WO2010119863A1 - Wave absorber - Google Patents

Wave absorber Download PDF

Info

Publication number
WO2010119863A1
WO2010119863A1 PCT/JP2010/056585 JP2010056585W WO2010119863A1 WO 2010119863 A1 WO2010119863 A1 WO 2010119863A1 JP 2010056585 W JP2010056585 W JP 2010056585W WO 2010119863 A1 WO2010119863 A1 WO 2010119863A1
Authority
WO
WIPO (PCT)
Prior art keywords
absorber
dielectric loss
magnetic loss
loss
radio wave
Prior art date
Application number
PCT/JP2010/056585
Other languages
French (fr)
Japanese (ja)
Inventor
石塚一男
海渕住男
江口友和
Original Assignee
株式会社リケン
株式会社リケン環境システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社リケン, 株式会社リケン環境システム filed Critical 株式会社リケン
Priority to JP2011509297A priority Critical patent/JP5460697B2/en
Publication of WO2010119863A1 publication Critical patent/WO2010119863A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0075Magnetic shielding materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0007Casings

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

Disclosed is a compact wave absorber for effectively absorbing radio waves in a frequency band from 30 MHz to 18 GHz. A magnetic loss absorber (4) is configured from a plurality of magnetic loss bodies (3) having a polygonal pyramid shape or a wedge shape and arranged on the same plane. A dielectric loss absorber (6) is configured from platy dielectric loss bodies (5) arranged perpendicularly or obliquely to the plane in adjoining valley parts with the narrow width portion positioned as the root portion. A wave absorber (1) is configured from the magnetic loss absorber (4) and the dielectric loss absorber (6). The dielectric loss absorber (6) can be configured so that, for example, two inclined platy loss bodies are inclined at an angle in the range from over 0° to 45°, with respect to a plane perpendicular to the plane, and thereby the cross-section has an approximately V shape. It is preferable that the dielectric loss absorber (6) has a grid shape surrounding each of the magnetic loss bodies (3) arranged in a matrix and having a polygonal pyramid shape or a wedge shape.

Description

電波吸収体Radio wave absorber
 本発明は、電波吸収体に関し、さらに詳しくは、30MHzから18GHzの周波数帯域の電磁波を効果的に吸収する小型の電波吸収体に関する。 The present invention relates to a radio wave absorber, and more particularly to a small radio wave absorber that effectively absorbs electromagnetic waves in a frequency band of 30 MHz to 18 GHz.
 近年、電子機器が発生した電磁妨害波が他の機器に誤動作を生じさせたり、逆に外来電磁妨害波により電子機器が誤動作することがないように、電子機器には電磁環境両立性(EMC:Electro Magnetic Compatibility)が求められている。EMC評価を行うためには、電波暗室と呼ばれる測定用の部屋が必要となる。電波暗室の外壁は、外来電磁波の暗室内への浸入や暗室内の測定装置から発生する電磁波の外部への放射を防止するため、金属板で覆われている。また、不要な電磁波の反射を防止するため、暗室内部には電波吸収体が取り付けられている。電波暗室の種類には、自動車や大型の電子機器等大型製品を評価するための10m法電波暗室や、比較的小型の製品を評価するための3m法電波暗室や小型暗室等がある。3m法暗室や小型暗室では、特に、電波吸収体が小型であることが要求される。
 従来、電波暗室内で測定される周波数範囲は30MHz~1GHzであった。しかし、携帯電話、RFタグなど通信機器の小型化・多様化に伴い、測定周波数の上限も拡大している。2007年2月には、1GHz~18GHzの周波数範囲の測定サイトの確認方法が、CISPR16-1-4 Ed.2として規格化されており、電波暗室に要求される対応周波数範囲は30MHz~18GHzに拡大している。
In recent years, electronic devices are compatible with the electromagnetic environment (EMC) so that the electromagnetic interference generated by the electronic device does not cause other devices to malfunction, and conversely, the electronic device does not malfunction due to external electromagnetic interference. Electro Magnetic Compatibility) is demanded. In order to perform EMC evaluation, a measurement room called an anechoic chamber is required. The outer wall of the anechoic chamber is covered with a metal plate in order to prevent the entry of external electromagnetic waves into the dark room and the radiation of electromagnetic waves generated from the measuring device in the dark room to the outside. In order to prevent unnecessary reflection of electromagnetic waves, a radio wave absorber is attached to the inside of the dark room. The types of anechoic chambers include a 10 m method anechoic chamber for evaluating large products such as automobiles and large electronic devices, a 3 m method anechoic chamber for evaluating relatively small products, and a small dark room. In a 3 m dark room and a small dark room, it is particularly required that the radio wave absorber is small.
Conventionally, the frequency range measured in an anechoic chamber was 30 MHz to 1 GHz. However, with the downsizing and diversification of communication devices such as mobile phones and RF tags, the upper limit of measurement frequency is increasing. In February 2007, a method for confirming a measurement site in the frequency range of 1 GHz to 18 GHz was announced by CISPR16-1-4 Ed. The corresponding frequency range required for the anechoic chamber is expanded to 30 MHz to 18 GHz.
 一般に、広帯域の周波数に適応するための電波吸収体として、カーボンを含有したピラミッド形状の電波吸収体及びフェライトタイルを組み合わせた複合型電波吸収体が用いられている。このような複合型電波吸収体では、300MHz以上の周波数帯域の電磁波はピラミッド形状の電波吸収体により吸収させ、それ未満の周波数帯域の電磁波はフェライトタイルにより吸収させる。これにより、30MHz~18GHzの幅広い周波数帯域において電波吸収特性を確保することができる。しかし、上記複合型電波吸収体の高さは一般的に90cm~300cmとなるため、これを用いた3m法電波暗室や小型電波暗室を、省スペースで設計することはできない。 Generally, as a radio wave absorber for adapting to a broadband frequency, a composite wave absorber combining a pyramid-shaped radio wave absorber containing carbon and a ferrite tile is used. In such a composite wave absorber, electromagnetic waves in a frequency band of 300 MHz or higher are absorbed by a pyramid-shaped wave absorber, and electromagnetic waves in a frequency band lower than that are absorbed by a ferrite tile. As a result, radio wave absorption characteristics can be secured in a wide frequency band of 30 MHz to 18 GHz. However, since the height of the composite electromagnetic wave absorber is generally 90 cm to 300 cm, a 3 m anechoic chamber or a small anechoic chamber using the same cannot be designed in a space-saving manner.
 特許文献1には、小型暗室用の電波吸収体として、フェライトタイルと、これに接合した所定の比誘電率を有する汎用樹脂にフェライト粉を分散させた材料からなるピラミッド形状等の吸収体とを含む複合電波吸収体が開示されている。この電波吸収体を従来の小型のフェライト暗室サイズに用いることで、高周波への対応が可能であることが記載されている。しかしながら、フェライトの磁気特性では、スネーク限界により、高周波化には限界がある。そのため、フェライトの組成等を最適化しても10GHz以上の周波数帯域への対応は困難と考えられている。 In Patent Document 1, as a radio wave absorber for a small dark room, a ferrite tile and a pyramid-shaped absorber made of a material in which ferrite powder is dispersed in a general-purpose resin having a predetermined relative dielectric constant bonded thereto. A composite electromagnetic wave absorber is disclosed. It is described that it is possible to cope with high frequencies by using this radio wave absorber for a conventional small ferrite darkroom size. However, in the magnetic characteristics of ferrite, there is a limit to increasing the frequency due to the snake limit. For this reason, it is considered difficult to cope with a frequency band of 10 GHz or more even if the composition of ferrite is optimized.
 一方、特許文献2には、導電性を有する抵抗被膜体により形成され、金属板に向かって垂直方向に格子状又は蜂の巣状に配置された電波吸収部から構成される電波吸収体が開示されている。この電波吸収体では、抵抗被膜体の面抵抗値を自由空間の電波インピーダンスとして、一定間隔及び一定厚さにして、格子状等に組み合わせて配列されている。このため、吸収体表面に入射した電波の反射を抑制することができるとされている。また、抵抗被膜体内部に進んだ電波は、抵抗被膜体表面で電波の直進と共に吸収されることにより減衰していき、金属板表面近傍におけるインピーダンスは、空間のインピーダンスに近づき、効率のよい電波吸収が可能であることが記載されている。そして、この電波吸収体では、インピーダンスを空間インピーダンスに整合させるために必要な吸収体の高さを大幅に減らすことができ、スペース上有利であることが示されている。しかしながら、誘電損失体から構成される特許文献2の電波吸収体では、高周波数帯域の電波を効果的に吸収することはできるが、低周波数帯域の電波に対応することはできない。 On the other hand, Patent Document 2 discloses a radio wave absorber formed of a radio wave absorber formed of a conductive resistive film body and arranged in a lattice shape or a honeycomb shape in a vertical direction toward a metal plate. Yes. In this radio wave absorber, the surface resistance value of the resistance film body is set as a free space radio wave impedance, and is arranged in a lattice shape or the like with a constant interval and a constant thickness. For this reason, it is said that reflection of the radio wave incident on the absorber surface can be suppressed. In addition, the radio waves that have traveled inside the resistance coating body are attenuated by absorbing the radio waves on the resistance coating body surface, and the impedance near the surface of the metal plate approaches the impedance of the space. Is described as being possible. In this radio wave absorber, the height of the absorber necessary for matching the impedance to the spatial impedance can be greatly reduced, which is advantageous in terms of space. However, the radio wave absorber disclosed in Patent Document 2 composed of a dielectric loss body can effectively absorb radio waves in a high frequency band, but cannot cope with radio waves in a low frequency band.
特許第3041295号公報Japanese Patent No. 3041295 特許第2660647号公報Japanese Patent No. 2660647
 本発明は上記事情に鑑みてなされたもので、30MHzから18GHzの広い周波数帯域の電磁波を効果的に吸収する小型の電波吸収体を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a small radio wave absorber that effectively absorbs electromagnetic waves in a wide frequency band from 30 MHz to 18 GHz.
 上記目的に鑑み鋭意研究の結果、本発明者らは、多角錐形状又はウェッジ形状の磁性損失体の隣接する多角錐間又はウェッジ間の谷間部に、磁性損失体の底面に対して垂直な、又は傾斜した板状の誘電損失体を設けることにより、低周波数帯域での電波吸収特性を維持しつつ、高周波数帯域での電波吸収特性を大幅に向上させることができるため、広い周波数帯域に亘り優れた電波吸収特性が得られることを見出し、本発明に想到した。すなわち、本発明の電波吸収体は複数の多角錐形状又はウェッジ形状の磁性損失体からなる磁性損失吸収体であって、平面上に、前記磁性損失体の底面を、隣接又は所定間隔で離間して載置し磁性損失体間に谷間部を設けた磁性損失吸収体と、板状の誘電損失体からなる誘電損失吸収体であって、狭幅部を基部として前記磁性損失体間の谷間部に、磁性損失体の底面に対して垂直または所定角度で傾斜して配置される誘電損失吸収体とを備えることを特徴とする。 As a result of diligent research in view of the above object, the inventors of the present invention have found that a polygonal pyramid-shaped or wedge-shaped magnetic lossy body between adjacent polygonal pyramids or a valley between wedges is perpendicular to the bottom surface of the magnetic lossy body, Alternatively, by providing an inclined plate-like dielectric loss body, it is possible to greatly improve the radio wave absorption characteristics in the high frequency band while maintaining the radio wave absorption characteristics in the low frequency band. The inventors have found that excellent radio wave absorption characteristics can be obtained and have arrived at the present invention. That is, the radio wave absorber of the present invention is a magnetic loss absorber composed of a plurality of polygonal pyramid-shaped or wedge-shaped magnetic loss bodies, and the bottom surface of the magnetic loss body is spaced apart from each other at a predetermined interval on a plane. A magnetic loss absorber comprising a plate-like dielectric loss body, and a valley portion between the magnetic loss bodies based on a narrow width portion. And a dielectric loss absorber disposed perpendicular to the bottom surface of the magnetic loss body or inclined at a predetermined angle.
 本発明によれば、広い周波数帯域において優れた電波吸収性能を有する小型の電波吸収体が実現される。これを用いることで、3m法電波暗室や小型電波暗室においても広い周波数帯域での測定が可能となる。 According to the present invention, a small wave absorber having excellent wave absorption performance in a wide frequency band is realized. By using this, measurement in a wide frequency band is possible even in a 3 m method anechoic chamber or a small anechoic chamber.
 以下に本発明の電波吸収体について詳細に説明する。
 なお、本明細書における電波吸収体の説明(請求項を含む)において、別段断らない限り、本発明の電波吸収体は電波入射側を上側として配置した状態を基準として方向を定義することとし、例えば断面図は配置される平面(電波吸収体の底面)に垂直な断面として説明する。これらの電波吸収体は、電波暗室に取り付けられる際にはそれぞれの床面、壁面、天井面に対して取り付けるため、その姿勢は上下左右いずれでも取りうることは言うまでもない。
 また、本明細書に添付の図面においては、参照符号は全ての部材に付しておらず、代表する構成要素の一部のみに付与し、それ以外の同様部分については省略している場合がある。
The radio wave absorber of the present invention will be described in detail below.
In the description of the radio wave absorber in this specification (including claims), unless otherwise specified, the radio wave absorber of the present invention defines the direction with reference to the state where the radio wave incident side is disposed on the upper side, For example, the cross-sectional view will be described as a cross section perpendicular to the plane in which the cross section is arranged (the bottom surface of the radio wave absorber). Since these electromagnetic wave absorbers are attached to the floor surface, wall surface, and ceiling surface when attached to the electromagnetic wave anechoic chamber, it goes without saying that the posture can be taken either vertically or horizontally.
Further, in the drawings attached to the present specification, reference numerals are not attached to all members, but may be given to only some of the representative components, and other similar parts may be omitted. is there.
 図1に本発明の電波吸収体の一例の断面図を示す。図1に示された電波吸収体1は、平板部2上に底面を載置して所定間隔離間して設置された複数のピラミッド形状の磁性損失体3で構成される磁性損失吸収体4と、これらのピラミッド形状の磁性損失体3の間に形成される谷間部に配置された板状の誘電損失体5からなる誘電損失吸収体6とからなる。すなわち、磁性損失体3の底面を、同一平面上に、所定間隔離間して載置することにより隣り合うピラミッド間に谷間部が形成される。この谷間部に磁性損失体3の底面(平板部2の上面)に対して垂直に狭幅部分を基部として板状の誘電損失体5が設置されている。
 なお、平板部2の材料は、上面が平面であれば特に限定されないが、樹脂、ゴム、木材、セラミックス等が用いられる。また、平板部2の材料も磁性損失材とすることにより、さらに優れた電波吸収特性が得られる。平板部2は磁性損失体3とは別部材として成形してもよいが、その上に載置される磁性損失体3と同じ材料で構成される場合には、射出成型等により一体成形することができ、製造コストの点から好ましい。
FIG. 1 shows a cross-sectional view of an example of the radio wave absorber of the present invention. A radio wave absorber 1 shown in FIG. 1 includes a magnetic loss absorber 4 composed of a plurality of pyramidal magnetic loss bodies 3 placed on a flat plate portion 2 with a bottom surface and spaced apart by a predetermined distance. The dielectric loss absorber 6 is composed of a plate-like dielectric loss body 5 disposed in a valley formed between the pyramidal magnetic loss bodies 3. That is, a valley portion is formed between adjacent pyramids by placing the bottom surface of the magnetic loss body 3 on the same plane at a predetermined interval. A plate-like dielectric loss body 5 is installed in the valley portion perpendicular to the bottom surface of the magnetic loss body 3 (upper surface of the flat plate portion 2) with a narrow width portion as a base.
The material of the flat plate portion 2 is not particularly limited as long as the upper surface is flat, but resin, rubber, wood, ceramics and the like are used. Further, by using the material of the flat plate portion 2 as a magnetic loss material, further excellent radio wave absorption characteristics can be obtained. The flat plate portion 2 may be formed as a separate member from the magnetic loss body 3, but when it is made of the same material as the magnetic loss body 3 placed thereon, it is integrally formed by injection molding or the like. This is preferable from the viewpoint of manufacturing cost.
 上記構成の電波吸収体1に入射した電磁波の一部は、伝搬経路7に示すように、誘電損失体5と磁性損失体3との間で反射を繰り返しながら、誘電損失体5及び磁性損失体3に吸収され、減衰していく。また、伝搬経路8に示すように、誘電損失体5を透過した電磁波は、磁性損失体3の間で反射を繰り返しながら、吸収され減衰する。このように本発明の電波吸収体1においては、それぞれの周波数の電磁波に最適な反射経路が形成され、電磁波が吸収され、減衰するため、幅広い周波数帯域の電磁波を効果的に吸収できる。 As shown in the propagation path 7, a part of the electromagnetic wave incident on the radio wave absorber 1 having the above configuration is repeatedly reflected between the dielectric loss body 5 and the magnetic loss body 3, while the dielectric loss body 5 and the magnetic loss body. 3 is absorbed and decays. Further, as indicated by the propagation path 8, the electromagnetic wave transmitted through the dielectric loss body 5 is absorbed and attenuated while being repeatedly reflected between the magnetic loss bodies 3. As described above, in the radio wave absorber 1 of the present invention, an optimum reflection path is formed for the electromagnetic waves of the respective frequencies, and the electromagnetic waves are absorbed and attenuated, so that the electromagnetic waves in a wide frequency band can be effectively absorbed.
 磁性損失体3は、多角錐形状(円錐形状を含む)又はウェッジ形状であればよいが、底面を正方形とした四角錐形状又はウェッジ形状の磁性損失体3が好ましく用いられる。このとき、磁性損失体3の四角錐の底面の一辺の長さは、10mm~200mmであることが好ましい。本発明において、具体的な磁性損失体3の高さ(底面から頂部までの寸法)は、特に限定されないが、小型暗室などを実現するためには、50mm~200mmとするのが好ましい。また、磁性損失体3の先端形状は鋭角としてもよいが、耐衝撃性を考慮すると、曲面(R形状)、又は平面とするのが好ましい。なお、本発明において、「磁性損失体の底面」とは、多角錐形状の場合には当該多角形が平面として出現する面(錐の先端とは反対面)であり、ウェッジ形状の場合にはウェッジ先端部と反対側に位置する面を称することとする。 The magnetic loss body 3 may be a polygonal pyramid shape (including a conical shape) or a wedge shape, but a quadrangular pyramid shape or wedge shape magnetic loss body 3 having a square bottom surface is preferably used. At this time, the length of one side of the bottom surface of the quadrangular pyramid of the magnetic loss body 3 is preferably 10 mm to 200 mm. In the present invention, the specific height (dimension from the bottom surface to the top) of the magnetic loss body 3 is not particularly limited, but is preferably 50 mm to 200 mm in order to realize a small dark room or the like. The tip of the magnetic loss body 3 may have an acute angle, but in consideration of impact resistance, it is preferably a curved surface (R shape) or a flat surface. In the present invention, the “bottom surface of the magnetic loss body” is a surface where the polygon appears as a plane (a surface opposite to the tip of the cone) in the case of a polygonal cone shape, and in the case of a wedge shape. The surface located on the opposite side of the wedge tip will be referred to.
 磁性損失体3の材料は、特に限定されず、フェライト粉を含有する樹脂やセラミックス等が挙げられる。フェライト粉としては、Fe/NiO/ZnO系、Fe/NiO/ZnO/CuO系、Fe/MnO/ZnO系等が用いられる。また、樹脂材料としては、ポリエチレン、ポリプロピレン、フッ素樹脂、アリル樹脂、エポキシ樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、スチロール樹脂、アクリル樹脂、ポリアミド樹脂、ポリアセタール樹脂、ポリカーボネート樹脂、アセチルセルロース樹脂等が用いられる。これらの樹脂材料のいずれか1種を用いてもよいが、複数種を混合して用いてもよい。また、セラミックス材料としては、アルミナ、シリカ、ムライト等が用いられる。フェライト粉の含有率は、磁性損失体の全質量に対して、37質量%~91質量%が好ましい。 The material of the magnetic loss body 3 is not particularly limited, and examples thereof include resins and ceramics containing ferrite powder. As the ferrite powder, Fe 2 O 3 / NiO / ZnO system, Fe 2 O 3 / NiO / ZnO / CuO system, Fe 2 O 3 / MnO / ZnO system, or the like is used. As the resin material, polyethylene, polypropylene, fluorine resin, allyl resin, epoxy resin, vinyl chloride resin, vinyl acetate resin, styrene resin, acrylic resin, polyamide resin, polyacetal resin, polycarbonate resin, acetyl cellulose resin, etc. are used. . Any one of these resin materials may be used, but a plurality of them may be mixed and used. As the ceramic material, alumina, silica, mullite, or the like is used. The content of the ferrite powder is preferably 37% by mass to 91% by mass with respect to the total mass of the magnetic loss body.
 本発明において、複数の磁性損失体3を平面(平板部2)上にその底面を載置して配置することにより磁性損失吸収体4を構成する。ここで、磁性損失体間に所定間隔を開けて配置してもよいが、隣り合う磁性損失体の底面を隣接(密接)して配置することもできる。これにより、磁性損失体間に板状の誘電損失体を設置する谷間部が形成される。多角錐形状の磁性損失体の場合、例えば規則的に行列状であるマトリックス状に磁性損失体を配置して磁性損失吸収体を構成するのが好ましい。また、ウェッジ形状の磁性損失体の場合には、複数の磁性損失体を平行に配置して1ブロックとし、隣接する個所に、例えば垂直方向等、異なる向きに配置された複数のブロックを設置して磁性損失吸収体を構成してもよい。 In the present invention, the magnetic loss absorber 4 is configured by placing a plurality of magnetic loss bodies 3 on a flat surface (flat plate portion 2) with the bottom surface thereof placed. Here, the magnetic loss bodies may be arranged at a predetermined interval, but the bottom surfaces of adjacent magnetic loss bodies may be arranged adjacent (closely). Thereby, the valley part which installs a plate-shaped dielectric loss body between magnetic loss bodies is formed. In the case of a polygonal-pyramidal magnetic loss body, it is preferable that the magnetic loss absorber is configured by arranging the magnetic loss bodies in a regular matrix form, for example. In the case of a wedge-shaped magnetic loss body, a plurality of magnetic loss bodies are arranged in parallel to form one block, and a plurality of blocks arranged in different directions, such as a vertical direction, are installed at adjacent locations. A magnetic loss absorber may be configured.
 誘電損失体5は、一般的な板状の部材であり、主面を構成する広幅部と、表裏の主面をつなぐ側面である狭幅部分を有する。この狭幅部分を基部として、磁性損失体3の底面(設置平面)に対して、垂直又は所定角度傾斜させて設置される。誘電損失体を傾斜して設ける場合には、垂直面に対して、0度より大きく、45度以下の範囲の傾斜にするのが好ましい。また、実施形態の例として、1個所の谷間部当たりに垂直の板状誘電損失体と傾斜した板状誘電損失体、又は二つの傾斜した板状誘電損失体を組み合わせて誘電損失吸収体を構成することもできる。2枚の誘電損失体を傾斜させる場合には、それぞれが上記の傾斜角を取ることができる。すなわち、2枚の板状誘電損失体を隣接して断面V字状とする場合には、2枚の板状誘電損失体を垂直面に対して、それぞれ反対側方向に、0度より大きく、45度以下の範囲で傾斜するのが好ましい。この範囲で板状の誘電損失体を配置して誘電損失吸収体を構成することにより、入射方向への反射が抑えられ、誘電損失体間での反射が多くなるため、電波吸収体は優れた電波吸収特性を備えることができる。なお、1個所の谷間部当たりに二つの板状誘電損失体を組み合わせる場合には、その基部や頂部となる狭幅部分は連続していてもよく、例えば、断面V字状となる組み合わせであってもよい。
 誘電損失体は、磁性損失体の吸収限界である10GHz以上の周波数帯域での電波吸収性能の向上を目的に設置されている。そのため、誘電損失体間の水平方向の間隔は、目的とする最小周波数である10GHzの波長と同程度の大きさ、即ち、波長3.0cmの0.5倍~2.0倍である1.5cm~6cmに設定するのが好ましい。板状の誘電損失体を傾斜して設置する場合には、隣り合う誘電損失体の最大高さにおける水平距離を上記範囲に設定するのが好ましい。
The dielectric loss body 5 is a general plate-like member, and has a wide width portion constituting the main surface and a narrow width portion which is a side surface connecting the front and back main surfaces. With this narrow portion as a base, it is installed perpendicularly or at a predetermined angle with respect to the bottom surface (installation plane) of the magnetic loss body 3. When the dielectric loss body is provided with an inclination, it is preferable to make the inclination in a range of greater than 0 degree and not more than 45 degrees with respect to the vertical plane. Further, as an example of the embodiment, a dielectric loss absorber is configured by combining a vertical plate-like dielectric loss body and an inclined plate-like dielectric loss body or two inclined plate-like dielectric loss bodies per one valley. You can also When the two dielectric loss bodies are tilted, each can take the tilt angle. That is, when two plate-like dielectric loss bodies are adjacent to each other and have a V-shaped cross section, the two plate-like dielectric loss bodies are larger than 0 degrees in the opposite directions with respect to the vertical plane, It is preferable to incline within a range of 45 degrees or less. By constructing a dielectric loss absorber by disposing a plate-like dielectric loss body in this range, reflection in the incident direction is suppressed and reflection between dielectric loss bodies increases, so that the radio wave absorber is excellent. It can have radio wave absorption characteristics. In addition, when two plate-like dielectric loss bodies are combined per one valley portion, the narrow portion which becomes the base portion or the top portion may be continuous, for example, a combination having a V-shaped cross section. May be.
The dielectric loss body is installed for the purpose of improving the radio wave absorption performance in a frequency band of 10 GHz or more, which is the absorption limit of the magnetic loss body. Therefore, the horizontal spacing between the dielectric loss bodies is as large as the target minimum frequency of 10 GHz, that is, 0.5 to 2.0 times the wavelength of 3.0 cm. It is preferably set to 5 cm to 6 cm. When the plate-like dielectric loss bodies are installed at an inclination, it is preferable to set the horizontal distance at the maximum height of adjacent dielectric loss bodies within the above range.
 誘電損失体は、誘電損失材料からなる板状材であれば、特にその材料及び構造は限定されない。たとえばその構造としてはシート状の単体の板材や、段ボール構造又はハニカム構造等を含む板材構造を適用しうる。誘電損失材料としては、カーボン含有発泡ウレタン、カーボン含有発泡スチレン、カーボン含有発泡ポリプロピレン、又はカーボンを含有し、若しくはカーボン層を塗布したプラスティック、紙、シリカやアルミナ等の無機材料からなるシート等が用いられる。カーボンとしては、カーボンファイバー及びグラファイト、カーボンブラック等の粉末状カーボンが用いられる。カーボンファイバーを用いる場合には、繊維長さは、0.5mm~7mmが好ましく、繊維径は、5μm~10μmが好ましい。また、カーボンファイバーの添加量は、誘電損失体の全質量に対して、0.03質量%~1.7質量%が好ましく、0.03質量%~0.4質量%がより好ましい。カーボン粉末として、グラファイトを用いる場合には、粉末の粒径は、1μm~100μmが好ましく、誘電損失体の全質量に対して、1.5質量%~15質量%添加するのが好ましい。一方、カーボンブラックを用いる場合には、粉末の一次粒径は、10nm~500nmが好ましく、誘電損失体の全質量に対して、1質量%~5質量%添加するのが好ましい。 As long as the dielectric loss body is a plate-like material made of a dielectric loss material, its material and structure are not particularly limited. For example, as the structure, a sheet-like single plate material, or a plate material structure including a cardboard structure or a honeycomb structure can be applied. Dielectric loss materials include carbon-containing foamed urethane, carbon-containing foamed styrene, carbon-containing foamed polypropylene, or plastic containing carbon or coated with a carbon layer, paper, sheets made of inorganic materials such as silica and alumina, etc. It is done. As the carbon, powdered carbon such as carbon fiber, graphite, and carbon black is used. When carbon fibers are used, the fiber length is preferably 0.5 mm to 7 mm, and the fiber diameter is preferably 5 μm to 10 μm. The amount of carbon fiber added is preferably 0.03% by mass to 1.7% by mass and more preferably 0.03% by mass to 0.4% by mass with respect to the total mass of the dielectric loss body. When graphite is used as the carbon powder, the particle size of the powder is preferably 1 μm to 100 μm, and it is preferable to add 1.5% by mass to 15% by mass with respect to the total mass of the dielectric loss body. On the other hand, when carbon black is used, the primary particle size of the powder is preferably 10 nm to 500 nm, and is preferably added in an amount of 1% by mass to 5% by mass with respect to the total mass of the dielectric loss body.
 以下に本発明の誘電損失吸収体6の形態を中心に、本発明の電波吸収体1について図面を参照して説明する。
 図2には、板状の誘電損失体5から形成した複数のウェッジ形状からなる誘電損失吸収体6の斜視図を示す。本構成の誘電損失吸収体6を用いると、隣接する多角錐又はウェッジ形状の磁性損失体3間の連続した谷間部分に断面略V字形状の板状誘電損失体5を設置して電波吸収体1を構成することになる。この構成では、誘電損失体5と磁性損失体3間での反射経路が図1に示す伝搬経路7,8より、さらに複雑になる。このため、これらで構成した電波吸収体1は幅広い周波数帯域の電磁波を確実に吸収することが可能となる。ここで、誘電損失吸収体6のV字形状を構成する2枚の板状誘電損失体5は、垂直面に対して、それぞれ反対側に向かって0度を超え、45度以下の範囲で傾斜させるのが好ましい。
Hereinafter, the radio wave absorber 1 of the present invention will be described with reference to the drawings, focusing on the form of the dielectric loss absorber 6 of the present invention.
FIG. 2 shows a perspective view of a dielectric loss absorber 6 having a plurality of wedge shapes formed from a plate-like dielectric loss body 5. When the dielectric loss absorber 6 having this configuration is used, a plate-like dielectric loss body 5 having a substantially V-shaped cross section is installed in a continuous valley portion between adjacent polygonal pyramid or wedge-shaped magnetic loss bodies 3 to thereby absorb the radio wave absorber. 1 is constituted. In this configuration, the reflection path between the dielectric loss body 5 and the magnetic loss body 3 becomes more complicated than the propagation paths 7 and 8 shown in FIG. For this reason, the radio wave absorber 1 constituted by these can reliably absorb electromagnetic waves in a wide frequency band. Here, the two plate-like dielectric loss bodies 5 constituting the V shape of the dielectric loss absorber 6 are inclined in the range of more than 0 degree and less than 45 degrees toward the opposite side with respect to the vertical plane. It is preferable to do so.
 なお、誘電損失吸収体6の高さ(配置平面から最も離れた最高部までの距離であり、すなわち最高部から配置平面に対して下ろした垂線の長さ)は、多角錐形状又はウェッジ形状の磁性損失体3の高さを100とした場合の割合で、50~200が好ましく、70~130がより好ましい。誘電損失吸収体6の高さをこの範囲に設定することにより、磁性損失体3と誘電損失体5とで囲われた空間による、電磁波の閉じ込め効果により、電波吸収体1の電波吸収特性はさらに向上する。
 なお、本構成の誘電損失吸収体は、全領域を同じ高さとしてもよいが、例えば、V字形状の一方の高さを高くし、他方を低くする等、場所により高さを変えることもできる。この場合には、誘電損失吸収体の算術平均高さが前記範囲となることが好ましい。
The height of the dielectric loss absorber 6 (the distance from the highest plane farthest from the arrangement plane, that is, the length of the perpendicular line from the highest section to the arrangement plane) is a polygonal pyramid shape or a wedge shape. The ratio when the height of the magnetic loss body 3 is 100 is preferably 50 to 200, more preferably 70 to 130. By setting the height of the dielectric loss absorber 6 within this range, the radio wave absorption characteristics of the radio wave absorber 1 are further increased by the electromagnetic wave confinement effect due to the space surrounded by the magnetic loss body 3 and the dielectric loss body 5. improves.
Note that the dielectric loss absorber of this configuration may have the same height in the entire region, but the height may be changed depending on the location, for example, one height of the V shape is increased and the other is decreased. it can. In this case, it is preferable that the arithmetic average height of the dielectric loss absorber falls within the above range.
 図3にさらに別のウェッジ形状の誘電損失体5(誘電損失吸収体6)の斜視図を示す。この例では、図2のウェッジ形状の誘電損失体5の上面部(頂点部分)を部分的に切断・開口し、開口部9から多角錐形状又はウェッジ形状の磁性損失体3の各頂点を露出できるようにした(露出状態については図示せず)。この構成は、誘電損失体5上面部での入射方向への反射が抑制されるため、誘電損失体5間の反射により、より優れた電波吸収特性が得られる点で好ましい。 FIG. 3 is a perspective view of another wedge-shaped dielectric loss body 5 (dielectric loss absorber 6). In this example, the upper surface portion (vertex portion) of the wedge-shaped dielectric loss body 5 in FIG. 2 is partially cut and opened, and each vertex of the polygonal pyramid-shaped or wedge-shaped magnetic loss body 3 is exposed from the opening 9. It was made possible (the exposure state is not shown). This configuration is preferable in that reflection in the incident direction on the upper surface portion of the dielectric loss body 5 is suppressed, and thus more excellent radio wave absorption characteristics can be obtained by reflection between the dielectric loss bodies 5.
 図4(A)には一方向に延びる断面略V字形状(フィン形状)の板状誘電損失体5(誘電損失吸収体6)を示し、図4(B)には、ピラミッド形状の磁性損失体3の隣接する谷間部の一方向のみに当該板状誘電損失体5を設置した電波吸収体1の構成を示す。この構成では、ピラミッド形状の磁性損失体3の底面に対して、板状誘電損失吸収体6には水平面が存在しないものとなる。このため、電磁波入射方向への反射が抑えられ、より優れた電波吸収特性を発揮し得る。 4A shows a plate-like dielectric loss body 5 (dielectric loss absorber 6) having a substantially V-shaped cross section (fin shape) extending in one direction, and FIG. 4B shows a pyramidal magnetic loss. The structure of the radio wave absorber 1 in which the plate-like dielectric loss body 5 is installed only in one direction of the adjacent valley portion of the body 3 is shown. In this configuration, the plate-like dielectric loss absorber 6 does not have a horizontal plane with respect to the bottom surface of the pyramidal magnetic loss body 3. For this reason, reflection in the electromagnetic wave incident direction is suppressed, and more excellent radio wave absorption characteristics can be exhibited.
 さらに、図5にはこの変形例を示す。ここでは、図4(B)の電波吸収体を基本構成として、この複数個をフィン形状の延びる方向がそれぞれ異なるように配置して電波吸収体1を構成している。この電波吸収体1は、その電波吸収特性の方向性がなくなり、あらゆる方向の電磁波を効率よく吸収できる。 Furthermore, this modification is shown in FIG. Here, the radio wave absorber 1 is configured by using the radio wave absorber shown in FIG. 4B as a basic configuration and arranging the plurality of the wave absorbers so that the extending directions of the fins are different from each other. This radio wave absorber 1 has no directionality of its radio wave absorption characteristics and can efficiently absorb electromagnetic waves in all directions.
 図6(A)から図6(C)に本発明の他の実施形態による電波吸収体1を示す。本実施形態においては、誘電損失吸収体6は、図6(A)に示す下側に切り欠き部を設けた断面略V字形状の複数の誘電損失体5と、図6(B)に示す上側に切り欠き部を設けた断面略V字形状の複数の誘電損失体5とで構成され、これらを嵌め合わせることで、グリッド形状の誘電損失吸収体6を得る。一方、複数のピラミッド形状の磁性損失体3はマトリックス状に配置されて、磁性損失吸収体4を構成する。このグリッド形状の誘電損失吸収体6を、上方から覆い被せるようにピラミッド形状の磁性損失体3の谷間部に配置することで電波吸収体1が構成されている。この時に、誘電損失体5の切り欠き部は、複数のピラミッド形状の磁性損失体3が隣接して配置されて形成される谷間部に適合するように、縦列・横列に合わせた大きさに設計されている。このようなグリッド形状の誘電損失吸収体6により、さらに電磁波の反射回数が増加し、優れた閉じこめ効果が生じるため、電波吸収体1の電波吸収特性が大幅に向上する。 6 (A) to 6 (C) show a radio wave absorber 1 according to another embodiment of the present invention. In the present embodiment, the dielectric loss absorber 6 includes a plurality of dielectric loss bodies 5 having a substantially V-shaped cross section provided with a notch on the lower side shown in FIG. 6A, and FIG. 6B. A plurality of dielectric loss bodies 5 each having a substantially V-shaped cross section provided with a notch on the upper side, and by fitting these together, a grid-shaped dielectric loss absorber 6 is obtained. On the other hand, a plurality of pyramidal magnetic loss bodies 3 are arranged in a matrix to form a magnetic loss absorber 4. The radio wave absorber 1 is configured by arranging the grid-shaped dielectric loss absorber 6 in a valley portion of the pyramid-shaped magnetic loss body 3 so as to cover the dielectric loss absorber 6 from above. At this time, the notch portion of the dielectric loss body 5 is designed to have a size matched to the vertical and horizontal rows so as to fit a valley portion formed by arranging a plurality of pyramidal magnetic loss bodies 3 adjacent to each other. Has been. Such a grid-shaped dielectric loss absorber 6 further increases the number of reflections of electromagnetic waves and produces an excellent confinement effect. Therefore, the radio wave absorption characteristics of the radio wave absorber 1 are greatly improved.
 図7には、全てのピラミッド形状の磁性損失体3の側面に対して、断面略V字形状の板状誘電損失体5を設置した電波吸収体1を示す。この構成では、さらに電磁波の反射回数が増加し、より優れた電波吸収特性を発揮する。 FIG. 7 shows a radio wave absorber 1 in which plate-like dielectric loss bodies 5 having a substantially V-shaped cross section are installed on the side surfaces of all the pyramidal magnetic loss bodies 3. In this configuration, the number of reflections of electromagnetic waves is further increased, and more excellent radio wave absorption characteristics are exhibited.
 本発明の効果を以下の実施例によりさらに詳細に説明する。
 (実施例1)
 ポリプロピレン樹脂にMn系フェライト粉を得られる磁性損失体に対して80質量%分散した。この樹脂材料を射出成形することによりピラミッド形状(底面:50mm×50mm、高さ:70mm)の磁性損失体3を複数個作製した。そして図6(C)に示すように磁性損失体3と同じ材料で作製した平板部2(厚さ13mm)の上に、ピラミッド形状磁性損失体3を縦横4個ずつ(合計16個)マトリックス状に配置して、磁性損失吸収体4を得た。
 一方、カーボンファイバー(繊維長さ:3mm、繊維径:7μm)を紙に分散した厚さ3mmのシートを用いて、図6(A)及び(B)に示す形状の誘電損失体5をそれぞれ作製した。ここで、カーボンファイバーの含有量は、誘電損失体の誘電率が8+j0.7となるように調整した。それぞれの誘電損失体5の切り欠き部を嵌め合わせ、グリッド形状の誘電損失吸収体6を構成した。この誘電損失吸収体6を、ピラミッド形状の磁性損失体3の上方から覆い被せるように谷間部に配置して、図6(C)に示す電波吸収体1を作製した。なお、グリッド形状の誘電損失体5の高さは、52mmとし、ピラミッド形状の磁性損失体3の高さの0.74倍とした。
 得られた電波吸収体1の10GHz~18GHzの電波吸収特性を測定した結果を図8に示す。測定は、ピラミッド形状の磁性損失体を縦横4個ずつ配置した磁性損失吸収体を縦横3ピースずつ並べ、底面積600mm×600mmとした試料を用いて、誘電体レンズを用いた反射量測定装置により行った。比較として、磁性損失吸収体4のみの測定結果(比較例1)及び誘電損失吸収体6のみの測定結果(比較例2)も図8に示す。
The effects of the present invention will be described in more detail with reference to the following examples.
Example 1
80% by mass was dispersed in a polypropylene resin with respect to a magnetic loss material from which Mn-based ferrite powder was obtained. A plurality of magnetic loss bodies 3 having a pyramid shape (bottom surface: 50 mm × 50 mm, height: 70 mm) were produced by injection molding this resin material. Then, as shown in FIG. 6C, on the flat plate portion 2 (thickness 13 mm) made of the same material as that of the magnetic loss body 3, four pyramid-shaped magnetic loss bodies 3 are arranged vertically and horizontally (16 in total) in a matrix form. The magnetic loss absorber 4 was obtained.
On the other hand, dielectric loss bodies 5 having the shapes shown in FIGS. 6 (A) and 6 (B) are respectively produced using a sheet of 3 mm thickness in which carbon fibers (fiber length: 3 mm, fiber diameter: 7 μm) are dispersed in paper. did. Here, the carbon fiber content was adjusted so that the dielectric constant of the dielectric loss body was 8 + j0.7. The notched portions of the respective dielectric loss bodies 5 were fitted together to form a grid-shaped dielectric loss absorber 6. The dielectric loss absorber 6 was disposed in the valley so as to cover the pyramidal magnetic loss body 3 from above, and the radio wave absorber 1 shown in FIG. The height of the grid-shaped dielectric loss body 5 was 52 mm and 0.74 times the height of the pyramid-shaped magnetic loss body 3.
FIG. 8 shows the results of measuring the radio wave absorption characteristics of the obtained radio wave absorber 1 from 10 GHz to 18 GHz. The measurement is performed by using a reflection amount measuring apparatus using a dielectric lens, using a sample having a bottom area of 600 mm × 600 mm, in which magnetic loss absorbers each having four pyramid-shaped magnetic loss elements arranged vertically and horizontally are arranged in three pieces vertically and horizontally. went. As a comparison, the measurement results of only the magnetic loss absorber 4 (Comparative Example 1) and the measurement results of only the dielectric loss absorber 6 (Comparative Example 2) are also shown in FIG.
 比較例1の磁性損失吸収体4のみでは、10GHz以上の高周波数帯域では、十分な電波吸収特性は得られなかった。また、比較例2の誘電損失吸収体6のみでは、比較例1(磁性損失吸収体4)に比べ、若干改善されている周波数帯域も認められるが、十分とはいえなかった。これに対して、磁性損失吸収体4と誘電損失吸収体6とを組み合わせた本発明の実施例1の電波吸収体1では、特に高周波数帯域における電波吸収性能(反射減衰量)が大幅に向上し、10GHz~18GHzの全周波数帯域において、20dB以上の反射減衰量が得られることが確認された。なお、図8には示していないが、本実施例の電波吸収体1では、30MHzから10GHzの周波数範囲においても電波吸収特性の低下は殆ど認められず、20dB以上の反射減衰量が得られた。 In the magnetic loss absorber 4 of Comparative Example 1 alone, sufficient radio wave absorption characteristics could not be obtained in a high frequency band of 10 GHz or higher. Moreover, although only the dielectric loss absorber 6 of the comparative example 2 has a slightly improved frequency band compared to the comparative example 1 (magnetic loss absorber 4), it was not sufficient. On the other hand, in the radio wave absorber 1 according to the first embodiment of the present invention in which the magnetic loss absorber 4 and the dielectric loss absorber 6 are combined, the radio wave absorption performance (reflection loss) particularly in a high frequency band is greatly improved. It was confirmed that a return loss of 20 dB or more can be obtained in the entire frequency band of 10 GHz to 18 GHz. Although not shown in FIG. 8, in the radio wave absorber 1 of the present example, almost no decrease in radio wave absorption characteristics was observed even in the frequency range of 30 MHz to 10 GHz, and a return loss of 20 dB or more was obtained. .
 このように本発明では、低周波数帯域における磁性損失体の優れた電波吸収特性を維持しつつ、高周波数帯域での電波吸収特性を大幅に向上させることが可能である。本実施例では、ピラミッド形状の磁性損失体とグリッド形状の誘電損失体との相互作用のみならず、グリッド形状による電磁波の閉じこめ効果が電波吸収特性の向上に大きく寄与していると考えられる。 Thus, according to the present invention, it is possible to significantly improve the radio wave absorption characteristics in the high frequency band while maintaining the excellent radio wave absorption characteristics of the magnetic loss material in the low frequency band. In this embodiment, it is considered that not only the interaction between the pyramid-shaped magnetic loss body and the grid-shaped dielectric loss body, but also the electromagnetic wave confinement effect due to the grid shape greatly contributes to the improvement of the radio wave absorption characteristics.
本発明の電波吸収体の一例を示す断面図である。It is sectional drawing which shows an example of the electromagnetic wave absorber of this invention. 板状誘電損失体(誘電損失吸収体)の一例を示す斜視図である。It is a perspective view which shows an example of a plate-shaped dielectric loss body (dielectric loss absorber). 板状誘電損失体(誘電損失吸収体)の他の一例を示す斜視図である。It is a perspective view which shows another example of a plate-shaped dielectric loss body (dielectric loss absorber). 板状誘電損失体(誘電損失吸収体)の他の一例を示す斜視図(A)及びそれを用いた本発明の電波吸収体の斜視図(B)である。It is the perspective view (A) which shows another example of a plate-shaped dielectric loss body (dielectric loss absorber), and the perspective view (B) of the electromagnetic wave absorber of this invention using the same. 本発明の電波吸収体の他の一例を示す斜視図である。It is a perspective view which shows another example of the electromagnetic wave absorber of this invention. グリッド形状誘電損失吸収体を構成する誘電損失体を示す斜視図((A)、(B))及びそれを用いた本発明の電波吸収体の斜視図(C)である。It is a perspective view ((A), (B)) which shows the dielectric loss body which comprises a grid-shaped dielectric loss absorber, and a perspective view (C) of the electromagnetic wave absorber of this invention using the same. 本発明の電波吸収体の他の一例を示す斜視図である。It is a perspective view which shows another example of the electromagnetic wave absorber of this invention. 実施例1の電波吸収体及び比較例1(磁性損失吸収体単独)並びに比較例2(誘電損失吸収体単独)の電波吸収特性を評価した結果を示す図である。It is a figure which shows the result of having evaluated the electromagnetic wave absorption characteristic of the electromagnetic wave absorber of Example 1, the comparative example 1 (magnetic loss absorber only), and the comparative example 2 (dielectric loss absorber only).
1・・・電波吸収体
2・・・平板部
3・・・ピラミッド状磁性損失体
4・・・磁性損失吸収体
5・・・板状誘電損失体
6・・・誘電損失吸収体
7・・・伝搬経路
8・・・伝搬経路
9・・・開口部
DESCRIPTION OF SYMBOLS 1 ... Radio wave absorber 2 ... Flat plate part 3 ... Pyramid magnetic loss body 4 ... Magnetic loss absorber 5 ... Plate-like dielectric loss body 6 ... Dielectric loss absorber 7 ... -Propagation path 8 ... propagation path 9 ... opening

Claims (5)

  1.  複数の多角錐形状又はウェッジ形状の磁性損失体からなる磁性損失吸収体であって、平面上に、前記磁性損失体の底面を、隣接又は所定間隔で離間して載置し磁性損失体間に谷間部を設けた磁性損失吸収体と、
     板状の誘電損失体からなる誘電損失吸収体であって、狭幅部を基部として前記磁性損失体間の谷間部に、磁性損失体の底面に対して垂直または所定角度で傾斜して配置される誘電損失吸収体と、
    を備えることを特徴とする電波吸収体。
    A magnetic loss absorber comprising a plurality of polygonal pyramid-shaped or wedge-shaped magnetic loss bodies, wherein the bottom surface of the magnetic loss body is placed adjacent to or spaced apart from each other on a plane between the magnetic loss bodies. A magnetic loss absorber provided with a valley,
    A dielectric loss absorber composed of a plate-like dielectric loss body, which is arranged at a valley portion between the magnetic loss bodies with a narrow width portion as a base, and is inclined at a predetermined angle or perpendicular to the bottom surface of the magnetic loss body. A dielectric loss absorber,
    An electromagnetic wave absorber comprising:
  2.  前記誘電損失吸収体の前記平面からの垂直方向の高さは、前記磁性損失体の前記平面からの垂直方向の高さを100とした割合が50~200の範囲であることを特徴とする請求項1に記載の電波吸収体。 The height of the dielectric loss absorber in the vertical direction from the plane is such that the ratio of the height of the magnetic loss body in the vertical direction from the plane to 100 is in the range of 50 to 200. Item 2. An electromagnetic wave absorber according to Item 1.
  3.  前記誘電損失吸収体は、断面略V字形状で、当該V字を構成する少なくとも一方の板状誘電損失体を前記平面の垂直面に対して、0度を超え45度の範囲に傾斜させたことを特徴とする請求項1又は2に記載の電波吸収体。 The dielectric loss absorber has a substantially V-shaped cross section, and at least one plate-like dielectric loss body constituting the V shape is inclined in a range of more than 0 degree and 45 degrees with respect to a vertical plane of the plane. The radio wave absorber according to claim 1 or 2, characterized in that.
  4.  前記磁性損失体はマトリックス状に配置されており、前記誘電損失吸収体は、前記磁性損失体を囲うグリッド形状であることを特徴とする請求項1~3の何れかに記載の電波吸収体。 4. The radio wave absorber according to claim 1, wherein the magnetic loss bodies are arranged in a matrix, and the dielectric loss absorber has a grid shape surrounding the magnetic loss bodies.
  5.  前記磁性損失体が四角錐形状であることを特徴とする請求項1~4の何れかに記載の電波吸収体。 5. The radio wave absorber according to claim 1, wherein the magnetic loss body has a quadrangular pyramid shape.
PCT/JP2010/056585 2009-04-14 2010-04-13 Wave absorber WO2010119863A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011509297A JP5460697B2 (en) 2009-04-14 2010-04-13 Radio wave absorber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-098180 2009-04-14
JP2009098180 2009-04-14

Publications (1)

Publication Number Publication Date
WO2010119863A1 true WO2010119863A1 (en) 2010-10-21

Family

ID=42982525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056585 WO2010119863A1 (en) 2009-04-14 2010-04-13 Wave absorber

Country Status (3)

Country Link
JP (1) JP5460697B2 (en)
TW (1) TWI442629B (en)
WO (1) WO2010119863A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015015449A (en) * 2013-06-04 2015-01-22 三菱電機株式会社 Radio wave absorber and radio wave dark room using the same
JP2016161525A (en) * 2015-03-05 2016-09-05 日立オートモティブシステムズ株式会社 Speed measurement device
EP2685801A3 (en) * 2012-07-10 2017-11-29 Kabushiki Kaisha Riken Electromagnetic wave absorber

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0180994U (en) * 1987-11-20 1989-05-30
JPH0645784A (en) * 1992-07-21 1994-02-18 Tdk Corp Radio wave absorbent
JPH06275981A (en) * 1993-03-22 1994-09-30 Tdk Corp Radio wave absorbing structure
JPH07263893A (en) * 1994-03-17 1995-10-13 Tdk Corp Wave dark room door structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0180994U (en) * 1987-11-20 1989-05-30
JPH0645784A (en) * 1992-07-21 1994-02-18 Tdk Corp Radio wave absorbent
JPH06275981A (en) * 1993-03-22 1994-09-30 Tdk Corp Radio wave absorbing structure
JPH07263893A (en) * 1994-03-17 1995-10-13 Tdk Corp Wave dark room door structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2685801A3 (en) * 2012-07-10 2017-11-29 Kabushiki Kaisha Riken Electromagnetic wave absorber
JP2015015449A (en) * 2013-06-04 2015-01-22 三菱電機株式会社 Radio wave absorber and radio wave dark room using the same
JP2016161525A (en) * 2015-03-05 2016-09-05 日立オートモティブシステムズ株式会社 Speed measurement device

Also Published As

Publication number Publication date
TW201130192A (en) 2011-09-01
JPWO2010119863A1 (en) 2012-10-22
TWI442629B (en) 2014-06-21
JP5460697B2 (en) 2014-04-02

Similar Documents

Publication Publication Date Title
JP5496879B2 (en) Composite wave absorber
US6359581B2 (en) Electromagnetic wave abosrber
JP5460697B2 (en) Radio wave absorber
US9263802B2 (en) Electromagnetic wave absorber
JP5878260B2 (en) Radio wave absorber
JP6103249B2 (en) Radio wave absorber and anechoic chamber
WO2011016109A1 (en) Wave absorber
JP5441211B2 (en) Composite type electromagnetic wave absorber, electromagnetic wave absorbing wall and anechoic chamber using the same
JP2016146374A (en) Electromagnetic wave absorber
JP5221178B2 (en) Radio wave absorber
JP6519317B2 (en) Radio wave absorber
JP4420253B2 (en) Radio wave absorber and anechoic chamber
JP4400791B2 (en) Radio wave absorber and anechoic chamber
JP4338460B2 (en) Radio wave absorber and manufacturing method thereof
JP4617830B2 (en) Radio wave absorber member and radio wave absorber
JP2006314016A (en) Radio wave absorbing structural body
JP5953798B2 (en) Sheet material for radio wave absorber and radio wave absorber
JP2024007381A (en) Wave absorber
JP2004335985A (en) Radio wave absorbing body
JP2003110278A (en) Radio wave absorber and radio wave absorbing sheet, and their manufacturing method
JPH06334382A (en) Wave absorber
JP2006118179A (en) Electromagnetic wave absorber
JPH09275296A (en) Composite radio wave absorbent
JP2011086652A (en) Hybrid hollow radiowave absorber, radiowave absorption wall using the same, and anechoic chamber
JP2010021459A (en) Radio wave absorber and radio wave absorption wall

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011509297

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10764447

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10764447

Country of ref document: EP

Kind code of ref document: A1