JP5399481B2 - Heat generating device and heating element used therefor - Google Patents

Heat generating device and heating element used therefor Download PDF

Info

Publication number
JP5399481B2
JP5399481B2 JP2011510176A JP2011510176A JP5399481B2 JP 5399481 B2 JP5399481 B2 JP 5399481B2 JP 2011510176 A JP2011510176 A JP 2011510176A JP 2011510176 A JP2011510176 A JP 2011510176A JP 5399481 B2 JP5399481 B2 JP 5399481B2
Authority
JP
Japan
Prior art keywords
magnet
induction conductor
slits
magnets
alternately
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011510176A
Other languages
Japanese (ja)
Other versions
JPWO2010122734A1 (en
Inventor
鐵郎 永田
千恵子 永田
Original Assignee
鐵郎 永田
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鐵郎 永田 filed Critical 鐵郎 永田
Priority to JP2011510176A priority Critical patent/JP5399481B2/en
Publication of JPWO2010122734A1 publication Critical patent/JPWO2010122734A1/en
Application granted granted Critical
Publication of JP5399481B2 publication Critical patent/JP5399481B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/101Induction heating apparatus, other than furnaces, for specific applications for local heating of metal pieces
    • H05B6/102Induction heating apparatus, other than furnaces, for specific applications for local heating of metal pieces the metal pieces being rotated while induction heated

Description

本発明は、電磁誘導を用いた簡潔な機構の発熱装置と、これに用いられる発熱体に関するものである。   The present invention relates to a heat generating device having a simple mechanism using electromagnetic induction and a heat generating element used therefor.

従来からの発熱装置は、ガスレンジ、電熱ヒーター、電子レンジ、渦電流の利用によるIH調理器が知られている。その他にも石油バーナーに代表される化石燃料を燃焼させる燃焼装置等が利用されている。また、太陽熱温水器や地熱、バイオマス燃料利用など、自然界の熱源利用もかなり進んでいる。しかしながら、これらの熱源利用にあたっては、それぞれに一長一短があり、顧客や利用者において選択的に利用されているのが現状である。一方、発熱装置として、普遍化していない特殊な技術の提案も散見される(例えば、特許文献1を参照)。   As a conventional heating device, a gas range, an electric heater, a microwave oven, and an IH cooker using an eddy current are known. In addition, a combustion apparatus that burns fossil fuel typified by an oil burner is used. In addition, the use of natural heat sources such as solar water heaters, geothermal heat, and biomass fuel has been considerably advanced. However, in using these heat sources, there are merits and demerits, respectively, and the present situation is that they are selectively used by customers and users. On the other hand, there are some proposals for special technologies that have not been universalized as heat generating devices (see, for example, Patent Document 1).

特開2007−278546号公報JP 2007-278546 A

ところで、IH調理器は、電磁誘導加熱(IH,induction
heating)の原理を用いるもので、トッププレートの直下のコイルに高周波電流を流して、変化する磁力線を作り出し、コイルに近接する比較的電気抵抗の高い鉄やステンレス製の鍋に渦電流を発生させ、抵抗により鍋に生じるジュール熱で加熱するものである。このIH調理器には、電気抵抗の低い銅製品や不導体であるセラミック、土鍋等は用いることができない。また、強い磁力線を作り出す必要があることから、一般家庭ではあまり使用していない電圧である200Vを使用電源としている。
By the way, the IH cooker uses electromagnetic induction heating (IH, induction).
heating), a high-frequency current is passed through a coil directly under the top plate to create a changing magnetic field line, and an eddy current is generated in a relatively high-resistance iron or stainless steel pan near the coil. Heating with Joule heat generated in the pan by resistance. For this IH cooker, copper products with low electrical resistance, non-conductive ceramics, earthenware pots, etc. cannot be used. In addition, since it is necessary to create a strong magnetic field line, the power source is 200 V, which is a voltage that is not frequently used in general households.

このようなIH調理器は、ガスレンジに比較すると安全性の上でも熱効率の上でも優位にあるものの、適用範囲が狭く、発熱装置としては、現状では調理器以外への活用が見出せていない。
本発明者は、電磁誘導による発熱装置の研究を重ねた結果、簡潔な機構でありながら従来のIH調理器の構造よりも熱効率に優れ、活用範囲の広い発熱装置とこれに用いる発熱体を完成させ、本発明を得るに至ったものである。
Although such an IH cooker is superior in terms of safety and thermal efficiency as compared to a gas range, its application range is narrow, and as a heating device, it has not been found to be used for anything other than a cooker at present.
As a result of repeated research on a heat generating device by electromagnetic induction, the present inventor completed a heat generating device that has a simple mechanism but is more efficient in heat than the structure of a conventional IH cooker and has a wide range of use, and a heating element used therefor. Thus, the present invention has been obtained.

本発明は、電磁誘導による発熱装置であって、簡潔な機構でありながら熱効率が高く、活用範囲の広い発熱装置とこれに用いる発熱体を提供することを目的とする。また、安全性の高い発熱装置を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a heat generating device using electromagnetic induction, which has a simple mechanism, has high thermal efficiency, and has a wide utilization range, and a heat generator used therefor. It is another object of the present invention to provide a highly safe heat generating device.

上記課題を解決するために、本発明に係る発熱装置は、回転軸の周囲に、例えば回転軸を有する円盤上に、複数個の磁石が、上下の磁極が交互に異なるように周方向に等間隔に配置された回転体(この磁石が配置された回転体を以後、マグネット・ホイールという。)と、このマグネット・ホイールの磁石面と所定の隙間を隔てて相対する環状の誘導電導体を備えてなり、この環状の誘導電導体に、誘導起電力を生じさせるためのスリットが、マグネット・ホイールの磁石と同数設けられていることを第1の特徴とする。   In order to solve the above-described problems, a heating device according to the present invention includes a plurality of magnets arranged around a rotating shaft, for example, on a disk having the rotating shaft, in a circumferential direction so that upper and lower magnetic poles are alternately different. Rotating bodies arranged at intervals (the rotating body on which this magnet is arranged is hereinafter referred to as a magnet wheel), and an annular induction conductor facing the magnet surface of the magnet wheel with a predetermined gap therebetween. The first feature is that the same number of slits for generating an induced electromotive force are provided in the annular induction conductor as the magnets of the magnet wheel.

本発明に係る発熱装置によると、環状の誘導電導体にスリットを設けることにより、回転するマグネット・ホイールから出ている磁束をスリット端面で切ることになり、あたかも発電機のコイルが磁束を切り起電力が発生することと同じ効果が生じる事になる。また、この起電力が発生した誘導電導体は環状に連続しているので、発生した電流は誘導電導体全体を環状に流れる事になるが、電流が流れる長さ、即ち電流路長は通常の発電機のコイルに比べると極端に短く、断面は逆に大きいので、電気抵抗は極小になる。従って、起電力の電圧は小さいが大電流が得られ、これによるジュール熱で大きな発熱量を得ることができる。   According to the heat generating device of the present invention, by providing a slit in the annular induction conductor, the magnetic flux emerging from the rotating magnet wheel is cut at the slit end surface, as if the coil of the generator cut the magnetic flux. The same effect as generating electric power will occur. In addition, since the induction conductor in which the electromotive force is generated is continuous in a ring shape, the generated current flows in a ring shape throughout the induction conductor, but the length of the current flow, that is, the current path length is normal. Compared to the coil of the generator, it is extremely short and the cross section is conversely large, so the electrical resistance is minimal. Accordingly, a large current can be obtained although the voltage of the electromotive force is small, and a large amount of heat generation can be obtained by Joule heat.

ここで、マグネット・ホイールの回転は、誘導電導体に対しマグネット・ホイールが相対回転する関係にあればよく、両者が互いに逆回転する場合も含まれる。   Here, the rotation of the magnet wheel only needs to be in a relationship in which the magnet wheel rotates relative to the induction conductor, and includes a case where both rotate in reverse.

本発明に係る発熱装置は、環状の誘導電導体の形状がドーナツ状のディスク型であって、スリットが外周縁部と内周縁部に交互に開口するように設けられ、当該スリットの数が前記磁石の数と等しいことを第2の特徴とする。   The heat generating device according to the present invention is a disk type in which the shape of the annular induction conductor is a donut shape, and the slits are provided so as to alternately open to the outer peripheral edge and the inner peripheral edge, and the number of the slits is The second feature is that it is equal to the number of magnets.

本発明に係る発熱体は、マグネット・ホイールの磁石面と所定の隙間を隔てて相対する環状の誘導電導体からなり、この環状の誘導電導体に、誘導起電力を生じさせるためのスリットが、マグネット・ホイールの磁石と同数設けられていることを第1の特徴とする。   The heating element according to the present invention is composed of an annular induction conductor facing the magnet surface of the magnet wheel with a predetermined gap, and a slit for generating an induced electromotive force is formed in the annular induction conductor. The first feature is that the same number of magnets as the magnets of the magnet wheel are provided.

本発明に係る発熱体は、環状の誘導電導体の形状がドーナツ状のディスク型であって、スリットが外周縁部と内周縁部に交互に開口するように設けられ、当該スリットの数が前記磁石の数と等しいことを第2の特徴とする。   The heating element according to the present invention is a disk-shaped annular induction conductor having a donut shape, and slits are provided so as to alternately open to the outer peripheral edge and the inner peripheral edge, and the number of the slits is The second feature is that it is equal to the number of magnets.

本発明に係る発熱体は、環状の誘導電導体の形状が環状のベルト型であって、スリットが両側端に交互に開口するように設けられ、当該スリットの数が前記磁石の数と等しいことを第3の特徴とする。   The heating element according to the present invention is an annular belt type in which the shape of the annular induction conductor is provided so that slits are alternately opened on both side ends, and the number of the slits is equal to the number of the magnets. Is the third feature.

以上説明したように、本発明に係る発熱装置によると、電磁誘導による発熱装置であって、マグネット・ホイールを回転させるという簡単な機構により、環状のスリット入り誘導電導体において電流路の電気抵抗を極小にして、低電圧であっても大電流を得ることができ、これによるジュール熱で大きな発熱量を得ることができるという優れた効果を奏する。   As described above, according to the heating device of the present invention, the heating device is based on electromagnetic induction, and the electric resistance of the current path is reduced in the annular slit induction conductor by a simple mechanism of rotating the magnet wheel. Even if the voltage is minimized, a large current can be obtained even at a low voltage, and an excellent effect is obtained in that a large calorific value can be obtained by Joule heat.

かかる発熱効果より、調理器以外への活用が十分可能であり、さらには規模を大きくした発熱装置、たとえば貯湯式ボイラーなどの熱源としても幅広く利用することができる。   Because of this heat generation effect, it can be used for anything other than a cooker, and can also be widely used as a heat source for a large-scale heat generation device such as a hot water storage boiler.

さらには、発熱量の制御がマグネット・ホイールの回転数を制御することで簡単に行えるので、発熱装置として安全安心という効果を奏する。   Furthermore, since the amount of generated heat can be easily controlled by controlling the number of rotations of the magnet wheel, there is an effect of safety and security as a heating device.

(A)は本発明の第1実施形態を示す発熱装置の側面図、(B)は同平面図、(A) is a side view of the heat generating device showing the first embodiment of the present invention, (B) is the same plan view, (A)は図1に示す発熱装置に使用される回転体の平面図、(B)は同側面図、(A) is a plan view of a rotating body used in the heat generating device shown in FIG. 1, (B) is a side view thereof, (A)は図1に示す発熱装置に使用されるスリット入り誘導電導体の平面図、(B)は(A)のB−B線矢視断面図、(C)は(A)のC−C線矢視断面図、(A) is a plan view of an induction conductor with slits used in the heat generating device shown in FIG. 1, (B) is a cross-sectional view taken along line B-B in (A), and (C) is C- in (A). C line arrow sectional view, (A)(B)は本発明の発熱装置の作用を示す説明図、(A) (B) is explanatory drawing which shows the effect | action of the heat generating apparatus of this invention, (A)(B)は本発明の発熱装置の作用を示す説明図、(A) (B) is explanatory drawing which shows the effect | action of the heat generating apparatus of this invention, 本発明の第2実施形態を示す発熱装置の説明図、Explanatory drawing of the heat generating apparatus which shows 2nd Embodiment of this invention, 本発明の発熱装置による昇温測定結果を示す説明図である。It is explanatory drawing which shows the temperature rising measurement result by the heat generating apparatus of this invention.

本発明を実施するための最良の形態について、図面を参照しながら説明する。図1ないし図5は本発明の第1実施形態を示すもので、図1中、符号Sは本発明に係る発熱装置を示している。   The best mode for carrying out the present invention will be described with reference to the drawings. 1 to 5 show a first embodiment of the present invention. In FIG. 1, symbol S indicates a heat generating device according to the present invention.

発熱装置Sは、図1に示すように、マグネット・ホイール1と、環状のスリット入り誘導電導体2を備えている。   As shown in FIG. 1, the heating device S includes a magnet wheel 1 and an annular slit-shaped induction conductor 2.

マグネット・ホイール1は、図2に示すように、鉄製のフランジ3A付き回転板(回転体)3の上面に磁石を配置したもので、回転板3の下面中央に回転軸4が固定されている。回転板3の上面には回転中心Oを中心として、放射方向、すなわち回転中心Oを向く偶数個の所定長の永久磁石(磁石)5が、上下の磁極が交互に異なるように周方向に等間隔に配置されている。As shown in FIG. 2, the magnet wheel 1 has a magnet disposed on the upper surface of a rotating plate (rotating body) 3 with an iron flange 3 </ b> A, and a rotating shaft 4 is fixed to the center of the lower surface of the rotating plate 3. . The upper surface of the rotary plate 3 around the rotation center O 1, radial, that is, an even number of predetermined length of the permanent magnet (magnet) 5 facing the rotation center O 1, as the upper and lower magnetic poles are alternately different circumferential direction Are arranged at equal intervals.

回転板3の下面中央には前記回転軸4を介してモータ6が直結されている。このモータ6は例えば一般家庭用の交流100Vを電源とする汎用モータでよく、また、屋外で使用可能な汎用モータであってもよい。図1に示すように、地面や床面等に設置可能な下ベース7の上面に上ベース8が載置あるいは固定され、上ベース8の上面に支持部9が立設支持されており、モータ6が地面や床面等と垂直姿勢になるように支持部9により安定支持されている。その結果、回転体1は回転軸4を介してモータ6の直上に地面や床面等と水平姿勢で回転可能に支持されており、上ベース8とともにあるいは下ベース7と一体に運搬可能とされている。   A motor 6 is directly connected to the center of the lower surface of the rotating plate 3 via the rotating shaft 4. The motor 6 may be a general-purpose motor that uses, for example, a general household AC of 100 V as a power source, or may be a general-purpose motor that can be used outdoors. As shown in FIG. 1, an upper base 8 is placed or fixed on the upper surface of a lower base 7 that can be installed on the ground or floor, and a support portion 9 is supported upright on the upper surface of the upper base 8. 6 is stably supported by the support portion 9 so as to be in a vertical posture with respect to the ground surface or the floor surface. As a result, the rotating body 1 is supported in a horizontal posture on the ground or floor surface directly above the motor 6 via the rotating shaft 4 and can be transported together with the upper base 8 or integrally with the lower base 7. ing.

上ベース8の周囲で下ベース7の上面にはトッププレート11を水平支持する側壁板10が、マグネット・ホイール1の上面と若干の隙間(図示例では0.5mm)を保持するように設置されている。木製合板を使用したトッププレート11の上面には、耐熱材12、例えばセラミックペーパーが貼り付けられている。また、マグネット・ホイール1の磁石面の上には、永久磁石5を熱から保護するため、同様の耐熱材12、例えばセラミックペーパーが貼り付けられている。   Around the upper base 8, a side wall plate 10 that horizontally supports the top plate 11 is installed on the upper surface of the lower base 7 so as to hold a slight gap (0.5 mm in the illustrated example) from the upper surface of the magnet wheel 1. ing. A heat-resistant material 12, such as ceramic paper, is attached to the upper surface of the top plate 11 using a wooden plywood. Further, on the magnet surface of the magnet wheel 1, a similar heat-resistant material 12, for example, ceramic paper is attached in order to protect the permanent magnet 5 from heat.

環状のスリット入り誘導電導体2は、図1および図3に示すように、マグネット・ホイール1のフランジ3Aを除く回転板3の直径(外径)Dよりも大きい直径(外径)Dを有し、マグネット・ホイール1の上面1aと平行に相対すると共に、マグネット・ホイール1の上面1aから所定の隙間dを隔ててトッププレート11の上面の耐熱材12上に配置される。この時、スリット入り誘導電導体2の中心Oが回転板3の中心Oと略同軸上になるように位置合わせされる。As shown in FIGS. 1 and 3, the annular slit induction conductor 2 has a diameter (outer diameter) D 2 larger than the diameter (outer diameter) D 1 of the rotating plate 3 excluding the flange 3A of the magnet wheel 1. And is disposed on the heat-resistant material 12 on the upper surface of the top plate 11 with a predetermined gap d from the upper surface 1a of the magnet wheel 1. At this time, the center O 2 of the slit induction conductor 2 is aligned with the center O 1 of the rotating plate 3 so as to be substantially coaxial.

このような環状のディスク型スリット入り誘導電導体2は、図3に示すように、中心O部分に円形状の開口部13が設けられている。さらに外周縁部2aから中心Oに向けて途中まで延びる所定長の第1スリット14が所定間隔(図示例では90度間隔)で複数個(図示例では計4個)設けられている。また、中央開口部13の内周縁部2bから外周縁部2aに向けて途中まで延びる所定長の第2スリット15が、隣り合う第1スリット14、14の間に位置して互いに所定間隔(図示例では90度間隔)で複数個(図示例では計4個)設けられている。As shown in FIG. 3, such an annular disc-shaped induction conductor 2 having a circular disk is provided with a circular opening 13 at the center O 2 portion. Further, a plurality of (four in total in the illustrated example) first slits 14 having a predetermined length extending from the outer peripheral edge 2a toward the center O 2 in the middle are provided at predetermined intervals (in the illustrated example, 90 ° intervals). Further, a second slit 15 having a predetermined length extending partway from the inner peripheral edge 2b of the central opening 13 toward the outer peripheral edge 2a is located between the adjacent first slits 14 and 14 and has a predetermined interval (see FIG. A plurality of (in the illustrated example, a total of four) are provided at intervals of 90 degrees in the illustrated example.

外周縁部2aに開口する第1スリット14およびその間に位置し内周縁部2bに開口する第2スリット15は、マグネット・ホイール1が回転することにより、マグネット・ホイール1の上面1aからの磁束を切ることになり、これは発電機に於けるコイルが磁束を切ることと同じ作用である。この現象を更に詳しく見てみると、回転板3に設置した永久磁石5の位置が、ちょうど各スリット14,15の位置(図4(A)(B))に回転してきたとき、磁束はスリットを抜けているので誘導電導体2を通過する磁束密度は最小になる。   The first slit 14 that opens to the outer peripheral edge 2a and the second slit 15 that opens between the first peripheral slit 2b and the inner peripheral edge 2b cause magnetic flux from the upper surface 1a of the magnet wheel 1 to rotate. This is the same action as a coil in the generator cuts the magnetic flux. Looking at this phenomenon in more detail, when the position of the permanent magnet 5 installed on the rotating plate 3 has just rotated to the positions of the slits 14 and 15 (FIGS. 4A and 4B), the magnetic flux is slit. , The magnetic flux density passing through the induction conductor 2 is minimized.

次に回転板3に設置した永久磁石5の位置が、スリット部を通り過ぎた位置(図5(A)(B))にくると誘導電導体2を通過する磁束密度は最大になる。即ちマグネット・ホイール1が回転することで誘導電導体2を通過する磁束密度が変化することになる。磁束の変化が時間と共に生ずると誘導電導体2にはファラデーの電磁誘導の法則通りに起電力が生じる。   Next, when the position of the permanent magnet 5 installed on the rotating plate 3 comes to a position (FIGS. 5A and 5B) past the slit portion, the magnetic flux density passing through the induction conductor 2 becomes maximum. That is, the magnetic flux density passing through the induction conductor 2 changes as the magnet wheel 1 rotates. When the magnetic flux changes with time, an electromotive force is generated in the induction conductor 2 in accordance with Faraday's law of electromagnetic induction.

ファラデーの電磁誘導の法則による起電力はe=Blvで表わされる。ここでeは電圧を、Bは磁束密度を、lは磁束を切る誘導電導体の長さを、vは磁束を切る誘導電導体の速さを表わす。また、このときの誘導電流の方向は、フレミング右手の法則により表わされ、マグネット・ホイール1に設置した永久磁石5は、磁極を交互に配置しているので永久磁石5が交互に回転板3の中心O回りに回転し、スリット位置を変える毎に電流の方向が変わる。つまり交流の起電力を生じる。The electromotive force according to Faraday's law of electromagnetic induction is expressed as e = Blv. Here, e represents voltage, B represents magnetic flux density, l represents the length of the induction conductor that cuts off the magnetic flux, and v represents the speed of the induction conductor that cuts off the magnetic flux. Further, the direction of the induced current at this time is expressed by the Fleming right-hand rule, and the permanent magnets 5 installed on the magnet wheel 1 are alternately arranged with the magnetic poles. of rotating about O 1 about the direction of current is changed for each change the slit position. That is, an alternating electromotive force is generated.

次に、図5(A)で示すIは、電流の流れを表現したもので、この電流Iが誘導電導体を蛇行しながら還流するところは電流路(L)と言うべきものである。この電流路の電気抵抗(R)は、誘導電導体固有の抵抗値(ρ)と電流路の長さ(L)に比例し断面積(A)に反比例することになっている。即ちR=ρL/Aで表わされる。図5(A)で表示した電流路は、通常の発電機のコイルに比べると長さは極端に短く、断面積は極端に大きくなっている。即ち、誘導電導体2の電流路の電気抵抗は極端に小さいということになる。従って、オームの法則I=e/Rの式中、eの値に比べてRが極端に小さいということになり、電流は大きな値となることが解る。   Next, I shown in FIG. 5A represents the flow of current, and the place where the current I circulates while meandering the induction conductor is the current path (L). The electric resistance (R) of the current path is proportional to the resistance value (ρ) inherent to the induction conductor and the length (L) of the current path and inversely proportional to the cross-sectional area (A). That is, R = ρL / A. The current path shown in FIG. 5A has an extremely short length and a cross-sectional area that is extremely large as compared with a normal generator coil. That is, the electric resistance of the current path of the induction conductor 2 is extremely small. Therefore, in the formula of Ohm's law I = e / R, R is extremely smaller than the value of e, and it can be seen that the current has a large value.

次に、誘導電導体2を電流が環状に流れるとき電気抵抗に遭い、そのエネルギーは全て熱量に置き換わる(ジュールの法則)。即ち熱出力W=RI(J:ジュール)で表わされる。前段で電流値は大きな値になることを述べたが、最終的な熱量は更に電流値の2乗に比例して大きくなることが解る。従って、誘導電導体2は発熱体として大きな熱量を供給することができる。Next, when an electric current flows through the induction conductor 2 in an annular shape, an electric resistance is encountered, and all of its energy is replaced by heat (Joule's law). That is, it is represented by the thermal output W = RI 2 (J: Joule). Although it has been described that the current value becomes a large value in the previous stage, it can be seen that the final amount of heat further increases in proportion to the square of the current value. Therefore, the induction conductor 2 can supply a large amount of heat as a heating element.

本実施形態の発熱装置およびこれに用いる発熱体は、調理器、ホットプレート、給湯器、ボイラー、暖房機、熱機関等の熱源に利用することができる。例えば貯湯式ボイラー等、規模を拡大した発熱装置として利用する場合、回転体1の回転半径を大きくして周速度を速くするか、回転速度を速くすることで起電力eを大きくすると、必然的に電流値が大きくなり結果的に大きな発熱量を得ることが可能となる。   The heat generating apparatus of this embodiment and the heat generating body used therefor can be used for a heat source such as a cooker, a hot plate, a water heater, a boiler, a heater, or a heat engine. For example, in the case of using as a heat generating device with an expanded scale, such as a hot water storage boiler, it is inevitable that the rotating body 1 is increased in radius to increase the peripheral speed, or the rotating speed is increased to increase the electromotive force e. As a result, the current value increases, and as a result, a large amount of heat generation can be obtained.

図6は、本発明の第2実施形態を示すもので、マグネット・ホイール20と、環状のベルト型スリット入り誘導電導体21を示している。   FIG. 6 shows a second embodiment of the present invention, and shows a magnet wheel 20 and an annular belt-shaped slit-inducted induction conductor 21.

図6によると、マグネット・ホイール20は、前記実施形態と同じく鉄製であり、回転体22の周面22aに永久磁石23が回転軸24と平行となる向きに、一定間隔に上下の磁極を交互にして偶数個配置されている。また、環状のベルト型スリット入り誘導電導体21は、回転体22の直径(外径)Dよりも大きい直径(内径)Dをもつ環状に形成されている。更には両側端に交互に開口する、永久磁石23と同数のスリット25が、回転軸24と平行となる向きに一定間隔で配置されている。According to FIG. 6, the magnet wheel 20 is made of iron as in the above-described embodiment, and the upper and lower magnetic poles are alternately arranged at regular intervals on the peripheral surface 22a of the rotating body 22 so that the permanent magnet 23 is parallel to the rotating shaft 24. An even number is arranged. In addition, the annular belt-shaped induction conductor 21 with a slit is formed in an annular shape having a diameter (inner diameter) D 4 larger than the diameter (outer diameter) D 3 of the rotating body 22. Furthermore, the same number of slits 25 as the permanent magnets 23 that open alternately on both side ends are arranged in a direction parallel to the rotation shaft 24 at regular intervals.

図6に示す発熱装置は、マグネット・ホイール20の回転軸24を水平姿勢とし、マグネット・ホイール20の外周囲に中心軸を回転軸24と略一致させる形で環状のベルト型スリット入り誘導電導体21を配置する。そして、マグネット・ホイール20の回転軸24に連結されたモータあるいは風車、水車等の駆動手段によりマグネット・ホイール20を回転させると、前記実施形態と同様に環状のベルト型スリット入り誘導電導体21に起電力が発生し、誘導電流が流れて発熱する。なお、図6に示す発熱装置は、マグネット・ホイール20と誘導電導体21の相対的設置条件を満たせば、回転軸が水平でも垂直でも何ら問題はない。   The heating device shown in FIG. 6 has an annular belt-type slit-shaped induction conductor in which the rotating shaft 24 of the magnet wheel 20 is in a horizontal posture and the central axis is substantially coincided with the rotating shaft 24 around the outer periphery of the magnet wheel 20. 21 is arranged. Then, when the magnet wheel 20 is rotated by a driving means such as a motor or a windmill or a water wheel connected to the rotating shaft 24 of the magnet wheel 20, an annular belt-shaped slit-shaped induction conductor 21 is formed as in the above embodiment. An electromotive force is generated, and an induced current flows to generate heat. The heating device shown in FIG. 6 has no problem whether the rotation axis is horizontal or vertical as long as the relative installation conditions of the magnet wheel 20 and the induction conductor 21 are satisfied.

以上の各実施形態では、磁石として永久磁石を使用したが、永久磁石に替えて電磁石を用いることができる。また、マグネット・ホイールの回転速度を制御することで発熱装置の温度管理を容易に行うことができる。   In each of the above embodiments, a permanent magnet is used as the magnet, but an electromagnet can be used instead of the permanent magnet. Moreover, the temperature management of the heat generating device can be easily performed by controlling the rotation speed of the magnet wheel.

以上の各実施形態では、環状の誘導電導体に対し、マグネット・ホイール側を回転させるようにしたが、マグネット・ホイールを固定し、環状の誘導電導体側を回転させるようにしても良い。更には両者を互いに逆回転させることで効率を高めることも可能である。   In each of the embodiments described above, the magnet wheel side is rotated with respect to the annular induction conductor. However, the magnet wheel may be fixed and the annular induction conductor side may be rotated. Furthermore, it is possible to increase the efficiency by rotating the two in reverse.

本発明の発熱装置は、マグネット・ホイールを水車や風車等により回転させることで、電源のない山間地や僻地、寒冷地での熱源として利用可能である。   The heat generating device of the present invention can be used as a heat source in mountainous areas, remote areas, and cold areas where there is no power source by rotating the magnet wheel with a water wheel or windmill.

本発明者は図1に示す発熱装置を製作し、データを測定して実際の効果を確認した。マグネット・ホイールは、図2を参照し、鉄製の回転板(直径D=150mm)の回転面に8個の永久磁石を磁極が交互に異なるようにして回転軸の周囲に放射状に配置し取り付けた。このときの永久磁石の中心位置を通る直径は110mmである。永久磁石はネオジム磁石(長さ40mm、幅11mm、高さ6mm)を使用し、その表面の磁束密度B=0.35T(テスラ)である。The inventor manufactured the heating device shown in FIG. 1 and measured the data to confirm the actual effect. As shown in FIG. 2, the magnet wheel is mounted by arranging eight permanent magnets on the rotating surface of an iron rotating plate (diameter D 1 = 150 mm) radially around the rotating shaft so that the magnetic poles are alternately different. It was. The diameter passing through the center position of the permanent magnet at this time is 110 mm. A permanent magnet uses a neodymium magnet (length 40 mm, width 11 mm, height 6 mm), and the magnetic flux density B = 0.35T (Tesla) on the surface.

誘導電導体には、測定上限値が250℃の熱電対型温度計を接触固定し、モータの電源入力コードには消費電流測定用のAC電流クランプを設置し、誘導起電力の電圧測定用にオシロスコープを、マグネット・ホイールの回転速度測定用に非接触型回転計を用意した。モータは交流100Vの汎用モータを用いた。   A thermocouple thermometer with a measurement upper limit of 250 ° C is fixed in contact with the induction conductor, and an AC current clamp for current consumption measurement is installed on the power input cord of the motor to measure the voltage of the induced electromotive force. An oscilloscope and non-contact tachometer were prepared for measuring the rotational speed of the magnet wheel. The motor used was a general-purpose motor with AC 100V.

最初に比較例として、スリットのないディスク型誘導電導体(直径D=180mm、厚みt=3mm)を銅板で作成し、発熱装置のトッププレートの上に載置した。このとき、マグネット・ホイールの永久磁石面からディスク型誘導電導体の下面までの隙間をd=5.0mmに設定し、マグネット・ホイールを回転させた。この時のマグネット・ホイールの回転速度は1783rpmであった。このときスリットのないディスク型誘導電導体の銅板には渦電流が発生しているはずであるが、その表面温度に上昇変化は見られなかった。即ち、渦電流の電圧・電流も極小であることが確認できた。First, as a comparative example, a disk-type induction conductor (diameter D 2 = 180 mm, thickness t = 3 mm) without a slit was made of a copper plate and placed on the top plate of the heat generating device. At this time, the gap from the permanent magnet surface of the magnet wheel to the lower surface of the disk-type induction conductor was set to d = 5.0 mm, and the magnet wheel was rotated. The rotational speed of the magnet wheel at this time was 1783 rpm. At this time, an eddy current should have occurred in the copper plate of the disk-type induction conductor without slits, but no increase in the surface temperature was observed. That is, it was confirmed that the voltage and current of the eddy current were also minimal.

次に、実施例として、図3を参照し、前記ディスク型誘導電導体(直径D=180mm、厚さt=3mm)の銅板に、第1スリット(幅11mm、長さ55mm)を外周縁部から中心軸に向けて等間隔に計4個、その間に第2スリット(幅11mm、長さ55mm)を中央開口部(開口直径40mm)から外周縁部に向けて等間隔に計4個それぞれ設けた。このスリット入り誘導電導体の電路長、すなわち各スリット間を蛇行しながら電流が誘導電導体を環状に一周する電流路の長さはL=770mmである。Next, as an example, referring to FIG. 3, a first slit (width 11 mm, length 55 mm) is formed on the outer periphery of the copper plate of the disk type induction conductor (diameter D 2 = 180 mm, thickness t = 3 mm) A total of four at regular intervals from the center to the central axis, and a total of four second slits (width 11 mm, length 55 mm) between them from the central opening (opening diameter 40 mm) to the outer peripheral edge Provided. The length of the current path of this induction conductor with slits, that is, the length of the current path in which the current circulates around the induction conductor while meandering between the slits is L = 770 mm.

前記スリット入り誘導電導体は、電気抵抗の大小の比較をするために、厚さを変更したものを3種類(厚さt=3mm、1mm、0.2mm)用意した。   Three types of slit induction conductors with different thicknesses (thickness t = 3 mm, 1 mm, 0.2 mm) were prepared in order to compare the magnitude of electric resistance.

次に、厚さt=3mmのスリット入り誘導電導体の外周縁部の一部を切断して開回路とし、当該スリット入り誘導電導体をトッププレートの上に載置してマグネット・ホイールを回転させ、誘導起電力を測定した。誘導起電力の測定値はe=0.3Vであった。この時のマグネット・ホイールの回転速度は1722rpm、入力電流I=5.1Aであった。   Next, a part of the outer peripheral edge of the slit-type induction conductor having a thickness of t = 3 mm is cut to form an open circuit, the slit-type induction conductor is placed on the top plate, and the magnet wheel is rotated. The induced electromotive force was measured. The measured value of the induced electromotive force was e = 0.3V. At this time, the rotational speed of the magnet wheel was 1722 rpm, and the input current I was 5.1 A.

ここで、電気抵抗Rを計算すると、R=ρL/Aにより、R=1.68×10−8×0.77/(0.03×0.0245)=0.000176≒0.0002Ωとなる。ここで、ρ=1.68×10−8Ωm、L=0.77m、A=0.003×0.0245である。厚さt=3mmのスリット入り誘導電導体を流れる誘導電流値は、オームの法則I=e/Rより、I=0.3/0.0002=1500Aとなる。そして、単位時間当たりの熱出力を算出すると、W=RI=0.0002×1500×1500=450J(ジュール)となる。Here, when the electrical resistance R is calculated, R = 1.68 × 10 −8 × 0.77 / (0.03 × 0.0245) = 0.000176≈0.0002Ω due to R = ρL / A. . Here, ρ = 1.68 × 10 −8 Ωm, L = 0.77 m, and A = 0.003 × 0.0245. The value of the induced current flowing through the slit-type induction conductor having a thickness t = 3 mm is I = 0.3 / 0.0002 = 1500 A from Ohm's law I = e / R. When calculating the heat output per unit time, W = RI 2 = 0.0002 × 1500 × 1500 = 450 J (joules).

次に、厚さt=3mmのスリット入り誘導電導体を元の閉回路の状態に復元して、トッププレートの所定位置に載置し、マグネット・ホイールを回転させ、1分間毎のスリット入り誘導電導体の温度とマグネット・ホイールの回転速度及び入力電流を測定した。測定結果を図7に示す。厚さt=3mmのスリット入り誘導電導体の場合、3分間で約180℃、6分間で約250℃まで温度の上昇を計測した。この間のマグネット・ホイールの平均回転速度は1725rpm、平均入力電流I=5.3Aであった。   Next, the slit-type induction conductor having a thickness of t = 3 mm is restored to the original closed circuit state, placed at a predetermined position on the top plate, the magnet wheel is rotated, and the slit induction is performed every minute. The temperature of the conductor, the rotation speed of the magnet wheel and the input current were measured. The measurement results are shown in FIG. In the case of a slit-type induction conductor having a thickness t = 3 mm, the temperature rise was measured at about 180 ° C. for 3 minutes and about 250 ° C. for 6 minutes. During this period, the average rotation speed of the magnet wheel was 1725 rpm, and the average input current I was 5.3 A.

同じようにして、厚さt=1mmとt=0.2mmのスリット入り誘導電導体についても同様の試験を実施した。測定結果は図7に示すように、厚さt=1mmのスリット入り誘導電導体の場合は、3分間で約140℃、6分間で約180℃近くまで温度が上昇した。厚さt=0.2mmのスリット入り誘導電導体の場合は、3分間で約40℃、6分間で約60℃弱にとどまった。この測定結果から、スリット入り誘導電導体の厚さが3mm程度になると、かなりの熱量を発生させることが判明した。   In the same manner, a similar test was conducted on slit-type induction conductors having thicknesses t = 1 mm and t = 0.2 mm. As shown in FIG. 7, in the case of a slit-type induction conductor having a thickness t = 1 mm, the temperature rises to about 140 ° C. in 3 minutes and to about 180 ° C. in 6 minutes. In the case of a slit-type induction conductor having a thickness t = 0.2 mm, the temperature remained at about 40 ° C. for 3 minutes and about 60 ° C. for 6 minutes. From this measurement result, it was found that a considerable amount of heat is generated when the thickness of the slit-containing induction conductor is about 3 mm.

厚さt=3mmのスリット入り誘導電導体では、消費電流の平均値が5.3Aであったので、単位時間当たりの消費電力P=5.3(A)×100(V)=530(W)である。従って電力効率η=450/530=0.85である。   In the slit-type induction conductor having a thickness t = 3 mm, the average value of current consumption was 5.3 A. Therefore, power consumption per unit time P = 5.3 (A) × 100 (V) = 530 (W ). Therefore, power efficiency η = 450/530 = 0.85.

以上の実験結果によると、厚さ3mm以上のスリット入り誘導電導体を用いると、ヒーターとしての実用的範疇に入ることが分かった。つまり、スリット入り誘導電導体の電流路における電気抵抗を極小にすると、オームの法則I=e/Rの式中、eの値に比べてRが極端に小さくなれば、I即ち電流値は大きな値になり、更に、熱出力は電流値の2乗に比例するので、スリット入り誘導電導体に発生する起電力の電圧が、乾電池1個分の1.5Vよりも小さい0.3Vの低電圧であっても、通常の電気ヒーター(400Wで4A〜1200Wで12A)で使用する150倍の大電流(1500A)を創り出すことが可能であり、ヒーターとして十分な能力が得られることを確認した。   According to the above experimental results, it was found that using a slit-containing induction conductor having a thickness of 3 mm or more falls within the practical category as a heater. In other words, if the electrical resistance in the current path of the slit induction conductor is minimized, in the equation of Ohm's law I = e / R, if R is extremely smaller than the value of e, I, that is, the current value is large. Furthermore, since the heat output is proportional to the square of the current value, the voltage of the electromotive force generated in the slit induction conductor is a low voltage of 0.3 V, which is smaller than 1.5 V for one dry cell. Even so, it was possible to create a 150 times larger current (1500 A) used with a normal electric heater (4 A at 400 W to 12 A at 1200 W), and it was confirmed that sufficient capacity as a heater was obtained.

本発明に係る発熱装置は、電磁誘導の原理を用い、一般家庭用、アウトドアー用、農業用、産業用、様々な分野に活用できる発熱装置として利用可能である。また、本発明に係る発熱体は、上記の各分野に活用できる発熱装置用の発熱体として利用可能である。   The heat generating device according to the present invention can be used as a heat generating device that can be used in various fields such as general household, outdoor, agricultural, industrial, using the principle of electromagnetic induction. Further, the heating element according to the present invention can be used as a heating element for a heating device that can be used in the above fields.

1,20 マグネット・ホイール
1a 上面
2,21 環状のスリット入り誘導電導体
2a 外周縁部
2b 内周縁部
3,22 回転体
3A フランジ
4,24 回転軸
5,23 永久磁石(磁石)
6 モータ
7 下ベース
8 上ベース
9 支持部
10 側壁板
11 トッププレート
12 耐熱材
13 開口部
14 第1スリット
15 第2スリット
22a 周面
25 スリット
,D,D,D直径
,O 中心
d 隙間
G 磁力線
I 電流
t スリット入り誘導電導体の厚さ
DESCRIPTION OF SYMBOLS 1,20 Magnet wheel 1a Upper surface 2,21 Annular slit induction conductor 2a Outer peripheral edge 2b Inner peripheral edge 3,22 Rotating body 3A Flange 4,24 Rotating shaft 5,23 Permanent magnet (magnet)
6 motor 7 lower base 8 on the base 9 supporting portion 10 side walls 11 top plate 12 heat-resistant material 13 opening 14 first slit 15 periphery second slits 22a 25 slits D 1, D 2, D 3 , D 4 diameter O 1 , O 2 center d gap G magnetic field line I current t thickness of slit induction conductor

Claims (6)

回転軸の周囲に磁石を周方向に磁極を交互に異ならせるように等間隔で偶数個配置した回転体と、この回転体の磁石面と所定の隙間を隔てて相対する環状の誘導電導体を備えてなり、この環状の誘導電導体の形状がドーナツ状のディスク型であって、この環状の誘導電導体に、誘導起電力を生じさせるためのスリットが、外周縁部と内周縁部に交互に開口するように設けられ、当該スリットは回転体の磁石と同数設けられていることを特徴とする発熱装置。  A rotating body in which an even number of magnets are arranged at equal intervals so as to alternately change magnetic poles in the circumferential direction around a rotating shaft, and an annular induction conductor facing the magnet surface of the rotating body with a predetermined gap therebetween. The annular induction conductor has a donut-shaped disk shape, and slits for generating an induced electromotive force are alternately formed on the outer peripheral edge and the inner peripheral edge of the annular induction conductor. A heating device, wherein the number of the slits is the same as the number of magnets of the rotating body. 回転軸の周囲に磁石を周方向に磁極を交互に異ならせるように等間隔で偶数個配置して なる回転体の磁石面と所定の隙間を隔てて相対する環状の誘導電導体からなり、この環状の誘導電導体の形状がドーナツ状のディスク型であって、この環状の誘導電導体に、誘導起電力を生じさせるためのスリットが、外周縁部と内周縁部に交互に開口するように設けられ、当該スリットは前記回転体の磁石と同数設けられていることを特徴とする発熱装置用発熱体。And equally spaced at even number arranged rotated body magnet surface with a predetermined gap formed by such that different magnetic poles magnet circumferentially alternately around the rotating shaft made from opposite annular induction conductors, this The shape of the annular induction conductor is a donut-shaped disk type, and slits for generating an induced electromotive force are alternately opened at the outer peripheral edge and the inner peripheral edge of the annular induction conductor. A heating element for a heating device, wherein the same number of slits as the magnets of the rotating body are provided. 回転軸の周囲に磁石を周方向に磁極を交互に異ならせるように等間隔で偶数個配置して なる回転体の磁石面と所定の隙間を隔てて相対する環状の誘導電導体からなり、この環状の誘導電導体の形状が環状のベルト型であって、この環状の誘導電導体に、誘導起電力を生じさせるためのスリットが、両側端に交互に開口するように設けられ、当該スリットは 前記回転体の磁石と同数設けられていることを特徴とする発熱装置用発熱体。 Arrange an even number of magnets at equal intervals around the rotating shaft so that the magnetic poles are alternately varied in the circumferential direction. BecomeIt is composed of an annular induction conductor facing the magnet surface of the rotating body with a predetermined gap therebetween, and the shape of the annular induction conductor is an annular belt type, and an induced electromotive force is applied to the annular induction conductor. Slits are provided to alternately open on both side ends, and the slits are AboveA heating element for a heating device, characterized in that the same number of magnets as a rotating body are provided. 回転軸の周囲に磁石を周方向に磁極を交互に異ならせるように等間隔で偶数個配置した回転体と、この回転体の磁石面と所定の隙間を隔てて相対する環状のベルト型の誘導電導体を備えてなり、この環状の誘導電導体に、誘導起電力を生じさせるためのスリットが、両側端に交互に開口するように設けられ、当該スリットは回転体の磁石と同数設けられていることを特徴とする発熱装置。  A rotating body in which an even number of magnets are arranged at equal intervals so as to alternately change the magnetic poles in the circumferential direction around the rotating shaft, and an annular belt type induction facing the magnet surface of the rotating body with a predetermined gap. In this annular induction conductor, slits for generating an induced electromotive force are provided so as to open alternately on both side ends, and the same number of slits as the magnets of the rotating body are provided. A heat generating device characterized by comprising: 周囲に磁石を周方向に磁極を交互に異ならせるように等間隔で偶数個配置したマグネッMagnets with an even number of magnets arranged at equal intervals around the magnet so that the magnetic poles are alternately varied in the circumferential direction. ト・ホイールと、このマグネット・ホイールの磁石面と所定の隙間を隔てて相対し、マグThe magnet wheel is opposed to the magnet surface of this magnet wheel with a predetermined gap, ネット・ホイールと相対回転可能な環状の誘導電導体を備えてなり、この環状の誘導電導An annular induction conductor that can rotate relative to the net wheel is provided. 体の形状がドーナツ状のディスク型であって、この環状の誘導電導体に、マグネット・ホThe shape of the body is a donut-shaped disk, and this annular induction conductor is connected to a magnet イールとの相対回転による誘導起電力を生じさせるためのスリットが、外周縁部と内周縁The slits for generating the induced electromotive force due to relative rotation with the reel are the outer peripheral edge and the inner peripheral edge. 部に交互に開口するように設けられ、当該スリットはマグネット・ホイールの磁石と同数The number of slits is the same as the magnet of the magnet wheel. 設けられていることを特徴とする発熱装置。A heating device characterized by being provided. 周囲に磁石を周方向に磁極を交互に異ならせるように等間隔で偶数個配置したマグネッMagnets with an even number of magnets arranged at equal intervals around the magnet so that the magnetic poles are alternately varied in the circumferential direction. ト・ホイールと、このマグネット・ホイールの磁石面と所定の隙間を隔てて相対し、マグThe magnet wheel is opposed to the magnet surface of this magnet wheel with a predetermined gap, ネット・ホイールと相対回転可能な環状のベルト型の誘導電導体を備えてなり、この環状An annular belt-shaped induction conductor that can rotate relative to the net wheel is provided. の誘導電導体に、マグネット・ホイールとの相対回転による誘導起電力を生じさせるためTo induce induced electromotive force in the induction conductor due to relative rotation with the magnet wheel のスリットが、両側端に交互に開口するように設けられ、当該スリットはマグネット・ホSlits are opened alternately on both sides. イールの磁石と同数設けられていることを特徴とする発熱装置。A heating device characterized in that it is provided in the same number as the magnets of eel.
JP2011510176A 2009-04-24 2010-04-13 Heat generating device and heating element used therefor Active JP5399481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011510176A JP5399481B2 (en) 2009-04-24 2010-04-13 Heat generating device and heating element used therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009106318 2009-04-24
JP2009106318 2009-04-24
PCT/JP2010/002677 WO2010122734A1 (en) 2009-04-24 2010-04-13 Heat generating device and heat generating body used for same
JP2011510176A JP5399481B2 (en) 2009-04-24 2010-04-13 Heat generating device and heating element used therefor

Publications (2)

Publication Number Publication Date
JPWO2010122734A1 JPWO2010122734A1 (en) 2012-10-25
JP5399481B2 true JP5399481B2 (en) 2014-01-29

Family

ID=43010863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011510176A Active JP5399481B2 (en) 2009-04-24 2010-04-13 Heat generating device and heating element used therefor

Country Status (2)

Country Link
JP (1) JP5399481B2 (en)
WO (1) WO2010122734A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111010755A (en) * 2019-11-13 2020-04-14 九阳股份有限公司 Frequency jitter control method of electromagnetic heating equipment and electromagnetic heating equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63225736A (en) * 1987-02-27 1988-09-20 K Ii B Yamakiyuu:Kk Electromagnetic device of electromagnetic brake, electromagnetic coupling or the like
JPH11312574A (en) * 1998-04-27 1999-11-09 Usui Internatl Ind Co Ltd Magnet type heater
JP2003333824A (en) * 2002-05-16 2003-11-21 Sumitomo Metal Ind Ltd Eddy current speed reducer
JP2008545243A (en) * 2005-06-30 2008-12-11 マグテック エナジー,エルエルシー Magnetic heat generation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63225736A (en) * 1987-02-27 1988-09-20 K Ii B Yamakiyuu:Kk Electromagnetic device of electromagnetic brake, electromagnetic coupling or the like
JPH11312574A (en) * 1998-04-27 1999-11-09 Usui Internatl Ind Co Ltd Magnet type heater
JP2003333824A (en) * 2002-05-16 2003-11-21 Sumitomo Metal Ind Ltd Eddy current speed reducer
JP2008545243A (en) * 2005-06-30 2008-12-11 マグテック エナジー,エルエルシー Magnetic heat generation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111010755A (en) * 2019-11-13 2020-04-14 九阳股份有限公司 Frequency jitter control method of electromagnetic heating equipment and electromagnetic heating equipment
CN111010755B (en) * 2019-11-13 2022-04-05 九阳股份有限公司 Frequency jitter control method of electromagnetic heating equipment and electromagnetic heating equipment

Also Published As

Publication number Publication date
JPWO2010122734A1 (en) 2012-10-25
WO2010122734A1 (en) 2010-10-28

Similar Documents

Publication Publication Date Title
JP5110331B2 (en) Electromagnetic induction hot air generator
KR100644191B1 (en) Induction heating apparatus
CN103369752B (en) Permanent magnet eddy heating device
JP5399481B2 (en) Heat generating device and heating element used therefor
KR101812720B1 (en) Heater using magnets
CN101603728B (en) Electromagnetic water heater
US8575878B2 (en) Energy converter
KR101558796B1 (en) Eddy current induction heating equipment
KR20110103637A (en) Induction heating device using magnetic
CN203368793U (en) Permanent magnetic eddy current heating device
KR101703817B1 (en) Heat generating apparatus using permanent magnet
Sobor et al. Small wind energy system with permanent magnet eddy current heater
JP2010154737A5 (en)
EP2673513B1 (en) Heating fan
EP1130336A2 (en) High efficiency fluid heating apparatus
JP5527685B2 (en) Electromagnetic induction hot air generator and power generator
KR101806965B1 (en) generation of heat device for using magnet
KR20110100354A (en) High-utility heating device using induction heating
JP2014204658A (en) Heating appliance with rotation function or cookstove
KR101824071B1 (en) Induction heating and heat transfer system
JP5555966B2 (en) Electromagnetic induction heating boiler
KR101533534B1 (en) A round shape plate type eddy current induction heating equipment
RU193430U1 (en) Device for heating a liquid coolant
JP2012164621A (en) Hot air generation device using permanent magnet
UA119068U (en) ELECTRIC HEATER

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20120110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120502

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A527

Effective date: 20120514

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131023

R150 Certificate of patent or registration of utility model

Ref document number: 5399481

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250