WO2010119826A1 - Cellulose fiber-reinforced polyacetal resin composition - Google Patents

Cellulose fiber-reinforced polyacetal resin composition Download PDF

Info

Publication number
WO2010119826A1
WO2010119826A1 PCT/JP2010/056496 JP2010056496W WO2010119826A1 WO 2010119826 A1 WO2010119826 A1 WO 2010119826A1 JP 2010056496 W JP2010056496 W JP 2010056496W WO 2010119826 A1 WO2010119826 A1 WO 2010119826A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyacetal resin
cellulose fiber
resin composition
parts
weight
Prior art date
Application number
PCT/JP2010/056496
Other languages
French (fr)
Japanese (ja)
Inventor
邦明 川口
一浩 水口
克利 鈴木
正人 鈴木
稔夫 小邦
Original Assignee
ポリプラスチックス株式会社
ダイセルポリマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ポリプラスチックス株式会社, ダイセルポリマー株式会社 filed Critical ポリプラスチックス株式会社
Publication of WO2010119826A1 publication Critical patent/WO2010119826A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L59/00Compositions of polyacetals; Compositions of derivatives of polyacetals
    • C08L59/02Polyacetals containing polyoxymethylene sequences only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L59/00Compositions of polyacetals; Compositions of derivatives of polyacetals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers

Definitions

  • the present invention is reinforced with cellulose fiber, has both high rigidity and excellent thermal conductivity, slidability, vibration damping, etc., and causes an increase in specific gravity and an increase in ash content like a reinforcing material by an inorganic filler.
  • the present invention relates to a polyacetal resin composition that does not occur. Background art
  • Polyacetal resin has excellent properties in mechanical properties, thermal properties, electrical properties, slidability, moldability, etc., mainly as electrical materials, automotive parts, precision machine parts as structural materials and mechanical parts. Widely used in With the expansion of the field in which polyacetal resins are used, the required characteristics tend to become more sophisticated, complex and specialized.
  • a method of blending a reinforcing material such as a glass-based inorganic filler is generally used, but this method increases the specific gravity of the polyacetal resin composition obtained.
  • a large amount of ash (incineration residue) remains after incineration.
  • features such as slidability inherent in polyacetal resin are greatly impaired.
  • improvements in thermal conductivity and vibration damping properties may be required. It is difficult to meet this demand by the method of blending the reinforcing material.
  • Japanese Patent Application Laid-Open No. 3-217447 discloses a polyacetal resin composition in which pulp is blended with polyacetal resin, such as mechanical strength, heat resistance, and flammability (resin dripping during combustion). Improvements are shown. However, in this method, mixing of the polyacetal resin and the pulp tends to be insufficient, it is difficult to stably obtain excellent characteristics, and it is not suitable for practical use. Further, JP-A-3-217447 does not disclose anything about improvement of thermal conductivity, slidability, vibration damping and the like of the polyacetal resin composition.
  • Japanese Patent Application Laid-Open No. 2007-084713 provides a manufacturing method for obtaining a thermoplastic resin composition containing fibrillated cellulose fibers.
  • This Japanese Patent Application Laid-Open No. 2007-084713 includes There is no specific description about the polyacetal resin composition, and not only the improvement in strength and rigidity but also the thermal conductivity, slidability, vibration damping, etc. are improved. None is disclosed.
  • An object of the present invention is to solve these problems and to provide a polyacetal resin composition having excellent rigidity, thermal conductivity, slidability, vibration damping properties, low specific gravity and low ash content, and a molded product thereof.
  • the present inventors have formulated a polyacetal resin composition that can solve the above problems and achieve the object by combining a specific fiber filler and an additive with the polyacetal resin.
  • the present inventors have found that a product and a molded product thereof can be obtained, and have completed the present invention.
  • the present invention (A) For 100 parts by weight of the polyacetal resin, (B) 10 to 150 parts by weight of fibrillated cellulose fiber, (C) 0.01 to 3 parts by weight of a hindered phenolic antioxidant and (d) 0.01 to 3 parts by weight of at least one nitrogen-containing compound selected from aminotriazine compounds, guanamine compounds, hydrazide compounds and polyamides.
  • the present invention provides a cellulose fiber reinforced polyacetal resin composition and a molded product thereof.
  • the cellulose fiber reinforced polyacetal resin composition of the present invention is excellent in rigidity, low specific gravity, low ash content, thermal conductivity, slidability, vibration damping, and related to automobile parts, electrical / electronic parts, sundries, stationery, etc. Suitable for molded products.
  • the main components constituting the polyacetal resin composition of the present invention are as described below.
  • the polyacetal resin of component (a) is a polymer compound having an oxymethylene group (—OCH 2 —) as a main constituent unit, and includes a polyacetal homopolymer consisting essentially only of repeating oxymethylene units, in addition to oxymethylene units.
  • Polyacetal copolymers containing other comonomer units are representative resins.
  • polyacetal resins include copolymers in which a branched structure or a crosslinked structure is introduced by copolymerizing a branch-forming component or a crosslinking-forming component, polymer units composed of repeating oxymethylene groups, and other polymer units. Also included are block copolymers, graft copolymers and the like. These polyacetal resins can be used alone or in combination of two or more.
  • a polyacetal homopolymer is produced by polymerization of anhydrous formaldehyde or trioxane (a cyclic trimer of formaldehyde), and is usually stabilized against thermal decomposition by esterifying its terminal.
  • polyacetal copolymers generally include formaldehyde or a cyclic oligomer of formaldehyde (for example, trioxane) represented by the general formula (CH 2 O) n [wherein n represents an integer of 3 or more] It is produced by copolymerizing with a comonomer such as cyclic ether or cyclic formal, and is usually stabilized against thermal decomposition by removing terminal unstable parts by hydrolysis.
  • formaldehyde or a cyclic oligomer of formaldehyde for example, trioxane
  • Examples of the main raw material of the polyacetal copolymer include trioxane and tetraoxane, and trioxane is usually used.
  • the comonomer includes a cyclic ether, a glycidyl ether compound, a cyclic formal, a cyclic ester (eg, ⁇ -propiolactone), a vinyl compound (eg, styrene, vinyl ether, etc.), and the like.
  • cyclic ether examples include ethylene oxide, propylene oxide, butylene oxide, cyclohexene oxide, epichlorohydrin, epibromohydrin, styrene oxide, oxetane, 3,3-bis (chloromethyl) oxetane, tetrahydrofuran, trioxepane, 1, Examples include 3-dioxane.
  • the glycidyl ether compound examples include alkyl or aryl glycidyl ethers (for example, methyl glycidyl ether, ethyl glycidyl ether, phenyl glycidyl ether, naphthyl glycidyl ether), alkylene or polyalkylene glycol diglycidyl ether (for example, ethylene glycol diglycidyl ether). , Triethylene glycol diglycidyl ether, butanediol diglycidyl ether), alkyl or aryl glycidyl alcohol, and the like.
  • alkyl or aryl glycidyl ethers for example, methyl glycidyl ether, ethyl glycidyl ether, phenyl glycidyl ether, naphthyl glycidyl ether
  • cyclic formal examples include 1,3-dioxolane, propylene glycol formal, diethylene glycol formal, triethylene glycol formal, 1,4-butanediol formal, 1,5-pentanediol formal, 1,6-hexanediol formal, and the like. Can be mentioned.
  • comonomers can be used alone or in combination of two or more.
  • cyclic ethers and / or cyclic formals are usually used, and cyclic ethers such as ethylene oxide, and cyclic formals such as 1,3-dioxolane, 1,4-butanediol formal, and diethylene glycol formal are preferred. .
  • the proportion of these comonomer (eg, cyclic ether and / or cyclic formal) units is generally in the range of 0.1 to 20% by weight, preferably 0.5 to 20% by weight, based on the total polyacetal resin. %, More preferably about 0.5 to 15% by weight (particularly 1 to 10% by weight).
  • the melt index of the polyacetal resin as component (a) is not particularly limited, but is preferably in the range of 1 to 100 g / 10 minutes, and particularly preferably in the range of 5 to 50 g / 10 minutes. When the melt index is too small or too large, the effects of the present invention may not be sufficiently obtained.
  • the melt index is a value measured under conditions of 190 ° C. and 2.16 kgf (21.2 N) in accordance with ASTM-D1238.
  • Cellulose fiber aggregates are a combination of many cellulose fibers, which may be natural or industrial products, hemp fiber, bamboo fiber, cotton fiber, wood fiber, kenaf fiber, hemp fiber, jute fiber, banana Aggregates such as fibers and coconut fibers can be used.
  • the shape and size of the cellulose fiber aggregate are not particularly limited, and can be selected as long as the defibrating work can be performed smoothly.
  • a cellulose fiber aggregate having a preferable shape includes a sheet-shaped pulp sheet.
  • the thickness is 0.1 to 5 mm, preferably 1 to 3 mm, the width is 1 to 50 cm, and the length is 3 to 100 cm. Those having a degree can be preferably used.
  • a pulp sheet rolled into a cylindrical shape, crushed into an elongated plate, or folded into an elongated plate can be used. It is also possible to make the pulp sheet once cut.
  • a strip having a thickness of 0.1 to 5 mm, preferably 1 to 3 mm, a width of 2 mm to 1 cm, a length of about 3 mm to 3 cm, or a rectangular shape having a side of about 2 mm to 1 cm is used. You can also.
  • the water content of the cellulose fiber aggregate is preferably 20% by weight or less, more preferably 17% by weight or less, and still more preferably 15% by weight or less.
  • the moisture content is determined by measuring moisture using the Karl-Fuscher method.
  • the cellulose fibers forming the cellulose fiber aggregate are preferably those having a high ⁇ cellulose content, more preferably 80% by weight or more, still more preferably 85% by weight or more, from the viewpoint of high thermal stability. A weight percent or more is particularly preferred.
  • the average fiber diameter of the cellulose fibers in the cellulose fiber aggregate is preferably 0.1 to 1000 ⁇ m, more preferably 1 to 500 ⁇ m, still more preferably 5 to 200 ⁇ m, and particularly preferably 10 to 50 ⁇ m.
  • the average fiber length of the cellulose fibers is preferably 0.01 to 100 mm, more preferably 0.01 to 50 mm, still more preferably 0.1 to 10 mm, and particularly preferably 0.1 to 5 mm.
  • the aspect ratio (length / diameter) of the cellulose fiber is preferably 2 to 1000, more preferably 3 to 500, still more preferably 5 to 200, and particularly preferably 5 to 100.
  • the cellulose fiber may be surface-treated with a coupling agent (a silane coupling agent having a functional group such as an amino group, a substituted amino group, an epoxy group, or a glycidyl group).
  • (B) As a method of defibrating the cellulose fiber aggregate used for the cellulose fiber of the component, there may be mentioned a method using an apparatus such as a mixer having a rotating blade or a defibrating machine.
  • the cellulose fiber aggregate can be put into a mixer having rotating blades and fibrillated by stirring at high speed.
  • the mixer only needs to have rotating blades as stirring means, and preferably has heating means.
  • a Henschel mixer manufactured by Mitsui Mining Co., Ltd., FM20C / I (capacity 20 L), ( A Kawata super mixer, SMV-20 (capacity 20 L), etc. can be used.
  • Rotating blades are usually composed of two blades, upper blades and lower blades, or three blades including upper blades, intermediate blades, and lower blades. It is preferable that the average peripheral speed of the rotating blades during stirring is in the range of 10 to 100 m / sec, more preferably the average peripheral speed is 10 to 90 m / sec, and further the average peripheral speed is 10 to 80 m / sec. It is preferable to do.
  • the fibrillation of the cellulose fiber aggregate for example, it is possible to end the treatment when it can be visually confirmed that the cellulose fiber aggregate has changed into a cotton-like shape. Since the average peripheral speed and stirring time of the rotating blades change depending on the type, shape, size, input amount, and the like of the cellulose fiber aggregate, the time point when it changes into a cotton shape as described above may be used as a reference. Is preferred.
  • the content of the fibrillated cellulose fiber of the component (b) is 10 to 150 parts by weight, more preferably 15 to 120 parts by weight, with respect to 100 parts by weight of the polyacetal resin of the component (a). If the content is too small or too large, the effects of the present invention cannot be obtained sufficiently, which is not preferable.
  • the (c) hindered phenol compound used in the present invention contains a monocyclic hindered phenol compound (eg, 2,6-di-t-butyl-p-cresol), a hydrocarbon group or a sulfur atom.
  • Group-linked polycyclic hindered phenol compounds eg, 2,2′-methylenebis (4-methyl-6-tert-butylphenol), 4,4′-methylenebis (2,6-di-tert-butylphenol) 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 4,4′-butylidenebis (3-methyl-6-tert-butylphenol), 1,3,5- Trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, 4,4′-thiobis (3-methyl-6-tert-butylphenol), etc.
  • Hindered phenol compounds having an ester group or an amide group for example, n-octadecyl-3- (4′-hydroxy-3 ′, 5′-di-t-butylphenyl) propionate, n-octadecyl-2- (4 '-Hydroxy-3'
  • the (c) hindered phenol antioxidants can be used alone or in combination of two or more.
  • the blending ratio is 0.01 to 3 parts by weight, preferably 0.02 to 1 part by weight, based on 100 parts by weight of the (a) polyacetal resin. If the content is too small or too large, the effects of the present invention cannot be obtained sufficiently, which is not preferable.
  • the hindered phenolic antioxidant can be mixed with (a) the polyacetal resin at any stage. Prior to mixing with the fiber, a method in which (c) a hindered phenol antioxidant is previously melt-mixed with (a) polyacetal resin by an extruder or the like is particularly preferable.
  • a method in which (c) a hindered phenol antioxidant is previously melt-mixed with (a) polyacetal resin by an extruder or the like is particularly preferable.
  • ⁇ (D) Nitrogen-containing compound> In the polyacetal resin composition of the present invention, (d) at least one nitrogen-containing compound selected from an aminotriazine compound, a guanamine compound, a hydrazide compound and a polyamide is blended.
  • aminotriazine compounds include melamine or derivatives thereof [melamine, melamine condensates (melam, melem, melon), etc.], guanamine or derivatives thereof, and aminotriazine resins [melamine co-condensation resins (melamine-formaldehyde resin, phenol-melamine). Resin, melamine-phenol-formaldehyde resin, benzoguanamine-melamine resin, aromatic polyamine-melamine resin, etc.), co-condensation resin of guanamine, etc.].
  • Guanamine compounds include aliphatic guanamine compounds (monoguanamines, alkylenebisguanamines, etc.), alicyclic guanamine compounds (monoguanamines, etc.), aromatic guanamine compounds [monoguanamines (benzoguanamine and its functional group substitution) ), ⁇ - or ⁇ -naphthoguanamine and their functional group-substituted derivatives, polyguanamines, aralkyl or aralkylenguanamines, etc.], heteroatom-containing guanamine compounds [acetal group-containing guanamines, tetraoxospiro ring-containing Guanamines (CTU-guanamine, CMTU-guanamine, etc.), isocyanuric ring-containing guanamines, imidazole ring-containing guanamines, etc.]. Moreover, the compound etc. which the alkoxymethyl group of said melamine, a melamine derivative, and
  • hydrazide compound examples include aliphatic carboxylic acid hydrazide compounds (such as stearic acid hydrazide, 12-hydroxystearic acid hydrazide, sebacic acid dihydrazide, dodecanedioic acid dihydrazide, and eicosanedioic acid dihydrazide), alicyclic carboxylic acid hydrazide compounds (1 , 3-bis (hydrazinocarbonoethyl) -5-isopropylhydantoin), aromatic carboxylic acid hydrazide compounds (4-hydroxy-3,5-di-t-butylphenylbenzoic acid hydrazide, 1-naphthoic acid hydrazide) 2-naphthoic acid hydrazide, isophthalic acid dihydrazide, 2,6-naphthalenedicarboxylic acid dihydrazide, etc.), heteroatom-containing carboxylic acid hydrazide compounds,
  • polyamide a polyamide derived from a diamine and a dicarboxylic acid; an aminocarboxylic acid, a polyamide obtained by using a diamine and / or a dicarboxylic acid in combination; a lactam, and optionally a diamine and / or a dicarboxylic acid; Polyamide derived by the combined use of Also included are copolyamides formed from two or more different polyamide-forming components.
  • polyamides include polyamide 3, polyamide 4, polyamide 46, polyamide 6, polyamide 66, polyamide 610, polyamide 612, polyamide 11, polyamide 12, and other aliphatic polyamides, aromatic dicarboxylic acids (for example, terephthalic acid).
  • polyamide-based block copolymer in which a polyamide hard segment and another soft segment such as a polyether component are combined.
  • the nitrogen-containing compounds selected from aminotriazine compounds, guanamine compounds, hydrazide compounds and polyamides can be used alone or in combination of two or more.
  • the blending ratio is 0.01 to 3 parts by weight, preferably 0.02 to 1 part by weight, based on 100 parts by weight of the (a) polyacetal resin. If the content is too small or too large, the effects of the present invention cannot be obtained sufficiently, which is not preferable.
  • a nitrogen-containing compound selected from aminotriazine compounds, guanamine compounds, hydrazide compounds and polyamides may be mixed with (a) polyacetal resin at any stage.
  • a nitrogen-containing compound selected from aminotriazine compounds, guanamine compounds, hydrazide compounds and polyamides
  • the nitrogen-containing compound is previously melted into the polyacetal resin (a) with an extruder or the like. A method of mixing is particularly preferable.
  • the polyacetal resin composition of the present invention further contains (e) at least one metal compound selected from alkali metal or alkaline earth metal oxides, hydroxides, inorganic acid salts and carboxylate salts. Can do.
  • alkali metal or alkaline earth metal oxide examples include CaO, MgO, and ZnO.
  • alkali metal or alkaline earth metal hydroxide examples include LiOH, Ca (OH) 2 , and Mg (OH) 2 .
  • inorganic acid salts of alkali metals or alkaline earth metals include carbonates (Li 2 CO 3 , Na 2 CO 3 , K 2 CO 3 , CaCO 3 , MgCO 3, etc.), borates, phosphates, and the like. .
  • Organic carboxylic acids that form carboxylates with alkali metals or alkaline earth metals include saturated monocarboxylic acids (acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, isovaleric acid, pivalic acid, caproic acid, Caprylic acid, etc.), saturated dicarboxylic acids (oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, corkic acid, azelaic acid, etc.) and oxyacids thereof (glycolic acid, lactic acid, glyceric acid, hydroxy) Butyric acid, citric acid, etc.), unsaturated monocarboxylic acids [(meth) acrylic acid, crotonic acid, isocrotonic acid, etc.], unsaturated dicarboxylic acids (maleic acid, fumaric acid, etc.), and oxyacids thereof (propiolic acid, etc.) , Polymeriz
  • alkaline earth metal oxides alkaline earth metal oxides, hydroxides, carbonates and carboxylates are particularly preferred.
  • metal compounds selected from (e) alkali metal or alkaline earth metal oxides, hydroxides, inorganic acid salts and carboxylates can be used alone or in combination of two or more.
  • the preferable blending ratio is 0.01 to 3 parts by weight, particularly preferably 0.02 to 1 part by weight, based on 100 parts by weight of the (a) polyacetal resin.
  • the content is too small, (e) the effect on the heat resistance stability due to the compounding of the metal compound is not sufficiently exhibited.
  • the content is excessive, the characteristics such as rigidity intended by the present invention may be impaired. This is not preferable.
  • the (e) metal compound when the (e) metal compound is blended, the (e) metal compound can be mixed with the (a) polyacetal resin at any stage, but (b) for mixing with the cellulose fiber.
  • the polyacetal resin composition of the present invention may further contain (f) at least one compound selected from long-chain fatty acids, long-chain fatty acid derivatives, polyoxyalkylene glycols and silicone compounds as processing aids. .
  • the long chain fatty acid may be a saturated fatty acid or an unsaturated fatty acid. Also, those in which some of the hydrogen atoms are substituted with a substituent such as a hydroxyl group can be used. Examples of such long-chain fatty acids include monovalent or divalent fatty acids having 10 or more carbon atoms, monovalent unsaturated fatty acids having 10 or more carbon atoms, and divalent fatty acids (dibasic fatty acids) having 10 or more carbon atoms. Illustrated.
  • the fatty acid also includes a fatty acid having one or more hydroxyl groups in the molecule.
  • Long chain fatty acid derivatives include fatty acid esters and fatty acid amides.
  • fatty acid ester examples include esters of the long-chain fatty acid and alcohol.
  • the structure is not particularly limited, and either a linear or branched fatty acid ester can be used.
  • Specific examples of fatty acid esters include ethylene glycol mono or dipalmitate, ethylene glycol mono or distearate, ethylene glycol mono or dibehenate, ethylene glycol mono or dimtanate, glycerin mono to tripalmitate, glycerin.
  • Mono-tristearic acid ester glycerin mono-tribehenic acid ester, glycerin mono-trimontanic acid ester, pentaerythritol mono-tetrapalmitic acid ester, pentaerythritol mono-tetrastearic acid ester, pentaerythritol mono-tetratetrahenic acid ester, pentaerythritol mono-ester
  • polyglyceryl tristearate tri Tyrolpropane monopalmitate, pentaerythritol monoundecylate, sorbitan monostearate, polyalkylene glycol (polyethylene glycol, polypropylene glycol, etc.) mono or dilaurate, mono or dipalmitate, mono or distearate, mono or dibehenate, mono Or dimontanate, mono or diolate, mono or dilinoleate, etc. are mentioned.
  • fatty acid amides examples include capric acid amides, lauric acid amides, myristic acid amides, palmitic acid amides, stearic acid amides, arachidic acid amides, behenic acid amides, primary fatty acid amides, olein Primary acid amides of unsaturated fatty acids such as acid amides, secondary acid amides of saturated and / or unsaturated fatty acids and monoamines such as stearyl stearic acid amide, stearyl oleic acid amide, ethylenediamine-dipalmitic acid amide, ethylenediamine -Distearic acid amide (ethylene bisstearyl amide), hexamethylenediamine-distearic acid amide, ethylenediamine-dibehenic acid amide, ethylenediamine-dimantanoic acid amide, ethylenediamine-dioleic acid amide, ethylenediamine - such Jier
  • polyoxyalkylene glycol examples include homo- or copolymers of alkylene glycol (alkylene glycol such as ethylene glycol, propylene glycol and tetramethylene glycol), and derivatives thereof.
  • polyoxyalkylene glycol examples include polyoxyalkylene glycols such as polyethylene glycol, polypropylene glycol and polytetramethylene glycol, polyoxyethylene-polyoxypropylene copolymers (random or block copolymers, etc.), polyoxyethylene Examples include copolymers such as polyoxypropylene glyceryl ether and polyoxyethylene polyoxypropylene monobutyl ether. Of these, polymers having oxyethylene units, such as polyethylene glycol, polyoxyethylene polyoxypropylene copolymers, and derivatives thereof are preferable.
  • the average molecular weight of the polyoxyalkylene glycol is about 3 ⁇ 10 2 to 1 ⁇ 10 6 , preferably about 1 ⁇ 10 3 to 1 ⁇ 10 5 .
  • the silicone compound includes (poly) organosiloxane and the like.
  • the (poly) organosiloxane include monoorganosiloxanes such as dialkylsiloxanes (such as dimethylsiloxane), alkylarylsiloxanes (such as phenylmethylsiloxane), diarylsiloxanes (such as diphenylsiloxane), and homopolymers thereof (polydimethylsiloxane, poly Examples thereof include phenylmethylsiloxane) and copolymers.
  • the polyorganosiloxane may be an oligomer.
  • (poly) organosiloxane has an epoxy group, a hydroxyl group, an alkoxy group, a carboxyl group, an amino group or a substituted amino group (such as a dialkylamino group), an ether group, a vinyl group, )
  • Modified (poly) organosiloxane having a substituent such as acryloyl group is also included.
  • a processing aid when (f) a processing aid is blended, compounds selected from the above-mentioned long chain fatty acids, derivatives of long chain fatty acids, polyoxyalkylene glycols and silicone compounds can be used alone or in combination of two or more.
  • the preferable blending ratio is 0.01 to 3 parts by weight, particularly preferably 0.02 to 1 part by weight based on 100 parts by weight of the (a) polyacetal resin.
  • the (f) processing aid when the (f) processing aid is blended, the (f) processing aid can be mixed with the (a) polyacetal resin at any stage, but the (b) cellulose fiber Prior to mixing, a method in which (f) a processing aid is melt-mixed in advance with an extruder or the like in (a) polyacetal resin is particularly preferable.
  • a method in which (f) a processing aid is melt-mixed in advance with an extruder or the like in (a) polyacetal resin is particularly preferable.
  • the polyacetal resin composition of the present invention further includes a modified olefin polymer, primary or secondary amino modified with at least one selected from the group consisting of unsaturated carboxylic acids and acid anhydrides and derivatives thereof.
  • a compound selected from an alkylene glycol polymer having a group, an ⁇ -olefin oligomer, a surface-treated inorganic filler, and the like can be blended as a sliding property improving agent.
  • the long-chain fatty acids, derivatives of long-chain fatty acids, polyoxyalkylene glycols, and silicone compounds described above also have a slidability improving function and can be blended as a slidability improving agent.
  • the olefin polymer used here include single weights of ⁇ -olefins such as ethylene, propylene, 1-butene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-dodecene and the like.
  • Copolymers copolymers composed of two or more of these, and ⁇ -olefins thereof and ⁇ , ⁇ -unsaturated acids such as acrylic acid and methacrylic acid or methyl acrylate, ethyl acrylate, propyl acrylate, acrylic ⁇ , ⁇ -unsaturated carboxylic acid esters such as butyl acrylate, 2-ethylhexyl acrylate, hydroxyethyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate, hydroxyethyl methacrylate, Non-conjugated dienes such as 1,4-hexadiene, dicyclopentadiene, 5-ethylidene-2-norbornene and 2,5-norbonadiene, conjugated diene components such as butadiene, isoprene and piperylene, and
  • the modified olefin copolymer is obtained by modifying the olefin polymer with at least one selected from the group consisting of unsaturated carboxylic acids, acid anhydrides and derivatives thereof.
  • preferred modified olefin copolymers include polyethylene, polypropylene, ethylene-propylene copolymer, ethylene ethyl acrylate copolymer, ethylene methyl acrylate copolymer, ethylene methacrylic acid modified with maleic anhydride. Examples thereof include an ethyl copolymer and an ethylene methyl methacrylate copolymer.
  • the alkylene glycol polymer having a primary or secondary amino group is a homopolymer or copolymer of ethylene glycol, propylene glycol, or tetramethylene glycol, and has a primary or secondary amino group in the terminal or molecular chain. It is a polymer having. Further, it may be a polymer having some modification such as forming an ester with a fatty acid or an ether with an aliphatic alcohol. Examples thereof include polyethylene glycol, polypropylene glycol, polytetramethylene glycol, and copolymers composed of these structural units and having at least one aminopropyl group and aminooctyl group.
  • the ⁇ -olefin oligomer mainly includes aliphatic hydrocarbons having a structure in which a C6 to C20 ⁇ -olefin is used alone or ethylene and a C3 to C20 ⁇ -olefin are copolymerized.
  • As the surface-treated inorganic filler at least one selected from calcium carbonate, potassium titanate, barium carbonate, talc, wollastonite, mica, zinc oxide and the like is subjected to surface treatment with a fatty acid ester, a silane compound, or the like.
  • Those subjected to surface treatment are preferably used, and more preferably, at least one selected from calcium carbonate, potassium titanate, barium carbonate and zinc oxide is subjected to a surface treatment with a fatty acid ester.
  • Such an inorganic filler does not depend on the shape such as the particle shape, fiber shape, aspect ratio, and the like, and any inorganic filler can be used as long as it is included in the group.
  • a modified olefin polymer modified with at least one selected from the group consisting of the unsaturated carboxylic acid and its acid anhydride and derivatives thereof A compound selected from an alkylene glycol polymer having a primary or secondary amino group, an ⁇ -olefin oligomer, an inorganic filler subjected to surface treatment, and the like can be used alone or in combination of two or more.
  • the preferable blending ratio is 0.01 to 10 parts by weight, particularly preferably 0.02 to 8 parts by weight, based on 100 parts by weight of the (a) polyacetal resin.
  • the slidability improving agent when (g) the slidability improving agent is blended, (g) the slidability improving agent can be mixed with (a) the polyacetal resin at any stage, but (b) Prior to mixing with cellulose fibers, a method in which (g) a sliding property improving agent is melt-mixed in advance with (a) polyacetal resin by an extruder or the like is particularly preferable.
  • a method in which (g) a sliding property improving agent is melt-mixed in advance with (a) polyacetal resin by an extruder or the like is particularly preferable.
  • a method in which (g) a sliding property improving agent is melt-mixed in advance with (a) polyacetal resin by an extruder or the like is particularly preferable.
  • the polyacetal resin composition of the present invention comprises (b) 10 to 150 parts by weight of fibrillated cellulose fibers and (c) a hindered phenol-based antioxidant in an amount of 0.1 to 100 parts by weight of the above-menti
  • At least one nitrogen-containing compound selected from (d) aminotriazine compounds, guanamine compounds, hydrazide compounds and polyamides it is preferable that (e) ) 0.01-3 parts by weight of at least one metal compound selected from oxides, hydroxides, inorganic acid salts and carboxylates of alkali metals or alkaline earth metals, and / or (f) long chains At least one processing aid selected from fatty acids, derivatives of long chain fatty acids, polyoxyalkylene glycols and silicone compounds 0.0 To 3 parts by weight, and / or is prepared by containing a (g) sliding property improving agent 0.01-10 parts by weight.
  • the specific embodiment of the method for preparing the polyacetal resin composition is not particularly limited, and can be generally prepared by a known equipment and method as a method for preparing a synthetic resin composition or a molded product thereof. That is, necessary components can be mixed and kneaded using a single or twin screw extruder or other melt kneader to prepare pellets for molding. A plurality of extruders or other melt kneaders may be used.
  • the cellulose fiber aggregate is defibrated in a mixer having rotating blades, and (b) the polyacetal resin and other components are added to the defibrated cellulose fiber.
  • (b) polyacetal resin and other components are additionally added to and mixed with cellulose fiber (b) defibrated in a mixer having rotating blades.
  • the cellulose fiber aggregate is defibrated in a mixer, and a required amount of (a) polyacetal resin and other components are added thereto and stirred at a high speed, whereby frictional heat is generated and the inside of the mixer is Since the temperature is raised, the polyacetal resin melts and adheres to the fibrillated cellulose fibers, so that a mixture of the cellulose fibers, the polyacetal resin and other components can be obtained directly.
  • the average peripheral speed of the rotating blades during stirring is in the range of 10 to 100 m / sec. More preferably, the stirring is carried out at an average peripheral speed of 10 to 90 m / sec, and more preferably at an average peripheral speed of 10 to 80 m / sec. If stirring is continued, the temperature in the mixer rises and the power of the motor rises. It is preferable to reduce the rotational speed by gradually or rapidly decelerating the stirring speed according to the increase in power and the temperature in the mixer so that the average peripheral speed falls within the above range. Moreover, in order to assist the temperature rise in the mixer and facilitate the production of a mixture of cellulose fibers and polyacetal resin, the mixer can be heated by a heating means.
  • the obtained mixture can be solidified by cooling.
  • the cooling method include a method of cooling in the mixer, a method of discharging the mixture to another mixer connected to the mixer, and a method of cooling.
  • a method in which the mixture is discharged to another mixer connected to the mixer and cooled while stirring is preferable. It is preferable to stir in the range of the average peripheral speed of the rotating blades during cooling in the range of 1 to 30 m / second, more preferably the average peripheral speed is 2 to 25 m / second, and still more preferably the average peripheral speed is 3 to 25 m / second. Stir.
  • a polyacetal resin composition containing (a) polyacetal resin and (b) fibrillated cellulose fiber and other components is obtained.
  • the obtained composition can be used as it is, but can also be used after granulation with a pulverizer and / or melt kneading and granulation with an extruder or the like.
  • a substance that improves the adhesion between (a) the polyacetal resin and (b) the fibrillated cellulose fiber can be used.
  • isocyanate compounds include 4,4'-methylenebis (phenylisocyanate), 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, xylene diisocyanate, 1,6-hexamethylene diisocyanate, isophorone diisocyanate, 1, 5-Naphthalene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, and as an example of an isothiothionate compound, diisothionate corresponding to the above isocyanate compound is used as a modified product.
  • dimers and trimers of these isocyanate compounds or isothiocyanate compounds include dimers and trimers of these isocyanate compounds or isothiocyanate compounds, and compounds in which the isocyanate group is protected in some form, and these are all effective.
  • compounds in which the isocyanate group is protected in some form include dimers and trimers of these isocyanate compounds or isothiocyanate compounds, and compounds in which the isocyanate group is protected in some form, and these are all effective.
  • discoloration such as melting treatment or safety in handling
  • isophorone diisocyanate 1,5 -Naphthalene diisocyanate
  • 1,6-hexamethylene diisocyanate 1,6-hexamethylene diisocyanate
  • 2,4-tolylene diisocyanate 2,6-tolylene diisocyanate
  • modified products (or derivatives) such as dimers and trimers thereof are preferred.
  • thermoplastic polyurethane resin examples include (i) a diisocyanate compound, (ii) a high molecular weight polyol having a molecular weight of 500 to 5000, and (iii) a low molecular weight polyol having a molecular weight of 60 to 500 and / or a polyamine. Reaction products to be used.
  • examples of acid anhydride polymers and copolymers of ⁇ , ⁇ -monoolefinic unsaturated carboxylic acids include polymers of unsaturated carboxylic acid anhydrides such as maleic anhydride, styrene monomers Copolymer (eg, styrene, vinyltoluene, ⁇ -methylstyrene, chlorostyrene, etc.) and an anhydride of an unsaturated carboxylic acid such as maleic anhydride, ethylene and / or propylene monomer, etc. And a copolymer with an anhydride of an unsaturated carboxylic acid such as maleic acid.
  • unsaturated carboxylic acid anhydrides such as maleic anhydride, styrene monomers Copolymer (eg, styrene, vinyltoluene, ⁇ -methylstyrene, chlorostyrene, etc.) and an anhydride of an unsaturated carboxylic acid such as maleic
  • additives can be blended in the composition of the present invention in order to improve its physical properties according to the intended use.
  • additives include various colorants, lubricants, nucleating agents, surfactants, heterogeneous polymers, organic polymer modifiers, and inorganic, organic, metal and other fibrous, powdered, and plate-like fillers. 1 type or 2 types or more can be mixed and used.
  • the above-mentioned stabilizers, additives and the like may be added at any stage, for example, (a) once added to the polyacetal resin or at the time of adjusting the resin composition, or immediately before obtaining the final molded product. It is also possible to add and mix.
  • the polyacetal resin composition of the present invention can be molded by various known molding methods (for example, injection molding, extrusion molding, compression molding, blow molding, vacuum molding, foam molding, rotational molding, gas injection molding, etc.). The product can be molded. These molded products can be used for various applications such as automobile parts, electrical / electronic parts, building materials, life-related parts, makeup-related parts, and medical-related parts.
  • automobile parts include inner handles, fael trunk openers, seat belt buckles, assist wraps, interior parts such as switches, knobs, levers and clips, electrical system parts such as meters and connectors, audio equipment and cars.
  • In-vehicle electrical / electronic parts such as navigation equipment, parts that come into contact with metal, such as window regulator carrier plates, door lock actuator parts, mirror parts, wiper motor system parts, mechanical parts such as fuel system parts, etc. It is done.
  • parts or members of equipment composed of polyacetal resin molded products and having many metal contacts, such as audio equipment, video equipment, telephones, copiers, facsimiles, word processors, computers, etc.
  • OA equipment parts or members of toys, specifically, chassis, gears, levers, cams, pulleys, bearings, and the like.
  • lighting equipment fittings, piping, faucets, faucets, toilet parts and other building materials and piping parts, fasteners, stationery, lip balm / lipstick containers, cleaning equipment, water purifiers, spray nozzles, spray containers, aerosol containers, It is suitably used for a wide range of life-related parts, makeup-related parts, and medical-related parts such as general containers and needle holders.
  • Vibration control (loss factor) The loss factor (%) at a frequency of 1 ⁇ 102 Hz was measured based on the JIS G0602 center support steady excitation method. A higher loss factor indicates better vibration damping.
  • Examples 1-7 In advance, (a) polyacetal resin was added to (c) hindered phenol antioxidant, (d) nitrogen-containing compound, (e) metal compound, and (f) processing aid in the proportions of Examples 1 to 7 in Table 1. They were mixed and melt-kneaded with an extruder to prepare (b) polyacetal resin compositions containing components other than cellulose fibers.
  • a heater mixer (with heater and thermometer, capacity 200 L) having rotating blades was heated to 100 ° C. or higher, (b) a cellulose fiber aggregate (wood pulp sheet) was added, and stirred at an average peripheral speed of 50 m / sec. . At about 2 minutes, the cellulose fibers changed to cotton.
  • the polyacetal resin composition prepared in advance from the hopper in the heater mixer was put into the mixer and stirred at an average peripheral speed of 50 m / sec.
  • the mixer temperature rose to 160-190 ° C., and stirring was continued in this state.
  • the average peripheral speed was lowered to a low speed of 25 m / sec and stirring was continued, and then the outlet of the mixer was opened and connected to a cooling mixer [with water cooling means and thermometer by cooling water (20 ° C.), capacity 500 L] Then, the mixture was discharged and stirred at an average peripheral speed of 10 m / sec in a cooling mixer for cooling. Thereafter, the mixture was solidified to obtain a solidified product.
  • the solidified product was pulverized with a pulverizer and then melt-kneaded with an extruder to prepare a pellet-like cellulose fiber reinforced polyacetal resin composition.
  • a predetermined test piece was molded by an injection molding machine and subjected to test evaluation. The results are shown in Table 1.
  • Comparative Example 1 A polyacetal resin composition containing no cellulose fibers (mixed by melt mixing with an extruder in the composition of Comparative Example 1 in Table 1) was evaluated in the same manner as in the Examples.
  • Comparative Example 1 when the polyacetal resin (a-1) was replaced with (a-2) or (a-3), no substantial difference in physical properties occurred.
  • the results are shown in Table 1. From the comparison of the results in Table 1, the cellulose fiber reinforced polyacetal resin composition of the present invention has rigidity (bending elastic modulus) and thermal conductivity while suppressing an increase in specific gravity / ash content and a decrease in sliding / vibration damping properties. It turns out that it is improving significantly rather than the non-reinforced polyacetal resin composition (comparative example 1).
  • Comparative Examples 2-3 Conventionally, polyacetal resin compositions containing glass fibers that have been used as means for improving strength and rigidity were prepared and evaluated.
  • the prepared compositions are as shown in Comparative Examples 2 and 3 in Table 1, and (b′-2) alumina borosilicate E glass was used as the glass fiber.
  • Comparative Example 3 it was set as the composition which considered stability and workability at the time of mix
  • Table 1 the cellulose fiber reinforced polyacetal resin composition of the present invention is a glass fiber reinforced polyacetal resin composition (Comparative Examples 2 to 3). It can be seen that this is extremely effective as means for improving rigidity and thermal conductivity without causing an increase in specific gravity, ash content, and a decrease in slidability and vibration damping.
  • Comparative Example 4 In advance, (a) a polyacetal resin was mixed with (c) a hindered phenol antioxidant, (d) a nitrogen-containing compound, (e) a metal compound, and (f) a processing aid in the ratio of Comparative Example 4 in Table 1. (B) A polyacetal resin composition containing no cellulose fiber was prepared by melt kneading with an extruder.
  • the polyacetal resin composition and undefibrated (b) cellulose fiber aggregate wood pulp sheet
  • a small kneader-type melt kneader labor plast mill, manufactured by Toyo Seiki Co., Ltd. Since poor dispersion of cellulose fibers was observed in the polyacetal resin, the subsequent evaluation was not performed.
  • Examples 8-11 A polyacetal resin was mixed with (c) a hindered phenolic antioxidant, (d) a nitrogen-containing compound, and (f) a processing aid in the proportions of Examples 8 to 11 in Table 2, and melt-kneaded with an extruder.
  • (b) polyacetal resin compositions containing components other than cellulose fibers were prepared.
  • the cellulose fiber aggregate wood pulp sheet
  • the resin composition was put into a heater mixer from a hopper, and after stirring, the mixture was discharged into a connected cooling mixer and cooled to obtain a solidified product.
  • the solidified product was pulverized with a pulverizer and then melt-kneaded with an extruder to prepare a pellet-like cellulose fiber reinforced polyacetal resin composition.
  • a predetermined test piece was molded by an injection molding machine and subjected to test evaluation.
  • the results of rigidity (flexural modulus) are shown in Table 2.
  • Examples 12-22 Polyacetal prepared in advance after (b) cellulose fiber aggregate (wood pulp sheet) was put into a heater mixer having rotating blades with the same composition as in Example 11 and the cellulose fibers changed to cotton-like.
  • the resin composition was put into a heater mixer from a hopper, and after stirring, the mixture was discharged into a connected cooling mixer and cooled to obtain a solidified product. Further, the solidified product was pulverized with a pulverizer. Subsequently, additional components shown in Examples 12 to 22 were added to the obtained pulverized product in a predetermined composition, and melt-kneaded with an extruder to prepare a pellet-like cellulose fiber reinforced polyacetal resin composition. .
  • Example 23 (A) Implementation of (c) hindered phenolic antioxidant, (d) nitrogen-containing compound, (e) metal compound, (f) processing aid, (g) slidability improver on polyacetal resin in Table 4 They were mixed in the ratio of Example 23 and melt-kneaded with an extruder to prepare (b) polyacetal resin compositions containing components other than cellulose fibers.
  • Comparative Example 5 A polyacetal resin composition containing no cellulose fiber (mixed by melt mixing with an extruder in the composition of Comparative Example 5 in Table 4) was evaluated in the same manner as in Example 23. The results are shown in Table 4. From the comparison of the results shown in Table 4, the cellulose fiber-reinforced polyacetal resin composition of the present invention has improved rigidity (flexural modulus) while suppressing a decrease in slidability (a significant increase in friction coefficient and wear amount). I understand that. In particular, it can be seen that the slidability is maintained at a constant level even under high rotation conditions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

Disclosed is a polyacetal resin composition which exhibits excellent rigidity, heat conductivity, sliding properties and vibration damping properties, while having low specific gravity and low ash content. Specifically disclosed is a cellulose fiber-reinforced polyacetal resin composition which contains, per (a) 100 parts by weight of a polyacetal resin, (b) 10-150 parts by weight of fibrillated cellulose fibers, (c) 0.01-3 parts by weight of a hindered phenolic antioxidant, and (d) 0.01-3 parts by weight of at least one nitrogen-containing compound that is selected from among amino triazine compounds, guanamine compounds, hydrazide compounds and polyamides.

Description

セルロース繊維強化ポリアセタール樹脂組成物Cellulose fiber reinforced polyacetal resin composition
 本発明は、セルロース繊維で強化され、高い剛性と優れた熱伝導性、摺動性、制振性等を兼備し、無機充填材による強化材料のように比重の増大や灰分の増加を生じさせることのないポリアセタール樹脂組成物に関する。
背景技術
The present invention is reinforced with cellulose fiber, has both high rigidity and excellent thermal conductivity, slidability, vibration damping, etc., and causes an increase in specific gravity and an increase in ash content like a reinforcing material by an inorganic filler. The present invention relates to a polyacetal resin composition that does not occur.
Background art
 ポリアセタール樹脂は、機械的特性、熱的特性、電気的特性、摺動性、成形性などにおいて優れた特性を持っており、主に構造材料や機構部品などとして電気機器、自動車部品、精密機械部品などに広く使用されている。ポリアセタール樹脂が利用される分野の拡大に伴い、要求特性は益々高度化、複合化、特殊化する傾向にある。 Polyacetal resin has excellent properties in mechanical properties, thermal properties, electrical properties, slidability, moldability, etc., mainly as electrical materials, automotive parts, precision machine parts as structural materials and mechanical parts. Widely used in With the expansion of the field in which polyacetal resins are used, the required characteristics tend to become more sophisticated, complex and specialized.
 例えば、ポリアセタール樹脂の強度や剛性を向上させるためには、ガラス系無機充填材などの強化材を配合する方法が一般的であるが、この方法では得られるポリアセタール樹脂組成物の比重が高くなる上、焼却後に灰分(焼却残渣)が多量に残る問題がある。また、ポリアセタール樹脂が本来持つ摺動性などの特長を大きく損なう。更に、近年は、機構部品などの精密化が進む中で、強度や剛性の向上に加え、熱伝導性や制振性などの改良も要求される場合があるが、ガラス系無機充填材などの強化材を配合する方法ではこの要求に応えることも難しい。 For example, in order to improve the strength and rigidity of the polyacetal resin, a method of blending a reinforcing material such as a glass-based inorganic filler is generally used, but this method increases the specific gravity of the polyacetal resin composition obtained. There is a problem that a large amount of ash (incineration residue) remains after incineration. In addition, features such as slidability inherent in polyacetal resin are greatly impaired. Furthermore, in recent years, with the progress of precision of mechanical parts and the like, in addition to improvements in strength and rigidity, improvements in thermal conductivity and vibration damping properties may be required. It is difficult to meet this demand by the method of blending the reinforcing material.
 上記の課題に対し特開平3-217447号公報には、ポリアセタール樹脂にパルプを配合したポリアセタール樹脂組成物が開示され、機械的強度、耐熱性、燃焼性(燃焼時の樹脂のドリッピング)等の改善が示されている。しかしながら、この方法では、ポリアセタール樹脂とパルプとの混合が不十分になり易く、安定して優れた特性を得ることが難しく、実用には適していない。また、この特開平3-217447号公報には、ポリアセタール樹脂組成物の熱伝導性、摺動性、制振性などの改善については、何も開示されていない。 In response to the above problems, Japanese Patent Application Laid-Open No. 3-217447 discloses a polyacetal resin composition in which pulp is blended with polyacetal resin, such as mechanical strength, heat resistance, and flammability (resin dripping during combustion). Improvements are shown. However, in this method, mixing of the polyacetal resin and the pulp tends to be insufficient, it is difficult to stably obtain excellent characteristics, and it is not suitable for practical use. Further, JP-A-3-217447 does not disclose anything about improvement of thermal conductivity, slidability, vibration damping and the like of the polyacetal resin composition.
 また、特開2007-084713号公報は、解繊されたセルロース繊維を含有する熱可塑性樹脂組成物を得るための製造方法を提供するものであるが、この特開2007-084713号公報には、ポリアセタール樹脂組成物についての具体的な記載はなく、また、強度や剛性の向上だけでなく熱伝導性、摺動性、制振性なども改善され、これらの特性を兼備した樹脂組成物については何も開示されていない。 Japanese Patent Application Laid-Open No. 2007-084713 provides a manufacturing method for obtaining a thermoplastic resin composition containing fibrillated cellulose fibers. This Japanese Patent Application Laid-Open No. 2007-084713 includes There is no specific description about the polyacetal resin composition, and not only the improvement in strength and rigidity but also the thermal conductivity, slidability, vibration damping, etc. are improved. Nothing is disclosed.
 また、特開平3-28260号公報に記載された発明では、ポリアセタール樹脂に対して微結晶セルロース及び繊維質性セルロースからなる群より選ばれる安定剤を少量配合し、ポリアセタール樹脂の熱安定性を改良することが行われているが、この発明ではポリアセタール樹脂組成物の剛性、熱伝導性、摺動性、制振性などの改良はいずれも達成されていない。
発明の概要
In the invention described in JP-A-3-28260, a small amount of a stabilizer selected from the group consisting of microcrystalline cellulose and fibrous cellulose is blended with the polyacetal resin to improve the thermal stability of the polyacetal resin. However, in this invention, none of the improvements in the rigidity, thermal conductivity, slidability, vibration damping and the like of the polyacetal resin composition has been achieved.
Summary of the Invention
 従来から知られた技術では、上記のように、剛性、熱伝導性、摺動性、制振性を兼備し、低比重、低灰分であるポリアセタール樹脂組成物を得ることはできなかった。 Conventionally known techniques have not been able to obtain a polyacetal resin composition having rigidity, thermal conductivity, slidability, and vibration damping properties, and having a low specific gravity and a low ash content, as described above.
 本発明は、これらの課題を解決し、優れた剛性、熱伝導性、摺動性、制振性を兼備し、低比重で灰分も少ないポリアセタール樹脂組成物及びその成形品を提供することを目的とする。 An object of the present invention is to solve these problems and to provide a polyacetal resin composition having excellent rigidity, thermal conductivity, slidability, vibration damping properties, low specific gravity and low ash content, and a molded product thereof. And
 本発明者らは、上記課題を解決するため鋭意検討した結果、ポリアセタール樹脂に特定の繊維充填材と添加剤とを組み合わせて配合することにより、上記課題が解決し目的を達成し得るポリアセタール樹脂組成物およびその成形品が得られることを見出し、本発明を完成させるに至った。 As a result of intensive studies to solve the above problems, the present inventors have formulated a polyacetal resin composition that can solve the above problems and achieve the object by combining a specific fiber filler and an additive with the polyacetal resin. The present inventors have found that a product and a molded product thereof can be obtained, and have completed the present invention.
 すなわち本発明は、
(a)ポリアセタール樹脂100重量部に対して、
(b)解繊されたセルロース繊維10~150重量部、
(c)ヒンダードフェノール系酸化防止剤0.01~3重量部及び
(d)アミノトリアジン化合物、グアナミン化合物、ヒドラジド化合物及びポリアミドから選ばれた少なくとも一種の窒素含有化合物0.01~3重量部を含有させてなるセルロース繊維強化ポリアセタール樹脂組成物とその成形品を提供するものである。
That is, the present invention
(A) For 100 parts by weight of the polyacetal resin,
(B) 10 to 150 parts by weight of fibrillated cellulose fiber,
(C) 0.01 to 3 parts by weight of a hindered phenolic antioxidant and (d) 0.01 to 3 parts by weight of at least one nitrogen-containing compound selected from aminotriazine compounds, guanamine compounds, hydrazide compounds and polyamides. The present invention provides a cellulose fiber reinforced polyacetal resin composition and a molded product thereof.
 本発明のセルロース繊維強化ポリアセタール樹脂組成物は、剛性、低比重、低灰分、熱伝導性、摺動性、制振性に優れ、自動車部品、電気・電子部品、雑貨、文房具類などに関連した成形品に好適である。
発明を実施するための形態
The cellulose fiber reinforced polyacetal resin composition of the present invention is excellent in rigidity, low specific gravity, low ash content, thermal conductivity, slidability, vibration damping, and related to automobile parts, electrical / electronic parts, sundries, stationery, etc. Suitable for molded products.
BEST MODE FOR CARRYING OUT THE INVENTION
 以下、本発明のポリアセタール樹脂組成物について詳細に説明する。 Hereinafter, the polyacetal resin composition of the present invention will be described in detail.
 本発明のポリアセタール樹脂組成物を構成する主要な成分は以下に説明する通りである。
<(a)ポリアセタール樹脂>
 (a)成分のポリアセタール樹脂は、オキシメチレン基(-OCH2-)を主たる構成単位とする高分子化合物であり、実質的にオキシメチレン単位の繰返しのみからなるポリアセタールホモポリマー、オキシメチレン単位以外に他のコモノマー単位を含有するポリアセタールコポリマーが代表的な樹脂である。更に、ポリアセタール樹脂には、分岐形成成分や架橋形成成分を共重合することにより分岐構造や架橋構造が導入された共重合体や、オキシメチレン基の繰返しからなる重合体単位と他の重合体単位とを有するブロック共重合体やグラフト共重合体なども含まれる。これらのポリアセタール樹脂は、単独でまたは二種以上組み合わせて使用できる。
The main components constituting the polyacetal resin composition of the present invention are as described below.
<(A) Polyacetal resin>
The polyacetal resin of component (a) is a polymer compound having an oxymethylene group (—OCH 2 —) as a main constituent unit, and includes a polyacetal homopolymer consisting essentially only of repeating oxymethylene units, in addition to oxymethylene units. Polyacetal copolymers containing other comonomer units are representative resins. Further, polyacetal resins include copolymers in which a branched structure or a crosslinked structure is introduced by copolymerizing a branch-forming component or a crosslinking-forming component, polymer units composed of repeating oxymethylene groups, and other polymer units. Also included are block copolymers, graft copolymers and the like. These polyacetal resins can be used alone or in combination of two or more.
 一般に、ポリアセタールホモポリマーは、無水ホルムアルデヒドやトリオキサン(ホルムアルデヒドの環状三量体)の重合により製造され、通常、その末端をエステル化することにより、熱分解に対して安定化されている。 Generally, a polyacetal homopolymer is produced by polymerization of anhydrous formaldehyde or trioxane (a cyclic trimer of formaldehyde), and is usually stabilized against thermal decomposition by esterifying its terminal.
 これに対して、ポリアセタールコポリマーは、一般的に、ホルムアルデヒドまたは一般式(CH2O)n[式中、nは3以上の整数を示す]で表されるホルムアルデヒドの環状オリゴマー(例えばトリオキサン)と、環状エーテルや環状ホルマールなどのコモノマーとを共重合することによって製造され、通常、加水分解によって末端の不安定部分を除去して熱分解に対して安定化される。 On the other hand, polyacetal copolymers generally include formaldehyde or a cyclic oligomer of formaldehyde (for example, trioxane) represented by the general formula (CH 2 O) n [wherein n represents an integer of 3 or more] It is produced by copolymerizing with a comonomer such as cyclic ether or cyclic formal, and is usually stabilized against thermal decomposition by removing terminal unstable parts by hydrolysis.
 ポリアセタールコポリマーの主原料としては、トリオキサンやテトラオキサンなどが挙げられ、通常、トリオキサンが使用される。 Examples of the main raw material of the polyacetal copolymer include trioxane and tetraoxane, and trioxane is usually used.
 コモノマーには、環状エーテル、グリシジルエーテル化合物、環状ホルマール、環状エステル(例えば、β-プロピオラクトンなど)、ビニル化合物(例えば、スチレン、ビニルエーテルなど)などが含まれる。 The comonomer includes a cyclic ether, a glycidyl ether compound, a cyclic formal, a cyclic ester (eg, β-propiolactone), a vinyl compound (eg, styrene, vinyl ether, etc.), and the like.
 環状エーテルとしては、例えば、エチレンオキシド、プロピレンオキシド、ブチレンオキシド、シクロヘキセンオキサイド、エピクロロヒドリン、エピブロモヒドリン、スチレンオキシド、オキセタン、3,3-ビス(クロロメチル)オキセタン、テトラヒドロフラン、トリオキセパン、1,3-ジオキサンなどが挙げられる。 Examples of the cyclic ether include ethylene oxide, propylene oxide, butylene oxide, cyclohexene oxide, epichlorohydrin, epibromohydrin, styrene oxide, oxetane, 3,3-bis (chloromethyl) oxetane, tetrahydrofuran, trioxepane, 1, Examples include 3-dioxane.
 グリシジルエーテル化合物としては、例えば、アルキルまたはアリールグリシジルエーテル(例えば、メチルグリシジルエーテル、エチルグリシジルエーテル、フェニルグリシジルエーテル、ナフチルグリシジルエーテルなど)、アルキレンまたはポリアルキレングリコールジグリシジルエーテル(例えば、エチレングリコールジグリシジルエーテル、トリエチレングリコールジグリシジルエーテル、ブタンジオールジグリシジルエーテルなど)、アルキルまたはアリールグリシジルアルコールなどが挙げられる。 Examples of the glycidyl ether compound include alkyl or aryl glycidyl ethers (for example, methyl glycidyl ether, ethyl glycidyl ether, phenyl glycidyl ether, naphthyl glycidyl ether), alkylene or polyalkylene glycol diglycidyl ether (for example, ethylene glycol diglycidyl ether). , Triethylene glycol diglycidyl ether, butanediol diglycidyl ether), alkyl or aryl glycidyl alcohol, and the like.
 環状ホルマールとしては、例えば、1,3-ジオキソラン、プロピレングリコールホルマール、ジエチレングリコールホルマール、トリエチレングリコールホルマール、1,4-ブタンジオールホルマール、1,5-ペンタンジオールホルマール、1,6-ヘキサンジオールホルマールなどが挙げられる。 Examples of the cyclic formal include 1,3-dioxolane, propylene glycol formal, diethylene glycol formal, triethylene glycol formal, 1,4-butanediol formal, 1,5-pentanediol formal, 1,6-hexanediol formal, and the like. Can be mentioned.
 これらのコモノマーは、単独でまたは二種以上組み合わせて使用できる。これらのコモノマーのうち、通常、環状エーテル及び/または環状ホルマールが用いられ、特に、エチレンオキシドなどの環状エーテルや、1,3-ジオキソラン、1,4-ブタンジオールホルマール、ジエチレングリコールホルマールなどの環状ホルマールが好ましい。 These comonomers can be used alone or in combination of two or more. Of these comonomers, cyclic ethers and / or cyclic formals are usually used, and cyclic ethers such as ethylene oxide, and cyclic formals such as 1,3-dioxolane, 1,4-butanediol formal, and diethylene glycol formal are preferred. .
 これらのコモノマー(例えば、環状エーテル及び/または環状ホルマール)単位の割合は、ポリアセタール樹脂全体に対して、一般的には0.1~20重量%の範囲であり、好ましくは0.5~20重量%、更に好ましくは0.5~15重量%(特に1~10重量%)程度である。 The proportion of these comonomer (eg, cyclic ether and / or cyclic formal) units is generally in the range of 0.1 to 20% by weight, preferably 0.5 to 20% by weight, based on the total polyacetal resin. %, More preferably about 0.5 to 15% by weight (particularly 1 to 10% by weight).
 (a)成分のポリアセタール樹脂のメルトインデックスは、特に限定されないが、1~100g/10分の範囲が好ましく、特に、5~50g/10分の範囲が好ましい。メルトインデックスが過小および過大の場合には、本発明の効果が十分に得られない場合がある。なお、メルトインデックスは、ASTM-D1238に準じて、190℃、2.16kgf(21.2N)の条件下で測定した値である。
<(b)セルロース繊維>
 (b)成分のセルロース繊維は、セルロース繊維集合体が解繊されたものを使用する。セルロース繊維集合体は、多数のセルロース繊維が結合一体化されたものであり、天然物でも工業製品でもよく、麻繊維、竹繊維、綿繊維、木材繊維、ケナフ繊維、ヘンプ繊維、ジュート繊維、バナナ繊維、ココナツ繊維などの集合体を用いることができる。
The melt index of the polyacetal resin as component (a) is not particularly limited, but is preferably in the range of 1 to 100 g / 10 minutes, and particularly preferably in the range of 5 to 50 g / 10 minutes. When the melt index is too small or too large, the effects of the present invention may not be sufficiently obtained. The melt index is a value measured under conditions of 190 ° C. and 2.16 kgf (21.2 N) in accordance with ASTM-D1238.
<(B) Cellulose fiber>
As the cellulose fiber (b), a cellulose fiber aggregate is used. Cellulose fiber aggregates are a combination of many cellulose fibers, which may be natural or industrial products, hemp fiber, bamboo fiber, cotton fiber, wood fiber, kenaf fiber, hemp fiber, jute fiber, banana Aggregates such as fibers and coconut fibers can be used.
 セルロース繊維集合体の形状、大きさは特に制限されず、解繊作業が円滑にできる範囲で選択することができる。その中でも好ましい形状のセルロース繊維集合体としては、シート形状のパルプシートが挙げられ、例えば、厚さが0.1~5mm、好ましくは1~3mmで、幅1~50cmで、長さ3~100cm程度のものが好適に使用することができる。 The shape and size of the cellulose fiber aggregate are not particularly limited, and can be selected as long as the defibrating work can be performed smoothly. Among them, a cellulose fiber aggregate having a preferable shape includes a sheet-shaped pulp sheet. For example, the thickness is 0.1 to 5 mm, preferably 1 to 3 mm, the width is 1 to 50 cm, and the length is 3 to 100 cm. Those having a degree can be preferably used.
 パルプシートを使用する場合、パルプシートを丸めて筒状にしたもの、押し潰して細長い板状にしたもの、折り畳んで細長い板状シートとしたものなどを使用することもできる。また、パルプシートを一旦切断物とすることも可能である。例えば、厚さが0.1~5mm、好ましくは1~3mmで、幅2mm~1cmで、長さ3mm~3cm程度の短冊状のもの、または一辺が2mm~1cm程度の四角形状のものを用いることもできる。 When a pulp sheet is used, a pulp sheet rolled into a cylindrical shape, crushed into an elongated plate, or folded into an elongated plate can be used. It is also possible to make the pulp sheet once cut. For example, a strip having a thickness of 0.1 to 5 mm, preferably 1 to 3 mm, a width of 2 mm to 1 cm, a length of about 3 mm to 3 cm, or a rectangular shape having a side of about 2 mm to 1 cm is used. You can also.
 セルロース繊維集合体の水分含有率は、20重量%以下が好ましく、17重量%以下がより好ましく、15重量%以下が更に好ましい。水分含有率が20重量%以下であると、摩擦熱の発生による昇温が容易になり、セルロース繊維集合体が解繊され易く凝集物が残らないので好ましい。なお、水分含有率は、カールフッシャー法による水分測定などにより求める。 The water content of the cellulose fiber aggregate is preferably 20% by weight or less, more preferably 17% by weight or less, and still more preferably 15% by weight or less. When the water content is 20% by weight or less, it is preferable because the temperature rise due to generation of frictional heat is facilitated, and the cellulose fiber aggregate is easily defibrated and no aggregates remain. The moisture content is determined by measuring moisture using the Karl-Fuscher method.
 セルロース繊維集合体を形成するセルロース繊維は、熱安定性が高い点から、αセルロース含有量が高いものが好ましく、αセルロース含有量80重量%以上がより好ましく、85重量%以上が更に好ましく、90重量%以上が特に好ましい。 The cellulose fibers forming the cellulose fiber aggregate are preferably those having a high α cellulose content, more preferably 80% by weight or more, still more preferably 85% by weight or more, from the viewpoint of high thermal stability. A weight percent or more is particularly preferred.
 セルロース繊維集合体におけるセルロース繊維の平均繊維径は、0.1~1000μmが好ましく、1~500μmがより好ましく、5~200μmが更に好ましく、10~50μmが特に好ましい。セルロース繊維の平均繊維長さは、0.01~100mmが好ましく、0.01~50mmがより好ましく、0.1~10mmが更に好ましく、0.1~5mmが特に好ましい。セルロース繊維のアスペクト比(長さ/径)は、2~1000が好ましく、3~500がより好ましく、5~200が更に好ましく、5~100が特に好ましい。また、セルロース繊維は、カップリング剤(アミノ基、置換アミノ基、エポキシ基、グリシジル基などの官能基を有するシランカップリング剤)で表面処理されていてもよい。 The average fiber diameter of the cellulose fibers in the cellulose fiber aggregate is preferably 0.1 to 1000 μm, more preferably 1 to 500 μm, still more preferably 5 to 200 μm, and particularly preferably 10 to 50 μm. The average fiber length of the cellulose fibers is preferably 0.01 to 100 mm, more preferably 0.01 to 50 mm, still more preferably 0.1 to 10 mm, and particularly preferably 0.1 to 5 mm. The aspect ratio (length / diameter) of the cellulose fiber is preferably 2 to 1000, more preferably 3 to 500, still more preferably 5 to 200, and particularly preferably 5 to 100. The cellulose fiber may be surface-treated with a coupling agent (a silane coupling agent having a functional group such as an amino group, a substituted amino group, an epoxy group, or a glycidyl group).
 (b)成分のセルロース繊維に使用するセルロース繊維集合体を解繊する方法としては、回転羽根を有するミキサーや解繊機などの装置を用いる方法が挙げられる。例えば、回転羽根を有するミキサー中にセルロース繊維集合体を入れ、高速攪拌することにより解繊することができる。ミキサーは、攪拌手段として回転羽根を有するものであればよく、好ましくは加温手段を有しているものであり、例えば、三井鉱山(株)製ヘンシェルミキサー、FM20C/I(容量20L)や(株)カワタ製スーパーミキサー、SMV-20(容量20L)などを用いることができる。 (B) As a method of defibrating the cellulose fiber aggregate used for the cellulose fiber of the component, there may be mentioned a method using an apparatus such as a mixer having a rotating blade or a defibrating machine. For example, the cellulose fiber aggregate can be put into a mixer having rotating blades and fibrillated by stirring at high speed. The mixer only needs to have rotating blades as stirring means, and preferably has heating means. For example, a Henschel mixer manufactured by Mitsui Mining Co., Ltd., FM20C / I (capacity 20 L), ( A Kawata super mixer, SMV-20 (capacity 20 L), etc. can be used.
 回転羽根は、通常、上羽根と下羽根の2枚構成、あるいは上羽根、中間羽根、下羽根の3枚構成であるが、その枚数に制約はない。攪拌時の回転羽根の平均周速は10~100m/秒の範囲で攪拌することが好ましく、より好ましくは平均周速が10~90m/秒、更には平均周速が10~80m/秒で攪拌することが好ましい。 Rotating blades are usually composed of two blades, upper blades and lower blades, or three blades including upper blades, intermediate blades, and lower blades. It is preferable that the average peripheral speed of the rotating blades during stirring is in the range of 10 to 100 m / sec, more preferably the average peripheral speed is 10 to 90 m / sec, and further the average peripheral speed is 10 to 80 m / sec. It is preferable to do.
 セルロース繊維集合体の解繊は、例えば、セルロース繊維集合体が綿状に変化したことが目視にて確認できた時点を処理の終了とすることができる。回転羽根の平均周速と攪拌時間は、セルロース繊維集合体の種類、形状、大きさ、投入量などにより変化するものであるため、前記したように綿状に変化した時点を基準とすることが好適である。 For the fibrillation of the cellulose fiber aggregate, for example, it is possible to end the treatment when it can be visually confirmed that the cellulose fiber aggregate has changed into a cotton-like shape. Since the average peripheral speed and stirring time of the rotating blades change depending on the type, shape, size, input amount, and the like of the cellulose fiber aggregate, the time point when it changes into a cotton shape as described above may be used as a reference. Is preferred.
 (b)成分の解繊されたセルロース繊維の含有量は、(a)成分のポリアセタール樹脂100重量部に対して10~150重量部であり、より好ましくは15~120重量部である。含有量が過少および過多の場合には、本発明の効果が十分に得られないため好ましくない。
<(c)ヒンダードフェノール系酸化防止剤>
 本発明で使用する(c)ヒンダードフェノール系化合物としては、単環式ヒンダードフェノール化合物(例えば、2,6-ジ-t-ブチル-p-クレゾールなど)、炭化水素基またはイオウ原子を含む基で連結された多環式ヒンダードフェノール化合物(例えば、2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)、4,4’-メチレンビス(2,6-ジ-t-ブチルフェノール)、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、4,4’-ブチリデンビス(3-メチル-6-t-ブチルフェノール)、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、4,4’-チオビス(3-メチル-6-t-ブチルフェノール)など)、エステル基またはアミド基を有するヒンダードフェノール化合物(例えば、n-オクタデシル-3-(4’-ヒドロキシ-3’,5’-ジ-t-ブチルフェニル)プロピオネート、n-オクタデシル-2-(4’-ヒドロキシ-3’,5’-ジ-t-ブチルフェニル)プロピオネート、1,6-ヘキサンジオール-ビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、トリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、ペンタエリスリトールテトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、3,9-ビス{2-[3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]-1,1-ジメチルエチル}-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、2-t-ブチル-6-(3’-t-ブチル-5’-メチル-2’-ヒドロキシベンジル)-4-メチルフェニルアクリレート、2-[1-(2-ヒドロキシ-3,5-ジ-t-ペンチルフェニル)エチル]-4,6-ジ-t-ペンチルフェニルアクリレート、ジ-n-オクタデシル-3,5-ジ-t-ブチル-4-ヒドロキシベンジルホスホネート、N,N’-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ジヒドロシンナムアミド、N,N’-エチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオンアミド]、N,N’-テトラメチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオンアミド]、N,N’-ヘキサメチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオンアミド]、N,N’-エチレンビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオンアミド]、N,N’-ヘキサメチレンビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオンアミド]、N,N’-ビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニル]ヒドラジン、N,N’-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオニル]ヒドラジン、1,3,5-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)イソシアヌレート、1,3,5-トリス(4-t-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)イソシアヌレートなど)が挙げられる。
The content of the fibrillated cellulose fiber of the component (b) is 10 to 150 parts by weight, more preferably 15 to 120 parts by weight, with respect to 100 parts by weight of the polyacetal resin of the component (a). If the content is too small or too large, the effects of the present invention cannot be obtained sufficiently, which is not preferable.
<(C) Hindered phenolic antioxidant>
The (c) hindered phenol compound used in the present invention contains a monocyclic hindered phenol compound (eg, 2,6-di-t-butyl-p-cresol), a hydrocarbon group or a sulfur atom. Group-linked polycyclic hindered phenol compounds (eg, 2,2′-methylenebis (4-methyl-6-tert-butylphenol), 4,4′-methylenebis (2,6-di-tert-butylphenol) 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 4,4′-butylidenebis (3-methyl-6-tert-butylphenol), 1,3,5- Trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, 4,4′-thiobis (3-methyl-6-tert-butylphenol), etc.) Hindered phenol compounds having an ester group or an amide group (for example, n-octadecyl-3- (4′-hydroxy-3 ′, 5′-di-t-butylphenyl) propionate, n-octadecyl-2- (4 '-Hydroxy-3', 5'-di-t-butylphenyl) propionate, 1,6-hexanediol-bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], tri Ethylene glycol-bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] 3,9-bis {2- [3- (3-t-butyl-4-hydroxy-5-methylphenyl) propionyloxy] -1 1-dimethylethyl} -2,4,8,10-tetraoxaspiro [5.5] undecane, 2-t-butyl-6- (3′-t-butyl-5′-methyl-2′-hydroxybenzyl ) -4-methylphenyl acrylate, 2- [1- (2-hydroxy-3,5-di-t-pentylphenyl) ethyl] -4,6-di-t-pentylphenyl acrylate, di-n-octadecyl- 3,5-di-t-butyl-4-hydroxybenzylphosphonate, N, N′-hexamethylenebis (3,5-di-t-butyl-4-hydroxy-dihydrocinnamamide, N, N′-ethylene Bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionamide], N, N′-tetramethylenebis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) ) Pionamide], N, N′-hexamethylenebis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionamide], N, N′-ethylenebis [3- (3-t-butyl) -5-methyl-4-hydroxyphenyl) propionamide], N, N'-hexamethylenebis [3- (3-t-butyl-5-methyl-4-hydroxyphenyl) propionamide], N, N'- Bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyl] hydrazine, N, N′-bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionyl Hydrazine, 1,3,5-tris (3,5-di-tert-butyl-4-hydroxybenzyl) isocyanurate, 1,3,5-tris (4-tert-butyl-3-hydroxy-2,6) - Etc. methylbenzyl) isocyanurate) and the like.
 本発明において、(c)ヒンダードフェノール系酸化防止剤は、単独でまたは二種以上組み合わせて使用できる。その配合割合は、(a)ポリアセタール樹脂100重量部に対して0.01~3重量部であり、好ましくは0.02~1重量部である。含有量が過少および過多の場合には、本発明の効果が十分に得られないため好ましくない。 In the present invention, the (c) hindered phenol antioxidants can be used alone or in combination of two or more. The blending ratio is 0.01 to 3 parts by weight, preferably 0.02 to 1 part by weight, based on 100 parts by weight of the (a) polyacetal resin. If the content is too small or too large, the effects of the present invention cannot be obtained sufficiently, which is not preferable.
 また、本発明のポリアセタール樹脂組成物の調製にあたり、(c)ヒンダードフェノール系酸化防止剤は(a)ポリアセタール樹脂に対し任意の段階で混合することが可能であるが、前記の(b)セルロース繊維との混合に先立ち、(c)ヒンダードフェノール系酸化防止剤を(a)ポリアセタール樹脂に予め押出機などで溶融混合する方法が特に好ましい。
<(d)窒素含有化合物>
 本発明のポリアセタール樹脂組成物には、(d)アミノトリアジン化合物、グアナミン化合物、ヒドラジド化合物及びポリアミドから選ばれた少なくとも一種の窒素含有化合物が配合される。
In preparing the polyacetal resin composition of the present invention, (c) the hindered phenolic antioxidant can be mixed with (a) the polyacetal resin at any stage. Prior to mixing with the fiber, a method in which (c) a hindered phenol antioxidant is previously melt-mixed with (a) polyacetal resin by an extruder or the like is particularly preferable.
<(D) Nitrogen-containing compound>
In the polyacetal resin composition of the present invention, (d) at least one nitrogen-containing compound selected from an aminotriazine compound, a guanamine compound, a hydrazide compound and a polyamide is blended.
 アミノトリアジン化合物としては、メラミンまたはその誘導体[メラミン、メラミン縮合体(メラム、メレム、メロン)など]、グアナミンまたはその誘導体、及びアミノトリアジン樹脂[メラミンの共縮合樹脂(メラミン-ホルムアルデヒド樹脂、フェノール-メラミン樹脂、メラミン-フェノール-ホルムアルデヒド樹脂、ベンゾグアナミン-メラミン樹脂、芳香族ポリアミン-メラミン樹脂など)、グアナミンの共縮合樹脂など]などが挙げられる。 Examples of aminotriazine compounds include melamine or derivatives thereof [melamine, melamine condensates (melam, melem, melon), etc.], guanamine or derivatives thereof, and aminotriazine resins [melamine co-condensation resins (melamine-formaldehyde resin, phenol-melamine). Resin, melamine-phenol-formaldehyde resin, benzoguanamine-melamine resin, aromatic polyamine-melamine resin, etc.), co-condensation resin of guanamine, etc.].
 グアナミン化合物としては、脂肪族グアナミン化合物(モノグアナミン類、アルキレンビスグアナミン類など)、脂環族グアナミン系化合物(モノグアナミン類など)、芳香族グアナミン系化合物[モノグアナミン類(ベンゾグアナミン及びその官能基置換体など)、α-またはβ-ナフトグアナミン及びそれらの官能基置換誘導体、ポリグアナミン類、アラルキルまたはアラルキレングアナミン類など]、ヘテロ原子含有グアナミン系化合物[アセタール基含有グアナミン類、テトラオキソスピロ環含有グアナミン類(CTU-グアナミン、CMTU-グアナミンなど)、イソシアヌル環含有グアナミン類、イミダゾール環含有グアナミン類など]などが挙げられる。また、上記のメラミン、メラミン誘導体、グアナミン系化合物のアルコキシメチル基がアミノ基に置換した化合物なども含まれる。 Guanamine compounds include aliphatic guanamine compounds (monoguanamines, alkylenebisguanamines, etc.), alicyclic guanamine compounds (monoguanamines, etc.), aromatic guanamine compounds [monoguanamines (benzoguanamine and its functional group substitution) ), Α- or β-naphthoguanamine and their functional group-substituted derivatives, polyguanamines, aralkyl or aralkylenguanamines, etc.], heteroatom-containing guanamine compounds [acetal group-containing guanamines, tetraoxospiro ring-containing Guanamines (CTU-guanamine, CMTU-guanamine, etc.), isocyanuric ring-containing guanamines, imidazole ring-containing guanamines, etc.]. Moreover, the compound etc. which the alkoxymethyl group of said melamine, a melamine derivative, and a guanamine type compound substituted by the amino group are also contained.
 ヒドラジド化合物としては、脂肪族カルボン酸ヒドラジド系化合物(ステアリン酸ヒドラジド、12-ヒドロキシステアリン酸ヒドラジド 、セバシン酸ジヒドラジド 、ドデカン二酸ジヒドラジド
、エイコサン二酸ジヒドラジドなど)、脂環族カルボン酸ヒドラジド系化合物(1,3-ビス(ヒドラジノカルボノエチル)-5-イソプロピルヒダントインなど)、芳香族カルボン酸ヒドラジド系化合物(4-ヒドロキシ-3,5-ジ-t-ブチルフェニル安息香酸ヒドラジド、1-ナフトエ酸ヒドラジド、2-ナフトエ酸ヒドラジド、イソフタル酸ジヒドラジド、2,6-ナフタレンジカルボン酸ジヒドラジドなど)、ヘテロ原子含有カルボン酸ヒドラジド系化合物、ポリマー型カルボン酸ヒドラジド系化合物などが挙げられる。
Examples of the hydrazide compound include aliphatic carboxylic acid hydrazide compounds (such as stearic acid hydrazide, 12-hydroxystearic acid hydrazide, sebacic acid dihydrazide, dodecanedioic acid dihydrazide, and eicosanedioic acid dihydrazide), alicyclic carboxylic acid hydrazide compounds (1 , 3-bis (hydrazinocarbonoethyl) -5-isopropylhydantoin), aromatic carboxylic acid hydrazide compounds (4-hydroxy-3,5-di-t-butylphenylbenzoic acid hydrazide, 1-naphthoic acid hydrazide) 2-naphthoic acid hydrazide, isophthalic acid dihydrazide, 2,6-naphthalenedicarboxylic acid dihydrazide, etc.), heteroatom-containing carboxylic acid hydrazide compounds, polymer type carboxylic acid hydrazide compounds, and the like.
 ポリアミドとしては、ジアミンとジカルボン酸とから誘導されるポリアミド;アミノカルボン酸、必要に応じてジアミン及び/またはジカルボン酸を併用して得られるポリアミド;ラクタム、必要に応じてジアミン及び/またはジカルボン酸との併用により誘導されるポリアミドが含まれる。また、2種以上の異なったポリアミド形成成分により形成される共重合ポリアミドも含まれる。 As the polyamide, a polyamide derived from a diamine and a dicarboxylic acid; an aminocarboxylic acid, a polyamide obtained by using a diamine and / or a dicarboxylic acid in combination; a lactam, and optionally a diamine and / or a dicarboxylic acid; Polyamide derived by the combined use of Also included are copolyamides formed from two or more different polyamide-forming components.
 具体的なポリアミドの例としては、ポリアミド3、ポリアミド4、ポリアミド46、ポリアミド6、ポリアミド66、ポリアミド610、ポリアミド612、ポリアミド11、ポリアミド12などの脂肪族ポリアミド、芳香族ジカルボン酸(例えば、テレフタル酸および/またはイソフタル酸)と脂肪族ジアミン(例えば、ヘキサメチレンジアミン)とから得られるポリアミド、脂肪族ジカルボン酸(例えば、アジピン酸)と芳香族ジアミン(例えば、メタキシリレンジアミン)とから得られるポリアミド、芳香族および脂肪族ジカルボン酸(例えば、テレフタル酸とアジピン酸)と脂肪族ジアミン(例えば、ヘキサメチレンジアミン)とから得られるポリアミド及びこれらの共重合体などが挙げられる。また、ポリアミドハードセグメントとポリエーテル成分などの他のソフトセグメントの結合したポリアミド系ブロックコポリマーの使用も可能である。 Specific examples of polyamides include polyamide 3, polyamide 4, polyamide 46, polyamide 6, polyamide 66, polyamide 610, polyamide 612, polyamide 11, polyamide 12, and other aliphatic polyamides, aromatic dicarboxylic acids (for example, terephthalic acid). And / or isophthalic acid) and an aliphatic diamine (eg, hexamethylenediamine), a polyamide, and an aliphatic dicarboxylic acid (eg, adipic acid) and an aromatic diamine (eg, metaxylylenediamine) And polyamides obtained from aromatic and aliphatic dicarboxylic acids (for example, terephthalic acid and adipic acid) and aliphatic diamines (for example, hexamethylenediamine), and copolymers thereof. It is also possible to use a polyamide-based block copolymer in which a polyamide hard segment and another soft segment such as a polyether component are combined.
 (d)アミノトリアジン化合物、グアナミン化合物、ヒドラジド化合物及びポリアミドから選ばれる窒素含有化合物は、単独でまたは二種以上組み合わせて使用できる。その配合割合は、(a)ポリアセタール樹脂100重量部に対して0.01~3重量部であり、好ましくは0.02~1重量部である。含有量が過少および過多の場合には、本発明の効果が十分に得られないため好ましくない。 (D) The nitrogen-containing compounds selected from aminotriazine compounds, guanamine compounds, hydrazide compounds and polyamides can be used alone or in combination of two or more. The blending ratio is 0.01 to 3 parts by weight, preferably 0.02 to 1 part by weight, based on 100 parts by weight of the (a) polyacetal resin. If the content is too small or too large, the effects of the present invention cannot be obtained sufficiently, which is not preferable.
 また、本発明のポリアセタール樹脂組成物の調製にあたり、(d)アミノトリアジン化合物、グアナミン化合物、ヒドラジド化合物及びポリアミドから選ばれた窒素含有化合物は(a)ポリアセタール樹脂に対し任意の段階で混合することが可能であるが、前記(c)ヒンダードフェノール系酸化防止剤と同様に、(b)セルロース繊維との混合に先立ち、(d)窒素含有化合物を(a)ポリアセタール樹脂に予め押出機などで溶融混合する方法が特に好ましい。
<(e)金属化合物>
 本発明のポリアセタール樹脂組成物には、更に、(e)アルカリ金属またはアルカリ土類金属の酸化物、水酸化物、無機酸塩及びカルボン酸塩から選ばれた少なくとも一種の金属化合物を配合することができる。
In preparing the polyacetal resin composition of the present invention, (d) a nitrogen-containing compound selected from aminotriazine compounds, guanamine compounds, hydrazide compounds and polyamides may be mixed with (a) polyacetal resin at any stage. Although it is possible, (c) Like the hindered phenol antioxidant, (b) Prior to mixing with the cellulose fiber, (d) the nitrogen-containing compound is previously melted into the polyacetal resin (a) with an extruder or the like. A method of mixing is particularly preferable.
<(E) Metal compound>
The polyacetal resin composition of the present invention further contains (e) at least one metal compound selected from alkali metal or alkaline earth metal oxides, hydroxides, inorganic acid salts and carboxylate salts. Can do.
 アルカリ金属またはアルカリ土類金属の酸化物としてはCaO、MgO、ZnOなどが挙げられる。アルカリ金属またはアルカリ土類金属の水酸化物としてはLiOH、Ca(OH)2、Mg(OH)2などが挙げられる。アルカリ金属またはアルカリ土類金属の無機酸塩としては炭酸塩(Li2CO3、Na2CO3、K2CO3、CaCO3、MgCO3など)、ホウ酸塩、リン酸塩などが挙げられる。 Examples of the alkali metal or alkaline earth metal oxide include CaO, MgO, and ZnO. Examples of the alkali metal or alkaline earth metal hydroxide include LiOH, Ca (OH) 2 , and Mg (OH) 2 . Examples of inorganic acid salts of alkali metals or alkaline earth metals include carbonates (Li 2 CO 3 , Na 2 CO 3 , K 2 CO 3 , CaCO 3 , MgCO 3, etc.), borates, phosphates, and the like. .
 また、アルカリ金属またはアルカリ土類金属とカルボン酸塩を形成する有機カルボン酸としては、飽和モノカルボン酸(酢酸、プロピオン酸、酪酸、イソ酪酸、吉草酸、イソ吉草酸、ピバル酸、カプロン酸、カプリル酸など)、飽和ジカルボン酸(シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、コルク酸、アゼライン酸など)、及びこれらのオキシ酸(グリコール酸、乳酸、グリセリン酸、ヒドロキシ酪酸、クエン酸など)、不飽和モノカルボン酸[(メタ)アクリル酸、クロトン酸、イソクロトン酸など]、不飽和ジカルボン酸(マレイン酸、フマル酸など)、及びこれらのオキシ酸(プロピオール酸など)、重合性不飽和カルボン酸[(メタ)アクリル酸などの重合性不飽和モノカルボン酸、重合性不飽和多価カルボン酸(イタコン酸、マレイン酸、フマル酸など)、多価カルボン酸の酸無水物またはモノエステル(マレイン酸モノエチルなどのモノアルキルエステルなど)など]とオレフィン(エチレン、プロピレンなど)との共重合体などが挙げられ、形成されるカルボン酸金属塩としては、アルカリ金属有機カルボン酸塩(クエン酸リチウム、クエン酸カリウム、クエン酸ナトリウム、ステアリン酸リチウム、12-ヒドロキシステアリン酸リチウムなど)、アルカリ土類金属有機カルボン酸塩(酢酸マグネシウム、酢酸カルシウム、クエン酸マグネシウム、クエン酸カルシウム、ステアリン酸カルシウム、ステアリン酸マグネシウム、12-ヒドロキシステアリン酸マグネシウム、12-ヒドロキシステアリン酸カルシウムなど)、アイオノマー樹脂(前記重合性不飽和多価カルボン酸とオレフィンとの共重合体に含有されるカルボキシル基の少なくとも一部が前記金属のイオンにより中和されている樹脂)などが挙げられる。 Organic carboxylic acids that form carboxylates with alkali metals or alkaline earth metals include saturated monocarboxylic acids (acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, isovaleric acid, pivalic acid, caproic acid, Caprylic acid, etc.), saturated dicarboxylic acids (oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, corkic acid, azelaic acid, etc.) and oxyacids thereof (glycolic acid, lactic acid, glyceric acid, hydroxy) Butyric acid, citric acid, etc.), unsaturated monocarboxylic acids [(meth) acrylic acid, crotonic acid, isocrotonic acid, etc.], unsaturated dicarboxylic acids (maleic acid, fumaric acid, etc.), and oxyacids thereof (propiolic acid, etc.) , Polymerizable unsaturated carboxylic acids [polymerizable unsaturated monocarboxylic acids such as (meth) acrylic acid, polymerizable unsaturated poly Copolymerization of carboxylic acids (such as itaconic acid, maleic acid and fumaric acid), polyhydric carboxylic acid anhydrides or monoesters (such as monoalkyl esters such as monoethyl maleate)] and olefins (such as ethylene and propylene) Examples of carboxylic acid metal salts formed include alkali metal organic carboxylates (lithium citrate, potassium citrate, sodium citrate, lithium stearate, lithium 12-hydroxystearate, etc.), alkaline earth Metal organic carboxylates (magnesium acetate, calcium acetate, magnesium citrate, calcium citrate, calcium stearate, magnesium stearate, 12-hydroxy magnesium stearate, 12-hydroxy calcium stearate, etc.), Io Mer resins and the like (at least part of the polymerizable unsaturated polycarboxylic acid and carboxyl groups contained in the copolymer of olefin resins which are neutralized by the metal ions).
 これらの(e)金属化合物の中でも、アルカリ土類金属の酸化物、水酸化物、炭酸塩及びカルボン酸塩が特に好ましい。 Among these (e) metal compounds, alkaline earth metal oxides, hydroxides, carbonates and carboxylates are particularly preferred.
 これらの(e)アルカリ金属またはアルカリ土類金属の酸化物、水酸化物、無機酸塩及びカルボン酸塩から選ばれた金属化合物は、単独でまたは二種以上組み合わせて使用できる。 These metal compounds selected from (e) alkali metal or alkaline earth metal oxides, hydroxides, inorganic acid salts and carboxylates can be used alone or in combination of two or more.
 その好ましい配合割合は、(a)ポリアセタール樹脂100重量部に対して0.01~3重量部であり、特に好ましくは0.02~1重量部から選択できる。含有量が過少の場合には(e)金属化合物の配合による耐熱安定性などに対する効果が十分に発現せず、逆に過多の場合には、本発明が目的とする剛性等の特性を損ねる恐れがあるため好ましくない。本発明において、かかる(e)金属化合物を配合する場合、(e)金属化合物は(a)ポリアセタール樹脂に対し任意の段階で混合することが可能であるが、(b)セルロース繊維との混合に先立ち、(e)金属化合物を(a)ポリアセタール樹脂に予め押出機などで溶融混合する方法が特に好ましい。
<(f)加工助剤>
 本発明のポリアセタール樹脂組成物には、更に、(f)長鎖脂肪酸、長鎖脂肪酸の誘導体、ポリオキシアルキレングリコール及びシリコーン化合物から選ばれた少なくとも一種の化合物を加工助剤として配合することができる。
The preferable blending ratio is 0.01 to 3 parts by weight, particularly preferably 0.02 to 1 part by weight, based on 100 parts by weight of the (a) polyacetal resin. When the content is too small, (e) the effect on the heat resistance stability due to the compounding of the metal compound is not sufficiently exhibited. On the other hand, when the content is excessive, the characteristics such as rigidity intended by the present invention may be impaired. This is not preferable. In the present invention, when the (e) metal compound is blended, the (e) metal compound can be mixed with the (a) polyacetal resin at any stage, but (b) for mixing with the cellulose fiber. A method in which (e) a metal compound is previously melt-mixed with (a) polyacetal resin by an extruder or the like in advance is particularly preferable.
<(F) Processing aid>
The polyacetal resin composition of the present invention may further contain (f) at least one compound selected from long-chain fatty acids, long-chain fatty acid derivatives, polyoxyalkylene glycols and silicone compounds as processing aids. .
 長鎖脂肪酸は、飽和脂肪酸であってもよく、不飽和脂肪酸であってもよい。また、その一部の水素原子がヒドロキシル基などの置換基で置換されたものも使用できる。このような長鎖脂肪酸としては、炭素数10以上の1価または2価の脂肪酸、炭素数10以上の一価の不飽和脂肪酸、炭素数10以上の二価の脂肪酸(二塩基性脂肪酸)が例示される。前記脂肪酸には、1つまたは複数のヒドロキシル基を分子内に有する脂肪酸も含まれる。 The long chain fatty acid may be a saturated fatty acid or an unsaturated fatty acid. Also, those in which some of the hydrogen atoms are substituted with a substituent such as a hydroxyl group can be used. Examples of such long-chain fatty acids include monovalent or divalent fatty acids having 10 or more carbon atoms, monovalent unsaturated fatty acids having 10 or more carbon atoms, and divalent fatty acids (dibasic fatty acids) having 10 or more carbon atoms. Illustrated. The fatty acid also includes a fatty acid having one or more hydroxyl groups in the molecule.
 長鎖脂肪酸の誘導体には、脂肪酸エステル及び脂肪酸アミドなどが含まれる。 Long chain fatty acid derivatives include fatty acid esters and fatty acid amides.
 脂肪酸エステルとしては、前記長鎖脂肪酸とアルコールとのエステルが挙げられる。その構造は特に制限されず、直鎖状または分岐状脂肪酸エステルのいずれも使用できる。脂肪酸エステルの具体例としては、エチレングリコールモノまたはジパルミチン酸エステル、エチレングリコールモノまたはジステアリン酸エステル、エチレングリコールモノまたはジベヘン酸エステル、エチレングリコールモノまたはジモンタン酸エステル、グリセリンモノ乃至トリパルミチン酸エステル、グリセリンモノ乃至トリステアリン酸エステル、グリセリンモノ乃至トリベヘン酸エステル、グリセリンモノ乃至トリモンタン酸エステル、ペンタエリスリトールモノ乃至テトラパルミチン酸エステル、ペンタエリスリトールモノ乃至テトラステアリン酸エステル、ペンタエリスリトールモノ乃至テトラベヘン酸エステル、ペンタエリスリトールモノ乃至テトラモンタン酸エステル、ポリグリセリントリステアリン酸エステル、トリメチロールプロパンモノパルミチン酸エステル、ペンタエリスリトールモノウンデシル酸エステル、ソルビタンモノステアリン酸エステル、ポリアルキレングリコール(ポリエチレングリコール、ポリプロピレングリコールなど)のモノまたはジラウレート、モノまたはジパルミテート、モノまたはジステアレート、モノまたはジベヘネート、モノまたはジモンタネート、モノまたはジオレート、モノまたはジリノレートなどが挙げられる。 Examples of the fatty acid ester include esters of the long-chain fatty acid and alcohol. The structure is not particularly limited, and either a linear or branched fatty acid ester can be used. Specific examples of fatty acid esters include ethylene glycol mono or dipalmitate, ethylene glycol mono or distearate, ethylene glycol mono or dibehenate, ethylene glycol mono or dimtanate, glycerin mono to tripalmitate, glycerin. Mono-tristearic acid ester, glycerin mono-tribehenic acid ester, glycerin mono-trimontanic acid ester, pentaerythritol mono-tetrapalmitic acid ester, pentaerythritol mono-tetrastearic acid ester, pentaerythritol mono-tetratetrahenic acid ester, pentaerythritol mono-ester To tetramontanic acid ester, polyglyceryl tristearate, tri Tyrolpropane monopalmitate, pentaerythritol monoundecylate, sorbitan monostearate, polyalkylene glycol (polyethylene glycol, polypropylene glycol, etc.) mono or dilaurate, mono or dipalmitate, mono or distearate, mono or dibehenate, mono Or dimontanate, mono or diolate, mono or dilinoleate, etc. are mentioned.
 脂肪酸アミドの例としては、カプリン酸アミド、ラウリン酸アミド、ミリスチン酸アミド、パルミチン酸アミド、ステアリン酸アミド、アラキン酸アミド、ベヘン酸アミド、モンタン酸アミドなどの飽和脂肪酸の第1級酸アミド、オレイン酸アミドなどの不飽和脂肪酸の第1級酸アミド、ステアリルステアリン酸アミド、ステアリルオレイン酸アミドなどの飽和及び/または不飽和脂肪酸とモノアミンとの第2級酸アミド、エチレンジアミン-ジパルミチン酸アミド、エチレンジアミン-ジステアリン酸アミド(エチレンビスステアリルアミド)、ヘキサメチレンジアミン-ジステアリン酸アミド、エチレンジアミン-ジベヘン酸アミド、エチレンジアミン-ジモンタン酸アミド、エチレンジアミン-ジオレイン酸アミド、エチレンジアミン-ジエルカ酸アミドなどが挙げられ、更にエチレンジアミン-(ステアリン酸アミド)オレイン酸アミドなどのアルキレンジアミンのアミン部位に異なるアシル基が結合した構造を有するビスアミドなどが例示できる。 Examples of fatty acid amides include capric acid amides, lauric acid amides, myristic acid amides, palmitic acid amides, stearic acid amides, arachidic acid amides, behenic acid amides, primary fatty acid amides, olein Primary acid amides of unsaturated fatty acids such as acid amides, secondary acid amides of saturated and / or unsaturated fatty acids and monoamines such as stearyl stearic acid amide, stearyl oleic acid amide, ethylenediamine-dipalmitic acid amide, ethylenediamine -Distearic acid amide (ethylene bisstearyl amide), hexamethylenediamine-distearic acid amide, ethylenediamine-dibehenic acid amide, ethylenediamine-dimantanoic acid amide, ethylenediamine-dioleic acid amide, ethylenediamine - such Jieruka acid amide and the like, further ethylenediamine - such as a bisamide in which different species of acyl groups to amine sites of an alkylenediamine is bound, such as (stearic acid amide) oleic acid amide may be exemplified.
 前記ポリオキシアルキレングリコールとしては、アルキレングリコール(エチレングリコール、プロピレングリコール、テトラメチレングリコールなどのアルキレングリコールなど)の単独または共重合体、それらの誘導体などが挙げられる。 Examples of the polyoxyalkylene glycol include homo- or copolymers of alkylene glycol (alkylene glycol such as ethylene glycol, propylene glycol and tetramethylene glycol), and derivatives thereof.
 ポリオキシアルキレングリコールの具体例としては、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコールなどのポリオキシアルキレングリコール、ポリオキシエチレン-ポリオキシプロピレン共重合体(ランダムまたはブロック共重合体など)、ポリオキシエチレンポリオキシプロピレングリセリルエーテル、ポリオキシエチレンポリオキシプロピレンモノブチルエーテルなどの共重合体などが挙げられる。これらのうち、オキシエチレン単位を有する重合体、例えば、ポリエチレングリコール、ポリオキシエチレンポリオキシプロピレン共重合体及びそれらの誘導体などが好ましい。ポリオキシアルキレングリコールの平均分子量は、3×102~1×106、好ましくは1×103~1×105程度である。 Specific examples of the polyoxyalkylene glycol include polyoxyalkylene glycols such as polyethylene glycol, polypropylene glycol and polytetramethylene glycol, polyoxyethylene-polyoxypropylene copolymers (random or block copolymers, etc.), polyoxyethylene Examples include copolymers such as polyoxypropylene glyceryl ether and polyoxyethylene polyoxypropylene monobutyl ether. Of these, polymers having oxyethylene units, such as polyethylene glycol, polyoxyethylene polyoxypropylene copolymers, and derivatives thereof are preferable. The average molecular weight of the polyoxyalkylene glycol is about 3 × 10 2 to 1 × 10 6 , preferably about 1 × 10 3 to 1 × 10 5 .
 前記シリコーン系化合物には、(ポリ)オルガノシロキサンなどが含まれる。(ポリ)オルガノシロキサンとしては、ジアルキルシロキサン(ジメチルシロキサンなど)、アルキルアリールシロキサン(フェニルメチルシロキサンなど)、ジアリールシロキサン(ジフェニルシロキサンなど)などのモノオルガノシロキサン、これらの単独重合体(ポリジメチルシロキサン、ポリフェニルメチルシロキサンなど)または共重合体などが例示できる。なお、ポリオルガノシロキサンは、オリゴマーであってもよい。 The silicone compound includes (poly) organosiloxane and the like. Examples of the (poly) organosiloxane include monoorganosiloxanes such as dialkylsiloxanes (such as dimethylsiloxane), alkylarylsiloxanes (such as phenylmethylsiloxane), diarylsiloxanes (such as diphenylsiloxane), and homopolymers thereof (polydimethylsiloxane, poly Examples thereof include phenylmethylsiloxane) and copolymers. The polyorganosiloxane may be an oligomer.
 また、(ポリ)オルガノシロキサンには、分子末端や主鎖に、エポキシ基、ヒドロキシル基、アルコキシ基、カルボキシル基、アミノ基または置換アミノ基(ジアルキルアミノ基など)、エーテル基、ビニル基、(メタ)アクリロイル基などの置換基を有する変性(ポリ)オルガノシロキサンなども含まれる。 In addition, (poly) organosiloxane has an epoxy group, a hydroxyl group, an alkoxy group, a carboxyl group, an amino group or a substituted amino group (such as a dialkylamino group), an ether group, a vinyl group, ) Modified (poly) organosiloxane having a substituent such as acryloyl group is also included.
 本発明において(f)加工助剤を配合する場合、上記の長鎖脂肪酸、長鎖脂肪酸の誘導体、ポリオキシアルキレングリコール及びシリコーン化合物から選ばれた化合物を単独でまたは二種以上組み合わせて使用できる。その好ましい配合割合は、(a)ポリアセタール樹脂100重量部に対して0.01~3重量部であり、特に好ましくは0.02~1重量部である。含有量が過少の場合には加工助剤としての効果が得られず、逆に過多の場合にも加工性を損ねたり、本発明が本来目的とする効果を損ねる恐れがあるため好ましくない。 In the present invention, when (f) a processing aid is blended, compounds selected from the above-mentioned long chain fatty acids, derivatives of long chain fatty acids, polyoxyalkylene glycols and silicone compounds can be used alone or in combination of two or more. The preferable blending ratio is 0.01 to 3 parts by weight, particularly preferably 0.02 to 1 part by weight based on 100 parts by weight of the (a) polyacetal resin. When the content is too small, the effect as a processing aid cannot be obtained. Conversely, when the content is too large, the processability may be impaired, or the effect originally intended by the present invention may be impaired.
 本発明において、かかる(f)加工助剤を配合する場合、(f)加工助剤は(a)ポリアセタール樹脂に対し任意の段階で混合することが可能であるが、(b)セルロース繊維との混合に先立ち、(f)加工助剤を(a)ポリアセタール樹脂に予め押出機などで溶融混合する方法が特に好ましい。
<(g)摺動性改良剤>
 本発明のポリアセタール樹脂組成物には、更に、不飽和カルボン酸及びその酸無水物及びそれらの誘導体からなる群より選ばれた少なくとも1種で変性した変性オレフィン系重合体、1級又は2級アミノ基を有するアルキレングリコール系重合体、α-オレフィンオリゴマー、表面処理を施した無機充填剤などから選ばれた化合物を摺動性改良剤として配合することができる。また、前述した長鎖脂肪酸、長鎖脂肪酸の誘導体、ポリオキシアルキレングリコール、シリコーン化合物も摺動性改善機能を有するものであり、摺動性改良剤として配合することができる。
 不飽和カルボン酸及びその酸無水物及びそれらの誘導体からなる群より選ばれた少なくとも1種で変性した変性オレフィン系重合体は、オレフィン系重合体を不飽和カルボン酸及びその酸無水物及びそれらの誘導体からなる群より選ばれた少なくとも1種で変性したものを総称する。ここで用いられるオレフィン系重合体としては、エチレン、プロピレン、1-ブテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、1-ドデセン等のα-オレフィンの単独重合体、及びこれらの二種以上からなる共重合体、及びこれらのα-オレフィンと、アクリル酸、メタクリル酸等のα,β-不飽和酸あるいはアクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸2エチルヘキシル、アクリル酸ヒドロキシエチル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸2エチルヘキシル、メタクリル酸ヒドロキシエチル等のα,β-不飽和カルボン酸エステル、
1,4-ヘキサジエン、ジシクロペンタジエン、5-エチリデン-2-ノルボルネン、 2,5-ノルボナジエン等の非共役ジエン、ブタジエン、イソプレン、ピペリレン等の共役ジエン成分、α-メチルスチレン等の芳香族ビニル化合物、ビニルメチルエーテル等のビニルエーテルやこれらのビニル系化合物の誘導体等のコモノマー成分のうちの少なくとも1種を含んで成るランダム、ブロック又はグラフト共重合体等が挙げられる。
 変性オレフィン系共重合体とは、上記のオレフィン系重合体を不飽和カルボン酸及びその酸無水物及びそれらの誘導体からなる群より選ばれた少なくとも1種で変性したものである。好ましい変性オレフィン系共重合体の具体例としては、無水マレイン酸で変性されたポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、エチレンアクリル酸エチル共重合体、エチレンアクリル酸メチル共重合体、エチレンメタクリル酸エチル共重合体、エチレンメタクリル酸メチル共重合体等が挙げられる。
 1級又は2級アミノ基を有するアルキレングリコール系重合体とは、エチレングリコール、プロピレングリコール、テトラメチレングリコールのホモポリマー又はコポリマーであって、その末端又は分子鎖中に1級又は2級アミノ基を有するポリマーである。更に脂肪酸とのエステル、脂肪族アルコールとのエーテルを形成する等の若干の変性をした重合体でもよい。その例としては、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、及びこれらの構成単位からなるコポリマーであって、少なくとも1つのアミノプロピル基、アミノオクチル基を有するものなどがある。
 α-オレフィンオリゴマーとしては、主にC6 ~C20のα-オレフィンを単独、もしくはエチレンとC3 ~C20のα-オレフィンを共重合した構造を有する脂肪族炭化水素が挙げられる。
 表面処理を施した無機充填剤としては、炭酸カルシウム、チタン酸カリウム、炭酸バリウム、タルク、ウォラストナイト、マイカ及び酸化亜鉛等より選ばれた少なくとも1種に脂肪酸エステル、シラン化合物などで表面処理を施したものが好ましく使用され、より好ましくは炭酸カルシウム、チタン酸カリウム、炭酸バリウム及び酸化亜鉛より選ばれた少なくとも1種に脂肪酸エステルで表面処理を施したものが挙げられる。かかる無機充填剤は、粒子形状、繊維形、アスペクト比などの形状に依存せず、かかる群にあげられた無機充填剤であれば、何れのものも使用することが可能である。
 本発明において(g)摺動性改良剤を配合する場合、上記の不飽和カルボン酸及びその酸無水物及びそれらの誘導体からなる群より選ばれた少なくとも1種で変性した変性オレフィン系重合体、1級又は2級アミノ基を有するアルキレングリコール系重合体、α-オレフィンオリゴマー、表面処理を施した無機充填剤などから選ばれた化合物を単独でまたは二種以上組み合わせて使用できる。その好ましい配合割合は、(a)ポリアセタール樹脂100重量部に対して0.01~10重量部であり、特に好ましくは0.02~8重量部から選択できる。
 本発明において、かかる(g)摺動性改良剤を配合する場合、(g)摺動性改良剤は(a)ポリアセタール樹脂に対し任意の段階で混合することが可能であるが、(b)セルロース繊維との混合に先立ち、(g)摺動性改良剤を(a)ポリアセタール樹脂に予め押出機などで溶融混合する方法が特に好ましい。
<ポリアセタール樹脂組成物の調製方法>
 本発明のポリアセタール樹脂組成物は、前記の(a)ポリアセタール樹脂100重量部に対して、(b)解繊されたセルロース繊維10~150重量部、(c)ヒンダードフェノール系酸化防止剤0.01~3重量部、(d)アミノトリアジン化合物、グアナミン化合物、ヒドラジド化合物及びポリアミドから選ばれた少なくとも一種の窒素含有化合物0.01~3重量部を含有させることにより、また、好ましくは更に(e)アルカリ金属またはアルカリ土類金属の、酸化物、水酸化物、無機酸塩及びカルボン酸塩から選ばれた少なくとも一種の金属化合物0.01~3重量部、及び/または、(f)長鎖脂肪酸、長鎖脂肪酸の誘導体、ポリオキシアルキレングリコール及びシリコーン化合物から選ばれた少なくとも一種の加工助剤0.01~3重量部、及び/または、(g)摺動性改良剤0.01~10重量部を含有させることにより調製する。
In the present invention, when the (f) processing aid is blended, the (f) processing aid can be mixed with the (a) polyacetal resin at any stage, but the (b) cellulose fiber Prior to mixing, a method in which (f) a processing aid is melt-mixed in advance with an extruder or the like in (a) polyacetal resin is particularly preferable.
<(G) Sliding property improving agent>
The polyacetal resin composition of the present invention further includes a modified olefin polymer, primary or secondary amino modified with at least one selected from the group consisting of unsaturated carboxylic acids and acid anhydrides and derivatives thereof. A compound selected from an alkylene glycol polymer having a group, an α-olefin oligomer, a surface-treated inorganic filler, and the like can be blended as a sliding property improving agent. The long-chain fatty acids, derivatives of long-chain fatty acids, polyoxyalkylene glycols, and silicone compounds described above also have a slidability improving function and can be blended as a slidability improving agent.
A modified olefin polymer modified with at least one selected from the group consisting of an unsaturated carboxylic acid and its acid anhydride and derivatives thereof, an olefin polymer is converted into an unsaturated carboxylic acid and its acid anhydride and their This is a general term for those modified with at least one selected from the group consisting of derivatives. Examples of the olefin polymer used here include single weights of α-olefins such as ethylene, propylene, 1-butene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-dodecene and the like. Copolymers, copolymers composed of two or more of these, and α-olefins thereof and α, β-unsaturated acids such as acrylic acid and methacrylic acid or methyl acrylate, ethyl acrylate, propyl acrylate, acrylic Α, β-unsaturated carboxylic acid esters such as butyl acrylate, 2-ethylhexyl acrylate, hydroxyethyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate, hydroxyethyl methacrylate,
Non-conjugated dienes such as 1,4-hexadiene, dicyclopentadiene, 5-ethylidene-2-norbornene and 2,5-norbonadiene, conjugated diene components such as butadiene, isoprene and piperylene, and aromatic vinyl compounds such as α-methylstyrene And random, block or graft copolymers comprising at least one of comonomer components such as vinyl ethers such as vinyl methyl ether and derivatives of these vinyl compounds.
The modified olefin copolymer is obtained by modifying the olefin polymer with at least one selected from the group consisting of unsaturated carboxylic acids, acid anhydrides and derivatives thereof. Specific examples of preferred modified olefin copolymers include polyethylene, polypropylene, ethylene-propylene copolymer, ethylene ethyl acrylate copolymer, ethylene methyl acrylate copolymer, ethylene methacrylic acid modified with maleic anhydride. Examples thereof include an ethyl copolymer and an ethylene methyl methacrylate copolymer.
The alkylene glycol polymer having a primary or secondary amino group is a homopolymer or copolymer of ethylene glycol, propylene glycol, or tetramethylene glycol, and has a primary or secondary amino group in the terminal or molecular chain. It is a polymer having. Further, it may be a polymer having some modification such as forming an ester with a fatty acid or an ether with an aliphatic alcohol. Examples thereof include polyethylene glycol, polypropylene glycol, polytetramethylene glycol, and copolymers composed of these structural units and having at least one aminopropyl group and aminooctyl group.
The α-olefin oligomer mainly includes aliphatic hydrocarbons having a structure in which a C6 to C20 α-olefin is used alone or ethylene and a C3 to C20 α-olefin are copolymerized.
As the surface-treated inorganic filler, at least one selected from calcium carbonate, potassium titanate, barium carbonate, talc, wollastonite, mica, zinc oxide and the like is subjected to surface treatment with a fatty acid ester, a silane compound, or the like. Those subjected to surface treatment are preferably used, and more preferably, at least one selected from calcium carbonate, potassium titanate, barium carbonate and zinc oxide is subjected to a surface treatment with a fatty acid ester. Such an inorganic filler does not depend on the shape such as the particle shape, fiber shape, aspect ratio, and the like, and any inorganic filler can be used as long as it is included in the group.
In the present invention, when (g) a slidability improving agent is blended, a modified olefin polymer modified with at least one selected from the group consisting of the unsaturated carboxylic acid and its acid anhydride and derivatives thereof, A compound selected from an alkylene glycol polymer having a primary or secondary amino group, an α-olefin oligomer, an inorganic filler subjected to surface treatment, and the like can be used alone or in combination of two or more. The preferable blending ratio is 0.01 to 10 parts by weight, particularly preferably 0.02 to 8 parts by weight, based on 100 parts by weight of the (a) polyacetal resin.
In the present invention, when (g) the slidability improving agent is blended, (g) the slidability improving agent can be mixed with (a) the polyacetal resin at any stage, but (b) Prior to mixing with cellulose fibers, a method in which (g) a sliding property improving agent is melt-mixed in advance with (a) polyacetal resin by an extruder or the like is particularly preferable.
<Preparation method of polyacetal resin composition>
The polyacetal resin composition of the present invention comprises (b) 10 to 150 parts by weight of fibrillated cellulose fibers and (c) a hindered phenol-based antioxidant in an amount of 0.1 to 100 parts by weight of the above-mentioned (a) polyacetal resin. By adding 0.01 to 3 parts by weight of (d) at least one nitrogen-containing compound selected from (d) aminotriazine compounds, guanamine compounds, hydrazide compounds and polyamides, it is preferable that (e) ) 0.01-3 parts by weight of at least one metal compound selected from oxides, hydroxides, inorganic acid salts and carboxylates of alkali metals or alkaline earth metals, and / or (f) long chains At least one processing aid selected from fatty acids, derivatives of long chain fatty acids, polyoxyalkylene glycols and silicone compounds 0.0 To 3 parts by weight, and / or is prepared by containing a (g) sliding property improving agent 0.01-10 parts by weight.
 本発明において、上記ポリアセタール樹脂組成物の調製方法の具体的態様は特に限定されるものではなく、一般に合成樹脂組成物またはその成形品の調製法として公知の設備と方法により調製することができる。即ち、必要な成分を混合し、1軸または2軸の押出機またはその他の溶融混練装置を使用して混練し、成形用ペレットとして調製することができる。また、押出機またはその他の溶融混練装置は複数使用してもよい。 In the present invention, the specific embodiment of the method for preparing the polyacetal resin composition is not particularly limited, and can be generally prepared by a known equipment and method as a method for preparing a synthetic resin composition or a molded product thereof. That is, necessary components can be mixed and kneaded using a single or twin screw extruder or other melt kneader to prepare pellets for molding. A plurality of extruders or other melt kneaders may be used.
 本発明のポリアセタール樹脂組成物の調製にあたり、(b)セルロース繊維以外の配合成分、即ち(c)ヒンダードフェノール系酸化防止剤、(d)窒素含有化合物、好ましい配合成分である(e)金属化合物、(f)加工助剤
及び(g)摺動性改良剤等から選ばれた1種又は2種以上を予め(a)ポリアセタール樹脂に溶融混合しておき、しかる後、この溶融混合物を(b)セルロース繊維及び組成物を構成する残余成分と混合し、溶融混練して目的とする組成物を調製する方法は特に好ましい。
In preparing the polyacetal resin composition of the present invention, (b) compounding components other than cellulose fibers, that is, (c) hindered phenol-based antioxidant, (d) nitrogen-containing compound, (e) metal compound which is a preferred compounding component (F) One or more selected from (f) processing aids and (g) slidability improvers are previously melt-mixed in (a) polyacetal resin, and then this molten mixture is (b) The method of preparing the target composition by mixing with cellulose fibers and the remaining components constituting the composition, and melt-kneading is particularly preferred.
 本発明のポリアセタール樹脂組成物の調製方法としては、回転羽根を有するミキサー内でセルロース繊維集合体の解繊を行い、(b)解繊されたセルロース繊維に(a)ポリアセタール樹脂及び他の成分を追加添加し混合する方法、回転羽根を有するミキサーまたは解繊機でセルロース繊維集合体の解繊を行い、(b)解繊されたセルロース繊維を別のミキサーに移して(a)ポリアセタール樹脂及び他の成分と添加し混合する方法、あるいは、(b)解繊されたセルロース繊維と(a)ポリアセタール樹脂及び他の成分とを押出機にて混合する方法などが挙げられる。 As a method for preparing the polyacetal resin composition of the present invention, the cellulose fiber aggregate is defibrated in a mixer having rotating blades, and (b) the polyacetal resin and other components are added to the defibrated cellulose fiber. A method of additionally adding and mixing, defibrating the cellulose fiber aggregate with a mixer or defibrator having a rotating blade, (b) transferring the defibrated cellulose fiber to another mixer, (a) polyacetal resin and other Examples thereof include a method of adding and mixing the components, or a method of mixing (b) the fibrillated cellulose fiber, (a) the polyacetal resin and other components with an extruder.
 その中でも、本発明の効果、作業性及び経済性の観点から、特に、回転羽根を有するミキサー内で(b)解繊されたセルロース繊維に(a)ポリアセタール樹脂及び他の成分を追加添加し混合する方法が好ましい。前記方法においては、ミキサー内にてセルロース繊維集合体が解繊され、そこに所要量の(a)ポリアセタール樹脂及び他の成分を投入し高速攪拌することで、摩擦熱が発生してミキサー内が昇温するため、ポリアセタール樹脂が溶融し、解繊されたセルロース繊維に付着して、直接、セルロース繊維とポリアセタール樹脂及び他の成分との混合物を得ることができる。 Among these, from the viewpoint of the effect, workability and economy of the present invention, in particular, (b) polyacetal resin and other components are additionally added to and mixed with cellulose fiber (b) defibrated in a mixer having rotating blades. Is preferred. In the above method, the cellulose fiber aggregate is defibrated in a mixer, and a required amount of (a) polyacetal resin and other components are added thereto and stirred at a high speed, whereby frictional heat is generated and the inside of the mixer is Since the temperature is raised, the polyacetal resin melts and adheres to the fibrillated cellulose fibers, so that a mixture of the cellulose fibers, the polyacetal resin and other components can be obtained directly.
 (b)解繊されたセルロース繊維に(a)ポリアセタール樹脂及び他の成分を追加添加し混合する場合の攪拌時の回転羽根の平均周速が10~100m/秒の範囲で攪拌することが好ましく、より好ましくは平均周速が10~90m/秒、更に好ましくは平均周速が10~80m/秒で攪拌する。攪拌を継続するとミキサー内の温度が上昇し、モーターの動力が上昇する。この動力の上昇及びミキサー内の温度に応じて攪拌速度を徐々にあるいは一気に減速して回転数を低下させ、平均周速が前記範囲になるようにすることが好ましい。また、ミキサー内の昇温を補助して、セルロース繊維とポリアセタール樹脂との混合物の製造を容易にするため、加温手段により、ミキサーを加温することもできる。 (B) In the case where (a) polyacetal resin and other components are additionally added to the fibrillated cellulose fiber and mixed, it is preferable that the average peripheral speed of the rotating blades during stirring is in the range of 10 to 100 m / sec. More preferably, the stirring is carried out at an average peripheral speed of 10 to 90 m / sec, and more preferably at an average peripheral speed of 10 to 80 m / sec. If stirring is continued, the temperature in the mixer rises and the power of the motor rises. It is preferable to reduce the rotational speed by gradually or rapidly decelerating the stirring speed according to the increase in power and the temperature in the mixer so that the average peripheral speed falls within the above range. Moreover, in order to assist the temperature rise in the mixer and facilitate the production of a mixture of cellulose fibers and polyacetal resin, the mixer can be heated by a heating means.
 更に得られた混合物は、冷却することに固化させることができる。冷却の方法は、前記のミキサー内で冷却する方法、前記のミキサーに連結した別のミキサーに混合物を排出し、冷却する方法などが挙げられる。特に、前記のミキサーに連結した別のミキサーに混合物を排出し、攪拌しながら冷却する方法が好ましい。冷却時の回転羽根の平均周速が1~30m/秒の範囲で攪拌することが好ましく、より好ましくは平均周速が2~25m/秒、更に好ましくは平均周速が3~25m/秒で攪拌する。 Further, the obtained mixture can be solidified by cooling. Examples of the cooling method include a method of cooling in the mixer, a method of discharging the mixture to another mixer connected to the mixer, and a method of cooling. In particular, a method in which the mixture is discharged to another mixer connected to the mixer and cooled while stirring is preferable. It is preferable to stir in the range of the average peripheral speed of the rotating blades during cooling in the range of 1 to 30 m / second, more preferably the average peripheral speed is 2 to 25 m / second, and still more preferably the average peripheral speed is 3 to 25 m / second. Stir.
 このような処理により、(a)ポリアセタール樹脂と(b)解繊されたセルロース繊維及び他の成分とを含むポリアセタール樹脂組成物が得られる。得られた組成物は、そのままで使用することも可能であるが、粉砕機などにより造粒、及び/または、押出機などにより溶融混錬し造粒した後で使用することもできる。 By such treatment, a polyacetal resin composition containing (a) polyacetal resin and (b) fibrillated cellulose fiber and other components is obtained. The obtained composition can be used as it is, but can also be used after granulation with a pulverizer and / or melt kneading and granulation with an extruder or the like.
 また、本発明のポリアセタール樹脂組成物の調製にあたり、(a)ポリアセタール樹脂と(b)解繊されたセルロース繊維との密着性を改善する物質を使用することができる。ここで、密着性を改善する物質としては、一般式O=C=N-R-N=C=O(R:2価の基)で表されるイソシアネート化合物、S=C=N-R-N=C=S
(R:2価の基)で表されるイソチオシアネート化合物、及びそれらの変性体イソシアネート化合物、熱可塑性ポリウレタン樹脂、α,β-モノオレフィン性不飽和カルボン酸の酸無水物の重合体及び共重合体などが挙げられる。
In preparation of the polyacetal resin composition of the present invention, a substance that improves the adhesion between (a) the polyacetal resin and (b) the fibrillated cellulose fiber can be used. Here, as a substance for improving adhesion, an isocyanate compound represented by the general formula O = C = NRN = C = O (R: divalent group), S = C = NRN = C = S
Isothiocyanate compounds represented by (R: divalent group), and their modified isocyanate compounds, thermoplastic polyurethane resins, polymers of acid anhydrides of α, β-monoolefinic unsaturated carboxylic acids and copolymers Examples include coalescence.
 イソシアネート化合物の例としては、4,4'-メチレンビス(フェニルイソシアネート)、2,4 -トリレンジイソシアネート、2,6-トリレンジイソシアネート、キシレンジイソシアネート、1,6-ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、1,5-ナフタレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネートが、またイソチオシオネート化合物の例としては上記イソシアネート化合物に対応するジイソチオネートが、また変性体としてはこれらのイソシアネート化合物或いはイソチオシオネート化合物の二量体、三量体、更にはイソシアネート基が何らかの形で保護されている化合物等が挙げられ、これらはいずれも有効であるが、溶融処理等の変色度等の諸性質、あるいは取扱い上の安全性を考慮すると、4,4'-メチレンビス(フェニルイソシアネート)、イソホロンジイソシアネート、1,5
-ナフタレンジイソシアネート、1,6 -ヘキサメチレンジイソシアネート、2,4 -トリレンジイソシアネート、2,6 -トリレンジイソシアネート並びにこれらの二量体、三量体等の変性体(又は誘導体)が好ましい。
Examples of isocyanate compounds include 4,4'-methylenebis (phenylisocyanate), 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, xylene diisocyanate, 1,6-hexamethylene diisocyanate, isophorone diisocyanate, 1, 5-Naphthalene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, and as an example of an isothiothionate compound, diisothionate corresponding to the above isocyanate compound is used as a modified product. These include dimers and trimers of these isocyanate compounds or isothiocyanate compounds, and compounds in which the isocyanate group is protected in some form, and these are all effective. However, in consideration of various properties such as discoloration such as melting treatment or safety in handling, 4,4′-methylenebis (phenyl isocyanate), isophorone diisocyanate, 1,5
-Naphthalene diisocyanate, 1,6-hexamethylene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate and modified products (or derivatives) such as dimers and trimers thereof are preferred.
 また、熱可塑性ポリウレタン樹脂の例としては、(i)ジイソシアネート化合物、(ii)分子量が500~5000の高分子量ポリオール、(iii)分子量が60~500の低分子量ポリオール及び/又はポリアミンを構成成分とする反応生成物などが挙げられる。 Examples of the thermoplastic polyurethane resin include (i) a diisocyanate compound, (ii) a high molecular weight polyol having a molecular weight of 500 to 5000, and (iii) a low molecular weight polyol having a molecular weight of 60 to 500 and / or a polyamine. Reaction products to be used.
 また、α,β-モノオレフィン性不飽和カルボン酸の酸無水物の重合体及び共重合体の例としては、無水マレイン酸などの不飽和カルボン酸の酸無水物の重合体、スチレン系単量体(例えば、スチレン、ビニルトルエン、α-メチルスチレン、クロロスチレンなど)と無水マレイン酸などの不飽和カルボン酸の酸無水物との共重合体、エチレン及び/またはプロピレン系単量体などと無水マレイン酸などの不飽和カルボン酸の酸無水物との共重合体などが挙げられる。 Further, examples of acid anhydride polymers and copolymers of α, β-monoolefinic unsaturated carboxylic acids include polymers of unsaturated carboxylic acid anhydrides such as maleic anhydride, styrene monomers Copolymer (eg, styrene, vinyltoluene, α-methylstyrene, chlorostyrene, etc.) and an anhydride of an unsaturated carboxylic acid such as maleic anhydride, ethylene and / or propylene monomer, etc. And a copolymer with an anhydride of an unsaturated carboxylic acid such as maleic acid.
 更に本発明の組成物には目的とする用途に応じてその物性を改善するため、公知の各種の添加物を配合し得る。添加物の例を示せば、各種の着色剤、滑剤、核剤、界面活性剤、異種ポリマー、有機高分子改良剤及び無機、有機、金属などの繊維状、粉粒状、板状の充填剤が挙げられ、これらの1種又は2種以上を混合使用できる。 Furthermore, various known additives can be blended in the composition of the present invention in order to improve its physical properties according to the intended use. Examples of additives include various colorants, lubricants, nucleating agents, surfactants, heterogeneous polymers, organic polymer modifiers, and inorganic, organic, metal and other fibrous, powdered, and plate-like fillers. 1 type or 2 types or more can be mixed and used.
 また、上記安定剤、添加剤などの配合は任意のいかなる段階、例えば、(a)ポリアセタール樹脂に一旦加えても、或いは樹脂組成物の調整時に加えてもよく、又最終成形品を得る直前で、添加、混合することも可能である。
<ポリアセタール樹脂組成物の成形方法ならびに用途>
 本発明のポリアセタール樹脂組成物は、従来公知の成形方法(例えば、射出成形、押出成形、圧縮成形、ブロー成形、真空成形、発泡成形、回転成形、ガスインジェクション成形などの方法)で、種々の成形品を成形することができる。また、これらの成形品は、自動車部品、電気・電子部品、建材、生活関係部品・化粧関係部品・医用関係部品など各種用途に利用することができる。
Further, the above-mentioned stabilizers, additives and the like may be added at any stage, for example, (a) once added to the polyacetal resin or at the time of adjusting the resin composition, or immediately before obtaining the final molded product. It is also possible to add and mix.
<Method and application of polyacetal resin composition>
The polyacetal resin composition of the present invention can be molded by various known molding methods (for example, injection molding, extrusion molding, compression molding, blow molding, vacuum molding, foam molding, rotational molding, gas injection molding, etc.). The product can be molded. These molded products can be used for various applications such as automobile parts, electrical / electronic parts, building materials, life-related parts, makeup-related parts, and medical-related parts.
 具体的には、自動車部品としては、インナーハンドル、フェーエルトランクオープナー、シートベルトバックル、アシストラップ、各種スイッチ、ノブ、レバー、クリップなどの内装部品、メーター、コネクターなどの電気系統部品、オーディオ機器やカーナビゲーション機器などの車載電気・電子部品、ウインドウレギュレーターのキャリアープレートに代表される金属と接触する部品、ドアロックアクチェーター部品、ミラー部品、ワイパーモーターシステム部品、燃料系統の部品などの機構部品などが挙げられる。 Specifically, automobile parts include inner handles, fael trunk openers, seat belt buckles, assist wraps, interior parts such as switches, knobs, levers and clips, electrical system parts such as meters and connectors, audio equipment and cars. In-vehicle electrical / electronic parts such as navigation equipment, parts that come into contact with metal, such as window regulator carrier plates, door lock actuator parts, mirror parts, wiper motor system parts, mechanical parts such as fuel system parts, etc. It is done.
 電気・電子部品としては、ポリアセタール樹脂成形品で構成され、かつ金属接点が多数存在する機器の部品または部材、例えば、オーディオ機器、ビデオ機器、または、電話機、コピー機、ファクシミリ、ワードプロセサー、コンピューターなどのOA機器、玩具類の部品または部材、具体的には、シャーシ、ギヤー、レバー、カム、プーリー、軸受けなどが挙げられる。 As electrical / electronic parts, parts or members of equipment composed of polyacetal resin molded products and having many metal contacts, such as audio equipment, video equipment, telephones, copiers, facsimiles, word processors, computers, etc. OA equipment, parts or members of toys, specifically, chassis, gears, levers, cams, pulleys, bearings, and the like.
 更に、照明器具、建具、配管、コック、蛇口、トイレ周辺機器部品などの建材・配管部品、ファスナー類、文具、リップクリーム・口紅容器、洗浄器、浄水器、スプレーノズル、スプレー容器、エアゾール容器、一般的な容器、注射針のホルダーなどの広範な生活関係部品・化粧関係部品・医用関係部品に好適に使用される。
実施例
In addition, lighting equipment, fittings, piping, faucets, faucets, toilet parts and other building materials and piping parts, fasteners, stationery, lip balm / lipstick containers, cleaning equipment, water purifiers, spray nozzles, spray containers, aerosol containers, It is suitably used for a wide range of life-related parts, makeup-related parts, and medical-related parts such as general containers and needle holders.
Example
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。
 尚、実施例及び比較例において使用した成分及び試験方法の詳細は、以下の通りである。
〔使用成分〕
(a)ポリアセタール樹脂:ポリプラスチックス(株)製
 (a-1)メルトインデックス=9g/10分
 (a-2)メルトインデックス=27g/10分
 (a-3)メルトインデックス=45g/10分
(b)セルロース繊維集合体(解繊して使用)
 (b-1)木材パルプシート(日本製紙グループ製)
(c)ヒンダードフェノール系酸化防止剤
 (c-1)ペンタエリスリトールテトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]
(d)窒素含有化合物
 (d-1)メラミン
(e)金属化合物
 (e-1)12-ヒドロキシステアリン酸カルシウム
 (e-2)ステアリン酸カルシウム
 (e-3)酸化マグネシウム
 (e-4)酸化亜鉛
 (e-5)炭酸カルシウム
(f)加工助剤
 (f-1)エチレンビスステアリルアミド
 (f-2)グリセリンモノステアレート
(g)摺動性改良剤
 (g-1)アミン変性ポリエチレングリコール
 (g-2)無水マレイン酸変性ポリオレフィン
 (g-3)エチレンプロピレンコポリマー
 (g-4)脂肪酸エステルで表面処理した炭酸カルシウム
〔試験方法〕
(1)剛性(曲げ弾性率)
 ISO178に準拠し、曲げ弾性率(MPa)を測定した。
(2)比重
 試験片の容積(水中浸漬による増加分を測定)と試験片の重量により算出した。
(3)灰分
 るつぼに入れた試料を電気炉内で600℃、2時間燃焼させ、燃焼後の灰分(wt%)を測定した。
(4)熱伝導性(熱伝導率)
 ホットディスク法により、熱伝導率(W/m・K)を測定した。熱伝導率が高い方が熱伝導性に優れていることを示している。
(5)摺動性(磨耗量)
 JIS K7218に準拠し、回転式摩擦磨耗試験機を用い、同規格A法指定の中空円筒試験片を鋼材(S45C)と摺動させ、S45Cの磨耗量(g)を測定した。試験は、樹脂側を固定、S45C側を回転し、回転速度150rpm、荷重20kgf、試験時間24時間の条件にて行った。なお、実施例23、比較例5については、回転数300rpmで試験を実施し、樹脂側とS45Cとの摩擦係数、S45Cの磨耗量(g)および樹脂側の磨耗量(g)についてそれぞれ測定した。摩擦係数が低く、磨耗量が少ない方が摺動性に優れていることを示している。
(6)制振性(損失係数)
 JIS G0602の中央支持定常加振法に基づき、周波数1×102Hzにおける損失係数(%)を測定した。損失係数が高い方が制振性に優れていることを示している。
Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.
In addition, the detail of the component and test method which were used in the Example and the comparative example is as follows.
[Use ingredients]
(A) Polyacetal resin: manufactured by Polyplastics Co., Ltd. (a-1) Melt index = 9 g / 10 min (a-2) Melt index = 27 g / 10 min (a-3) Melt index = 45 g / 10 min ( b) Cellulose fiber aggregate (used after defibration)
(B-1) Wood pulp sheet (manufactured by Nippon Paper Group)
(C) Hindered phenol antioxidant (c-1) Pentaerythritol tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate]
(D) Nitrogen-containing compound (d-1) Melamine (e) Metal compound (e-1) 12-hydroxycalcium stearate (e-2) Calcium stearate (e-3) Magnesium oxide (e-4) Zinc oxide (e -5) Calcium carbonate (f) Processing aid (f-1) Ethylene bisstearylamide (f-2) Glycerin monostearate (g) Sliding property improver (g-1) Amine-modified polyethylene glycol (g-2) ) Maleic anhydride modified polyolefin (g-3) Ethylene propylene copolymer (g-4) Calcium carbonate surface-treated with fatty acid ester [Test method]
(1) Rigidity (flexural modulus)
The flexural modulus (MPa) was measured according to ISO178.
(2) Specific gravity The specific gravity was calculated from the volume of the test piece (measured by the increase in immersion in water) and the weight of the test piece.
(3) Ash content The sample put in the crucible was burned in an electric furnace at 600 ° C. for 2 hours, and the ash content (wt%) after combustion was measured.
(4) Thermal conductivity (thermal conductivity)
The thermal conductivity (W / m · K) was measured by a hot disk method. A higher thermal conductivity indicates better thermal conductivity.
(5) Sliding property (amount of wear)
In accordance with JIS K7218, using a rotary friction and wear tester, a hollow cylindrical test piece designated by the method A of the same standard was slid with steel (S45C), and the amount of wear (g) of S45C was measured. The test was performed under the conditions that the resin side was fixed, the S45C side was rotated, the rotational speed was 150 rpm, the load was 20 kgf, and the test time was 24 hours. For Example 23 and Comparative Example 5, the test was performed at a rotational speed of 300 rpm, and the friction coefficient between the resin side and S45C, the wear amount (g) of S45C, and the wear amount (g) on the resin side were measured. . The lower the coefficient of friction and the smaller the amount of wear, the better the slidability.
(6) Vibration control (loss factor)
The loss factor (%) at a frequency of 1 × 102 Hz was measured based on the JIS G0602 center support steady excitation method. A higher loss factor indicates better vibration damping.
実施例1~7
 予め、(a)ポリアセタール樹脂に(c)ヒンダードフェノール系酸化防止剤、(d)窒素含有化合物、(e)金属化合物、(f)加工助剤を表1の実施例1~7の割合で混合し、押出機で溶融混練して、(b)セルロース繊維以外の成分を含有するポリアセタール樹脂組成物を各々調製した。
Examples 1-7
In advance, (a) polyacetal resin was added to (c) hindered phenol antioxidant, (d) nitrogen-containing compound, (e) metal compound, and (f) processing aid in the proportions of Examples 1 to 7 in Table 1. They were mixed and melt-kneaded with an extruder to prepare (b) polyacetal resin compositions containing components other than cellulose fibers.
 回転羽根を有するヒーターミキサー(ヒーター及び温度計付き、容量200L)を100℃以上に加温し、(b)セルロース繊維集合体(木材パルプシート)を投入し、平均周速50m/秒で攪拌した。約2分経過時点において、セルロース繊維が綿状に変化した。 A heater mixer (with heater and thermometer, capacity 200 L) having rotating blades was heated to 100 ° C. or higher, (b) a cellulose fiber aggregate (wood pulp sheet) was added, and stirred at an average peripheral speed of 50 m / sec. . At about 2 minutes, the cellulose fibers changed to cotton.
 引き続き、ヒーターミキサー内にホッパーから、予め調製しておいたポリアセタール樹脂組成物をミキサー内に投入し、平均周速50m/秒で攪拌を行った。ミキサーの温度は上昇して160~190℃に達し、この状態で攪拌を続けた。 Subsequently, the polyacetal resin composition prepared in advance from the hopper in the heater mixer was put into the mixer and stirred at an average peripheral speed of 50 m / sec. The mixer temperature rose to 160-190 ° C., and stirring was continued in this state.
 その後、平均周速を25m/秒の低速に落とし、撹拌を継続させた後、ミキサーの排出口をあけ、接続する冷却ミキサー〔冷却水(20℃)による水冷手段及び温度計付き、容量500L〕に、混合物を排出し、冷却ミキサー内で、平均周速10m/秒で攪拌し、冷却を行った。その後、混合物は固化し、固化物が得られた。 After that, the average peripheral speed was lowered to a low speed of 25 m / sec and stirring was continued, and then the outlet of the mixer was opened and connected to a cooling mixer [with water cooling means and thermometer by cooling water (20 ° C.), capacity 500 L] Then, the mixture was discharged and stirred at an average peripheral speed of 10 m / sec in a cooling mixer for cooling. Thereafter, the mixture was solidified to obtain a solidified product.
 固化物を粉砕機で粉砕後、押出機で溶融混錬し、ペレット状のセルロース繊維強化ポリアセタール樹脂組成物を調製した。得られたペレットを用いて、射出成形機により、所定の試験片を成形し、試験評価を行った。結果を表1に示す。 The solidified product was pulverized with a pulverizer and then melt-kneaded with an extruder to prepare a pellet-like cellulose fiber reinforced polyacetal resin composition. Using the obtained pellets, a predetermined test piece was molded by an injection molding machine and subjected to test evaluation. The results are shown in Table 1.
比較例1
 (b)セルロース繊維を含有しないポリアセタール樹脂組成物(表1の比較例1の組成にて押出機で溶融混合により配合されたもの)を実施例と同様に評価した。比較例1においてポリアセタール樹脂(a-1)を(a-2)或は(a-3)に替えた場合も物性に実質的な差異は生じなかった。結果を表1に示す。表1の結果の比較から、本発明のセルロース繊維強化ポリアセタール樹脂組成物は、比重・灰分の上昇、摺動性・制振性の低下を抑えながら、剛性(曲げ弾性率)、熱伝導性を非強化のポリアセタール樹脂組成物(比較例1)よりも顕著に向上させていることがわかる。
Comparative Example 1
(B) A polyacetal resin composition containing no cellulose fibers (mixed by melt mixing with an extruder in the composition of Comparative Example 1 in Table 1) was evaluated in the same manner as in the Examples. In Comparative Example 1, when the polyacetal resin (a-1) was replaced with (a-2) or (a-3), no substantial difference in physical properties occurred. The results are shown in Table 1. From the comparison of the results in Table 1, the cellulose fiber reinforced polyacetal resin composition of the present invention has rigidity (bending elastic modulus) and thermal conductivity while suppressing an increase in specific gravity / ash content and a decrease in sliding / vibration damping properties. It turns out that it is improving significantly rather than the non-reinforced polyacetal resin composition (comparative example 1).
比較例2~3
 従来より、強度や剛性を向上させる手段として用いられているガラス繊維を配合したポリアセタール樹脂組成物を調製し評価した。調製した組成は表1の比較例2及び3の通りであり、(b’-2)ガラス繊維としてはアルミナ硼珪酸Eガラスを使用した。比較例3においては、ガラス繊維を配合した場合の安定性、加工性を考慮した組成とした。結果を表1に示す。 表1に示す実施例と比較例2~3(及び比較例1)を対比することにより、本発明のセルロース繊維強化ポリアセタール樹脂組成物は、ガラス繊維強化ポリアセタール樹脂組成物(比較例2~3)のような比重、灰分の増大や、摺動性、制振性の低下を生じることなく、剛性や熱伝導性を向上させる手段として極めて有効であることがわかる。
Comparative Examples 2-3
Conventionally, polyacetal resin compositions containing glass fibers that have been used as means for improving strength and rigidity were prepared and evaluated. The prepared compositions are as shown in Comparative Examples 2 and 3 in Table 1, and (b′-2) alumina borosilicate E glass was used as the glass fiber. In the comparative example 3, it was set as the composition which considered stability and workability at the time of mix | blending glass fiber. The results are shown in Table 1. By comparing the examples shown in Table 1 with Comparative Examples 2 to 3 (and Comparative Example 1), the cellulose fiber reinforced polyacetal resin composition of the present invention is a glass fiber reinforced polyacetal resin composition (Comparative Examples 2 to 3). It can be seen that this is extremely effective as means for improving rigidity and thermal conductivity without causing an increase in specific gravity, ash content, and a decrease in slidability and vibration damping.
比較例4
 予め、(a)ポリアセタール樹脂に(c)ヒンダードフェノール系酸化防止剤、(d)窒素含有化合物、(e)金属化合物、(f)加工助剤を表1の比較例4の割合で混合し、押出機で溶融混練して、(b)セルロース繊維を含有しないポリアセタール樹脂組成物を調製した。
Comparative Example 4
In advance, (a) a polyacetal resin was mixed with (c) a hindered phenol antioxidant, (d) a nitrogen-containing compound, (e) a metal compound, and (f) a processing aid in the ratio of Comparative Example 4 in Table 1. (B) A polyacetal resin composition containing no cellulose fiber was prepared by melt kneading with an extruder.
 このポリアセタール樹脂組成物と未解繊の(b)セルロース繊維集合体(木材パルプシート)とを小型ニーダー型溶融混錬機(ラボプラストミル、東洋精機製)内で溶融混合した。ポリアセタール樹脂内でセルロース繊維の分散不良が見られたため、以後の評価は実施しなかった。 The polyacetal resin composition and undefibrated (b) cellulose fiber aggregate (wood pulp sheet) were melt-mixed in a small kneader-type melt kneader (labor plast mill, manufactured by Toyo Seiki Co., Ltd.). Since poor dispersion of cellulose fibers was observed in the polyacetal resin, the subsequent evaluation was not performed.
実施例8~11
 (a)ポリアセタール樹脂に(c)ヒンダードフェノール系酸化防止剤、(d)窒素含有化合物、(f)加工助剤を表2の実施例8~11の割合で混合し、押出機で溶融混練して、(b)セルロース繊維以外の成分を含有するポリアセタール樹脂組成物を各々調製した。
 続いて、実施例1と同様に、回転羽根を有するヒーターミキサーに(b)セルロース繊維集合体(木材パルプシート)を投入し、セルロース繊維が綿状に変化した後、予め調製しておいたポリアセタール樹脂組成物をヒーターミキサー内にホッパーから投入し、攪拌後、接続する冷却ミキサーに混合物を排出し、冷却することにより固化物を得た。さらに、固化物を粉砕機で粉砕後、押出機で溶融混錬し、ペレット状のセルロース繊維強化ポリアセタール樹脂組成物を調製した。得られたペレットを用いて、射出成形機により、所定の試験片を成形し、試験評価を行った。剛性(曲げ弾性率)の結果を表2に示す。
Examples 8-11
(A) A polyacetal resin was mixed with (c) a hindered phenolic antioxidant, (d) a nitrogen-containing compound, and (f) a processing aid in the proportions of Examples 8 to 11 in Table 2, and melt-kneaded with an extruder. Thus, (b) polyacetal resin compositions containing components other than cellulose fibers were prepared.
Subsequently, in the same manner as in Example 1, (b) the cellulose fiber aggregate (wood pulp sheet) was put into a heater mixer having rotating blades, and after the cellulose fibers changed to cotton, the polyacetal prepared in advance The resin composition was put into a heater mixer from a hopper, and after stirring, the mixture was discharged into a connected cooling mixer and cooled to obtain a solidified product. Further, the solidified product was pulverized with a pulverizer and then melt-kneaded with an extruder to prepare a pellet-like cellulose fiber reinforced polyacetal resin composition. Using the obtained pellets, a predetermined test piece was molded by an injection molding machine and subjected to test evaluation. The results of rigidity (flexural modulus) are shown in Table 2.
実施例12~22
 実施例11と同様な組成にて、回転羽根を有するヒーターミキサーに(b)セルロース繊維集合体(木材パルプシート)を投入し、セルロース繊維が綿状に変化した後、予め調製しておいたポリアセタール樹脂組成物をヒーターミキサー内にホッパーから投入し、攪拌後、接続する冷却ミキサーに混合物を排出し、冷却することにより固化物を得た。さらに、固化物を粉砕機で粉砕した。
 続いて、得られた粉砕物に対し、実施例12~22に示す追加成分を所定の組成にて添加し、押出機で溶融混錬し、ペレット状のセルロース繊維強化ポリアセタール樹脂組成物を調製した。得られたペレットを用いて、射出成形機により、所定の試験片を成形し、試験評価を行った。剛性(曲げ弾性率)の結果を表2~3に示すように、剛性への影響は無かった。一方、官能テストにより、追加成分の添加を行なわないものに比べ、成形等の溶融加工時のホルムアルデヒドの発生が低減されることが確認された。
Examples 12-22
Polyacetal prepared in advance after (b) cellulose fiber aggregate (wood pulp sheet) was put into a heater mixer having rotating blades with the same composition as in Example 11 and the cellulose fibers changed to cotton-like. The resin composition was put into a heater mixer from a hopper, and after stirring, the mixture was discharged into a connected cooling mixer and cooled to obtain a solidified product. Further, the solidified product was pulverized with a pulverizer.
Subsequently, additional components shown in Examples 12 to 22 were added to the obtained pulverized product in a predetermined composition, and melt-kneaded with an extruder to prepare a pellet-like cellulose fiber reinforced polyacetal resin composition. . Using the obtained pellets, a predetermined test piece was molded by an injection molding machine and subjected to test evaluation. As the results of stiffness (flexural modulus) are shown in Tables 2-3, there was no effect on stiffness. On the other hand, it was confirmed by the sensory test that the generation of formaldehyde at the time of melt processing such as molding is reduced as compared with the case where no additional component is added.
実施例23
 (a)ポリアセタール樹脂に(c)ヒンダードフェノール系酸化防止剤、(d)窒素含有化合物、(e)金属化合物、(f)加工助剤、(g)摺動性改良剤を表4の実施例23の割合で混合し、押出機で溶融混練して、(b)セルロース繊維以外の成分を含有するポリアセタール樹脂組成物を各々調製した。
 続いて、実施例1と同様に、回転羽根を有するヒーターミキサーに(b)セルロース繊維集合体(木材パルプシート)を投入し、セルロース繊維が綿状に変化した後、予め調製しておいたポリアセタール樹脂組成物をヒーターミキサー内にホッパーから投入し、攪拌後、接続する冷却ミキサーに混合物を排出し、冷却することにより固化物を得た。さらに、固化物を粉砕機で粉砕後、押出機で溶融混錬し、ペレット状のセルロース繊維強化ポリアセタール樹脂組成物を調製した。得られたペレットを用いて、射出成形機により、所定の試験片を成形し、試験評価を行った。結果を表4に示す。
Example 23
(A) Implementation of (c) hindered phenolic antioxidant, (d) nitrogen-containing compound, (e) metal compound, (f) processing aid, (g) slidability improver on polyacetal resin in Table 4 They were mixed in the ratio of Example 23 and melt-kneaded with an extruder to prepare (b) polyacetal resin compositions containing components other than cellulose fibers.
Subsequently, in the same manner as in Example 1, (b) the cellulose fiber aggregate (wood pulp sheet) was put into a heater mixer having rotating blades, and after the cellulose fibers changed to cotton, the polyacetal prepared in advance The resin composition was put into a heater mixer from a hopper, and after stirring, the mixture was discharged into a connected cooling mixer and cooled to obtain a solidified product. Further, the solidified product was pulverized with a pulverizer and then melt-kneaded with an extruder to prepare a pellet-like cellulose fiber reinforced polyacetal resin composition. Using the obtained pellets, a predetermined test piece was molded by an injection molding machine and subjected to test evaluation. The results are shown in Table 4.
 比較例5
 (b)セルロース繊維を含有しないポリアセタール樹脂組成物(表4の比較例5の組成にて押出機で溶融混合により配合されたもの)を実施例23と同様に評価した。結果を表4に示す。表4の結果の比較から、本発明のセルロース繊維強化ポリアセタール樹脂組成物は、摺動性の低下(摩擦係数・磨耗量の著しい増加)を抑えながら、剛性(曲げ弾性率)を向上させていることがわかる。特に、高回転条件においても摺動性を一定レベルで維持していることがわかる。
Comparative Example 5
(B) A polyacetal resin composition containing no cellulose fiber (mixed by melt mixing with an extruder in the composition of Comparative Example 5 in Table 4) was evaluated in the same manner as in Example 23. The results are shown in Table 4. From the comparison of the results shown in Table 4, the cellulose fiber-reinforced polyacetal resin composition of the present invention has improved rigidity (flexural modulus) while suppressing a decrease in slidability (a significant increase in friction coefficient and wear amount). I understand that. In particular, it can be seen that the slidability is maintained at a constant level even under high rotation conditions.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004

Claims (8)

  1. (a)ポリアセタール樹脂100重量部に対して、
    (b)解繊されたセルロース繊維10~150重量部、
    (c)ヒンダードフェノール系酸化防止剤0.01~3重量部及び
    (d)アミノトリアジン化合物、グアナミン化合物、ヒドラジド化合物及びポリアミドから選ばれた少なくとも一種の窒素含有化合物0.01~3重量部を含有させてなるセルロース繊維強化ポリアセタール樹脂組成物。
    (A) For 100 parts by weight of the polyacetal resin,
    (B) 10 to 150 parts by weight of fibrillated cellulose fiber,
    (C) 0.01 to 3 parts by weight of a hindered phenolic antioxidant and (d) 0.01 to 3 parts by weight of at least one nitrogen-containing compound selected from aminotriazine compounds, guanamine compounds, hydrazide compounds and polyamides. Cellulose fiber reinforced polyacetal resin composition to be contained.
  2. (b)解繊されたセルロース繊維が、回転羽根を有するミキサーまたは解繊機でセルロース繊維集合体を解繊させたものである、請求項1記載のセルロース繊維強化ポリアセタール樹脂組成物。 (B) The cellulose fiber reinforced polyacetal resin composition according to claim 1, wherein the fibrillated cellulose fiber is obtained by defibrating the cellulose fiber aggregate with a mixer having a rotating blade or a defibrator.
  3. 更に、(e)アルカリ金属またはアルカリ土類金属の、酸化物、水酸化物、無機酸塩及びカルボン酸塩から選ばれた少なくとも一種の金属化合物0.01~3重量部を含有させてなる請求項1または2記載のセルロース繊維強化ポリアセタール樹脂組成物。 And (e) 0.01 to 3 parts by weight of at least one metal compound selected from oxides, hydroxides, inorganic acid salts and carboxylates of alkali metals or alkaline earth metals. Item 3. The cellulose fiber-reinforced polyacetal resin composition according to Item 1 or 2.
  4. 更に、(f)長鎖脂肪酸、長鎖脂肪酸の誘導体、ポリオキシアルキレングリコール及びシリコーン化合物から選ばれた少なくとも一種の加工助剤0.01~3重量部を含有させてなる請求項1~3のいずれか1項記載のセルロース繊維強化ポリアセタール樹脂組成物。 Further, (f) 0.01 to 3 parts by weight of at least one processing aid selected from long chain fatty acids, derivatives of long chain fatty acids, polyoxyalkylene glycols and silicone compounds is contained. The cellulose fiber reinforced polyacetal resin composition according to any one of the above.
  5. 更に、(g)不飽和カルボン酸及びその酸無水物及びそれらの誘導体からなる群より選ばれた少なくとも1種で変性した変性オレフィン系重合体、1級又は2級アミノ基を有するアルキレングリコール系重合体、α-オレフィンオリゴマー、表面処理を施した無機充填剤から選ばれた少なくとも一種の摺動性改良剤0.01~10重量部を含有させてなる請求項1~4のいずれか1項記載のセルロース繊維強化ポリアセタール樹脂組成物。 Further, (g) a modified olefin polymer modified with at least one selected from the group consisting of unsaturated carboxylic acids and acid anhydrides and derivatives thereof, alkylene glycol-based polymers having primary or secondary amino groups. 5. The method according to claim 1, further comprising 0.01 to 10 parts by weight of at least one sliding property improving agent selected from a coalescence, an α-olefin oligomer, and a surface-treated inorganic filler. Cellulose fiber reinforced polyacetal resin composition.
  6. (b)セルロース繊維以外の配合成分から選ばれた1種又は2種以上が、予め(a)ポリアセタール樹脂に溶融混合されて配合されたものである請求項1~5の何れか1項記載のセルロース繊維強化ポリアセタール樹脂組成物。 6. The composition according to any one of claims 1 to 5, wherein one or two or more selected from compounding components other than (b) cellulose fibers are previously blended by being melt-mixed with (a) polyacetal resin. Cellulose fiber reinforced polyacetal resin composition.
  7. (a)ポリアセタール樹脂のメルトインデックス(ASTM-D1238に準拠、190℃、2.16kgf)が5~50g/10分である、請求項1~6のいずれか1項記載のセルロース繊維強化ポリアセタール樹脂組成物。 The cellulose fiber reinforced polyacetal resin composition according to any one of claims 1 to 6, wherein the melt index (according to ASTM-D1238, 190 ° C, 2.16 kgf) of the polyacetal resin is 5 to 50 g / 10 min. object.
  8. 請求項1~7のいずれか1項記載のセルロース繊維強化ポリアセタール樹脂組成物を成形してなる成形品。 A molded article obtained by molding the cellulose fiber-reinforced polyacetal resin composition according to any one of claims 1 to 7.
PCT/JP2010/056496 2009-04-15 2010-04-12 Cellulose fiber-reinforced polyacetal resin composition WO2010119826A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-099000 2009-04-15
JP2009099000 2009-04-15
JP2010-055658 2010-03-12
JP2010055658A JP2010265438A (en) 2009-04-15 2010-03-12 Cellulose fiber-reinforced polyacetal resin composition

Publications (1)

Publication Number Publication Date
WO2010119826A1 true WO2010119826A1 (en) 2010-10-21

Family

ID=42982488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056496 WO2010119826A1 (en) 2009-04-15 2010-04-12 Cellulose fiber-reinforced polyacetal resin composition

Country Status (3)

Country Link
JP (1) JP2010265438A (en)
TW (1) TW201041946A (en)
WO (1) WO2010119826A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013021783A1 (en) * 2011-08-11 2013-02-14 ポリプラスチックス株式会社 Polyacetal resin composition and sliding member
JP2013040221A (en) * 2011-08-11 2013-02-28 Polyplastics Co Polyacetal resin composition and method for producing the same
EP3081595A4 (en) * 2014-04-25 2017-02-22 Polyplastics Co., Ltd. Polyacetal resin composition, and sulfur-containing fuel contact body provided with molded article comprising said polyacetal resin composition
JP6419276B1 (en) * 2016-12-28 2018-11-07 旭化成株式会社 Cellulose-containing resin composition
WO2022215756A1 (en) * 2021-04-09 2022-10-13 旭化成株式会社 Polyacetal resin composition and method for manufacturing same
CN115521504A (en) * 2022-10-08 2022-12-27 广元艾竹麻科技开发有限公司 Extracted bamboo fiber composite material and preparation method thereof

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5661437B2 (en) * 2010-11-29 2015-01-28 ポリプラスチックス株式会社 Polyacetal resin composition
JP5936335B2 (en) * 2011-11-28 2016-06-22 ポリプラスチックス株式会社 Polyacetal resin composition
WO2016067400A1 (en) * 2014-10-29 2016-05-06 Ykk株式会社 Fastener element and fastener element manufacturing method
JP6373174B2 (en) * 2014-11-17 2018-08-15 旭化成株式会社 Polyacetal resin composition
US10815371B2 (en) 2016-03-30 2020-10-27 Mitsubishi Gas Chemical Company, Inc. Polyacetal resin composition and molded product thereof
JP7108375B2 (en) * 2017-01-18 2022-07-28 パナソニックホールディングス株式会社 Composite resin composition
WO2018204809A1 (en) 2017-05-05 2018-11-08 Ticona Llc Polyoxymethylene polymer composition that is chemical resistant
JP6979933B2 (en) * 2017-08-29 2021-12-15 旭化成株式会社 Method for Producing Cellulose-Filled Resin Composition
JP7177690B2 (en) * 2018-12-26 2022-11-24 旭化成株式会社 Resin composition and molded article thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03217447A (en) * 1990-01-22 1991-09-25 Mitsubishi Gas Chem Co Inc Acetal resin composition
JPH0841288A (en) * 1994-08-01 1996-02-13 Fuji Photo Film Co Ltd Molded article for photosensitive material and resin composition used therefor
JP2000239484A (en) * 1998-12-22 2000-09-05 Polyplastics Co Polyacetal resin composition and molded article
JP2000239485A (en) * 1998-12-25 2000-09-05 Polyplastics Co Polyacetal resin composition and its production
JP2005112995A (en) * 2003-10-07 2005-04-28 Polyplastics Co Polyacetal resin composition and molded product thereof
JP2007084713A (en) * 2005-09-22 2007-04-05 Daicel Polymer Ltd Method for producing thermoplastic resin composition containing cellulose fiber
JP2007084698A (en) * 2005-09-22 2007-04-05 Daicel Polymer Ltd Thermoplastic resin molded article

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03217447A (en) * 1990-01-22 1991-09-25 Mitsubishi Gas Chem Co Inc Acetal resin composition
JPH0841288A (en) * 1994-08-01 1996-02-13 Fuji Photo Film Co Ltd Molded article for photosensitive material and resin composition used therefor
JP2000239484A (en) * 1998-12-22 2000-09-05 Polyplastics Co Polyacetal resin composition and molded article
JP2000239485A (en) * 1998-12-25 2000-09-05 Polyplastics Co Polyacetal resin composition and its production
JP2005112995A (en) * 2003-10-07 2005-04-28 Polyplastics Co Polyacetal resin composition and molded product thereof
JP2007084713A (en) * 2005-09-22 2007-04-05 Daicel Polymer Ltd Method for producing thermoplastic resin composition containing cellulose fiber
JP2007084698A (en) * 2005-09-22 2007-04-05 Daicel Polymer Ltd Thermoplastic resin molded article

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013021783A1 (en) * 2011-08-11 2013-02-14 ポリプラスチックス株式会社 Polyacetal resin composition and sliding member
JP2013040223A (en) * 2011-08-11 2013-02-28 Polyplastics Co Polyacetal resin composition and sliding member
JP2013040221A (en) * 2011-08-11 2013-02-28 Polyplastics Co Polyacetal resin composition and method for producing the same
EP3081595A4 (en) * 2014-04-25 2017-02-22 Polyplastics Co., Ltd. Polyacetal resin composition, and sulfur-containing fuel contact body provided with molded article comprising said polyacetal resin composition
US10072147B2 (en) 2014-04-25 2018-09-11 Polyplastics Co., Ltd. Sulfur-containing fuel contact body provided with molded article including polyacetal resin composition having increased acid resistance
JP6419276B1 (en) * 2016-12-28 2018-11-07 旭化成株式会社 Cellulose-containing resin composition
JP2019014865A (en) * 2016-12-28 2019-01-31 旭化成株式会社 Cellulose-containing resin composition
WO2022215756A1 (en) * 2021-04-09 2022-10-13 旭化成株式会社 Polyacetal resin composition and method for manufacturing same
CN115521504A (en) * 2022-10-08 2022-12-27 广元艾竹麻科技开发有限公司 Extracted bamboo fiber composite material and preparation method thereof
CN115521504B (en) * 2022-10-08 2023-04-04 广元艾竹麻科技开发有限公司 Extracted bamboo fiber composite material and preparation method thereof

Also Published As

Publication number Publication date
TW201041946A (en) 2010-12-01
JP2010265438A (en) 2010-11-25

Similar Documents

Publication Publication Date Title
WO2010119826A1 (en) Cellulose fiber-reinforced polyacetal resin composition
US10131782B2 (en) Polyoxymethylene compositions, method of manufacture, and articles made therefrom
JP5586996B2 (en) Polyacetal resin composition
WO1998021280A1 (en) Resin composition
EP3202847A1 (en) Polyacetal resin composition and sliding member
EP3202846A1 (en) Polyacetal resin composition and sliding member
JP5612430B2 (en) Polyacetal resin composition and method for producing the same
JP2005029714A (en) Polyacetal resin composition
WO2007020931A1 (en) Polyacetal resin composition and molded resin
JP3667023B2 (en) Method for producing polyoxymethylene resin composition
JP5612431B2 (en) Polyacetal resin composition and method for producing the same
JP5297912B2 (en) Cellulose fiber reinforced polybutylene terephthalate resin composition
JP6373727B2 (en) Resin molded body
JP2007145979A (en) Polyacetal resin composition and molding
JP5778518B2 (en) Polyacetal resin composition and sliding part
JP5825922B2 (en) Polyacetal resin composition and method for producing the same
JP7152558B2 (en) Polyamide resin composition
JP2004502014A (en) Stabilized black polyoxymethylene molding composition
JP3285481B2 (en) Automotive components made of polyacetal resin
JP6364223B2 (en) POLYACETAL RESIN COMPOSITION AND MOLDED ARTICLE
JP7129445B2 (en) Polyamide resin composition
JP4649920B2 (en) Polyacetal resin composition
JP2006306992A (en) Resin composition
JP2006152100A (en) Polyacetal resin composition
JP2022019652A (en) Polyacetal resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10764410

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10764410

Country of ref document: EP

Kind code of ref document: A1