WO2010122734A1 - Heat generating device and heat generating body used for same - Google Patents

Heat generating device and heat generating body used for same Download PDF

Info

Publication number
WO2010122734A1
WO2010122734A1 PCT/JP2010/002677 JP2010002677W WO2010122734A1 WO 2010122734 A1 WO2010122734 A1 WO 2010122734A1 JP 2010002677 W JP2010002677 W JP 2010002677W WO 2010122734 A1 WO2010122734 A1 WO 2010122734A1
Authority
WO
WIPO (PCT)
Prior art keywords
slits
heat generating
induction conductor
annular
magnets
Prior art date
Application number
PCT/JP2010/002677
Other languages
French (fr)
Japanese (ja)
Inventor
永田鐵郎
永田千恵子
Original Assignee
Nagata Tetsuro
Nagata Chieko
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagata Tetsuro, Nagata Chieko filed Critical Nagata Tetsuro
Priority to JP2011510176A priority Critical patent/JP5399481B2/en
Publication of WO2010122734A1 publication Critical patent/WO2010122734A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/101Induction heating apparatus, other than furnaces, for specific applications for local heating of metal pieces
    • H05B6/102Induction heating apparatus, other than furnaces, for specific applications for local heating of metal pieces the metal pieces being rotated while induction heated

Definitions

  • the present invention relates to a heating device of a simple mechanism using electromagnetic induction and a heating element used therefor.
  • IH cooker is electromagnetic induction heating (IH, induction use the principle of heating), apply high frequency current to the coil directly below the top plate to create changing magnetic lines of force, and generate eddy currents in iron or stainless steel pots with relatively high electrical resistance close to the coils.
  • the Joule heat generated in the pan due to resistance is what is heated.
  • copper products with low electrical resistance, non-conductive ceramics, clay pots, etc. can not be used.
  • 200 V which is a voltage not used frequently in general homes, is used as the power supply.
  • An object of the present invention is to provide a heat generating device by electromagnetic induction, which has a simple mechanism but high thermal efficiency and a wide application range, and a heat generating element used therefor. Another object of the present invention is to provide a highly safe heating device.
  • the heat generating device is, for example, in the circumferential direction so that a plurality of magnets alternate between upper and lower magnetic poles on a disk having a rotation axis around the rotation axis.
  • a rotating body (a rotating body on which the magnet is disposed is hereinafter referred to as a magnet wheel) disposed at a distance, and an annular inductive conductor opposed to the magnet surface of the magnet wheel with a predetermined gap therebetween. It is a first feature of the present invention that the annular induction conductor is provided with the same number of slits for generating an induced electromotive force as the magnets of the magnet wheel.
  • the heat generating device of the present invention by providing the slit in the annular induction conductor, the magnetic flux emitted from the rotating magnet wheel is cut at the slit end face, and as if the coil of the generator cuts the magnetic flux The same effect as generating power will occur. Also, since the induction conductor in which this electromotive force is generated is continuous in a ring, the generated current flows in a ring throughout the induction conductor, but the length of the current flow, that is, the current path length is usually The electrical resistance is minimized because it is extremely short compared to the coil of the generator and the cross section is conversely large. Therefore, although the voltage of the electromotive force is small, a large current can be obtained, and a large calorific value can be obtained by Joule heat.
  • the rotation of the magnet wheel may be in the relative rotation of the magnet wheel with respect to the induction conductor, and includes the case where both rotate in reverse.
  • the annular induction conductor is in the form of a doughnut-shaped disk, and slits are provided alternately in the outer peripheral edge portion and the inner peripheral edge portion, and the number of slits is
  • the second feature is equal to the number of magnets.
  • the heating element according to the present invention comprises an annular induction conductor opposite to the magnet surface of the magnet wheel with a predetermined gap, and a slit for generating an induced electromotive force in the annular induction conductor is
  • the first feature is that the same number of magnets as the magnet wheel is provided.
  • the heat generating body according to the present invention is a disk-shaped annular induction conductor having a donut shape, and slits are provided alternately at the outer peripheral edge and the inner peripheral edge, and the number of the slits is
  • the second feature is equal to the number of magnets.
  • the shape of the annular induction conductor is a belt type having an annular shape, and slits are provided so as to alternately open at both ends, and the number of the slits is equal to the number of the magnets.
  • the heat generating device of the present invention is generated by electromagnetic induction, and the electric resistance of the current path in the annular slitted induction conductor is obtained by the simple mechanism of rotating the magnet wheel. It is minimized, and a large current can be obtained even at a low voltage, and a large amount of heat generation can be obtained by Joule heat.
  • the control of the amount of heat generation can be easily performed by controlling the number of rotations of the magnet wheel, the effect of safety and security can be obtained as a heat generating device.
  • (A) is a side view of a heat generating apparatus showing a first embodiment of the present invention
  • (B) is a plan view of the same
  • (A) is a plan view of a rotating body used for the heat generating device shown in FIG. 1
  • (B) is the same side view
  • (A) is a plan view of a slitted induction conductor used for the heat generating apparatus shown in FIG.
  • FIGS. 1 to 5 show a first embodiment of the present invention
  • reference symbol S denotes a heat generating device according to the present invention.
  • the heat generating device S includes a magnet wheel 1 and an annular slit-like induction conductor 2.
  • the magnet wheel 1 has a magnet disposed on the upper surface of a rotating plate (rotary body) 3 with a flange 3A made of iron, and the rotating shaft 4 is fixed at the center of the lower surface of the rotating plate 3 .
  • the upper surface of the rotary plate 3 around the rotation center O 1, radial, that is, an even number of predetermined length of the permanent magnet (magnet) 5 facing the rotation center O 1, as the upper and lower magnetic poles are alternately different circumferential direction Are arranged at equal intervals.
  • a motor 6 is directly connected to the center of the lower surface of the rotary plate 3 via the rotary shaft 4.
  • the motor 6 may be, for example, a general-purpose motor powered by AC 100 V for general household use, or may be a general-purpose motor that can be used outdoors.
  • the upper base 8 is mounted or fixed on the upper surface of the lower base 7 which can be installed on the ground or floor, and the support 9 is supported upright on the upper surface of the upper base 8. It is stably supported by the support portion 9 so that the position 6 is in a vertical posture with the ground, the floor surface and the like.
  • the rotating body 1 is rotatably supported in a horizontal posture with the ground, floor, etc. directly above the motor 6 via the rotation shaft 4 and can be carried together with the upper base 8 or integrally with the lower base 7. ing.
  • a side wall plate 10 horizontally supporting the top plate 11 is provided on the upper surface of the lower base 7 around the upper base 8 so as to maintain a slight gap (0.5 mm in the illustrated example) with the upper surface of the magnet wheel 1 ing.
  • a heat resistant material 12, for example, a ceramic paper is attached to the upper surface of the top plate 11 using wooden plywood. Further, on the magnet surface of the magnet wheel 1, a similar heat-resistant material 12, for example, a ceramic paper, is attached to protect the permanent magnet 5 from heat.
  • the annular slitted induction conductor 2 has a diameter (outside diameter) D 2 larger than the diameter (outside diameter) D 1 of the rotary plate 3 excluding the flange 3A of the magnet wheel 1. And is disposed on the heat-resistant material 12 on the top surface of the top plate 11 with a predetermined gap d from the top surface 1 a of the magnet wheel 1 while facing in parallel with the top surface 1 a of the magnet wheel 1. At this time, the center O 2 of the slit induction conductors 2 is aligned such that the center O 1 and substantially coaxially of the rotating plate 3.
  • such an annular disk-shaped slit-induction conductive member 2 is provided with a circular opening 13 at the center O 2 portion. Furthermore, the first slit 14 a predetermined length extending from the outer peripheral edge 2a halfway toward the center O 2 is provided with a plurality (four in total in the illustrated example) at predetermined intervals (90 degree intervals in the illustrated example). Further, the second slits 15 of a predetermined length extending halfway from the inner peripheral edge 2b of the central opening 13 toward the outer peripheral edge 2a are positioned between the adjacent first slits 14 and have a predetermined interval (see FIG. In the example shown, a plurality (a total of four in the example shown) is provided at intervals of 90 degrees.
  • the first slit 14 opened to the outer peripheral edge 2 a and the second slit 15 located between them and opened to the inner peripheral edge 2 b rotate the magnet wheel 1 and thereby the magnetic flux from the upper surface 1 a of the magnet wheel 1 It is to be cut, which is the same effect as a coil in the generator to cut the magnetic flux. If this phenomenon is examined in more detail, when the position of the permanent magnet 5 installed on the rotary plate 3 has just been rotated to the position of each of the slits 14 and 15 (Figs. 4 (A) and (B)) The magnetic flux density passing through the induction conductor 2 is minimized.
  • e Blv.
  • B a magnetic flux density
  • l a length of the induction conductor which breaks the magnetic flux
  • v a speed of the induction conductor which breaks the magnetic flux.
  • the direction of the induced current at this time is expressed by the Fleming right-hand rule, and since the permanent magnets 5 installed on the magnet wheel 1 have the magnetic poles alternately arranged, the permanent magnets 5 are alternately rotated. It rotates around the center O 1 of, and the direction of the current changes every time the slit position is changed. That is, an alternating electromotive force is generated.
  • I shown in FIG. 5A represents the current flow, and the place where the current I flows back while meandering the induction conductor is to be called a current path (L).
  • the heating device of the present embodiment and the heating element used for this can be used as a heat source such as a cooker, a hot plate, a water heater, a boiler, a heater, a heat engine and the like.
  • a heat source such as a cooker, a hot plate, a water heater, a boiler, a heater, a heat engine and the like.
  • FIG. 6 shows a second embodiment of the present invention, showing a magnet wheel 20 and an annular belt-type slit-inducing induction conductor 21.
  • the magnet wheel 20 is made of iron as in the embodiment described above, and the upper and lower magnetic poles are alternately arranged at a constant interval in the direction in which the permanent magnet 23 is parallel to the rotating shaft 24 on the peripheral surface 22a of the rotating body 22. And even numbers are arranged.
  • the annular belt-type slit induction conductors 21 is formed in an annular shape having a larger diameter (inner diameter) D 4 than the diameter of the rotary member 22 (outer diameter) D 3. Furthermore, the slits 25 equal in number to the permanent magnets 23 and alternately opened at both ends are arranged at regular intervals in a direction parallel to the rotation axis 24.
  • the heat generating device shown in FIG. 6 has an annular belt-like slit-shaped induction conductor in which the rotation axis 24 of the magnet wheel 20 is in a horizontal posture and the center axis substantially coincides with the rotation axis 24 around the magnet wheel 20. Place 21
  • the belt-like slit-shaped inductive conductor 21 having an annular shape as in the embodiment described above. An electromotive force is generated and an induced current flows to generate heat.
  • the heating device shown in FIG. 6 has no problem whether the rotation axis is horizontal or vertical as long as the relative installation condition of the magnet wheel 20 and the induction conductor 21 is satisfied.
  • a permanent magnet is used as the magnet, but an electromagnet can be used instead of the permanent magnet. Further, temperature control of the heat generating device can be easily performed by controlling the rotational speed of the magnet wheel.
  • the magnet wheel side is rotated with respect to the annular induction conductor, but the magnet wheel may be fixed and the annular induction conductor side may be rotated. Furthermore, it is also possible to increase the efficiency by rotating the two in reverse.
  • the heat generating device of the present invention can be used as a heat source in a mountainous area, a remote area or a cold area without power by rotating a magnet wheel by a water wheel, a windmill or the like.
  • the inventor manufactured the heat generating apparatus shown in FIG. 1 and measured data to confirm the actual effect.
  • the diameter passing through the center position of the permanent magnet at this time is 110 mm.
  • thermocouple-type thermometer with an upper measurement limit of 250 ° C is fixed in contact with the induction conductor, and an AC current clamp for measuring the consumption current is installed in the power input cord of the motor for voltage measurement of the induced electromotive force.
  • the oscilloscope was equipped with a non-contact tachometer for measuring the rotational speed of the magnet wheel.
  • the motor used the general-purpose motor of AC100V.
  • the rotational speed of the magnet wheel at this time was 1783 rpm.
  • an eddy current should be generated in the copper plate of the disk type induction conductor without slits, but no rise in the surface temperature was observed. That is, it was confirmed that the voltage and current of the eddy current were also minimal.
  • a total of four equally spaced from the center to the central axis, and a total of four second slits (width 11 mm, length 55 mm) equally spaced from the central opening (opening diameter 40 mm) from the central opening (diameter 40 mm) Provided.
  • Three kinds (Thickness t 3 mm, 1 mm, 0.2 mm) of which the thickness is changed are prepared for the slit-containing induction conductor in order to compare the magnitude of the electric resistance.
  • the heat generating device according to the present invention can be used as a heat generating device that can be used in various fields such as general household use, outdoor use, agricultural use, industrial use, and the like based on the principle of electromagnetic induction.
  • the heat generating body which concerns on this invention can be utilized as a heat generating body for heat generating apparatuses which can be utilized for said each area

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Induction Heating (AREA)

Abstract

Provided is a heat generating device which employs electromagnetic induction and has a high heat efficiency and a wide application range even with a simple mechanism. A heat generating body used for the heat generating device is also provided. On a disc having a rotating shaft (4), the heat generating device is provided with: a magnet wheel (1) which is composed of a rotating body (3) on which a plurality of magnets (5) facing the radiation directions are disposed at equal intervals in the circumferential direction such that the magnetic poles of the magnets alternately differ from each other; and an annular inductive conductor (2) which faces the magnetic surface of the magnet wheel (1) at a predetermined interval (d). The same number of slits (14, 15) for generating an induced electromotive force as the magnets (5) of the magnet wheel (1) are provided on the annular inductive conductor (2).

Description

発熱装置およびこれに用いる発熱体Heating device and heating element used therefor
 本発明は、電磁誘導を用いた簡潔な機構の発熱装置と、これに用いられる発熱体に関するものである。 The present invention relates to a heating device of a simple mechanism using electromagnetic induction and a heating element used therefor.
 従来からの発熱装置は、ガスレンジ、電熱ヒーター、電子レンジ、渦電流の利用によるIH調理器が知られている。その他にも石油バーナーに代表される化石燃料を燃焼させる燃焼装置等が利用されている。また、太陽熱温水器や地熱、バイオマス燃料利用など、自然界の熱源利用もかなり進んでいる。しかしながら、これらの熱源利用にあたっては、それぞれに一長一短があり、顧客や利用者において選択的に利用されているのが現状である。一方、発熱装置として、普遍化していない特殊な技術の提案も散見される(例えば、特許文献1を参照)。 As a conventional heating device, an IH cooker using a gas range, an electric heater, a microwave oven, and eddy current is known. Besides, a combustion apparatus for burning fossil fuel represented by an oil burner is used. In addition, the use of heat sources in the natural world, such as the use of solar water heaters, geothermal heat, and biomass fuels, has progressed considerably. However, there are pros and cons in using each of these heat sources, and it is currently the case that they are selectively used by customers and users. On the other hand, as a heat generating device, proposals for special technology that has not been universalized are sometimes found (see, for example, Patent Document 1).
特開2007-278546号公報JP 2007-278546 A
 ところで、IH調理器は、電磁誘導加熱(IH,induction
heating)の原理を用いるもので、トッププレートの直下のコイルに高周波電流を流して、変化する磁力線を作り出し、コイルに近接する比較的電気抵抗の高い鉄やステンレス製の鍋に渦電流を発生させ、抵抗により鍋に生じるジュール熱で加熱するものである。このIH調理器には、電気抵抗の低い銅製品や不導体であるセラミック、土鍋等は用いることができない。また、強い磁力線を作り出す必要があることから、一般家庭ではあまり使用していない電圧である200Vを使用電源としている。
By the way, IH cooker is electromagnetic induction heating (IH, induction
use the principle of heating), apply high frequency current to the coil directly below the top plate to create changing magnetic lines of force, and generate eddy currents in iron or stainless steel pots with relatively high electrical resistance close to the coils. The Joule heat generated in the pan due to resistance is what is heated. For this IH cooker, copper products with low electrical resistance, non-conductive ceramics, clay pots, etc. can not be used. In addition, since it is necessary to create strong magnetic field lines, 200 V, which is a voltage not used frequently in general homes, is used as the power supply.
 このようなIH調理器は、ガスレンジに比較すると安全性の上でも熱効率の上でも優位にあるものの、適用範囲が狭く、発熱装置としては、現状では調理器以外への活用が見出せていない。
本発明者は、電磁誘導による発熱装置の研究を重ねた結果、簡潔な機構でありながら従来のIH調理器の構造よりも熱効率に優れ、活用範囲の広い発熱装置とこれに用いる発熱体を完成させ、本発明を得るに至ったものである。
Although such an IH cooker is superior in terms of safety and thermal efficiency as compared to a gas range, its application range is narrow, and as a heat generating device, at present, it can not find use other than the cooker.
As a result of repeated research on heat generation devices by electromagnetic induction, the inventor completed a heat generation device having a wide range of application and a heat generating element used for the heat treatment device which has a simple mechanism but is superior in thermal efficiency to the structure of a conventional IH cooker. The present invention has been achieved.
 本発明は、電磁誘導による発熱装置であって、簡潔な機構でありながら熱効率が高く、活用範囲の広い発熱装置とこれに用いる発熱体を提供することを目的とする。また、安全性の高い発熱装置を提供することを目的とする。 An object of the present invention is to provide a heat generating device by electromagnetic induction, which has a simple mechanism but high thermal efficiency and a wide application range, and a heat generating element used therefor. Another object of the present invention is to provide a highly safe heating device.
 上記課題を解決するために、本発明に係る発熱装置は、回転軸の周囲に、例えば回転軸を有する円盤上に、複数個の磁石が、上下の磁極が交互に異なるように周方向に等間隔に配置された回転体(この磁石が配置された回転体を以後、マグネット・ホイールという。)と、このマグネット・ホイールの磁石面と所定の隙間を隔てて相対する環状の誘導電導体を備えてなり、この環状の誘導電導体に、誘導起電力を生じさせるためのスリットが、マグネット・ホイールの磁石と同数設けられていることを第1の特徴とする。 In order to solve the above problems, the heat generating device according to the present invention is, for example, in the circumferential direction so that a plurality of magnets alternate between upper and lower magnetic poles on a disk having a rotation axis around the rotation axis. A rotating body (a rotating body on which the magnet is disposed is hereinafter referred to as a magnet wheel) disposed at a distance, and an annular inductive conductor opposed to the magnet surface of the magnet wheel with a predetermined gap therebetween. It is a first feature of the present invention that the annular induction conductor is provided with the same number of slits for generating an induced electromotive force as the magnets of the magnet wheel.
 本発明に係る発熱装置によると、環状の誘導電導体にスリットを設けることにより、回転するマグネット・ホイールから出ている磁束をスリット端面で切ることになり、あたかも発電機のコイルが磁束を切り起電力が発生することと同じ効果が生じる事になる。また、この起電力が発生した誘導電導体は環状に連続しているので、発生した電流は誘導電導体全体を環状に流れる事になるが、電流が流れる長さ、即ち電流路長は通常の発電機のコイルに比べると極端に短く、断面は逆に大きいので、電気抵抗は極小になる。従って、起電力の電圧は小さいが大電流が得られ、これによるジュール熱で大きな発熱量を得ることができる。 According to the heat generating device of the present invention, by providing the slit in the annular induction conductor, the magnetic flux emitted from the rotating magnet wheel is cut at the slit end face, and as if the coil of the generator cuts the magnetic flux The same effect as generating power will occur. Also, since the induction conductor in which this electromotive force is generated is continuous in a ring, the generated current flows in a ring throughout the induction conductor, but the length of the current flow, that is, the current path length is usually The electrical resistance is minimized because it is extremely short compared to the coil of the generator and the cross section is conversely large. Therefore, although the voltage of the electromotive force is small, a large current can be obtained, and a large calorific value can be obtained by Joule heat.
 ここで、マグネット・ホイールの回転は、誘導電導体に対しマグネット・ホイールが相対回転する関係にあればよく、両者が互いに逆回転する場合も含まれる。 Here, the rotation of the magnet wheel may be in the relative rotation of the magnet wheel with respect to the induction conductor, and includes the case where both rotate in reverse.
 本発明に係る発熱装置は、環状の誘導電導体の形状がドーナツ状のディスク型であって、スリットが外周縁部と内周縁部に交互に開口するように設けられ、当該スリットの数が前記磁石の数と等しいことを第2の特徴とする。 In the heat generating device according to the present invention, the annular induction conductor is in the form of a doughnut-shaped disk, and slits are provided alternately in the outer peripheral edge portion and the inner peripheral edge portion, and the number of slits is The second feature is equal to the number of magnets.
 本発明に係る発熱体は、マグネット・ホイールの磁石面と所定の隙間を隔てて相対する環状の誘導電導体からなり、この環状の誘導電導体に、誘導起電力を生じさせるためのスリットが、マグネット・ホイールの磁石と同数設けられていることを第1の特徴とする。 The heating element according to the present invention comprises an annular induction conductor opposite to the magnet surface of the magnet wheel with a predetermined gap, and a slit for generating an induced electromotive force in the annular induction conductor is The first feature is that the same number of magnets as the magnet wheel is provided.
 本発明に係る発熱体は、環状の誘導電導体の形状がドーナツ状のディスク型であって、スリットが外周縁部と内周縁部に交互に開口するように設けられ、当該スリットの数が前記磁石の数と等しいことを第2の特徴とする。 The heat generating body according to the present invention is a disk-shaped annular induction conductor having a donut shape, and slits are provided alternately at the outer peripheral edge and the inner peripheral edge, and the number of the slits is The second feature is equal to the number of magnets.
 本発明に係る発熱体は、環状の誘導電導体の形状が環状のベルト型であって、スリットが両側端に交互に開口するように設けられ、当該スリットの数が前記磁石の数と等しいことを第3の特徴とする。 In the heating element according to the present invention, the shape of the annular induction conductor is a belt type having an annular shape, and slits are provided so as to alternately open at both ends, and the number of the slits is equal to the number of the magnets. As the third feature.
 以上説明したように、本発明に係る発熱装置によると、電磁誘導による発熱装置であって、マグネット・ホイールを回転させるという簡単な機構により、環状のスリット入り誘導電導体において電流路の電気抵抗を極小にして、低電圧であっても大電流を得ることができ、これによるジュール熱で大きな発熱量を得ることができるという優れた効果を奏する。 As described above, according to the heat generating device of the present invention, the heat generating device is generated by electromagnetic induction, and the electric resistance of the current path in the annular slitted induction conductor is obtained by the simple mechanism of rotating the magnet wheel. It is minimized, and a large current can be obtained even at a low voltage, and a large amount of heat generation can be obtained by Joule heat.
 かかる発熱効果より、調理器以外への活用が十分可能であり、さらには規模を大きくした発熱装置、たとえば貯湯式ボイラーなどの熱源としても幅広く利用することができる。 Because of this heat generation effect, it can be used for purposes other than a cooker, and can be widely used as a heat source of a large scale, for example, a heat storage boiler or the like.
 さらには、発熱量の制御がマグネット・ホイールの回転数を制御することで簡単に行えるので、発熱装置として安全安心という効果を奏する。 Furthermore, since the control of the amount of heat generation can be easily performed by controlling the number of rotations of the magnet wheel, the effect of safety and security can be obtained as a heat generating device.
(A)は本発明の第1実施形態を示す発熱装置の側面図、(B)は同平面図、(A) is a side view of a heat generating apparatus showing a first embodiment of the present invention, (B) is a plan view of the same, (A)は図1に示す発熱装置に使用される回転体の平面図、(B)は同側面図、(A) is a plan view of a rotating body used for the heat generating device shown in FIG. 1, (B) is the same side view, (A)は図1に示す発熱装置に使用されるスリット入り誘導電導体の平面図、(B)は(A)のB-B線矢視断面図、(C)は(A)のC-C線矢視断面図、(A) is a plan view of a slitted induction conductor used for the heat generating apparatus shown in FIG. 1, (B) is a cross-sectional view taken along the line BB of (A), (C) is C- of (A) C line arrow sectional view, (A)(B)は本発明の発熱装置の作用を示す説明図、(A) and (B) are explanatory views showing the operation of the heat generating device of the present invention, (A)(B)は本発明の発熱装置の作用を示す説明図、(A) and (B) are explanatory views showing the operation of the heat generating device of the present invention, 本発明の第2実施形態を示す発熱装置の説明図、An explanatory view of a heat generating device showing a second embodiment of the present invention, 本発明の発熱装置による昇温測定結果を示す説明図である。It is explanatory drawing which shows the temperature rising measurement result by the heat-emitting device of this invention.
 本発明を実施するための最良の形態について、図面を参照しながら説明する。図1ないし図5は本発明の第1実施形態を示すもので、図1中、符号Sは本発明に係る発熱装置を示している。 The best mode for carrying out the present invention will be described with reference to the drawings. FIGS. 1 to 5 show a first embodiment of the present invention, and in FIG. 1, reference symbol S denotes a heat generating device according to the present invention.
 発熱装置Sは、図1に示すように、マグネット・ホイール1と、環状のスリット入り誘導電導体2を備えている。 As shown in FIG. 1, the heat generating device S includes a magnet wheel 1 and an annular slit-like induction conductor 2.
 マグネット・ホイール1は、図2に示すように、鉄製のフランジ3A付き回転板(回転体)3の上面に磁石を配置したもので、回転板3の下面中央に回転軸4が固定されている。回転板3の上面には回転中心Oを中心として、放射方向、すなわち回転中心Oを向く偶数個の所定長の永久磁石(磁石)5が、上下の磁極が交互に異なるように周方向に等間隔に配置されている。 As shown in FIG. 2, the magnet wheel 1 has a magnet disposed on the upper surface of a rotating plate (rotary body) 3 with a flange 3A made of iron, and the rotating shaft 4 is fixed at the center of the lower surface of the rotating plate 3 . The upper surface of the rotary plate 3 around the rotation center O 1, radial, that is, an even number of predetermined length of the permanent magnet (magnet) 5 facing the rotation center O 1, as the upper and lower magnetic poles are alternately different circumferential direction Are arranged at equal intervals.
 回転板3の下面中央には前記回転軸4を介してモータ6が直結されている。このモータ6は例えば一般家庭用の交流100Vを電源とする汎用モータでよく、また、屋外で使用可能な汎用モータであってもよい。図1に示すように、地面や床面等に設置可能な下ベース7の上面に上ベース8が載置あるいは固定され、上ベース8の上面に支持部9が立設支持されており、モータ6が地面や床面等と垂直姿勢になるように支持部9により安定支持されている。その結果、回転体1は回転軸4を介してモータ6の直上に地面や床面等と水平姿勢で回転可能に支持されており、上ベース8とともにあるいは下ベース7と一体に運搬可能とされている。 A motor 6 is directly connected to the center of the lower surface of the rotary plate 3 via the rotary shaft 4. The motor 6 may be, for example, a general-purpose motor powered by AC 100 V for general household use, or may be a general-purpose motor that can be used outdoors. As shown in FIG. 1, the upper base 8 is mounted or fixed on the upper surface of the lower base 7 which can be installed on the ground or floor, and the support 9 is supported upright on the upper surface of the upper base 8. It is stably supported by the support portion 9 so that the position 6 is in a vertical posture with the ground, the floor surface and the like. As a result, the rotating body 1 is rotatably supported in a horizontal posture with the ground, floor, etc. directly above the motor 6 via the rotation shaft 4 and can be carried together with the upper base 8 or integrally with the lower base 7. ing.
 上ベース8の周囲で下ベース7の上面にはトッププレート11を水平支持する側壁板10が、マグネット・ホイール1の上面と若干の隙間(図示例では0.5mm)を保持するように設置されている。木製合板を使用したトッププレート11の上面には、耐熱材12、例えばセラミックペーパーが貼り付けられている。また、マグネット・ホイール1の磁石面の上には、永久磁石5を熱から保護するため、同様の耐熱材12、例えばセラミックペーパーが貼り付けられている。 A side wall plate 10 horizontally supporting the top plate 11 is provided on the upper surface of the lower base 7 around the upper base 8 so as to maintain a slight gap (0.5 mm in the illustrated example) with the upper surface of the magnet wheel 1 ing. A heat resistant material 12, for example, a ceramic paper, is attached to the upper surface of the top plate 11 using wooden plywood. Further, on the magnet surface of the magnet wheel 1, a similar heat-resistant material 12, for example, a ceramic paper, is attached to protect the permanent magnet 5 from heat.
 環状のスリット入り誘導電導体2は、図1および図3に示すように、マグネット・ホイール1のフランジ3Aを除く回転板3の直径(外径)Dよりも大きい直径(外径)Dを有し、マグネット・ホイール1の上面1aと平行に相対すると共に、マグネット・ホイール1の上面1aから所定の隙間dを隔ててトッププレート11の上面の耐熱材12上に配置される。この時、スリット入り誘導電導体2の中心Oが回転板3の中心Oと略同軸上になるように位置合わせされる。 As shown in FIG. 1 and FIG. 3, the annular slitted induction conductor 2 has a diameter (outside diameter) D 2 larger than the diameter (outside diameter) D 1 of the rotary plate 3 excluding the flange 3A of the magnet wheel 1. And is disposed on the heat-resistant material 12 on the top surface of the top plate 11 with a predetermined gap d from the top surface 1 a of the magnet wheel 1 while facing in parallel with the top surface 1 a of the magnet wheel 1. At this time, the center O 2 of the slit induction conductors 2 is aligned such that the center O 1 and substantially coaxially of the rotating plate 3.
 このような環状のディスク型スリット入り誘導電導体2は、図3に示すように、中心O部分に円形状の開口部13が設けられている。さらに外周縁部2aから中心Oに向けて途中まで延びる所定長の第1スリット14が所定間隔(図示例では90度間隔)で複数個(図示例では計4個)設けられている。また、中央開口部13の内周縁部2bから外周縁部2aに向けて途中まで延びる所定長の第2スリット15が、隣り合う第1スリット14、14の間に位置して互いに所定間隔(図示例では90度間隔)で複数個(図示例では計4個)設けられている。 As shown in FIG. 3, such an annular disk-shaped slit-induction conductive member 2 is provided with a circular opening 13 at the center O 2 portion. Furthermore, the first slit 14 a predetermined length extending from the outer peripheral edge 2a halfway toward the center O 2 is provided with a plurality (four in total in the illustrated example) at predetermined intervals (90 degree intervals in the illustrated example). Further, the second slits 15 of a predetermined length extending halfway from the inner peripheral edge 2b of the central opening 13 toward the outer peripheral edge 2a are positioned between the adjacent first slits 14 and have a predetermined interval (see FIG. In the example shown, a plurality (a total of four in the example shown) is provided at intervals of 90 degrees.
 外周縁部2aに開口する第1スリット14およびその間に位置し内周縁部2bに開口する第2スリット15は、マグネット・ホイール1が回転することにより、マグネット・ホイール1の上面1aからの磁束を切ることになり、これは発電機に於けるコイルが磁束を切ることと同じ作用である。この現象を更に詳しく見てみると、回転板3に設置した永久磁石5の位置が、ちょうど各スリット14,15の位置(図4(A)(B))に回転してきたとき、磁束はスリットを抜けているので誘導電導体2を通過する磁束密度は最小になる。 The first slit 14 opened to the outer peripheral edge 2 a and the second slit 15 located between them and opened to the inner peripheral edge 2 b rotate the magnet wheel 1 and thereby the magnetic flux from the upper surface 1 a of the magnet wheel 1 It is to be cut, which is the same effect as a coil in the generator to cut the magnetic flux. If this phenomenon is examined in more detail, when the position of the permanent magnet 5 installed on the rotary plate 3 has just been rotated to the position of each of the slits 14 and 15 (Figs. 4 (A) and (B)) The magnetic flux density passing through the induction conductor 2 is minimized.
 次に回転板3に設置した永久磁石5の位置が、スリット部を通り過ぎた位置(図5(A)(B))にくると誘導電導体2を通過する磁束密度は最大になる。即ちマグネット・ホイール1が回転することで誘導電導体2を通過する磁束密度が変化することになる。磁束の変化が時間と共に生ずると誘導電導体2にはファラデーの電磁誘導の法則通りに起電力が生じる。 Next, when the position of the permanent magnet 5 installed on the rotary plate 3 comes to a position (FIGS. 5A and 5B) passing the slit portion, the magnetic flux density passing through the induction conductor 2 becomes maximum. That is, as the magnet wheel 1 rotates, the magnetic flux density passing through the induction conductor 2 changes. When a change in magnetic flux occurs with time, an electromotive force is generated in the induction conductor 2 according to Faraday's law of electromagnetic induction.
 ファラデーの電磁誘導の法則による起電力はe=Blvで表わされる。ここでeは電圧を、Bは磁束密度を、lは磁束を切る誘導電導体の長さを、vは磁束を切る誘導電導体の速さを表わす。また、このときの誘導電流の方向は、フレミング右手の法則により表わされ、マグネット・ホイール1に設置した永久磁石5は、磁極を交互に配置しているので永久磁石5が交互に回転板3の中心O回りに回転し、スリット位置を変える毎に電流の方向が変わる。つまり交流の起電力を生じる。 The electromotive force according to Faraday's law of electromagnetic induction is expressed by e = Blv. Here, e represents a voltage, B represents a magnetic flux density, l represents a length of the induction conductor which breaks the magnetic flux, and v represents a speed of the induction conductor which breaks the magnetic flux. Further, the direction of the induced current at this time is expressed by the Fleming right-hand rule, and since the permanent magnets 5 installed on the magnet wheel 1 have the magnetic poles alternately arranged, the permanent magnets 5 are alternately rotated. It rotates around the center O 1 of, and the direction of the current changes every time the slit position is changed. That is, an alternating electromotive force is generated.
 次に、図5(A)で示すIは、電流の流れを表現したもので、この電流Iが誘導電導体を蛇行しながら還流するところは電流路(L)と言うべきものである。この電流路の電気抵抗(R)は、誘導電導体固有の抵抗値(ρ)と電流路の長さ(L)に比例し断面積(A)に反比例することになっている。即ちR=ρL/Aで表わされる。図5(A)で表示した電流路は、通常の発電機のコイルに比べると長さは極端に短く、断面積は極端に大きくなっている。即ち、誘導電導体2の電流路の電気抵抗は極端に小さいということになる。従って、オームの法則I=e/Rの式中、eの値に比べてRが極端に小さいということになり、電流は大きな値となることが解る。 Next, I shown in FIG. 5A represents the current flow, and the place where the current I flows back while meandering the induction conductor is to be called a current path (L). The electrical resistance (R) of the current path is proportional to the resistance value (ρ) specific to the induction conductor and the length (L) of the current path, and inversely proportional to the cross-sectional area (A). That is, R = ρL / A. The current path shown in FIG. 5 (A) has an extremely short length and a very large cross-sectional area as compared with the coil of a normal generator. That is, the electrical resistance of the current path of the induction conductor 2 is extremely small. Therefore, in the equation of Ohm's law I = e / R, R is extremely small compared to the value of e, and it is understood that the current has a large value.
 次に、誘導電導体2を電流が環状に流れるとき電気抵抗に遭い、そのエネルギーは全て熱量に置き換わる(ジュールの法則)。即ち熱出力W=RI(J:ジュール)で表わされる。前段で電流値は大きな値になることを述べたが、最終的な熱量は更に電流値の2乗に比例して大きくなることが解る。従って、誘導電導体2は発熱体として大きな熱量を供給することができる。 Next, when the current flows annularly in the induction conductor 2, it encounters electrical resistance, and all its energy is replaced by heat (Joule's law). That is, the heat output is expressed by W = RI 2 (J: joules). Although it has been described that the current value becomes large in the previous stage, it is understood that the final heat quantity further increases in proportion to the square of the current value. Therefore, the induction conductor 2 can supply a large amount of heat as a heating element.
 本実施形態の発熱装置およびこれに用いる発熱体は、調理器、ホットプレート、給湯器、ボイラー、暖房機、熱機関等の熱源に利用することができる。例えば貯湯式ボイラー等、規模を拡大した発熱装置として利用する場合、回転体1の回転半径を大きくして周速度を速くするか、回転速度を速くすることで起電力eを大きくすると、必然的に電流値が大きくなり結果的に大きな発熱量を得ることが可能となる。 The heating device of the present embodiment and the heating element used for this can be used as a heat source such as a cooker, a hot plate, a water heater, a boiler, a heater, a heat engine and the like. For example, when using it as a heating device with a large scale such as a hot water storage type boiler, it is inevitable to increase the rotational speed of the rotating body 1 to increase the peripheral speed or increase the electromotive force e by increasing the rotational speed. As a result, it becomes possible to obtain a large amount of heat generation.
 図6は、本発明の第2実施形態を示すもので、マグネット・ホイール20と、環状のベルト型スリット入り誘導電導体21を示している。 FIG. 6 shows a second embodiment of the present invention, showing a magnet wheel 20 and an annular belt-type slit-inducing induction conductor 21.
 図6によると、マグネット・ホイール20は、前記実施形態と同じく鉄製であり、回転体22の周面22aに永久磁石23が回転軸24と平行となる向きに、一定間隔に上下の磁極を交互にして偶数個配置されている。また、環状のベルト型スリット入り誘導電導体21は、回転体22の直径(外径)Dよりも大きい直径(内径)Dをもつ環状に形成されている。更には両側端に交互に開口する、永久磁石23と同数のスリット25が、回転軸24と平行となる向きに一定間隔で配置されている。 According to FIG. 6, the magnet wheel 20 is made of iron as in the embodiment described above, and the upper and lower magnetic poles are alternately arranged at a constant interval in the direction in which the permanent magnet 23 is parallel to the rotating shaft 24 on the peripheral surface 22a of the rotating body 22. And even numbers are arranged. The annular belt-type slit induction conductors 21 is formed in an annular shape having a larger diameter (inner diameter) D 4 than the diameter of the rotary member 22 (outer diameter) D 3. Furthermore, the slits 25 equal in number to the permanent magnets 23 and alternately opened at both ends are arranged at regular intervals in a direction parallel to the rotation axis 24.
 図6に示す発熱装置は、マグネット・ホイール20の回転軸24を水平姿勢とし、マグネット・ホイール20の外周囲に中心軸を回転軸24と略一致させる形で環状のベルト型スリット入り誘導電導体21を配置する。そして、マグネット・ホイール20の回転軸24に連結されたモータあるいは風車、水車等の駆動手段によりマグネット・ホイール20を回転させると、前記実施形態と同様に環状のベルト型スリット入り誘導電導体21に起電力が発生し、誘導電流が流れて発熱する。なお、図6に示す発熱装置は、マグネット・ホイール20と誘導電導体21の相対的設置条件を満たせば、回転軸が水平でも垂直でも何ら問題はない。 The heat generating device shown in FIG. 6 has an annular belt-like slit-shaped induction conductor in which the rotation axis 24 of the magnet wheel 20 is in a horizontal posture and the center axis substantially coincides with the rotation axis 24 around the magnet wheel 20. Place 21 When the magnet wheel 20 is rotated by a motor or a driving means such as a windmill or a water wheel connected to the rotation shaft 24 of the magnet wheel 20, the belt-like slit-shaped inductive conductor 21 having an annular shape as in the embodiment described above. An electromotive force is generated and an induced current flows to generate heat. The heating device shown in FIG. 6 has no problem whether the rotation axis is horizontal or vertical as long as the relative installation condition of the magnet wheel 20 and the induction conductor 21 is satisfied.
 以上の各実施形態では、磁石として永久磁石を使用したが、永久磁石に替えて電磁石を用いることができる。また、マグネット・ホイールの回転速度を制御することで発熱装置の温度管理を容易に行うことができる。 In each of the above embodiments, a permanent magnet is used as the magnet, but an electromagnet can be used instead of the permanent magnet. Further, temperature control of the heat generating device can be easily performed by controlling the rotational speed of the magnet wheel.
 以上の各実施形態では、環状の誘導電導体に対し、マグネット・ホイール側を回転させるようにしたが、マグネット・ホイールを固定し、環状の誘導電導体側を回転させるようにしても良い。更には両者を互いに逆回転させることで効率を高めることも可能である。 In each of the above embodiments, the magnet wheel side is rotated with respect to the annular induction conductor, but the magnet wheel may be fixed and the annular induction conductor side may be rotated. Furthermore, it is also possible to increase the efficiency by rotating the two in reverse.
 本発明の発熱装置は、マグネット・ホイールを水車や風車等により回転させることで、電源のない山間地や僻地、寒冷地での熱源として利用可能である。 The heat generating device of the present invention can be used as a heat source in a mountainous area, a remote area or a cold area without power by rotating a magnet wheel by a water wheel, a windmill or the like.
 本発明者は図1に示す発熱装置を製作し、データを測定して実際の効果を確認した。マグネット・ホイールは、図2を参照し、鉄製の回転板(直径D=150mm)の回転面に8個の永久磁石を磁極が交互に異なるようにして回転軸の周囲に放射状に配置し取り付けた。このときの永久磁石の中心位置を通る直径は110mmである。永久磁石はネオジム磁石(長さ40mm、幅11mm、高さ6mm)を使用し、その表面の磁束密度B=0.35T(テスラ)である。 The inventor manufactured the heat generating apparatus shown in FIG. 1 and measured data to confirm the actual effect. The magnet wheel, referring to FIG. 2, mounts and arranges eight permanent magnets radially on the rotation surface of iron rotating plate (diameter D 1 = 150 mm) so that the magnetic poles are alternately different. The The diameter passing through the center position of the permanent magnet at this time is 110 mm. The permanent magnet uses a neodymium magnet (length 40 mm, width 11 mm, height 6 mm), and the magnetic flux density B of its surface is B = 0.35 T (Tesla).
 誘導電導体には、測定上限値が250℃の熱電対型温度計を接触固定し、モータの電源入力コードには消費電流測定用のAC電流クランプを設置し、誘導起電力の電圧測定用にオシロスコープを、マグネット・ホイールの回転速度測定用に非接触型回転計を用意した。モータは交流100Vの汎用モータを用いた。 A thermocouple-type thermometer with an upper measurement limit of 250 ° C is fixed in contact with the induction conductor, and an AC current clamp for measuring the consumption current is installed in the power input cord of the motor for voltage measurement of the induced electromotive force. The oscilloscope was equipped with a non-contact tachometer for measuring the rotational speed of the magnet wheel. The motor used the general-purpose motor of AC100V.
 最初に比較例として、スリットのないディスク型誘導電導体(直径D=180mm、厚みt=3mm)を銅板で作成し、発熱装置のトッププレートの上に載置した。このとき、マグネット・ホイールの永久磁石面からディスク型誘導電導体の下面までの隙間をd=5.0mmに設定し、マグネット・ホイールを回転させた。この時のマグネット・ホイールの回転速度は1783rpmであった。このときスリットのないディスク型誘導電導体の銅板には渦電流が発生しているはずであるが、その表面温度に上昇変化は見られなかった。即ち、渦電流の電圧・電流も極小であることが確認できた。 First, as a comparative example, a disk-type induction conductor (diameter D 2 = 180 mm, thickness t = 3 mm) without slits was made of a copper plate and placed on the top plate of the heat generating device. At this time, the gap from the permanent magnet surface of the magnet wheel to the lower surface of the disc type induction conductor was set to d = 5.0 mm, and the magnet wheel was rotated. The rotational speed of the magnet wheel at this time was 1783 rpm. At this time, an eddy current should be generated in the copper plate of the disk type induction conductor without slits, but no rise in the surface temperature was observed. That is, it was confirmed that the voltage and current of the eddy current were also minimal.
 次に、実施例として、図3を参照し、前記ディスク型誘導電導体(直径D=180mm、厚さt=3mm)の銅板に、第1スリット(幅11mm、長さ55mm)を外周縁部から中心軸に向けて等間隔に計4個、その間に第2スリット(幅11mm、長さ55mm)を中央開口部(開口直径40mm)から外周縁部に向けて等間隔に計4個それぞれ設けた。このスリット入り誘導電導体の電路長、すなわち各スリット間を蛇行しながら電流が誘導電導体を環状に一周する電流路の長さはL=770mmである。 Next, as an example, referring to FIG. 3, a first slit (width 11 mm, length 55 mm) is formed on a copper plate of the disc type induction conductor (diameter D 2 = 180 mm, thickness t = 3 mm) A total of four equally spaced from the center to the central axis, and a total of four second slits (width 11 mm, length 55 mm) equally spaced from the central opening (opening diameter 40 mm) from the central opening (diameter 40 mm) Provided. The length of the electric path length of this slitted induction conductor, that is, the length of the current path in which the current circulates around the induction conductor while meandering between the slits, is L = 770 mm.
 前記スリット入り誘導電導体は、電気抵抗の大小の比較をするために、厚さを変更したものを3種類(厚さt=3mm、1mm、0.2mm)用意した。 Three kinds (Thickness t = 3 mm, 1 mm, 0.2 mm) of which the thickness is changed are prepared for the slit-containing induction conductor in order to compare the magnitude of the electric resistance.
 次に、厚さt=3mmのスリット入り誘導電導体の外周縁部の一部を切断して開回路とし、当該スリット入り誘導電導体をトッププレートの上に載置してマグネット・ホイールを回転させ、誘導起電力を測定した。誘導起電力の測定値はe=0.3Vであった。この時のマグネット・ホイールの回転速度は1722rpm、入力電流I=5.1Aであった。 Next, a part of the outer peripheral edge portion of the slitted induction conductor of thickness t = 3 mm is cut to form an open circuit, the slitted induction conductor is placed on the top plate, and the magnet wheel is rotated. The induced electromotive force was measured. The measured value of the induced electromotive force was e = 0.3V. The rotational speed of the magnet wheel at this time was 1,722 rpm, and the input current I was 5.1A.
 ここで、電気抵抗Rを計算すると、R=ρL/Aにより、R=1.68×10-8×0.77/(0.03×0.0245)=0.000176≒0.0002Ωとなる。ここで、ρ=1.68×10-8Ωm、L=0.77m、A=0.003×0.0245である。厚さt=3mmのスリット入り誘導電導体を流れる誘導電流値は、オームの法則I=e/Rより、I=0.3/0.0002=1500Aとなる。そして、単位時間当たりの熱出力を算出すると、W=RI=0.0002×1500×1500=450J(ジュール)となる。 Here, when the electric resistance R is calculated, R = 1.68 × 10 −8 × 0.77 / (0.03 × 0.0245) = 0.000176 ≒ 0.0002Ω according to R = ρL / A. . Here, ρ = 1.68 × 10 −8 Ωm, L = 0.77 m, and A = 0.003 × 0.0245. According to Ohm's law I = e / R, the induced current value flowing through the slit-inducing conductor with thickness t = 3 mm is I = 0.3 / 0.0002 = 1500 A. When calculating the heat output per unit time, and W = RI 2 = 0.0002 × 1500 × 1500 = 450J ( Joule).
 次に、厚さt=3mmのスリット入り誘導電導体を元の閉回路の状態に復元して、トッププレートの所定位置に載置し、マグネット・ホイールを回転させ、1分間毎のスリット入り誘導電導体の温度とマグネット・ホイールの回転速度及び入力電流を測定した。測定結果を図7に示す。厚さt=3mmのスリット入り誘導電導体の場合、3分間で約180℃、6分間で約250℃まで温度の上昇を計測した。この間のマグネット・ホイールの平均回転速度は1725rpm、平均入力電流I=5.3Aであった。 Next, restore the slitted induction conductor of thickness t = 3 mm to the original closed circuit state, place it on the predetermined position of the top plate, rotate the magnet wheel, and introduce the slitted induction every minute The temperature of the conductor, the rotational speed of the magnet wheel and the input current were measured. The measurement results are shown in FIG. In the case of a slitted induction conductor of thickness t = 3 mm, the temperature rise was measured to about 180 ° C. in 3 minutes and to about 250 ° C. in 6 minutes. During this time, the average rotational speed of the magnet wheel was 1725 rpm, and the average input current I = 5.3A.
 同じようにして、厚さt=1mmとt=0.2mmのスリット入り誘導電導体についても同様の試験を実施した。測定結果は図7に示すように、厚さt=1mmのスリット入り誘導電導体の場合は、3分間で約140℃、6分間で約180℃近くまで温度が上昇した。厚さt=0.2mmのスリット入り誘導電導体の場合は、3分間で約40℃、6分間で約60℃弱にとどまった。この測定結果から、スリット入り誘導電導体の厚さが3mm程度になると、かなりの熱量を発生させることが判明した。 The same test was carried out on slitted induction conductors of thickness t = 1 mm and t = 0.2 mm. As the measurement result is shown in FIG. 7, in the case of a slitted induction conductor with a thickness t = 1 mm, the temperature rises to about 140 ° C. in 3 minutes and to about 180 ° C. in 6 minutes. In the case of a slitted induction conductor having a thickness t = 0.2 mm, it remained at about 40 ° C. for 3 minutes and less than about 60 ° C. for 6 minutes. From this measurement result, it was found that a considerable amount of heat is generated when the thickness of the slitted induction conductor becomes about 3 mm.
 厚さt=3mmのスリット入り誘導電導体では、消費電流の平均値が5.3Aであったので、単位時間当たりの消費電力P=5.3(A)×100(V)=530(W)である。従って電力効率η=450/530=0.85である。 In the case of a slitted induction conductor having a thickness t of 3 mm, the average consumption current was 5.3 A, so the power consumption per unit time P = 5.3 (A) × 100 (V) = 530 (W) ). Therefore, the power efficiency η = 450/530 = 0.85.
 以上の実験結果によると、厚さ3mm以上のスリット入り誘導電導体を用いると、ヒーターとしての実用的範疇に入ることが分かった。つまり、スリット入り誘導電導体の電流路における電気抵抗を極小にすると、オームの法則I=e/Rの式中、eの値に比べてRが極端に小さくなれば、I即ち電流値は大きな値になり、更に、熱出力は電流値の2乗に比例するので、スリット入り誘導電導体に発生する起電力の電圧が、乾電池1個分の1.5Vよりも小さい0.3Vの低電圧であっても、通常の電気ヒーター(400Wで4A~1200Wで12A)で使用する150倍の大電流(1500A)を創り出すことが可能であり、ヒーターとして十分な能力が得られることを確認した。 According to the above experimental results, it was found that the use of a slitted induction conductor having a thickness of 3 mm or more falls within the practical range as a heater. That is, if the electrical resistance in the current path of the slit-inducted conductor is minimized, in the equation of Ohm's law I = e / R, if R is extremely small compared to the value of e, I, that is, the current value is large. And the heat output is proportional to the square of the current value, so that the voltage of the electromotive force generated in the slit induction conductor is a low voltage of 0.3 V, which is smaller than 1.5 V for one dry cell. Even in this case, it was possible to create a 150 times larger current (1500 A) used in a normal electric heater (4 W at 1200 W and 12 A at 1200 W), and it was confirmed that a sufficient ability as a heater could be obtained.
 本発明に係る発熱装置は、電磁誘導の原理を用い、一般家庭用、アウトドアー用、農業用、産業用、様々な分野に活用できる発熱装置として利用可能である。また、本発明に係る発熱体は、上記の各分野に活用できる発熱装置用の発熱体として利用可能である。 The heat generating device according to the present invention can be used as a heat generating device that can be used in various fields such as general household use, outdoor use, agricultural use, industrial use, and the like based on the principle of electromagnetic induction. Moreover, the heat generating body which concerns on this invention can be utilized as a heat generating body for heat generating apparatuses which can be utilized for said each area | region.
 1,20 マグネット・ホイール
 1a 上面
 2,21 環状のスリット入り誘導電導体
 2a 外周縁部
 2b 内周縁部
 3,22 回転体
 3A フランジ
 4,24 回転軸
 5,23 永久磁石(磁石)
 6 モータ
 7 下ベース
 8 上ベース
 9 支持部
 10 側壁板
 11 トッププレート
 12 耐熱材
 13 開口部
 14 第1スリット
 15 第2スリット
 22a 周面
 25 スリット
 D,D,D,D4 直径
 O,O 中心
 d 隙間
 G 磁力線
 I 電流
 t スリット入り誘導電導体の厚さ
1, 20 Magnet wheel 1a Upper surface 2, 21 Annular slitted induction conductor 2a Outer peripheral edge portion 2b Inner peripheral edge portion 3, 22 Rotating body 3A Flange 4, 24 Rotating shaft 5, 23 Permanent magnet (magnet)
6 motor 7 lower base 8 upper base 9 support portion 10 side wall plate 11 top plate 12 heat resistant material 13 opening 14 first slit 15 second slit 22 a circumferential surface 25 slit D 1 , D 2 , D 3 , D 4 diameter O 1 , O 2 center d gap G magnetic field line I current t slit conductor thickness

Claims (5)

  1.  回転軸の周囲に、複数個の磁石が、上下の磁極が交互に異なるように周方向に等間隔に配置された回転体と、この回転体の磁石面と所定の隙間を隔てて相対する環状の誘導電導体を備えてなり、この環状の誘導電導体に、誘導起電力を生じさせるためのスリットが、回転体の磁石と同数設けられていることを特徴とする発熱装置。 A rotating body having a plurality of magnets arranged at equal intervals in the circumferential direction so that upper and lower magnetic poles are alternately different around the rotation axis, and an annular shape facing a magnet surface of the rotating body with a predetermined gap therebetween A heating device comprising: the induction conductor of (1), and the annular induction conductor is provided with the same number of slits as the magnets of the rotating body for generating an induced electromotive force.
  2.  環状の誘導電導体の形状がドーナツ状のディスク型であって、スリットが外周縁部と内周縁部に交互に開口するように設けられ、当該スリットの数が前記磁石の数と等しいことを特徴とする請求項1記載の発熱装置。 The shape of the annular induction conductor is a disk shape having a donut shape, and slits are provided so as to alternately open at the outer peripheral edge portion and the inner peripheral edge portion, and the number of the slits is equal to the number of the magnets. The heat generating device according to claim 1.
  3.  回転軸の周囲に、複数個の磁石が、上下の磁極が交互に異なるように周方向に等間隔に配置された回転体の、磁石面と所定の隙間を隔てて相対する環状の誘導電導体からなる発電装置用発熱体であって、この環状の誘導電導体に、誘導起電力を生じさせるためのスリットが、回転体の磁石と同数設けられていることを特徴とする発熱装置用発熱体。 An annular induction conductor of a rotating body disposed at equal intervals in the circumferential direction such that a plurality of magnets alternately surround upper and lower magnetic poles alternately around the rotation axis, with an annular inductive conductor opposite to the magnet surface with a predetermined gap A heating element for a power generation device, the annular induction conductor being provided with slits for generating an induced electromotive force, the number of which is the same as that of the magnet of the rotating body .
  4.  環状の誘導電導体の形状がドーナツ状のディスク型であって、スリットが外周縁部と内周縁部に交互に開口するように設けられ、当該スリットの数が前記磁石の数と等しいことを特徴とする請求項3に記載の発熱装置用発熱体。 The shape of the annular induction conductor is a disk shape having a donut shape, and slits are provided so as to alternately open at the outer peripheral edge portion and the inner peripheral edge portion, and the number of the slits is equal to the number of the magnets. The heating element for a heating device according to claim 3, wherein
  5.  環状の誘導電導体の形状が環状のベルト型であって、スリットが両側端に交互に開口するように設けられ、当該スリットの数が前記磁石の数と等しいことを特徴とする請求項3に記載の発熱装置用発熱体。 The shape of the annular induction conductor is an annular belt type, and slits are provided so as to alternately open at both ends, and the number of the slits is equal to the number of the magnets. The heating element for the heating device as described.
PCT/JP2010/002677 2009-04-24 2010-04-13 Heat generating device and heat generating body used for same WO2010122734A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011510176A JP5399481B2 (en) 2009-04-24 2010-04-13 Heat generating device and heating element used therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009106318 2009-04-24
JP2009-106318 2009-04-24

Publications (1)

Publication Number Publication Date
WO2010122734A1 true WO2010122734A1 (en) 2010-10-28

Family

ID=43010863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002677 WO2010122734A1 (en) 2009-04-24 2010-04-13 Heat generating device and heat generating body used for same

Country Status (2)

Country Link
JP (1) JP5399481B2 (en)
WO (1) WO2010122734A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111010755B (en) * 2019-11-13 2022-04-05 九阳股份有限公司 Frequency jitter control method of electromagnetic heating equipment and electromagnetic heating equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63225736A (en) * 1987-02-27 1988-09-20 K Ii B Yamakiyuu:Kk Electromagnetic device of electromagnetic brake, electromagnetic coupling or the like
JPH11312574A (en) * 1998-04-27 1999-11-09 Usui Internatl Ind Co Ltd Magnet type heater
JP2003333824A (en) * 2002-05-16 2003-11-21 Sumitomo Metal Ind Ltd Eddy current speed reducer
JP2008545243A (en) * 2005-06-30 2008-12-11 マグテック エナジー,エルエルシー Magnetic heat generation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63225736A (en) * 1987-02-27 1988-09-20 K Ii B Yamakiyuu:Kk Electromagnetic device of electromagnetic brake, electromagnetic coupling or the like
JPH11312574A (en) * 1998-04-27 1999-11-09 Usui Internatl Ind Co Ltd Magnet type heater
JP2003333824A (en) * 2002-05-16 2003-11-21 Sumitomo Metal Ind Ltd Eddy current speed reducer
JP2008545243A (en) * 2005-06-30 2008-12-11 マグテック エナジー,エルエルシー Magnetic heat generation

Also Published As

Publication number Publication date
JP5399481B2 (en) 2014-01-29
JPWO2010122734A1 (en) 2012-10-25

Similar Documents

Publication Publication Date Title
JP5110331B2 (en) Electromagnetic induction hot air generator
KR20050033551A (en) Induction heating apparatus
CN103369752B (en) Permanent magnet eddy heating device
JP3924572B2 (en) Electromagnetic induction heating device
WO2010122734A1 (en) Heat generating device and heat generating body used for same
KR101949562B1 (en) Induction heating apparatus
KR101812720B1 (en) Heater using magnets
US8575878B2 (en) Energy converter
US3085142A (en) Eddy current heating device
KR20110103637A (en) Induction heating device using magnetic
JP2010154737A5 (en)
KR101703817B1 (en) Heat generating apparatus using permanent magnet
JP6533911B1 (en) Electromagnetic induction heating device
EP1130336A2 (en) High efficiency fluid heating apparatus
JP5527685B2 (en) Electromagnetic induction hot air generator and power generator
KR101806965B1 (en) generation of heat device for using magnet
EP2673513B1 (en) Heating fan
KR20110100354A (en) High-utility heating device using induction heating
JP5555966B2 (en) Electromagnetic induction heating boiler
US1797519A (en) Electric heater
JP2014204658A (en) Heating appliance with rotation function or cookstove
KR101533534B1 (en) A round shape plate type eddy current induction heating equipment
RU193430U1 (en) Device for heating a liquid coolant
JP2012164621A (en) Hot air generation device using permanent magnet
JP2013172638A (en) Method for converting gas combustion heat to electricity, gas combustion heat power generator, and method for manufacturing gas combustion heat power generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10766797

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011510176

Country of ref document: JP

122 Ep: pct application non-entry in european phase

Ref document number: 10766797

Country of ref document: EP

Kind code of ref document: A1