WO2010119982A1 - Silver material having high electrically conductive structure - Google Patents

Silver material having high electrically conductive structure Download PDF

Info

Publication number
WO2010119982A1
WO2010119982A1 PCT/JP2010/056963 JP2010056963W WO2010119982A1 WO 2010119982 A1 WO2010119982 A1 WO 2010119982A1 JP 2010056963 W JP2010056963 W JP 2010056963W WO 2010119982 A1 WO2010119982 A1 WO 2010119982A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver
silver material
sample
temperature
conductivity
Prior art date
Application number
PCT/JP2010/056963
Other languages
French (fr)
Japanese (ja)
Inventor
博 山下
Original Assignee
株式会社メタルラボ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社メタルラボ filed Critical 株式会社メタルラボ
Publication of WO2010119982A1 publication Critical patent/WO2010119982A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys

Definitions

  • the present invention relates to a silver material having a highly conductive structure used for power transmission cables, wiring materials between audio equipment and electronic equipment or between its components, bonding wires, and the like.
  • Examples of wiring materials for connecting electronic components constituting audio equipment and video equipment include oxygen-free copper (OFC), oxygen-free copper containing silver, oxygen-free copper containing zirconium, and the like. These wiring materials are known to have a relatively high conductivity efficiency than ordinary copper wires, etc., but because of their fine crystal structure, the number of crystal grain boundaries existing in the direction in which electrons are conducted It is known that impurities such as orientation, sulfides and intermetallic compounds have an adverse effect on the conduction efficiency. This may increase the electrical resistance due to grain boundaries and impurities accumulated there. It is thought to work as a capacitor with a very small capacity and to bring in capacitance.
  • Patent Document 2 discloses a wire rod-shaped ingot having a single crystal structure of OFC or a unidirectionally solidified structure in the longitudinal direction or a plastic processing by a slight wire drawing or the like to obtain a copper wire for signal transmission.
  • IACS International Annular Copper Standard
  • tensile strength 20 [kg / mm 2] or less By making IACS (International Annular Copper Standard) 100 [%] or more or tensile strength 20 [kg / mm 2] or less, it is disclosed that the manufactured metal material has extremely excellent signal transmission characteristics. This technique has improved this point because the above-described lattice defects that have conventionally occurred during processing have caused the signal transmission characteristics to deteriorate.
  • the electrical conductivity of the copper wire is set to IACS 100 [%] or more, or the tensile strength is set to 20 [kg / mm 2] or less. ], Because the tensile strength value changes markedly with 20 [kg / mm 2] as a boundary.
  • Patent Document 2 improves signal transmission characteristics by using the above-described signal transmission copper wire.
  • a signal is obtained by adding a plastic processing such as a wire rod ingot having a single crystal structure or a unidirectionally solidified structure in the longitudinal direction or a slight wire drawing to the ingot.
  • a copper wire for transmission is used, in order to obtain a bar-shaped ingot having a single crystal structure and a solidified structure, a very complicated metal solidification control management process such as a heating mold continuous casting method or a chocolate lasky method is required.
  • An object of the present invention is to provide a silver material having a crystal structure that is excellent in mass productivity and maximizes the performance of an electronic component or an electronic device, for example, a highly conductive structure.
  • the silver material of the present invention is subjected to a final plastic processing for the silver material, that is, after plastic processing to a stage where the crystal structure for the silver material is not changed, and then at least vacuum, an inert gas, and a reducing gas.
  • a recrystallized structure is formed by heat treatment performed in any atmosphere until immediately before the silver material is melted. More specifically, the recrystallized structure of the silver material is a single crystallized structure. Single crystallization means that crystal grains having a polycrystalline structure are enlarged.
  • the recrystallized structure is, for example, coarser than a 4N silver material having a conductivity of 106% or less, in which the size of the crystal grains after the heat treatment is derived by the following formula, and compared to the 4N silver material The grain boundary density per unit volume is small.
  • Conductivity ⁇ X ⁇ 100 / [(R ⁇ m / I 2 ⁇ G) + Y (20 ⁇ t)]
  • R electric resistance [ ⁇ ]
  • m mass of material of measurement length [g]
  • I measurement length [m]
  • t measurement temperature (Celsius)
  • X 100% conductivity material with a length of 1 m and a cross-sectional area of 1 mm 2 , resistance value at 20 degrees (Celsius)
  • Y length of 1 m and cross-sectional area of 1 mm 2 sample temperature
  • the amount ⁇ by which the resistance changes is a low mass temperature coefficient near 20 degrees (degrees Celsius) of the sample.
  • the silver material on which the recrystallized structure is formed has the following attributes. (1) The conductivity ⁇ exceeds 106 [%]. (2) The elongation obtained by a metal material tensile test under the following conditions exceeds 5%. JISZ2201 (1998) JIS9 tensile test piece, using JISZ2241 (1998) metal material tensile test method, test chamber temperature 22 [° C.], sample average wire diameter 1.54 [mm], gauge distance 50 [mm] ], Both ends of the sample were fixed, the initial load was 2 [N], the average load of 1.0 [mm] displacement was 199 [N], the maximum load was 353 [N], and the test speed was 5 [mm / min]. Implementation.
  • Such a silver material is, for example, a molding step of molding a silver material having a polycrystalline structure into a predetermined shape and size at room temperature, and the entire formed material exceeds the recrystallization temperature of the silver material, and While maintaining the temperature near the melting point of the silver material, a heating step of heating the silver material to just before melting in a vacuum or an inert gas atmosphere, and the heated silver material, maintaining the temperature And an annealing step of annealing in a vacuum or an inert gas atmosphere over a time longer than the above-described time, whereby the crystal structure of the material has a structure in which the conduction velocity of the conducting electrons is faster than that before heating (this book In the specification, it is referred to as a “highly conductive structure”).
  • the crystal structure of the silver material manufactured through the heating / annealing process is important for achieving the above-described high-conductivity structure that the entire crystal structure is homogeneous when completed.
  • the processing after heating or annealing is distorted somewhere and cannot be made into a highly conductive structure. This will be described based on the physical properties inherent to silver materials.
  • the silver material conducts electricity well because there are electrons that move freely in the crystal. When electrons are conducted through a crystal having periodicity without defects, they do not receive resistance in any direction except for the influence of thermal vibration (highly conductive state). However, in the process of producing a silver material, processing such as stretching and stretching is generally performed. Also in the present invention, the silver material is formed into a predetermined shape and size at room temperature.
  • the heating process heats the material by mixing a reducing gas composed of hydrogen gas or a hydrogen-containing gas into the vacuum or an inert gas atmosphere. Thereby, the chemical reaction of the starting material in a heating process, ie, the silver material before starting heat processing, can be prevented. More preferably, the drawing of at least one of the reducing gas and the inert gas and the supply of these gases are repeated.
  • the silver material of the present invention has a structure in which the crystal grains are substantially isotropic in the longitudinal direction and the density is substantially uniform at the central portion and the peripheral portion in the cross section, the conductivity is remarkably high, The conduction efficiency per unit time is improved. Therefore, the performance of electronic devices and electronic parts can be maximized by using the wiring. Loss is also significantly reduced, so improvement in energy conversion efficiency and transmission efficiency is also expected.
  • the silver material of the present invention has an elongation rate of more than 5 [%] obtained by a metal material tensile test, and a maximum load obtained by a three-point bending compression test of less than 30 [N], which is sufficiently flexible. Therefore, the wiring of the electronic component or the electronic device becomes extremely easy, and the reliability of the operation after the wiring can be increased.
  • FIG. 1 is a block diagram of a vacuum furnace and its control mechanism suitable for carrying out the manufacturing method of the present invention.
  • FIG. 2 is a process explanatory diagram of the production method of the present invention.
  • FIG. 3 is a schematic explanatory diagram of the control operation according to the present embodiment.
  • FIG. 4 is a chart showing an example of measurement results of performance when the heating condition is changed using a silver wire manufactured by the manufacturing method of the present invention as a sample.
  • FIG. 5A is a photomicrograph showing the crystal structure of the vertical cross section of Sample A.
  • FIG. 5B is a photomicrograph showing the crystal structure of the cross section of Sample A.
  • 6A is a photomicrograph showing the crystal structure of the vertical cross section of Sample B.
  • FIG. 5A is a photomicrograph showing the crystal structure of the vertical cross section of Sample A.
  • FIG. 6B is a photomicrograph showing the crystal structure of the cross section of Sample B.
  • FIG. 7A is a photomicrograph showing the crystal structure of the vertical cross section of Sample C.
  • FIG. 7B is a photomicrograph showing the crystal structure of the cross section of Sample C.
  • the best embodiment of the present invention will be described below.
  • the silver material used as the element of the silver wire has a polycrystalline FCC structure, and is a metal material having the highest electron conductivity at the spread level. Soft and easy to handle and difficult to oxidize.
  • the number of intrinsic electrons is larger than that of iron, aluminum, etc., the conduction speed of electrons is faster than copper, and the extensibility is excellent. This is a major reason for using a silver material in this embodiment.
  • the purity of the silver material is preferably about “4N”. [Furnace and its control mechanism] The furnace and its control mechanism used in this embodiment will be described.
  • a vacuum furnace having a configuration shown in FIG. 1 is used.
  • a heating element 105 is provided on the side wall of the electric furnace 103 in the container 101, and a starting material (a silver material before heat treatment, which will be described below) is opened in a heating space surrounded by the heating element 105 through an opening / closing door (not shown).
  • the starting material is a silver wire 203 wound around a quartz tube 201 that can withstand high temperatures.
  • a gas supply valve 107 and a gas vent valve 109 are attached to the heating space via a pipe line connected to the outside of the space.
  • an inert gas and a hydrogen-containing gas are mixed from the gas supply device 133 through the valve drive mechanism 131.
  • a gas suction mechanism (not shown) is connected to the gas vent valve 109, and gas and moisture in the heating space are sucked through the valve drive mechanism 131 by this gas suction mechanism.
  • a state where all the gas and the like are sucked is a vacuum state.
  • the current atmospheric pressure in the heating space is measured by the pressure gauge 123, and the current temperature in the heating space is measured by the thermometer 125.
  • the measurement results of the pressure gauge 123 and the thermometer 125 are output to the control device 121, where the state of the heating space is monitored.
  • the control device 121 is a kind of computer having a memory and a processor.
  • the processor inputs various setting conditions and parameters stored in the memory from the pressure gauge 123 and the thermometer 125 according to a computer program prepared in advance.
  • the control operation for manufacturing the silver material is executed based on the measured data. Specifically, this control operation is ON / OFF switching of the heating element 105 performed based on the measurement results of the pressure gauge 123 and the thermometer 125.
  • the control device 121 also controls valve opening / closing in the valve drive mechanism 131. In other words, at a timing according to the set conditions, the gas supply valve 107 is opened to supply gas into the heating space, or it is stopped, or the gas vent valve 109 is opened to degas or drain water, or Or stop.
  • a silver wire can be manufactured by implementing each process shown in FIG. 2 using this vacuum furnace and control mechanism.
  • Preparation step S1 Prepare a silver block of sufficient size to obtain the required amount of silver wire 203, shape, size, and heating conditions (heating time, atmospheric pressure, temperature, type of gas used, amount of gas mixed) Etc.), annealing conditions (time, degassing timing, etc.) and finishing conditions (removal timing, etc.). Since the heating conditions, annealing conditions, and finishing conditions differ depending on the thickness and length of the silver wire 203, these are preset in the memory of the control device 121.
  • Heating conditions, annealing conditions, and finishing conditions differ depending on the thickness and length of the silver wire 203, these are preset in the memory of the control device 121.
  • Molding step S2 The silver block is processed at room temperature to form a silver wire 203, which is used as a starting material.
  • the silver wire 203 is formed by, for example, a drawing process using a diamond die, that is, a process of passing a silver lump through a die having a hole and drawing it to a predetermined size.
  • the processing method is not limited to this, and may be arbitrary, for example, wire drawing or other modes.
  • it is not necessary to consider crystal distortion due to processing, mixing of impurities, and the like.
  • the necessary amount can be obtained in a relatively short time. For example, a silver wire 203 of 10 m or more can be obtained in a few minutes. Thereafter, the silver wire 203 is wound around the quartz tube 201 to prepare for heating.
  • Heating step S3 The silver wire 203 wound around the quartz tube 201 is set in the heating space of the vacuum furnace, and the control device 121 starts control for heating and annealing.
  • An overview of the control operation by the control device 121 is shown in FIG. Referring to FIG. 3, the control device 121 gradually increases the heat generation temperature of the heating element 105 from the start time t1 to the time t2 when the temperature of the heating space first reaches the predetermined temperature TH0 from the normal temperature.
  • This temperature TH0 is a temperature that exceeds the recrystallization temperature (around 300 degrees Celsius) of the silver wire 203 and near the melting point of the silver material (961 degrees Celsius).
  • the melting point is generally the temperature at which the silver material begins to melt, but the temperature at which the silver material actually begins to melt varies depending on the type and amount of oxygen and other impurities contained in the silver material. Some silver materials do not melt even near the melting point, while others start to melt at about 900 degrees Celsius. If the type and amount of impurities contained in the silver material are known in advance, the temperature TH0 can be set in the control device 121 from the beginning. The temperature is measured, and the temperature at that time is set in the control device 121 as the predetermined temperature TH0. The time between the time points t1 and t2 is set to about the time required for vacuum annealing described later. By gradually heating in this way, the temperature of the entire silver wire 203 rises almost uniformly.
  • the controller 121 When reaching the time point t2, the controller 121 substantially uniformly heats the entire silver wire 203 in the heating space while maintaining the temperature TH0. At that time, the control device 121 supplies an inert gas, a reducing gas, or a gas mixed thereof to the heating space, and removes impurities in the crystal of the silver wire 203, particularly impurities remaining in the crystal grain boundary. At the same time, crystal grain growth is stabilized.
  • the inert gas is, for example, helium gas or argon gas.
  • the reducing gas is, for example, hydrogen or a hydrogen-containing gas. Since the pressure and temperature of the heating space are increased by mixing these supplied gases, the extraction of moisture generated by the reduction action and the supply of these gases (including circulation in the heating space) are repeated.
  • FIG. 4 shows an example of performance measurement results when the silver wire 203 manufactured by the above manufacturing method is used as a sample and the heating conditions are changed.
  • the measurement was performed according to the test of JIS-H0505 (volume resistivity and conductivity measuring method of non-ferrous metal material).
  • the length of the sample is 1 [m]
  • the cross-sectional area of the sample is slightly different in thickness at the time of processing.
  • the resistance measurement method was a double bridge method, in which the resistance measurement current was 1 [A], the test temperature was 23 degrees Celsius (23 [° C.]), and the humidity was 50 [%].
  • “500” of the material symbol “Ag500-1H” indicates that the temperature TH0 that is maintained substantially constant for the time t2-t3 in the above heating process is 500 degrees Celsius, and “ ⁇ 1H” is t2-t3. This means that the time of 1 is 1 hour.
  • ⁇ 2H is obtained by setting the time of t2 ⁇ t3 to 2 hours.
  • Recrystallization is a function of temperature and time.
  • the thermal energy for recrystallization needs to be a certain amount or more.
  • the recrystallization temperature is 500 degrees Celsius, as can be seen from FIG. 4, in about 1 hour, the volume resistivity is around 1.630 ⁇ 10 ⁇ 6 [ ⁇ ⁇ cm], and from “4N silver” In comparison with the wire, the improvement was not so much, but even in the same hour, a great improvement was seen from around 650 degrees Celsius. That is, the cross sectional area was less than 1.62 ⁇ 10 ⁇ 6 [ ⁇ ⁇ cm] in terms of 1.98 [mm 2].
  • the volume resistivity of aluminum (Al) having the same average cross-sectional area is 2.655 ⁇ 10 ⁇ 6 [ ⁇ ⁇ cm]
  • the volume resistivity of gold (Au) is 2.19 ⁇ 10 ⁇ 6 [ ⁇ ⁇ cm].
  • the volume resistivity of pure copper (Cu) is 1.673 ⁇ 10 ⁇ 6 [ ⁇ ⁇ cm].
  • the conduction speed of electrons is about 1.5 times faster than that of copper. Therefore, the conduction efficiency of the silver wire 203 obtained by this manufacturing method is converted to a cross-sectional area of 1.98 [mm2]. So now it is better than any metal material. Excellent electrical conductivity means that the same resistance value is fine, and it is less susceptible to the influence of an electric field.
  • the conversion efficiency was significantly improved. Specifically, a commercially available 15 [w] power generation module is exposed to direct sunlight and measured with a hollow enamel resistor so that the wiring material of normal copper wire is 10 [w] at 5 [m]. While adjusting. The module output voltage was measured with a DC voltmeter and found to be 10.8 [v]. Thereafter, in this state, the wiring material was replaced with the silver wire 203, and the voltage was measured. The result was 12.8 [v]. That is, the conversion efficiency was improved by about 20%.
  • Samples were separately prepared in a public institution. The structure test, image observation, conductivity and load test (tensile / compression test) were conducted. The three types of samples are manufactured under the following conditions.
  • Sample A comparative object
  • Sample B Example 1: A 4N pure wire (processed under the same conditions as Sample A) formed by cold working was heated at 750 degrees Celsius for 2 hours in an inert gas atmosphere and then cooled for 2 hours.
  • Sample C (Example 2): Heat-treated in an inert gas atmosphere for 6 hours at around 900 degrees Celsius, a temperature just before melting 4N silver wire (processed under the same conditions as Sample A) formed by cold working After cooling for 6 hours.
  • FIGS. Sample A FIG. 5A is a photomicrograph of the vertical cross section of sample A, and FIG. 5B is a photomicrograph of the same cross section. Referring to these photographs, it is confirmed that the structure is oriented in the longitudinal direction by drawing, but many strains and defects are observed.
  • Crystal grains are oriented in the longitudinal direction of the wire, and the cross section has different densities at the central portion and the peripheral portion. ⁇ What to understand> -It is presumed that the plasticity is remarkably lowered and work hardening occurs due to the distortion and defect caused by the drawing process. Elongation and bending properties are significantly deteriorated before processing. ⁇ Because the crystal is broken, the periodicity of atoms is broken, and defects are generated, so the structure prevents the flow of electrons. -A potential difference occurs on the metal surface due to strain and defects, and a local battery is formed and corrosion is easily promoted.
  • FIG. 6A is a photomicrograph of the vertical cross section of sample B
  • FIG. 6B is a photomicrograph of the same cross section. From these photographs, it is observed that the distortion and defects are eliminated, and the entire structure is homogeneous and dense. It is observed that crystal grains (structure with regularity, face-centered cubic in the case of silver) are larger than Sample A and are oriented in the longitudinal direction of the wire. In the cross section, the density is substantially uniform at the central portion and the peripheral portion.
  • FIG. 7A is a photomicrograph of the vertical cross section of sample C
  • FIG. 7B is a photomicrograph of the same cross section.
  • the crystal grains grow larger than Sample B and have the same size, and periodicity and homogeneity can be confirmed.
  • the number of crystal grain boundaries per unit volume and the total area are greatly reduced.
  • impurities such as metal oxides / intermetallic compounds, oxygen and inevitable elements precipitated at the grain boundaries is also greatly reduced.
  • the amount of change ⁇ is the low mass temperature coefficient near 20 degrees (degrees Celsius) of the sample.
  • Sample C was 107.8% higher than the published value so far, and the conductivity was higher than any other kind of metal. In other words, it turned out that it has evolved into a metal material that can be called a new material.
  • the tensile test was performed at a test chamber temperature of 22 [° C.], with both ends of the specimen (sample) fixed, an initial load of 2 [N], and a test speed of 5 [mm / min].
  • the compression test was a three-point bending compression test with a jib span of 20 [mm], a metal fitting inner radius R2, and an initial load of 0.1 [N].
  • JISZ2201 (1998) JIS9 Tensile test piece, using JISZ2241 (1998) metal material tensile test method, test chamber temperature 22 [° C], sample average wire diameter 1.54 [mm], gauge distance 50 [mm], both ends of sample
  • the initial load is 2 [N]
  • the average load is 1.0 [mm]
  • the average load is 199 [N]
  • the maximum load is 353 [N]
  • the test speed is 5 [mm / min]. It was found that the elongation obtained by the test exceeded at least 5%, which is the test result for sample A.
  • the silver wire 203 Since the silver wire 203 is used as a wiring material for an electronic component or connected to a ground part, the conduction efficiency is increased, so that no burden is imposed on the operation of the electronic component. Therefore, the failure occurrence probability is also reduced.
  • the softness and high bending strength of the silver wire 203 for the bonding wire of the semiconductor chip the original processing capability of the semiconductor chip can be exhibited. It can also contribute to improving processing capacity.
  • the silver wire 203 as a power transmission cable, loss and emission of unnecessary electromagnetic waves are remarkably reduced, which can contribute to environmental problems in various fields including energy problems.
  • a silver coil 203 and a dynamo using the same can be manufactured by covering the silver wire 203.
  • a silver coil it is necessary to coat
  • the reason for this is that the surface of general silver materials reacts with enamel to produce sulfides, which lowers the electrical conductivity and physical strength.
  • vinyl, and sulfur gas and the like are emitted and react with the surface.
  • the silver wire 203 produced by the production method of the present invention is resistant to corrosion, that is, it is strong against chemical substances, so that the characteristics do not deteriorate even if it is coated with enamel or vinyl. Therefore, a silver coil can be manufactured.
  • the silver wire 203 can also be used as a high performance electrical contact.
  • migration a phenomenon in which atoms move little by little due to collision of electrons flowing through metal atoms in the wiring, etc.
  • the silver wire 203 manufactured by the manufacturing method of the present invention has high corrosion resistance and migration hardly occurs, a high-performance electrical contact can be realized.
  • a silver wire 203 wound around a quartz tube 201 is used as a starting material in a heating space of a vacuum furnace is shown, but an auxiliary component such as the quartz tube 201 is not necessarily used, and silver
  • the material may be placed directly in the heating space. Moreover, it can replace with a wire, and can also use the printed circuit board which drawn the wiring pattern with the silver material, a lead frame, the plate-shaped or sheet-shaped silver plate which gave the rolling process, and silver night as a starting material.
  • the heat treatment may be performed not only in an inert gas or reducing gas atmosphere but also in an atmosphere of at least one of vacuum, inert gas, and reducing gas.
  • the crystal grain size and orientation can be adjusted by controlling the heat treatment temperature so as to form a temperature gradient in a predetermined direction of the silver material during cooling.
  • FIG. 1 shows an example of a vacuum furnace having a simple structure that simply heats the starting material, but a mechanism for applying a strong electric field is added to the back side of the heating element 105 of the furnace, and the above heating process is performed.
  • an electric field having different polarities is applied to one end and the other end of the silver material having both ends, so that the crystal orientation of the silver material can be forcibly aligned. .
  • the conduction speed of electrons becomes faster, and further improvement of the conduction efficiency can be expected.
  • the silver material of the present invention includes an antistatic unit, a printed circuit board, a capacitor, an antenna for a communication device, a bonding wire for a semiconductor chip, a lead frame, an automotive power system wiring material, a solar power generation lead wire, a lightning rod, a medical device wiring material, In addition, it can be used in a wide range of fields such as sensing materials that detect electrons, electrical contacts, and connectors.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

Provided is a silver material which is highly suitable for mass production and has a crystalline structure capable of allowing the best performance of an electronic component or device. After the final plastic processing of a silver material, a heat treatment is carried out at least either in vacuo, in an inert gas atmosphere or in a reducing gas atmosphere until just before the silver material begins to melt to thereby form a recrystallized tissue. In this recrystallized tissue, which comprises a single crystal, crystal grains become larger than in a 4N silver material having an electrical conductivity of 106 (%) or less and have a lower grain boundary density per unit volume than the 4N silver material.

Description

高電導構造を有する銀材Silver material with highly conductive structure
 本発明は、電力送電ケーブル、オーディオ機器・電子機器間あるいはその構成部品間の配線材、ボンディングワイヤ等に用いられる高電導構造を有する銀材に関する。 The present invention relates to a silver material having a highly conductive structure used for power transmission cables, wiring materials between audio equipment and electronic equipment or between its components, bonding wires, and the like.
 音響機器や映像機器を構成する電子部品を接続するための配線材として、無酸素銅(OFC)、銀入り無酸素銅、ジルコニウム入り無酸素銅等がある。これらの配線材は、通常の銅線等よりも、電導効率が相対的に高いことは知られているが、微細な結晶構造を有するため、電子が伝導する方向に存在する結晶粒界の数や方位性、硫化物や金属間化合物等の不純物が、電導効率に悪影響を及ぼすことが知られているこれは、結晶粒界及びそこに集積した不純物が原因となって電気抵抗を上昇させたり、微小容量を持つコンデンサとして働き、静電容量を持ち込むためと考えられている。このことは電気抵抗を少なからず上昇させ、静電容量は静電気の形で配線材に蓄積されて、電子部品の動作に少なからぬ悪影響を与える。
 この点を改良するため、特許文献1に開示された技術では、OFCの結晶粒を熱処理により粗大化させた後、伸線を行なって結晶粒を長手方向に配向させている。しかし、この技術は、結晶粒を巨大化させることで結晶粒界の数を減らすものであるが、伸線という塑性加工による金属材の製造過程で、せっかく形成した結晶粒を外部応力にて破壊し、結晶構造を乱して、原子空孔や転位等の格子欠陥を生じさせてしまう。これが不純物と同様に電気抵抗の上昇や静電容量形成などの原因となる働きをしてしまうという課題が残る。
 そもそも、一般に圧延などの加工によって変形した金属は加工歪みを起こし、結晶中に格子の歪みや欠陥等が発生する。この課題を解消しようとするのが、金属材の製造過程の改良に着目した特許文献2に開示された技術である。
 特許文献2は、OFCの単結晶組織又は長手方向の一方向凝固組織を有する線棒状鋳塊又はこれに僅かの伸線等による塑性加工を加えて信号伝送用銅線とし、その導電率は、IACS(International Anneld Cupper Standard)100[%]以上又は引張強さが20[kg/mm2]以下とすることにより、製造された金属材が極めて優れた信号伝送特性を有する点を開示している。
 この技術は、従来、加工の際に生じていた、上述の格子欠陥が信号伝送特性を低下させる原因となっていたために、この点を改善したものである。銅線の導電率をIACS100[%]以上又は引張強さを20[kg/mm2]以下とするのは、OFC銅線をそのまま導体として用いる場合の信号伝送特性は導電率の値がIACS100[%]、引張強さの値が20[kg/mm2]を境にして著しく変化するためである。一方向凝固組織は、電子の移動を防げる粒界が少なく、鋳造時には酸素,水素ガスその他の不純物が凝固界面から溶湯中へ排出され、それによる欠陥が発生し難いためである。
特開昭60−003808号公報 特開昭63−174217号公報
Examples of wiring materials for connecting electronic components constituting audio equipment and video equipment include oxygen-free copper (OFC), oxygen-free copper containing silver, oxygen-free copper containing zirconium, and the like. These wiring materials are known to have a relatively high conductivity efficiency than ordinary copper wires, etc., but because of their fine crystal structure, the number of crystal grain boundaries existing in the direction in which electrons are conducted It is known that impurities such as orientation, sulfides and intermetallic compounds have an adverse effect on the conduction efficiency. This may increase the electrical resistance due to grain boundaries and impurities accumulated there. It is thought to work as a capacitor with a very small capacity and to bring in capacitance. This increases the electrical resistance to some extent, and the electrostatic capacity is accumulated in the wiring material in the form of static electricity, which has a considerable adverse effect on the operation of the electronic component.
In order to improve this point, in the technique disclosed in Patent Document 1, after the OFC crystal grains are coarsened by heat treatment, wire drawing is performed to orient the crystal grains in the longitudinal direction. However, this technology reduces the number of crystal grain boundaries by enlarging the crystal grains, but breaks the formed crystal grains with external stress during the manufacturing process of the metal material by plastic working called wire drawing. Then, the crystal structure is disturbed, and lattice defects such as atomic vacancies and dislocations are generated. As in the case of impurities, there remains a problem that it acts to cause an increase in electrical resistance and formation of capacitance.
In the first place, generally, a metal deformed by processing such as rolling causes processing strain, and lattice distortion and defects occur in the crystal. The technique disclosed in Patent Document 2 focused on improving the manufacturing process of the metal material is to solve this problem.
Patent Document 2 discloses a wire rod-shaped ingot having a single crystal structure of OFC or a unidirectionally solidified structure in the longitudinal direction or a plastic processing by a slight wire drawing or the like to obtain a copper wire for signal transmission. By making IACS (International Annular Copper Standard) 100 [%] or more or tensile strength 20 [kg / mm 2] or less, it is disclosed that the manufactured metal material has extremely excellent signal transmission characteristics.
This technique has improved this point because the above-described lattice defects that have conventionally occurred during processing have caused the signal transmission characteristics to deteriorate. The electrical conductivity of the copper wire is set to IACS 100 [%] or more, or the tensile strength is set to 20 [kg / mm 2] or less. ], Because the tensile strength value changes markedly with 20 [kg / mm 2] as a boundary. This is because the unidirectional solidification structure has few grain boundaries that prevent the movement of electrons, and oxygen, hydrogen gas, and other impurities are discharged from the solidification interface into the molten metal during casting, and defects due to this hardly occur.
JP 60-003808 A JP 63-174217 A
 多結晶構造の金属材は、ミクロ的に見れば、多数の結晶粒界の存在故に、電導の際のロスは避けられない。特許文献2の技術は、上述した信号伝送用銅線を用いることにより信号伝送特性を向上させる。この結晶粒界の問題を解決する手段として、特許文献2の技術では単結晶組織又は長手方向の一方向凝固組織を有する線棒状鋳塊又はこれに僅かの伸線等による塑性加工を加えて信号伝送用銅線を用いているが、単結晶組織および一方凝固組織を有する棒状鋳塊を得るには、加熱鋳型連続鋳造法やチョコラルスキー法などによる非常に煩雑な金属凝固制御管理工程と多大な時間(引例では200mm/min)を必要とすため、膨大なコストを費やし、所定時間内の大量生産が非常に困難であるという欠点がある。このため、材料が高価でかつ少量しか得ることができないという致命的な問題があり、産業上の利用を妨げていた。また、この方法によると太径の線材の形成は更に時間がかかり、板状材、帯状材の製造は極めて困難とならざるを得ない。さらにミクロ的に見れば、伝達する電子の量及びその速さ、並びに静電気の存在により電子機器等の性能が変わる点が考慮されていない。そのため、電子を伝送させる媒体という金属材本来の機能を果たすためには、まだまだ充分でない。
 すなわち、性能の良い電子機器ないし電子部品を用意しても、その電子部品間、電子機器間、あるいはこれらとアース部位とを繋ぐ配線材が高電導(特許文献2に開示された数値を遙かに超えた電導効率)でなかったために抵抗分や静電気等に起因する雑音成分により信号の減衰ないし信号の歪みが生じ、各電子部品等が有する本来の性能を最大限に発揮することはできなかった。例えばオーディオ機器では十分な音質が得られず、ディスプレイでは十分な表示能力が得られず、電力送電ケーブルでは不要な電磁波が生じたり、伝送可能な距離が制限されたりした。
 電導効率だけを考慮するならば、出発素材を銅に代えて、金属の中で最も電導効率の高い銀、特に高純度といわれる「4N銀」を用いることが考えられる。しかし、「4N銀」といえども、線材を得る際の引抜加工により、組織内に歪や転移が生じているのに加え、結晶粒が微細なため、上記の問題が発生するとともに、僅かに酸化物や硫化物等の不純物が混入されており、これが錆や静電気蓄積の原因となっていた。
 また、発明者らは引例2に倣って「4N銀」の線材を加熱鋳型連続鋳造法により製造することを試行したが、1分間で1[cm]程度の長さしか確保できないので、素材自体が高価であるばかりでなく、量産もできないことから、これを電力送電ケーブル、配線材、ボンディングワイヤ等として用いるには、あまりにも高額なものとなってしまう。まして、板材や帯状材ではなおさらであるため、リードフレームや回路基盤用金属箔などの製造は困難である。
 本発明は、量産性に優れ、かつ、電子部品あるいは電子機器の性能を最大限に発揮させる結晶構造、例えば高電導構造を有する銀材を提供することをその課題とする。
From a microscopic viewpoint, a metal material having a polycrystalline structure inevitably has a loss during conduction due to the presence of many crystal grain boundaries. The technique of Patent Document 2 improves signal transmission characteristics by using the above-described signal transmission copper wire. As a means for solving this grain boundary problem, in the technique of Patent Document 2, a signal is obtained by adding a plastic processing such as a wire rod ingot having a single crystal structure or a unidirectionally solidified structure in the longitudinal direction or a slight wire drawing to the ingot. Although a copper wire for transmission is used, in order to obtain a bar-shaped ingot having a single crystal structure and a solidified structure, a very complicated metal solidification control management process such as a heating mold continuous casting method or a chocolate lasky method is required. Since time (200 mm / min in the reference) is required, there is a disadvantage that enormous costs are consumed and mass production within a predetermined time is very difficult. For this reason, there is a fatal problem that the material is expensive and only a small amount can be obtained, which has hindered industrial use. Further, according to this method, it takes much time to form a large-diameter wire, and the production of a plate-like material and a belt-like material has to be extremely difficult. Further, from a microscopic viewpoint, it is not considered that the performance of an electronic device or the like changes due to the amount and speed of electrons to be transmitted and the presence of static electricity. Therefore, it is still not enough to fulfill the original function of a metal material as a medium for transmitting electrons.
That is, even if a high-performance electronic device or electronic component is prepared, the wiring material connecting the electronic component, between the electronic devices, or these and the ground portion is highly conductive (the numerical value disclosed in Patent Document 2 can be obtained). Therefore, it is not possible to maximize the original performance of each electronic component, etc. due to signal attenuation or signal distortion caused by noise components caused by resistance or static electricity. It was. For example, an audio device cannot provide sufficient sound quality, a display cannot provide sufficient display capability, and an unnecessary electromagnetic wave is generated in a power transmission cable or a transmission distance is limited.
If only the conduction efficiency is considered, it is conceivable to use silver having the highest conduction efficiency among metals, particularly “4N silver”, which is said to be high purity, instead of copper as the starting material. However, even though it is “4N silver”, the above-mentioned problem occurs due to the fineness of the crystal grains in addition to the occurrence of distortion and transition in the structure due to the drawing process when obtaining the wire. Impurities such as oxides and sulfides are mixed, which causes rust and static electricity accumulation.
Further, the inventors tried to manufacture a “4N silver” wire by the heating mold continuous casting method in accordance with Reference 2, but since only a length of about 1 [cm] can be secured in one minute, the material itself Is not only expensive, but also cannot be mass-produced, so that it is too expensive to use it as a power transmission cable, wiring material, bonding wire or the like. Furthermore, since it is more so with plate materials and strips, it is difficult to manufacture lead frames and metal foils for circuit boards.
An object of the present invention is to provide a silver material having a crystal structure that is excellent in mass productivity and maximizes the performance of an electronic component or an electronic device, for example, a highly conductive structure.
 本発明の銀材は、銀素材に対する最終の塑性加工を経た後、すなわち、その後は銀素材に対する結晶構造に変化を加えない段階まで塑性加工した後、真空、不活性ガス、及び還元ガスの少なくともいずれかの雰囲気で、当該銀素材が溶ける直前まで行われた熱処理により、再結晶組織が形成されていることを特徴とする。
 前記銀素材の再結晶組織は、より具体的には、単結晶化した組織である。単結晶化とは、多結晶構造の結晶粒が肥大化していることをいう。
 前記再結晶組織は、例えば、前記熱処理後の結晶粒の大きさが下記式で導出される導電率106[%]以下の4N銀材よりも粗大化しており、且つ、前記4N銀材に比べて単位体積あたりの結晶粒界密度が少い。
 導電率γ=X×100/[(R・m/I・G)+Y(20−t)]
 但し、R=電気抵抗[Ω]、m=測定長の資料の質量[g]、I=測定長[m]、t=測定温度(摂氏)、G=資料の密度[g/cm](=10.5)、X=導電率100%の材料で長さ1m、断面積1mmのものの20度(摂氏)での抵抗値、Y=長さ1m、断面積1mmの試料の温度が20度(摂氏)付近で1度(摂氏)変化した場合、その抵抗が変化する量αを試料の20度(摂氏)付近での低質量温度係数。
 再結晶組織が形成された前記銀材は、以下の属性を有するものである。
(1)導電率γが106[%]を越える。
(2)以下の条件の金属材料引張試験により得られる伸び率が、5[%]を越える。
 JISZ2201(1998)JIS9号引張試験片で、JISZ2241(1998)金属材料引張試験方法を使用し、試験室温度22[℃]、サンプルの平均線径1.54[mm]、標点距離50[mm]、サンプルの両端部を固定して初期荷重2[N]、1.0[mm]変位の平均荷重199[N]で最大荷重が平均353[N]、試験速度5[mm/min]で実施。
(3)以下の条件の三点曲げ圧縮試験による最大荷重が30[N]未満となる。
 ジブスパン20[mm]、押し金具内側半径R2、初期荷重0.1[N]で実施。
 このような銀材は、例えば、多結晶構造を有する銀素材を常温で所定の形状及びサイズに成形する成形工程と、成形された素材の全体を、当該銀素材の再結晶温度を超え、かつ、当該銀素材の融点付近の温度を維持しながら、真空又は不活性ガスの雰囲気でほぼ均等に、当該銀素材が溶ける直前まで加熱する加熱工程と、加熱された銀素材を、前記温度を維持した時間以上の時間をかけて真空又は不活性ガスの雰囲気で焼鈍する焼鈍工程とを有し、これにより、前記素材の結晶構造を、伝導する電子の伝導速度が加熱前よりも速まる構造(本明細書では、「高電導構造」と称する。)に変形させることにより、製造することができる。
 つまり、加熱・焼鈍の工程を経て製造される銀素材の結晶構造は、完成した時点で全体が均質であることが、上記の高電導構造にする上で重要なのである。加熱後、あるいは、焼鈍後の加工は、どこかで歪みが生じ、高電導構造にすることはできない。
 このことを、銀素材が本来的に有する物性に基づいて説明する。
 銀素材が電気を良く通すのは、結晶中を自由に動く電子が存在するためである。電子は、欠陥もなく周期性を呈する結晶中を伝導するときは、熱振動の影響を除けば、どの方向でも抵抗を受けない(高電導状態)。
 しかし、銀素材の製造過程では、延展、延伸等の加工が施されるのが一般的である。本発明においても、常温で銀素材を所定の形状及びサイズに成形する。その際、結晶の中に多くの加工歪み(格子欠陥)が発生する。この現象は避けることができない。これらの加工歪みが複雑に絡み合うと、電子のスムーズな動きの障害になる。
 しかしながら、この加工歪みのある銀素材を、再結晶温度を超える温度で加熱して熱エネルギーを一定量以上、例えばその銀素材が溶ける直前まで与え続けると、銀素材は、この熱エネルギーを利用して加工歪みを解消しようとする。つまり、新しい結晶粒が元の結晶粒から成長して全体を覆い、再び周期性を呈するようになる。
 このようにして周期性を回復した状態で、その後は何らの加工を施さないようにし、時間をかけて焼鈍することにより、銀素材の結晶構造は、周期性を持ち、かつ、十分な可撓性、曲げ強度、耐腐食性、耐摩耗性を得た状態で確定する。この状態が、まさに、銀素材の結晶構造が高電導構造に変形した状態なのである。
 加熱工程をより安定に行う観点からは、加熱工程は、前記真空又は不活性ガスの雰囲気に、さらに水素ガス又は水素含有ガスから成る還元ガスを混入することにより前記素材を加熱する。これにより、加熱工程における出発素材、すなわち、熱処理を始める前の銀素材の化学反応を防止することができる。より好ましくは、前記還元ガスと前記不活性ガスの少なくとも一方の引き抜きと、これらのガスの供給とを繰り返す。
 本発明の銀材は、長手方向ではその結晶粒がほぼ等向性を呈し、横断面ではその中央部と周縁部とで密度がほぼ均等となる構造を有するため、導電率が格段に高く、単位時間当たりの電導効率が良くなる。
 そのため、配線に利用することにより、電子機器や電子部品の性能を最大限に発揮させることができる。ロスも著しく低減するので、エネルギーの変換効率、伝達効率の向上も期待される。
 また、本発明の銀材は、金属材料引張試験により得られる伸び率は5[%]を越え、三点曲げ圧縮試験により得られる最大荷重は30[N]未満であり、十分な可撓性と曲げ強度が得られるため、電子部品又は電子機器の配線がきわめて容易となり、配線後の動作の信頼度を高めることができる。
The silver material of the present invention is subjected to a final plastic processing for the silver material, that is, after plastic processing to a stage where the crystal structure for the silver material is not changed, and then at least vacuum, an inert gas, and a reducing gas. A recrystallized structure is formed by heat treatment performed in any atmosphere until immediately before the silver material is melted.
More specifically, the recrystallized structure of the silver material is a single crystallized structure. Single crystallization means that crystal grains having a polycrystalline structure are enlarged.
The recrystallized structure is, for example, coarser than a 4N silver material having a conductivity of 106% or less, in which the size of the crystal grains after the heat treatment is derived by the following formula, and compared to the 4N silver material The grain boundary density per unit volume is small.
Conductivity γ = X × 100 / [(R · m / I 2 · G) + Y (20−t)]
However, R = electric resistance [Ω], m = mass of material of measurement length [g], I = measurement length [m], t = measurement temperature (Celsius), G = density of material [g / cm 3 ] ( = 10.5), X = 100% conductivity material with a length of 1 m and a cross-sectional area of 1 mm 2 , resistance value at 20 degrees (Celsius), Y = length of 1 m and cross-sectional area of 1 mm 2 sample temperature When the temperature changes by 1 degree (degrees Celsius) near 20 degrees (degrees Celsius), the amount α by which the resistance changes is a low mass temperature coefficient near 20 degrees (degrees Celsius) of the sample.
The silver material on which the recrystallized structure is formed has the following attributes.
(1) The conductivity γ exceeds 106 [%].
(2) The elongation obtained by a metal material tensile test under the following conditions exceeds 5%.
JISZ2201 (1998) JIS9 tensile test piece, using JISZ2241 (1998) metal material tensile test method, test chamber temperature 22 [° C.], sample average wire diameter 1.54 [mm], gauge distance 50 [mm] ], Both ends of the sample were fixed, the initial load was 2 [N], the average load of 1.0 [mm] displacement was 199 [N], the maximum load was 353 [N], and the test speed was 5 [mm / min]. Implementation.
(3) The maximum load by the three-point bending compression test under the following conditions is less than 30 [N].
Implemented with jib span 20 [mm], pusher inner radius R2, and initial load 0.1 [N].
Such a silver material is, for example, a molding step of molding a silver material having a polycrystalline structure into a predetermined shape and size at room temperature, and the entire formed material exceeds the recrystallization temperature of the silver material, and While maintaining the temperature near the melting point of the silver material, a heating step of heating the silver material to just before melting in a vacuum or an inert gas atmosphere, and the heated silver material, maintaining the temperature And an annealing step of annealing in a vacuum or an inert gas atmosphere over a time longer than the above-described time, whereby the crystal structure of the material has a structure in which the conduction velocity of the conducting electrons is faster than that before heating (this book In the specification, it is referred to as a “highly conductive structure”).
In other words, the crystal structure of the silver material manufactured through the heating / annealing process is important for achieving the above-described high-conductivity structure that the entire crystal structure is homogeneous when completed. The processing after heating or annealing is distorted somewhere and cannot be made into a highly conductive structure.
This will be described based on the physical properties inherent to silver materials.
The silver material conducts electricity well because there are electrons that move freely in the crystal. When electrons are conducted through a crystal having periodicity without defects, they do not receive resistance in any direction except for the influence of thermal vibration (highly conductive state).
However, in the process of producing a silver material, processing such as stretching and stretching is generally performed. Also in the present invention, the silver material is formed into a predetermined shape and size at room temperature. At that time, many processing strains (lattice defects) are generated in the crystal. This phenomenon cannot be avoided. When these processing distortions are intertwined in a complicated manner, it becomes an obstacle to smooth movement of electrons.
However, if this processing-distorted silver material is heated at a temperature exceeding the recrystallization temperature and given a certain amount of heat energy, for example, just before the silver material melts, the silver material uses this heat energy. Try to eliminate the processing distortion. That is, a new crystal grain grows from the original crystal grain, covers the whole, and exhibits periodicity again.
The crystal structure of the silver material has periodicity and is sufficiently flexible by not performing any subsequent processing in a state where the periodicity is restored in this way and annealing it over time. It is determined in a state where the property, bending strength, corrosion resistance, and wear resistance are obtained. This state is exactly the state in which the crystal structure of the silver material is transformed into a highly conductive structure.
From the viewpoint of performing the heating process more stably, the heating process heats the material by mixing a reducing gas composed of hydrogen gas or a hydrogen-containing gas into the vacuum or an inert gas atmosphere. Thereby, the chemical reaction of the starting material in a heating process, ie, the silver material before starting heat processing, can be prevented. More preferably, the drawing of at least one of the reducing gas and the inert gas and the supply of these gases are repeated.
Since the silver material of the present invention has a structure in which the crystal grains are substantially isotropic in the longitudinal direction and the density is substantially uniform at the central portion and the peripheral portion in the cross section, the conductivity is remarkably high, The conduction efficiency per unit time is improved.
Therefore, the performance of electronic devices and electronic parts can be maximized by using the wiring. Loss is also significantly reduced, so improvement in energy conversion efficiency and transmission efficiency is also expected.
In addition, the silver material of the present invention has an elongation rate of more than 5 [%] obtained by a metal material tensile test, and a maximum load obtained by a three-point bending compression test of less than 30 [N], which is sufficiently flexible. Therefore, the wiring of the electronic component or the electronic device becomes extremely easy, and the reliability of the operation after the wiring can be increased.
 図1は、本発明の製造方法の実施に適した真空炉及びその制御機構の構成図である。
 図2は、本発明の製造方法の工程説明図である。
 図3は、本実施形態による制御動作の概要説明図である。
 図4は、本発明の製造方法で製造した銀線を試料として、その加熱条件を変化させたときの性能の測定結果例を示した図表である。
 図5Aは、サンプルAの縦断面の結晶構造を示す顕微鏡写真である。
 図5Bは、サンプルAの横断面の結晶構造を示す顕微鏡写真である。
 図6Aは、サンプルBの縦断面の結晶構造を示す顕微鏡写真である。
 図6Bは、サンプルBの横断面の結晶構造を示す顕微鏡写真である。
 図7Aは、サンプルCの縦断面の結晶構造を示す顕微鏡写真である。
 図7Bは、サンプルCの横断面の結晶構造を示す顕微鏡写真である。
FIG. 1 is a block diagram of a vacuum furnace and its control mechanism suitable for carrying out the manufacturing method of the present invention.
FIG. 2 is a process explanatory diagram of the production method of the present invention.
FIG. 3 is a schematic explanatory diagram of the control operation according to the present embodiment.
FIG. 4 is a chart showing an example of measurement results of performance when the heating condition is changed using a silver wire manufactured by the manufacturing method of the present invention as a sample.
FIG. 5A is a photomicrograph showing the crystal structure of the vertical cross section of Sample A.
FIG. 5B is a photomicrograph showing the crystal structure of the cross section of Sample A.
6A is a photomicrograph showing the crystal structure of the vertical cross section of Sample B. FIG.
6B is a photomicrograph showing the crystal structure of the cross section of Sample B. FIG.
7A is a photomicrograph showing the crystal structure of the vertical cross section of Sample C. FIG.
FIG. 7B is a photomicrograph showing the crystal structure of the cross section of Sample C.
 以下、本発明の最良の実施の形態例を説明する。
 まず、線状の銀材(以下、「銀線」と称する)を製造する場合の例を挙げる。銀線の素となる銀素材は、多結晶のFCC構造を取り、普及レベルでは、電子の伝導率が最も高い金属材である。柔らかくて扱いやすく、酸化もしにくい。固有電子の数も、鉄やアルミニウム等よりも多く、電子の伝導速度も銅より速く、延展性にも優れる。これがこの実施形態で銀素材を用いる大きな理由である。銀素材の純度は「4N」程度が好ましい。
[炉及びその制御機構]
 この実施形態で用いる炉及びその制御機構について説明する。
 化学反応を起こさない状態及び還元作用を奏する状態で銀素材を加熱するため、本実施形態では、図1に示す構成の真空炉を用いる。この真空炉は、容器101内の電気炉103の側壁に発熱体105が設けられており、発熱体105で囲まれた加熱空間に、図示しない開閉扉を通じて出発素材(熱処理前の銀素材、以下同じ)を収容できる構造を持つ。出発素材は、図示の例では、高温に耐え得る石英管201に巻かれた銀線203である。
 加熱空間には、空間外部と繋がる管路を介して、ガス供給弁107とガス抜き弁109とが取り付けられている。ガス供給弁107からは、弁駆動機構131を通じてガス供給装置133から不活性ガス及び水素含有ガスが混入する。ガス抜き弁109には、図示しないガス吸引機構が接続されており、このガス吸引機構により、弁駆動機構131を通じて加熱空間のガスや水分が吸引されるようになっている。ガス等をすべて吸引した状態が真空状態となる。
 加熱空間の現在の気圧は圧力計123で計測され、加熱空間の現在温度は、温度計125で計測される。圧力計123及び温度計125の計測結果は制御装置121に出力され、ここで加熱空間の状態が監視される。制御装置121は、メモリとプロセッサとを有する一種のコンピュータであり、プロセッサが、予め用意されたコンピュータプログラムに従い、メモリに格納された種々の設定条件及びパラメータと圧力計123及び温度計125より入力された計測データとに基づいて銀材製造のための制御動作を実行する。この制御動作は、具体的には、圧力計123及び温度計125の計測結果に基づいて行われる発熱体105のON/OFF切替等である。制御装置121は、弁駆動機構131における弁開閉の制御も行う。つまり、設定条件に従うタイミングで、ガス供給弁107を開いて加熱空間内にガスを供給したり、それを止めたり、あるいは、ガス抜き弁109を開いてガス抜きや水抜きをしたり、あるいはそれを止めたりする。
 銀線は、この真空炉及び制御機構を用いた、図2に示す各工程を実施することにより製造することができる。以下、各工程の内容を具体的に説明する。
[準備工程S1]
 必要な量の銀線203を得るために十分な大きさの銀塊を準備するとともに、成形しようとする形状、サイズ、加熱条件(加熱時間、気圧、温度、使用するガスの種類、ガスの混入量等)、焼鈍条件(時間、ガス抜きタイミング等)、仕上条件(取り出しタイミング等)を定める。加熱条件、焼鈍条件、仕上条件については、銀線203の太さ及び長さにより異なるため、これらを制御装置121のメモリに予め設定する。
[成形工程S2]
 銀塊を常温加工して銀線203に成形し、これを出発素材とする。銀線203への成形は、例えばダイヤダイスによる引き抜き加工、つまり穴のあいたダイスに銀塊を通し、決められた寸法に引き落とす加工により行う。但し、加工手法はこれに限らず、任意であって良く、例えば伸線加工その他の態様であって良い。この時点では、加工による結晶の歪みや不純物の混入等は考慮しなくても良い。しかも常温加工で足りるので、必要な量を比較的短時間で得ることができる。例えば10m以上の銀線203を数分で得ることができる。その後、この銀線203を石英管201に巻き上げ、加熱の準備を整える。
[加熱工程S3]
 石英管201に巻き上げられた銀線203を真空炉の加熱空間にセットし、制御装置121で加熱・焼鈍のための制御を開始する。
 制御装置121による制御動作の概要を図3に示す。図3を参照すると、制御装置121は、開始時点t1から加熱空間の温度が、常温から最初に所定温度TH0に達する時点t2に至るまで、徐々に発熱体105の発熱温度を上げる。この温度TH0は、銀線203の再結晶温度(摂氏300度前後)を超え、かつ、銀素材の融点(摂氏961度)付近の温度である。
 融点は、一般には銀素材が溶け始める温度であるが、実際に銀素材が溶け始める温度は、当該銀素材に含まれる酸素その他の不純物の種類及び量によって異なる。融点近くになっても溶けない銀素材もあれば、摂氏900度程度で溶け始める銀素材もある。銀素材に含まれる不純物の種類や量が予め判明している銀線203であれば、温度TH0を最初から制御装置121に設定することができるが、そうでない場合は、試験的に溶ける直前の温度を計測し、そのときの温度を上記所定温度TH0として、制御装置121に設定する。
 時点t1,t2間の時間は、後述の真空焼鈍に要する時間程度とする。このように徐々に加熱することにより、銀線203全体の温度がほぼ均一に上昇する。時点t2に達すると、制御装置121は、温度TH0をほぼ維持しながら、加熱空間内の銀線203の全体をほぼ均等に加熱する。
 その際、制御装置121は、加熱空間内に、不活性ガス、還元ガス、又はこれらを混合したガスを供給し、銀線203の結晶内の不純物、特に結晶粒界に残存する不純物を除去するとともに、結晶粒成長を安定化させる。
 不活性ガスは、例えばヘリウムガス、アルゴンガスである。還元ガスは、例えば、水素又は水素含有ガスである。供給されたこれらのガスが混入することにより加熱空間の気圧及び温度が高まるので、還元作用で生じた水分の引き抜きと、これらのガスの供給(加熱空間内での循環を含む)とを繰り返すための制御を行い、加熱空間内の温度及び気圧をほぼ一定に保つ。これは、圧力計123及び温度計125の計測結果を基に行う。
[焼鈍工程S4]
 加熱時間の終期t3に達すると、制御装置121は、ガス抜き及び水分抜きのための制御を行って加熱空間を真空状態にするとともに、発熱体105による発熱量を調整して、加熱空間内の温度を常温に達する時点t4に至るまで、徐々に低下させる。t3~t4間の時間は、t2~t3間の時間のほぼ2倍の時間である。
[仕上工程S5]
 時点t4に達すると、銀線203の結晶構造がほぼ完全に安定するので、真空炉から石英管201を取り出し、銀線203を外してそのまま製品とする。従前のように再度の加工によりその結晶構造に変化が加えられることがない。これにより、何らの欠陥もなく、周期性を有する結晶構造が確定する。この結晶構造のもとでは、空気との接触面に錆が生じた場合であっても、その錆がその外表面から容易に分離する。従って、加熱前よりも電子の伝導速度が速まり、さらに、十分な可撓性、曲げ強度、耐腐食性、耐摩耗性が得られるものとなる。なお、上記の錆は、消しゴムのような柔らかいもので簡単に除去することができる。
[性能測定1]
 上記の製造方法で製造した銀線203を試料とし、その加熱条件を変化させたときの性能の測定結果例を図4に示す。
 測定は、JIS−H0505(非鉄金属材料の体積抵抗率及び導電率測定方法)の試験に準じて行った。試料の長さは1[m]、試料断面積は、加工時の太さが部分的に多少異なるため、試料密度を10.5として、重量法により、1[m]での平均断面積として算定した。抵抗測定方法は、ダブルブリッジ法を用い、抵抗測定電流が1[A]、試験温度が摂氏23度(23[°C])、湿度が50[%]の環境で行った。
 図4において、資料記号「Ag500−1H」の「500」は、上記の加熱工程において、t2−t3の時間だけほぼ一定に維持する温度TH0を摂氏500度、「−1H」は、t2−t3の時間を1時間としたことを表す。「−2H」は、t2−t3の時間を2時間としたものである。他の温度についても同様の説明が成り立つ。
 再結晶は温度と時間との関数である。再結晶のための熱エネルギーは一定量以上である必要がある。摂氏500度は再結晶温度であるが、図4から判るように、1時間程度では、その体積抵抗率は、1.630×10−6[Ω・cm]前後であり、「4N銀」から成る線材との比較では、さほど改善は見られなかったが、同じ1時間であっても、摂氏650度を超えた辺りから大きな改善が見られた。すなわち、断面積1.98[mm2]換算で、1.62×10−6[Ω・cm]未満であった。因みに、同じ平均断面積のアルミニウム(Al)の体積抵抗率は2.655×10−6[Ω・cm]、金(Au)の体積抵抗率は2.19×10−6[Ω・cm]、純銅(Cu)の体積抵抗率は1.673×10−6[Ω・cm]である。
 電子の伝導速度は、銀が銅よりも1.5倍ほど早いことは上述した通りであるから、この製造方法により得られた銀線203の電導効率は、断面積1.98[mm2]換算では、現在のところ、どの金属材よりも優れていることになる。電導効率が優れているということは、同じ抵抗値であれば細くて済み、それだけ電界の影響も受けにくいので、ノイズや振動の影響を受けにくい分だけ有利となること、空気との接触面積も小さく、錆も生じにくいことを意味する。
[性能測定2]
 上記の製造方法により製造された銀線203をオーディオ線として使用したところ、周波数帯域幅が広く、しかもダイナミックレンジも大きくなり、従来品に比べて音質が格段に向上した。具体的には、ある音響機器のスピーカーケーブル(市販のLCOFC.PCOCC)のみを銀線203に交換して、50名の被験者による音質確認試験を行ったところ、被験者全員から以下の報告を受けた。
 ・音のバランス、低音から高音まで特に目立った共振が無い。
 ・低音は音量が大きくなるが分離も良くなる。音がこもらない。
 ・高音は耳障りな音が無くなるにもかかわらず、透明感、分解能が向上する。
 ・立ち上がり、立下りが早くなり、立体感、距離感、空間が表現される。
 銀線203をテレビ受信機の電源回路のアースラインに追加配線することにより、画質の著しい改善が見られた。具体的には、色のバランス、人の顔色の変化、カメラの違いが明らかに改善した。また、細部にわたって滲みの少ない高精細な画像で奥行き感も良く出るため、画像が立体的に見えた。画面のちらつきも減少し、処理信号も早くなった。全体に色の諧調が良くなり、作られた色ではなく自然な色の表現が良くなった。なお、同じ直径の銅線(従来品)で実験をしたが、殆ど変化は無かった。これも、上記50名の被験者による客観的な報告である。
 銀線203を既存の太陽電池モジュールの配線材として用いることにより、変換効率が格段に向上した。具体的には、市販の15[w]発電モジュールを直射日光に当て、通常の銅線による配線材が5[m]で10[w]消費になるように、ホーローの巻き線抵抗器で測定しながら調整した。直流電圧計でモジュール出力電圧を測定したところ、10.8[v]であった。
 その後、その状態のまま、配線材を上記の銀線203に交換して電圧を測定した。結果は、12.8[v]となった。つまり、変換効率が約2割ほど向上した。
[公的機関における試験]
 上記の製造工程により製造された銀線203は、通常の銀線とは異なる属性になっていることが予想されたため、公的機関において、3種類のサンプル(試料)を別途用意し、そのサンプルの組織試験、像の観察、導電率及び荷重試験(引張・圧縮試験)を実施した。
 3種類のサンプルは、以下の条件で製造したものである。
○サンプルA(比較対象):冷間加工により成形した4N純線。上記製造方法によらず、加熱焼鈍後に塑性加工した従前品そのもの。
○サンプルB(実施例1):冷間加工により成形した4N純線(サンプルAと同じ条件で加工)を750度(摂氏)で2時間、不活性ガス雰囲気で加熱処理した後、2時間冷却したもの。
○サンプルC(実施例2):冷間加工により成形した4N銀線(サンプルAと同じ条件で加工)を溶ける直前の温度である摂氏900度付近で6時間、不活性ガス雰囲気で加熱処理した後、6時間冷却したもの。
I 組織・像の観察
(1)試験方法
 サンプルを樹脂に埋め込み、線材長手方向と並行の縦断面と、線材長手方向と直交する横断面の試料を作製した。各試料を研磨し、電界エッチングを行い、光学式顕微鏡による写真撮影を行った。研磨は約0.25[μm]のダイヤモンドペーストまで行った。エッチング液はクエン酸水溶液100[ml]に数滴の硝酸を加えたものを用い、電圧5[v]で電界エッチングを行った。写真倍率は縦断面が50倍、横断面が100倍である。
(2)試験機関:地方独立行政法人 東京都立産業技術研究センター
(3)試験結果:図5~図7の通り。
○サンプルA:図5Aは、サンプルAの縦断面の顕微鏡写真、図5Bは同じく横断面の顕微鏡写真である。これらの写真を参照すると、引き抜き加工により、組織が長手方向に配向されていることが確認されるが、多くの歪と欠陥が観察される。線材長手方向に結晶粒が配向されており、また、横断面は、中央部と周縁部とでは密度が異なっている。
 <わかること>
・引き抜き加工による歪、欠陥により、可塑性が著しく低下し、加工硬化が生じていることが推察される。伸び、曲げ特性は、加工前より大幅に劣化している。
・結晶が破壊されているため、原子の周期性が壊れ、かつ欠陥が生じているため、電子の流れを阻害する構造になっている。
・歪や欠陥により、金属表面に電位差が生じ、局部電池が形成されて腐食が促進されやすくなっている。
・引っ張り、曲げなどの外部応力を加えた場合、歪による内部応力蓄積部、欠陥部に応力集中が起こりやすい構造、つまり、破壊強度、引張強度、割れ強度などが低い構造になっている。
○サンプルB:図6Aは、サンプルBの縦断面の顕微鏡写真、図6Bは同じく横断面の顕微鏡写真である。これらの写真から、歪や欠陥が解消され、全体的に均質かつ稠密な組織となっていることが観察される。結晶粒(規則性を持った構造・銀の場合は面心立法晶)がサンプルAよりも大きくなり、線材長手方向に配向しているのが観察される。横断面では、中央部と周縁部とでは密度がほぼ均等になっている。
<わかること>
・高電導となる再結晶組織が形成されている。
・歪や欠陥が解消されていることから可塑性(延性、展性)が高まっている。
・組織では明確に確認できないが、破壊された結晶の原子が回復、再結晶によって再び秩序を持った結晶粒になっているものと推察され、かつ歪や欠陥も解消され、緻密性、周期性を持った均質な組織となり、更に長方向に配向されていることから電子が流れやすい構造になっている。
・均質な組織となっていることから、金属表面に電位差が生じにくくなり、局部電池が抑制されて、腐食しずらい構造になっている。
・均質な組織となっていることから、引っ張り、曲げなどの外部応力を加えた場合でも、応力集中が起こりにくく、破壊強度、引張強度、割れ強度などが高い構造になっている。
○サンプルC:図7Aは、サンプルCの縦断面の顕微鏡写真、図7Bは同じく横断面の顕微鏡写真である。結晶粒がサンプルBよりもさらに大きく成長し、かつ大きさも相応に揃っており、周期性、均質性が確認できる。また単位体積あたりの結晶粒界の数および総面積が大きく減少している。加えて、結晶粒界に析出している金属酸化物・金属間化合物、酸素や不可避元素などの不純物の含有量も大きく減少していることが推察される。
<わかること>
・高電導となる再結晶組織が形成されている。
・歪や欠陥がほぼ完全に解消され、結晶粒が大きく成長していることから、金属結晶そのものの塑性(延性、展性)を発揮し得る構造になっている。
・結晶粒が大きく成長しているため、単位体積あたりの、「規則性を持って銀原子が整列されている高純度の領域(高純度単結晶領域)」が多くなる。さらに結晶界の数、および粒界の総面積が大きく減少して、電子の流れを散乱・抑制する要因が大幅に少なくなっている。
・結晶粒界の数、面積の減少に伴って、結晶粒界に存在している金属酸化物・金属間化合物、酸素や不可避元素などの不純物の含有量も大きく減少していることから、電子の流れを散乱・抑制する要因がさらに大幅に少なくなっている。
・結晶粒界、および結晶粒界に存在している金属酸化物・金属間化合物、酸素や不可避元素などの不純物は結晶粒そのものと電位差を有しているため、局部電池を形成し、腐食を誘引する原因になるが、この不純物が減少しているため、腐食が大きく抑制される構造になっている。
・粒界の絶縁体が除去されるので、静電容量が無くなっていることが予想される。
 なお、上記の試験機関以外の私的機関の実験により、原子吸光分析によるとサンプルAに対してサンプルBは酸素および不可避不純物の含有量が大きく減少して銀の純度が向上しており、サンプルCはさらに酸素および不可避不純物の含有量が大きく減少し、銀の純度か大きく向上していることが確認された。
<わかること>
・真空焼鈍、再結晶過程での脱酸・還元により、純度が大幅に向上している。
・高温加熱および再結晶の過程で脱酸・還元を行うことにより、反応性の高いラジカルな状態にある酸素や金属酸化物、金属管化合物、不可避不純物に、還元ガスを反応させることになり、これらの不純物除去が促進され、純度が格段に向上している。
II 導電率
(1)試験方法
 JIS C 3002−1992−C16(3)(「電気用銅線及びアルミニウム線試験方法」の6.導電率」)
 導電率γ=X×100/[(R・m/I2・G)+Y(20−t)]%
 但し、
 R=電気抵抗[Ω]、m=測定長の資料の質量[g]、I=測定長[m]、t=測定温度(摂氏)、G=資料の密度[g/cm3](=10.5)、X=導電率100%の材料で長さ1m、断面積1mm2のものの20度(摂氏)での抵抗値、Y=長さ1m、断面積1mm2の試料の温度が20度(摂氏)付近で1度(摂氏)変化した場合、その抵抗が変化する量αを試料の20度(摂氏)付近での低質量温度係数
(2)試験機関:(財)電気安全環境研究所横浜事業所
(3)試験結果:
○サンプルA
 X=0.017241、R=8.414×10−3[Ω]、m=21.0316[g]、I=1[m]、
 t=20[℃]、G=10.5、導電率γ=102.3[%」。
○サンプルB
 X=0.017241、R=8.387×10−3[Ω]、m=20.1950[g]、I=1[m]、
 t=20[℃]、G=10.5、導電率γ=106.7[%」。
○サンプルC
 X=0.017241、R=8.096×10−3[Ω]、m=20.7394[g]、I=1[m]、
 t=20[℃]、G=10.5、導電率γ=107.8[%」。
<わかること>
 純銀の導電率γは、これまで最大でも106[%]とされていた。サンプルAの導電率γは102.3[%]であったが、これは、上述したように、加工により、電子の流れを阻害する構造になったためである。サンプルAと同じ出発素材でもサンプルBでは106.7[%]に高まった。これは、加工による歪や欠陥が解消されて緻密性、周期性を持った均質な組織となり、電子が流れやすい結晶構造(高電導構造)になったことがその理由と考えられる。
 サンプルCに至っては、これまでの公表値を超える107.8[%]となっており、従前のどのような種類の金属よりも導電率が高くなった。つまり、新素材ともいえる金属材に進化していることがわかった。「組織・像の観察」からわかるように、サンプルCの場合は、結晶粒が大きくなって単位体積あたりの高純度単結晶領域が多くなり、結晶界の数および粒界の総面積が大きく減少して、電子の流れを散乱・抑制する要因が大幅に少なくなったために、導電率が格段に向上したものと考えられる。また、結晶粒界の数、面積の減少に伴い、結晶粒界に存在している金属酸化物・金属間化合物、酸素や不可避元素などの不純物の含有量も大きく減少したことから、電子の流れを散乱・抑制する要因が無くなったことも理由の一つと考えられる。
III 荷重試験
(1)試験方法
 JISZ2201(1998)JIS9号引張試験片を使用し、JISZ2241(1998)金属材料引張試験方法を使用した。試験片は、サンプルA,B,Cについて、それぞれ3本ずつ使用した(線径は多少バラツキ有り)。
 引張試験は、試験室温度は22[℃]とし、供試体(サンプル)の両端部を固定し、初期荷重2[N]、試験速度5[mm/min]で実施した。
 圧縮試験は、ジブスパン20[mm]、押し金具内側半径R2、初期荷重0.1[N]で、三点曲げ圧縮試験を実施した。
(2)試験機関:地方独立行政法人 東京都立産業技術研究センター
(3)試験結果:
○サンプルA
・引張試験
Figure JPOXMLDOC01-appb-T000001
・三点曲げ圧縮試験
Figure JPOXMLDOC01-appb-T000002
○サンプルB
Figure JPOXMLDOC01-appb-T000003
・引張試験
Figure JPOXMLDOC01-appb-T000004
・三点曲げ圧縮試験
Figure JPOXMLDOC01-appb-T000005
○サンプルC
・引張試験
Figure JPOXMLDOC01-appb-T000006
・三点曲げ圧縮試験
Figure JPOXMLDOC01-appb-T000007
<わかること>
 可塑性(延性、展性)が大きく回復しており、引っ張り、曲げなどの外部応力を加えた場合でも、応力集中が起こりにくく、破壊強度、引張強度、割れ強度などが格段に向上している。例えば、上述した「組織・像の観察」から明らかなように、サンプルB,Cでは、サンプルAによる歪や欠陥が解消されて組織が均質の結晶構造になっており、JISZ2201(1998)JIS9号引張試験片で、JISZ2241(1998)金属材料引張試験方法を使用し、試験室温度22[℃]、サンプルの平均線径1.54[mm]、標点距離50[mm]、サンプルの両端部を固定して初期荷重2[N]、1.0[mm]変位の平均荷重199[N]で最大荷重が平均353[N]、試験速度5[mm/min]で実施される金属材料引張試験により得られる伸び率が、少なくともサンプルAについての試験結果である5[%]を越えることが判明した。
 また、ジブスパン20[mm]、押し金具内側半径R2、初期荷重0.1[N]で実施した
三点曲げ圧縮試験により得られる最大荷重が30[N]未満となることが判明した。
[量産性]
 従来の銀線材が1分間で1[cm]程度の長さしか確保できないのに比べ、上記の製造方法によれば、数[m]~数十[m]以上の銀線203を1回の製造過程で確保することができた。その製造コストは、真空炉の稼働コストを含めても、従来の1/10~1/20以下となることが確認された。加熱・焼鈍に使用する炉の容量及び性能が良ければ、低コスト化は、さらに顕著なものとなる。従って、量産が可能になり、販売価格が低下するので、銀線203の急速な普及が期待できる。
[期待される効用]
 銀線203を電子部品の配線材として使用したり、アース部位に接続することで電導効率が高まるので、その電子部品の動作に負担がかからない。そのため、故障の発生確率も減少する。
 また、銀線203の柔らかく、曲げ強度が高いという属性を利用して半導体チップのボンディングワイヤに使用することにより、その半導体チップの本来の処理能力を発揮させることができ、これを利用したコンピュータの処理能力の向上にも貢献できる。
 また、銀線203を電力送電ケーブルとして用いることで、ロスや不要な電磁波の放出も著しく低減し、エネルギー問題を含め、様々な分野の環境問題にも貢献することができる。
 さらに、銀線203を被覆して銀コイル及びそれを利用したダイナモを製作することもできる。銀コイルを製作する場合は、線状の銀材の表面をエナメルやビニル等で被覆する必要があるが、一般的な銀材ではこれらの被覆ができなかった。その理由は、一般的な銀材では、その表面がエナメルと反応して硫化物を生成し、電導特性、物理的強度が落ちてしまうためである。ビニルの場合も同様であり、硫化ガス等が出て表面と反応してしまう。本発明の製造方法で製造された銀線203は、耐腐食性、つまり、化学物質に対して強いので、エナメルやビニルで被覆しても特性が落ちることがない。それ故に、銀コイルを製作することができるのである。これらの実現により、エネルギーを極めて高い効率で取り出すことができ、結果的に環境に優れたエネルギー源を確保することができる。
 銀線203を高性能の電気接点として利用することもできる。一般的な電気接点は、マイグレーション(配線中の金属原子にそこを流れる電子が衝突することなどによって原子が少しずつ移動する現象)が起きて接点不良が起きる。これに対して、本発明の本発明の製造方法で製造された銀線203は、耐腐食性を高いのでマイグレーションが起きにくいので、高性能の電気接点を実現することができる。
[変形例]
 図1では、真空炉の加熱空間に、石英管201に巻かれた銀線203を出発素材とした場合の例を示したが、必ずしも石英管201のような補助部品を使用せずに、銀材を直接加熱空間に置くようにしても良い。また、線材に代えて、配線パターンを銀素材で描いたプリント基板、リードフレーム、圧延加工を施した板状あるいはシート状の銀板、銀泊を出発材料とすることもできる。
 また、熱処理は、不活性ガス又は還元ガス雰囲気だけでなく、真空、不活性ガス、及び還元ガスの少なくともいずれかの雰囲気で行われるものであって良い。
 また、冷却時に銀材の所定方向に温度勾配を形成するようにして熱処理温度を制御することにより、結晶粒の大きさおよび配向性を調整することが可能である。
 また、図1では、単に出発素材を加熱するだけのシンプルな構造の真空炉の例を示したが、炉の発熱体105の背面側に強電界を印加する機構を付加し、上記の加熱工程を行う際に、両端部を有する銀材の一方の端部と他方の端部とにそれぞれ異なる極性の電界を加えることにより、その銀材の結晶方位を強制的に揃えるようにすることもできる。この場合は、銀材の複数の結晶粒界の各々の長辺方向が電子の伝導方向を志向するので、電子の伝導速度がより速くなり、電導効率のさらなる向上が期待できる。
The best embodiment of the present invention will be described below.
First, an example in the case of producing a linear silver material (hereinafter referred to as “silver wire”) will be given. The silver material used as the element of the silver wire has a polycrystalline FCC structure, and is a metal material having the highest electron conductivity at the spread level. Soft and easy to handle and difficult to oxidize. The number of intrinsic electrons is larger than that of iron, aluminum, etc., the conduction speed of electrons is faster than copper, and the extensibility is excellent. This is a major reason for using a silver material in this embodiment. The purity of the silver material is preferably about “4N”.
[Furnace and its control mechanism]
The furnace and its control mechanism used in this embodiment will be described.
In order to heat the silver material in a state where no chemical reaction occurs and in a state where a reduction action is exerted, in this embodiment, a vacuum furnace having a configuration shown in FIG. 1 is used. In this vacuum furnace, a heating element 105 is provided on the side wall of the electric furnace 103 in the container 101, and a starting material (a silver material before heat treatment, which will be described below) is opened in a heating space surrounded by the heating element 105 through an opening / closing door (not shown). The same). In the illustrated example, the starting material is a silver wire 203 wound around a quartz tube 201 that can withstand high temperatures.
A gas supply valve 107 and a gas vent valve 109 are attached to the heating space via a pipe line connected to the outside of the space. From the gas supply valve 107, an inert gas and a hydrogen-containing gas are mixed from the gas supply device 133 through the valve drive mechanism 131. A gas suction mechanism (not shown) is connected to the gas vent valve 109, and gas and moisture in the heating space are sucked through the valve drive mechanism 131 by this gas suction mechanism. A state where all the gas and the like are sucked is a vacuum state.
The current atmospheric pressure in the heating space is measured by the pressure gauge 123, and the current temperature in the heating space is measured by the thermometer 125. The measurement results of the pressure gauge 123 and the thermometer 125 are output to the control device 121, where the state of the heating space is monitored. The control device 121 is a kind of computer having a memory and a processor. The processor inputs various setting conditions and parameters stored in the memory from the pressure gauge 123 and the thermometer 125 according to a computer program prepared in advance. The control operation for manufacturing the silver material is executed based on the measured data. Specifically, this control operation is ON / OFF switching of the heating element 105 performed based on the measurement results of the pressure gauge 123 and the thermometer 125. The control device 121 also controls valve opening / closing in the valve drive mechanism 131. In other words, at a timing according to the set conditions, the gas supply valve 107 is opened to supply gas into the heating space, or it is stopped, or the gas vent valve 109 is opened to degas or drain water, or Or stop.
A silver wire can be manufactured by implementing each process shown in FIG. 2 using this vacuum furnace and control mechanism. Hereinafter, the content of each process is demonstrated concretely.
[Preparation step S1]
Prepare a silver block of sufficient size to obtain the required amount of silver wire 203, shape, size, and heating conditions (heating time, atmospheric pressure, temperature, type of gas used, amount of gas mixed) Etc.), annealing conditions (time, degassing timing, etc.) and finishing conditions (removal timing, etc.). Since the heating conditions, annealing conditions, and finishing conditions differ depending on the thickness and length of the silver wire 203, these are preset in the memory of the control device 121.
[Molding step S2]
The silver block is processed at room temperature to form a silver wire 203, which is used as a starting material. The silver wire 203 is formed by, for example, a drawing process using a diamond die, that is, a process of passing a silver lump through a die having a hole and drawing it to a predetermined size. However, the processing method is not limited to this, and may be arbitrary, for example, wire drawing or other modes. At this time, it is not necessary to consider crystal distortion due to processing, mixing of impurities, and the like. Moreover, since normal temperature processing is sufficient, the necessary amount can be obtained in a relatively short time. For example, a silver wire 203 of 10 m or more can be obtained in a few minutes. Thereafter, the silver wire 203 is wound around the quartz tube 201 to prepare for heating.
[Heating step S3]
The silver wire 203 wound around the quartz tube 201 is set in the heating space of the vacuum furnace, and the control device 121 starts control for heating and annealing.
An overview of the control operation by the control device 121 is shown in FIG. Referring to FIG. 3, the control device 121 gradually increases the heat generation temperature of the heating element 105 from the start time t1 to the time t2 when the temperature of the heating space first reaches the predetermined temperature TH0 from the normal temperature. This temperature TH0 is a temperature that exceeds the recrystallization temperature (around 300 degrees Celsius) of the silver wire 203 and near the melting point of the silver material (961 degrees Celsius).
The melting point is generally the temperature at which the silver material begins to melt, but the temperature at which the silver material actually begins to melt varies depending on the type and amount of oxygen and other impurities contained in the silver material. Some silver materials do not melt even near the melting point, while others start to melt at about 900 degrees Celsius. If the type and amount of impurities contained in the silver material are known in advance, the temperature TH0 can be set in the control device 121 from the beginning. The temperature is measured, and the temperature at that time is set in the control device 121 as the predetermined temperature TH0.
The time between the time points t1 and t2 is set to about the time required for vacuum annealing described later. By gradually heating in this way, the temperature of the entire silver wire 203 rises almost uniformly. When reaching the time point t2, the controller 121 substantially uniformly heats the entire silver wire 203 in the heating space while maintaining the temperature TH0.
At that time, the control device 121 supplies an inert gas, a reducing gas, or a gas mixed thereof to the heating space, and removes impurities in the crystal of the silver wire 203, particularly impurities remaining in the crystal grain boundary. At the same time, crystal grain growth is stabilized.
The inert gas is, for example, helium gas or argon gas. The reducing gas is, for example, hydrogen or a hydrogen-containing gas. Since the pressure and temperature of the heating space are increased by mixing these supplied gases, the extraction of moisture generated by the reduction action and the supply of these gases (including circulation in the heating space) are repeated. The temperature and pressure in the heating space are kept almost constant. This is performed based on the measurement results of the pressure gauge 123 and the thermometer 125.
[Annealing Step S4]
When reaching the end t3 of the heating time, the control device 121 performs control for degassing and dehumidifying to make the heating space in a vacuum state and adjust the amount of heat generated by the heating element 105, so that the inside of the heating space The temperature is gradually lowered until reaching a time point t4 when the temperature reaches room temperature. The time between t3 and t4 is approximately twice the time between t2 and t3.
[Finish step S5]
When the time point t4 is reached, the crystal structure of the silver wire 203 is almost completely stabilized. Therefore, the quartz tube 201 is taken out of the vacuum furnace, and the silver wire 203 is removed to obtain a product as it is. The crystal structure is not changed by re-processing as before. Thereby, a crystal structure having periodicity is determined without any defects. Under this crystal structure, even when rust is generated on the contact surface with air, the rust is easily separated from the outer surface. Therefore, the electron conduction speed is faster than before heating, and sufficient flexibility, bending strength, corrosion resistance, and wear resistance can be obtained. The above rust can be easily removed with a soft material such as an eraser.
[Performance measurement 1]
FIG. 4 shows an example of performance measurement results when the silver wire 203 manufactured by the above manufacturing method is used as a sample and the heating conditions are changed.
The measurement was performed according to the test of JIS-H0505 (volume resistivity and conductivity measuring method of non-ferrous metal material). The length of the sample is 1 [m], and the cross-sectional area of the sample is slightly different in thickness at the time of processing. Calculated. The resistance measurement method was a double bridge method, in which the resistance measurement current was 1 [A], the test temperature was 23 degrees Celsius (23 [° C.]), and the humidity was 50 [%].
In FIG. 4, “500” of the material symbol “Ag500-1H” indicates that the temperature TH0 that is maintained substantially constant for the time t2-t3 in the above heating process is 500 degrees Celsius, and “−1H” is t2-t3. This means that the time of 1 is 1 hour. “−2H” is obtained by setting the time of t2−t3 to 2 hours. The same explanation holds for other temperatures.
Recrystallization is a function of temperature and time. The thermal energy for recrystallization needs to be a certain amount or more. Although the recrystallization temperature is 500 degrees Celsius, as can be seen from FIG. 4, in about 1 hour, the volume resistivity is around 1.630 × 10 −6 [Ω · cm], and from “4N silver” In comparison with the wire, the improvement was not so much, but even in the same hour, a great improvement was seen from around 650 degrees Celsius. That is, the cross sectional area was less than 1.62 × 10 −6 [Ω · cm] in terms of 1.98 [mm 2]. Incidentally, the volume resistivity of aluminum (Al) having the same average cross-sectional area is 2.655 × 10 −6 [Ω · cm], and the volume resistivity of gold (Au) is 2.19 × 10 −6 [Ω · cm]. The volume resistivity of pure copper (Cu) is 1.673 × 10 −6 [Ω · cm].
As described above, the conduction speed of electrons is about 1.5 times faster than that of copper. Therefore, the conduction efficiency of the silver wire 203 obtained by this manufacturing method is converted to a cross-sectional area of 1.98 [mm2]. So now it is better than any metal material. Excellent electrical conductivity means that the same resistance value is fine, and it is less susceptible to the influence of an electric field. Therefore, it is advantageous because it is less susceptible to noise and vibration, and the contact area with air is also good. It means that it is small and rust is not easily generated.
[Performance measurement 2]
When the silver wire 203 manufactured by the above manufacturing method was used as an audio line, the frequency bandwidth was wide and the dynamic range was increased, and the sound quality was significantly improved compared to the conventional product. Specifically, when only a speaker cable of a certain audio device (commercially available LCOFC.PCOCC) was replaced with a silver wire 203 and a sound quality confirmation test was conducted by 50 subjects, the following reports were received from all the subjects. .
-Sound balance, no particularly noticeable resonance from bass to treble.
・ Lower volume increases volume but improves separation. There is no sound.
・ Transparency and resolution are improved in spite of no harsh sound in high sounds.
・ Raises and falls quickly, and a three-dimensional feeling, a sense of distance, and space are expressed.
By additionally wiring the silver wire 203 to the ground line of the power supply circuit of the television receiver, the image quality was significantly improved. Specifically, color balance, changes in human face color, and camera differences were clearly improved. In addition, a high-definition image with little blur throughout the details gives a good sense of depth, so the image looked three-dimensional. The flickering on the screen has been reduced, and the processing signal has also become faster. Overall, the tone of the colors has improved, and the expression of natural colors has been improved rather than the colors that have been created. In addition, although it experimented with the copper wire (conventional product) of the same diameter, there was almost no change. This is also an objective report from the above 50 subjects.
By using the silver wire 203 as a wiring material for an existing solar cell module, the conversion efficiency was significantly improved. Specifically, a commercially available 15 [w] power generation module is exposed to direct sunlight and measured with a hollow enamel resistor so that the wiring material of normal copper wire is 10 [w] at 5 [m]. While adjusting. The module output voltage was measured with a DC voltmeter and found to be 10.8 [v].
Thereafter, in this state, the wiring material was replaced with the silver wire 203, and the voltage was measured. The result was 12.8 [v]. That is, the conversion efficiency was improved by about 20%.
[Examination in public institutions]
Since the silver wire 203 manufactured by the above manufacturing process was expected to have an attribute different from that of a normal silver wire, three types of samples (samples) were separately prepared in a public institution. The structure test, image observation, conductivity and load test (tensile / compression test) were conducted.
The three types of samples are manufactured under the following conditions.
○ Sample A (comparative object): 4N pure wire formed by cold working. Regardless of the above manufacturing method, the conventional product itself is plastic-processed after heat annealing.
Sample B (Example 1): A 4N pure wire (processed under the same conditions as Sample A) formed by cold working was heated at 750 degrees Celsius for 2 hours in an inert gas atmosphere and then cooled for 2 hours. What you did.
Sample C (Example 2): Heat-treated in an inert gas atmosphere for 6 hours at around 900 degrees Celsius, a temperature just before melting 4N silver wire (processed under the same conditions as Sample A) formed by cold working After cooling for 6 hours.
I Observation of organization and image
(1) Test method
The sample was embedded in a resin, and a sample having a longitudinal section parallel to the longitudinal direction of the wire and a transverse section perpendicular to the longitudinal direction of the wire was produced. Each sample was polished, subjected to electric field etching, and photographed with an optical microscope. Polishing was performed up to about 0.25 [μm] diamond paste. The etching solution used was a citric acid aqueous solution 100 [ml] added with a few drops of nitric acid, and electric field etching was performed at a voltage of 5 [v]. The photo magnification is 50 times in the longitudinal section and 100 times in the transverse section.
(2) Testing organization: Tokyo Metropolitan Industrial Technology Research Center
(3) Test results: as shown in FIGS.
Sample A: FIG. 5A is a photomicrograph of the vertical cross section of sample A, and FIG. 5B is a photomicrograph of the same cross section. Referring to these photographs, it is confirmed that the structure is oriented in the longitudinal direction by drawing, but many strains and defects are observed. Crystal grains are oriented in the longitudinal direction of the wire, and the cross section has different densities at the central portion and the peripheral portion.
<What to understand>
-It is presumed that the plasticity is remarkably lowered and work hardening occurs due to the distortion and defect caused by the drawing process. Elongation and bending properties are significantly deteriorated before processing.
・ Because the crystal is broken, the periodicity of atoms is broken, and defects are generated, so the structure prevents the flow of electrons.
-A potential difference occurs on the metal surface due to strain and defects, and a local battery is formed and corrosion is easily promoted.
-When an external stress such as pulling or bending is applied, the structure tends to cause stress concentration in the internal stress accumulation part and defect part due to strain, that is, the structure having low fracture strength, tensile strength, crack strength, etc.
Sample B: FIG. 6A is a photomicrograph of the vertical cross section of sample B, and FIG. 6B is a photomicrograph of the same cross section. From these photographs, it is observed that the distortion and defects are eliminated, and the entire structure is homogeneous and dense. It is observed that crystal grains (structure with regularity, face-centered cubic in the case of silver) are larger than Sample A and are oriented in the longitudinal direction of the wire. In the cross section, the density is substantially uniform at the central portion and the peripheral portion.
<What to understand>
-A recrystallized structure that is highly conductive is formed.
・ Plasticity (ductility, malleability) is increased because strain and defects are eliminated.
・ Although it cannot be clearly confirmed in the structure, it is presumed that the atoms of the broken crystal are recovered and reordered to form ordered grains, and strain and defects are eliminated, and the density and periodicity are eliminated. It has a homogeneous structure with the structure, and is oriented in the long direction, so that it has a structure in which electrons easily flow.
-Since it has a homogeneous structure, a potential difference is unlikely to occur on the metal surface, local batteries are suppressed, and it is difficult to corrode.
・ Since it has a homogeneous structure, even when external stress such as pulling or bending is applied, stress concentration is unlikely to occur, and the structure has high fracture strength, tensile strength, crack strength, and the like.
Sample C: FIG. 7A is a photomicrograph of the vertical cross section of sample C, and FIG. 7B is a photomicrograph of the same cross section. The crystal grains grow larger than Sample B and have the same size, and periodicity and homogeneity can be confirmed. In addition, the number of crystal grain boundaries per unit volume and the total area are greatly reduced. In addition, it is presumed that the content of impurities such as metal oxides / intermetallic compounds, oxygen and inevitable elements precipitated at the grain boundaries is also greatly reduced.
<What to understand>
-A recrystallized structure that is highly conductive is formed.
・ Strains and defects are almost completely eliminated, and crystal grains grow large, so that the structure can exhibit the plasticity (ductility, malleability) of the metal crystal itself.
-Since crystal grains are growing large, there are many "high-purity regions (high-purity single crystal regions) in which silver atoms are aligned with regularity" per unit volume. Furthermore, the number of crystal boundaries and the total area of the grain boundaries are greatly reduced, and the factors that scatter and suppress the flow of electrons are greatly reduced.
・ As the number and area of grain boundaries decrease, the content of impurities such as metal oxides and intermetallic compounds, oxygen, and inevitable elements existing in the grain boundaries has greatly decreased. The factor that scatters and suppresses the flow of water is greatly reduced.
・ Grain boundaries, metal oxides and intermetallic compounds, oxygen and inevitable elements such as oxygen and unavoidable elements present at the grain boundaries have a potential difference from the crystal grains themselves. Although it becomes a cause of attraction, since this impurity is reduced, it has a structure in which corrosion is greatly suppressed.
-Since the insulator at the grain boundary is removed, it is expected that the capacitance is lost.
In addition, according to an experiment by a private institution other than the above-described test institution, according to atomic absorption analysis, the content of oxygen and inevitable impurities in sample B is greatly reduced with respect to sample A, and the purity of silver is improved. Further, it was confirmed that the content of oxygen and inevitable impurities in C was greatly reduced, and the purity of silver was greatly improved.
<What to understand>
・ Purity is greatly improved by vacuum annealing and deoxidation / reduction during recrystallization.
-By deoxidizing and reducing during the process of high-temperature heating and recrystallization, the reducing gas will react with oxygen, metal oxides, metal tube compounds, and inevitable impurities in a highly reactive radical state. Removal of these impurities is promoted, and the purity is remarkably improved.
II Conductivity
(1) Test method
JIS C 3002-11992-C16 (3) (6. Electrical conductivity of “Testing methods for electrical copper wires and aluminum wires”)
Conductivity γ = X × 100 / [(R · m / I2 · G) + Y (20−t)]%
However,
R = electric resistance [Ω], m = mass of material of measurement length [g], I = measurement length [m], t = measurement temperature (Celsius), G = density of material [g / cm 3] (= 10. 5) X = 100% conductivity material with a length of 1 m and a cross-sectional area of 1 mm 2, resistance value at 20 degrees (Centigrade), Y = temperature of a sample with a length of 1 m and a cross-sectional area of 1 mm 2 is 20 degrees (Celsius) When the temperature changes by 1 degree (degrees Celsius), the amount of change α is the low mass temperature coefficient near 20 degrees (degrees Celsius) of the sample.
(2) Testing organization: Electrical Safety and Environment Laboratory Yokohama Office
(3) Test results:
○ Sample A
X = 0.0172241, R = 8.414 × 10 −3 [Ω], m = 21.0316 [g], I = 1 [m],
t = 20 [° C.], G = 10.5, conductivity γ = 102.3 [%].
○ Sample B
X = 0.0172241, R = 8.387 × 10 −3 [Ω], m = 20.1950 [g], I = 1 [m],
t = 20 [° C.], G = 10.5, conductivity γ = 106.7 [%].
○ Sample C
X = 0.0172241, R = 8.096 × 10 −3 [Ω], m = 20.7394 [g], I = 1 [m],
t = 20 [° C.], G = 10.5, conductivity γ = 107.8 [%].
<What to understand>
The conductivity γ of pure silver has been assumed to be 106 [%] at the maximum. The conductivity γ of the sample A was 102.3 [%]. This is because, as described above, the structure of the sample A hinders the flow of electrons. Even with the same starting material as Sample A, it increased to 106.7 [%] in Sample B. The reason for this is thought to be that the distortion and defects caused by processing were eliminated, and a homogeneous structure having a denseness and periodicity was formed, and a crystal structure (high conductivity structure) in which electrons easily flowed was obtained.
Sample C was 107.8% higher than the published value so far, and the conductivity was higher than any other kind of metal. In other words, it turned out that it has evolved into a metal material that can be called a new material. As can be seen from “Observation of structure / image”, in the case of Sample C, the crystal grains are large and the number of high-purity single crystal regions per unit volume increases, and the number of crystal boundaries and the total area of the grain boundaries are greatly reduced Therefore, it is considered that the conductivity is remarkably improved because the factors that scatter and suppress the flow of electrons are greatly reduced. In addition, as the number and area of grain boundaries decreased, the content of impurities such as metal oxides and intermetallic compounds, oxygen, and inevitable elements existing at the grain boundaries also decreased significantly. It is thought that one of the reasons is that there is no longer any factor that scatters or suppresses.
III Load test
(1) Test method
A JISZ2201 (1998) JIS No. 9 tensile test piece was used, and a JISZ2241 (1998) metal material tensile test method was used. Three test pieces were used for each of Samples A, B, and C (the wire diameters varied somewhat).
The tensile test was performed at a test chamber temperature of 22 [° C.], with both ends of the specimen (sample) fixed, an initial load of 2 [N], and a test speed of 5 [mm / min].
The compression test was a three-point bending compression test with a jib span of 20 [mm], a metal fitting inner radius R2, and an initial load of 0.1 [N].
(2) Testing organization: Tokyo Metropolitan Industrial Technology Research Center
(3) Test results:
○ Sample A
・ Tensile test
Figure JPOXMLDOC01-appb-T000001
・ 3-point bending compression test
Figure JPOXMLDOC01-appb-T000002
○ Sample B
Figure JPOXMLDOC01-appb-T000003
・ Tensile test
Figure JPOXMLDOC01-appb-T000004
・ 3-point bending compression test
Figure JPOXMLDOC01-appb-T000005
○ Sample C
・ Tensile test
Figure JPOXMLDOC01-appb-T000006
・ 3-point bending compression test
Figure JPOXMLDOC01-appb-T000007
<What to understand>
The plasticity (ductility and malleability) has been greatly recovered, and even when external stress such as tension and bending is applied, stress concentration hardly occurs, and the fracture strength, tensile strength, crack strength, etc. are remarkably improved. For example, as is clear from the above-mentioned “observation of structure / image”, in Samples B and C, distortion and defects due to Sample A are eliminated and the structure has a homogeneous crystal structure. JISZ2201 (1998) JIS9 Tensile test piece, using JISZ2241 (1998) metal material tensile test method, test chamber temperature 22 [° C], sample average wire diameter 1.54 [mm], gauge distance 50 [mm], both ends of sample The initial load is 2 [N], the average load is 1.0 [mm], the average load is 199 [N], the maximum load is 353 [N], and the test speed is 5 [mm / min]. It was found that the elongation obtained by the test exceeded at least 5%, which is the test result for sample A.
Also, the test was carried out with a jib span of 20 [mm], a pusher inner radius R2, and an initial load of 0.1 [N]
It was found that the maximum load obtained by the three-point bending compression test was less than 30 [N].
[Mass productivity]
Compared to the conventional silver wire material that can only secure a length of about 1 [cm] per minute, according to the manufacturing method described above, a silver wire 203 of several [m] to several tens [m] or more can be formed once. It could be secured during the manufacturing process. The production cost was confirmed to be 1/10 to 1/20 or less of the conventional cost including the operation cost of the vacuum furnace. If the capacity and performance of the furnace used for heating and annealing are good, the cost reduction becomes even more remarkable. Therefore, mass production becomes possible and the selling price decreases, so that the silver wire 203 can be expected to spread rapidly.
[Expected utility]
Since the silver wire 203 is used as a wiring material for an electronic component or connected to a ground part, the conduction efficiency is increased, so that no burden is imposed on the operation of the electronic component. Therefore, the failure occurrence probability is also reduced.
In addition, by using the softness and high bending strength of the silver wire 203 for the bonding wire of the semiconductor chip, the original processing capability of the semiconductor chip can be exhibited. It can also contribute to improving processing capacity.
Moreover, by using the silver wire 203 as a power transmission cable, loss and emission of unnecessary electromagnetic waves are remarkably reduced, which can contribute to environmental problems in various fields including energy problems.
Further, a silver coil 203 and a dynamo using the same can be manufactured by covering the silver wire 203. When producing a silver coil, it is necessary to coat | cover the surface of a linear silver material with an enamel, vinyl, etc., However, these silver coating could not be performed. The reason for this is that the surface of general silver materials reacts with enamel to produce sulfides, which lowers the electrical conductivity and physical strength. The same applies to the case of vinyl, and sulfur gas and the like are emitted and react with the surface. The silver wire 203 produced by the production method of the present invention is resistant to corrosion, that is, it is strong against chemical substances, so that the characteristics do not deteriorate even if it is coated with enamel or vinyl. Therefore, a silver coil can be manufactured. With these realizations, energy can be extracted with extremely high efficiency, and as a result, an energy source excellent in the environment can be secured.
The silver wire 203 can also be used as a high performance electrical contact. In general electrical contacts, migration (a phenomenon in which atoms move little by little due to collision of electrons flowing through metal atoms in the wiring, etc.) causes contact failure. On the other hand, since the silver wire 203 manufactured by the manufacturing method of the present invention has high corrosion resistance and migration hardly occurs, a high-performance electrical contact can be realized.
[Modification]
In FIG. 1, an example in which a silver wire 203 wound around a quartz tube 201 is used as a starting material in a heating space of a vacuum furnace is shown, but an auxiliary component such as the quartz tube 201 is not necessarily used, and silver The material may be placed directly in the heating space. Moreover, it can replace with a wire, and can also use the printed circuit board which drawn the wiring pattern with the silver material, a lead frame, the plate-shaped or sheet-shaped silver plate which gave the rolling process, and silver night as a starting material.
The heat treatment may be performed not only in an inert gas or reducing gas atmosphere but also in an atmosphere of at least one of vacuum, inert gas, and reducing gas.
In addition, the crystal grain size and orientation can be adjusted by controlling the heat treatment temperature so as to form a temperature gradient in a predetermined direction of the silver material during cooling.
In addition, FIG. 1 shows an example of a vacuum furnace having a simple structure that simply heats the starting material, but a mechanism for applying a strong electric field is added to the back side of the heating element 105 of the furnace, and the above heating process is performed. When applying, an electric field having different polarities is applied to one end and the other end of the silver material having both ends, so that the crystal orientation of the silver material can be forcibly aligned. . In this case, since the long side direction of each of the plurality of crystal grain boundaries of the silver material is oriented to the conduction direction of electrons, the conduction speed of electrons becomes faster, and further improvement of the conduction efficiency can be expected.
 本発明の銀材は、静電気防止ユニット、プリント基板、コンデンサ、通信装置用アンテナ、半導体チップのボンディングワイヤ、リードフレーム、自動車の電源系統配線材、太陽発電のリード線、避雷針、医療機器配線材、その他電子を感知するセンシング素材、さらに、電気接点、コネクタ等、幅広い分野での利用が可能である。 The silver material of the present invention includes an antistatic unit, a printed circuit board, a capacitor, an antenna for a communication device, a bonding wire for a semiconductor chip, a lead frame, an automotive power system wiring material, a solar power generation lead wire, a lightning rod, a medical device wiring material, In addition, it can be used in a wide range of fields such as sensing materials that detect electrons, electrical contacts, and connectors.

Claims (7)

  1.  銀素材に対する最終の塑性加工を経た後に、真空、不活性ガス、及び還元ガスの少なくともいずれかの雰囲気で、当該銀素材が溶ける直前まで行われた熱処理により、再結晶組織が形成されている、銀材。 After undergoing the final plastic working on the silver material, a recrystallized structure is formed by heat treatment performed until just before the silver material is melted in an atmosphere of at least one of vacuum, inert gas, and reducing gas, Silver material.
  2.  前記再結晶組織が単結晶化した組織である、請求の範囲第1項記載の銀材。 The silver material according to claim 1, wherein the recrystallized structure is a single crystallized structure.
  3.  前記再結晶組織は、その結晶粒の大きさが下記式で導出される導電率106[%]以下の4N銀材よりも粗大化しており、且つ、前記4N銀材に比べて単位体積あたりの結晶粒界密度が少い、請求の範囲第2項記載の銀材。
     導電率γ=X×100/[(R・m/I・G)+Y(20−t)]
     但し、R=電気抵抗[Ω]、m=測定長の資料の質量[g]、I=測定長[m]、t=測定温度(摂氏)、G=資料の密度[g/cm](=10.5)、X=導電率100%の材料で長さ1m、断面積1mmのものの20度(摂氏)での抵抗値、Y=長さ1m、断面積1mmの試料の温度が20度(摂氏)付近で1度(摂氏)変化した場合、その抵抗が変化する量αを試料の20度(摂氏)付近での低質量温度係数。
    The recrystallized structure is coarser than the 4N silver material having a conductivity of 106 [%] or less whose crystal grain size is derived by the following formula, and has a per unit volume as compared with the 4N silver material. The silver material according to claim 2, having a low grain boundary density.
    Conductivity γ = X × 100 / [(R · m / I 2 · G) + Y (20−t)]
    However, R = electric resistance [Ω], m = mass of material of measurement length [g], I = measurement length [m], t = measurement temperature (Celsius), G = density of material [g / cm 3 ] ( = 10.5), X = 100% conductivity material with a length of 1 m and a cross-sectional area of 1 mm 2 , resistance value at 20 degrees (Celsius), Y = length of 1 m and cross-sectional area of 1 mm 2 sample temperature When the temperature changes by 1 degree (degrees Celsius) near 20 degrees (degrees Celsius), the amount α by which the resistance changes is a low mass temperature coefficient near 20 degrees (degrees Celsius) of the sample.
  4.  前記導電率が106[%]を越える、請求の範囲第3項記載の銀材。 The silver material according to claim 3, wherein the conductivity exceeds 106 [%].
  5.  前記再結晶組織の前期結晶粒が所定方向に配向している、請求の範囲第3項記載の銀材。 The silver material according to claim 3, wherein the first crystal grains of the recrystallized structure are oriented in a predetermined direction.
  6.  以下の条件で実施される金属材料引張試験により得られる伸び率が5[%]を越える、請求の範囲第3項記載の銀材。
     JISZ2201(1998)JIS9号引張試験片で、JISZ2241(1998)金属材料引張試験方法を使用し、試験室温度22[℃]、サンプルの平均線径1.54[mm]、標点距離50[mm]、サンプルの両端部を固定して初期荷重2[N]、1.0[mm]変位の平均荷重199[N]で最大荷重が平均353[N]、試験速度5[mm/min]で実施。
    The silver material according to claim 3, wherein the elongation obtained by a metal material tensile test carried out under the following conditions exceeds 5%.
    JISZ2201 (1998) JIS9 tensile test piece, using JISZ2241 (1998) metal material tensile test method, test chamber temperature 22 [° C.], sample average wire diameter 1.54 [mm], gauge distance 50 [mm] ], Both ends of the sample were fixed, the initial load was 2 [N], the average load of 1.0 [mm] displacement was 199 [N], the maximum load was 353 [N], and the test speed was 5 [mm / min]. Implementation.
  7.  以下の条件で実施される三点曲げ圧縮試験による最大荷重が30[N]未満となる、請求の範囲第3項記載の銀材。
     ジブスパン20[mm]、押し金具内側半径R2、初期荷重0.1[N]で実施。
    The silver material according to claim 3, wherein the maximum load by a three-point bending compression test carried out under the following conditions is less than 30 [N].
    Implemented with jib span 20 [mm], pusher inner radius R2, and initial load 0.1 [N].
PCT/JP2010/056963 2009-04-14 2010-04-14 Silver material having high electrically conductive structure WO2010119982A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-097817 2009-04-14
JP2009097817A JP2012136719A (en) 2009-04-14 2009-04-14 Metallic material having highly conductive structure

Publications (1)

Publication Number Publication Date
WO2010119982A1 true WO2010119982A1 (en) 2010-10-21

Family

ID=42982636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056963 WO2010119982A1 (en) 2009-04-14 2010-04-14 Silver material having high electrically conductive structure

Country Status (2)

Country Link
JP (1) JP2012136719A (en)
WO (1) WO2010119982A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013118831A1 (en) * 2012-02-09 2013-08-15 キヤノン電子株式会社 Method for producing silver bonding wire, and silver bonding wire
US10018420B2 (en) 2012-01-27 2018-07-10 Canon Denshi Kabushiki Kaisha Metal wire heat treatment method using heat treatment jig

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61163505A (en) * 1985-01-14 1986-07-24 住友電気工業株式会社 Manufacture of image display device and acoustic device
JPH06235034A (en) * 1993-02-10 1994-08-23 Res Inst Electric Magnetic Alloys Silver base low resistance temperature coefficient alloy and its production
JPH11339568A (en) * 1998-05-28 1999-12-10 Mitsubishi Materials Corp Audio wire conductor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61163505A (en) * 1985-01-14 1986-07-24 住友電気工業株式会社 Manufacture of image display device and acoustic device
JPH06235034A (en) * 1993-02-10 1994-08-23 Res Inst Electric Magnetic Alloys Silver base low resistance temperature coefficient alloy and its production
JPH11339568A (en) * 1998-05-28 1999-12-10 Mitsubishi Materials Corp Audio wire conductor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10018420B2 (en) 2012-01-27 2018-07-10 Canon Denshi Kabushiki Kaisha Metal wire heat treatment method using heat treatment jig
WO2013118831A1 (en) * 2012-02-09 2013-08-15 キヤノン電子株式会社 Method for producing silver bonding wire, and silver bonding wire

Also Published As

Publication number Publication date
JP2012136719A (en) 2012-07-19

Similar Documents

Publication Publication Date Title
JP6408530B2 (en) Sheathed wire
JP4787885B2 (en) Wire harness for wire harness and wire harness for automobile
JP5441876B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP4677505B1 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP4799701B1 (en) Cu-Co-Si based copper alloy strip for electronic materials and method for producing the same
WO2010113553A1 (en) Cu-co-si copper alloy for use in electronics, and manufacturing method therefor
CN103052728B (en) Copper-cobalt-silicon alloy for electrode material
US20130042949A1 (en) Method of manufacturing soft-dilute-copper-alloy-material
TWI274786B (en) Cu-Ni-Si-Mg based copper alloy strip
JP2015161009A (en) High strength copper alloy thin sheet material and production method thereof
JP2017179502A (en) Copper alloy sheet excellent in strength and conductivity
WO2010119982A1 (en) Silver material having high electrically conductive structure
JP2013104068A (en) Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JPH0786325A (en) Copper wire for electronic device
JP3324228B2 (en) Copper wire for ultrafine wire and method of manufacturing the same
JP2011162826A (en) Aluminum alloy wire
JP6310131B1 (en) Titanium copper for electronic parts
JP2004027298A (en) Copper and copper alloy and heat treatment method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10764563

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10764563

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP