 6B is a plan view showing an example of the shape of an on-chip lens that allows light to enter in parallel.
  • FIG. 7A is a cross-sectional view illustrating an example of the configuration of the solid-state imaging device of the third embodiment.
  • FIG. 7B is a diagram illustrating an example of a detailed configuration of the X filter.
  • FIG. 8A is a graph showing pass characteristics of a conventional filter.
  • FIG. 8B is a plan view showing the arrangement of the filters.
  • FIG. 9 is a graph showing color matching functions in RGB.
  • FIG. 10 is a graph showing XYZ color matching functions.
  • the solid-state imaging device of the present embodiment includes a plurality of light receiving units arranged in a two-dimensional manner, and a color filter having a light absorption characteristic arranged on each of the plurality of light receiving units, and a plurality of the colors
  • the filter includes a first color filter having a transmission center wavelength in a blue region, a second color filter having a transmission center wavelength in a green region, a first transmission band having a transmission center wavelength in a red region, and a blue region.
  • a third color filter having a second transmission band having a transmission center wavelength wherein the third color filter includes a fourth color filter having the first transmission band, and the second color filter.
  • a fourth color filter having a transmission band, the fourth color filter being disposed on the corresponding light receiving unit, and the fifth color filter being on the corresponding light receiving unit and the fourth color. It is arranged on the same plane as the filter.
  • the solid-state imaging device of the present embodiment can realize high color reproduction with a thin-film color filter.
  • FIG. 1A is a plan view showing an example of the arrangement of color filters of the solid-state imaging device of the present embodiment.
  • the solid-state imaging device 100 includes a filter layer 101 on a plurality of light receiving portions arranged in a two-dimensional manner.
  • the filter layer 101 includes a plurality of structural units 102 arranged two-dimensionally, and each structural unit 102 includes one X filter 111, two Y filters 112, and one Z filter 113.
  • Each of these X filter 111, Y filter 112, and Z filter 113 is provided corresponding to the light receiving section, and has light absorption characteristics in the visible light region.
  • the X filter 111 has a transmittance peak at a wavelength of 440 nm, which is mainly a blue region, in which a blue pigment is dispersed, and an X1 filter 114 having a wavelength of 380 to 500 nm including this wavelength as a transmission band. And an X2 filter 115 having a transmission peak at a wavelength of 500 to 730 nm including this wavelength.
  • the X1 filter 114 and the X2 filter 115 are arranged on the same plane on the same light receiving unit.
  • the area ratio and the film thickness ratio between the X1 filter 114 and the X2 filter 115 are designed so that the maximum transmittance of the X1 filter 114 is 10 to 50% of the maximum transmittance of the X2 filter 115.
  • the planar shapes of the X1 filter 114 and the X2 filter 115 are not limited to the shapes shown in FIG.
  • the Y filter 112 is a filter in which green pigment is dispersed, has a transmittance peak at a wavelength of 555 nm, which is mainly a green region, and has a transmission band of 410 to 710 nm including this wavelength. Further, the Y filters 112 are arranged at positions that are not adjacent to each other so as to be distributed evenly on the plurality of light receiving portions.
  • the Z filter 113 is a filter in which a blue pigment is dispersed, has a transmittance peak at a wavelength of 445 nm, which is mainly a blue region, and has a wavelength of 370 to 570 nm including this wavelength as a transmission band.
  • the Z filter 113 is the first color filter of the solid-state imaging device 100
  • the Y filter 112 is the second color filter
  • the X filter 111 is the third color filter
  • the X2 filter 115 is the fourth color filter
  • the X1 filter corresponds to the fifth color filter.
  • each of the X1 filter 114, the X2 filter 115, the Y filter 112, and the Z filter 113 may be made of a dye-based color resist instead of a pigment.
  • FIG. 1B is a cross-sectional view showing an example of the structure of the solid-state imaging device 100.
  • the solid-state imaging device 100 includes a substrate 123, a light receiving unit 124, a light shielding film 125, an insulating film 126, a filter layer 101, a planarizing film 127, and an on-chip lens 128.
  • the substrate 123 is a p-type Si substrate, for example.
  • the light receiving unit 124 is formed on the substrate 123 and converts incident light into an electric signal (signal charge).
  • the light receiving portions 124 are, for example, n-type regions that are arranged in a two-dimensional manner on the substrate 123.
  • the signal charge converted by the light receiving unit 124 is read out by a readout circuit such as a transistor.
  • the light shielding film 125 is formed in the insulating film 126 at a position corresponding to each light receiving portion 124.
  • the filter layer 101 is formed on the insulating film 126, and any one of the X filter 111, the Y filter 112, and the Z filter 113 is formed on each light receiving portion 124.
  • 1B shows only the X filter 111 and the Y filter 112 among the X filter 111, the Y filter 112, and the Z filter 113, the structure of the Z filter 113 is the same as that of the Y filter 112.
  • the thickness in the stacking direction of the X1 filter 114 included in the X filter 111 is different from the thickness in the stacking direction of the X2 filter 115.
  • the spectral characteristics of the X1 filter 114 and the X2 filter 115 can be further approximated to XYZ color matching functions, so that the solid-state imaging device 100 can realize color reproduction with high accuracy.
  • the planarizing film 127 is formed on the filter layer 101, and planarizes the upper surface that is the surface on the light incident side.
  • the on-chip lens 128 is formed on the filter layer 101 through the planarization film 127 and collects incident light on the light receiving unit 124.
  • the light transmitted through the X filter 111, the Y filter 112, and the Z filter 113 is incident on different light receiving units 124.
  • the light transmitted through the X filter 111 that is, the light transmitted through one of the X1 filter 114 and the X2 filter 115 is incident on the same light receiving unit 124. Therefore, the signal generated by the light transmitted through the X filter 111 has a peak in two transmission bands, a blue region that is the transmission band of the X1 filter and a red region that is the transmission band of the X2 filter.
  • FIG. 2 is a structural formula showing an example of the molecular structure of the pigment used in the X1 filter 114, the X2 filter 115, the Y filter 112 and the Z filter 113.
  • the red pigment used in the X2 filter 115 is, for example, an anthraquinone pigment
  • the blue pigment used in the X1 filter 114 and the Z filter 113 is, for example, ⁇ -type copper phthalocyanine
  • the green pigment used in the Y filter 112 is, for example, brominated copper phthalocyanine. It is.
  • Table 1 shows the thickness, area ratio, maximum transmittance, and normalized transmittance of the X1 filter 114, X2 filter 115, Y filter 112, and Z filter 113 formed using the pigment shown in FIG.
  • the area ratio is the area ratio of the X1 filter 114 and the X2 filter 115 when the area of the Y filter 112 and the Z filter 113 viewed from the stacking direction of the solid-state imaging device 100 is 1.
  • the normalized transmittance is the maximum transmittance of the X1 filter 114, the X2 filter 115, and the Y filter 112 when the maximum transmittance of the Z filter 113 is 1 (however, the third decimal place is rounded off). .
  • FIG. 3 is a graph showing the spectral characteristics of the X1 filter 114, X2 filter 115, Y filter 112, and Z filter 113 formed under the conditions shown in Table 1.
  • a filter having a transmission band in the R and B wavelength regions may be arranged on the same pixel by controlling the area ratio and thickness.
  • the ratio of the peak of the X1 filter 114 to the peak of the X2 filter 115 is 33%. The closer to this value, the more the spectral characteristic of the X filter 111 is the spectral characteristic of the X filter of the XYZ color matching function shown in FIG. Can be further approximated. As a result, negative sensitivity to emerald light in the RGB color system can be faithfully reproduced without error, and color reproduction can be realized with high accuracy.
  • the filter X1 and the filter X2 have the same thickness, but the X filter can also be formed by controlling the thickness.
  • the X filter is formed only by the area ratio, it is difficult to form the filter if the area of the X1 filter or the X2 filter becomes too small.
  • the thickness it is possible to form a good X filter without having an area where it is difficult to form either the X1 filter or the X2 filter.
  • the spectral characteristics of the X filter 111, the Y filter 112, and the Z filter 113 can reproduce an XYZ color matching function.
  • the X filter 111 includes an X2 filter 115 having a transmission center wavelength in the red region and an X1 filter 114 having a transmission center wavelength in the blue region, the spectral characteristics of the X filter of the XYZ color matching function Have
  • each color filter has a light absorption characteristic, and thus can be formed with a thin film thickness. Therefore, the solid-state imaging device 100 of the present invention can realize high color reproduction with a thin-film color filter.
  • the solid-state imaging device of the present embodiment has a refractive index lower than the refractive indexes of the first color filter, the second color filter, and the third color filter, as compared with the solid-state imaging device 100 of the first embodiment.
  • the first color filter, the second color filter, and the third color filter are disposed separately from each other with the low refractive index layer interposed therebetween.
  • the fourth color filter and the fifth color filter are disposed adjacent to each other, and the region where the fifth color filter is disposed is surrounded by the region where the fourth color filter is disposed. The point is different.
  • differences from the solid-state imaging device 100 according to the first embodiment will be mainly described.
  • FIG. 5A is a plan view showing an example of the arrangement of the color filters of the solid-state imaging device of the present embodiment
  • FIG. 5B is a cross-sectional view showing an example of the configuration of the solid-state imaging device.
  • the filter layer 201 has a plurality of structural units 202.
  • Each structural unit 202 includes an X filter 211, a Y filter 212, and a Z filter 213 having the same spectral characteristics as those of the X filter 211, the Y filter 112, and the Z filter 113 described in FIG. Further, an insulating film 126 which is a low refractive index layer is provided.
  • the X filter 211, the Y filter 212, and the Z filter 213 are arranged separately with an insulating film 126 interposed therebetween.
  • the area where the X1 filter 214 is disposed is surrounded by the area where the X2 filter 215 is disposed, and the X1 filter 214 and the X2 filter 215 constitute the X filter 211. Note that the positional relationship between the X1 filter 214 and the X2 filter 215 is not necessarily concentric.
  • the insulating film 126 has a refractive index lower than that of each of the X filter 211, the Y filter 212, and the Z filter 213.
  • the solid-state imaging device 200A includes a substrate 123, a light receiving unit 124, a light shielding film 125, an insulating film 126, an X filter 211, a Y filter 212, a planarizing film 127, and an on-chip lens 128.
  • a substrate 123 a substrate 123
  • a light receiving unit 124 a light shielding film 125
  • an insulating film 126 an insulating film 126
  • an X filter 211 a Y filter 212
  • planarizing film 127 planarizing film
  • the X filter 211 and the Y filter 212 are each surrounded by an insulating film 126.
  • the insulating film 126 has a refractive index lower than that of each of the X filter 211, the Y filter 212, and the Z filter 213.
  • the X filter 211, the Y filter 212, and the Z filter 213 have a function of confining light within the filter. Therefore, it is possible to prevent color mixture between pixels corresponding to each light receiving unit 124. Further, since the light incident obliquely with respect to each of the X filter 211, the Y filter 212, and the Z filter 213 can be guided to the corresponding light receiving unit 124, the sensitivity of the solid-state imaging device 200A is improved.
  • the signal generated by the light transmitted through the X filter 211 has peaks in two transmission bands. .
  • the X1 filter 214, the X2 filter 215, the Y filter 212, and the Z filter 213 are made of the materials shown in FIG. 2 as in the first embodiment, and the thickness, area ratio, transmittance, and normalized transmittance shown in Table 1. And formed with.
  • the solid-state imaging device 200A maintained the spectral characteristics of FIG. 3, and the light collection efficiency increased by 5% compared to the solid-state imaging device 100 of the first embodiment.
  • the solid-state imaging device 200A surrounds each of the X filter 211, the Y filter 212, and the Z filter 213 with the insulating film 126 having a low refractive index, thereby reducing the color mixture between the pixels. It becomes possible to prevent. Further, obliquely incident light can be guided to the corresponding light receiving unit 124 for each of the X filter 211, the Y filter 212, and the Z filter 213, and the light collection efficiency is improved, so that the sensitivity of the solid-state imaging device 200A is improved. To do.
  • an on-chip lens that allows incident light to enter the corresponding filter in parallel may be provided.
  • FIG. 6A is a cross-sectional view illustrating an example of the configuration of a solid-state imaging device 200B including an on-chip lens that allows light to enter in parallel
  • FIG. 6B is a plan view illustrating an example of the shape of the on-chip lens that allows light to enter in parallel. is there.
  • the configuration of the solid-state imaging device 200B is substantially the same as the configuration of the solid-state imaging device 200A shown in FIG. 5B, except that an on-chip lens 228 is provided instead of the on-chip lens 128.
  • the on-chip lens 228 includes a plurality of zone regions of a light transmission film having a concentric structure divided by a line width equal to or shorter than the wavelength of incident light, and the central portion of the lens has the It has a planar region whose diameter is approximately the same as or larger than the wavelength of incident light.
  • the on-chip lens 228 can suppress the incident angle of light with respect to the X filter 211, the Y filter 212, and the Z filter 213. Therefore, the solid-state imaging device 200B can prevent light collection loss and color mixture between pixels.
  • the solid-state image sensor of this embodiment has a cross-sectional area in the thickness direction that receives the first color filter, the second color filter, and the third color filter.
  • the ratio of the cross-sectional area of the fourth color filter to the cross-sectional area of the fifth color filter is the same in any cross section.
  • FIG. 7A is a cross-sectional view showing an example of the configuration of the solid-state imaging device of this embodiment.
  • the planar arrangement of the color filters of the solid-state imaging device 300 shown in the figure is the same as in FIG. 5A.
  • the structure of the Z filter is the same as that of the Y filter 312.
  • the X filter 311 and the Y filter 312 each decrease in cross-sectional area in the thickness direction toward the light receiving unit 124. It has a tapered shape. Further, the ratio of the cross-sectional area with respect to the thickness direction of the X1 filter 314 and the cross-sectional area with respect to the thickness direction of the X2 filter 315 is the same in any cross section.
  • FIG. 7B is a diagram illustrating an example of a detailed configuration of the X filter 311 illustrated in FIG. 7A. Specifically, (a) of FIG. 7B is a plan view showing the layout of the light incident surface of the X filter 311, and (b) of FIG. 7B is a cross-sectional view showing the configuration in the insulating film 126 of the X filter 311. FIG. 7B is a plan view showing a layout on the light receiving unit 124 side.
  • the ratio of the cross-sectional area with respect to the thickness direction of the X1 filter 314 and the cross-sectional area with respect to the thickness direction of the X2 filter 315 is calculated using FIG. In FIG. 7B, when the area of the light incident surface of the X1 filter 314 is S1, and the area of the light incident surface of the X2 filter 315 is S2, S1 and S2 are expressed by the following formula 1.
  • S′1 and S′2 are represented by the following Equation 2.
  • Equation 3 From Equation 1 and Equation 2, in order for the ratio of the cross-sectional area of the X1 filter 314 and the cross-sectional area of the X2 filter 315 to be equal in any cross-section, it is necessary to satisfy the following Equation 3.
  • the thickness (L) of the X1 filter 314 is 1.3 ⁇ m
  • the area of the light incident side of the X1 filter 314 and the area of the light incident side of the X2 filter 315 are
  • the ratio is 0.26: 0.74
  • the left side of Equation 3 has a denominator of 0.74 and a numerator of 0.26, and the relationship shown in Equation 4 below is derived.
  • the ratio of the cross sectional area of the X1 filter 314 and the cross sectional area of the X2 filter 315 is approximately 0.26: 0.74.
  • the inclination angle is an angle formed by the stacking direction of each filter (X1 filter 314, X2 filter 315, and Y filter 312) and the side wall.
  • the X filter 311 and the Y filter 312 are surrounded by the insulating film 126 having a refractive index lower than that of each of the X filter 311 and the Y filter 312, they have a function of confining light in the filter.
  • each filter (X filter 311, Y filter 312 and Z filter) having a function of confining light in the filter is tapered.
  • the area on the on-chip lens 128 side of each filter can be made larger and more light can be converted into signal charges as compared with the solid-state imaging device 200A of the second embodiment, thereby further improving the sensitivity.
  • light that is incident on the respective filters more obliquely can be guided to the light receiving unit 124, and sensitivity is further improved.
  • the present invention can be used for solid-state imaging devices, and in particular, can be used for digital cameras, mobile phones, single-lens reflex cameras, scanners, and the like.
  • Solid-state imaging device 101 201 Filter layer 102, 202 Structural unit 111, 211, 311 X filter 112, 212, 312 Y filter 113, 213 Z filter 114, 214, 314 X1 filter 115, 215, 315 X2 filter 123 Substrate 124 Light receiving portion 125 Light shielding film 126 Insulating film 127 Flattening film 128, 228 On-chip lens

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Color Television Image Signal Generators (AREA)

Abstract

 本発明の固体撮像素子は、2次元状に配置された複数の受光部と、複数の受光部のそれぞれの上に配置された光吸収特性を有する色フィルタとを備え、複数の色フィルタは、青色領域に透過中心波長を有するZフィルタ(113)と、緑色領域に透過中心波長を有するYフィルタ(112)と、赤色領域に透過中心波長を有する第1の透過帯と、青色領域に透過中心波長を有する第2の透過帯とを持つXフィルタ(111)とを含み、Xフィルタ(111)は、第1の透過帯を持つX2フィルタ(115)と、第2の透過帯を持つX1フィルタ(114)とを含み、X2フィルタ(115)は、対応する受光部上に配置され、X1フィルタ(114)は、対応する受光部上、かつX2フィルタ(115)と同一平面上に配置されている。

Description

固体撮像素子
 本発明は、固体撮像素子に関し、特にデジタルカメラ等に使用される固体撮像素子のフィルタリング技術に関する。
 カラー撮像装置またはカラー電子画像入力装置は、被写体の像を結像する結像光学系、前記被写体の像すなわち光情報を電子情報に変換する固体撮像素子、該固体撮像素子によって得られた画像データに演算処理を処す信号処理装置および得られた画像データを表示する表示装置を備える構成が一般的である。
 ここで、撮像または入力された画像データから表示装置に画像を表示する場合に、被写体の色情報を可能な限りヒトの色覚で感じられる色情報に近い色情報で表示することが、より良好な色再現を実現する。そのためには、画像入力段階で可能な限り、ヒトの色覚に近い色情報を入力することが好ましい。
 従来、固体撮像素子は、RGB三原色を透過させるフィルタにより色を表現している(例えば、特許文献1参照)。図8Aは従来のフィルタの透過特性を示すグラフであり、図8Bは従来のフィルタの配列を示す図である。従来の撮像素子は、図8Aで表される分光特性を持つフィルタを、ベイヤ配列と呼ばれる図8Bのように配置した構造を有している。
 しかし、このような分光特性を有するフィルタは上で述べたヒトの色覚とは異なり、色の再現性を高くすることが困難である。
 ヒトの色覚を忠実に再現する三色のカラーフィルタの分光特性は等色関数と呼ばれるが、通常のRGB三刺激装置を用いた場合には、図9に示すように感度曲線が負値となる波長域が発生する(例えば、非特許文献1参照)。従って、このようなRGB三刺激値を想定したRGBフィルタで等色関数を実現することは物理的に不可能であり、通常、固体撮像装置に搭載されるカラーフィルタは等色関数とはならない。
 一方、CIE1931XYZ系等色関数(以下、XYZ系等色関数と記載)は、図10に示すように分光感度曲線が全ての波長域に渡って0以上であるため、本関数と同一の分光特性を有するカラーフィルタは物理的に実現可能であり、XYZ系等色関数を搭載した撮像素子が提案されている(例えば、特許文献2及び3参照)。
 このような撮像素子を用いた画像入力装置によって得られた入力画像データの色再現可能領域はヒトの色覚で感知可能な全ての領域を被覆し、通常のRGB三刺激値を想定した、例えばsRGBやAdobeRGB色域よりもはるかに広くとることが可能となる。
 また、色域拡大の方法として、従来のRGB3色フィルタに、感度曲線が負値となる波長域であるエメラルド色を加えた4色フィルタを用いた撮像素子が提案されている(例えば、特許文献4参照)。
 このように、撮像素子の色域を広げるためには、撮像素子の分光感度特性がヒトの分光感度特性に近づけることが必要である。
特開昭51-112228号公報 米国特許第7132644号明細書 特開2008-306070号公報 特開2003-284084号公報
太田、加藤、室岡、東、羽石著:「カラーイメージング」、日    本色彩学会編、朝倉書店、pp.22、(2004).
 しかしながら、特許文献2及び3記載の撮像素子は、異なる材料からなる膜を交互に積層させた反射型フィルタによりXYZ系等色関数を構築しており、積層枚数が多く、撮像素子の厚さが増加することから、量産が困難であるという問題点がある。
 また、特許文献4記載の撮像素子は、フィルタの多色化により色変換処理の自由度は高くなるが、完全な等色関数とはならないため、色の再現性を高くするほどノイズ特性が悪化する。
 そこで本発明は、上記課題に鑑み、高い色再現を実現する薄膜の色フィルタを備える固体撮像素子を提供することを目的とする。
 上記課題を解決するために、本発明に係る固体撮像素子は、2次元状に配置された複数の受光部と、前記複数の受光部のそれぞれの上に配置された光吸収特性を有する色フィルタとを備え、複数の前記色フィルタは、青色領域に透過中心波長を有する第1の色フィルタと、緑色領域に透過中心波長を有する第2の色フィルタと、赤色領域に透過中心波長を有する第1の透過帯と、青色領域に透過中心波長を有する第2の透過帯とを持つ第3の色フィルタとを含み、前記第3の色フィルタは、前記第1の透過帯を持つ第4の色フィルタと、前記第2の透過帯を持つ第5の色フィルタとを含み、前記第4の色フィルタは、対応する受光部上に配置され、前記第5の色フィルタは、対応する受光部上、かつ前記第4の色フィルタと同一平面上に配置されている。
 このような構成とすることにより、複数の色フィルタの分光特性は、XYZ系等色関数を再現できる。具体的には、第3の色フィルタは、赤色領域に透過中心波長を有する第4の色フィルタと、青色領域に透過中心波長を有する第5の色フィルタとを含むので、Xフィルタの分光特性を有する。また、各色フィルタは、光吸収特性を有するので、薄い膜厚で形成できる。したがって、本発明に係る固体撮像素子は、薄膜の色フィルタにより高い色再現を実現できる。
 また、前記第2の透過帯の最大透過率は、前記第1の透過率の最大透過率に対し、10~50%としてもよい。
 このような構成とすることにより、第3の色フィルタの分光特性を、Xフィルタの分光特性に一層近似させることができるので、高精度に色再現を実現できる。
 また、前記第4の色フィルタの厚さと、前記第5の色フィルタの厚さとは異なってもよい。
 このような構成とすることにより、第4の色フィルタ及び第5の色フィルタの透過率を制御できるので、容易に高い色再現を実現できる。
 また、前記固体撮像素子は、さらに、前記第1の色フィルタ、前記第2の色フィルタ及び前記第3の色フィルタそれぞれの屈折率よりも低い屈折率の低屈折率層を備え、前記第1の色フィルタ、前記第2の色フィルタ及び前記第3の色フィルタはそれぞれ、前記低屈折率層を介して離間して配置されてもよい。
 このような構成とすることにより、各受光部に対応する画素間の混色を防ぐことができる。また、各フィルタに対し、斜めに入射する光を対応する受光部へ導くことができるので、感度が向上する。
 また、前記第4の色フィルタと前記第5の色フィルタとは隣接して配置され、前記第5の色フィルタが配置されている領域は、前記第4の色フィルタが配置されている領域で囲まれていてもよい。
 また、前記第1の色フィルタ、前記第2の色フィルタ及び前記第3の色フィルタはそれぞれ、厚さ方向の断面積が前記受光部へ向かって除々に減少するテーパ形状であり、前記第4の色フィルタの断面積と、第5の色フィルタの断面積との比は、いずれの断面においても等しくてもよい。
 このような構成とすることにより、各フィルタは受光部側の面積に対して光入射側の面積が大きくなるので、本固体撮像素子は、より多くの光を信号電荷に変換することができ、より一層感度が向上する。また、テーパ形状でない場合と比較して、より一層斜めに入射する光を受光部へ導くことができ、さらに感度が向上する。
 また、前記固体撮像素子はさらに、前記第1の色フィルタ、前記第2の色フィルタ及び前記第3の色フィルタそれぞれの上に配置されたレンズを備え、前記レンズは、入射した光を対応する色フィルタに対して平行に入射させてもよい。
 このような構成とすることにより、各フィルタに入射する光の入射角を抑制できるので、集光ロス及び画素間の混色を防止できる。
 また、前記レンズは、入射光の波長と同程度かそれよりも短い線幅で分割された、同心円構造を有する複数の光透過膜のゾーン領域を備え、かつ、当該レンズの中心部分に、その直径が入射光の波長と同程度かそれよりも大きい平面領域を有してもよい。
 このような構成とすることにより、レンズ表面での光の散乱ロスを抑制できる。
 また、前記第1の色フィルタ、前記第2の色フィルタ及び前記第3の色フィルタにより得られる分光特性は、等色条件を満たしてもよい。
 このような構成とすることにより、ヒトの視感度のフィルタ特性を有する色フィルタを実現できる。
 以上のように本発明によれば、高い色再現を実現する薄膜の色フィルタを備える固体撮像素子を提供できる。
図1Aは、第1の実施形態の固体撮像素子の色フィルタの配置の一例を示す平面図である。 図1Bは、固体撮像素子の構造の一例を示す断面図である。 図2は、各フィルタに用いた顔料の分子構造の一例を示す構造式である。 図3は、各フィルタの分光特性を示すグラフである。 図4は、XYZ系等色関数が表現可能な色域を示すグラフである。 図5Aは、第2の実施形態の固体撮像素子の色フィルタの配置を示す平面図である。 図5Bは、固体撮像素子の構成の一例を示す断面図である。 図6Aは、光を平行に入射させるオンチップレンズを備える固体撮像素子の構成の一例を示す断面図である。 図6Bは、光を平行に入射させるオンチップレンズの形状の一例を示す平面図である。 図7Aは、第3の実施形態の固体撮像素子の構成の一例を示す断面図である。 図7Bは、Xフィルタの詳細な構成の一例を示す図である。 図8Aは、従来のフィルタの通過特性を示すグラフである。 図8Bは、フィルタの配置を示す平面図である。 図9は、RGBでの等色関数を示すグラフである。 図10は、XYZ系等色関数を示すグラフである。
 以下、本発明に係る固体撮像素子の実施形態について、図面を参照して説明する。
 (実施形態1)
 本実施形態の固体撮像素子は、2次元状に配置された複数の受光部と、前記複数の受光部のそれぞれの上に配置された光吸収特性を有する色フィルタとを備え、複数の前記色フィルタは、青色領域に透過中心波長を有する第1の色フィルタと、緑色領域に透過中心波長を有する第2の色フィルタと、赤色領域に透過中心波長を有する第1の透過帯と、青色領域に透過中心波長を有する第2の透過帯とを持つ第3の色フィルタとを含み、前記第3の色フィルタは、前記第1の透過帯を持つ第4の色フィルタと、前記第2の透過帯を持つ第5の色フィルタとを含み、前記第4の色フィルタは、対応する受光部上に配置され、前記第5の色フィルタは、対応する受光部上、かつ前記第4の色フィルタと同一平面上に配置されている。
 これにより、本実施形態の固体撮像素子は、薄膜の色フィルタにより高い色再現を実現できる。
 図1Aは、本実施形態の固体撮像素子の色フィルタの配置の一例を示す平面図である。
 本実施形態の固体撮像素子100は、2次元状に配置された複数の受光部上にフィルタ層101を備える。フィルタ層101は、2次元状に配置された複数の構成単位102を備え、各構成単位102は、1つのXフィルタ111、2つのYフィルタ112及び1つのZフィルタ113を備える。これらXフィルタ111、Yフィルタ112及びZフィルタ113はそれぞれ、受光部に対応して設けられ、可視光域において光吸収特性を有する。
 Xフィルタ111は、青色素が分散されてなり主に青色の領域である440nmの波長で透過率のピークを持ち、この波長を含む380~500nmの波長を透過帯域とするX1フィルタ114と、赤色素が分散されてなり主に赤色の領域である600nmの波長で透過率のピークを持ち、この波長を含む500~730nmの波長を透過帯域とするX2フィルタ115とを含む。
 X1フィルタ114とX2フィルタ115とは、同一の受光部上の同一平面に配置されている。このX1フィルタ114とX2フィルタ115との面積比及び膜厚比は、X1フィルタ114の最大透過率がX2フィルタ115の最大透過率の10~50%となるように設計する。なお、X1フィルタ114及びX2フィルタ115の平面形状は、図1に示した形状に限らない。
 Yフィルタ112は、緑色素が分散されてなり、主に緑色の領域である555nmの波長で透過率のピークを持ち、この波長を含む410~710nmの波長を透過帯域とするフィルタである。また、Yフィルタ112は、複数の受光部上において偏りなく分布するよう、互いに隣接しない位置に配置されている。
 Zフィルタ113は、青色素が分散されてなり、主に青色の領域である445nmの波長で透過率のピークを持ち、この波長を含む370~570nmの波長を透過帯域とするフィルタである。
 なお、Zフィルタ113は、固体撮像素子100の第1の色フィルタ、Yフィルタ112は第2の色フィルタ、Xフィルタ111は第3の色フィルタ、X2フィルタ115は第4の色フィルタ、X1フィルタ114は第5の色フィルタにそれぞれ対応する。
 また、X1フィルタ114、X2フィルタ115、Yフィルタ112及びZフィルタ113はそれぞれ、顔料ではなく染料系のカラーレジストで構成されていても構わない。
 図1Bは、固体撮像素子100の構造の一例を示す断面図である。
 固体撮像素子100は、基板123、受光部124、遮光膜125、絶縁膜126、フィルタ層101、平坦化膜127及びオンチップレンズ128を備える。
 基板123は、例えばp型Si基板である。
 受光部124は、基板123に形成され、入射光を電気信号(信号電荷)に変換する。この受光部124は、基板123に2次元状に複数配置された、例えばn型領域である。なお、受光部124で変換された信号電荷は、トランジスタ等の読み出し回路により読み出される。
 遮光膜125は、絶縁膜126内において、各受光部124間に対応する位置に形成されている。
 フィルタ層101は、絶縁膜126上に形成され、各受光部124の上に、Xフィルタ111、Yフィルタ112及びZフィルタ113のいずれか1つが形成されている。なお、図1BにおいてはXフィルタ111、Yフィルタ112及びZフィルタ113のうち、Xフィルタ111及びYフィルタ112のみが示されているが、Zフィルタ113の構造は、Yフィルタ112と同様である。
 ここで、Xフィルタ111に含まれるX1フィルタ114の積層方向における厚さと、X2フィルタ115の積層方向における厚さとは異なる。これにより、X1フィルタ114及びX2フィルタ115の分光特性をXYZ系等色関数に一層近似することができるので、固体撮像素子100は、高精度に色再現を実現できる。
 平坦化膜127は、フィルタ層101上に形成され、光入射側の面である上面を平坦にする。
 オンチップレンズ128は、平坦化膜127を介してフィルタ層101上に形成され、入射光を受光部124に集光する。ここで、入射光のうち、Xフィルタ111、Yフィルタ112及びZフィルタ113を透過した光は、それぞれ異なる受光部124に入射する。Xフィルタ111を透過した光、すなわち、X1フィルタ114及びX2フィルタ115のいずれかを透過した光は、同一の受光部124に入射する。よって、Xフィルタ111を透過した光により発生する信号は、X1フィルタの透過帯域である青色の領域と、X2フィルタの透過帯域である赤色の領域との2つの透過帯域においてピークを有する。
 図2は、X1フィルタ114、X2フィルタ115、Yフィルタ112及びZフィルタ113に用いた顔料の分子構造の一例を示す構造式である。
 X2フィルタ115に用いられる赤色素は、例えばアントラキノン系顔料、X1フィルタ114及びZフィルタ113に用いられる青色素は、例えばε型銅フタロシアニン、Yフィルタ112に用いられる緑色素は、例えば臭素化銅フタロシアニンである。
 図2に示した顔料を用いて形成されたX1フィルタ114、X2フィルタ115、Yフィルタ112及びZフィルタ113の厚さ、面積の割合、最大透過率及び規格化透過率を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 なお、面積の割合は、固体撮像素子100の積層方向から見たYフィルタ112及びZフィルタ113の面積を1とした場合の、X1フィルタ114及びX2フィルタ115の面積の割合である。また、規格化透過率とは、Zフィルタ113の最大透過率を1とした場合の、X1フィルタ114、X2フィルタ115及びYフィルタ112の最大透過率である(ただし、小数第3位は四捨五入)。
 図3は、表1に示した条件で形成されたX1フィルタ114、X2フィルタ115、Yフィルタ112及びZフィルタ113の分光特性を示すグラフである。
 同図に示すように、X1フィルタ114、X2フィルタ115、Yフィルタ112及びZフィルタ113の分光特性は、図9に示したXYZ系等色関数のグラフと一致する。これより、Xフィルタを実現する方法として、RとBの波長領域に透過帯域を持つフィルタを、面積の割合および厚みを制御して同一の画素上に配置すればよい。
 また、X2フィルタ115のピークに対するX1フィルタ114のピークの比率は33%となっており、この値に近づくほどXフィルタ111の分光特性は図10に示すXYZ系等色関数のXフィルタの分光特性に一層近似させることができる。その結果、RGB表色系におけるエメラルド色の光に対する負の感度を誤差なく忠実に再現でき、高精度に色再現を実現できる。
 等色関数が表現可能な色域と、Xフィルタの透過率のサブピークが変化し、この割合が10%から50%に変化した場合に表現可能な色域をXY座標系で表したものを図4に示す。これより、Xフィルタの透過率ピークに対する透過率サブピークの割合が上記範囲内で変化しても、十分な色再現が可能である。
 本実施形態の例ではフィルタX1とフィルタX2の厚みが同一であるが、厚みを制御することでもXフィルタを形成可能である。面積の割合のみでXフィルタを形成する場合、X1フィルタもしくはX2フィルタの面積が小さくなりすぎるとフィルタの形成が困難である。しかし厚みを考慮すれば、X1フィルタもしくはX2フィルタのどちらかが形成困難となるような面積にならず良好なXフィルタを形成することが可能である。
 以上のように、本実施形態の固体撮像素子100において、Xフィルタ111、Yフィルタ112及びZフィルタ113の分光特性は、XYZ系等色関数を再現できる。具体的には、Xフィルタ111は、赤色領域に透過中心波長を有するX2フィルタ115と、青色領域に透過中心波長を有するX1フィルタ114とを含むので、XYZ系等色関数のXフィルタの分光特性を有する。また、各色フィルタは、光吸収特性を有するので、薄い膜厚で形成できる。したがって、本発明の固体撮像素子100は、薄膜の色フィルタにより高い色再現を実現できる。
 (実施形態2)
 本実施形態の固体撮像素子は、実施形態1の固体撮像素子100と比較して、さらに、第1の色フィルタ、第2の色フィルタ及び第3の色フィルタそれぞれの屈折率よりも低い屈折率の低屈折率層を備え、第1の色フィルタ、第2の色フィルタ、第3の色フィルタはそれぞれ、低屈折率層を介して離間して配置されている。また、第4の色フィルタと第5の色フィルタとは隣接して配置され、第5の色フィルタが配置されている領域は、第4の色フィルタが配置されている領域で囲まれている点が異なる。以下、実施形態1の固体撮像素子100と比較して異なる点を中心に述べる。
 図5Aは本実施形態の固体撮像素子の色フィルタの配置の一例を示す平面図であり、図5Bは当該固体撮像素子の構成の一例を示す断面図である。
 図5Aにおいて、フィルタ層201は複数の構成単位202を有する。各構成単位202は、図1Aにおいて説明したXフィルタ211、Yフィルタ112及びZフィルタ113と分光特性がそれぞれ同一のXフィルタ211、Yフィルタ212及びZフィルタ213を含み、構成単位102と比較して、さらに低屈折率層である絶縁膜126を備える。
 Xフィルタ211、Yフィルタ212及びZフィルタ213はそれぞれ、絶縁膜126を介して離間して配置されている。
 また、X1フィルタ214が配置されている領域は、X2フィルタ215が配置されている領域で囲まれ、X1フィルタ214とX2フィルタ215とでXフィルタ211を構成する。なお、X1フィルタ214とX2フィルタ215との位置関係については、必ずしも同心円の形状である必要はない。
 絶縁膜126は、Xフィルタ211、Yフィルタ212及びZフィルタ213それぞれの屈折率よりも低い屈折率を有する。
 図5Bにおいて、固体撮像素子200Aは、基板123、受光部124、遮光膜125、絶縁膜126、Xフィルタ211、Yフィルタ212、平坦化膜127およびオンチップレンズ128を備える。なお、同図には、Xフィルタ211、Yフィルタ212及びZフィルタ213のうち、Xフィルタ211及びYフィルタ212のみが示されているが、Zフィルタ213の構造は、Yフィルタ212と同様である。
 図1Bと比較して、Xフィルタ211及びYフィルタ212はそれぞれ、絶縁膜126で囲まれている。この絶縁膜126は、Xフィルタ211、Yフィルタ212及びZフィルタ213それぞれの屈折率よりも低い屈折率を有する。
 この構成により、Xフィルタ211、Yフィルタ212及びZフィルタ213は、フィルタ内に光を閉じ込める機能を有する。したがって、各受光部124に対応する画素と画素との間の混色を防ぐことが可能となる。また、Xフィルタ211、Yフィルタ212及びZフィルタ213それぞれに対し、斜めに入射する光を対応する受光部124へ導くことができるので、固体撮像素子200Aの感度が向上する。
 また、X1フィルタ214及びX2フィルタ215を透過した光は同一の受光部124に入射するよう設計されているので、Xフィルタ211を透過した光により発生する信号は、2つの透過帯域においてピークを有する。
 X1フィルタ214、X2フィルタ215、Yフィルタ212及びZフィルタ213を、実施形態1と同様に図2に示した材料と、表1に示した厚さ、面積の割合、透過率及び規格化透過率とで形成した。その結果、本固体撮像素子200Aは、図3の分光特性を保ち、さらに集光効率が実施形態1の固体撮像素子100と比較して5%上昇した。
 以上のように、本実施形態の固体撮像素子200Aは、Xフィルタ211、Yフィルタ212及びZフィルタ213それぞれを、屈折率の低い絶縁膜126で囲うことにより、画素と画素との間の混色を防ぐことが可能となる。また、Xフィルタ211、Yフィルタ212及びZフィルタ213それぞれに対し、斜めに入射する光を対応する受光部124へ導くことができ、集光効率が向上するので、固体撮像素子200Aの感度が向上する。
 なお、オンチップレンズ128の代わりに、入射した光を対応するフィルタに対して平行に入射させるオンチップレンズを備えてもよい。
 図6Aは光を平行に入射させるオンチップレンズを備える固体撮像素子200Bの構成の一例を示す断面図であり、図6Bは光を平行に入射させるオンチップレンズの形状の一例を示す平面図である。
 固体撮像素子200Bの構成は、図5Bに示した固体撮像素子200Aの構成とほぼ同じであるが、オンチップレンズ128の代わりにオンチップレンズ228を備える点が異なる。
 オンチップレンズ228は、入射光の波長と同程度かそれよりも短い線幅で分割された、同心円構造を有する複数の光透過膜のゾーン領域を備え、かつ、当該レンズの中心部分に、その直径が入射光の波長と同程度かそれよりも大きい平面領域を有する。
 このような構成とすることにより、オンチップレンズ228は、Xフィルタ211、Yフィルタ212及びZフィルタ213に対して、光の入射角を抑制できる。したがって、固体撮像素子200Bは、集光ロス及び画素間の混色を防止できる。
 (実施形態3)
 本実施形態の固体撮像素子は、実施形態2の固体撮像素子200Aと比較して、第1の色フィルタ、第2の色フィルタ及び第3の色フィルタはそれぞれ、厚さ方向の断面積が受光部へ向かって除々に減少するテーパ形状である点が異なり、第4の色フィルタの断面積と、第5の色フィルタの断面積との比は、いずれの断面においても等しい。以下、実施形態2の固体撮像素子200Aと比較して異なる点を中心に述べる。
 図7Aは本実施形態の固体撮像素子の構成の一例を示す断面図である。なお、同図に示す固体撮像素子300の色フィルタの平面配置は、図5Aと同様である。また、図示していないが、Zフィルタの構造はYフィルタ312と同様である。
 X1フィルタ314の外側壁、X2フィルタ315の外側壁及びYフィルタ312の側壁に設けられた傾斜により、Xフィルタ311及びYフィルタ312はそれぞれ、厚さ方向の断面積が受光部124へ向かって減少するテーパ形状となっている。また、X1フィルタ314の厚さ方向に対する断面積と、X2フィルタ315の厚さ方向に対する断面積との比は、いずれの断面においても等しい。
 図7Bは、図7Aに示したXフィルタ311の詳細な構成の一例を示す図である。具体的には、図7Bの(a)はXフィルタ311の光入射面のレイアウトを示す平面図であり、図7Bの(b)はXフィルタ311のうち絶縁膜126内の構成を示す断面図であり、図7Bの(c)は受光部124側のレイアウトを示す平面図である。
 X1フィルタ314の厚さ方向に対する断面積と、X2フィルタ315の厚さ方向に対する断面積との比は、いずれの断面においても等しくなるための条件を図7Bを用いて計算する。図7BにおいてX1フィルタ314の光入射面の面積をS1、X2フィルタ315の光入射面の面積をS2とした場合、S1及びS2は下記の式1で示される。
Figure JPOXMLDOC01-appb-M000001
 また、a’=a-2Ltanθ2、b’=b-2Ltanθ1であるから、X1フィルタ314の受光部124側の面積をS’1、X2フィルタ315の受光部124側の面積をS’2とした場合、S’1及びS’2は下記の式2で示される。
Figure JPOXMLDOC01-appb-M000002
 式1及び式2より、X1フィルタ314の断面積とX2フィルタ315の断面積との比がいずれの断面においても等しくなるためには、下記の式3を満たすことが必要である。
Figure JPOXMLDOC01-appb-M000003
 また、このときの条件として、0<a-2Ltanθ2<b-2Ltanθ1となる必要がある。
 例えば、実施形態1の表1に示したように、X1フィルタ314の厚み(L)を1.3μmとし、X1フィルタ314の光入射側の面積と、X2フィルタ315の光入射側の面積との比が、0.26:0.74となる場合、式3の左辺は分母が0.74、分子が0.26となり、下記の式4に示す関係が導かれる。
Figure JPOXMLDOC01-appb-M000004
 ここで、上述した条件である0<a-2Ltanθ2<b-2Ltanθ1においてθ2の範囲を求めると、0<θ1<21.04(小数点以下2桁まで)、0<θ2<11.10(小数点以下2桁まで)であることが分かる。この範囲内において、X2フィルタ315の外側壁及びYフィルタ312の側壁には、10度の傾斜(テーパ)を設けた場合、X1フィルタ314の側壁には、例えば約5度の傾斜を設ければよい。これにより、いずれの断面においても、X1フィルタ314の断面積と、X2フィルタ315との断面積との比が、ほぼ0.26:0.74となる。なお、傾斜角とは、各フィルタ(X1フィルタ314、X2フィルタ315及びYフィルタ312)の積層方向と、当該側壁とが成す角のことである。
 また、Xフィルタ311及びYフィルタ312は、Xフィルタ311及びYフィルタ312それぞれの屈折率よりも低い屈折率を有する絶縁膜126で囲まれているので、フィルタ内に光を閉じ込める機能を有する。
 以上のように、本実施形態の固体撮像素子300は、フィルタ内に光を閉じ込める機能を有する各フィルタ(Xフィルタ311、Yフィルタ312及びZフィルタ)をテーパ形状とする。これにより、実施形態2の固体撮像素子200Aと比較して、各フィルタのオンチップレンズ128側の面積をより大きくとることができ、より多くの光を信号電荷に変換できるので、一層感度が向上する。また、固体撮像素子200Aと比較して、各フィルタに対してより一層斜めに入射する光でも受光部124へ導くことができ、さらに感度が向上する。
 以上、本発明の実施形態に基づいて説明したが、本発明は、これら実施形態に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施形態に施したものや、異なる実施形態における構成要素を組み合わせて構築される形態も、本発明の範囲内に含まれる。
 本発明は、固体撮像素子に利用可能であり、特にデジタルカメラ、携帯電話、一眼レフカメラ及びスキャナ等に利用可能である。
 100、200A、200B、300  固体撮像素子
 101、201  フィルタ層
 102、202  構成単位
 111、211、311  Xフィルタ
 112、212、312  Yフィルタ
 113、213  Zフィルタ
 114、214、314  X1フィルタ
 115、215、315  X2フィルタ
 123  基板
 124  受光部
 125  遮光膜
 126  絶縁膜
 127  平坦化膜
 128、228  オンチップレンズ

Claims (9)

  1.  2次元状に配置された複数の受光部と、
     前記複数の受光部のそれぞれの上に配置された光吸収特性を有する色フィルタとを備え、
     複数の前記色フィルタは、
     青色領域に透過中心波長を有する第1の色フィルタと、
     緑色領域に透過中心波長を有する第2の色フィルタと、
     赤色領域に透過中心波長を有する第1の透過帯と、青色領域に透過中心波長を有する第2の透過帯とを持つ第3の色フィルタとを含み、
     前記第3の色フィルタは、
     前記第1の透過帯を持つ第4の色フィルタと、
     前記第2の透過帯を持つ第5の色フィルタとを含み、
     前記第4の色フィルタは、対応する受光部上に配置され、
     前記第5の色フィルタは、対応する受光部上、かつ前記第4の色フィルタと同一平面上に配置されている
     固体撮像素子。
  2.  前記第2の透過帯の最大透過率は、前記第1の透過率の最大透過率に対し、10~50%である
     請求項1記載の固体撮像素子。
  3.  前記第4の色フィルタの厚さと、前記第5の色フィルタの厚さとは異なる
     請求項1記載の固体撮像素子。
  4.  前記固体撮像素子は、さらに、前記第1の色フィルタ、前記第2の色フィルタ及び前記第3の色フィルタそれぞれの屈折率よりも低い屈折率の低屈折率層を備え、
     前記第1の色フィルタ、前記第2の色フィルタ及び前記第3の色フィルタはそれぞれ、前記低屈折率層を介して離間して配置されている
     請求項1記載の固体撮像素子。
  5.  前記第4の色フィルタと前記第5の色フィルタとは隣接して配置され、
     前記第5の色フィルタが配置されている領域は、前記第4の色フィルタが配置されている領域で囲まれている
     請求項4記載の固体撮像素子。
  6.  前記第1の色フィルタ、前記第2の色フィルタ及び前記第3の色フィルタはそれぞれ、厚さ方向の断面積が前記受光部へ向かって除々に減少するテーパ形状であり、
     前記第4の色フィルタの断面積と、第5の色フィルタの断面積との比は、いずれの断面においても等しい
     請求項5記載の固体撮像素子。
  7.  前記固体撮像素子はさらに、前記第1の色フィルタ、前記第2の色フィルタ及び前記第3の色フィルタそれぞれの上に配置されたレンズを備え、
     前記レンズは、入射した光を対応する色フィルタに対して平行に入射させる
     請求項1記載の固体撮像素子。
  8.  前記レンズは、
     入射光の波長と同程度かそれよりも短い線幅で分割された、同心円構造を有する複数の光透過膜のゾーン領域を備え、かつ、当該レンズの中心部分に、その直径が入射光の波長
    と同程度かそれよりも大きい平面領域を有する
     請求項7記載の固体撮像素子。
  9.  前記第1の色フィルタ、前記第2の色フィルタ及び前記第3の色フィルタにより得られる分光特性は、等色条件を満たす
     請求項1記載の固体撮像素子。
     
PCT/JP2010/002912 2009-04-22 2010-04-22 固体撮像素子 WO2010122797A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009104556A JP2010258110A (ja) 2009-04-22 2009-04-22 固体撮像素子
JP2009-104556 2009-04-22

Publications (1)

Publication Number Publication Date
WO2010122797A1 true WO2010122797A1 (ja) 2010-10-28

Family

ID=43010922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002912 WO2010122797A1 (ja) 2009-04-22 2010-04-22 固体撮像素子

Country Status (2)

Country Link
JP (1) JP2010258110A (ja)
WO (1) WO2010122797A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014006785A1 (ja) * 2012-07-06 2014-01-09 富士フイルム株式会社 撮像装置及び画像処理方法
WO2014006783A1 (ja) 2012-07-06 2014-01-09 富士フイルム株式会社 撮像装置及び画像処理方法
WO2014006784A1 (ja) 2012-07-06 2014-01-09 富士フイルム株式会社 撮像装置及び画像処理方法
US9030580B2 (en) * 2013-09-28 2015-05-12 Ricoh Company, Ltd. Color filter modules for plenoptic XYZ imaging systems
JP6960773B2 (ja) * 2017-05-26 2021-11-05 池上通信機株式会社 撮像画像処理システム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002118245A (ja) * 2000-10-11 2002-04-19 Sharp Corp 固体撮像素子およびその製造方法
JP2003284084A (ja) * 2002-03-20 2003-10-03 Sony Corp 画像処理装置および方法、並びに画像処理装置の製造方法
JP2004228662A (ja) * 2003-01-20 2004-08-12 Minolta Co Ltd 撮像装置
US20050072908A1 (en) * 2003-10-02 2005-04-07 Fred Grunert Photo sensor for standardized color measurement
JP2008010773A (ja) * 2006-06-30 2008-01-17 Matsushita Electric Ind Co Ltd 固体撮像素子およびその製造方法
JP2008306070A (ja) * 2007-06-08 2008-12-18 Panasonic Corp 固体撮像素子及び信号演算方法
JP2009060675A (ja) * 2008-12-17 2009-03-19 Sony Corp 撮像素子

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002118245A (ja) * 2000-10-11 2002-04-19 Sharp Corp 固体撮像素子およびその製造方法
JP2003284084A (ja) * 2002-03-20 2003-10-03 Sony Corp 画像処理装置および方法、並びに画像処理装置の製造方法
JP2004228662A (ja) * 2003-01-20 2004-08-12 Minolta Co Ltd 撮像装置
US20050072908A1 (en) * 2003-10-02 2005-04-07 Fred Grunert Photo sensor for standardized color measurement
JP2008010773A (ja) * 2006-06-30 2008-01-17 Matsushita Electric Ind Co Ltd 固体撮像素子およびその製造方法
JP2008306070A (ja) * 2007-06-08 2008-12-18 Panasonic Corp 固体撮像素子及び信号演算方法
JP2009060675A (ja) * 2008-12-17 2009-03-19 Sony Corp 撮像素子

Also Published As

Publication number Publication date
JP2010258110A (ja) 2010-11-11

Similar Documents

Publication Publication Date Title
JP5074106B2 (ja) 固体撮像素子及びカメラ
US8035708B2 (en) Solid-state imaging device with an organic photoelectric conversion film and imaging apparatus
TWI499045B (zh) 固態影像擷取器件及影像擷取裝置
JP5649990B2 (ja) カラーフィルタ、固体撮像素子、液晶表示装置および電子情報機器
US8896744B2 (en) Solid-state imaging device and camera module with IR filter having wavelength characteristics to block both IR and selected visible light band depending on detection target of pixel cells
US8670051B2 (en) Solid-state image sensor and camera having improved sensitivity and color separation characteristics
JP6139610B2 (ja) 緑色減算用の赤外線透過フィルターを用いた撮像センサ
US8227883B2 (en) Solid-state imaging device and camera
JP2011077410A (ja) 固体撮像装置
US8054352B2 (en) Color filter array with reduced crosstalk effect and image sensor and image pickup apparatus having the same
US20140009647A1 (en) Color imaging element and imaging apparatus
JP2012238774A (ja) 撮像装置
WO2010122797A1 (ja) 固体撮像素子
WO2014007279A1 (ja) カラー撮像素子および撮像装置
JP4287320B2 (ja) 固体撮像装置、信号処理装置、カメラ及び分光装置
JP5018125B2 (ja) 固体撮像装置および撮像装置
JP2013118295A (ja) 固体撮像素子の製造方法、固体撮像素子、および電子情報機器
WO2022113363A1 (ja) 光学素子、撮像素子及び撮像装置
JP2005287073A (ja) 固体撮像装置、信号処理装置、カメラ及び分光装置
WO2010122716A1 (ja) 固体撮像素子
WO2010122719A1 (ja) 固体撮像素子
US20180247963A1 (en) Image sensor
JP2011243785A (ja) 固体撮像素子
US7800666B2 (en) Color filter arrays compensating for wavelength offset due to crosstalk and methods of producing the same
Takada et al. CMOS color image sensor with overlaid organic photoconductive layers having narrow absorption band

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10766858

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10766858

Country of ref document: EP

Kind code of ref document: A1