WO2010121523A1 - Full load testing method of low power consumption for converter - Google Patents

Full load testing method of low power consumption for converter Download PDF

Info

Publication number
WO2010121523A1
WO2010121523A1 PCT/CN2010/071793 CN2010071793W WO2010121523A1 WO 2010121523 A1 WO2010121523 A1 WO 2010121523A1 CN 2010071793 W CN2010071793 W CN 2010071793W WO 2010121523 A1 WO2010121523 A1 WO 2010121523A1
Authority
WO
WIPO (PCT)
Prior art keywords
converter
power
tested
level
output
Prior art date
Application number
PCT/CN2010/071793
Other languages
French (fr)
Chinese (zh)
Inventor
李兴
李旷
左强
郭自勇
徐颖
付国良
丁雅丽
Original Assignee
荣信电力电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣信电力电子股份有限公司 filed Critical 荣信电力电子股份有限公司
Publication of WO2010121523A1 publication Critical patent/WO2010121523A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies
    • G01R31/42AC power supplies

Definitions

  • the invention relates to a converter test method, in particular to a micro-power converter full load test method. Background technique
  • a converter is a conversion device that converts electrical energy of one current into electrical energy of another current.
  • the load test of the converter refers to the test of the load carrying capacity of the converter. That is, the magnitude of the output current of the converter under the rated output voltage directly reflects the load transfer capacity of the converter.
  • the test requires two necessary conditions: power supply conditions and load conditions.
  • the tested converter is connected to a motor, which is mechanically connected to the generator.
  • the output of the generator is directly connected to the resistive load, or connected to the resistive load through a converter (such as a rectifier), and the power output of the generator is consumed.
  • a converter such as a rectifier
  • the electric energy from the power grid is transmitted to the tested converter through the first transformer T1
  • the output of the tested converter is connected to the first motor M1
  • the first motor M1 is connected to the second motor M2 through the coupling
  • the second motor The output of the M2 is connected to the test converter, and the output power of the converter is returned to the same grid or different grid via the second transformer T2.
  • the advantages of this solution are: It can verify the control ability of the converter to the motor, that is, the speed regulation performance of the converter, and the converter can be tested at different frequencies.
  • the disadvantage is that the equipment investment is large and the cost is high. It is necessary to have two motors and accompanying converters with the same power as the converter under test.
  • the technical problem to be solved by the present invention is to provide a simple structure and a manufacturing cost, in view of the limitation of the power capacity and the like in the prior art, and the limitation of the field load test can be performed only at the application site.
  • the control determines the active value of the output current of the converter and the power factor ( ⁇ to control the active power output of the converter / ⁇ specifically:
  • the fundamental frequency of the output current of the tested converter is equal to the grid frequency; the phase sequence of the output current of the converter is the same as the corresponding input phase sequence; the phase angle of the fundamental current of the converter output current and the phase of the grid voltage The angle is the same.
  • the converter is a non-four-quadrant two-level rectification, two-level inverter structure, a non-four-quadrant two-level rectification, a three-level inverter structure, and a four-quadrant three-level rectification, three-level inverter structure.
  • the method of the invention does not require the accompanying converter and the test motor, which greatly simplifies the structure of the converter full load test, and also greatly saves the test cost, the investment in the test equipment is small, and the running cost is low.
  • the method of the invention can be applied to the full load test of various types of converters, and has wide adaptability.
  • FIG. 1 is a schematic diagram showing the structure of a back-to-back motor unit test plan in the background art
  • FIG. 3 is a schematic diagram of energy transfer of the present invention.
  • FIG. 4 is a schematic structural view of a non-four-quadrant two-level converter
  • Figure 5 is a schematic structural view of a four-quadrant two-level converter
  • FIG. 7 is a schematic structural view of a four-quadrant three-level rectification and three-level inverter converter
  • FIG. 8 is a schematic structural view of a four-quadrant power unit series high-voltage converter
  • Figure 9 is a schematic diagram showing the structure of a four-quadrant power unit series high-voltage converter (the rectification part of the power unit is two-level, and the inverter part is two-level);
  • Figure 11 is a schematic structural view of a four-quadrant power unit series high-voltage converter (three-level rectification part and three-level inverter part);
  • Figure 12 is a single line diagram of the principle of the full-load test method for a micro-power converter
  • Figure 13 is a schematic diagram of a single-phase equivalent circuit of a micro-power converter full load test method
  • Figure 14 is a single-phase phasor diagram of a micro-power converter full load test method
  • Figure 15 is a block diagram of the control scheme for the micro-power converter full load test method.
  • a micropower converter full load test method of the present invention comprises the following steps:
  • test method of the present invention is explained in the following steps:
  • i n is the output of the tested converter.
  • is the grid power
  • the input power of the tested converter the output power of the tested converter, L, is the power loss of the converter under test.
  • phase angle of the fundamental current of the converter output current is the same as the phase angle of the grid voltage
  • Controlling the output power of the converter by controlling the magnitude of the output current of the converter
  • the capacity of the grid is greater than the power loss of the converter under test.
  • the converter under test is equivalent to a voltage source, the grid voltage is , and the output current of the converter is controlled. In phase with the grid voltage, the voltage drop across the reactor is jQjLi. .
  • the phase converter is equivalent to the phase angle of the voltage and the grid voltage, and is the effective value of the grid line voltage, which is the mode of the grid voltage, the mode of the voltage source, and the equivalent inductance of the converter. /. Outputs the phase current rms value for the converter.
  • Test block control block diagram shown in Figure 15 for the converter output power command, according to formula (6) and grid line voltage to obtain the converter output current given rms; the synchronization circuit can get the same phase with the grid voltage
  • the sinusoidal synchronizing signal can then calculate the current given instantaneous values of the three currents representing the three phase currents of the converter output in real time; the three current given instantaneous values are compared with the instantaneous feedback values of the corresponding phases of the tested converter
  • the current error is obtained, and the current error is modulated by the PWM regulator into a PWM control pulse signal by the current regulator, and the output current of the converter is controlled by controlling the amplitude of the output voltage of the converter. The purpose of controlling the output power of the converter is achieved.
  • the various operating indicators of the monitored converter refer to the internal transformer temperature rise of the converter. , temperature rise of semiconductor power devices, temperature rise of cables and busbars, stability of control system under full load conditions, efficiency of frequency converters, and effectiveness of protection systems;
  • the internal transformer temperature rise, the temperature rise of the semiconductor power device, and the temperature rise of the cable and busbar do not exceed the limits of the converter design, or the control control system works well under full load conditions, and the efficiency of the inverter is not
  • the reduction and protection system are effective, etc., indicating that the tested converter passed the full load test and reached the performance requirements of the design requirements. Otherwise, if one of the measured indicators exceeds the design limit, it means that the tested converter failed to pass the full load test and needs to be rectified.
  • test converter to which this method can be applied shall have the following structure:
  • Non-four quadrant two-level structure As shown in Figure 4, the rectifier side of the converter is the input transformer T, the diode D w , the non-four-quadrant structure, the capacitor constitutes the DC filter circuit, and the inverter side is the fully-controlled power semiconductor switching device ⁇ , V ⁇ , composed of a two-level output structure.
  • the rectifier side of the tested converter is a four-quadrant structure composed of fully-controlled power semiconductor switching devices V 2 - 2 , V 3 - 2 , V 4 - 2 , V 5 - 2 , and V 6 - 2 .
  • the capacitor d- 2 constitutes a DC filter circuit, and the inverter side is a fully controlled power semiconductor switching device V 7 - 2 , V 8 - 2 , V 9 - 2 , V 10 _ 2 , V u — 2 , V 12 - 2 A two-level output structure.
  • the rectifier side of the tested converter is a fully-controlled power semiconductor switching device ⁇ 5 , V 2 — 5 , V 3 — 5 , V 4 —, V 5 —, V 6 —, V 7 — 5 , V 8 — 5 , V 9 — 5 , V 1() — 5 , V U — 5 , V 12 — 5 , and diodes D 2 - 5 , D 3 - 5 , D 4 - 5 , D 5 - 5 , A four-quadrant structure consisting of D 6 - 5 , capacitors d- 5 , C 2 - 5 form a DC filter circuit, and the inverter side is a fully-controlled power semiconductor switching device V 13 - 5 , V 14 - 5 , V 15 - 5 , V 16 - 5 , V 17 - 5 , V 18 - 5 , V 19 - 5 ,
  • a three-level output structure consisting of V 23 - 5 , V 24 - 5 , and diodes D 7 - 5 , D 8 - 5 , D 9 - 5 , D 10 - 5 , D U - 5 , and D 12 - 5 .
  • the tested converter may also be a non-four quadrant H-bridge power unit series structure as shown in FIG.
  • the tested converter can also be a four-quadrant power H-bridge unit series high-voltage converter as shown in Fig. 9.
  • the rectification part of the power unit is two-level, and the inverter part is a two-level structure.
  • the tested converter may also be a non-four-quadrant H-bridge power unit series high-voltage converter as shown in FIG. 10, the rectifying portion of the power unit is two-level, and the inverter portion is a three-level structure.
  • the tested converter can also be a four-quadrant power unit series high-voltage converter as shown in Fig. 11, the rectification part is three-level, and the inverter part is three-level structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)

Abstract

A full load testing method of low power consumption for a converter includes follow steps: 1) connecting an input end of the converter to be tested with a power grid, and connecting an output end of the converter to be tested to the input end of the converter via a reactor (L), 2) controlling active power P outputted from the converter by adjusting an effective value I of current outputted from the converter to be tested and power factor cosϕ, 3) judging whether the converter to be tested has passed the load test with the set output power P by monitoring whether various operating indicators of the converter to be tested are normal or not after operating for a stated time with the active power P.

Description

一种微功耗的变流器全载试验方法 技术领域  Micro-power converter full-load test method
本发明涉及一种变流器试验方法, 具体的说是一种微功耗的变流器全负载试验方法。 背景技术  The invention relates to a converter test method, in particular to a micro-power converter full load test method. Background technique
变流器是将一种电流制的电能转变为另一种电流制的电能的转换装置。 变流器的负载 试验是指对变流器传递负荷能力的试验, 即该变流器在额定输出电压条件下输出电流的大 小直接反映变流器传递负荷能力。 试验需要具备两个必要条件: 电源条件和负载条件。  A converter is a conversion device that converts electrical energy of one current into electrical energy of another current. The load test of the converter refers to the test of the load carrying capacity of the converter. That is, the magnitude of the output current of the converter under the rated output voltage directly reflects the load transfer capacity of the converter. The test requires two necessary conditions: power supply conditions and load conditions.
目前, 进行变流器全负载试验的方法主要有以下两种:  At present, there are two main methods for performing full load converter test:
1 ) 能耗试验方案  1) Energy consumption test plan
被试变流器接电动机, 该电动机与发电机机械相连, 发电机的输出或直接连接阻性负 载, 或通过变流器(例如整流器)连接阻性负载, 将发电机输出的电能消耗在阻性负载上。 其特点是在全负载试验时, 这些接入的阻性负载消耗大量的电能。  The tested converter is connected to a motor, which is mechanically connected to the generator. The output of the generator is directly connected to the resistive load, or connected to the resistive load through a converter (such as a rectifier), and the power output of the generator is consumed. Sexual load. It is characterized by the fact that these accessible resistive loads consume large amounts of electrical energy during full load testing.
2) 背靠背电机机组试验方案  2) Back-to-back motor unit test plan
专利号为 ZL200820069333. X、名称为《基于功率单元串联型高压变频器的能量回馈装 置》 的中国实用新型专利公开了一种能量回馈的变频器, 满足功率单元串联型高压变频器 四象限运行的要求, 且具有很好的节能效果。 该装置是将发电机发电运行产生的能量经单 相 H型桥式逆变电路、直流母线以及工作在逆变状态的 PWM整流器和滤波电抗器流向电网, 电能由电机经变流器流向电网。  The patent number is ZL200820069333. X. The Chinese utility model patent entitled "Energy feedback device based on power unit series high-voltage frequency converter" discloses an energy feedback inverter, which satisfies the four-quadrant operation of the power unit series high-voltage inverter. Requirements, and has a very good energy saving effect. The device flows the energy generated by the generator power generation operation through a single-phase H-type bridge inverter circuit, a DC bus, and a PWM rectifier and a filter reactor operating in an inverter state, and the electric energy flows from the motor to the power grid through the converter.
见图 1, 该方法采用的装置为一台被试变流器、一台陪试变流器以及第一、二电机 Ml、 See Figure 1. The device used in this method is a tested converter, a companion converter and first and second motors Ml,
M2, 来自电网的电能经第一变压器 T1 传递给被试变流器, 被试变流器输出端接至第一电 机 Ml, 第一电机 Ml通过联轴器连接第二电机 M2, 第二电机 M2的输出端接陪试变流器, 陪试变流器输出电能经第二变压器 T2回送到同一个电网或不同的电网。 该方案的优点是: 能验证变流器对电机的控制能力, 即变流器的调速性能, 可在不同频率下对变流器进行测 试。 其缺点是设备投资大, 成本高, 需要有两台与被试变流器相同功率的电机和陪试变流 器。 M2, the electric energy from the power grid is transmitted to the tested converter through the first transformer T1, the output of the tested converter is connected to the first motor M1, and the first motor M1 is connected to the second motor M2 through the coupling, the second motor The output of the M2 is connected to the test converter, and the output power of the converter is returned to the same grid or different grid via the second transformer T2. The advantages of this solution are: It can verify the control ability of the converter to the motor, that is, the speed regulation performance of the converter, and the converter can be tested at different frequencies. The disadvantage is that the equipment investment is large and the cost is high. It is necessary to have two motors and accompanying converters with the same power as the converter under test.
由于受电源容量等条件的限制, 对于大功率变流器, 有些厂家只做空载或轻载试验, 只能在应用现场进行现场负荷试验。 而能够进行变流器全负载试验的方法尚未见报道。  Due to the limitations of power supply capacity and other conditions, for high-power converters, some manufacturers only perform no-load or light-load tests, and can only perform field load tests at the application site. The method of being able to perform a full load test of the converter has not been reported.
发明内容  Summary of the invention
针对现有技术中存在的大功率变流器受电源容量等条件的限制, 只能在应用现场进行 现场负荷试验等不足之处, 本发明要解决的技术问题是提供一种结构简单、 制作成本低、 能量损失较小的不采用电动机进行的一种微功耗的变流器全负载试验方法。  The technical problem to be solved by the present invention is to provide a simple structure and a manufacturing cost, in view of the limitation of the power capacity and the like in the prior art, and the limitation of the field load test can be performed only at the application site. A low power, low energy loss, a micropower converter full load test method that does not use an electric motor.
为实现上述目的, 本发明通过以下技术方案实现:  To achieve the above object, the present invention is achieved by the following technical solutions:
本发明一种微功耗的变流器全载试验方法包括以下步骤:  A micropower converter full load test method of the present invention comprises the following steps:
1 ) 将被试变流器的输入端与电网相连, 被试变流器的输出端经电抗器接回至变流器 输入端;  1) connecting the input end of the tested converter to the power grid, and the output end of the tested converter is connected back to the converter input end via the reactor;
2) 通过调节被试变流器输出电流有效值 I 的大小和功率因数(Χ^Φ 来控制变流器输 出的有功功率 Λ  2) Control the active power of the converter output by adjusting the magnitude and power factor of the RMS value of the output current of the converter (Χ^Φ)
3) 在上述有功功率 下运行规定的时间, 通过监测被试变流器的各种运行指标是否 正常, 来判断被试变流器是否通过所规定的输出功率 Ρ下的负荷试验。  3) Run the above-mentioned active power for a specified period of time. By monitoring whether the various operating indicators of the tested converter are normal, determine whether the tested converter passes the load test under the specified output power.
所述通过调节被试变流器输出电流有效值 I的大小和功率因数 (Χ^Φ来控制变流器输 出的有功功率/ ^具体为:  The control determines the active value of the output current of the converter and the power factor (Χ^Φ to control the active power output of the converter / ^ specifically:
根据公式 P = V3f// *C0SO和电网线电压 求得变流器输出电流有效值的给定值 ; 将检测的实际输出电流有效值 /与上述输出电流有效值的给定值 相比较, 通过 PI 或 PID调节改变被试变流器的输出脉宽调制比, 使输出电流有效值 /与电流有效值的给定 值 /*相等, 相位相同, 实现被试变流器输出功率与所规定的输出功率相等。 Calculate the rms value of the output current of the converter according to the formula P = V3f// *C0SO and the grid line voltage; compare the detected actual output current RMS value with the given value of the RMS value of the above output current, and pass PI Or the PID adjustment changes the output pulse width modulation ratio of the tested converter, so that the output current rms value / is equal to the current rms value given value / *, the phase is the same, and the tested converter output power and the specified output are realized. The power is equal.
所述被试变流器的各种运行指标包括: 变流器内部变压器温升、 半导体功率器件的温 升、 电缆和母排的温升、 控制控系统在全载条件下工作的稳定性、 变频器的效率以及保护 系统的有效性。  The various operational indicators of the tested converter include: temperature rise of the internal transformer of the converter, temperature rise of the semiconductor power device, temperature rise of the cable and the busbar, stability of the control control system under full load conditions, The efficiency of the frequency converter and the effectiveness of the protection system.
所述被试变流器输出电压高于电网电压。  The output voltage of the tested converter is higher than the grid voltage.
所述被试变流器的输出电流的基波频率与电网频率相等; 变流器输出电流的相序与相 应的输入相序相同; 变流器输出电流基波的相位角与电网电压的相位角相同。  The fundamental frequency of the output current of the tested converter is equal to the grid frequency; the phase sequence of the output current of the converter is the same as the corresponding input phase sequence; the phase angle of the fundamental current of the converter output current and the phase of the grid voltage The angle is the same.
所述变流器为非四象限两电平整流、 两电平逆变结构, 非四象限两电平整流、 三电平 逆变结构以及四象限三电平整流、 三电平逆变结构。  The converter is a non-four-quadrant two-level rectification, two-level inverter structure, a non-four-quadrant two-level rectification, a three-level inverter structure, and a four-quadrant three-level rectification, three-level inverter structure.
所述变流器为非四象限 H桥功率单元串联式高压变流器, 其功率单元的整流部分为两 电平, 逆变部分为两电平结构; 或者所述变流器为非四象限 H桥功率单元串联式高压变流 器, 其功率单元的整流部分为两电平, 逆变部分为三电平结构; 或者所述变流器为四象限 H桥功率单元串联式高压变流器, 其整流部分为两电平, 逆变部分为两电平结构; 或者所 述变流器为四象限 H桥功率单元串联式高压变流器, 其整流部分为三电平, 逆变部分为三 电平结构。  The converter is a non-four-quadrant H-bridge power unit series high-voltage converter, the rectification part of the power unit is two-level, the inverter part is a two-level structure; or the converter is a non-four-quadrant H-bridge power unit series high-voltage converter, the rectification part of the power unit is two-level, the inverter part is a three-level structure; or the converter is a four-quadrant H-bridge power unit series high-voltage converter The rectifying part is of two levels, and the inverter part is of two-level structure; or the converter is a four-quadrant H-bridge power unit series high-voltage converter, the rectifying part is three-level, and the inverting part is Three-level structure.
与现有技术相比, 本发明的优点是:  The advantages of the present invention over the prior art are:
1 . 应用本发明方法对变流器进行全载试验, 使电网只需补充被试变流器所损耗的功 率, 通常只占被试变流器额定功率的百分之几, 这样在有限的电网容量条件下, 使得远超 过电网容量的变流器负载试验成为可能, 克服了只有在电源容量充裕的情况下才能进行变 流器全载试验的局限性, 能量由电网进来, 通过被试变流器, 再回到电网, 只需较小的能 量补充, 是一种完全的节能试验方法。  1. Applying the method of the invention to the full load test of the converter, so that the power grid only needs to supplement the power loss of the tested converter, and usually only accounts for a few percent of the rated power of the converter under test, thus being limited. Under the condition of power grid capacity, it is possible to test the converter load far exceeding the capacity of the power grid. It overcomes the limitation that the full load test of the converter can only be carried out when the power supply capacity is sufficient. The energy comes in from the power grid and passes the test. The flow device, back to the grid, requires only a small amount of energy to be added, and is a complete energy-saving test method.
2. 本发明方法不需要陪试变流器和陪试电机, 大大简化了进行变流器全载试验的装 置结构, 也极大化地节省了试验费用, 试验设备投资少, 运行成本低。  2. The method of the invention does not require the accompanying converter and the test motor, which greatly simplifies the structure of the converter full load test, and also greatly saves the test cost, the investment in the test equipment is small, and the running cost is low.
3. 节约电能, 试验所消耗的电能仅为传统变流器全载试验消耗电能的 2-3%。  3. To save energy, the power consumed by the test is only 2-3% of the power consumed by the traditional converter full load test.
4. 本发明方法可以应用于多种类变流器的全载试验, 适应范围广。  4. The method of the invention can be applied to the full load test of various types of converters, and has wide adaptability.
附图说明  DRAWINGS
图 1为背景技术中背靠背电机机组试验方案的结构单线示意图;  1 is a schematic diagram showing the structure of a back-to-back motor unit test plan in the background art;
图 2为本发明的结构示意图;  2 is a schematic structural view of the present invention;
图 3为本发明的能量传递示意图;  Figure 3 is a schematic diagram of energy transfer of the present invention;
图 4为非四象限两电平变流器的结构示意图;  4 is a schematic structural view of a non-four-quadrant two-level converter;
图 5为四象限两电平变流器的结构示意图;  Figure 5 is a schematic structural view of a four-quadrant two-level converter;
图 6为非四象限三电平变流器的结构示意图;  6 is a schematic structural view of a non-four-quadrant three-level converter;
图 7为四象限三电平整流、 三电平逆变变流器的结构示意图;  7 is a schematic structural view of a four-quadrant three-level rectification and three-level inverter converter;
图 8为非四象限功率单元串联式高压变流器的结构示意图;  8 is a schematic structural view of a four-quadrant power unit series high-voltage converter;
图 9为四象限功率单元串联式高压变流器 (功率单元的整流部分为两电平, 逆变部分 为两电平) 的结构示意图;  Figure 9 is a schematic diagram showing the structure of a four-quadrant power unit series high-voltage converter (the rectification part of the power unit is two-level, and the inverter part is two-level);
图 10 为非四象限功率单元串联式高压变流器 (功率单元的整流部分为两电平, 逆变 部分为三电平) 的结构示意图;  Figure 10 is a schematic diagram showing the structure of a non-four-quadrant power unit series high-voltage converter (the rectification part of the power unit is two-level, and the inverter part is three-level);
图 11是四象限功率单元串联式高压变流器 (整流部分为三电平, 逆变部分为三电平) 的结构示意图;  Figure 11 is a schematic structural view of a four-quadrant power unit series high-voltage converter (three-level rectification part and three-level inverter part);
图 12为微功耗的变流器全载试验方法原理单线图;  Figure 12 is a single line diagram of the principle of the full-load test method for a micro-power converter;
图 13为微功耗的变流器全负载试验方法的单相等效电路原理图;  Figure 13 is a schematic diagram of a single-phase equivalent circuit of a micro-power converter full load test method;
图 14为微功耗的变流器全负载试验方法的单相相量图; 图 15为了微功耗的变流器全负载试验方法的控制方案框图。 Figure 14 is a single-phase phasor diagram of a micro-power converter full load test method; Figure 15 is a block diagram of the control scheme for the micro-power converter full load test method.
具体实施方式  detailed description
本发明一种微功耗的变流器全载试验方法包括以下步骤:  A micropower converter full load test method of the present invention comprises the following steps:
1) 将被试变流器的输入端与电网相连, 变流器的输出端经电抗器接回至变流器输入 而;  1) connecting the input end of the tested converter to the power grid, and the output end of the converter is connected back to the converter input via the reactor;
2) 通过调节变流器输出电流有效值 /的大小和功率因数(Χ^Φ 来控制变流器输出的 有功功率 Ρ  2) Control the active power of the converter output by adjusting the converter output current rms/size and power factor (Χ^Φ)
3) 在上述有功功率 下运行规定的时间, 通过监测被试变流器的各种运行指标是否 正常, 来判断则被试变流器是否通过所规定的输出功率 Ρ下的负荷试验。  3) Run the above-mentioned active power for a specified period of time. By monitoring whether the various operating indicators of the tested converter are normal, determine whether the tested converter passes the load test under the specified output power.
下面分步骤阐述本发明的试验方法:  The test method of the present invention is explained in the following steps:
1) 将被试变流器的输入端与电网相连, 变流器的输出端经电抗器接回至变流器输入 如图 2所示、 图 3所示, 将被试变流器输入端经变压器 T与电网相连, 被试变流器输 出端经电抗器 L再与输入端相连; 损耗的能量由电网补充。 电抗器 L的作用是使变流器的 输出与电网相匹配。  1) Connect the input of the tested converter to the grid, and the output of the converter is connected back to the converter input via the reactor. As shown in Figure 2, as shown in Figure 3, the input of the converter will be tested. Connected to the grid via transformer T, the output of the converter is connected to the input via reactor L; the energy lost is supplemented by the grid. The role of reactor L is to match the output of the converter to the grid.
2) 通过调节被试变流器输出电流有效值 I 的大小和功率因数(Χ^Φ 来控制变流器输 出的有功功率 ^  2) Control the active power of the converter output by adjusting the magnitude and power factor of the RMS value of the output current of the converter (Χ^Φ ^
根据公式 P
Figure imgf000005_0001
和电网线电压 求得变流器输出电流有效值的给定值 ; 将检测的实际输出电流有效值 /与上述输出电流有效值的给定值 相比较, 通过 PI 或 PID调节改变被试变流器的输出脉宽调制比, 使输出电流有效值 /与电流有效值的给定 值 /*相等, 相位相同, 实现被试变流器输出功率与所规定的输出功率相等。
According to the formula P
Figure imgf000005_0001
And the grid line voltage is used to obtain a given value of the converter output current RMS value; the detected actual output current RMS value is compared with the given value of the output current RMS value, and the subject variable current is changed by PI or PID adjustment The output pulse width modulation ratio of the device makes the output current RMS/equal to the given value of the current RMS/*, and the phase is the same, and the output power of the tested converter is equal to the specified output power.
试验方法原理单线图如图 12 所示, 被试变流器输出电流。与电网电压^同相位, 即 变流器向电网输送纯有功功率 (功率因数为 1), 有  The principle of the test method is shown in Figure 12. The current output of the converter is tested. In phase with the grid voltage ^, that is, the converter delivers pure active power to the grid (power factor is 1),
(1)  (1)
(2)  (2)
P..+P, p + p (3)  P..+P, p + p (3)
P =P, (4)  P = P, (4)
其中 1为电网电 为被试变流器输入电流, in为被试变流器输出电 1 is the grid input current for the tested converter, and i n is the output of the tested converter.
为被试变流器损耗电流, ^为电网功率, 为被试变流器输入功率, 为被试变流 器输出功率, L,为被试变流器损耗功率。  For the tested converter current loss, ^ is the grid power, the input power of the tested converter, the output power of the tested converter, L, is the power loss of the converter under test.
被试变流器输入功率 (电流) 由电网功率 (电流) 和被试变流器输出功率 (电流) 两 部分提供, 即电网只需提供被试变流器的损耗能量。 因此, 通过控制被试变流器输出电流 的大小, 即可控制被试变流器的输入功率与输出功率。  The input power (current) of the converter is provided by the grid power (current) and the output power (current) of the converter under test, that is, the grid only needs to provide the loss energy of the converter under test. Therefore, by controlling the magnitude of the output current of the tested converter, the input power and output power of the tested converter can be controlled.
在单位功率因数即 C0SO=l, 且只考虑基波功率时, 有  When the unit power factor is C0SO=l, and only the fundamental power is considered,
Pm =^UIm (5) P m =^UI m (5)
Po = UI0 (6) P o = UI 0 (6)
上式中, 为电网线电压, /„为变流器输入相电流有效值, / 为变流器输出相电流有 效值。  In the above formula, it is the grid line voltage, /„ is the input phase current rms value for the converter, and / is the converter output phase current effective value.
全载试验效率为  Full load test efficiency is
= PaiPm (7) = P a iP m (7)
试验方法需满足的条件:  Conditions to be met by the test method:
变流器的应具有其输出电压能够略高于或高于电网电压的能力; 变流器的输出基波频率应与电网频率相等; The converter should have the ability to have its output voltage slightly higher or higher than the grid voltage; The output fundamental frequency of the converter should be equal to the grid frequency;
变流器输出相序与相应的输入相序相同;  The output phase sequence of the converter is the same as the corresponding input phase sequence;
变流器输出电流基波的相位角与电网电压的相位角相同;  The phase angle of the fundamental current of the converter output current is the same as the phase angle of the grid voltage;
通过控制变流器输出电流的大小来控制变流器的输出功率;  Controlling the output power of the converter by controlling the magnitude of the output current of the converter;
电网的容量大于被试变流器的损耗功率。  The capacity of the grid is greater than the power loss of the converter under test.
试验方法的单相等效电路图如图 13所示, 相量图如图 14所示;  The single-phase equivalent circuit diagram of the test method is shown in Figure 13, and the phasor diagram is shown in Figure 14;
图 13、 图 14中, 被试变流器等效为电压源 , 电网电压为 , 控制变流器输出电 流 /。与电网电压同相位, 电抗器上压降为 jQjLi。。  In Figure 13 and Figure 14, the converter under test is equivalent to a voltage source, the grid voltage is , and the output current of the converter is controlled. In phase with the grid voltage, the voltage drop across the reactor is jQjLi. .
有功功率由变流器流向电网, 大小为  Active power flows from the converter to the grid, the size is
P = - -sin δ  P = - -sin δ
Figure imgf000006_0001
Figure imgf000006_0001
其中, 为被试变流器等效为电压 与电网电压为 的相位角, 为电网线电压有 效值, 为电网电压为 的模, 为电压源 的模, 为变流器的等效感抗, /。为变 流器输出相电流有效值。  Wherein, the phase converter is equivalent to the phase angle of the voltage and the grid voltage, and is the effective value of the grid line voltage, which is the mode of the grid voltage, the mode of the voltage source, and the equivalent inductance of the converter. /. Outputs the phase current rms value for the converter.
上式中为单相电路的功率, 被试变流器输出总功率为:  In the above formula, the power of the single-phase circuit, the total output power of the tested converter is:
Pall = 3P = 3U 0 = UIQ = P0 (9) P all = 3P = 3U 0 = UI Q = P 0 (9)
试验方法控制框图如图 15所示, 为变流器输出功率指令, 根据公式(6)和电网线 电压求得变流器输出电流给定有效值 ; 由同步电路可以得到与电网电压同相位的正弦同 步信号, 于是可实时计算出变流器输出的三个分别代表三个相电流的电流给定瞬时值; 三 个电流给定瞬时值与被试变流器对应相的瞬时反馈值进行比较得到电流误差, 电流误差经 电流调节器进行 PI调节或 PID调节后由 PWM调制器调制成 PWM控制脉冲信号, 通过控制 被试变流器输出电压的幅值来控制变流器的输出电流, 从而达到控制变流器输出功率的目 的。  Test block control block diagram shown in Figure 15, for the converter output power command, according to formula (6) and grid line voltage to obtain the converter output current given rms; the synchronization circuit can get the same phase with the grid voltage The sinusoidal synchronizing signal can then calculate the current given instantaneous values of the three currents representing the three phase currents of the converter output in real time; the three current given instantaneous values are compared with the instantaneous feedback values of the corresponding phases of the tested converter The current error is obtained, and the current error is modulated by the PWM regulator into a PWM control pulse signal by the current regulator, and the output current of the converter is controlled by controlling the amplitude of the output voltage of the converter. The purpose of controlling the output power of the converter is achieved.
3) 在上述有功功率 下运行规定的时间, 通过监测被试变流器的各种运行指标是否 正常, 来判断则被试变流器是否通过所规定的输出功率 P下的负荷试验。  3) Run for the specified time under the above-mentioned active power, and judge whether the tested converter passes the load test under the specified output power P by monitoring whether the various operating indicators of the tested converter are normal.
不同种类的变流器, 其全载试验时的运行时间不同, 取决于标准或用户对变流器的具 体要求, 监测被试变流器的各种运行指标是指变流器内部变压器温升、 半导体功率器件的 温升、 电缆和母排的温升、 控制控系统在全载条件下工作的稳定性、 变频器的效率以及保 护系统的有效性等; 当运行时间到后, 变流器内部变压器温升、 半导体功率器件的温升以 及电缆和母排的温升不超过变流器设计的限值, 或者控制控系统在全载条件下工作表现出 稳定性好、 变频器的效率没有降低以及保护系统有效等, 则说明被试变流器通过了全载试 验, 达到设计要求所性能指标。 否则, 如果其中一个被测指标超出设计限值, 则说明被试 变流器没能通过全载试验, 需要整改。  Different types of converters have different running times during full load test, depending on the standard or user specific requirements of the converter. The various operating indicators of the monitored converter refer to the internal transformer temperature rise of the converter. , temperature rise of semiconductor power devices, temperature rise of cables and busbars, stability of control system under full load conditions, efficiency of frequency converters, and effectiveness of protection systems; The internal transformer temperature rise, the temperature rise of the semiconductor power device, and the temperature rise of the cable and busbar do not exceed the limits of the converter design, or the control control system works well under full load conditions, and the efficiency of the inverter is not The reduction and protection system are effective, etc., indicating that the tested converter passed the full load test and reached the performance requirements of the design requirements. Otherwise, if one of the measured indicators exceeds the design limit, it means that the tested converter failed to pass the full load test and needs to be rectified.
可以应用本方法的被试变流器须为以下结构:  The test converter to which this method can be applied shall have the following structure:
非四象限两电平结构。 如图 4所示, 被试变流器整流侧为输入变压器 T、 二极管 Dw、 组成的非四象限结构, 电容 组成直流滤波电路, 逆变侧为全控 型功率半导体开关器件^^、 V^, 组成的两电平输出结构。 四象限两电平结构。如图 5所示,被试变流器整流侧为全控型功率半导体开关器件 V2-2、 V3-2、 V4-2、 V5-2、 V6-2组成的四象限结构, 电容 d—2组成直流滤波电路、 逆变侧为全控型 功率半导体开关器件 V7-2、 V8-2、 V9-2、 V10_2 , Vu2、 V12-2组成的两电平输出结构。 Non-four quadrant two-level structure. As shown in Figure 4, the rectifier side of the converter is the input transformer T, the diode D w , the non-four-quadrant structure, the capacitor constitutes the DC filter circuit, and the inverter side is the fully-controlled power semiconductor switching device ^^, V ^, composed of a two-level output structure. Four-quadrant two-level structure. As shown in FIG. 5, the rectifier side of the tested converter is a four-quadrant structure composed of fully-controlled power semiconductor switching devices V 2 - 2 , V 3 - 2 , V 4 - 2 , V 5 - 2 , and V 6 - 2 . The capacitor d- 2 constitutes a DC filter circuit, and the inverter side is a fully controlled power semiconductor switching device V 7 - 2 , V 8 - 2 , V 9 - 2 , V 10 _ 2 , V u2 , V 12 - 2 A two-level output structure.
非四象限三电平结构。 如图 6所示, 被试变流器整流侧为输入变压器 T、 二极管 D2-3、 D3-3、 D4-3、 D5-3、 D6-3组成的非四象限结构, 电容 d—3、 C2-3组成直流滤波电路、 逆变侧为 全控型功率半导体开关器件 V2-3、 V3-3、 V4-3、 V5-3、 V6-3、 V7-3、 v8-3、 v9-3、 νω-3、 Vu-3、 v123、 及二极管 D7-3、 D8-3、 D9-3、 D Du-3、 D12-3组成的三电平输出结构。 Non-four quadrant three-level structure. As shown in FIG. 6, the rectifier side of the tested converter is a non-four-quadrant structure composed of an input transformer T, diodes D 2 - 3 , D 3 - 3 , D 4 - 3 , D 5 - 3 , and D 6 - 3 , The capacitors d- 3 and C 2 - 3 form a DC filter circuit, and the inverter side is a fully-controlled power semiconductor switching device V 2 - 3 , V 3 - 3 , V 4 - 3 , V 5 - 3 , V 6 - 3 , V 7 - 3 , v 8 - 3 , v 9 - 3 , ν ω - 3 , V u - 3 , v 12 - 3 , and diodes D 7 - 3 , D 8 - 3 , D 9 - 3 , DD u - 3 , D 12 - 3 three-level output structure.
四象限三电平整流、 三电平逆变结构。 如图 7所示, 被试变流器整流侧为全控型功率 半导体开关器件 ^ 5、 V25、 V35、 V4—、 V5—、 V6—、 V75、 V85、 V95、 V1()5、 VU5、 V125、 及二极管 D2-5、 D3-5、 D4-5、 D5-5、 D6-5组成的四象限结构, 电容 d—5、 C2-5组成直流滤波电路, 逆变 侧为全控型功率半导体开关器件 V13-5、 V14-5、 V15-5、 V16-5、 V17-5、 V18-5、 V19-5、 V2。-5、 V21-5、 V22-5Four-quadrant three-level rectification, three-level inverter structure. As shown in FIG. 7, the rectifier side of the tested converter is a fully-controlled power semiconductor switching device ^ 5 , V 25 , V 35 , V 4 —, V 5 —, V 6 —, V 75 , V 85 , V 95 , V 1()5 , V U5 , V 125 , and diodes D 2 - 5 , D 3 - 5 , D 4 - 5 , D 5 - 5 , A four-quadrant structure consisting of D 6 - 5 , capacitors d- 5 , C 2 - 5 form a DC filter circuit, and the inverter side is a fully-controlled power semiconductor switching device V 13 - 5 , V 14 - 5 , V 15 - 5 , V 16 - 5 , V 17 - 5 , V 18 - 5 , V 19 - 5 , V 2 . - 5 , V 21 - 5 , V 22 - 5 ,
V23-5、 V24-5、 及二极管 D7-5、 D8-5、 D9-5、 D10-5 , DU-5、 D12-5组成的三电平输出结构。 A three-level output structure consisting of V 23 - 5 , V 24 - 5 , and diodes D 7 - 5 , D 8 - 5 , D 9 - 5 , D 10 - 5 , D U - 5 , and D 12 - 5 .
被试变流器还可为如图 8所示的非四象限 H桥功率单元串联式结构。  The tested converter may also be a non-four quadrant H-bridge power unit series structure as shown in FIG.
被试变流器还可为如图 9所示的四象限功率 H桥单元串联式高压变流器, 其功率单元 的整流部分为两电平, 逆变部分为两电平结构。  The tested converter can also be a four-quadrant power H-bridge unit series high-voltage converter as shown in Fig. 9. The rectification part of the power unit is two-level, and the inverter part is a two-level structure.
被试变流器还可为如图 10所示的非四象限 H桥功率单元串联式高压变流器, 其功率 单元的整流部分为两电平, 逆变部分为三电平结构。  The tested converter may also be a non-four-quadrant H-bridge power unit series high-voltage converter as shown in FIG. 10, the rectifying portion of the power unit is two-level, and the inverter portion is a three-level structure.
被试变流器还可为如图 11 所示的四象限功率单元串联式高压变流器, 其整流部分为 三电平, 逆变部分为三电平结构。  The tested converter can also be a four-quadrant power unit series high-voltage converter as shown in Fig. 11, the rectification part is three-level, and the inverter part is three-level structure.

Claims

权 利 要 求 书 Claim
1、 一种微功耗的变流器全载试验方法, 其特征在于包括以下步骤: 1. A micropower converter full load test method, comprising the steps of:
1 ) 将被试变流器的输入端与电网相连, 被试变流器的输出端经电抗器接回至变流器 输入端;  1) connecting the input end of the tested converter to the power grid, and the output end of the tested converter is connected back to the converter input end via the reactor;
2 ) 通过调节被试变流器输出电流有效值 I 的大小和功率因数(Χ^ Φ 来控制变流器输 出的有功功率 Λ  2) Control the active power of the converter output by adjusting the magnitude and power factor (Χ^ Φ) of the output current RMS of the tested converter.
3 ) 在上述有功功率 下运行规定的时间, 通过监测被试变流器的各种运行指标是否 正常, 来判断被试变流器是否通过所规定的输出功率 Ρ下的负荷试验。  3) Run for the specified time under the above-mentioned active power, and judge whether the tested converter passes the load test under the specified output power by monitoring whether the various operating indicators of the tested converter are normal.
2. 按权利要求 1所述的微功耗的变流器全载试验方法, 其特征在于:  2. The micropower converter full load test method according to claim 1, wherein:
所述通过调节被试变流器输出电流有效值 I的大小和功率因数 (Χ^ Φ来控制变流器输 出的有功功率/ ^具体为:  The control determines the active value of the output current I of the converter and the power factor (Χ^ Φ to control the active power output of the converter / ^ specifically:
根据公式 P = V3f// *C0S O和电网线电压 求得变流器输出电流有效值的给定值 ; 将检测的实际输出电流有效值 /与上述输出电流有效值的给定值 相比较, 通过 PI 或 PID调节改变被试变流器的输出脉宽调制比, 使输出电流有效值 /与电流有效值的给定 值 /*相等, 相位相同, 实现被试变流器输出功率与所规定的输出功率相等。  The given value of the RMS value of the converter output current is obtained according to the formula P = V3f / / * C0S O and the grid line voltage; the detected actual output current RMS value / compared with the given value of the above output current RMS value, The output pulse width modulation ratio of the tested converter is changed by PI or PID adjustment, so that the output current RMS value/equal to the current rms value/* is the same, the phase is the same, and the output power of the tested converter is specified. The output power is equal.
3. 按权利要求 1 所述的微功耗的变流器全载试验方法, 其特征在于: 所述被试变流 器的各种运行指标包括: 变流器内部变压器温升、 半导体功率器件的温升、 电缆和母排的 温升、 控制控系统在全载条件下工作的稳定性、 变频器的效率以及保护系统的有效性。  3. The micro-power converter full load test method according to claim 1, wherein: the operating indexes of the tested converter include: converter internal transformer temperature rise, semiconductor power device The temperature rise, the temperature rise of the cable and busbar, the stability of the control system under full load conditions, the efficiency of the frequency converter and the effectiveness of the protection system.
4. 按权利要求 1 所述的微功耗的变流器全载试验方法, 其特征在于: 所述被试变流 器输出电压高于电网电压。  4. The micropower converter full load test method according to claim 1, wherein: the output voltage of the tested converter is higher than a grid voltage.
5. 按权利要求 1 所述的微功耗的变流器全载试验方法, 其特征在于: 所述被试变流 器的输出电流的基波频率与电网频率相等; 变流器输出电流的相序与相应的输入相序相 同; 变流器输出电流基波的相位角与电网电压的相位角相同。  5. The micropower converter full load test method according to claim 1, wherein: the fundamental frequency of the output current of the tested converter is equal to the grid frequency; and the output current of the converter The phase sequence is the same as the corresponding input phase sequence; the phase angle of the fundamental current of the converter output current is the same as the phase angle of the grid voltage.
6. 按权利要求 1 所述的微功耗的变流器全载试验方法, 其特征在于: 所述变流器为 非四象限两电平整流、 两电平逆变结构, 非四象限两电平整流、 三电平逆变结构以及四象 限三电平整流、 三电平逆变结构。  6. The micropower converter full load test method according to claim 1, wherein: said converter is a non-four-quadrant two-level rectification, two-level inverter structure, and not four quadrants. Level rectification, three-level inverter structure and four-quadrant three-level rectification, three-level inverter structure.
7. 按权利要求 1 所述的微功耗的变流器全载试验方法, 其特征在于: 所述变流器为 非四象限 H桥功率单元串联式高压变流器, 其功率单元的整流部分为两电平, 逆变部分为 两电平结构; 或者所述变流器为非四象限 H桥功率单元串联式高压变流器, 其功率单元的 整流部分为两电平, 逆变部分为三电平结构; 或者所述变流器为四象限 H桥功率单元串联 式高压变流器, 其整流部分为两电平, 逆变部分为两电平结构; 或者所述变流器为四象限 7. The micro-power converter full load test method according to claim 1, wherein: said converter is a non-four-quadrant H-bridge power unit series high-voltage converter, and the power unit is rectified. The part is two-level, and the inverter part is a two-level structure; or the converter is a non-four-quadrant H-bridge power unit series high-voltage converter, and the rectification part of the power unit is two-level, the inverter part a three-level structure; or the converter is a four-quadrant H-bridge power unit series high-voltage converter, the rectification portion is two-level, the inverter portion is a two-level structure; or the converter is Four quadrant
H桥功率单元串联式高压变流器, 其整流部分为三电平, 逆变部分为三电平结构。 The H-bridge power unit series high-voltage converter has a three-level rectification portion and a three-level inverter portion.
PCT/CN2010/071793 2009-04-25 2010-04-15 Full load testing method of low power consumption for converter WO2010121523A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910011321.0 2009-04-25
CN200910011321A CN101539603A (en) 2009-04-25 2009-04-25 Full-load test method of converter with micro power consumption

Publications (1)

Publication Number Publication Date
WO2010121523A1 true WO2010121523A1 (en) 2010-10-28

Family

ID=41122900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/071793 WO2010121523A1 (en) 2009-04-25 2010-04-15 Full load testing method of low power consumption for converter

Country Status (2)

Country Link
CN (1) CN101539603A (en)
WO (1) WO2010121523A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106597173A (en) * 2016-12-29 2017-04-26 北京动力源科技股份有限公司 Micropower loss testing method, apparatus and system during the full load of high voltage frequency converter
CN108169605A (en) * 2018-02-05 2018-06-15 新风光电子科技股份有限公司 A kind of test system and method being fully loaded with using SVG realization frequency converters
CN109725267A (en) * 2017-10-31 2019-05-07 南方电网科学研究院有限责任公司 A kind of the test circuit and its test method of solid-state transformer
CN110231533A (en) * 2019-07-15 2019-09-13 中铁检验认证中心有限公司 Temperature-rise test device and method, storage medium, computer equipment
CN112130010A (en) * 2020-08-14 2020-12-25 许继电气股份有限公司 Static frequency converter SFC performance detection system under heavy current working condition
CN116243095A (en) * 2023-05-10 2023-06-09 深圳弘远电气有限公司 Automatic program control-based test circuit, test device and control method thereof
CN116298561A (en) * 2023-02-10 2023-06-23 常熟天地煤机装备有限公司 Voltage phase sequence detection system for four-quadrant frequency converter

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101539603A (en) * 2009-04-25 2009-09-23 荣信电力电子股份有限公司 Full-load test method of converter with micro power consumption
CN102508072B (en) * 2011-11-03 2014-03-05 天津电气传动设计研究所 High-power three-level frequency converter temperature rise and loss testing method employing active front end
CN102508071B (en) * 2011-11-03 2014-07-02 天津电气传动设计研究所 Rated capacity test method of active front end voltage-type alternating current-direct current-alternating current frequency converter
CN102508073B (en) * 2011-11-03 2014-07-02 天津电气传动设计研究所 Load test device for large-power frequency converter adopting front active end
CN104201917A (en) * 2014-05-05 2014-12-10 周细文 Voltage-adjustable mixed-frequency voltage source
CN109470940B (en) * 2017-09-07 2021-03-23 株洲变流技术国家工程研究中心有限公司 Full-power test device and method for converter
CN109283418A (en) * 2018-11-28 2019-01-29 天津农学院 A kind of factory power test test method of universal frequency converter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5773681A (en) * 1980-10-27 1982-05-08 Yaskawa Electric Mfg Co Ltd Inverter testing device
CN1979185A (en) * 2005-12-09 2007-06-13 湖北三环发展股份有限公司 Novel high-pressure frequency variator low energy-consumption load testing method
JP2008092676A (en) * 2006-10-02 2008-04-17 Shinko Electric Co Ltd Inverter tester
JP2008104344A (en) * 2001-08-27 2008-05-01 Shinko Electric Co Ltd Inverter test device
CN101539603A (en) * 2009-04-25 2009-09-23 荣信电力电子股份有限公司 Full-load test method of converter with micro power consumption

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5773681A (en) * 1980-10-27 1982-05-08 Yaskawa Electric Mfg Co Ltd Inverter testing device
JP2008104344A (en) * 2001-08-27 2008-05-01 Shinko Electric Co Ltd Inverter test device
CN1979185A (en) * 2005-12-09 2007-06-13 湖北三环发展股份有限公司 Novel high-pressure frequency variator low energy-consumption load testing method
JP2008092676A (en) * 2006-10-02 2008-04-17 Shinko Electric Co Ltd Inverter tester
CN101539603A (en) * 2009-04-25 2009-09-23 荣信电力电子股份有限公司 Full-load test method of converter with micro power consumption

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106597173A (en) * 2016-12-29 2017-04-26 北京动力源科技股份有限公司 Micropower loss testing method, apparatus and system during the full load of high voltage frequency converter
CN109725267A (en) * 2017-10-31 2019-05-07 南方电网科学研究院有限责任公司 A kind of the test circuit and its test method of solid-state transformer
CN108169605A (en) * 2018-02-05 2018-06-15 新风光电子科技股份有限公司 A kind of test system and method being fully loaded with using SVG realization frequency converters
CN108169605B (en) * 2018-02-05 2023-09-08 新风光电子科技股份有限公司 Test system and method for realizing full load of frequency converter by SVG
CN110231533A (en) * 2019-07-15 2019-09-13 中铁检验认证中心有限公司 Temperature-rise test device and method, storage medium, computer equipment
CN112130010A (en) * 2020-08-14 2020-12-25 许继电气股份有限公司 Static frequency converter SFC performance detection system under heavy current working condition
CN116298561A (en) * 2023-02-10 2023-06-23 常熟天地煤机装备有限公司 Voltage phase sequence detection system for four-quadrant frequency converter
CN116298561B (en) * 2023-02-10 2024-01-09 常熟天地煤机装备有限公司 Voltage phase sequence detection system for four-quadrant frequency converter
CN116243095A (en) * 2023-05-10 2023-06-09 深圳弘远电气有限公司 Automatic program control-based test circuit, test device and control method thereof

Also Published As

Publication number Publication date
CN101539603A (en) 2009-09-23

Similar Documents

Publication Publication Date Title
WO2010121523A1 (en) Full load testing method of low power consumption for converter
CN103683319B (en) Based on the control method of grid-connected inverter that stagnant ring is modulated during unbalanced source voltage
CN111030152B (en) Energy storage converter system and control method thereof
CN110048455B (en) Droop control inverter with weak grid fault ride-through capability and control method thereof
US9520764B1 (en) Bi-directional multi-port applications
US9397580B1 (en) Dual link power converter
TWI458235B (en) Wind power generation system, and power circuit and converter structure thereof
CN104009486B (en) The asymmetry compensation current-limiting method of a kind of three-phase three-wire system SVG
CN105356765A (en) Control system and control method of indirect space vector matrix converter based on 60-degree coordinate system
JP2014140298A (en) Power conversion device
CN106300430B (en) A kind of miniature photovoltaic grid-connected inverter and its grid-connected control method
WO2012152072A1 (en) Solar energy photovoltaic three-phase micro-inverter and solar energy photovoltaic generating system
CN104882893A (en) Electric energy quality comprehensive control method and device with short circuit current limiting function
CN102064533A (en) Direct-current overvoltage control system of uncontrollable rectification unit of cascade high-voltage transducer
CN104269882A (en) Energy feedback unit and energy feedback method
TWI462457B (en) Single-phase three-wire three-port power converter system
US9678519B1 (en) Voltage control modes for microgrid applications
WO2013004067A1 (en) Parallel structure of three-phase multi-level pwm converters
CN106208775A (en) Half period three-phase T-shaped three-level current transformer electric capacity neutral-point voltage balance strategy
CN107565580A (en) Hybrid power electronic transformer and control method with fault tolerance
CN102116850B (en) Device and method for testing rectifier
Ertan et al. Comparison of efficiency of two dc-to-ac converters for grid connected solar applications
CN201829955U (en) Dynamic voltage stabilizer for helping wind power generator to implement low voltage ride-through
CN203734546U (en) Large-scale power transformer low-frequency heating device based on square wave modulation
CN202565218U (en) Automatic control frequency conversion soft start device of medium-high voltage synchronous motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10766613

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10766613

Country of ref document: EP

Kind code of ref document: A1