WO2010122730A1 - Plasma display panel and method for manufacturing same - Google Patents

Plasma display panel and method for manufacturing same Download PDF

Info

Publication number
WO2010122730A1
WO2010122730A1 PCT/JP2010/002637 JP2010002637W WO2010122730A1 WO 2010122730 A1 WO2010122730 A1 WO 2010122730A1 JP 2010002637 W JP2010002637 W JP 2010002637W WO 2010122730 A1 WO2010122730 A1 WO 2010122730A1
Authority
WO
WIPO (PCT)
Prior art keywords
display panel
plasma display
mgo
discharge
layer
Prior art date
Application number
PCT/JP2010/002637
Other languages
French (fr)
Japanese (ja)
Inventor
浅野洋
井上修
白石誠吾
奥山浩二郎
森田幸弘
三浦正範
吉野恭平
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2010122730A1 publication Critical patent/WO2010122730A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • H01J11/12AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided on both sides of the discharge space
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/40Layers for protecting or enhancing the electron emission, e.g. MgO layers

Definitions

  • the present invention relates to a plasma display panel, and more particularly to an AC type plasma display panel.
  • PDPs Plasma display panels
  • FPDs flat panel displays
  • FIG. 4 is a diagram schematically showing the structure of a discharge cell in a general AC type PDP.
  • the PDP 1x shown in FIG. 4 is configured by pasting the front panel 2 and the back panel 9 together.
  • a plurality of display electrode pairs 6 each including the scanning electrode 5 and the sustain electrode 4 are disposed over one side of the front panel glass 3, and the dielectric layer 7 covers the display electrode pair 6. And the MgO layer 8 are sequentially laminated.
  • the scan electrode 5 and the sustain electrode 4 are configured by laminating transparent electrodes 51 and 41 and bus lines 52 and 42, respectively.
  • the dielectric layer 7 is formed of a low melting point glass having a glass softening point in the range of about 550 ° C. to 600 ° C., and has a current limiting function peculiar to the AC type PDP.
  • the MgO layer 8 is an example of a metal oxide layer, which protects the dielectric layer 7 and the display electrode pair 6 from plasma collision ion collisions, efficiently emits secondary electrons, and lowers the discharge start voltage. To play a role.
  • the MgO layer 8 is made of MgO having excellent secondary electron emission characteristics, sputtering resistance, and optical transparency by a thickness of 0.5 ⁇ m or more by a vacuum deposition method (Patent Documents 1 and 2) or a printing method (Patent Document 3). It is formed by forming a film with a thickness of about 1 ⁇ m.
  • a plurality of data (address) electrodes 11 for writing image data are provided on the back panel glass 10, and a dielectric layer 12 made of low-melting glass is disposed so as to cover the data electrodes 11.
  • a partition wall (rib) 13 having a predetermined height made of low-melting glass separates the discharge space 15 so as to form a pattern portion 1231 having a grid pattern or the like.
  • 1232 and phosphor layers 14 formed by applying and firing phosphor inks of R, G, B colors on the surface of the dielectric layer 12 and the side surfaces of the barrier ribs 13. ) Is formed.
  • the front panel 2 and the back panel 9 are arranged such that the display electrode pair 6 and the data electrode 11 are orthogonal to each other via the discharge space 15, and each periphery thereof is sealed and sealed internally.
  • the discharge space 15 is filled with a rare gas such as Xe—Ne or Xe—He as a discharge gas at a pressure of about several tens of kPa.
  • a gradation expression method for example, an intra-field time division display method that divides an image of one field into a plurality of subfields (SF) is used.
  • Discharge delay refers to a phenomenon in which discharge occurs after the application of a pulse voltage. When “discharge delay” becomes prominent, the probability of completion of discharge within the applied pulse width decreases, and the lamp is originally lit. A lighting failure occurs because writing cannot be performed in the power cell. In particular, when high-speed driving is performed by narrowing the width of the driving pulse, or in a high-definition cell structure, such a lighting failure due to a discharge delay is particularly apparent.
  • discharge delay is considered to be mainly due to the characteristics of the protective layer.
  • MgO which is the main material of the protective layer, is doped with elements such as Fe, Cr, V, Si, Al, etc. Attempts have been made to improve the discharge characteristics of the protective layer by adding the dopant (Patent Documents 1 and 2).
  • the protective layer is formed by arranging the MgO single crystal fine particles produced by the vapor phase oxidation method in a layer form directly on the dielectric layer or on the MgO film produced by the thin film method. Attempts have also been made to improve the surface discharge characteristics (Patent Document 3). According to the method of Patent Document 3, it is said that a certain improvement can be achieved with respect to reduction of discharge delay at low temperatures.
  • Patent Document 3 uses MgO fine particles (powder) produced by a gas phase oxidation method, but the particles produced by the gas phase oxidation method have a relatively varied particle size. A large number of fine particles are contained for large particles. Such a large number of fine particles contain fine particles that do not substantially contribute to prevention / suppression of discharge delay. Therefore, a practical discharge delay suppressing effect cannot be obtained unless a relatively large amount of MgO fine particles are dispersed in the PDP. On the other hand, if a large amount of MgO fine particles are disposed on the dielectric layer or the MgO layer, the visible light generated by the phosphor is scattered and the visible light transmittance is reduced.
  • Patent Document 4 a method of removing MgO fine particles having a small particle diameter by classification has been proposed (Patent Document 4).
  • Patent Document 4 it is necessary to perform a new classification process, which increases the number of processes and lowers the production efficiency, and also requires a large classification apparatus.
  • various problems in terms of manufacturing costs occur in industrial production such as generation of useless MgO materials that cannot be used after the classification process.
  • the characteristic fluctuation is small when the PDP is displayed for a long time.
  • these characteristics change over time, which is a problem to be solved.
  • the present invention is configured such that a first substrate including an electrode and a dielectric layer is disposed to face a second substrate through a discharge space, and the periphery of both the first and second substrates is sealed.
  • the first material made of MgO fine particles containing halogen atoms so as to face the discharge space, and one kind selected from Ca, Sr, and Ba
  • the second material composed of fine particles of a compound containing Sn as a main component was present.
  • a metal oxide layer mainly composed of MgO is provided on the discharge space side of the dielectric layer, and the first material and the second material are disposed on the discharge space side of the metal oxide layer. Good.
  • Halogen atoms are preferably contained in the vicinity of the surface layer of the MgO fine particles.
  • halogen atom a fluorine atom or a chlorine atom can be used.
  • compound constituting the second material a crystalline oxide containing one or more selected from Ca, Sr, and Ba and Sn in a specific ratio is preferable.
  • one or more crystalline compounds selected from CaSnO 3 , SrSnO 3 , BaSnO 3 , or a solid solution in which these are solid-solved with each other are preferable.
  • the coverage with which the fine particles constituting the first material and the second material cover the dielectric layer is preferably 1.0% or more and 50% or less in projected area ratio.
  • a metal oxide layer forming step of forming a metal oxide layer on the surface of the dielectric layer on the first substrate on which the electrode and the dielectric layer are disposed A sealing step is provided in which the first substrate on which the oxide layer is formed and the second substrate are disposed opposite to each other and sealed, and the metal oxide layer is formed between the metal oxide forming step and the sealing step.
  • a step of disposing a first material and a second material on the surface is provided.
  • the first material magnesium fluoride, magnesium chloride, aluminum fluoride, calcium fluoride, fluoride are applied to the MgO precursor.
  • MgO fine particles obtained by firing a material obtained by adding at least one selected from lithium, magnesium chloride, aluminum chloride, calcium chloride, lithium chloride, and sodium chloride as a sintering aid, material To, Ca, Sr, one or more selected from Ba, and we decided to use the particulate compound mainly containing Sn.
  • the first material and the second material it is preferable to dispose the first material on the surface of the metal oxide layer and then dispose the second material.
  • the first material composed of MgO fine particles containing a halogen atom the second material composed of fine particles of a compound mainly composed of Sn, one or more selected from Ca, Sr, and Ba. Both of these materials have a high secondary electron emission coefficient ⁇ , and these are arranged so as to face the discharge space on the surface of the dielectric layer. Therefore, when the PDP is driven, 2 is directed toward the discharge space. Secondary electrons are abundantly emitted. Therefore, compared with the conventional PDP, the discharge delay is suppressed and the driving can be performed at a low voltage.
  • the discharge delay reduction effect and the reduction effect are maintained for a long time.
  • this is an effect based on the interaction by disposing different types of the first material and the second material.
  • the discharge delay reduction effect and the drive voltage reduction effect can be obtained without setting the coverage ratios of the first material and the second material to the MgO layer or the dielectric layer so high.
  • the PDP manufactured by the manufacturing method of the present invention has the same effect.
  • an excellent image display performance can be exhibited even during high-speed driving due to a discharge delay suppressing effect, and a driving voltage reduction effect can also be obtained.
  • FIG. 1 is a schematic cross-sectional view (a cross-sectional view along the XZ plane of FIG. 4) of the PDP 1 according to the embodiment.
  • positioned on the surface of the MgO layer 8 are typically shown larger than actual for description.
  • the PDP 1 is broadly divided into a first substrate (front panel 2) and a second substrate (back panel 9) that are disposed with their main surfaces facing each other.
  • a front panel glass 3 serving as a substrate of the front panel 2 has a display electrode pair 6 (scanning electrode 5 and sustaining electrode 4) extending in the Y direction with a predetermined discharge gap on one main surface thereof in the X direction.
  • a plurality of pairs are formed side by side.
  • Each display electrode pair 6 includes a strip-shaped transparent electrode 51, 41 made of a transparent conductive material such as indium tin oxide (ITO), zinc oxide (ZnO), tin oxide (SnO 2 ), an Ag thick film, an Al thin film, Alternatively, bus lines 52 and 42 made of a Cr / Cu / Cr laminated thin film or the like are laminated, and the sheet resistance of the display electrode pair 6 is lowered by the bus lines 52 and 42.
  • the “thick film” means a film formed by various thick film methods formed by applying a paste containing a conductive material and baking it.
  • the “thin film” refers to a film formed by various thin film methods using a vacuum process, including a sputtering method, an ion plating method, an electron beam evaporation method, and the like.
  • the front panel glass 3 provided with the display electrode pair 6 has a low melting point glass mainly composed of lead oxide (PbO), bismuth oxide (Bi 2 O 3 ) or phosphorus oxide (PO 4 ) over the entire main surface.
  • the dielectric layer 7 is formed by a screen printing method or the like.
  • the dielectric layer 7 has a current limiting function peculiar to the AC type PDP, and is an element that realizes a longer life than the DC type PDP.
  • An MgO layer 8 is formed on the surface of the dielectric layer 7 in the front panel 2, and the first electron emitting material 16a and the second electron emitting material 16b are formed on the surface of the MgO layer 8 so as to face the discharge space.
  • the first electron emission material 16a is made of MgO fine particles containing halogen atoms
  • the second electron emission material 16b is composed mainly of one or more selected from Ca, Sr, and Ba and Sn. Fine particles made of the compound
  • a protective layer 17 that protects the dielectric layer 7 is constituted by the MgO layer 8 and the first electron emission material 16a and the second electron emission material 16b.
  • the MgO layer 8 protects the dielectric layer 7 and the display electrode pair 6 from ion collision of plasma discharge, efficiently emits secondary electrons, and lowers the discharge start voltage. It is a thin film formed of MgO having an excellent electron emission coefficient ⁇ and good optical transparency and electrical insulation.
  • a back panel glass 10 serving as a substrate of the back panel 9 has a data electrode 11 made of any one of an Ag thick film, an Al thin film, a Cr / Cu / Cr laminated thin film, etc. on one main surface, extending in the X direction. As the direction, they are arranged in parallel in the Y direction at regular intervals.
  • a dielectric layer 12 is disposed over the entire surface of the back panel glass 9 so as to enclose each data electrode 11.
  • a grid-like partition wall 13 is further arranged in accordance with the gap between adjacent data electrodes 11, and serves to prevent erroneous discharge and optical crosstalk by partitioning the discharge cells. Yes.
  • a phosphor layer 14 corresponding to each of red (R), green (G), and blue (B) for color display is provided on the side surface of two adjacent barrier ribs 13 and the surface of the dielectric layer 12 therebetween. Is formed.
  • the blue phosphor (B) has a known BAM: Eu
  • the red phosphor (R) has (Y, Gd) BO 3 : Eu
  • Y 2 O 3 : Eu, etc. ) May be Zn 2 SiO 4 : Mn
  • the dielectric layer 12 is not essential, and the data electrode 11 may be directly included in the phosphor layer 14.
  • the front panel 2 and the back panel 9 are arranged to face each other so that the longitudinal directions of the data electrode 11 and the display electrode pair 6 are orthogonal to each other, and the outer peripheral edge portions of both the panels 2 and 9 are sealed with glass frit.
  • a discharge gas composed of an inert gas component containing He, Xe, Ne or the like is sealed between the panels 2 and 9 at a predetermined pressure.
  • a discharge space 15 is formed between the barrier ribs 13, and a region where the display electrode pair 6 and one data electrode 11 intersect with each other across the discharge space 15 is a discharge cell (also referred to as “sub-pixel”) for image display.
  • a discharge cell also referred to as “sub-pixel” for image display.
  • One discharge pixel is composed of three discharge cells corresponding to adjacent RGB colors.
  • Scan electrode driver 111, sustain electrode driver 112, and data electrode driver 113 are electrically connected to each of scan electrode 5, sustain electrode 4 and data electrode 11 as drive circuits in the vicinity of the end in the panel XY direction as shown in FIG. Connected to.
  • sustain electrodes 4 are collectively connected to sustain electrode driver 112, and each scan electrode 5 and each data electrode 11 are independently connected to scan electrode driver 111 or data electrode driver 113, respectively.
  • the PDP 1 is applied with an AC voltage of several tens of kHz to several hundreds of kHz between the display electrode pairs 6 during driving by a known driving circuit (not shown) including the drivers 111 to 113.
  • a discharge is generated in an arbitrary discharge cell, and ultraviolet rays (dotted line and arrow in FIG. 1) including a resonance line mainly composed of a wavelength of 147 nm due to excited Xe atoms and a molecular line mainly composed of a wavelength of 172 nm due to excited Xe molecules are phosphor layer 14. Is irradiated.
  • the phosphor layer 14 is excited to emit visible light.
  • the visible light passes through the front panel 2 and is emitted to the front surface.
  • an in-field time division gradation display method is adopted.
  • the field is divided into a plurality of subfields (SF), and each subfield is further divided into a plurality of periods.
  • each subfield has (1) an initialization period in which the wall charges of all the discharge cells are reset by an initialization pulse, and (2) addresses the discharge cells to be lit corresponding to the input data.
  • Write period for accumulating wall charges (3) sustain period for causing the addressed discharge cells to emit light by applying an alternating voltage (sustain voltage) to all the discharge cells simultaneously, and (4) sustain discharge. Is divided into four periods, ie, an erasing period for erasing the wall charges formed.
  • FIG. 3 shows an example of drive waveforms in the mth subfield in the field. As shown in FIG. 3, an initialization period, an address period, a sustain period, and an erase period are assigned to each subfield.
  • the wall charge of the entire screen is erased (initialization discharge) in order to prevent the influence of the previous discharge cell lighting (effect of accumulated wall charge).
  • a voltage (initialization pulse) higher than that of the data electrode 11 and the sustain electrode 4 is applied to the scan electrode 5 to discharge the gas in the discharge cell.
  • the charges generated thereby are accumulated on the wall of the discharge cell so as to cancel the potential difference between the data electrode 11, the scan electrode 5 and the sustain electrode 4, so that the MgO layer 8 and the first electron emission material 16a near the scan electrode 5 Negative charges are accumulated as wall charges on the surface of the second electron emission material 16b.
  • positive charges are accumulated as wall charges on the surface of the phosphor layer 14 near the data electrode 11 and on the surface of the MgO layer 8 near the sustain electrode 4 and the first electron emission material 16a and the second electron emission material 16b. Due to this wall charge, a predetermined wall potential is generated between scan electrode 5 and data electrode 11 and between scan electrode 5 and sustain electrode 4.
  • the address period (writing period)
  • addressing setting of lighting / non-lighting of the discharge cell selected based on the image signal divided into subfields is performed.
  • a voltage (scanning pulse) lower than that of the data electrode 11 and the sustain electrode 4 is applied to the scanning electrode 5. That is, a voltage having the same polarity as the wall potential is applied to scan electrode 5 -data electrode 11, and a data pulse having the same polarity as the wall potential is applied between scan electrode 5 and sustain electrode 4, thereby address discharge (writing Discharge).
  • a voltage pulse for sustain discharge (for example, a rectangular wave voltage of about 200 V) is applied to scan electrode 5 and sustain electrode 4 in different phases. Thereby, in the written discharge cell, a pulse discharge is generated every time the voltage polarity changes.
  • This sustain discharge emits a resonance line of 147 nm from the excited Xe atoms in the discharge space and a molecular beam mainly composed of 173 nm from the excited Xe molecules.
  • the surface of the phosphor layer 14 is irradiated with the resonance line / molecular beam, and display light is emitted by visible light emission. Then, multi-color / multi-tone display is performed by a combination of sub-field units of RGB colors. In a non-discharge cell in which wall charges are not written, no sustain discharge occurs and the display state is black.
  • the protective layer 17 in the PDP 1 is composed of an MgO layer 8 laminated on the dielectric layer 7, and a first electron emission material 16a and a second electron emission material 16b disposed thereon.
  • the MgO layer 8 is a thin film formed of an MgO material, and is formed on the dielectric layer 7 by a known thin film forming method such as a vacuum deposition method or an ion plating method.
  • the material of the MgO layer 8 is not limited to MgO but may include other metal oxides containing MgO as a main component.
  • the first electron emission material 16a has a configuration in which halogen atoms are included in the vicinity of the surface of MgO fine particles having a uniform particle size distribution.
  • Such halogen atoms are mainly contained in the vicinity of the surface of each MgO fine particle, specifically, in a range of 4 nm or less from the surface toward the inside of the particle.
  • the site involved in the discharge characteristics can be considered only near the surface, so it is important to contain halogen atoms near the surface.
  • the MgO fine particles containing halogen atoms in the vicinity of the surface can be obtained by firing a mixed powder obtained by mixing an MgO precursor and a sintering aid.
  • MgO precursor one or more of magnesium oxide, magnesium hydroxide, magnesium carbonate, magnesium alkoxide, magnesium nitrate, and magnesium acetate can be used.
  • a sintering aid As a sintering aid, one of halogen compounds such as magnesium fluoride, magnesium chloride, aluminum fluoride, calcium fluoride, lithium fluoride, magnesium chloride, aluminum chloride, calcium chloride, lithium chloride, sodium chloride, etc. The above can be used. In addition, when elements other than magnesium are contained as a residual element after firing, depending on the element type, the discharge characteristics are affected, so the sintering aid can be properly used.
  • the raw material may be mixed by either wet mixing using a solvent or dry mixing in which a dry powder is mixed.
  • alcohol such as ethyl alcohol, methyl alcohol, iso-propyl alcohol, n-propyl alcohol, n-butoxy alcohol, sec-butoxy alcohol, tert-butoxy alcohol, or acetic acid is used as a solvent.
  • Acetic esters such as butyl, ethyl acetate, methyl acetate, and 2-methoxyethyl acetate, and ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone can be used, and are not particularly limited.
  • a ball mill, a medium stirring mill, a planetary ball mill, a vibration mill, a jet mill, a V-type mixer, and the like that are generally used in industry can be used.
  • the first electron-emitting material 16a is obtained by firing the mixed powder of MgO precursor and sintering aid at 600 ° C. to 1800 ° C., preferably 900 ° C. to 1500 ° C. for 15 minutes to 10 hours.
  • the firing temperature and firing time are appropriately adjusted according to various conditions such as the particle size and classification conditions of the precursor used, the amount of sintering aid added, and the amount of mixed powder.
  • the firing atmosphere can be performed in an oxidizing or reducing atmosphere.
  • the calcination step is performed, for example, by baking at 700 to 1000 ° C. for 15 minutes to 5 hours in the atmosphere.
  • the calcination temperature and the calcination time are appropriately adjusted according to the difference in conditions as described above. To do.
  • the powder obtained by the calcining step is pulverized and mixed, and then processed in the main baking step.
  • the mixing method of the calcined powder at this time may be either wet mixing or dry mixing. However, in the case of wet mixing, a solvent accompanying dissolution of MgO, such as water, cannot be used.
  • a firing furnace used in each firing step a furnace generally used in industry, for example, a continuous type such as a pusher furnace, a batch type electric furnace, a gas furnace, or the like can be used.
  • the first electron-emitting material 16a obtained in the main firing step can be crushed again using a ball mill, a jet mill or the like, and the particle size distribution and fluidity can be adjusted.
  • the halogen component added to the sintering aid will be burned out together with the flow gas, resulting in the final production
  • the halogen concentration in the MgO fine particles decreases.
  • it is desirable to take measures such as putting a material component in a high-purity alumina crucible and applying a suitable sealing measure such as covering and performing a firing step in a firing furnace.
  • the second electron-emitting material 16b is made of a compound containing at least one of Ca, Sr, and Ba and Sn and O as main components.
  • This compound may be in an amorphous state, but is preferably a crystalline compound in order to further improve the stability.
  • preferred crystalline compounds include the following.
  • the one where the content is large is considered that secondary electron emission efficiency is high.
  • Ba 3 Sn 2 O 7 has higher secondary electron emission efficiency than BaSnO 3
  • Ba 2 SnO 4 has higher secondary electron emission efficiency.
  • CaSnO 3 , SrSnO 3 BaSnO 3 is the most desirable because it is a compound that is as stable as MgO and can be used without any particular atmosphere control and has higher electron emission efficiency than MgO.
  • the solid phase method is a method in which raw material powders (metal oxide, metal carbonate, etc.) containing each metal are mixed and heat-treated at a temperature of a certain level or more to react.
  • liquid phase method a solution containing each metal is prepared, and a solid phase is precipitated from this solution, or after applying this solution on a substrate, it is dried and subjected to a heat treatment or the like at a temperature of a certain level or more. It is a method to do.
  • the vapor phase method is a method for obtaining a film-like solid phase by a method such as vapor deposition, sputtering, or CVD.
  • a method such as vapor deposition, sputtering, or CVD.
  • Ca, Sr, Ba and Sn have a specific ratio, one or more selected from Ca, Sr and Ba, Sn, O It is also possible to obtain an amorphous compound mainly composed of (oxygen).
  • This amorphous film is also chemically more stable than CaO, SrO, and BaO and has a higher secondary electron emission efficiency than MgO, so that the driving voltage of the PDP can be reduced.
  • the chemical stability is higher for the crystalline compound, and as a synthesis method, the vapor phase method is more expensive than the solid phase method, and thus the crystalline compound is more desirable.
  • the synthesis method by the solid phase method is most desirable.
  • the raw material species used in the solid phase method is not particularly limited, and for example, oxides, hydroxides, halides, carbonates, nitrates, and the like can be used.
  • a ball mill, a medium stirring mill, a planetary ball mill, a vibration mill, a jet mill, a V-type mixer, etc. which are usually used industrially, are wet. Alternatively, it can be dry mixed.
  • the solvent to be used can be appropriately selected as in the case of the synthesis of the first electron emission material.
  • 2nd electron emission material 16b is obtained by baking the mixed powder at 1200 ° C. to 1500 ° C. for 15 minutes to 10 hours.
  • the firing temperature and firing time are appropriately adjusted according to various conditions such as the particle diameter of the raw material used, classification conditions, and the amount of mixed powder.
  • the firing atmosphere can be performed in an oxidizing or reducing atmosphere.
  • the second electron emission material 16b obtained in the main firing step may be crushed again using a ball mill, a jet mill, or the like to adjust the particle size distribution and fluidity.
  • the first electron emission material 16a and the second electron emission material 16b thus produced are planarly formed by a spray method, an electrostatic coating method, a slit coating method, a doctor blade method, or a die coating method. Apply to set.
  • the coating method is not limited to these, and coating may be performed by other methods.
  • the manufacturing cost it is common to use a screen printing method widely used industrially as a thick film forming technique.
  • the screen printing method is also excellent in that the coating amount can be easily controlled by the solid content ratio of the ink used and the specifications of the screen mesh.
  • the second electron-emitting material 16b exhibits the effect of reducing the discharge voltage regardless of the surface area exposed to the discharge space, so that the proportion of the particle surface shielded from the discharge space may be reduced.
  • the effect of shortening the discharge delay time is reduced when the surface area of the particles exposed to the discharge space is reduced.
  • the second electron emission material 16b is applied first, and then the first electron emission material 16a is applied to expose the first electron emission material 16a preferentially to the discharge space. It is preferable to obtain both the effect of reducing the discharge voltage by the material 16b and the effect of reducing the discharge delay time by the first electron emitting material 16a.
  • the application amount of the first electron emission material 16a and the second electron emission material 16b is the amount of change in the linearly transmitted light of the front panel before and after the film formation of the first electron emission material 16a and the second electron emission material 16b (visible light). ) Can be set based on the “coverage” defined from the measured values.
  • Coverage (%) [1 ⁇ (front panel linear transmission light amount before film formation of first electron emission material 16a and second electron emission material 16b) / (of first electron emission material 16a and second electron emission material 16b) Front panel straight transmitted light after film formation)] ⁇ 100
  • the coverage when the first electron-emitting material 16 a and the second electron-emitting material 16 b are dispersed on the MgO layer 8 is 1.
  • it is preferable to coat with a projected area ratio of 0% or more it is not limited to this range.
  • This coverage can be adjusted by changing the particle diameters of the first electron-emitting material and the second electron-emitting material and the coating weight thereof. It is preferable to appropriately adjust the coating weights of the two types of materials according to the particle diameter of the materials to be used so as to obtain the best characteristics as a PDP.
  • the upper limit of the coverage if a large amount of the first electron-emitting material 16a and the second electron-emitting material 16b are disposed on the dielectric layer or the MgO layer, the visible light generated by the phosphor is scattered and visible. Since the light transmittance decreases, it is desirable to set the coverage to 50% or less.
  • the first electron emission material 16 a and the second electron emission material 16 b may be disposed in the entire region on the MgO layer 8, but the first electrons are partially formed in any region on the MgO layer 8. It is also possible to dispose the emission material 16a and the second electron emission material 16b. For example, it may be disposed only on the scan electrode 5 and the sustain electrode 4, or may be disposed only in the central region of each discharge cell.
  • the first electron emission material 16 a and the second electron emission material 16 b are dispersed on the surface of the MgO layer 8, but without forming the MgO layer 8 on the dielectric layer 7.
  • the first electron emission material 16a and the second electron emission material 16b may be directly dispersed.
  • the first electron-emitting material composed of MgO fine particles containing halogen atoms, the second fine particle composed of one or more selected from Ca, Sr, and Ba, and compounds composed mainly of Sn.
  • the electron emission material is present on the surface of the dielectric layer 7 so as to face the discharge space.
  • the PDP 1 can be driven at a low voltage.
  • the first electron emission material is also excellent in the effect of suppressing the discharge delay.
  • the PDP 1 according to this embodiment can be driven at a low voltage with a reduced discharge delay.
  • the amount of the first electron emitting material and the second electron emitting material disposed on the MgO layer is small, it is possible to obtain a discharge delay suppressing effect and a driving voltage reducing effect. That is, it is possible to obtain a discharge delay suppressing effect and a driving voltage reducing effect while ensuring the visible light transmittance of the front panel.
  • the first electron emission material and the second electron emission material are present on the MgO layer, so that the discharge delay reduction effect and the drive voltage reduction effect can be stably obtained for a long time.
  • the mechanism is unknown in detail at present, it is an effect obtained by the coexistence and interaction of different materials such as the first electron emission material 16a and the second electron emission material 16b.
  • the PDP according to the example of the present invention was manufactured together with a comparative example, and a performance evaluation test was performed.
  • a performance evaluation test was performed.
  • the configuration of the example and the method of the performance evaluation test do not limit the present invention.
  • Example 1 The first electron-emitting material was manufactured as follows.
  • Mg (OH) 2 having a purity of 99.99% was used as the MgO precursor. Further, magnesium fluoride having a purity of 99.9% was used as a sintering aid. 0.25 mol% of magnesium fluoride with respect to Mg (OH) 2 was weighed and added, and wet-mixed in pure water using a planetary ball mill and zirconia beads. After drying this mixture, it was crushed in a mortar and fired in a high purity alumina crucible. The firing temperature was 1200 ° C., and the firing was continued for 15 minutes.
  • the fired MgO fine particles were dry pulverized using a ball mill and passed through a nylon mesh to remove coarse particles, which was used as the first electron emission material.
  • the average particle diameter of the first electron emitting material and the second electron emitting material was 1 ⁇ m.
  • the first electron-emitting material synthesized as described above and each second electron-emitting material were applied on the MgO layer as follows.
  • the first electron-emitting material and the second electron-emitting material are mixed at a weight ratio of 3: 1 to create a mixed powder, and the mixed powder, a solvent, and a resin are mixed, and a three-roll mill is prepared. And kneaded to obtain an ink for screen printing.
  • the first electron-emitting material and the second electron-emitting material were collectively applied using a screen printing method so that the coverage was 4.5%. After film formation, the film was dried at 100 ° C. for 1 hour and then baked at 500 ° C. for 3 hours to burn off organic components.
  • Three types of AC surface discharge type PDPs were prepared using the three types of front panels thus obtained.
  • the discharge gas is Xe 100% 150 Torr
  • An AC surface discharge type PDP was produced in the same manner as in Example 1 except that a front panel without the first electron emitting material 16a and the second electron emitting material 16b was used.
  • Example 2 An AC surface discharge type PDP was produced in the same manner as in Example 1 except that a front panel in which only the first electron-emitting material containing a halogen atom was disposed on the MgO layer was used.
  • the weight of the first electron-emitting material disposed was the same as the weight of the first electron-emitting material disposed in Example 1.
  • Example 3 Mg (OH) 2 to which no magnesium fluoride was added was fired in the same manner as in the production of the MgO fine particles of Example 1 to synthesize MgO fine particles (MgO fine particles containing no halogen atoms).
  • An AC surface discharge type PDP was produced in the same manner as in Example 1 except that a front panel in which only MgO fine particles not containing halogen atoms were disposed on the MgO layer was used.
  • the weight of the MgO fine particles disposed was the same as the weight of the first electron-emitting material disposed in Example 1.
  • Example 4 An AC surface discharge type PDP was produced in the same manner as in Example 1 except that a front panel in which only the second electron emission material was disposed on the MgO layer was used.
  • the weight for disposing the second electron-emitting material was the same as the weight for disposing the second electron-emitting material in Example 1.
  • a data pulse and a scanning pulse are repeatedly applied to an arbitrary pixel in each PDP, and the light emission of the phosphor accompanying the discharge is received by the optical sensor module.
  • the waveform and the received light signal waveform were measured by observing with a digital oscilloscope.
  • discharge delay time The time from the application of a pulse to the occurrence of discharge (discharge delay time) was measured 100 times, and the average of the maximum and minimum values of the measured discharge delay time was calculated as the discharge delay time.
  • the discharge start voltage is determined by connecting the panel to the drive circuit, inputting the drive waveform shown in FIG. 3 to display white lighting, and measuring the minimum value of the sustain voltage at which lighting can be confirmed in all areas. It was.
  • Example 1 CaSnO 3 as the second electron emitting material, SrSnO 3, there are three types using BaSnO 3, in FIGS. 5 and 6, a typically BaSnO 3 as the second electron emitting material Shows the results for what was.
  • Comparative Example 3 and Comparative Example 4 do not have the effect of reducing the discharge delay time compared to Comparative Example 1.
  • Comparative Example 2 in which the first electron-emitting material containing halogen atoms is provided, the initial discharge delay time is greatly shortened.
  • Example 1 although inferior to Comparative Example 2, the discharge delay time is shortened compared to Comparative Example 1, and the discharge delay is reduced to about 30 nsec, so that it can be driven at high speed without causing a lighting failure. I understand.
  • Example 1 discharge delay time shortening effect of Example 1 is inferior to that of Comparative Example 2 because the first electron-emitting material and the second electron-emitting material are mixed in Example 1, and thus the first electron-emitting material. Is partially shielded by the second electron emission material, and it is assumed that the characteristics of the first electron emission material and the second electron emission material are offset.
  • Example 1 it is not clear why the time-dependent change in the discharge delay time is small, but the first electron-emitting material 16a and the second electron-emitting material 16b, which are different from each other, coexist and are specific in the discharge space. It seems that the phenomenon is occurring.
  • Example 1 the discharge start voltage after lighting for 400 hr is almost the same as the initial discharge start voltage.
  • the change with time of the discharge start voltage is small because the tendency of Comparative Example 2 in which the first electron-emitting material is provided and the second electron-emitting material are provided as described above.
  • the tendency of the comparative example 4 is opposite, and it is considered that the effect of showing the opposite tendency is combined.
  • Example 1 it is considered that the initial discharge delay time and the discharge start voltage can be adjusted by adjusting the ratio of the first electron emission material and the second electron emission material.
  • Example 1 As a test result of Example 1, the case where BaSnO 3 was used as the second electron emission material was described. However, the same measurement was performed when CaSnO 3 and SrSnO 3 were used as the second electron emission material. It was confirmed that the effect of. However, the greatest effect was obtained when BaSnO 3 was used. This is compared to CaSnO 3, SrSnO 3, it considered the stability of BaSnO 3 is due to the more excellent.
  • a high-definition image display PDP can be driven with a low voltage, and can be used for a television set, a display device for a computer, and the like in transportation, public facilities, and homes. is there.

Abstract

Provided is a PDP wherein a discharge delay and a discharge start voltage are suppressed by improving the discharge characteristics of a protection layer and excellent image display performance can be exhibited with a highly fine cell structure. On the surface of a dielectric layer (7) of a front panel (2), a MgO layer (8) is disposed, and on the surface of the MgO layer (8), a first electron emitting material (16a), which is composed of MgO fine particles containing halogen atoms, and a second electron emitting material (16b), which is composed of fine particles of a compound having one or more kinds of elements selected from among Ca, Sr and Ba, and Sn as the main component, are dispersed. A protection layer (17) is composed of the MgO layer (8), the dispersed first electron emitting material (16a) and the dispersed second electron emitting material (16b).

Description

プラズマディスプレイパネル及びその製造方法Plasma display panel and manufacturing method thereof
 本発明は、プラズマディスプレイパネルに関し、特にAC型プラズマディスプレイパネルに関する。 The present invention relates to a plasma display panel, and more particularly to an AC type plasma display panel.
 プラズマディスプレイパネル(以下、PDP)は、フラットパネルディスプレイ(FPD)の中でも、高速表示が可能であり、かつ大型化が容易であることから、映像表示装置および広報表示装置などの分野で広く実用化されている。 Plasma display panels (hereinafter referred to as PDPs) are capable of high-speed display among flat panel displays (FPDs) and are easy to increase in size, so they are widely put into practical use in fields such as video display devices and public information display devices. Has been.
 図4は、一般的なAC型PDPにおける放電セルの構造を模式的に示す図である。 FIG. 4 is a diagram schematically showing the structure of a discharge cell in a general AC type PDP.
 当図4に示すPDP1xは、フロントパネル2及びバックパネル9を貼り合わせて構成されている。 The PDP 1x shown in FIG. 4 is configured by pasting the front panel 2 and the back panel 9 together.
 フロントパネル2は、フロントパネルガラス3の片面全体にわたり、走査電極5及び維持電極4を一対とする表示電極対6が複数対配設され、当該表示電極対6を覆うように、誘電体層7およびMgO層8が順次積層されてなる。走査電極5、維持電極4は、それぞれ透明電極51、41及びバスライン52、42を積層して構成されている。 In the front panel 2, a plurality of display electrode pairs 6 each including the scanning electrode 5 and the sustain electrode 4 are disposed over one side of the front panel glass 3, and the dielectric layer 7 covers the display electrode pair 6. And the MgO layer 8 are sequentially laminated. The scan electrode 5 and the sustain electrode 4 are configured by laminating transparent electrodes 51 and 41 and bus lines 52 and 42, respectively.
 誘電体層7は、ガラス軟化点が550℃~600℃程度の範囲の低融点ガラスから形成され、AC型PDP特有の電流制限機能を有する。 The dielectric layer 7 is formed of a low melting point glass having a glass softening point in the range of about 550 ° C. to 600 ° C., and has a current limiting function peculiar to the AC type PDP.
 MgO層8は、金属酸化物層の一例であって、上記誘電体層7及び表示電極対6をプラズマ放電のイオン衝突から保護すると共に、二次電子を効率よく放出し、放電開始電圧を低下させる役目をなす。通常、当該MgO層8は二次電子放出特性、耐スパッタ性、光学透明性に優れるMgOを、真空蒸着法(特許文献1、2)や印刷法(特許文献3)によって、厚み0.5μm~1μm程度で成膜することによって形成する。 The MgO layer 8 is an example of a metal oxide layer, which protects the dielectric layer 7 and the display electrode pair 6 from plasma collision ion collisions, efficiently emits secondary electrons, and lowers the discharge start voltage. To play a role. Usually, the MgO layer 8 is made of MgO having excellent secondary electron emission characteristics, sputtering resistance, and optical transparency by a thickness of 0.5 μm or more by a vacuum deposition method (Patent Documents 1 and 2) or a printing method (Patent Document 3). It is formed by forming a film with a thickness of about 1 μm.
 バックパネル9は、バックパネルガラス10上に、画像データを書き込むための複数のデータ(アドレス)電極11が併設され、当該データ電極11を覆うように低融点ガラスからなる誘電体層12が配設され、誘電体層12において隣接する放電セルとの境界上に、低融点ガラスからなる所定の高さの隔壁(リブ)13が、放電空間15を区画するように、井桁状等のパターン部1231、1232を組み合わせて形成され、誘電体層12表面と隔壁13の側面に、R、G、B各色の蛍光体インクが塗布及び焼成されてなる蛍光体層14(蛍光体層14R、14G、14B)が形成されて構成されている。 In the back panel 9, a plurality of data (address) electrodes 11 for writing image data are provided on the back panel glass 10, and a dielectric layer 12 made of low-melting glass is disposed so as to cover the data electrodes 11. In the dielectric layer 12, on the boundary between adjacent discharge cells, a partition wall (rib) 13 having a predetermined height made of low-melting glass separates the discharge space 15 so as to form a pattern portion 1231 having a grid pattern or the like. , 1232 and phosphor layers 14 ( phosphor layers 14R, 14G, 14B) formed by applying and firing phosphor inks of R, G, B colors on the surface of the dielectric layer 12 and the side surfaces of the barrier ribs 13. ) Is formed.
 上記フロントパネル2とバックパネル9とは、表示電極対6とデータ電極11とが放電空間15を介して互いに直交するように配置され、その各周囲が封着されており、内部封止された放電空間15には、放電ガスとしてXe-Ne系あるいはXe-He系等の希ガスが約数十kPaの圧力で封入されている。 The front panel 2 and the back panel 9 are arranged such that the display electrode pair 6 and the data electrode 11 are orthogonal to each other via the discharge space 15, and each periphery thereof is sealed and sealed internally. The discharge space 15 is filled with a rare gas such as Xe—Ne or Xe—He as a discharge gas at a pressure of about several tens of kPa.
 このようなPDPに画像表示するために、1フィールドの映像を複数のサブフィールド(S.F.)に分割する階調表現方式(例えばフィールド内時分割表示方式)が用いられている。 In order to display an image on such a PDP, a gradation expression method (for example, an intra-field time division display method) that divides an image of one field into a plurality of subfields (SF) is used.
 近年では、PDPの高精細化(フルスペックハイビジョンTV等)や高速駆動化に対する要求がなされ、それに呼応してPDPにおける放電特性を向上させるための研究が広く行われ、特に「放電遅れ」の防止・抑制が重要な課題項目に挙げられている。 In recent years, there has been a demand for higher definition (full-spec high-definition TV, etc.) and higher speed driving of PDPs, and in response to this, extensive research has been conducted to improve the discharge characteristics of PDPs, especially to prevent “discharge delay”.・ Suppression is listed as an important issue.
 「放電遅れ」とは、パルス電圧の印加から遅れて放電が行われる現象を指し、「放電遅れ」が顕著になると、印加されたパルス幅内で放電が終了する確率が低くなり、本来点灯すべきセルに書き込み等ができずに点灯不良が生じる。特に、駆動パルスの幅を狭くして高速駆動を行う際や、高精細なセル構造においては、このような放電遅れによる点灯不良が特に顕在化しやすい。 “Discharge delay” refers to a phenomenon in which discharge occurs after the application of a pulse voltage. When “discharge delay” becomes prominent, the probability of completion of discharge within the applied pulse width decreases, and the lamp is originally lit. A lighting failure occurs because writing cannot be performed in the power cell. In particular, when high-speed driving is performed by narrowing the width of the driving pulse, or in a high-definition cell structure, such a lighting failure due to a discharge delay is particularly apparent.
 「放電遅れ」の原因は、主に保護層の特性に起因すると考えられ、現在では、保護層の主材料であるMgOに、Fe、Cr、V等や、Si、Al等の元素をドーパントとして添加して、当該ドーパントにより保護層の放電特性を改善する試みが講じられている(特許文献1、2)。 The cause of “discharge delay” is considered to be mainly due to the characteristics of the protective layer. At present, MgO, which is the main material of the protective layer, is doped with elements such as Fe, Cr, V, Si, Al, etc. Attempts have been made to improve the discharge characteristics of the protective layer by adding the dopant (Patent Documents 1 and 2).
 一方、誘電体層の上に直接、或いは薄膜法で作製したMgO膜の上に、気相酸化法で作製したMgOの単結晶微粒子を層状に配置して保護層を形成することによって、保護層表面の放電特性を改善する試みも行われている(特許文献3)。この特許文献3の方法によれば、低温時における放電遅れ低減については一定の改善が図られるとされている。 On the other hand, the protective layer is formed by arranging the MgO single crystal fine particles produced by the vapor phase oxidation method in a layer form directly on the dielectric layer or on the MgO film produced by the thin film method. Attempts have also been made to improve the surface discharge characteristics (Patent Document 3). According to the method of Patent Document 3, it is said that a certain improvement can be achieved with respect to reduction of discharge delay at low temperatures.
 また、PDPにおいては、高効率化も強く要求されており、その解決手段として、誘電体層を低誘電率化する方法や、放電ガスのXe分圧を上げる方法が知られている。しかしながら、このような手段を用いると、放電開始電圧や維持電圧が上昇してしまう問題がある。 Further, in the PDP, high efficiency is also strongly demanded, and as a means for solving this, a method of reducing the dielectric constant of the dielectric layer and a method of increasing the Xe partial pressure of the discharge gas are known. However, when such a means is used, there is a problem that the discharge start voltage and the sustain voltage increase.
 一方、2次電子放出係数の高い材料を保護層に用いれば、放電開始電圧や維持電圧を下げる事が可能である事が知られており、それによって高効率化を実現することができ、また、駆動回路に耐圧の低い素子を用いることができるので、低コスト化も実現できる。そこで、高い2次電子放出係数を有する保護層材料として、MgOと同じアルカリ土類金属酸化物であるが、より2次電子放出係数の高い、CaO、SrO、BaOを用いたり、これら同士の固溶体を用いる事が検討されている(特許文献6~7)。 On the other hand, it is known that if a material having a high secondary electron emission coefficient is used for the protective layer, it is possible to lower the discharge start voltage and the sustain voltage, thereby achieving high efficiency. Since an element having a low withstand voltage can be used for the drive circuit, cost reduction can be realized. Therefore, as a protective layer material having a high secondary electron emission coefficient, the same alkaline earth metal oxide as MgO is used, but CaO, SrO, BaO having a higher secondary electron emission coefficient is used, or a solid solution of these. (Patent Documents 6 to 7).
特開平8-236028号公報JP-A-8-236028 特開平10-334809号公報JP-A-10-334809 特開2006-173018号公報JP 2006-173018 A 特開2006-147417号公報JP 2006-147417 A 特開昭64?28273号公報JP-A-64-28273 特開昭52-63663号公報JP-A-52-63663 特開2007-95436号公報JP 2007-95436 A
 しかしながら、上記いずれの特許文献に記載された従来技術においても、放電遅れ、放電開始電圧、維持電圧を低減する効果が十分に得られているとはいえない。 However, it cannot be said that the prior art described in any of the above-mentioned patent documents has sufficiently obtained the effect of reducing the discharge delay, the discharge start voltage, and the sustain voltage.
 例えば、特許文献3には、気相酸化法で作製されたMgO微粒子(粉体)が用いられているが、気相酸化法で作成された粒子は粒径に比較的バラツキがあり、粒径の大きい粒子に対し、多数の微細粒子が含まれている。このような多数の微細粒子には、実質的に放電遅れの防止・抑制に貢献しない微粒子が含まれている。従って、PDPにおいて、比較的多くのMgO微粒子を分散させて用いないと、実用的な放電遅れ抑制効果が得られない。一方、大量のMgO微粒子を誘電体層やMgO層に対して配設すると、蛍光体で生じた可視光を散乱させてしまい、可視光透過率が減少してしまう。 For example, Patent Document 3 uses MgO fine particles (powder) produced by a gas phase oxidation method, but the particles produced by the gas phase oxidation method have a relatively varied particle size. A large number of fine particles are contained for large particles. Such a large number of fine particles contain fine particles that do not substantially contribute to prevention / suppression of discharge delay. Therefore, a practical discharge delay suppressing effect cannot be obtained unless a relatively large amount of MgO fine particles are dispersed in the PDP. On the other hand, if a large amount of MgO fine particles are disposed on the dielectric layer or the MgO layer, the visible light generated by the phosphor is scattered and the visible light transmittance is reduced.
 これらの問題を解決するために、分級によって粒径の小さいMgO微粒子を取り除く方法が提案されている(特許文献4)。しかしながら、その場合、新たに分級工程を行う必要が生じ、工程数が増えて製造効率を低下させるほか、大がかりな分級装置が必要となる。さらに、分級工程後に使用できない無駄なMgO材料が発生するなど、工業的に生産する上で、製造コスト面での各種問題が発生する。 In order to solve these problems, a method of removing MgO fine particles having a small particle diameter by classification has been proposed (Patent Document 4). However, in that case, it is necessary to perform a new classification process, which increases the number of processes and lowers the production efficiency, and also requires a large classification apparatus. Furthermore, various problems in terms of manufacturing costs occur in industrial production such as generation of useless MgO materials that cannot be used after the classification process.
 また、特許文献6~7で検討されているCaO、SrO、BaOなどは、MgOと比べて化学的に不安定であり、空気中の水分や炭酸ガスと容易に反応して、水酸化物や炭酸化物を形成する。このような化合物を形成すると、2次電子放出係数が低下して、期待した電圧低減効果が得られなかったり、あるいは電圧低減させるのに必要なエージング時間が非常に長くなってしまい、実用的でなくなるといった問題ある。 In addition, CaO, SrO, BaO and the like studied in Patent Documents 6 to 7 are chemically unstable as compared with MgO, and easily react with moisture and carbon dioxide in the air to generate hydroxide and Form carbonates. When such a compound is formed, the secondary electron emission coefficient decreases, and the expected voltage reduction effect cannot be obtained, or the aging time required for voltage reduction becomes very long, which is practical. There is a problem of disappearing.
 こうした化学反応による劣化は、実験室レベルで少量を作製する場合には、作業の雰囲気ガスを制御するといった方法で回避可能であるが、製造工場での全ての工程を雰囲気管理するのは困難であり、また可能であっても高コスト化につながる。 Degradation due to such chemical reactions can be avoided by controlling the atmosphere gas of the work when producing a small amount at the laboratory level, but it is difficult to control the atmosphere of all processes at the manufacturing plant. Yes, even if possible, it leads to higher costs.
 以上のように、PDPの放電遅れや駆動電圧を十分に低減でき、且つ工業的に利用できる技術は確立されるに至っていない。 As described above, a technology that can sufficiently reduce the discharge delay and driving voltage of the PDP and can be used industrially has not been established.
 さらに、上記の放電遅れや駆動電圧のいずれの特性についても、PDPを長時間表示させたときに特性変動を少ないことが望まれる。特に、フルHD等の高精細なセル構造において、高速駆動を行う場合には、これら特性の経時的な変動が顕在化しやすいので、解決すべき課題である。 Furthermore, for any of the above characteristics of the discharge delay and the driving voltage, it is desired that the characteristic fluctuation is small when the PDP is displayed for a long time. In particular, when high-speed driving is performed in a high-definition cell structure such as full HD, these characteristics change over time, which is a problem to be solved.
 上記課題を解決するため、本発明は、電極および誘電体層を備える第1基板が、放電空間を介して第2基板と対向配置され、当該第1及び第2両基板の周囲が封着されたPDPにおいて、第1基板における第1誘電体層側の表面に、放電空間に臨むように、ハロゲン原子を含むMgO微粒子からなる第1の材料と、Ca、Sr、Baから選ばれた一種類以上、及びSnを主成分とする化合物の微粒子からなる第2の材料とを存在させた。 In order to solve the above-described problems, the present invention is configured such that a first substrate including an electrode and a dielectric layer is disposed to face a second substrate through a discharge space, and the periphery of both the first and second substrates is sealed. In the PDP, on the surface of the first substrate on the first dielectric layer side, the first material made of MgO fine particles containing halogen atoms so as to face the discharge space, and one kind selected from Ca, Sr, and Ba The second material composed of fine particles of a compound containing Sn as a main component was present.
 ここで、誘電体層の放電空間側に、MgOを主成分とする金属酸化物層を設け、第1の材料及び第2の材料を、金属酸化物層の放電空間側に配設してもよい。 Here, a metal oxide layer mainly composed of MgO is provided on the discharge space side of the dielectric layer, and the first material and the second material are disposed on the discharge space side of the metal oxide layer. Good.
 ハロゲン原子は、MgO微粒子の表層近傍に含まれていることが好ましい。 Halogen atoms are preferably contained in the vicinity of the surface layer of the MgO fine particles.
 ハロゲン原子として、フッ素原子あるいは塩素原子を用いることができる。
 第2の材料を構成する化合物としては、Ca、Sr、Baから選ばれた一種類以上と、Snとを特定の比率で含む結晶性酸化物が好ましい。
As the halogen atom, a fluorine atom or a chlorine atom can be used.
As the compound constituting the second material, a crystalline oxide containing one or more selected from Ca, Sr, and Ba and Sn in a specific ratio is preferable.
 特に、CaSnO3、SrSnO3、BaSnO3、またはこれらが相互に固溶する固溶体から選択される1種類以上の結晶性化合物であることが好ましい。 In particular, one or more crystalline compounds selected from CaSnO 3 , SrSnO 3 , BaSnO 3 , or a solid solution in which these are solid-solved with each other are preferable.
 第1の材料及び第2の材料を構成する微粒子が誘電体層を被覆する被覆率は、投影面積比で1.0%以上50%以下であることが好ましい。 The coverage with which the fine particles constituting the first material and the second material cover the dielectric layer is preferably 1.0% or more and 50% or less in projected area ratio.
 本発明にかかるPDPの製造方法においては、電極と誘電体層とが配設された第1基板に対し、誘電体層の表面に金属酸化物層を形成する金属酸化物層形成工程と、金属酸化物層が形成された第1基板と、第2基板とを対向配置させて封着する封着工程とを設け、金属酸化物形成工程と封着工程との間に、金属酸化物層の表面に、第1の材料及び第2の材料を配設する工程を設け、第1の材料として、MgO前駆体に対して、フッ化マグネシウム、塩化マグネシウム、フッ化アルミニウム、フッ化カルシウム、フッ化リチウム、塩化マグネシウム、塩化アルミニウム、塩化カルシウム、塩化リチウム、塩化ナトリウムから選ばれた1種以上を焼結助剤として添加してなる材料を、焼成することによって得たMgO微粒子を用い、第2の材料として、Ca、Sr、Baから選ばれた一種類以上、及びSnを主成分とする微粒子化合物を用いることとした。 In the method for manufacturing a PDP according to the present invention, a metal oxide layer forming step of forming a metal oxide layer on the surface of the dielectric layer on the first substrate on which the electrode and the dielectric layer are disposed, A sealing step is provided in which the first substrate on which the oxide layer is formed and the second substrate are disposed opposite to each other and sealed, and the metal oxide layer is formed between the metal oxide forming step and the sealing step. A step of disposing a first material and a second material on the surface is provided. As the first material, magnesium fluoride, magnesium chloride, aluminum fluoride, calcium fluoride, fluoride are applied to the MgO precursor. Using MgO fine particles obtained by firing a material obtained by adding at least one selected from lithium, magnesium chloride, aluminum chloride, calcium chloride, lithium chloride, and sodium chloride as a sintering aid, material To, Ca, Sr, one or more selected from Ba, and we decided to use the particulate compound mainly containing Sn.
 上記の第1の材料及び第2の材料を配設する工程において、金属酸化物層の表面に、第1の材料を配設し、その後、第2の材料を配設することが好ましい。 In the step of disposing the first material and the second material, it is preferable to dispose the first material on the surface of the metal oxide layer and then dispose the second material.
 上記本発明のPDPによれば、ハロゲン原子を含むMgO微粒子からなる第1の材料と、Ca、Sr、Baから選ばれた一種類以上、及びSnを主成分とする化合物の微粒子からなる第2の材料とが、共に高い2次電子放出係数γを有し、これらが、誘電体層の表面に放電空間に臨むように配されているので、PDPの駆動時には、放電空間内に向けて2次電子が豊富に放出される。従って、従来のPDPと比べて、放電遅れが抑えられ且つ低電圧で駆動できる。 According to the PDP of the present invention, the first material composed of MgO fine particles containing a halogen atom, the second material composed of fine particles of a compound mainly composed of Sn, one or more selected from Ca, Sr, and Ba. Both of these materials have a high secondary electron emission coefficient γ, and these are arranged so as to face the discharge space on the surface of the dielectric layer. Therefore, when the PDP is driven, 2 is directed toward the discharge space. Secondary electrons are abundantly emitted. Therefore, compared with the conventional PDP, the discharge delay is suppressed and the driving can be performed at a low voltage.
 また、本発明のPDPによれば、この放電遅れ低減効果及び低減効果が長期間持続する。これは、第2の材料の安定性が優れることに加えて、種類の異なる第1の材料と第2の材料とを配設することによって、相互作用に基づいて効果である。また、MgO層或いは誘電体層に対する第1の材料と第2の材料の被覆率をそれほど高く設定しなくても、上記の放電遅れ低減効果及び駆動電圧低減効果が得られる。 Further, according to the PDP of the present invention, the discharge delay reduction effect and the reduction effect are maintained for a long time. In addition to the excellent stability of the second material, this is an effect based on the interaction by disposing different types of the first material and the second material. Further, the discharge delay reduction effect and the drive voltage reduction effect can be obtained without setting the coverage ratios of the first material and the second material to the MgO layer or the dielectric layer so high.
 また、上記本発明の製造方法で製造されるPDPも、これと同様の効果を奏する。 Also, the PDP manufactured by the manufacturing method of the present invention has the same effect.
 従って、本発明によれば、放電遅れ抑制効果によって高速駆動時にも優れた画像表示性能を発揮し、且つ、駆動電圧低減効果も得ることができる。 Therefore, according to the present invention, an excellent image display performance can be exhibited even during high-speed driving due to a discharge delay suppressing effect, and a driving voltage reduction effect can also be obtained.
本発明の実施の形態に係るPDPの構成を示す断面図である。It is sectional drawing which shows the structure of PDP which concerns on embodiment of this invention. 各電極とドライバとの関係を示す模式図である。It is a schematic diagram which shows the relationship between each electrode and a driver. PDPの駆動波形例を示す図である。It is a figure which shows the drive waveform example of PDP. 従来の一般的なPDPの構成を示す図である。It is a figure which shows the structure of the conventional general PDP. 実施例及び比較例に係る各PDPについて放電遅れ時間を測定した結果を示す特性図である。It is a characteristic view which shows the result of having measured the discharge delay time about each PDP which concerns on an Example and a comparative example. 実施例及び比較例に係る各PDPについて放電開始電圧を測定した結果を示す特性図である。It is a characteristic view which shows the result of having measured the discharge start voltage about each PDP which concerns on an Example and a comparative example.
 以下、本発明の実施の形態及び実施例を説明するが、当然ながら本発明はこれらの形式に限定されるものでなく、本発明の技術的範囲を逸脱しない範囲で適宜変更して実施することができる。 Hereinafter, embodiments and examples of the present invention will be described, but the present invention is naturally not limited to these forms, and may be appropriately modified and implemented without departing from the technical scope of the present invention. Can do.
 (PDPの構成)
 実施の形態に係るPDP1の全体的な構成は、保護層周辺の構成を除き、図4に示すPDP1xと同様である。
(Configuration of PDP)
The overall configuration of the PDP 1 according to the embodiment is the same as that of the PDP 1x shown in FIG. 4 except for the configuration around the protective layer.
 図1は、実施の形態に係るPDP1の模式的な断面図(図4のXZ面に沿った断面図)である。 FIG. 1 is a schematic cross-sectional view (a cross-sectional view along the XZ plane of FIG. 4) of the PDP 1 according to the embodiment.
 なお、図1では説明のため、MgO層8の表面に配設される第1電子放出材料16a及び第2電子放出材料16bを、実際よりも大きく、模式的に示している。 In addition, in FIG. 1, the 1st electron emission material 16a and the 2nd electron emission material 16b which are arrange | positioned on the surface of the MgO layer 8 are typically shown larger than actual for description.
 図1に示すように、PDP1は、互いに主面を対向させて配設された第1基板(フロントパネル2)および第2基板(バックパネル9)に大別される。 As shown in FIG. 1, the PDP 1 is broadly divided into a first substrate (front panel 2) and a second substrate (back panel 9) that are disposed with their main surfaces facing each other.
 フロントパネル2の基板となるフロントパネルガラス3には、その一方の主面に、所定の放電ギャップをおいてY方向に伸長する表示電極対6(走査電極5、維持電極4)が、X方向に複数対並んで形成されている。各表示電極対6は、酸化インジウム錫(ITO)、酸化亜鉛(ZnO)、酸化錫(SnO2)等の透明導電性材料からなる帯状の透明電極51、41に、Ag厚膜、Al薄膜、またはCr/Cu/Cr積層薄膜等からなるバスライン52、42が積層されてなり、このバスライン52、42によって表示電極対6のシート抵抗が下げられる。 A front panel glass 3 serving as a substrate of the front panel 2 has a display electrode pair 6 (scanning electrode 5 and sustaining electrode 4) extending in the Y direction with a predetermined discharge gap on one main surface thereof in the X direction. A plurality of pairs are formed side by side. Each display electrode pair 6 includes a strip-shaped transparent electrode 51, 41 made of a transparent conductive material such as indium tin oxide (ITO), zinc oxide (ZnO), tin oxide (SnO 2 ), an Ag thick film, an Al thin film, Alternatively, bus lines 52 and 42 made of a Cr / Cu / Cr laminated thin film or the like are laminated, and the sheet resistance of the display electrode pair 6 is lowered by the bus lines 52 and 42.
 ここで、「厚膜」とは、導電性材料を含むペースト等を塗布した後に焼成して形成する各種厚膜法により形成される膜をいう。一方、「薄膜」とは、スパッタリング法、イオンプレーティング法、電子線蒸着法等を含む、真空プロセスを用いた各種薄膜法により形成される膜をいう。 Here, the “thick film” means a film formed by various thick film methods formed by applying a paste containing a conductive material and baking it. On the other hand, the “thin film” refers to a film formed by various thin film methods using a vacuum process, including a sputtering method, an ion plating method, an electron beam evaporation method, and the like.
 表示電極対6を配設したフロントパネルガラス3には、その主面全体にわたり、酸化鉛(PbO)または酸化ビスマス(Bi23)または酸化燐(PO4)を主成分とする低融点ガラスの誘電体層7が、スクリーン印刷法等によって形成されている。 The front panel glass 3 provided with the display electrode pair 6 has a low melting point glass mainly composed of lead oxide (PbO), bismuth oxide (Bi 2 O 3 ) or phosphorus oxide (PO 4 ) over the entire main surface. The dielectric layer 7 is formed by a screen printing method or the like.
 誘電体層7は、AC型PDP特有の電流制限機能を有し、DC型PDPに比べて長寿命化を実現する要素になっている。 The dielectric layer 7 has a current limiting function peculiar to the AC type PDP, and is an element that realizes a longer life than the DC type PDP.
 フロントパネル2における誘電体層7の表面上には、MgO層8が形成され、当該MgO層8の表面に、放電空間に臨むように、第1電子放出材料16a及び第2電子放出材料16bが存在している。詳細は後述するが、第1電子放出材料16aは、ハロゲン原子を含むMgO微粒子からなり、第2電子放出材料16bは、Ca、Sr、Baから選ばれた一種類以上と、Snとを主成分とする化合物からなる微粒子である。 An MgO layer 8 is formed on the surface of the dielectric layer 7 in the front panel 2, and the first electron emitting material 16a and the second electron emitting material 16b are formed on the surface of the MgO layer 8 so as to face the discharge space. Existing. As will be described in detail later, the first electron emission material 16a is made of MgO fine particles containing halogen atoms, and the second electron emission material 16b is composed mainly of one or more selected from Ca, Sr, and Ba and Sn. Fine particles made of the compound
 上記のMgO層8と、第1電子放出材料16a及び第2電子放出材料16bによって、誘電体層7を保護する保護層17が構成されている。 A protective layer 17 that protects the dielectric layer 7 is constituted by the MgO layer 8 and the first electron emission material 16a and the second electron emission material 16b.
 MgO層8は、誘電体層7及び表示電極対6をプラズマ放電のイオン衝突から保護すると共に、2次電子を効率よく放出し、放電開始電圧を低下させる役目をなし、耐スパッタ性及び2次電子放出係数γに優れ且つ良好な光学透明性及び電気絶縁性を有するMgOで形成された薄膜である。 The MgO layer 8 protects the dielectric layer 7 and the display electrode pair 6 from ion collision of plasma discharge, efficiently emits secondary electrons, and lowers the discharge start voltage. It is a thin film formed of MgO having an excellent electron emission coefficient γ and good optical transparency and electrical insulation.
 バックパネル9の基板となるバックパネルガラス10には、その一方の主面に、Ag厚膜、Al薄膜またはCr/Cu/Cr積層薄膜等のいずれかからなるデータ電極11が、X方向を長手方向として、Y方向に一定間隔でストライプ状に並設されている。そして、各データ電極11を内包するように、バックパネルガラス9の全面にわたって、誘電体層12が配設されている。 A back panel glass 10 serving as a substrate of the back panel 9 has a data electrode 11 made of any one of an Ag thick film, an Al thin film, a Cr / Cu / Cr laminated thin film, etc. on one main surface, extending in the X direction. As the direction, they are arranged in parallel in the Y direction at regular intervals. A dielectric layer 12 is disposed over the entire surface of the back panel glass 9 so as to enclose each data electrode 11.
 誘電体層12の上には、さらに隣接するデータ電極11の間隙に合わせて井桁状の隔壁13が配設され、放電セルを区画することで誤放電や光学的クロストークを防ぐ役割をしている。 On the dielectric layer 12, a grid-like partition wall 13 is further arranged in accordance with the gap between adjacent data electrodes 11, and serves to prevent erroneous discharge and optical crosstalk by partitioning the discharge cells. Yes.
 隣接する2つの隔壁13の側面とその間の誘電体層12の面上には、カラー表示のための赤色(R)、緑色(G)、青色(B)の各々に対応する蛍光体層14が形成されている。各種組成として、青色蛍光体(B)には、既知のBAM:Eu、赤色蛍光体(R)には(Y,Gd)BO3:EuやY23:Eu等、緑色蛍光体(G)にはZn2SiO4:Mn、YBO3:Tbおよび(Y,Gd)BO3:Tb等が利用できる。 A phosphor layer 14 corresponding to each of red (R), green (G), and blue (B) for color display is provided on the side surface of two adjacent barrier ribs 13 and the surface of the dielectric layer 12 therebetween. Is formed. As various compositions, the blue phosphor (B) has a known BAM: Eu, the red phosphor (R) has (Y, Gd) BO 3 : Eu, Y 2 O 3 : Eu, etc. ) May be Zn 2 SiO 4 : Mn, YBO 3 : Tb, (Y, Gd) BO 3 : Tb, or the like.
 なお、誘電体層12は必須ではなく、データ電極11を蛍光体層14で直接内包するようにしてもよい。 The dielectric layer 12 is not essential, and the data electrode 11 may be directly included in the phosphor layer 14.
 フロントパネル2とバックパネル9は、データ電極11と表示電極対6の互いの長手方向が直交するように対向配置され、両パネル2,9の外周縁部がガラスフリットで封着されている。この両パネル2,9間にはHe、Xe、Ne等を含む不活性ガス成分からなる放電ガスが所定圧力で封入される。 The front panel 2 and the back panel 9 are arranged to face each other so that the longitudinal directions of the data electrode 11 and the display electrode pair 6 are orthogonal to each other, and the outer peripheral edge portions of both the panels 2 and 9 are sealed with glass frit. A discharge gas composed of an inert gas component containing He, Xe, Ne or the like is sealed between the panels 2 and 9 at a predetermined pressure.
 隔壁13どうしの間は放電空間15であり、表示電極対6と1本のデータ電極11が放電空間15を挟んで交叉する領域が、画像表示にかかる放電セル(「サブピクセル」とも言う)に対応する。隣り合うRGBの各色に対応する3つの放電セルで1画素が構成される。 A discharge space 15 is formed between the barrier ribs 13, and a region where the display electrode pair 6 and one data electrode 11 intersect with each other across the discharge space 15 is a discharge cell (also referred to as “sub-pixel”) for image display. Correspond. One discharge pixel is composed of three discharge cells corresponding to adjacent RGB colors.
 走査電極5、維持電極4及びデータ電極11の各々には、図2に示すようにパネルXY方向端部付近において、駆動回路として走査電極ドライバ111、維持電極ドライバ112、データ電極ドライバ113が電気的に接続される。ここで、維持電極4は一括して維持電極ドライバ112に接続され、各走査電極5と各データ電極11は、それぞれ独立して走査電極ドライバ111或いはデータ電極ドライバ113に接続される。 Scan electrode driver 111, sustain electrode driver 112, and data electrode driver 113 are electrically connected to each of scan electrode 5, sustain electrode 4 and data electrode 11 as drive circuits in the vicinity of the end in the panel XY direction as shown in FIG. Connected to. Here, sustain electrodes 4 are collectively connected to sustain electrode driver 112, and each scan electrode 5 and each data electrode 11 are independently connected to scan electrode driver 111 or data electrode driver 113, respectively.
 (PDPの駆動例)
 PDP1は、各ドライバ111~113を含む公知の駆動回路(不図示)によって、駆動時には各表示電極対6の間に数十kHz~数百kHzのAC電圧が印加される。これにより任意の放電セル内で放電が発生し、励起Xe原子による波長147nm主体の共鳴線と励起Xe分子による波長172nm主体の分子線を含む紫外線(図1の点線及び矢印)が蛍光体層14に照射される。蛍光体層14は励起されて可視光発光する。そして当該可視光はフロントパネル2を透過して前面に発光される。
(PDP drive example)
The PDP 1 is applied with an AC voltage of several tens of kHz to several hundreds of kHz between the display electrode pairs 6 during driving by a known driving circuit (not shown) including the drivers 111 to 113. As a result, a discharge is generated in an arbitrary discharge cell, and ultraviolet rays (dotted line and arrow in FIG. 1) including a resonance line mainly composed of a wavelength of 147 nm due to excited Xe atoms and a molecular line mainly composed of a wavelength of 172 nm due to excited Xe molecules are phosphor layer 14. Is irradiated. The phosphor layer 14 is excited to emit visible light. The visible light passes through the front panel 2 and is emitted to the front surface.
 この駆動方法の一例としては、フィールド内時分割階調表示方式が採られる。当該方式では、フィールドが複数のサブフィールド(S.F.)に分けられ、各サブフィールドはさらに複数の期間に分けられている。 As an example of this driving method, an in-field time division gradation display method is adopted. In this method, the field is divided into a plurality of subfields (SF), and each subfield is further divided into a plurality of periods.
 すなわち、各サブフィールドは、(1)全放電セルの壁電荷を初期化パルスでリセットして初期化状態にする初期化期間、(2)入力データに対応した点灯すべき放電セルにアドレスして壁電荷を蓄積する書込期間、(3)すべての放電セルに対して一斉に交流電圧(維持電圧)を印加することによって、アドレスされた放電セルを表示発光させる維持期間、(4)維持放電により形成された壁電荷を消去する消去期間という4つの期間に分割される。 That is, each subfield has (1) an initialization period in which the wall charges of all the discharge cells are reset by an initialization pulse, and (2) addresses the discharge cells to be lit corresponding to the input data. Write period for accumulating wall charges, (3) sustain period for causing the addressed discharge cells to emit light by applying an alternating voltage (sustain voltage) to all the discharge cells simultaneously, and (4) sustain discharge. Is divided into four periods, ie, an erasing period for erasing the wall charges formed.
 図3は、フィールド中の第m番目のサブフィールドにおける駆動波形例である。図3が示すように、各サブフィールドには、初期化期間、アドレス期間、維持期間、消去期間がそれぞれ割り当てられている。 FIG. 3 shows an example of drive waveforms in the mth subfield in the field. As shown in FIG. 3, an initialization period, an address period, a sustain period, and an erase period are assigned to each subfield.
 初期化期間には、それ以前の放電セルの点灯による影響(蓄積された壁電荷による影響)を防ぐため、画面全体の壁電荷の消去(初期化放電)を行う。具体的には、走査電極5に、データ電極11および維持電極4と比べて高い電圧(初期化パルス)を印加し放電セル内の気体を放電させる。それによって発生した電荷はデータ電極11、走査電極5および維持電極4間の電位差を打ち消すように放電セルの壁面に蓄積されるので、走査電極5付近のMgO層8及び第1電子放出材料16a、第2電子放出材料16b、の表面には、負の電荷が壁電荷として蓄積される。またデータ電極11付近の蛍光体層14表面および維持電極4付近のMgO層8及び第1電子放出材料16a、第2電子放出材料16bの表面には、正の電荷が壁電荷として蓄積される。この壁電荷により、走査電極5-データ電極11間、走査電極5-維持電極4間に所定の値の壁電位が生じる。 In the initialization period, the wall charge of the entire screen is erased (initialization discharge) in order to prevent the influence of the previous discharge cell lighting (effect of accumulated wall charge). Specifically, a voltage (initialization pulse) higher than that of the data electrode 11 and the sustain electrode 4 is applied to the scan electrode 5 to discharge the gas in the discharge cell. The charges generated thereby are accumulated on the wall of the discharge cell so as to cancel the potential difference between the data electrode 11, the scan electrode 5 and the sustain electrode 4, so that the MgO layer 8 and the first electron emission material 16a near the scan electrode 5 Negative charges are accumulated as wall charges on the surface of the second electron emission material 16b. Further, positive charges are accumulated as wall charges on the surface of the phosphor layer 14 near the data electrode 11 and on the surface of the MgO layer 8 near the sustain electrode 4 and the first electron emission material 16a and the second electron emission material 16b. Due to this wall charge, a predetermined wall potential is generated between scan electrode 5 and data electrode 11 and between scan electrode 5 and sustain electrode 4.
 アドレス期間(書込期間)には、サブフィールドに分割された画像信号に基づいて選択された放電セルのアドレッシング(点灯/不点灯の設定)を行う。当該期間には、放電セルを点灯させる場合には、走査電極5にデータ電極11および維持電極4と比べて低い電圧(走査パルス)を印加する。すなわち、走査電極5-データ電極11に、上記壁電位と同極性の電圧を印加すると共に、走査電極5-維持電極4間に壁電位と同極性のデータパルスを印加し、アドレス放電(書込放電)を生じさせる。これにより、蛍光体層14表面、維持電極4付近のMgO層8及び第1電子放出材料16a、第2電子放出材料16bの表面には、負の電荷が蓄積され、走査電極5付近のMgO層8及び第1電子放出材料16a、第2電子放出材料16bの表面には、正の電荷が壁電荷として蓄積される。以上で維持電極4-走査電極5間に所定値の壁電位が生じる。 In the address period (writing period), addressing (setting of lighting / non-lighting) of the discharge cell selected based on the image signal divided into subfields is performed. In this period, when the discharge cell is turned on, a voltage (scanning pulse) lower than that of the data electrode 11 and the sustain electrode 4 is applied to the scanning electrode 5. That is, a voltage having the same polarity as the wall potential is applied to scan electrode 5 -data electrode 11, and a data pulse having the same polarity as the wall potential is applied between scan electrode 5 and sustain electrode 4, thereby address discharge (writing Discharge). Thereby, negative charges are accumulated on the surface of the phosphor layer 14, the MgO layer 8 near the sustain electrode 4, and the surfaces of the first electron emission material 16 a and the second electron emission material 16 b, and the MgO layer near the scan electrode 5. 8, positive charges are accumulated as wall charges on the surfaces of the first electron-emitting material 16a and the second electron-emitting material 16b. Thus, a predetermined wall potential is generated between sustain electrode 4 and scan electrode 5.
 維持期間には、階調に応じた輝度を確保するために、書込放電された放電セルで放電を維持する。ここでは、走査電極5および維持電極4に、維持放電のための電圧パルス(例えば約200Vの矩形波電圧)を互いに異なる位相で印加する。それによって、書き込まれた放電セルでは、電圧極性の変化毎にパルス放電が発生する。 During the sustain period, the discharge is maintained in the discharge cells that have been addressed and discharged in order to ensure the luminance corresponding to the gradation. Here, a voltage pulse for sustain discharge (for example, a rectangular wave voltage of about 200 V) is applied to scan electrode 5 and sustain electrode 4 in different phases. Thereby, in the written discharge cell, a pulse discharge is generated every time the voltage polarity changes.
 この維持放電により、放電空間における励起Xe原子からは147nmの共鳴線が放射され、励起Xe分子からは173nm主体の分子線が放射される。この共鳴線・分子線が蛍光体層14表面に照射され、可視光発光による表示発光がなされる。そして、RGB各色のサブフィールド単位の組み合わせにより、多色・多階調表示がなされる。なお、壁電荷が書き込まれていない非放電セルでは、維持放電が発生せず表示状態は黒表示となる。 This sustain discharge emits a resonance line of 147 nm from the excited Xe atoms in the discharge space and a molecular beam mainly composed of 173 nm from the excited Xe molecules. The surface of the phosphor layer 14 is irradiated with the resonance line / molecular beam, and display light is emitted by visible light emission. Then, multi-color / multi-tone display is performed by a combination of sub-field units of RGB colors. In a non-discharge cell in which wall charges are not written, no sustain discharge occurs and the display state is black.
 消去期間では、走査電極5に漸減型の消去パルスを印加することによって壁電荷を消去させる。
(保護層17の構成)
 PDP1における保護層17は、誘電体層7に積層されたMgO層8と、その上に配設された第1電子放出材料16a及び第2電子放出材料16bで構成されている。
In the erasing period, wall charges are erased by applying a gradual erasing pulse to the scanning electrode 5.
(Configuration of protective layer 17)
The protective layer 17 in the PDP 1 is composed of an MgO layer 8 laminated on the dielectric layer 7, and a first electron emission material 16a and a second electron emission material 16b disposed thereon.
 MgO層8は、MgO材料で形成された薄膜であって、誘電体層7上に真空蒸着法、イオンプレーティング法等公知の薄膜形成法で成膜されている。なお、当該MgO層8の材料はMgOだけに限らず、MgOを主成分として他の金属酸化物を含んでもよい。 The MgO layer 8 is a thin film formed of an MgO material, and is formed on the dielectric layer 7 by a known thin film forming method such as a vacuum deposition method or an ion plating method. The material of the MgO layer 8 is not limited to MgO but may include other metal oxides containing MgO as a main component.
 (第1電子放出材料16a)
 第1電子放出材料16aは、均一な粒径分布を持つMgO微粒子に対して、その表面近傍にハロゲン原子を含む構成を有している。ハロゲン原子を含む態様は、例えば一部のハロゲン原子が酸素原子と置換し、これによりMgOの結晶構造中において部分的にMgX2(X=ハロゲン元素)の結晶構造が混在しているものと考えられる。このようなハロゲン原子は、各々のMgO微粒子において、その表面近傍、具体的には表面から粒子内部に向けて深さ4nm以内の範囲に主として含まれている。
(First electron emitting material 16a)
The first electron emission material 16a has a configuration in which halogen atoms are included in the vicinity of the surface of MgO fine particles having a uniform particle size distribution. The aspect containing a halogen atom is considered that, for example, a part of the halogen atom is replaced with an oxygen atom, whereby the crystal structure of MgX 2 (X = halogen element) is partially mixed in the crystal structure of MgO. It is done. Such halogen atoms are mainly contained in the vicinity of the surface of each MgO fine particle, specifically, in a range of 4 nm or less from the surface toward the inside of the particle.
 MgO微粒子において、放電特性に関与する部位は、表面近傍のみと考えることができるため、ハロゲン原子を表面近傍に含有させることが重要である。 In MgO fine particles, the site involved in the discharge characteristics can be considered only near the surface, so it is important to contain halogen atoms near the surface.
 このようにハロゲン原子を表面近傍に含むMgO微粒子は、MgOの前駆体と焼結助剤とを混合してなる混合粉体を、焼成することによって得ることができる。MgO前駆体としては、酸化マグネシウム、水酸化マグネシウム、炭酸マグネシウム、マグネシウムのアルコキシド、硝酸マグネシウム、酢酸マグネシウムの中の1種以上を用いることができる。 Thus, the MgO fine particles containing halogen atoms in the vicinity of the surface can be obtained by firing a mixed powder obtained by mixing an MgO precursor and a sintering aid. As the MgO precursor, one or more of magnesium oxide, magnesium hydroxide, magnesium carbonate, magnesium alkoxide, magnesium nitrate, and magnesium acetate can be used.
 焼結助剤としては、フッ化マグネシウム、塩化マグネシウム、フッ化アルミニウム、フッ化カルシウム、フッ化リチウム、塩化マグネシウム、塩化アルミニウム、塩化カルシウム、塩化リチウム、塩化ナトリウム、等のハロゲン化合物の中の1種以上を用いることができる。なお、焼成後の残留元素としてマグネシウム以外の元素が含まれる場合、元素種によっては放電特性に影響を及ぼすため、焼結助剤は適宜使い分けることができる。 As a sintering aid, one of halogen compounds such as magnesium fluoride, magnesium chloride, aluminum fluoride, calcium fluoride, lithium fluoride, magnesium chloride, aluminum chloride, calcium chloride, lithium chloride, sodium chloride, etc. The above can be used. In addition, when elements other than magnesium are contained as a residual element after firing, depending on the element type, the discharge characteristics are affected, so the sintering aid can be properly used.
 原料の混合方法は、溶媒を用いる湿式混合、或いは乾燥粉体のまま混合する乾式混合のいずれで行ってもよい。 The raw material may be mixed by either wet mixing using a solvent or dry mixing in which a dry powder is mixed.
 湿式混合を行う場合は、溶媒として、水以外に、エチルアルコール、メチルアルコール、iso-プロピルアルコール、n-プロピルアルコール、n-ブトキシアルコール、sec-ブトキシアルコール、tert-ブトキシアルコール等のアルコールや、酢酸ブチル、酢酸エチル、酢酸メチル、2-メトキシ酢酸エチル等の酢酸エステルや、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトンを用いることができ、特に限定されるものではない。乾式混合を行う場合は、工業的に通常用いられるボールミル、媒体撹拌ミル、遊星型ボールミル、振動ミル、ジェットミル、V型混合機等を用いることができる。 When performing wet mixing, in addition to water, alcohol such as ethyl alcohol, methyl alcohol, iso-propyl alcohol, n-propyl alcohol, n-butoxy alcohol, sec-butoxy alcohol, tert-butoxy alcohol, or acetic acid is used as a solvent. Acetic esters such as butyl, ethyl acetate, methyl acetate, and 2-methoxyethyl acetate, and ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone can be used, and are not particularly limited. When performing dry mixing, a ball mill, a medium stirring mill, a planetary ball mill, a vibration mill, a jet mill, a V-type mixer, and the like that are generally used in industry can be used.
 MgO前駆体と焼結助剤の混合粉体を、600℃~1800℃、好ましくは900℃~1500℃で15分~10時間焼成することにより第1電子放出材料16aが得られる。 The first electron-emitting material 16a is obtained by firing the mixed powder of MgO precursor and sintering aid at 600 ° C. to 1800 ° C., preferably 900 ° C. to 1500 ° C. for 15 minutes to 10 hours.
 焼成温度と焼成時間は、用いる前駆体の粒子径や分級条件、焼結助剤の添加量、混合粉体量など、様々な条件により適宜調整する。また、所望の放電特性を得るために、焼成時の雰囲気を、酸化あるいは還元雰囲気下で行うこともできる。焼成粉体量によっては、焼結助剤との混合の均質性を高めるため、本焼成前に仮焼工程を経ることが好ましい。 The firing temperature and firing time are appropriately adjusted according to various conditions such as the particle size and classification conditions of the precursor used, the amount of sintering aid added, and the amount of mixed powder. In order to obtain desired discharge characteristics, the firing atmosphere can be performed in an oxidizing or reducing atmosphere. Depending on the amount of the fired powder, it is preferable to go through a calcination step before the main firing in order to increase the homogeneity of mixing with the sintering aid.
 仮焼工程は、例えば大気中で700~1000℃で15分~5時間焼成して行うが、本焼成工程と同様、仮焼成温度と仮焼成時間を、上述した様な条件の違いによって適宜調製する。仮焼工程により得られる粉体は、解砕、混合した後、本焼成工程で処理する。この際の仮焼粉の混合方法も、湿式混合及び乾式混合のいずれでもよいが、湿式混合の場合は、例えば水のように、MgOの溶解を伴う溶媒は使用できないため留意する。各焼成工程で利用する焼成炉は、工業的に通常用いられる炉、例えばプッシャー炉等の連続式、またはバッチ式の電気炉や、ガス炉等を用いることができる。 The calcination step is performed, for example, by baking at 700 to 1000 ° C. for 15 minutes to 5 hours in the atmosphere. As in the main calcination step, the calcination temperature and the calcination time are appropriately adjusted according to the difference in conditions as described above. To do. The powder obtained by the calcining step is pulverized and mixed, and then processed in the main baking step. The mixing method of the calcined powder at this time may be either wet mixing or dry mixing. However, in the case of wet mixing, a solvent accompanying dissolution of MgO, such as water, cannot be used. As a firing furnace used in each firing step, a furnace generally used in industry, for example, a continuous type such as a pusher furnace, a batch type electric furnace, a gas furnace, or the like can be used.
 さらに、本焼成工程で得られた第1電子放出材料16aは、ボールミルやジェットミルなどを用いて再度解砕し、粒度分布や流動性を調整することができる。 Furthermore, the first electron-emitting material 16a obtained in the main firing step can be crushed again using a ball mill, a jet mill or the like, and the particle size distribution and fluidity can be adjusted.
 なお、本焼成及び仮焼成を含め、焼成工程において焼成炉中の雰囲気において過度のガス流通があると、焼結助剤に添加されているハロゲン成分が流通ガスと共に焼去されてしまい、最終生成物であるMgO微粒子中のハロゲン濃度が低下する場合がある。このようなハロゲン濃度の低下は、MgO微粒子表面のハロゲン濃度調整の妨げとなる。従って、例えば材料成分を高純度のアルミナ製るつぼの中に入れ、蓋をする等の適度な密閉対策を施した上で、焼成炉中で焼成工程を施すなどの対策を行うことが望ましい。 In addition, if there is excessive gas flow in the atmosphere in the firing furnace in the firing process, including main firing and temporary firing, the halogen component added to the sintering aid will be burned out together with the flow gas, resulting in the final production In some cases, the halogen concentration in the MgO fine particles, which is a product, decreases. Such a decrease in the halogen concentration hinders the adjustment of the halogen concentration on the surface of the MgO fine particles. Accordingly, for example, it is desirable to take measures such as putting a material component in a high-purity alumina crucible and applying a suitable sealing measure such as covering and performing a firing step in a firing furnace.
 (第2電子放出材料16b)
 第2電子放出材料16bは、Ca,Sr,Baのいずれか一種類以上とSnとOとを主成分とする化合物からなる。
(Second electron emitting material 16b)
The second electron-emitting material 16b is made of a compound containing at least one of Ca, Sr, and Ba and Sn and O as main components.
 この化合物は、アモルファス状態のものでもかまわないが、より安定性を高めるためには、結晶性化合物であることが望ましい。 This compound may be in an amorphous state, but is preferably a crystalline compound in order to further improve the stability.
 基本的に好ましい結晶性化合物としては、次のものが挙げられる。 Basically preferred crystalline compounds include the following.
 (1)CaSnO3、SrSnO3、BaSnO3、あるいはこれらの2種以上を相互に固溶させた固溶体[(Ca,Sr)SnO3、(Sr,Ba)SnO3等]。 (1) CaSnO 3 , SrSnO 3 , BaSnO 3 , or a solid solution in which two or more of these are mutually dissolved [(Ca, Sr) SnO 3 , (Sr, Ba) SnO 3 etc.].
 (2)Sr3Sn27、Ba3Sn27、あるいはこれらを相互に固溶させた固溶体[(Sr,Ba)3Sn27]。 (2) Sr 3 Sn 2 O 7 , Ba 3 Sn 2 O 7 , or a solid solution in which these are solid-solved with each other [(Sr, Ba) 3 Sn 2 O 7 ].
 (3)Ca2SnO4、Sr2SnO4、Ba2SnO4、あるいはこれらの2種以上を相互に固溶させた固溶体[(Ca,Sr)2SnO4等]
 これらの結晶性化合物の間で2次電子放出効率を比較すると、組成中にCaOを含む化合物よりもSrOを含む化合物の方が、2次電子放出効率が高く、SrOを含む化合物よりもBaOを含む化合物の方が2次電子放出効率が高い。
(3) Ca 2 SnO 4 , Sr 2 SnO 4 , Ba 2 SnO 4 , or a solid solution in which two or more of these are solid-solved with each other [(Ca, Sr) 2 SnO 4 etc.]
Comparing the secondary electron emission efficiency among these crystalline compounds, the compound containing SrO has higher secondary electron emission efficiency than the compound containing CaO in the composition, and BaO is higher than the compound containing SrO. The containing compound has higher secondary electron emission efficiency.
 また、組成中に同じBaOを含む化合物であれば、その含有量が多い方が、2次電子放出効率が高いと考えられる。例えば、BaSnO3よりもBa3Sn27の方が、2次電子放出効率が高く、さらに、Ba2SnO4の方が、2次電子放出効率が高い。 Moreover, if it is a compound which contains the same BaO in a composition, the one where the content is large is considered that secondary electron emission efficiency is high. For example, Ba 3 Sn 2 O 7 has higher secondary electron emission efficiency than BaSnO 3 , and Ba 2 SnO 4 has higher secondary electron emission efficiency.
 一方、化学的安定性についてはその逆の順序になる。 On the other hand, the reverse is true for chemical stability.
 必要とされる化学的安定性は、実際にPDPの製造を行う工程条件により様々であるので、一概にどの化合物が良いと決めることは難しいが、これらの化合物の中で、CaSnO3、SrSnO3、BaSnO3は、MgOと同程度以上に安定な化合物であって、特に雰囲気制御等を行わなくても使用可能であり、かつMgOよりも電子放出効率が高いので、最も望ましい。 Since the required chemical stability varies depending on the process conditions for actually producing PDP, it is difficult to generally decide which compound is good. Among these compounds, CaSnO 3 , SrSnO 3 BaSnO 3 is the most desirable because it is a compound that is as stable as MgO and can be used without any particular atmosphere control and has higher electron emission efficiency than MgO.
 ただし、PDP製造工程において、ある程度の雰囲気制御等を行う事が可能であれば、他の組成の化合物も使用可能であり、その場合は、環境に応じて適当な組成の化合物を用いれば良い。 However, in the PDP manufacturing process, compounds having other compositions can be used as long as the atmosphere can be controlled to some extent, and in this case, compounds having an appropriate composition may be used according to the environment.
 Ca,Sr,Baのいずれか一種類以上とSnとOを主成分とする化合物を合成する方法としては、その形態として、固相法、液相法、気相法が挙げられる。 As a method for synthesizing a compound mainly composed of Sn and O and any one or more of Ca, Sr, and Ba, there are a solid phase method, a liquid phase method, and a gas phase method as its form.
 固相法は、それぞれの金属を含む原料粉末(金属酸化物、金属炭酸塩等)を混合し、ある程度以上の温度で熱処理して反応させる方法である。 The solid phase method is a method in which raw material powders (metal oxide, metal carbonate, etc.) containing each metal are mixed and heat-treated at a temperature of a certain level or more to react.
 液相法は、それぞれの金属を含む溶液を作り、この溶液から固相を沈殿させたり、あるいは基板上にこの溶液を塗布後、乾燥し、ある程度以上の温度で熱処理等を行って固相とする方法である。 In the liquid phase method, a solution containing each metal is prepared, and a solid phase is precipitated from this solution, or after applying this solution on a substrate, it is dried and subjected to a heat treatment or the like at a temperature of a certain level or more. It is a method to do.
 気相法は、蒸着、スパッタリング、CVD等の方法によって膜状の固相を得る方法である。気相法によれば、上述した、Ca、Sr、BaとSnが特定の比率となるので結晶性酸化物以外にも、Ca、Sr、Baより選ばれた一種類以上と、Snと、O(酸素)を主成分とするアモルファス状態の化合物を得ることも出来る。 The vapor phase method is a method for obtaining a film-like solid phase by a method such as vapor deposition, sputtering, or CVD. According to the vapor phase method, since Ca, Sr, Ba and Sn have a specific ratio, one or more selected from Ca, Sr and Ba, Sn, O It is also possible to obtain an amorphous compound mainly composed of (oxygen).
 このアモルファス状態の膜も、CaO、SrO、BaOと比較すれば化学的により安定であり、かつMgOよりも高い2次電子放出効率を持つため、PDPの駆動電圧を低減する事ができる。しかし、化学的安定性は結晶性化合物の方が高く、また合成法として、気相法は固相法等よりも高コストとなるため、結晶性化合物の方がより望ましい。 This amorphous film is also chemically more stable than CaO, SrO, and BaO and has a higher secondary electron emission efficiency than MgO, so that the driving voltage of the PDP can be reduced. However, the chemical stability is higher for the crystalline compound, and as a synthesis method, the vapor phase method is more expensive than the solid phase method, and thus the crystalline compound is more desirable.
 以上のように、工業的な観点から観たコストや、生成する化合物の結晶性などを考慮した場合、固相法による合成法がもっとも望ましい。 As described above, in consideration of the cost from the industrial viewpoint and the crystallinity of the compound to be generated, the synthesis method by the solid phase method is most desirable.
 固相法に用いる原料種は特に限定されることはなく、例えば酸化物や水酸化物、ハロゲン化物、炭酸塩、硝酸塩などを使用することができる。混合方法については、上記第1電子放出材料の合成の場合と同様、工業的に通常用いられるボールミル、媒体撹拌ミル、遊星型ボールミル、振動ミル、ジェットミル、V型混合機等を用いて、湿式、あるいは乾式混合することができる。使用する溶媒についても上記第1電子放出材料の合成の場合と同様に、適宜選択することができる。 The raw material species used in the solid phase method is not particularly limited, and for example, oxides, hydroxides, halides, carbonates, nitrates, and the like can be used. As for the mixing method, as in the case of the synthesis of the first electron-emitting material, a ball mill, a medium stirring mill, a planetary ball mill, a vibration mill, a jet mill, a V-type mixer, etc., which are usually used industrially, are wet. Alternatively, it can be dry mixed. The solvent to be used can be appropriately selected as in the case of the synthesis of the first electron emission material.
 混合粉体を、1200℃~1500℃で15分~10時間焼成することによって第2電子放出材料16bが得られる。 2nd electron emission material 16b is obtained by baking the mixed powder at 1200 ° C. to 1500 ° C. for 15 minutes to 10 hours.
 なお、焼成温度と焼成時間は、用いる原料の粒子径や分級条件、混合粉体量など、様々な条件により適宜調整する。また、所望の放電特性を得るために、焼成時の雰囲気を酸化、あるいは還元雰囲気下で行うこともできる。焼成粉体量によっては、均質性を高めるため、本焼成前に仮焼工程を経ることが好ましい。 The firing temperature and firing time are appropriately adjusted according to various conditions such as the particle diameter of the raw material used, classification conditions, and the amount of mixed powder. In order to obtain desired discharge characteristics, the firing atmosphere can be performed in an oxidizing or reducing atmosphere. Depending on the amount of the baked powder, it is preferable to go through a calcination step before the main calcination in order to improve homogeneity.
 さらに、本焼成工程で得られた第2電子放出材料16bを、ボールミルやジェットミルなどを用いて再度解砕し、粒度分布や流動性を調整してもよい。 Furthermore, the second electron emission material 16b obtained in the main firing step may be crushed again using a ball mill, a jet mill, or the like to adjust the particle size distribution and fluidity.
 (第1電子放出材料16a及び第2電子放出材料16bの塗布)
 形成したMgO層8の表面上に、上記作製した第1電子放出材料16a及び第2電子放出材料16bを、スプレー法や静電塗布法、スリットコート法、ドクターブレード法、ダイコート法で平面的に凝結させるように塗布する。ただし、塗布方法はこれらに限定するものではなく、これ以外の方法で塗布してもよい。
(Application of first electron-emitting material 16a and second electron-emitting material 16b)
On the surface of the formed MgO layer 8, the first electron emission material 16a and the second electron emission material 16b thus produced are planarly formed by a spray method, an electrostatic coating method, a slit coating method, a doctor blade method, or a die coating method. Apply to set. However, the coating method is not limited to these, and coating may be performed by other methods.
 製造コストを考慮すると、厚膜形成技術として工業的に広く用いられているスクリーン印刷法を用いるのが一般的である。スクリーン印刷法は、使用するインクの固形分比率やスクリーンメッシュの仕様により、容易に塗着量を制御できる点でも優れている。また、第1電子放出材料16a、第2電子放出材料16bの両粉体を所定比で含有するインクを用いて一括塗布することも可能であり、一括塗布する方が製造上容易であるが、それぞれを別途に塗布してもよい。その場合、以下の理由により、第2電子放出材料16bを塗布した後、第1電子放出材料16aを塗布する方が好ましい。 Considering the manufacturing cost, it is common to use a screen printing method widely used industrially as a thick film forming technique. The screen printing method is also excellent in that the coating amount can be easily controlled by the solid content ratio of the ink used and the specifications of the screen mesh. In addition, it is possible to batch-apply using the ink containing both powders of the first electron-emitting material 16a and the second electron-emitting material 16b at a predetermined ratio, and it is easier to manufacture in a batch, Each may be applied separately. In this case, it is preferable to apply the first electron emission material 16a after applying the second electron emission material 16b for the following reason.
 第2電子放出材料16bは、放電空間に露呈する表面積の大小によらず、放電電圧低減の効果を奏するので、粒子表面が放電空間から遮蔽される割合が少なくなっても構わない。一方、第1電子放出材料16aは、放電空間に露呈する粒子の表面積が減少すると放電遅れ時間短縮効果が低減するので、粒子表面が放電空間から遮蔽されることは望ましくない。 The second electron-emitting material 16b exhibits the effect of reducing the discharge voltage regardless of the surface area exposed to the discharge space, so that the proportion of the particle surface shielded from the discharge space may be reduced. On the other hand, in the first electron emitting material 16a, the effect of shortening the discharge delay time is reduced when the surface area of the particles exposed to the discharge space is reduced.
 従って、先に、第2電子放出材料16bを塗布し、その後、第1電子放出材料16aを塗布して、第1電子放出材料16aを優先的に放電空間に露呈させる方が、第2電子放出材料16bによる放電電圧低減の効果と、第1電子放出材料16aによる放電遅れ時間短縮効果の両方を得る上で好ましい。 Accordingly, the second electron emission material 16b is applied first, and then the first electron emission material 16a is applied to expose the first electron emission material 16a preferentially to the discharge space. It is preferable to obtain both the effect of reducing the discharge voltage by the material 16b and the effect of reducing the discharge delay time by the first electron emitting material 16a.
 なお、第1電子放出材料16a及び第2電子放出材料16bの塗布量は、第1電子放出材料16aと第2電子放出材料16bの成膜前後でフロントパネルの直線透過光の変化量(可視光)を測定した値より定義される「被覆率」に基づいて設定することができる。 The application amount of the first electron emission material 16a and the second electron emission material 16b is the amount of change in the linearly transmitted light of the front panel before and after the film formation of the first electron emission material 16a and the second electron emission material 16b (visible light). ) Can be set based on the “coverage” defined from the measured values.
 この被覆率は、具体的に以下の式で表すことができる。 This coverage can be expressed specifically by the following formula.
 被覆率(%)=[1-(第1電子放出材料16a、第2電子放出材料16bの成膜前のフロントパネル直線透過光量)/(第1電子放出材料16a、第2電子放出材料16bの成膜後のフロントパネル直線透過光量)]×100
 本発明者らが検討した結果によれば、第1電子放出材料16a及び第2電子放出材料16bをMgO層8上にも分散配置するときの被覆率としては、MgO層8に対して1.0%以上の投影面積比で被覆するのが好ましいが、この範囲に限定するものではない。この被覆率は、第1電子放出材料及び第2電子放出材料の粒子径と、その塗布重量を変化させることによって調整することができる。使用する材料の粒子径に応じて2種の材料の塗布重量を、PDPとして最良の特性を得るように適宜調整することが好ましい。
Coverage (%) = [1− (front panel linear transmission light amount before film formation of first electron emission material 16a and second electron emission material 16b) / (of first electron emission material 16a and second electron emission material 16b) Front panel straight transmitted light after film formation)] × 100
According to the results examined by the present inventors, the coverage when the first electron-emitting material 16 a and the second electron-emitting material 16 b are dispersed on the MgO layer 8 is 1. Although it is preferable to coat with a projected area ratio of 0% or more, it is not limited to this range. This coverage can be adjusted by changing the particle diameters of the first electron-emitting material and the second electron-emitting material and the coating weight thereof. It is preferable to appropriately adjust the coating weights of the two types of materials according to the particle diameter of the materials to be used so as to obtain the best characteristics as a PDP.
 被覆率の上限については、第1電子放出材料16a、第2電子放出材料16bを誘電体層やMgO層に対して大量に配設すると、蛍光体で生じた可視光を散乱させてしまい、可視光透過率が減少してしまうので、被覆率を50%以下に設定するのが望ましい。 Regarding the upper limit of the coverage, if a large amount of the first electron-emitting material 16a and the second electron-emitting material 16b are disposed on the dielectric layer or the MgO layer, the visible light generated by the phosphor is scattered and visible. Since the light transmittance decreases, it is desirable to set the coverage to 50% or less.
 なお、第1電子放出材料16a及び第2電子放出材料16bは、MgO層8上の全体領域に配設してもよいが、MgO層8上の任意の領域に対して部分的に第1電子放出材料16a及び第2電子放出材料16bを配設することも可能である。例えば、走査電極5及び維持電極4の上だけに配設してもよいし、各放電セルの中央領域だけに配設してもよい。 The first electron emission material 16 a and the second electron emission material 16 b may be disposed in the entire region on the MgO layer 8, but the first electrons are partially formed in any region on the MgO layer 8. It is also possible to dispose the emission material 16a and the second electron emission material 16b. For example, it may be disposed only on the scan electrode 5 and the sustain electrode 4, or may be disposed only in the central region of each discharge cell.
 また、本実施の形態では、MgO層8の表面上に第1電子放出材料16a及び第2電子放出材料16bを分散させたが、誘電体層7の上に、MgO層8を形成することなく、直接、第1電子放出材料16a及び第2電子放出材料16bを分散させてもよい。 In the present embodiment, the first electron emission material 16 a and the second electron emission material 16 b are dispersed on the surface of the MgO layer 8, but without forming the MgO layer 8 on the dielectric layer 7. The first electron emission material 16a and the second electron emission material 16b may be directly dispersed.
 (PDP1による効果)
 以上説明したPDP1によれば、ハロゲン原子を含むMgO微粒子からなる第1電子放出材料と、Ca、Sr、Baから選ばれた一種類以上、及びSnを主成分とする化合物の微粒子からなる第2電子放出材料とが、誘電体層7の表面上に放電空間に臨むように存在している。
(Effects of PDP1)
According to the PDP 1 described above, the first electron-emitting material composed of MgO fine particles containing halogen atoms, the second fine particle composed of one or more selected from Ca, Sr, and Ba, and compounds composed mainly of Sn. The electron emission material is present on the surface of the dielectric layer 7 so as to face the discharge space.
 ここで、第1電子放出材料、第2電子放出材料ともに、2次電子放出係数が高いので、PDP1の駆動時において低電圧で駆動できる。また、特に第1電子放出材料は、放電遅れを抑える効果にも優れている。 Here, since both the first electron-emitting material and the second electron-emitting material have a high secondary electron emission coefficient, the PDP 1 can be driven at a low voltage. In particular, the first electron emission material is also excellent in the effect of suppressing the discharge delay.
 従って、上記従来技術にかかるPDP1xのようにMgO層上に電子放出性の微粒子が存在しないPDPと比べると、本実施形態にかかるPDP1では、放電遅れが抑えられ且つ低電圧で駆動できる。 Therefore, compared to the PDP 1x according to the above-described prior art, which does not have electron-emitting fine particles on the MgO layer, the PDP 1 according to this embodiment can be driven at a low voltage with a reduced discharge delay.
 また、MgO層上に、第1電子放出材料及び第2電子放出材料を配設する量が少なくても、放電遅れ抑制効果と駆動電圧低減効果とを得ることができる。すなわち、フロントパネルの可視光透過率を確保しながら、放電遅れ抑制効果と駆動電圧低減効果とを得ることができる。 Further, even if the amount of the first electron emitting material and the second electron emitting material disposed on the MgO layer is small, it is possible to obtain a discharge delay suppressing effect and a driving voltage reducing effect. That is, it is possible to obtain a discharge delay suppressing effect and a driving voltage reducing effect while ensuring the visible light transmittance of the front panel.
 また、PDP1においては、MgO層上に第1電子放出材料と、第2電子放出材料とが存在することによって、上記の放電遅れ低減効果及び駆動電圧低減効果が長時間安定して得られる。その機構は、現時点では詳細には不明であるが、第1電子放出材料16a、第2電子放出材料16bという互いに異なる材料が共存し、相互作用することによって得られる効果である。 In addition, in the PDP 1, the first electron emission material and the second electron emission material are present on the MgO layer, so that the discharge delay reduction effect and the drive voltage reduction effect can be stably obtained for a long time. Although the mechanism is unknown in detail at present, it is an effect obtained by the coexistence and interaction of different materials such as the first electron emission material 16a and the second electron emission material 16b.
 本発明の実施例にかかるPDPを、比較例と共に作製して、性能評価試験を行った。なお、当然ながら実施例の構成及び性能評価試験の方法は、本発明を何ら限定するものではない。 The PDP according to the example of the present invention was manufactured together with a comparative example, and a performance evaluation test was performed. Of course, the configuration of the example and the method of the performance evaluation test do not limit the present invention.
 (実施例1)
 第1電子放出材料は、次のように製造した。
Example 1
The first electron-emitting material was manufactured as follows.
 MgO前駆体として純度99.99%のMg(OH)2を用いた。また、焼結助剤として純度99.9%のフッ化マグネシウムを用いた。Mg(OH)2に対して0.25mol%のフッ化マグネシウムを秤量、添加し、遊星型ボールミル及びジルコニアビーズを用い、純水中で湿式混合した。この混合物を乾燥した後、乳鉢で解砕し、高純度のアルミナるつぼ中で焼成した。焼成温度は1200℃とし、15分間維持して焼成した。 Mg (OH) 2 having a purity of 99.99% was used as the MgO precursor. Further, magnesium fluoride having a purity of 99.9% was used as a sintering aid. 0.25 mol% of magnesium fluoride with respect to Mg (OH) 2 was weighed and added, and wet-mixed in pure water using a planetary ball mill and zirconia beads. After drying this mixture, it was crushed in a mortar and fired in a high purity alumina crucible. The firing temperature was 1200 ° C., and the firing was continued for 15 minutes.
 焼成後の各MgO微粒子を、ボールミルを用いて乾式粉砕し、ナイロン製メッシュを通過させて粗大粒子を取り除いたものを、第1電子放出材料とした。 The fired MgO fine particles were dry pulverized using a ball mill and passed through a nylon mesh to remove coarse particles, which was used as the first electron emission material.
 一方、第2電子放出材料については、次のように3種類のサンプルを製造した。 On the other hand, for the second electron emission material, three types of samples were manufactured as follows.
 出発原料として、純度99.99%のCaCO3、SrCO3、BaCO3と、SnO2とを準備した。 As starting materials, 99.99% pure CaCO 3 , SrCO 3 , BaCO 3 and SnO 2 were prepared.
 そして、CaCO3、SrCO3、BaCO3の各々について、SnO2と等モル数になるよう、これらの原料を秤量し、遊星型ボールミル及びジルコニアビーズを用いて、純水中で湿式混合して、3種類の混合物(CaCO3とSnO2の混合物、SrCO3とSnO2の混合物、BaCO3とSnO2の混合物)を得た。 Then, for each of CaCO 3 , SrCO 3 , and BaCO 3 , these raw materials are weighed so as to have an equimolar number with SnO 2, and wet-mixed in pure water using a planetary ball mill and zirconia beads, Three types of mixtures (a mixture of CaCO 3 and SnO 2, a mixture of SrCO 3 and SnO 2, and a mixture of BaCO 3 and SnO 2 ) were obtained.
 各混合物を乾燥した後、乳鉢で解砕し、高純度のアルミナるつぼ中で焼成した。焼成温度は1200℃とし、15分間維持して焼成した。焼成後の粉体を、ボールミルを用いて乾式粉砕し、ナイロン製メッシュを通過させて粗大粒子を取り除いたものを、第2電子放出材料とした。 After drying each mixture, it was crushed in a mortar and fired in a high-purity alumina crucible. The firing temperature was 1200 ° C., and the firing was continued for 15 minutes. The fired powder was dry-ground using a ball mill and passed through a nylon mesh to remove coarse particles as a second electron emission material.
 得られた3種類の粉体は、X線回折分析により、それぞれCaSnO3の単一相、SrSnO3の単一相、BaSnO3の単一相であることを確認した。 The resulting 3 kinds of powder by X-ray diffraction analysis, a single phase of each CaSnO 3, single-phase SrSnO 3, was confirmed to be a single phase of BaSnO 3.
 上記第1電子放出材料及び第2電子放出材料の平均粒子径は1μmとした。 The average particle diameter of the first electron emitting material and the second electron emitting material was 1 μm.
 上述のようにして合成した第1電子放出材料と、各第2電子放出材料とを、以下のようにMgO層の上に塗布した。 The first electron-emitting material synthesized as described above and each second electron-emitting material were applied on the MgO layer as follows.
 第1電子放出材料と、第2電子放出材料とを、重量比で3対1の割合で混合して混合粉を作成し、この混合粉と溶剤、樹脂とを混合して、三本ロールミルを用いて混練し、スクリーン印刷用インクとした。予めフロントパネルガラスに形成されたMgO層の上に、スクリーン印刷法を用いて、第1電子放出材料および第2電子放出材料を、被覆率が4.5%になるように一括塗布した。成膜後は、100℃で1時間乾燥した後、500℃で3時間焼成して有機成分を焼去した。 The first electron-emitting material and the second electron-emitting material are mixed at a weight ratio of 3: 1 to create a mixed powder, and the mixed powder, a solvent, and a resin are mixed, and a three-roll mill is prepared. And kneaded to obtain an ink for screen printing. On the MgO layer previously formed on the front panel glass, the first electron-emitting material and the second electron-emitting material were collectively applied using a screen printing method so that the coverage was 4.5%. After film formation, the film was dried at 100 ° C. for 1 hour and then baked at 500 ° C. for 3 hours to burn off organic components.
 このようにして得た3種類の各フロントパネルを用いて、3種類の交流面放電型PDPを作製した。(放電ガスは、Xe100% 150Torr)
 (比較例1)
 第1電子放出材料16a及び第2電子放出材料16bを配設しないフロントパネルを用いる以外は、上記実施例1と同様に交流面放電型PDPを作製した。
Three types of AC surface discharge type PDPs were prepared using the three types of front panels thus obtained. (The discharge gas is Xe 100% 150 Torr)
(Comparative Example 1)
An AC surface discharge type PDP was produced in the same manner as in Example 1 except that a front panel without the first electron emitting material 16a and the second electron emitting material 16b was used.
 (比較例2)
 ハロゲン原子を含む第1電子放出材料のみをMgO層の上に配したフロントパネルを用いる以外は、上記実施例1と同様に交流面放電型PDPを作製した。
(Comparative Example 2)
An AC surface discharge type PDP was produced in the same manner as in Example 1 except that a front panel in which only the first electron-emitting material containing a halogen atom was disposed on the MgO layer was used.
 なお、第1電子放出材料を配設する重量は、実施例1で第1電子放出材料を配設する重量と同一とした。 Note that the weight of the first electron-emitting material disposed was the same as the weight of the first electron-emitting material disposed in Example 1.
 (比較例3)
 フッ化マグネシウムを添加しないMg(OH)2を実施例1のMgO微粒子製造時と同様の方法で焼成し、MgO微粒子(ハロゲン原子を含まないMgO微粒子)を合成した。このハロゲン原子を含まないMgO微粒子のみをMgO層の上に配設したフロントパネルを用いる以外は、上記実施例1と同様に交流面放電型PDPを作製した。
(Comparative Example 3)
Mg (OH) 2 to which no magnesium fluoride was added was fired in the same manner as in the production of the MgO fine particles of Example 1 to synthesize MgO fine particles (MgO fine particles containing no halogen atoms). An AC surface discharge type PDP was produced in the same manner as in Example 1 except that a front panel in which only MgO fine particles not containing halogen atoms were disposed on the MgO layer was used.
 MgO微粒子を配設する重量は、実施例1で第1電子放出材料を配設する重量と同一とした。 The weight of the MgO fine particles disposed was the same as the weight of the first electron-emitting material disposed in Example 1.
 (比較例4)
 第2電子放出材料のみをMgO層の上に配設したフロントパネルを用いる以外は、上記実施例1と同様に交流面放電型PDPを作製した。
(Comparative Example 4)
An AC surface discharge type PDP was produced in the same manner as in Example 1 except that a front panel in which only the second electron emission material was disposed on the MgO layer was used.
 第2電子放出材料を配設する重量は、実施例1で第2電子放出材料を配設する重量と同一とした。 The weight for disposing the second electron-emitting material was the same as the weight for disposing the second electron-emitting material in Example 1.
 (性能評価の方法)
 以上のように作製した実施例1及び比較例1~4にかかる各PDPに対して、初期の放電遅れ時間と放電開始電圧を評価した。また、初期の評価を行った後、維持パルス数を通常の3倍にして400時間連続して白色点灯表示し、その後、再び放電遅れ時間と放電開始電圧の測定を行った。
(Performance evaluation method)
The initial discharge delay time and the discharge start voltage were evaluated for the PDPs according to Example 1 and Comparative Examples 1 to 4 manufactured as described above. Further, after the initial evaluation, the number of sustain pulses was increased to three times the normal number and the white lighting display was continued for 400 hours, and then the discharge delay time and the discharge start voltage were measured again.
 放電遅れ時間を測定する具体的方法として、各PDPにおける任意の1画素に対して、データパルスおよび走査パルスを繰り返し印加し、放電に伴う蛍光体の発光を光センサーモジュールにより受光し、印加したパルス波形と受光信号波形をデジタルオシロスコープで観察することによって測定した。 As a specific method for measuring the discharge delay time, a data pulse and a scanning pulse are repeatedly applied to an arbitrary pixel in each PDP, and the light emission of the phosphor accompanying the discharge is received by the optical sensor module. The waveform and the received light signal waveform were measured by observing with a digital oscilloscope.
 パルスを印加してから放電が発生するまでの時間(放電遅れ時間)を100回測定し、測定した放電遅れ時間の最大値と最小値の平均を算出して、放電遅れ時間とした。 The time from the application of a pulse to the occurrence of discharge (discharge delay time) was measured 100 times, and the average of the maximum and minimum values of the measured discharge delay time was calculated as the discharge delay time.
 一方、放電開始電圧はパネルを駆動回路に接続し、図3に示した駆動波形を入力することで白色点灯表示させ、全領域で点灯が確認できる維持電圧の最低値を測定して放電開始電圧とした。 On the other hand, the discharge start voltage is determined by connecting the panel to the drive circuit, inputting the drive waveform shown in FIG. 3 to display white lighting, and measuring the minimum value of the sustain voltage at which lighting can be confirmed in all areas. It was.
 (性能評価の結果と考察)
 実施例1及び比較例1~4の各PDPについて、初期および400hr点灯後の放電遅れ時間を図5に示し、初期および400hr点灯後の放電開始電圧を図6に示している。なお、実施例1については、第2電子放出材料としてCaSnO3、SrSnO3、BaSnO3を用いた3種類があるが、図5,6では、代表的に第2電子放出材料としてBaSnO3を用いたものについての結果を示している。
(Results and discussion of performance evaluation)
For each PDP of Example 1 and Comparative Examples 1 to 4, the discharge delay time after the initial and 400 hr lighting is shown in FIG. 5, and the discharge start voltage after the initial and 400 hr lighting is shown in FIG. Use As for Example 1, CaSnO 3 as the second electron emitting material, SrSnO 3, there are three types using BaSnO 3, in FIGS. 5 and 6, a typically BaSnO 3 as the second electron emitting material Shows the results for what was.
 放電遅れ時間については、従来の一般的なパネル構成に相当する比較例1に対して、比較例3および比較例4では、比較例1と比べて、放電遅れ時間短縮効果は見られない。これに対して、ハロゲン原子を含む第1電子放出材料を配設した比較例2では、初期の放電遅れ時間が大幅に短縮されている。また、実施例1においても、比較例2よりは劣るものの、比較例1と比べると放電遅れ時間が短縮され、放電遅れが30nsec程度に小さくなっているので、点灯不良が生じることなく高速駆動できることがわかる。 Regarding the discharge delay time, compared with Comparative Example 1 corresponding to the conventional general panel configuration, Comparative Example 3 and Comparative Example 4 do not have the effect of reducing the discharge delay time compared to Comparative Example 1. On the other hand, in Comparative Example 2 in which the first electron-emitting material containing halogen atoms is provided, the initial discharge delay time is greatly shortened. Further, in Example 1, although inferior to Comparative Example 2, the discharge delay time is shortened compared to Comparative Example 1, and the discharge delay is reduced to about 30 nsec, so that it can be driven at high speed without causing a lighting failure. I understand.
 なお、実施例1の放電遅れ時間短縮効果が、比較例2より劣るのは、実施例1において、第1電子放出材料と第2電子放出材料とが混合されているため、第1電子放出材料が第2電子放出材料によって部分的に遮蔽され、第1電子放出材料及び第2電子放出材料の特性が相殺されたことによると推測される。 Note that the discharge delay time shortening effect of Example 1 is inferior to that of Comparative Example 2 because the first electron-emitting material and the second electron-emitting material are mixed in Example 1, and thus the first electron-emitting material. Is partially shielded by the second electron emission material, and it is assumed that the characteristics of the first electron emission material and the second electron emission material are offset.
 一方、比較例1~4では、400hr点灯後の放電遅れ時間が、初期の放電遅れ時間よりも長くなり、経時的に特性悪化の傾向が見られるのに対して、第1電子放出材料と第2電子放出材料とが混合されて配された実施例1では、400hr点灯後の放電遅れ時間が、初期の放電遅れ時間とほとんど変わらない。 On the other hand, in Comparative Examples 1 to 4, the discharge delay time after lighting for 400 hr is longer than the initial discharge delay time, and there is a tendency for the characteristics to deteriorate over time. In Example 1 in which the two-electron emission material is mixed and disposed, the discharge delay time after lighting for 400 hr is almost the same as the initial discharge delay time.
 実施例1において、放電遅れ時間の経時的変化が小さい理由については明らかでないが、互いに種類が異なる第1電子放出材料16a及び第2電子放出材料16bが共存することによって、放電空間で特異的な現象が起こっているものと考えられる。 In Example 1, it is not clear why the time-dependent change in the discharge delay time is small, but the first electron-emitting material 16a and the second electron-emitting material 16b, which are different from each other, coexist and are specific in the discharge space. It seems that the phenomenon is occurring.
 次に、初期の放電開始電圧については、放電遅れ時間の場合と同様、比較例1に対して比較例2では、初期の放電開始電圧が低くなっているが、比較例3,4および実施例1では、比較例1と比べて優位性は見られなかった。 Next, with respect to the initial discharge start voltage, as in the case of the discharge delay time, the initial discharge start voltage is lower in Comparative Example 2 than in Comparative Example 1, but in Comparative Examples 3 and 4 and Examples. In 1, the superiority was not seen as compared with Comparative Example 1.
 一方、初期の放電開始電圧と400hr点灯後の放電開始電圧とを比べると、比較例1~3では、400hr点灯後の放電開始電圧が、初期の放電開始電圧よりも高くなっているが、比較例4では、逆に、400hr点灯後の放電開始電圧が、初期の放電開始電圧よりも低くなっている。 On the other hand, comparing the initial discharge start voltage and the discharge start voltage after 400 hr lighting, in Comparative Examples 1 to 3, the discharge start voltage after 400 hr lighting is higher than the initial discharge start voltage. In Example 4, conversely, the discharge start voltage after lighting for 400 hr is lower than the initial discharge start voltage.
 これに対して、実施例1では、400hr点灯後の放電開始電圧が、初期の放電開始電圧とほとんど変わらない。このように、実施例1において、放電開始電圧の経時的な変化が少ないのは、上記のように第1電子放出材料を配設した比較例2の傾向と第2電子放出材料を配設した比較例4の傾向とが逆であり、その互いに逆傾向を示す効果が相まることによって生じたものと考えられる。 In contrast, in Example 1, the discharge start voltage after lighting for 400 hr is almost the same as the initial discharge start voltage. Thus, in Example 1, the change with time of the discharge start voltage is small because the tendency of Comparative Example 2 in which the first electron-emitting material is provided and the second electron-emitting material are provided as described above. The tendency of the comparative example 4 is opposite, and it is considered that the effect of showing the opposite tendency is combined.
 以上の放電遅れ時間及び放電開始電圧の評価結果から、実施例1のように第1電子放出材料と第2電子放出材料とを混合して用いることによって、PDPを長時間表示しても、放電遅れ時間及び放電開始電圧の両特性について初期特性が保持されることがわかる。 From the above evaluation results of the discharge delay time and the discharge start voltage, even if the PDP is displayed for a long time by using a mixture of the first electron emission material and the second electron emission material as in Example 1, the discharge can be performed. It can be seen that the initial characteristics are maintained for both the delay time and the discharge start voltage characteristics.
 また実施例1において、第1電子放出材料と第2電子放出材料の割合を調整すれば、初期の放電遅れ時間と放電開始電圧について調整可能と考えられる。 In Example 1, it is considered that the initial discharge delay time and the discharge start voltage can be adjusted by adjusting the ratio of the first electron emission material and the second electron emission material.
 なお、実施例1の試験結果として、第2電子放出材料として、BaSnO3を用いる場合ついて掲載したが、第2電子放出材料としてCaSnO3およびSrSnO3を用いる場合ついても同様の測定を行い、同様の効果を奏することを確認した。ただし、BaSnO3を用いた場合が最も大きな効果が得られた。これは、CaSnO3,SrSnO3と比べて、BaSnO3の安定性がより優れることに起因すると考えられる。 As a test result of Example 1, the case where BaSnO 3 was used as the second electron emission material was described. However, the same measurement was performed when CaSnO 3 and SrSnO 3 were used as the second electron emission material. It was confirmed that the effect of. However, the greatest effect was obtained when BaSnO 3 was used. This is compared to CaSnO 3, SrSnO 3, it considered the stability of BaSnO 3 is due to the more excellent.
 また、第2電子放出材料として、CaSnO3、SrSnO3、BaSnO3を単独で用いるだけでなく、これらの2種類以上を混合して用いても同様の効果を奏する。また、これらの2種類以上を固溶した固溶体も、化学的な構造は類似しており、同様の特性を有するため、第2電子放出材料として、これら固溶体を用いても、同様の効果を奏する。 Further, not only CaSnO 3 , SrSnO 3 , and BaSnO 3 are used alone as the second electron-emitting material, but the same effect can be obtained by using a mixture of two or more of these. In addition, since the solid solutions in which these two or more types are dissolved are similar in chemical structure and have similar characteristics, even if these solid solutions are used as the second electron-emitting material, the same effects can be obtained. .
 本発明によれば、高精細で画像表示を行うPDPを低電圧で駆動することができ、交通機関及び公共施設、家庭などにおけるテレビジョン装置及びコンピュータ用の表示装置等に利用することが可能である。 According to the present invention, a high-definition image display PDP can be driven with a low voltage, and can be used for a television set, a display device for a computer, and the like in transportation, public facilities, and homes. is there.
    1  PDP
    2  フロントパネル
    3  フロントパネルガラス
    4  維持電極
    5  走査電極
    6  表示電極対
    7  誘電体層
    8  MgO層
    9  バックパネル
   10  バックパネルガラス
   11  データ電極
   12  誘電体層
   13  隔壁
   14  蛍光体層
   15  放電空間
   16a 第1電子放出材料
   16b 第2電子放出材料
   17  保護層
1 PDP
DESCRIPTION OF SYMBOLS 2 Front panel 3 Front panel glass 4 Sustain electrode 5 Scan electrode 6 Display electrode pair 7 Dielectric layer 8 MgO layer 9 Back panel 10 Back panel glass 11 Data electrode 12 Dielectric layer 13 Partition 14 Phosphor layer 15 Discharge space 16a 1st Electron emission material 16b Second electron emission material 17 Protective layer

Claims (9)

  1.  電極と誘電体層とが配設された第1基板が、放電空間を介して第2基板と対向配置され、当該第1及び第2両基板の周囲が封着されたプラズマディスプレイパネルであって、
     前記誘電体層の表面には、前記放電空間に臨むように、
     ハロゲン原子を含むMgO微粒子からなる第1の材料と、
     Ca、Sr、Baから選ばれた一種類以上、及びSnを主成分とする微粒子化合物からなる第2の材料とが配設されているプラズマディスプレイパネル。
    A plasma display panel in which a first substrate on which an electrode and a dielectric layer are disposed is disposed opposite to a second substrate through a discharge space, and the periphery of both the first and second substrates is sealed. ,
    On the surface of the dielectric layer, facing the discharge space,
    A first material comprising MgO fine particles containing a halogen atom;
    A plasma display panel in which one or more kinds selected from Ca, Sr, and Ba and a second material made of a fine particle compound containing Sn as a main component are disposed.
  2.  前記誘電体層の放電空間側には、MgOを主成分とする金属酸化物を含む表面層が設けられ、
     前記第1の材料及び第2の材料は、
     前記表面層の放電空間側に配設されている請求項1に記載のプラズマディスプレイパネル。
    On the discharge space side of the dielectric layer, a surface layer containing a metal oxide mainly composed of MgO is provided,
    The first material and the second material are:
    The plasma display panel according to claim 1, wherein the plasma display panel is disposed on a discharge space side of the surface layer.
  3.  前記ハロゲン原子は、
     前記MgO微粒子の表層近傍に含まれている請求項1又は2に記載のプラズマディスプレイパネル。
    The halogen atom is
    The plasma display panel according to claim 1, wherein the plasma display panel is included in the vicinity of a surface layer of the MgO fine particles.
  4.  前記ハロゲン原子は、
     フッ素原子あるいは塩素原子である請求項1又は2に記載のプラズマディスプレイパネル。
    The halogen atom is
    The plasma display panel according to claim 1 or 2, which is a fluorine atom or a chlorine atom.
  5.  前記第2の材料を構成する化合物は、
     Ca、Sr、Baから選ばれた一種類以上と、Snとを特定の比率で含む結晶性酸化物である請求項1又は2に記載のプラズマディスプレイパネル。
    The compound constituting the second material is
    3. The plasma display panel according to claim 1, wherein the plasma display panel is a crystalline oxide containing one or more kinds selected from Ca, Sr, and Ba and Sn at a specific ratio.
  6.  前記第2の材料を構成する化合物は、
     CaSnO3、SrSnO3、BaSnO3、あるいはこれら2種類以上の固溶体である請求項1又は2に記載のプラズマディスプレイパネル。
    The compound constituting the second material is
    CaSnO 3, SrSnO 3, BaSnO 3 or a plasma display panel according to claim 1 or 2, of these two or more kinds of solid solutions.
  7.  電極及び誘電体層を備える第1基板に対し、前記誘電体層の表面に金属酸化物層を形成する金属酸化物層形成工程と、
     前記金属酸化物層が形成された第1基板と、第2基板とを対向配置させて封着する封着工程とを有するプラズマディスプレイパネルの製造方法であって、
     前記金属酸化物層形成工程と封着工程との間に、前記金属酸化物層の表面に、
     ハロゲン原子を含むMgO微粒子からなる第1の材料及びCa、Sr、Baから選ばれた一種類以上、及びSnを主成分とする微粒子化合物第2の材料を配設する工程を有するプラズマディスプレイパネルの製造方法。
    A metal oxide layer forming step of forming a metal oxide layer on a surface of the dielectric layer with respect to a first substrate including an electrode and a dielectric layer;
    A method for manufacturing a plasma display panel, comprising: a sealing step in which a first substrate on which the metal oxide layer is formed and a second substrate are disposed opposite to each other and sealed;
    Between the metal oxide layer forming step and the sealing step, on the surface of the metal oxide layer,
    A plasma display panel having a step of disposing a first material composed of MgO fine particles containing a halogen atom and one or more selected from Ca, Sr, Ba, and a fine particle compound second material mainly composed of Sn. Production method.
  8.  前記第1の材料として、
     MgO前駆体に対して、フッ化マグネシウム、塩化マグネシウム、フッ化アルミニウム、フッ化カルシウム、フッ化リチウム、塩化マグネシウム、塩化アルミニウム、塩化カルシウム、塩化リチウム、塩化ナトリウムから選ばれた1種以上を焼結助剤として添加してなる材料を、焼成することによって得たMgO微粒子を用いる請求項7記載のプラズマディスプレイパネルの製造方法。
    As the first material,
    One or more kinds selected from magnesium fluoride, magnesium chloride, aluminum fluoride, calcium fluoride, lithium fluoride, magnesium chloride, aluminum chloride, calcium chloride, lithium chloride, and sodium chloride are sintered to the MgO precursor. The method for producing a plasma display panel according to claim 7, wherein MgO fine particles obtained by firing a material added as an auxiliary agent are used.
  9.  前記第1の材料及び第2の材料を配設する工程において、
     前記金属酸化物層の表面に、前記第1の材料を配設し、その後、前記第2の材料を配設する請求項7記載のプラズマディスプレイパネルの製造方法。
    In the step of disposing the first material and the second material,
    The method of manufacturing a plasma display panel according to claim 7, wherein the first material is disposed on the surface of the metal oxide layer, and then the second material is disposed.
PCT/JP2010/002637 2009-04-21 2010-04-12 Plasma display panel and method for manufacturing same WO2010122730A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-103089 2009-04-21
JP2009103089 2009-04-21

Publications (1)

Publication Number Publication Date
WO2010122730A1 true WO2010122730A1 (en) 2010-10-28

Family

ID=43010859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002637 WO2010122730A1 (en) 2009-04-21 2010-04-12 Plasma display panel and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2010122730A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004273158A (en) * 2003-03-05 2004-09-30 Noritake Co Ltd Protecting film material for discharge display device
JP2008041438A (en) * 2006-08-07 2008-02-21 Pioneer Electronic Corp Plasma display panel
JP2008293803A (en) * 2007-05-24 2008-12-04 Hitachi Ltd Plasma display panel and method for manufacturing the same
WO2009081589A1 (en) * 2007-12-26 2009-07-02 Panasonic Corporation Plasma display panel
JP2009170191A (en) * 2008-01-15 2009-07-30 Panasonic Corp Plasma display panel and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004273158A (en) * 2003-03-05 2004-09-30 Noritake Co Ltd Protecting film material for discharge display device
JP2008041438A (en) * 2006-08-07 2008-02-21 Pioneer Electronic Corp Plasma display panel
JP2008293803A (en) * 2007-05-24 2008-12-04 Hitachi Ltd Plasma display panel and method for manufacturing the same
WO2009081589A1 (en) * 2007-12-26 2009-07-02 Panasonic Corporation Plasma display panel
JP2009170191A (en) * 2008-01-15 2009-07-30 Panasonic Corp Plasma display panel and its manufacturing method

Similar Documents

Publication Publication Date Title
JP4148985B2 (en) Plasma display panel
JP4129288B2 (en) Plasma display panel and manufacturing method thereof
JP4148982B2 (en) Plasma display panel
EP2063447B1 (en) Plasma display panel and method for manufacture thereof
JP4659118B2 (en) Plasma display panel and manufacturing method thereof
JP4476334B2 (en) Plasma display panel and manufacturing method thereof
JP2004323576A (en) Phosphor and plasma display device
US8222814B2 (en) Plasma display panel with exposed crystal particles and manufacturing method thereof
JP2009170191A (en) Plasma display panel and its manufacturing method
JP4148983B2 (en) Plasma display panel
WO2011118152A1 (en) Manufacturing method for plasma display panel
WO2010095344A1 (en) Plasma display panel
WO2010122730A1 (en) Plasma display panel and method for manufacturing same
JP5028487B2 (en) Plasma display panel
WO2011138870A1 (en) Plasma display panel
JP2009301841A (en) Plasma display panel
JP4569631B2 (en) Plasma display device and method for producing green phosphor material for plasma display device
JP2009301865A (en) Plasma display panel
WO2010095343A1 (en) Plasma display panel
JP2010177072A (en) Plasma display panel
JP2011171221A (en) Plasma display panel, and method for manufacturing the same
WO2011108260A1 (en) Process for producing plasma display panel
JP2011086426A (en) Plasma display panel
JP2010177073A (en) Plasma display panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10766793

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10766793

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP